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Preface

Hello, and thank you for taking the time to read this quick introduction to An Infinite
Descent into Pure Mathematics! The most recent version of the book is freely available
for download from the following website:

https://infinitedescent.xyz

The website also includes information about changes between different versions of the
book, an archive of previous versions, and some resources for using IATEX (see also
Appendix D).

About the book

A student in a typical calculus class will learn the chain rule and then use it to solve
some prescribed ‘chain rule problems’ such as computing the derivative of sin(1 4 x?)
with respect to x, or perhaps solving a word problem involving related rates of change.
The expectation is that the student correctly apply the chain rule to derive the correct
answer, and show enough work to be believed. In this sense, the student is a consumer
of mathematics. They are given the chain rule as a tool to be accepted without question,
and then use the tool to solve a narrow range of problems.

The goal of this book is to help the reader make the transition from being a consumer of
mathematics to a producer of it. This is what is meant by ‘pure’ mathematics. While a
consumer of mathematics might learn the chain rule and use it to compute a derivative,
a producer of mathematics might derive the chain rule from the rigorous definition of
a derivative, and then prove more abstract versions of the chain rule in more general
contexts (such as multivariate analysis).

Consumers of mathematics are expected to say how they used their tools to find their
answers. Producers of mathematics, on the other hand, have to do much more: they
must be able to keep track of definitions and hypotheses, piece together facts in new
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and interesting ways, and make their own definitions of mathematical concepts. But
even more importantly, once they have done this, they must communicate their findings
in a way that others find intelligible, and they must convince others that what they have
done is correct, appropriate and worthwhile.

It is this transition from consumption to production of mathematics that guided the
principles I used to design and write this book. In particular:

* Communication. Above all, this book aims to help the reader to obtain mathemat-
ical literacy and express themselves mathematically. This occurs at many levels of
magnification. For example, consider the following expression:

VX €ER, [~(x=0) = (3y € R, y* <x?)]

After working through this book, you will be able to say what the symbols V, €, R,
-, = and 3 all mean intuitively and how they are defined precisely. But you will also
be able to interpret what the expression means as a whole, explain what it means in
plain terms to another person without using a jumble of symbols, prove that it is true,
and communicate your proof to another person in a clear and concise way.

The kinds of tools needed to do this are developed in the main chapters of the book,
and more focus is given to the writing side of things in Appendix A.

* Inquiry. The research is clear that people learn more when they find things out for
themselves. If I took this to the extreme, the book would be blank; however, I do
believe it is important to incorporate aspects of inquiry-based learning into the text.

This principle manifests itself in that there are exercises scattered throughout the
text, many of which simply require you to prove a result that has been stated. Many
readers will find this frustrating, but this is for good reason: these exercises serve as
checkpoints to make sure your understanding of the material is sufficient to proceed.
That feeling of frustration is what learning feels like—embrace it!

* Strategy. Mathematical proof is much like a puzzle. At any given stage in a proof,
you will have some definitions, assumptions and results that are available to be used,
and you must piece them together using the logical rules at your disposal. Throughout
the book, and particularly in the early chapters, I have made an effort to highlight
useful proof strategies whenever they arise.

* Content. There isn’t much point learning about mathematics if you don’t have any
concepts to prove results about. With this in mind, Part II includes several chapters
dedicated to introducing some topic areas in pure mathematics, such as number the-
ory, combinatorics, analysis and probability theory.

* INTEX. The de facto standard for typesetting mathematics is I&TEX. I think it is
important for mathematicians to learn this early in a guided way, so I wrote a brief
tutorial in Appendix D and have included IATEX code for all new notation as it is
defined throughout the book.

Xii



Preface Xiii

Navigating the book

This book need not, and, emphatically should not, be read from front to back. The
order of material is chosen so that material appearing later depends only on material
appearing earlier, but following the material in the order it is presented may be a fairly
dry experience.

The majority of introductory pure mathematics courses cover, at a minimum, symbolic
logic, sets, functions and relations. This material is the content of Part I. Such courses
usually cover additional topics from pure mathematics, with exactly which topics de-
pending on what the course is preparing students for. With this in mind, Part II serves
as an introduction to a range of areas of pure mathematics, including number theory,
combinatorics, set theory, real analysis, probability theory and order theory.

It is not necessary to cover all of Part I before proceeding to topics in Part II. In fact, in-
terspersing material from Part II can be a useful way of motivating many of the abstract
concepts that arise in Part 1.

The following table shows dependencies between sections. Previous sections within the
same chapter as a section should be considered ‘essential’ prerequisites unless indicated
otherwise.

Part | Section | Essential Recommended Useful
| 1.1 0
2.1 1.3
3.1 2.2
4.1 1.3 3.1 3.2
5.1 2.1 3.1 32,42
6.1 32,43 5.2
11 7.1 1.3 2.1,4.3 3.1
7.3 5.2
8.1 6.1
9.1 4.1, 2.1 52
9.2 3.1 9.1
9.3 3.1 9.1 7.3,6.2
10.1 6.2
10.2 8.1
11.1 8.1 6.2,9.3
12.1 5.2
12.2 43,32 6.2 12.1

Prerequisites are cumulative. For example, in order to cover Section 10.2, you should
first cover Chapters 0 to 4 and Sections 6.1, 6.2, 8.1 and 10.1.

Xiii
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What the numbers, colours and symbols mean

Broadly speaking, the material in the book is broken down into enumerated items that
fall into one of five categories: definitions, results, remarks, examples and exercises. In
Appendix A, we also have proof extracts. To improve navigability, these categories are
distinguished by name, colour and symbol, as indicated in the following table.

Category Symbol Colour Category Symbol Colour
Definitions + Red Examples & Teal
Results 3 Blue Exercises SN Gold
Remarks < Purple Proof extracts L] Teal

These items are enumerated according to their section—for example, Theorem 9.2.41
is in Section 9.2. Definitions and theorems (important results) appear in a .

You will also encounter the symbols [ and <1 whose meanings are as follows:

O End of proof. It is standard in mathematical documents to identify when a proof has
ended by drawing a small square or by writing ‘Q.E.D.” (The latter stands for quod
erat demonstrandum, which is Latin for which was to be shown.)

<1 End of item. This is not a standard usage, and is included only to help you to identify
when an item has finished and the main content of the book continues.

Some subsections are labelled with the symbol . This indicates that the material in that
subsection can be skipped without dire consequences.

Licence

This book is licensed under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-
SA 4.0) licence. This means you’re welcome to share this book, provided that you give
credit to the author and that any copies or derivatives of this book are released under
the same licence.

The licence can be read in its full glory at the end of the book or by following the
following URL.:

http://creativecommons.org/licenses/by-sa/4.0/
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Preface XV

Comments and corrections

Any feedback, be it from students, teaching assistants, instructors or any other readers,
would be very much appreciated. Particularly useful are corrections of typographical
errors, suggestions for alternative ways to describe concepts or prove theorems, and
requests for new content (e.g. if you know of a nice example that illustrates a concept,
or if there is a relevant concept you wish were included in the book).

Such feedback can be sent to the author by email (clive@infinitedescent.xyz).
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Chapter O

Getting started

Consider the following statements:

(1) This sentence is false.

(2) I have been far even as decided to use even go want to do more like.

Are they true or false? If you think about (1) for a minute or two, then you’ll get into
a bit of a pickle, since both ‘true’ and ‘false’ seem to have nonsensical consequences;
and (2) doesn’t make any sense, so asking whether it is true or false is pointless.

Clearly we’ll be wasting our time trying to write proofs of statements like the two listed
above—we need to narrow our scope to statements that we might actually have a chance
of proving (or perhaps refuting)! This motivates the following (informal) definition.

4 Definition 0.1
A proposition is a statement to which it makes sense to assign a truth value (either
true or false).

To do:

4 Definition 0.2
A proof of a true proposition is an argument that demonstrates its truth; the proof should
start from what is already known or assumed to be true, should use logical steps that
have been agreed upon as valid, and should be verifiable by a member of its intended
target audience.

There is a lot going on in the definition of a proof:

1



2 Chapter 0. Getting started

* Starting from what is already known or assumed to be true: To do:
* Using logical steps that have been agreed upon as valid: To do:
* Verifiability: To do:

Thus the statements given at the beginning of this section are not propositions because
there is no possible way of assigning them a truth value. Note that, in Definition 0.1,
all that matters is that it makes sense to say that it is true or false, regardless of whether
it actually is true or false—the truth value of many propositions is unknown, even very
simple ones.

Exercise 0.3
Think of an example of a true proposition, a false proposition, a proposition whose truth
value you don’t know, and a statement that is not a proposition. <

Results in mathematical papers and textbooks may be referred to as propositions, but
they may also be referred to as theorems, lemmas or corollaries depending on their
intended usage.

* A proposition is an umbrella term which can be used for any result.
* A theorem is a key result which is particularly important.

* A lemma is a result that will (most likley) be used as a step in the proof of a theorem
appearing later, or as a tool for the reader to use in their own proofs.

* A corollary is a result which follows as an immediate consequence of a theorem.

These are not precise definitions, and they are not meant to be—you could call every
result a theorem if you wanted to, for example—but using these words appropriately
helps readers work out how to read a paper. For example, if you just want to skim
a paper and find its key results, you’d look for the propositions that are labelled as
theorems.

It is not much good trying to prove results if we don’t have anything to prove results
about. With this in mind, we will now introduce the number sets and prove some results
about them in the context of four topics, namely: division of integers, number bases,
rational and irrational numbers, and polynomials. These topics will provide context for
the material in Part I, and serve as an introduction to the topics covered in Part II.

We will not go into very much depth in this chapter. Rather, think of this as a warm-up
exercise—a quick, light introduction, with more proofs to be provided in the rest of the
book.
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Sets

Fundamental to mathematics is the notion of a ser. We will study sets in great detail in
Chapter 2, but you will find them in every chapter of the textbook, so we will take some
time to think about them now. We will not treat sets formally at this stage—for now,
the following definition will suffice.

4 Definition 0.4 (to be revised in Definition 2.1.1)
A set is a collection of objects. The objects in the set are called elements of the set. If
X is a set and x is an object, then we write x € X (I4IgX code: x \in X) to denote the
assertion that x is an element of X.

The sets of concern to us first and foremost are the number sets—that is, sets whose
elements are particular types of number. At this introductory level, many details will
be temporarily swept under the rug; we will work at a level of precision which is ap-
propriate for our current stage, but still allows us to develop a reasonable amount of
intuition.

In order to define the number sets, we will need three things: an infinite line, a fixed
point on this line, and a fixed unit of length.

So here we go. Here is an infinite line:

The arrows indicate that it is supposed to extend in both directions without end. The
points on the line will represent numbers (specifically, real numbers, a misleading term
that will be defined in Definition 0.26).

Now let’s fix a point on this line, and label it ‘0’:

This point can be thought of as representing the number zero; it is the point against
which all other numbers will be measured. Numbers to the left of O on the number line
are said to be negative, and those to the right are positive; 0 itself is neither positive nor
negative.

Finally, let’s fix a unit of length:
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This unit of length will be used, amongst other things, to compare the extent to which
the other numbers differ from zero.

4 Definition 0.5
The above infinite line, together with its fixed zero point and fixed unit length, constitute
the (real) number line.

We will use the number line to construct five sets of numbers of interest to us: the set
N of natural numbers (Definition 0.6), the set Z of integers (Definition 0.12), the set Q
of rational numbers (Definition 0.25), the R of real numbers (Definition 0.26), and the
set C of complex numbers (Definition 0.32).

Each of these sets has a different character and is used for different purposes, as we will
seeu later in this chapter and throughout this book.

Natural numbers (N)

The natural numbers are the numbers used for counting—they are the answers to ques-
tions of the form ‘how many’—for example, I have three uncles, three guinea pigs and
zero cats.

Counting is a skill humans have had for a very long time; we know this because there
is evidence of people using tally marks tens of thousands of years ago. Tally marks
provide one method of counting small numbers: starting with nothing, proceed through
the objects you want to count one by one, and make a mark for every object. When
you are finished, there will be as many marks as there are objects. We are taught from
a young age to count with our fingers; this is another instance of making tally marks,
where now instead of making a mark we raise a finger.

Making a tally mark represents an increment in quantity—that is, adding one. On our
number line, we can represent an increment in quantity by moving to the right by the
unit length. Then the distance from zero we have moved, which is equal to the number
of times we moved right by the unit length, is therefore equal to the number of objects
being counted.
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Definition 0.6
The natural numbers are represented by the points on the number line which can be
obtained by starting at 0 and moving right by the unit length any number of times:

In more familiar terms, they are the non-negative whole numbers. We write N (IATEX
code: \mathbb{N}) for the set of all natural numbers; thus, the notation ‘n € N’ means
that » is a natural number.

The natural numbers have very important and interesting mathematical structure, and
are central to the material in Chapter 8. A more precise characterisation of the natural
numbers will be provided in Section 4.1, and a mathematical construction of the set of
natural numbers can be found in Section B.1 (see Construction B.2.5). Central to these
more precise characterisations will be the notions of ‘zero’ and of ‘adding one’—just
like making tally marks.

Aside

Some authors define the natural numbers to be the positive whole numbers, thus exclud-
ing zero. We take 0 to be a natural number since our main use of the natural numbers
will be for counting finite sets, and a set with nothing in it is certainly finite! That said,
as with any mathematical definition, the choice about whether O € N or 0 ¢ N is a mat-
ter of taste or convenience, and is merely a convention—it is not something that can be
proved or refuted. <

Number bases

Writing numbers down is something that may seem easy to you now, but it likely took
you several years as a child to truly understand what was going on. Historically, there
have been many different systems for representing numbers symbolically, called nu-
meral systems. First came the most primitive of all, tally marks, appearing in the Stone
Age and still being used for some purposes today. Thousands of years and hundreds of
numeral systems later, there is one dominant numeral system, understood throughout
the world: the Hindu—-Arabic numeral system. This numeral system consists of ten
symbols, called digits. It is a positional numeral system, meaning that the position of a
symbol in a string determines its numerical value.

In English, the Arabic numerals are used as the ten digits:
0123456 7289

The right-most digit in a string is in the units place, and the value of each digit increases

5



6 Chapter 0. Getting started

by a factor of ten moving to the left. For example, when we write ‘2812’, the left-most
2’ represents the number two thousand, whereas the last ‘2’ represents the number two.

The fact that there are ten digits, and that the numeral system is based on powers of ten,
is a biological accident corresponding with the fact that most humans have ten fingers.
For many purposes, this is inconvenient. For example, ten does not have many positive
divisors (only four: 1, 2, 5 and 10)—this has implications for the ease of performing
arithmetic; a system based on the number twelve, which has six positive divisors (1,
2, 3, 4, 6 and 12), might be more convenient. Another example is in computing and
digital electronics, where it is more convenient to work in a binary system, with just two
digits—0 and 1—which represent ‘off” and ‘on’ (or ‘low voltage’ and ‘high voltage’),
respectively; arithmetic can then be performed directly using sequences of logic gates
in an electrical circuit.

It is therefore worthwhile to have some understanding of positional numeral systems
based on numbers other than ten. The mathematical abstraction we make leads to the
definition of base-b expansion.

4 Definition 0.7
Let b be a natural number greater than 1. The base-b expansion of a natural number n
is the” string d,d,_1 ...dp such that:

A n=d--b +de_i - b+ +dy- b,
(i1) 0 < d; < b for each i; and

(iii) If n > 0 then d, # O—the base-b expansion of zero is 0 in all bases b.

Certain number bases have names; for instance, the base-2, 3, 8, 10 and 16 expansions
are respectively called binary, ternary, octal, decimal and hexadecimal.

“The use of the word ‘the’ is troublesome here, since it assumes that every natural number has only one
base-b expansion. This fact actually requires proof—see Theorem 7.3.51.

Before we look at an example of Definition 0.7 in action, let’s examine the definition,
which is a little terse on first sight.

* Condition (i) tells us that the digits in the string tell us how many of each power of b
are added up to obtain n. For example, when b = 10, the digits from right to left tell
us the units, tens, hundreds, thousands, and so on.

» Condition (ii) tells us that the digits in a base-b expansion must be less than b—for
example, the base-4 digits are 0, 1, 2 and 3. If we allowed more digits then silly things
would happen—for example, if ‘X’ were a new base-10 digit representing the number



4

Chapter 0. Getting started 7

ten, then ‘X2’ and ‘102’ would be different strings both representing the number one
hundred and two.

* Condition (iii) ensures that the string representing a positive number doesn’t have any
leading ‘0’s—otherwise, for example, ‘01423” and ‘1423’ would be different strings
representing the same natural number.

Example 0.8
Consider the number 1023. Its decimal (base-10) expansion is 1023, since
1023 =1-10*+0-10*+2-10" +3-10°
Its binary (base-2) expansionis 1111111111, since
1023=1-22+1-28 41274124+ 1- 254124 4 1-28 41224121 +1-2°

We can express numbers in base-36 by using the ten usual digits O through 9 and the
twenty-six letters A through Z; for instance, A represents 10, M represents 22 and Z
represents 35. The base-36 expansion of 1023 is SF, since

1023 =28-36' +15-36° =S-36' + F-36"

Exercise 0.9

Find the binary, ternary, octal, decimal, hexadecimal and base-36 expansions of the
number 21127, using the letters A—F as additional digits for the hexadecimal expansion
(representing the numbers 10-15, respectively), and the letters A—Z as additional digits
for the base-36 expansion. <

We sometimes wish to specify a natural number in terms of its base-b expansion; we
have some notation for this.

Notation 0.10
Let b > 1. If the numbers dy,dy, ... ,d, are base-b digits (in the sense of Definition 0.7),
then we write

didry ... dogy =dp-b' +dpy -0 - dy - D

for the natural number whose base-b expansion is d,d,_1 ...dp. If there is no subscript
(b) and a base is not specified explicitly, the expansion will be assumed to be in base-10.

& Example 0.11

Using our new notation, we have

1023 = 11111111115 = 1101220(3) = 17775 = 102319 = 3FF 1) = SF(3)
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Integers (Z)

The integers can be used for measuring the difference between two natural numbers.
For example, suppose I have five apples and five bananas. Another person, also holding
apples and bananas, wishes to trade. After our exchange, I have seven apples and only
one banana. Thus I have two more apples and four fewer bananas.

Since an increment in quantity can be represented by moving to the right on the number
line by the unit length, a decrement in quantity can therefore be represented by moving
to the left by the unit length. Doing so gives rise to the integers.

4 Definition 0.12
The integers are represented by the points on the number line which can be obtained
by starting at 0 and moving in either direction by the unit length any number of times:

-5 -4 -3 -2 -1 0 1 2 3 4 5

1 1 1 1 1

We write Z (IATEX code: \mathbb{Z}) for the set of all integers; thus, the notation
‘n € Z’ means that n is an integer.

The integers have such a fascinating structure that a whole chapter of this book is de-
voted to them—see Chapter 7. This is to do with the fact that, although you can add,
subtract and multiply two integers and obtain another integer, the same is not true of
division. This ‘bad behaviour’ of division is what makes the integers interesting. We
will now see some basic results about division.

Division of integers

The motivation we will soon give for the definition of the rational numbers (Defini-
tion 0.25) is that the result of dividing one integer by another integer is not necessarily
another integer. However, the result is sometimes another integer; for example, I can
divide six apples between three people, and each person will receive an integral num-
ber of apples. This makes division interesting: how can we measure the failure of one
integer’s divisibility by another? How can we deduce when one integer is divisible by
another? What is the structure of the set of integers when viewed through the lens of
division? This motivates Definition 0.13.
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Definition 0.13 (to be repeated in Definition 7.1.4)

Let a,b € Z. We say b divides a if a = gb for some integer q. There are many other
ways of saying that b divides a, such as: a is divisible by b, b is a divisor of a, b is a
factor of a, or a is a multiple of b.

Note that, perhaps counterintuitively, the definition if divisibility does not involve the
arithmetic operation of division: it is defined in terms of multiplication.

Example 0.14
The integer 12 is divisible by 1, 2, 3, 4, 6 and 12, since

12=121=6-2=4-3=3-4=2-6=1-12

It is also divisible by the negatives of all of those numbers; for example, 12 is divisible
by —3 since 12 = (—4) - (=3). <

Exercise 0.15
Prove that 1 divides every integer, and that every integer divides 0. <

A consequence of Exercise 0.15 is that O is divisible by 0. This is surprising: we’ve
been told our whole lives that we can’t divide by zero, but now we discover that we
can divide zero by zero... how can that be? This highlights why it was so important
for the definition of divisibility (Definition 0.13) to be given in terms of multiplication,
without using the division operation: saying that 0 divides 0 simply means that 0 can
be multiplied by an integer to obtain 0 (which is true)—but this does not imply that the
expression ‘8’ can (or should) be meaningfully defined.

Using Definition 0.13, we can prove some general basic facts about divisibility.

Proposition 0.16
Leta,b,c € Z. If c divides b and b divides a, then ¢ divides a.

Proof
Suppose that ¢ divides b and b divides a. By Definition 0.13, it follows that

b=gc and a=rb

for some integers g and r. Using the first equation, we may substitute gc for b in the
second equation, to obtain

a=r(gc)
But r(gc) = (rq)c, and rq is an integer, so it follows from Definition 0.13 that ¢ divides
a. U

Exercise 0.17
Leta,b,d € Z. Suppose that d divides a and d divides b. Given integers u and v, prove
that d divides au + bv. <
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Some familiar concepts, such as evenness and oddness, can be characterised in terms
of divisibility.

4 Definition 0.18
An integer n is even if it is divisible by 2; otherwise, n is odd.

It is not just interesting to know when one integer does divide another; however, proving
that one integer doesn 't divide another is much harder. Indeed, to prove that an integer b
does not divide an integer a, we must prove that a # gb for any integer g at all. We will
look at methods for doing this in Chapter 1; these methods use the following extremely
important result, which will underlie all of Chapter 7.

KX

Theorem 0.19 (Division theorem, to be repeated in Theorem 7.1.1)
Let a,b € Z with b # 0. There is exactly one way to write

a=qgb+r

such that g and r are integers, and 0 < r < |b|.

The number g in Theorem 0.19 is called the quotient of @ when divided by b, and the
number r is called the remainder.

< Example 0.20
The number 12 leaves a remainder of 2 when divided by 5, since 12 =2-5+2. <

Here’s a slightly more involved example.

+» Proposition 0.21
Suppose an integer a leaves a remainder of » when divided by an integer b, and that
r > 0. Then —a leaves a remainder of b — r when divided by b.

Proof
Suppose a leaves a remainder of r when divided by b. Then

a=gb+r
for some integer g. A bit of algebra yields
—a=—gb—r=—qgb—r+(b->b)=—(qg+1)b+(b—r)

Since 0 < r < b, we have 0 < b —r < b. Hence —(g+ 1) is the quotient of —a when
divided by b, and b — r is the remainder. O

10
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Exercise 0.22
Prove that if an integer a leaves a remainder of » when divided by an integer b, then a
leaves a remainder of » when divided by —b. <

We will finish this part on division of integers by connecting it with the material on
number bases—we can use the division theorem (Theorem 0.19) to find the base-b
expansion of a given natural number. It is based on the following observation: the
natural number n whose base-b expansion is d,d,_1 - - - dydp is equal to

do+b(dy +b(dy+---+b(d,_1 +bd,)--))

Moreover, 0 < d; < b for all i. In particular n leaves a remainder of dp when divided by

b. Hence
n— d()

b
n—

bdo is therefore

=d\+dob+--+d b

The base-b expansion of

drdr—l o 'dl

In other words, the remainder of » when divided by b is the last base-b digit of n, and
then subtracting this number from n and dividing the result by b truncates the final digit.
Repeating this process gives us d, and then d5, and so on, until we end up with 0.

This suggests the following algorithm for computing the base-b expansion of a number
n:

» Step 1. Let dy be the remainder when » is divided by b, and let ny = "_bdo be the
quotient. Fix i = 0.

» Step 2. Suppose n; and d; have been defined. If n; = 0, then proceed to Step 3.
Otherwise, define d; | to be the remainder when 7; is divided by b, and define n;;| =
ni—dil Tncrement i, and repeat Step 2.

* Step 3. The base-b expansion of 7 is

didi—1---dp

Example 0.23
We compute the base-17 expansion of 15213, using the letters A—G to represent the
numbers 10 through 16.

* 15213 =894-17+ 15, so dy = 15 = F and ny = 894.
e 894 =52-17410,s0d; =10 = A and n; = 52.
e 52=3-17+1,s0d, =1and n, = 3.

11
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*«3=0-174+3,s0d3 =3 and n3 =0.
* The base-17 expansion of 15213 is therefore 31AF.
A quick verification gives
31AF(17) =317 +1-172+10- 17+ 15 = 15213

as desired. g

Exercise 0.24
Find the base-17 expansion of 408735787 and the base-36 expansion of 1442 151747.
<

Rational numbers (Q)

Bored of eating apples and bananas, I buy a pizza which is divided into eight slices. A
friend and I decide to share the pizza. I don’t have much of an appetite, so I eat three
slices and my friend eats five. Unfortunately, we cannot represent the proportion of
the pizza each of us has eaten using natural numbers or integers. However, we’re not
far off: we can count the number of equal parts the pizza was split into, and of those
parts, we can count how many we had. On the number line, this could be represented
by splitting the unit line segment from O to 1 into eight equal pieces, and proceeding
from there. This kind of procedure gives rise to the rational numbers.

Definition 0.25

The rational numbers are represented by the points at the number line which can
be obtained by dividing any of the unit line segments between integers into an equal
number of parts.

The rational numbers are those of the form % where a,b € Z and b # 0. We write Q
(IATEX code: \mathbb{Q}) for the set of all rational numbers; thus, the notation ‘g € Q’
means that g is a rational number.

The rational numbers are a very important example of a type of algebraic structure
known as a field—they are particularly central to algebraic number theory and algebraic
geometry.

12
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Real numbers (R)

Quantity and change can be measured in the abstract using real numbers.

4 Definition 0.26
The real numbers are the points on the number line. We write R (I£ZI[EX code:
\mathbb{R}) for the set of all real numbers; thus, the notation ‘a € R’ means that

a is a real number.

The real numbers are central to real analysis, a branch of mathematics introduced in
Chapter 9. They turn the rationals into a continuum by ‘filling in the gaps’—specifically,
they have the property of completeness, meaning that if a quantity can be approximated
with arbitrary precision by real numbers, then that quantity is itself a real number.

We can define the basic arithmetic operations (addition, subtraction, multiplication and
division) on the real numbers, and a notion of ordering of the real numbers, in terms of
the infinite number line.

* Ordering. A real number a is less than a real number b, written a < b, if a lies to the
left of b on the number line. The usual conventions for the symbols < (I&IEX code:
\1le), > and > (IZTEX code: \ge) apply, for instance ‘a < b’ means that either a < b
ora=nb.

* Addition. Suppose we want to add a real number a to a real number b. To do this,
we translate a by b units to the right—if b < 0 then this amounts to translating a by
an equivalent number of units to the left. Concretely, take two copies of the number
line, one above the other, with the same choice of unit length; move the O of the lower
number line beneath the point a of the upper number line. Then a + b is the point on
the upper number line lying above the point b of the lower number line.

Here is an illustration of the fact that (—3) +5 = 2:

-8 -7 -6 -5 -4 -3 -2 -1 0 1

N+ — @

*
0

Multiplication. This one is fun. Suppose we want to multiply a real number a by a
real number b. To do this, we scale the number line, and perhaps reflect it. Concretely,
take two copies of the number line, one above the other; align the O points on both
number lines, and stretch the lower number line evenly until the point 1 on the lower
number line is below the point a on the upper number line—note that if a < O then

13



14 Chapter 0. Getting started

the number line must be reflected in order for this to happen. Then a - b is the point
on the upper number line lying above b on the lower number line.

Here is an illustration of the fact that 5 -4 = 20.

8 19 20 21 22 23 24
; ; ; — I

T
;

6 7 8 9 10 11 12 13 14 15 16 17 1

—t---euw

ot+---+o

and here is an illustration of the fact that (—5) -4 = —20:

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6

T
;

% Exercise 0.27
Interpret the operations of subtraction and division as geometric transformations of the
real number line. <

We will take for granted the arithmetic properties of the real numbers in this chapter,
waiting until Section 9.1 to sink our teeth into the details. For example, we will take for

granted the basic properties of rational numbers, for instance

ac

S_ad—i—bc and a c
d bd b d bd

_
b

Rational and irrational numbers

Before we can talk about irrational numbers, we should say what they are.

4 Definition 0.28
An irrational number is a real number that is not rational.

Unlike N, Z,Q, R, C, there is no standard single letter expressing the irrational numbers.
However, by the end of Section 2.2, we will be able to write the set of irrational numbers

as ‘R\ Q.
Proving that a real number is irrational is not particularly easy, in general. We will
get our foot in the door by allowing ourselves to assume the following result, which is

restated and proved in Proposition 4.3.12.

14
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Proposition 0.29
The real number v/2 is irrational. O

We can use the fact that v/2 is irrational to prove some facts about the relationship
between rational numbers and irrational numbers.

Proposition 0.30
Let a and b be irrational numbers. It is possible that ab be rational.

Proof
Let a = b = v/2. Then a and b are irrational, and ab =2 = %, which is rational. OJ

Exercise 0.31
Let r be a rational number and let a be an irrational number. Prove that it is possible
that ra be rational, and it is possible that ra be irrational. <

Complex numbers (C)

We have seen that multiplication by real numbers corresponds with scaling and reflec-
tion of the number line—scaling alone when the multiplicand is positive, and scaling
with reflection when it is negative. We could alternatively interpret this reflection as a
rotation by half a turn, since the effect on the number line is the same. You might then
wonder what happens if we rotate by arbitrary angles, rather than only half turns.

What we end up with is a plane of numbers, not merely a line—see Figure 1. Moreover,
it happens that the rules that we expect arithmetic operations to satisfy still hold—
addition corresponds with translation, and multiplication corresponds with scaling and
rotation. This resulting number set is that of the complex numbers.

Definition 0.32

The complex numbers are those obtained by the non-negative real numbers upon rota-
tion by any angle about the point 0. We write C (I&IgX code: \mathbb{C}) for the set
of all complex numbers; thus, the notation ‘z € C* means that z is a complex number.

There is a particularly important complex number, i, which is the point in the complex
plane exactly one unit above O—this is illustrated in Figure 1. Multiplication by i has
the effect of rotating the plane by a quarter turn anticlockwise. In particular, we have
i? =i-i= —1; the complex numbers have the astonishing property that square roots of
all complex numbers exist (including all the real numbers).

In fact, every complex number can be written in the form a + bi, where a,b € R; this
number corresponds with the point on the complex plane obtained by moving a units to

15
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Figure 1: Illustration of the complex plane, with some points labelled

16
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the right and b units up, reversing directions as usual if a or b is negative. Arithmetic
on the complex numbers works just as with the real numbers; in particular, using the
fact that i2 = —1, we obtain

(a+bi)+(c+di)=(a+c)+ (b+d)i and (a+bi)-(c+di)=(ac—bd)+ (ad+bc)i

We will discuss complex numbers further in the portion of this chapter on polynomials
below.

Polynomials

The natural numbers, integers, rational numbers, real numbers and complex numbers
are all examples of semirings, which means that they come equipped with nicely be-
having notions of addition and multiplication.

Definition 0.33
LetS=N, Z, Q, R or C. A (univariate) polynomial over S in the indeterminate x is
an expression of the form

ag+arx—+---+ax’

where n € N and each a; € S. The numbers a, are called the coefficients of the poly-
nomial. If not all coefficients are zero, the largest value of k for which a; # 0 is called
the degree of the polynomial. By convention, the degree of the polynomial 0 is —oo.

Polynomials of degree 1, 2, 3, 4 and 5 are respectively called linear, quadratic, cubic,
quartic and quintic polynomials.

Example 0.34
The following expressions are all polynomials:
3 -1 B+ —x
Their degrees are 0, 1 and 2, respectively. The first two are polynomials over Z, and the
third is a polynomial over C. <

Exercise 0.35
Write down a polynomial of degree 4 over R which is not a polynomial over Q. <

Notation 0.36
Instead of writing out the coefficients of a polynomial each time, we may write some-
thing like p(x) or g(x). The ‘(x)” indicates that x is the indeterminate of the polynomial.

17
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If & is a number'® and p(x) is a polynomial in indeterminate x, we write p(a) for the
result of substituting o for x in the expression p(x).

Note that, if A is any of the sets N, Z, Q, R or C, and p(x) is a polynomial over A, then
plo) € Aforall o € A.

¢ Example 0.37

Let p(x) = x> —3x? 4 3x — 1. Then p(x) is a polynomial over Z with indeterminate x.
For any integer ¢, the value p(a) will also be an integer. For example

p(0)=0°-3.043-0-1=—1 and p(3)=3*-3.324+3.3-1=8

4 Definition 0.38

Let p(x) be a polynomial. A root of p(x) is a complex number ¢ such that p(a) = 0.

The quadratic formula (Theorem 1.1.31) tells us that the roots of the polynomial x> +
ax—+ b, where a,b € C, are precisely the complex numbers
—a++Va*—4b —a—+a*—4b

d
2 an 2

Note our avoidance of the symbol ‘+’, which is commonly found in discussions of
quadratic polynomials. The symbol ‘£’ is dangerous because it may suppress the word
‘and’ or the word ‘or’, depending on context—this kind of ambiguity is not something
that we will want to deal with when discussing the logical structure of a proposition in
Chapter 1!

Example 0.39
Let p(x) = x> — 2x+ 5. The quadratic formula tells us that the roots of p are

—1—v—4=1-2i

21 E—45
%:1+\/—4:1+2i and

2—\4—4-5
2

The numbers 1+ 2i and 1 — 2i are related in that their real parts are equal and their
imaginary parts differ only by a sign. Exercise 0.40 generalises this observation. <

Exercise 0.40
Let o¢ = a+ bi be a complex number, where a,b € R. Prove that ¢ is the root of a
quadratic polynomial over R, and find the other root of this polynomial. <

[2lWhen dealing with polynomials, we will typically reserve the letter x for the indeterminate variable, and
use the Greek letters o, 8,y (IATEX code: \alpha, \beta, \gamma) for numbers to be substituted into a
polynomial.

18
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The following exercise proves the well-known result which classifies the number of real
roots of a polynomial over R in terms of its coefficients.

Exercise 0.41

Leta,b € C and let p(x) = x*> +-ax+b. The value A = a> — 4b is called the discriminant
of p. Prove that p has two roots if A # 0 and one root if A = 0. Moreover, if a,b € R,
prove that p has no real roots if A < 0, one real root if A = 0, and two real roots if
A>0. <

Example 0.42

Consider the polynomial x> — 2x + 5. Its discriminant is equal to (—2)> —4-5 = —16,
which is negative. Exercise 0.41 tells us that it has two roots, neither of which are real.
This was verified by Example 0.39, where we found that the roots of x> — 2x +5 are
1+2iand 1 —2i.

Now consider the polynomial x*> —2x — 3. Its discriminant is equal to (—2)> —4-(—3) =
16, which is positive. Exercise 0.41 tells us that it has two roots, both of which are real;
and indeed

K —2x—3=(x+1)(x—3)

so the roots of x2 — 2x — 3 are —1 and 3. <

19
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Section 0.E
Chapter 0 exercises

0.1. The video-sharing website YouTube assigns to each video a unique identifier,
which is a string of 11 characters from the set

{A,B,...,Z,a,b,...,2,0,1,2,3,4,5,6,7,8,9,-, _}

This string is actually a natural number expressed in base-64, where the characters in
the above set represent the numbers 0 through 63, in the same order—thus C represents
2, c represents 28, 3 represents 55, and _ represents 63. According to this schema, find
the natural number whose base-64 expansion is dQw4w9WgXcQ, and find the base-64
expansion of the natural number 7 159047702620056984.

0.2. Let a,b,c,d € Z. Under what conditions is (a +bv/2)(c +d+/2) an integer?

0.3. Suppose an integer m leaves a remainder of i when divided by 3, and an integer n
leaves a remainder of j when divided by 3, where 0 < i, j < 3. Prove that m +n and
i+ j leave the same remainder when divided by 3.

0.4. What are the possible remainders of n> when divided by 3, where n € Z?

4 Definition 0.E.1
A set X is closed under an operation © if, whenever a and b are elements of X, a® b is
also an element of X.

In Questions 0.5 to 0.11, determine which of the number sets N, Z, Q and R are closed
under the operation ©® defined in the question.

0.5.a0b=a+b 9.a0b=—2
0.9.a0b Pl
0.6.a®b=a—-> a
0.10.a®b=
0.7.a®b=(a—b)(a+D) b2 +1
— b .
0.8.a0b=(a—1)(b—1)+2(a+b) 0.11.a0h—1° %fb>0
0 ifbeQ

4 Definition 0.E.2
A complex number ¢ is algebraic if p(a) = 0 for some nonzero polynomial p(x) over

Q.

0.12. Let x be a rational number. Prove that x is an algebraic number.

20
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0.13. Prove that v/2 is an algebraic number.
0.14. Prove that v/2 + /3 is an algebraic number.

0.15. Prove that x + yi is an algebraic number, where x and y are any two rational
numbers.

True-False questions

In Questions 0.16 to 0.23, determine (with proof) whether the statement is true or false.
0.16. Every integer is a natural number.

0.17. Every integer is a rational number.

0.18. Every integer divides zero.

0.19. Every integer divides its square.

0.20. The square of every rational number is a rational number.

0.21. The square root of every positive rational number is a rational number.

0.22. When an integer a is divided by a positive integer b, the remainder is always less
than a.

0.23. Every quadratic polynomial has two distinct complex roots.

Always—Sometimes—Never questions

In Questions 0.24 to 0.32, determine (with proof) whether the conclusion is always,
sometimes or never true under the given hypotheses.

0.24. Let n,by,by € Nwith 1 <n < by < by. Then the base-b; expansion of n is equal
to the base-b, expansion of n.

0.25. Let n,by,by € N with 1 < by < by < n. Then the base-b; expansion of n is equal
to the base-b, expansion of 7.

0.26. Let a,b, c € Z and suppose that a divides ¢ and b divides c¢. Then ab divides c.
0.27. Let a,b,c € Z and suppose that a divides ¢ and b divides ¢. Then ab divides 2.

b
ax—+ cQ.

0.28. Let x,y € Q and let a,b,c¢,d € Z with cy+d # 0. Then d
cy

0.29. Let g be a rational number. Thena € Z and b € Z.

21
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0.30. Let x € R and assume that x> € Q. Then x € Q.
0.31. Let x € R and assume that x> +1 € Q and ¥’ +1 € Q. Then x € Q.

0.32. Let p(x) = ax® + bx + ¢ be a polynomial with a,b,c € R and a # 0, and suppose
that u + vi be a complex root of p(x) with v # 0. Then u — vi is a root of p(x).

22
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Chapter 1

Logical structure

The goal of this chapter is to develop a methodical way of breaking up a proposition into
smaller components and seeing how these components fit together—this is called the
logical structure of a proposition. The logical structure of a proposition is very inform-
ative: it tells us what we need to do in order to prove it, what we need to write in order
to communicate our proof, and how to explore the consequences of the proposition after
it has been proved.

logical structure of a

proposition
strategies for proving structure and wording of consequences of
the proposition the proof the proposition

Sections 1.1 and 1.2 are dedicated to developing a system of symbolic logic for reas-
oning about propositions. We will be able to represent a proposition using a string
of variables and symbols, and this expression will guide how we can prove the pro-
position and explore its consequences. In Section 1.3 we will develop techniques for
manipulating these logical expressions algebraically—this, in turn, will yield new proof
techniques (some have fancy names like ‘proof by contraposition’, but some do not).

Exploring how the logical structure of a proposition informs the structure and wording
of its proof is the content of Appendix A.2.

25
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Section 1.1
Propositional logic

Every mathematical proof is written in the context of certain assumptions being made,
and certain goals to be achieved.

* Assumptions are the propositions which are known to be true, or which we are as-
suming to be true for the purposes of proving something. They include theorems
that have already been proved, prior knowledge which is assumed of the reader, and
assumptions which are explicitly made using words like ‘suppose’ or ‘assume’.

* Goals are the propositions we are trying to prove in order to complete the proof of a
result, or perhaps just a step in the proof.

With every phrase we write, our assumptions and goals change. This is perhaps best
illustrated by example. In Example 1.1.1 below, we will examine the proof of Proposi-
tion 0.16 in detail, so that we can see how the words we wrote affected the assumptions
and goals at each stage in the proof. We will indicate our assumptions and goals at
any given stage using tables—the assumptions listed will only be those assumptions
which are made explicitly; prior knowledge and previously proved theorems will be
left implicit.

Example 1.1.1
The statement of Proposition 0.16 was as follows:

Leta,b,c € Z. If ¢ divides b and b divides a, then ¢ divides a.

The set-up of the proposition instantly gives us our initial assumptions and goals:

Assumptions \ Goals
If ¢ divides b and b divides a, then ¢
a,b,ceZ ..
divides a

We will now proceed through the proof, line by line, to see what effect the words we
wrote had on the assumptions and goals.

Since our goal was an expression of the form ‘if...then...’, it made sense to start by

assuming the ‘if” statement, and using that assumption to prove the ‘then’ statement.
As such, the first thing we wrote in our proof was:

Suppose that ¢ divides b and b divides a.

26
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Our updated assumptions and goals are reflected in the following table.

Assumptions Goals
a,b,ceZ c divides a
c divides b
b divides a

Our next step in the proof was to unpack the definitions of ‘c divides b* and ‘b divides
a’, giving us more to work with.
Suppose that ¢ divides b and b divides a. By Definition 0.13, it follows that
b=gqgc and a=rb
for some integers ¢ and r.

This introduces two new variables g,r and allows us to replace the assumptions ‘c
divides b’ and ‘b divides @’ with their definitions.

Assumptions \ Goals
a,b,c,q,r €7 ¢ divides a
b=gqc
a=rb

At this point we have pretty much exhausted all of the assumptions we can make, and
so our attention turns towards the goal—that is, we must prove that ¢ divides a. At this
point, it helps to ‘work backwards’ by unpacking the goal: what does it mean for c¢ to
divide a? Well, by Definition 0.13, we need to prove that a is equal to some integer
multiplied by c—this will be reflected in the following table of assumptions and goals.

Since we are now trying to express a in terms of ¢, it makes sense to use the equations
we have relating a with b, and b with c, to relate a with c.
Suppose that ¢ divides b and b divides a. By Definition 0.13, it follows that
b=gc and a=rb

for some integers ¢ and r. Using the first equation, we may substitute gc for b
in the second equation, to obtain

a=r(gc)

27
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We are now very close, as indicated in the following table.

Assumptions \ Goals
a,b,c,q,r €L a = [some integer] - ¢
b=qc
a=rb
a=r(gc)

Our final step was to observe that the goal has at last been achieved:

Suppose that ¢ divides b and b divides a. By Definition 0.13, it follows that
b=¢gc and a=rb

for some integers ¢ and r. Using the first equation, we may substitute gc for b
in the second equation, to obtain

a=r(qc)

But r(gc) = (rg)c, and rq is an integer,

Assumptions Goals
a,b,c,q,r €7
b=gqc
a=rb
a=r(gc)
a=(rq)c
rq €Z

Now that there is nothing left to prove, it is helpful to reiterate that point so that the
reader has some closure on the matter.

Suppose that ¢ divides b and b divides a. By Definition 0.13, it follows that
b=¢gc and a=rb

for some integers ¢ and r. Using the first equation, we may substitute gc for b
in the second equation, to obtain

a=r(qc)

But r(gc) = (rg)c, and rq is an integer, so it follows from Definition 0.13 that
c divides a.
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Symbolic logic

Consider again the proposition that we proved in Proposition 0.16 (for given integers
a,b,c):

If ¢ divides b and b divides a, then ¢ divides a.

The three statements ‘c divides b’, ‘b divides a’ and ‘c divides a’ are all propositions in
their own right, despite the fact that they all appear inside a more complex proposition.
We can examine the logical structure of the proposition by replacing these simpler
propositions with symbols, called propositional variables. Writing P to represent ‘c
divides b’, Q to represent ‘b divides a’ and R to represent ‘c divides a’, we obtain:

If P and Q, then R.

Breaking down the proposition in this way makes it clear that a feasible way to prove
it is to assume P and Q, and then derive R from these assumptions—this is exactly
what we did in the proof, which we examined in great detail in Example 1.1.1. But
importantly, it suggests that the same proof strategy might work for other propositions
which are also of the form ‘if P and Q, then R’, such as the following proposition (for a
given integer n):

If n > 2 and n is prime, then n is odd.

Observe that the simpler propositions are joined together to form a more complex pro-
position using language, namely the word ‘and’ and the construction ‘if... then...’—
we will represent these constructions symbolically using logical operators, which will
be introduced in Definition 1.1.3.

Zooming in even more closely, we can use Definition 0.13 to observe that ‘c divides
b’ really means ‘b = gc for some g € Z’. The expression ‘for some g € Z’ introduces
a new variable g, which we must deal with appropriately in our proof. Words which
we attach to variables in our proofs—such as ‘any’, ‘exists’, ‘all’, ‘some’, ‘unique’
and ‘only’—will be represented symbolically using guantifiers, which we will study in
Section 1.2.

By breaking down a complex proposition into simpler statements which are connected
together using logical operators and quantifiers, we can more precisely identify what
assumptions we can make at any given stage in a proof of the proposition, and what
steps are needed in order to finish the proof.
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Propositional formulae

We begin our development of symbolic logic with some definitions to fix our termino-
logy.

4 Definition 1.1.2
A propositional variable is a symbol that represents a proposition. Propositional vari-
ables may be assigned truth values (‘true’ or ‘false’).

We will typically use the lower-case letters p, g, r and s as our propositional variables.

We will be able to form more complex expressions representing propositions by con-
necting together simpler ones using logical operators such as A (which represents
‘and’), V (which represents ‘or’), = (which represents ‘if...then...") and — (which
represents ‘not’).

The definition of the notions of logical operator and propositional formula given below
is a little bit difficult to digest, so it is best understood by considering examples of pro-
positional formulae and instances of logical operators. Fortunately we will see plenty
of these, since they are the central objects of study for the rest of this section.

4 Definition 1.1.3
A propositional formula is an expression that is either a propositional variable, or is
built up from simpler propositional formulae (‘subformulae’) using a logical operator.
In the latter case, the truth value of the propositional formula is determined by the truth
values of the subformulae according to the rules of the logical operator.

On first sight, Definition 1.1.3 seems circular—it defines the term ‘propositional for-
mula’ in terms of propositional formulae! But in fact it is not circular; it is an example
of a recursive definition (we avoid circularity with the word ‘simpler’). To illustrate,
consider the following example of a propositional formula:

(pNg)=r

This expression represents a proposition of the form ‘if p and g, then r’, where p, g, r are
themselves propositions. It is built from the subformulae p A g and r using the logical
operator =, and p A ¢ is itself built up from the subformulae p and g using the logical
operator A.

The truth value of (p A g) = r is then determined by the truth values of the constituent
propositional variables (p, g and r) according to the rules for the logical operators A
and =.
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If this all seems a bit abstract, that is because it is abstract, and you are forgiven if
it makes no sense to you yet. From this point onwards, we will only study particular
instances of logical operators, which will make it all much easier to understand.

Conjunction (‘and’, N)

Conjunction is the logical operator which makes precise what we mean when we say
‘and’.

Definition 1.1.4
The conjunction operator is the logical operator A (IATEX code: \wedge), defined ac-
cording to the following rules:

e (AD) If pis true and q is true, then p A q is true;
* (AEp) If p A qis true, then p is true;

* (AEp) If p A q is true, then q is true.

The expression p A g represents ‘p and g’.

It is not always obvious when conjunction is being used; sometimes it sneaks in without
the word ‘and’ ever being mentioned! Be on the look-out for occasions like this, such
as in the following exercise.

Example 1.1.5

We can express the proposition ‘7 is a prime factor of 28’ in the form p A g, by letting p
represent the proposition ‘7 is prime’ and letting g represent the proposition 7 divides
28’. g

Exercise 1.1.6
Express the proposition ‘John is a mathematician who lives in Pittsburgh’ in the form
p A\ g, for propositions p and q. <

The rules in Definition 1.1.4 are examples of rules of inference—they tell us how to
deduce (or ‘infer’) the truth of one propositional formula from the truth of other pro-
positional formulae. In particular, rules of inference never directly tell us when a pro-
position is false—in order to prove something is false, we will prove its negation is true
(see Definition 1.1.37).

Rules of inference tell us how to use the logical structure of propositions in proofs:

* The rule (AI) is an introduction rule, meaning that it tells us how to prove a goal of
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32 Chapter 1. Logical structure

the form p A g—indeed, if we want to prove that p A g is true, (Al) tells us that it
suffices to prove that p is true and prove that ¢ is true.

* The rules (AE1) and (AEy) are elimination rules, meaning that they tell us how to use
an assumption of the form p A g—indeed, if we are assuming that p A g is true, we
are then free to use the fact that p is true and the fact that g is true.

Each logical operator will come equipped with some introduction and/or elimination
rules, which tell us how to prove goals or use assumptions which include the logical
operator in question. It is in this way that the logical structure of a proposition informs
proof strategies, like the following:

0,
0‘0

Strategy 1.1.7 (Proving conjunctions)
A proof of the proposition p A g can be obtained by tying together two proofs, one being
a proof that p is true and one being a proof that g is true.

¢ Example 1.1.8
Suppose we are required to prove that 7 is a prime factor of 28. In Example 1.1.5 we
expressed ‘7 is a prime factor of 28 as the conjunction of the propositions ‘7 is prime’
and “7 divides 28’°, and so Strategy 1.1.7 breaks down the proof into two steps: first
prove that 7 is prime, and then prove that 7 divides 28. <

Much like Strategy 1.1.7 was informed by the introduction rule for A, the elimination
rules inform how we may make use of an assumption involving a conjunction.

+« Strategy 1.1.9 (Assuming conjunctions)
If an assumption in a proof has the form p A g, then we may assume p and assume ¢ in
the proof.

¢ Example 1.1.10
Suppose that, somewhere in the process of proving a proposition, we arrive at the fact
that 7 is a prime factor of 28. Strategy 1.1.9 then allows us to use the separate facts that
7 is prime and that 7 divides 28. <

Strategies 1.1.7 and 1.1.9 seem almost obvious. To an extent they are obvious, and that
is why we are stating them first. But the real reason we are going through the process
of precisely defining logical operators, their introduction and elimination rules, and the
corresponding proof strategies, is that when you are in the middle of the proof of a
complicated result, it is all too easy to lose track of what you have already proved and
what remains to be proved. Keeping track of the assumptions and goals in a proof, and
understanding what must be done in order to complete the proof, is a difficult task.
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To avoid drawing this process out too long, we need a compact way of expressing rules
of inference that allows us to simply read off corresponding proof strategies. We could
use tables of assumptions and goals like in Example 1.1.1, but this quickly becomes
clunky—indeed, even the very simple conjunction introduction rule (AI) doesn’t look
very nice in this format:

Assumptions ‘ Goals Assumptions ‘ Goals
PAg e : p
q

Instead, we will represent rules of inference in the style of natural deduction. In this
style, we write the premises p1, pa, ..., pi of arule above a line, with a single conclusion
q below the line, representing the assertion that the truth of a proposition ¢ follows from
the truth of (all of) the premises py, p2, ..., pk.

P1 p2 Pk

For instance, the introduction and elimination rules for conjunction can be expressed
concisely follows:

p q PAq PAq
phg " p q

(AE2)

In addition to its clean and compact nature, this way of writing rules of inference is
useful because we can combine them into proof trees in order to see how to prove
more complicated propositions. For example, consider the following proof tree, which
combines two instances of the conjunction introduction rule.

p q
PAq ¥
(pAq) N

From this proof tree, we obtain a strategy for proving a proposition of the form (p Ag) A
r. Namely, first prove p and prove ¢, to conclude p A g; and then prove r, to conclude
(p A q) Ar. This illustrates that the logical structure of a proposition informs how we
may structure a proof of the proposition.
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Exercise 1.1.11

Write a proof tree whose conclusion is the propositional formula (p Ag) A (r As), where
P,q,1,s are propositional variables. Express ‘2 is an even prime number and 3 is an odd
prime number’ in the form (p A g) A (r As), for appropriate propositions p, ¢, r and s,
and describe how your proof tree suggests what a proof might look like. <

Disjunction (‘or’, V)

Definition 1.1.12
The disjunction operator is the logical operator V (IATEX code: \vee), defined accord-
ing to the following rules:

e (V1) If pis true, then p V q is true;
* (VIp) If g is true, then p V q is true;

* (VE) If pVgq s true, and if » can be derived from p and from g, then r is true.

The expression pV g represents ‘p or gq’.

The introduction and elimination rules for disjunction are represented diagrammatically
as follows.

[p] [q]

$ $

p _ 9 pVq r r
PV q (V1)) Vg (%5)] - (VE)

We will discuss what the notation [p] ~» r and [g] ~> r means momentarily. First, we
zoom in on how the disjunction introduction rules inform proofs of propositions of the
form ‘p or q’.

Strategy 1.1.13 (Proving disjunctions)
In order to prove a proposition of the form pV g, it suffices to prove just one of p or g.

Example 1.1.14

Suppose we want prove that 8192 is not divisible by 3. We know by the division the-
orem (Theorem 0.19) that an integer is not divisible by 3 if and only if it leaves a
remainder of 1 or 2 when divided by 3, and so it suffices to prove the following:

8192 leaves a remainder of 1 y 8192 leaves a remainder of 2
when divided by 3 when divided by 3
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A quick computation reveals that 8192 = 2730 x 3 42, so that 8192 leaves a remainder
of 2 when divided by 3. By Strategy 1.1.13, the proof is now complete, since the full
disjunction follows by (VI). <

Example 1.1.15

Let p,q,r,s be propositional variables. The propositional formula (pV ¢) A (rV s) rep-
resents ‘p or g, and r or s’. What follows are two examples of truth trees for this
propositional formula.

p r q s
Vg (V1) Vs v1y) Vg (V1) Vs (V1)
(A1) (A1)

(PVq)A(rVs) (PV@)A(rVs)

The proof tree on the left suggests the following proof strategy for (pV g) A (rVs).
First prove p, and deduce p V g; then prove r, and deduce rV s; and finally deduce
(pV q) A (rVs). The proof tree on the right suggests a different strategy, where pV g is
deduced by proving ¢ instead of p, and r Vs is deduced by proving s instead of r.

Selecting which (if any) of these to use in a proof might depend on what we are trying
to prove. For example, for a fixed natural number n, let p represent ‘n is even’, let g
represent ‘n is odd’, let r represent ‘n > 2’ and let s represent ‘n is a perfect square’.
Proving (pV ¢q) A (rVs) when n = 2 would be most easily done using the left-hand
proof tree above, since p and r are evidently true when n = 2. However, the second
proof tree would be more appropriate for proving (pV g) A (rVs) whenn = 1. <

Aside
If you haven’t already mixed up A and V, you probably will soon, so here’s a way of
remembering which is which:

fish n chips

If you forget whether it’s A or V that means ‘and’, just write it in place of the ‘n’ in ‘fish
n chips’:

fish A chips fish V chips

Clearly the first looks more correct, so A means ‘and’. If you don’t eat fish (or chips),
then worry not, as this mnemonic can be modified to accommodate a wide variety of
dietary restrictions; for instance ‘mac n cheese’ or ‘quinoa n kale’ or, for the meat
lovers, ‘ribs n brisket’. <

Recall the diagrammatic statement of the disjunction elimination rule:
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36 Chapter 1. Logical structure

rVq

(VE)

The curious notation [p] ~~ r indicates that p is a temporary assumption. In the part of
the proof corresponding to [p] ~~ r, we would assume that p is true and derive r from
that assumption, and remove the assumption that p is true from that point onwards.
Likewise for [g] ~ r.

The proof strategy obtained from the disjunction elimination rule is called proof by
cases.

R

% Strategy 1.1.16 (Assuming disjunctions—proof by cases)

If an assumption in a proof has the form p V ¢, then we may derive a proposition r by
splitting into two cases: first, derive r from the temporary assumption that p is true, and
then derive r from the assumption that ¢ is true.

The following example illustrates how Strategies 1.1.13 and 1.1.16 can be used together
in a proof.

< Example 1.1.17
Let n be a positive proper factor of 4, and suppose we want to prove that » is either even
or a perfect square.

* Our assumption that n is a positive proper factor of 4 can be expressed as the disjunc-
tionn=1Vn=2.

* Our goal is to prove the disjunction ‘n is even V n is a perfect square’.

According to Strategy 1.1.16, we split into two cases, one in which n = 1 and one in
which n = 2. In each case, we must derive ‘n is evenV n is a perfect square’, for which
it suffices by Strategy 1.1.13 to derive either that n is even or that n is a perfect square.
Thus a proof might look something like this:

Since n is a positive proper factor of 4, either n =1 or n = 2.

+ Case 1. Suppose n = 1. Then since 12 = 1 we have n = 12, so that n is a
perfect square.

* Case 2. Suppose n = 2. Then since 2 =2 x 1, we have that n is even.

Hence n is either even or a perfect square. <
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Notice that in both Case 1 and Case 2, we did not explicitly mention that we had proved
that ‘n is even V n is a perfect square’, leaving that deduction to the reader—we only
mentioned it after the proofs in each case were complete. <

The proof of Proposition 1.1.18 below splits into three cases, rather than just two.

Proposition 1.1.18
Let n € Z. Then n? leaves a remainder of 0 or 1 when divided by 3.

Proof
Let n € Z. By the division theorem (Theorem 0.19), one of the following must be true
for some k € Z:

n=3k or n=3k+1 or n=3k+2

* Suppose n = 3k. Then
n* = (3k)*> =9k* =3-(3k%)

So n? leaves a remainder of 0 when divided by 3.

* Suppose n = 3k+ 1. Then
n? = (3k+1)? = 9k* + 6k + 1 = 3(3k> +2k) + 1

So n? leaves a remainder of 1 when divided by 3.

* Suppose n = 3k+ 2. Then
n? = (3k+2)% = 9k* + 12k +4 =3(3k> + 4k +1) +1

So n? leaves a remainder of 1 when divided by 3.

In all cases, n” leaves a remainder of 0 or 1 when divided by 3. U

Note that in the proof of Proposition 1.1.18, unlike in Example 1.1.17, we did not
explicitly use the word ‘case’, even though we were using proof by cases. Whether or
not to make your proof strategies explicit is up to you—discussion of this kind of matter
can be found in Appendix A.2.

When completing the following exercises, try to keep track of exactly where you use
the introduction and elimination rules that we have seen so far.

Exercise 1.1.19
Let n be an integer. Prove that n? leaves a remainder of 0, 1 or 4 when divided by 5.
<

Exercise 1.1.20

Let a,b € R and suppose a> —4b # 0. Let « and 3 be the (distinct) roots of the poly-
nomial x? +ax + b. Prove that there is a real number ¢ such that either & — 8 = ¢ or
a—p=ci. <
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Implication (‘if...then...’, =)

4 Definition 1.1.21
The implication operator is the logical operator = (IZTgX code: \Rightarrow),
defined according to the following rules:

* (=1) If g can be derived from the assumption that p is true, then p = g is true;

* (=E) If p = g is true and p is true, then ¢ is true.

The expression p = g represents ‘if p, then g’.

P]

$
_4 ., P=a P _
P=q q

% Strategy 1.1.22 (Proving implications)
In order to prove a proposition of the form p = ¢, it suffices to assume that p is true,
and then derive g from that assumption.

The following proposition illustrates how Strategy 1.1.22 can be used in a proof.

+» Proposition 1.1.23
Let x and y be real numbers. If x and x 4 y are rational, then y is rational.

Proof
Suppose x and x + y are rational. Then there exist integers a,b,c,d with b,d # 0 such
that

x—g and x-+ -
b Y=

It then follows that

c a bc—ad

d b bd

Since bc — ad and bd are integers, and bd # 0, it follows that y is rational. U

y=(x+y)—x=

The key phrase in the above proof was ‘Suppose x and x + y are rational.” This intro-
duced the assumptions x € Q and x+y € QQ, and reduced our goal to that of deriving a
proof that y is rational—this was the content of the rest of the proof.
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Exercise 1.1.24
Let p(x) be a polynomial over C. Prove that if & is a root of p(x), and a € C, then o is
aroot of (x —a)p(x). <

The elimination rule for implication (=E) is more commonly known by the Latin name
modus ponens.

Strategy 1.1.25 (Assuming implications—modus ponens)
If an assumption in a proof has the form p = ¢, and p is also assumed to be true, then
we may deduce that g is true.

Strategy 1.1.16 is frequently used to reduce a more complicated goal to a simpler one.
Indeed, if we know that p = ¢ is true, and if p is easy to verify, then it allows us to
prove g by proving p instead.

Example 1.1.26
Let f(x) = x> +ax+ b be a polynomial with a,b € R, and let A = a®> — 4b be its dis-
criminant. Part of Exercise 0.41 was to prove that:

(i) If A > 0, then f has two real roots;
(i) If A= 0, then f has one real root;

(iii) If A <0, then f has no real roots.

Given the polynomial f(x) = x> — 68x 4 1156, it would be a pain to go through the
process of solving the equation f(x) =0 in order to determine how many real roots
f has. However, each of the propositions (i), (ii) and (iii) take the form p = ¢, so
Strategy 1.1.25 reduces the problem of finding how many real roots f has to that of
evaluating A and comparing it with 0. And indeed, (—68)> —4 x 1156 = 0, so the
implication (ii) together with (=E) tell us that f has one real root. <

A common task faced by mathematicians is to prove that two conditions are equivalent.
For example, given a polynomial f(x) = x> + ax + b with a,b € R, we know that if
a® —4b > 0 then f has two real roots, but is it also true that if f has two real roots then
a® —4b > 0? (The answer is ‘yes’.) The relationship between these two implications is
that each is the converse of the other.

Definition 1.1.27
The converse of a proposition of the form p = ¢ is the proposition g = p.

A quick remark on terminology is pertinent. The following table summarises some
common ways of referring to the propositions ‘p = ¢’ and ‘g = p’.
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P=q | q=p
if p, then ¢ if g, then p
ponly if g pifqg

p is sufficient for ¢ | p is necessary for g

We so often encounter the problem of proving both an implication and its converse that
we introduce a new logical operator that represents the conjunction of both.

4 Definition 1.1.28
The biconditional operator is the logical operator < (IATX code: \Leftrightarrow),
defined by declaring p < ¢ to mean (p = g) A (¢ = p). The expression p < g repres-
ents ‘p if and only if ¢’.

Many examples of biconditional statements come from solving equations; indeed, to
say that the values o, ..., o, are the solutions to a particular equation is precisely to
say that

xisasolution < X=0 OrX=0QOr --- Or X = Ql

¢ Example 1.1.29
We find all real solutions x to the equation

Vx—=34+vVx+4=7

Let’s rearrange the equation to find out what the possible solutions may be.

Vx=3++vx+4=17
= (x—=3)+2/(x=3)(x+4)+ (x+4) =49 squaring
= ZW =48 —2x rearranging
= 4(x—3)(x+4) = (48 —2x)* squaring
= 4x% +4x — 48 = 2304 — 192x + 4x? expanding
= 196x = 2352 rearranging
=x=12 dividing by 196

You might be inclined to stop here. Unfortunately, all we have proved is that, given a
real number x, if x solves the equation v/x —3++/x+4 =7, then x = 12. This narrows
down the set of possible solutions to just one candidate—but we still need to check the
converse, namely that if x = 12, then x is a solution to the equation.

As such, to finish off the proof, note that
VI2=34+V/1244=V94+V16=3+4=7

and so the value x = 12 is indeed a solution to the equation. <
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The last step in Example 1.1.29 may have seemed a little bit silly; but Example 1.1.30
demonstrates that proving the converse when solving equations truly is necessary.

¢ Example 1.1.30
We find all real solutions x to the equation

x++/x=0

We proceed as before, rearranging the equation to find all possible solutions.

x++v/x=0
=x=—x rearranging
=1’ =x squaring
=x(x—1)=0 rearranging

=x=0o0rx=1
Now certainly 0 is a solution to the equation, since
0+v/0=0+0=0
However, 1 is not a solution, since
1+Vi=1+1=2
Hence it is actually the case that, given a real number x, we have
x+v/x=0 & x=0

Checking the converse here was vital to our success in solving the equation! <

A slightly more involved example of a biconditional statement arising from the solution
to an equation—in fact, a class of equations—is the proof of the quadratic formula.

«+ Theorem 1.1.31 (Quadratic formula)
Let a,b € C. A complex number « is a root of the polynomial x> + ax + b if and only if

—a+va?—4b —a—va®—4b

o= o =
2 or 2

Proof
First we prove that if « is a root, then « is one of the values given in the statement of
the proposition. So suppose & be a root of the polynomial x> + ax 4 b. Then

a’+ao+b=0
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The algebraic technique of ‘completing the square’ tells us that

a’+aa ((x+a)2 a
ao = - - —
2 4
and hence )
a\2 a
a+-) ——+b=0
(0r3) =%+

Rearranging yields

Taking square roots gives
qpdoYae-4 o a_—Va-4b
22 2 2
and, finally, subtracting 5 from both sides gives the desired result.

The proof of the converse is Exercise 1.1.32. O

Exercise 1.1.32
Complete the proof of the quadratic formula. That is, for fixed a,b € C, prove that if

—a+va?—4b —a—va*—4b
¢=———¥— o 0=——-—79——
2 2
then « is a root of the polynomial x> + ax+ b. <

Another class of examples of biconditional propositions arise in finding necessary and
sufficient criteria for an integer n to be divisible by some number—for example, that an
integer is divisible by 10 if and only if its base-10 expansion ends with the digit 0.

Example 1.1.33
Let n € N. We will prove that n is divisible by 8 if and only if the number formed of the
last three digits of the base-10 expansion of 7 is divisible by 8.

First, we will do some ‘scratch work’. Let d,d,_ ...ddy be the base-10 expansion of
n. Then
n=d,-10"+d,_1- 10"+ +d; - 10+do

Define
n =dydidy and n' =n—n'"=d.d._;...dsd3000

Now n—n' =1000-d,d,_; ...dsds and 1000 = 8 - 125, so it follows that 8 divides n”.

Our goal is now to prove that 8 divides 7 if and only if 8 divides n'.
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* (=) Suppose 8 divides n. Since 8 divides n”, it follows from Exercise 0.17 that 8
divides an + bn" for all a,b € Z. But

n"=n—(n-n)=n-n"=1.n+(-1)-n"
so indeed 8 divides ', as required.

* (<) Suppose 8 divides n’. Since 8 divides n”, it follows from Exercise 0.17 that 8
divides an’ + bn” for all a,b € Z. But

n=n+m-n)=n"+n"=1.1"+1.n"

so indeed 8 divides n, as required.

Exercise 1.1.34
Prove that a natural number # is divisible by 3 if and only if the sum of its base-10 digits
is divisible by 3. <

Negation (‘not’, —)

So far we only officially know how to prove that true propositions are true. The negation
operator makes precise what we mean by ‘not’, which allows us to prove that false
propositions are false.

Definition 1.1.35
A contradiction is a proposition that is known or assumed to be false. We will use the
symbol | (I&TEX code: \bot) to represent an arbitrary contradiction.

Example 1.1.36
Some examples of contradictions include the assertion that 0 = 1, or that /2 is rational,
or that the equation x> = —1 has a solution x € R. <

Definition 1.1.37
The negation operator is the logical operator — (I4Tj5X code: \neg), defined according
to the following rules:

e (1) If a contradiction can be derived from the assumption that p is true, then —p is
true;

* (—E) If —p and p are both true, then a contradiction may be derived.
The expression —p represents ‘not p’ (or ‘p is false’).
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]

¢

ﬁJ}; (1) % (-E)

Aside

The rules (—1I) and (—E) closely resemble (=1) and (=E)—indeed, we could simply
define —p to mean ‘p = L’, where L represents an arbitrary contradiction, but it will
be easier later on to have a primitive notion of negation. <

The introduction rule for negation (—I) gives rise to a proof strategy called proof by
contradiction, which turns out to be extremely useful.

Strategy 1.1.38 (Proving negations—proof by contradiction)
In order to prove a proposition p is false (that is, that —p is true), it suffices to assume
that p is true and derive a contradiction.

The following proposition has a classic proof by contradiction.

Proposition 1.1.39
Let r be a rational number and let a be an irrational number. Then r + a is irrational.

Proof
By Definition 0.28, we need to prove that r + a is real and not rational. It is certainly
real, since r and a are real, so it remains to prove that r + a is not rational.

Suppose r+ a is rational. Since r is rational, it follows from Proposition 1.1.23 that a
is rational, since

a=(r+a)—r
This contradicts the assumption that a is irrational. It follows that r 4 a is not rational,
and is therefore irrational. O

Now you can try proving some elementary facts by contradiction.

Exercise 1.1.40
Let x € R. Prove by contradiction that if x is irrational then —x and % are irrational. <

Exercise 1.1.41
Prove by contradiction that there is no least positive real number. That is, prove that
there is not a positive real number a such that a < b for all positive real numbers b. <

A proof need not be a ‘proof by contradiction’ in its entirety—indeed, it may be that
only a small portion of the proof uses contradiction. This is exhibited in the proof of
the following proposition.
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Proposition 1.1.42
Let a be an integer. Then a is odd if and only if a = 26+ 1 for some integer b.

Proof

Suppose a is odd. By the division theorem (Theorem 0.19), either a =2b ora =2b+1,
for some b € Z. If a = 2b, then 2 divides a, contradicting the assumption that a is odd;
so it must be the case that a = 2b+ 1.

Conversely, suppose a = 2b + 1. Then a leaves a remainder of 1 when divided by 2.
However, by the division theorem, the even numbers are precisely those that leave a
remainder of 0 when divided by 2. It follows that a is not even, so is odd. OJ

The elimination rule for the negation operator (—E) simply says that a proposition can’t
be true and false at the same time.

Strategy 1.1.43 (Assuming negations)
If an assumption in a proof has the form —p, then any derivation of p leads to a contra-
diction.

The main use of Strategy 1.1.43 is for obtaining the contradiction in a proof by
contradiction—in fact, we have already used it in our examples of proof by contra-
diction! As such, we will not dwell on it further.

Logical axioms

We wrap up this section by introducing a couple of additional logical rules (axioms)
that we will use in our proofs.

The first is the so-called law of excluded middle, which appears so obvious that it is not
even worth stating (let alone naming)—what it says is that every proposition is either
true or false. But beware, as looks can be deceiving; the law of excluded middle is a
non-constructive axiom, meaning that it should not be accepted in settings it is import-
ant to keep track of how a proposition is proved—simply knowing that a proposition
is either true or false tells us nothing about how it might be proved or refuted. In most
mathematical contexts, though, it is accepted without a second’s thought.

Axiom 1.1.44 (Law of excluded middle)
Let p be a propositional formula. Then pV (—p) is true.

The law of excluded middle can be represented diagrammatically as follows; there are
no premises above the line, since we are simply asserting that it is true.
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—— LEM
pV(=p)

% Strategy 1.1.45 (Using the law of excluded middle)
In order to prove a proposition g is true, it suffices to split into cases based on whether
some other proposition p is true or false, and prove that ¢ is true in each case.

The proof of Proposition 1.1.46 below makes use of the law of excluded middle—note
that we defined ‘odd’ to mean ‘not even’ (Definition 0.18).

«* Proposition 1.1.46
Let a,b € Z. If ab is even, then either a is even or b is even (or both).

Proof
Suppose a,b € Z with ab even.

* Suppose a is even—then we’re done.

* Suppose a is odd. If b is also odd, then by Proposition 1.1.42 can write
a=2k+1 and b=20+1
for some integers k, . This implies that

ab= (2k+1)(2041) = 4kl + 2k +20+1 =22kl + k+ ) + 1
—_——
€z

so that ab is odd. This contradicts the assumption that ab is even, and so b must in
fact be even.

In both cases, either a or b is even. O

% Exercise 1.1.47
Reflect on the proof of Proposition 1.1.46. Where in the proof did we use the law
of excluded middle? Where in the proof did we use proof by contradiction? What
was the contradiction in this case? Prove Proposition 1.1.46 twice more, once using
contradiction and not using the law of excluded middle, and once using the law of
excluded middle and not using contradiction. <

%, Exercise 1.1.48

Let a and b be irrational numbers. By considering the number ﬂﬁ, prove that it is
possible that a” be rational. <

Another logical rule that we will use is the principle of explosion, which is also known
by its Latin name, ex falso sequitur quodlibet, which approximately translates to ‘from
falsity follows whatever you like’.
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«+ Axiom 1.1.49 (Principle of explosion)
If a contradiction is assumed, any consequence may be derived.

Expl

The principle of explosion is a bit confusing on first sight. To shed a tiny bit of intuition
on it, think of it as saying that both true and false propositions are consequences of a
contradictory assumption. For instance, suppose that —1 = 1. From this we can obtain
consequences that are false, such as 0 = 2 by adding 1 to both sides of the equation,
and consequences that are true, such as 1 = 1 by squaring both sides of the equation.

We will rarely use the principle of explosion directly in our mathematical proofs, but
we will use it in Section 1.3 for proving logical formulae are equivalent.
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TL;DR — summary of Section 1.1

Propositional formulae

Propositional variables p,q,r,... are used to express simple propositions.

Propositional formulae are more complicated expressions built from proposi-
tional variables using logical operators, which represent phrases like ‘and’, ‘or’
and ‘if... then... .

Logical operators

1.1.4

1.1.12

1.1.21

1.1.37

1.1.28

The conjunction operator (A) represents ‘and’. We prove p A g by proving both
p and g separately; we can use an assumption of the form p A g by assuming
both p and g separately.

The disjunction operator (V) represents ‘or’. We prove pV g by proving at
least one of p or g; we can use an assumption of the form pV g by splitting into
cases, assuming that p is true in one case, and assuming that g is true in the
other.

The implication operator (=) represents ‘if... then...’. We prove p = g by
assuming p and deriving ¢; we can use an assumption of the form p = g by
deducing g whenever we know that p is true.

The negation operator] (—) represents ‘not’. We prove —p by assuming p and
deriving something known or assumed to be false (this is called proof by con-
tradiction); we can use an assumption of the form —p by arriving at a contra-
diction whenever we find that p is true.

The biconditional operator (<) represents ‘if and only if’. The expression
p < g is shorthand for (p = ¢) A (g = p).

Logical axioms

1.1.44

1.1.49

The law of excluded middle says that pV (—p) is always true. So at any point
in a proof, we may split into two cases: one where p is assumed to be true, and
one where p is assumed to be false.

The principle of explosion says that if a contradiction is introduced as an as-
sumption, then any conclusion at all can be derived.
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Section 1.2
Variables and quantifiers

Free and bound variables

Everything we did in Section 1.1 concerned propositions and the logical rules con-
cerning their proofs. Unfortunately if all we have to work with is propositions then
our ability to do mathematical reasoning will be halted pretty quickly. For example,
consider the following statement:

x is divisible by 7

This statement seems like the kind of thing we should probably be able to work with if
we’re doing mathematics. It makes sense if x is a integer, such as 28 or 41; but it doesn’t
make sense at all if x is a parrot called Alex.*) In any case, even when it does make
sense, its truth value depends on x; indeed, ‘28 is divisible by 7 is a true proposition,
but ‘41 is divisible by 7’ is a false proposition.

This means that the statement ‘x is divisible by 7’ isn’t a proposition—quel horreur!
But it almost is a proposition: if we know that x refers somehow to an integer, then it
becomes a proposition as soon as a particular numerical value of x is specified. The
symbol x is called a free variable.

4 Definition 1.2.1
Let x be a variable that is understood to refer to an element of a set X. In a statement
involving x, we say x is free if it makes sense to substitute particular elements of X in
the statement; otherwise, we say x is bound.

To represent statements that have free variables in them abstractly, we generalise the
notion of a propositional variable (Definition 1.1.2) to that of a predicate.

4 Definition 1.2.2
A predicate is a symbol p together with a specified list of free variables x1,x2,...,x,
(where n € N) and, for each free variable x;, a specification of a set X; called the domain
of discourse (or range) of x;. We will typically write p(x;,x2,...,x,) in order to make
the variables explicit.

[2 Alex the parrot is the only non-human animal to have ever been observed to ask an existential question;
he died in September 2007 so we may never know if he was divisible by 7, but it is unlikely. According
to Time, his last words were ‘you be good, see you tomorrow, I love you’. The reader is advised to finish
crying before they continue reading about variables and quantifiers.
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The statements represented by predicates are those that become propositions when spe-
cific values are substituted for their free variables from their respective domains of
discourse. For example, ‘x is divisible by 7’ is not a proposition, but it becomes a
proposition when specific integers (such as 28 or 41) are substituted for x.

This is a lot to take in, so let’s look at some examples.

¢ Example 1.2.3

(i) We can represent the statement ‘x is divisible by 7° discussed above by a predicate
p(x) whose only free variable x has Z as its domain of discourse. Then p(28) is
the true proposition ‘28 is divisible by 7° and p(41) is the false proposition ‘41 is
divisible by 7°.

(ii) A predicate with no free variables is precisely a propositional variable. This
means that the notion of a predicate generalises that of a propositional variable.

(iii) The expression 2" — 1 is prime’ can be represented by a predicate p(n) with one
free variable n, whose domain of discourse is the set N of natural numbers. Then
p(3) is the true proposition ‘2° — 1 is prime’ and p(4) is the false proposition
2% —1is prime’.

(iv) The expression ‘x —y is rational’ can be represented by a predicate g(x,y) with
free variables x and y, whose domain of discourse is the set R of real numbers.

(v) The expression ‘there exist integers a and b such that x = a*> 4+ b>’ has free variable
x and bound variables a, b. It can be represented by a predicate r(x) with one free
variable x, whose domain of discourse is Z.

(vi) The expression ‘every even natural number n > 2 is divisible by &’ has free vari-
able k and bound variable n. It can be represented by a predicate s(k) with one
free variable k, whose domain of discourse is N.

Quantifiers

Look again at the statements in parts (v) and (vi) of Example 1.2.3. Both contained
bound variables, which were so because we used words like ‘there exists’ and ‘every’—
had we not used these words, those variables would be free, as in ‘x = a® + b** and ‘n
is divisible by k.

Expressions that refer to how many elements of a set make a statement true, such as
‘there exists’ and ‘every’, turn free variables into bound variables. We represent such
expressions using symbols called quantifiers, which are the central objects of study of
this section.

50



Section 1.2. Variables and quantifiers 51

The two main quantifiers used throughout mathematics are the universal quantifier V
and the existential quantifier 3. We will define these quantifiers formally later in this
section, but for now, the following informal definitions suffice:

* The expression ‘Vx € X, ...” denotes ‘for all x € X, ...’ and will be defined formally
in Definition 1.2.9;

>

* The expression ‘Jx € X, ... denotes ‘there exists x € X such that ...’ and will be

defined formally in Definition 1.2.17.

Note that we always place the quantifier before the statement, so even though we might
write or say things like ‘n = 2k for some integer k” or ‘x> > 0 for all x € R’, we would
express these statements symbolically as ‘Jk € Z, n =2k’ and ‘Vx € R, x>0, respect-
ively.

We will define a third quantifier 3! in terms of V and 3 to say that there is exactly one
element of a set making a statement true. There are plenty of other quantifiers out there,
but they tend to be specific to particular fields—examples include ‘almost everywhere’
in measure theory, ‘almost surely’ in probability theory, ‘for all but finitely many’ in set
theory and related disciplines, and ‘for fresh’ in the theory of nominal sets.

Using predicates, logical formulae and quantifiers, we are able to build up more com-
plicated expressions, called logical formulae. Logical formulae generalise proposi-
tional formulae (Definition 1.1.3) in by allowing (free and bound) variables and quan-
tification to occur.

4 Definition 1.2.4
A logical formula is an expression that is built from predicates using logical operators
and quantifiers; it may have both free and bound variables. The truth value of a logical
formula depends on its free variables according to the rules for logical operators and
quantifiers.

Translating between plain English statements and purely symbolic logical formulae is
an important skill to obtain:

* The plain English statements are easier to understand and are the kinds of things you
would speak aloud or write down when discussing the mathematical ideas involved.

* The symbolic logical formulae are what provide the precision needed to guide a proof
of the statement being discussed—we will see strategies for proving statements in-
volving quantifiers soon.

The following examples and exercise concern translating between plain English state-
ments and purely symbolic logical formulae.
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Example 1.2.5

Recall that an integer # is even if and only if it is divisible by 2. According to Defin-
ition 0.13, that is to say that ‘n is even’ means ‘n = 2k for some integer k’. Using
quantifiers, we can express ‘n is even’ as ‘JFk € Z, n = 2k’.

The (false) proposition ‘every integer is even’ can then be written symbolically as fol-
lows. First introduce a variable n to refer to an integer; to say ‘every integer is even’ is
to say ‘Vn € Z, nis even’, and so using the symbolic representation of ‘n is even’, we
can express ‘every integer is even’ as Vn € Z, 3k € Z, n = 2k’. <

Exercise 1.2.6
Find logical formulae that represent each of the following English statements.

(a) There is an integer that is divisible by every integer.
(b) There is no greatest odd integer.
(c) Between any two distinct rational numbers is a third distinct rational number.

(d) If an integer has a rational square root, then that root is an integer.

Example 1.2.7
Consider the following logical formula.

VaeR,(a>0=3becR, a=5h)
If we translate this expression symbol-for-symbol, what it says is:

For every real number a, if a is non-negative,
then there exists a real number  such that a = b2.

Read in this way, it is not a particularly enlightening statement. However, we can distill
the robotic nature of the symbol-for-symbol reading by thinking more carefully about
what the statement really means.

Indeed, to say ‘a = b? for some real number b’ is exactly to say that a has a real square
root—after all, what is a square root of a if not a real number whose square is equal
to a? This translation eliminates explicit reference to the bound variable b, so that the
statement now reads:

For every real number a, if a is non-negative, then a has a real square root.
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We’re getting closer. Next note that instead of the clunky expression ‘for every real
number a, if a is non-negative, then ... , we could just say ‘for every non-negative real
numbera, ...’ .

For every non-negative real number a, a has a real square root.

Finally, we can eliminate the bound variable a by simply saying:

Every non-negative real number has a real square root.

This is now a meaningful expression that is much easier to understand than the logical
formula we started with. <

v Exercise 1.2.8

Find statements in plain English, involving as few variables as possible, that are repres-
ented by each of the following logical formulae. (The domains of discourse of the free
variables are indicated in each case.)

(a) g € Z, a = gb — free variables a,b € Z

(b) 3a€Z,3beZ, (b#0Abx=a)— free variable x € R

(c) VdeN,[(g€Z,n=qd)= (d=1Vd=n)] — free variable n € N
d) YVaeR,[a>0=3beR, (b>0Aa<b)]— no free variables

<

Now that we have a better understanding of how to translate between plain English
statements and logical formulae, we are ready to give a precise mathematical treatment
of quantifiers. Just like with logical operators in Section 1.1, quantifiers will be defined
according to introduction rules, which tell us how to prove a quantified formula, and
elimination rules, which tell us how to use an assumption that involves a quantifier.

Universal quantification (‘for all’, V)

The universal quantifier makes precise what we mean when we say ‘for all’, or ‘p(x) is
always true no matter what value x takes’.
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Definition 1.2.9

The universal quantifier is the quantifier V (I&TzX code: \forall); if p(x) is a logical
formula with free variable x with range X, then Vx € X, p(x) is the logical formula
defined according to the following rules:

* (V1) If p(x) can be derived from the assumption that x is an arbitrary element of X,
then Vx € X, p(x);

* (VE)Ifa € X and Vx € X, p(x) is true, then p(a) is true.

The expression Vx € X, p(x) represents “for all x € X, p(x)’.

[x € X]
¢
p(x) Vx e X, p(x) aeX
Vx e X, p(x) pla)

Strategy 1.2.10 (Proving universally quantified statements)

To prove a proposition of the form Vx € X, p(x), it suffices to prove p(x) for an arbitrary
element x € X—in other words, prove p(x) whilst assuming nothing about the variable
x other than that it is an element of X.

Useful phrases for introducing an arbitrary variable of a set X in a proof include ‘fix
x € X’ or ‘letx € X’ or ‘take x € X’—more on this is discussed in Appendix A.2.

The proofs of the following propositions illustrate how a proof of a universally quanti-
fied statement might look.

Proposition 1.2.11
The square of every odd integer is odd.

Proof
Let n be an odd integer. Then n = 2k + 1 for some k € Z by the division theorem
(Theorem 0.19), and so

n? = (2k+1)? = 4k> + 4k +1 = 2(2k* +2k) + 1

Since 2k% + 2k € Z, we have that n? is odd, as required. O

Note that in the proof of Proposition 1.2.11, we did not assume anything about n other
than that it is an odd integer.
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Proposition 1.2.12
The base-10 expansion of the square of every natural number ends in one of the digits
0,1,4,5,60r9.

Proof
Fix n € N, and let
n= drdr,1 .. .d()

be its base-10 expansion. Write
n=10m+d,

where m € N—that is, m is the natural number obtained by removing the final digit
from n. Then

n? = 100m? + 20md, +d§ = 10m(10m+2dy) +d§

Hence the final digit of n? is equal to the final digit of dg. But the possible values of dg
are
01 4 9 16 25 36 49 64 81

all of which end in one of the digits 0, 1, 4, 5, 6 or 9. OJ
Exercise 1.2.13
Prove that every integer is rational. <
Exercise 1.2.14
Prove that every linear polynomial over Q has a rational root. <

Exercise 1.2.15
Prove that, for all real numbers x and y, if x is irrational, then x +y and x — y are not
both rational. <

Before advancing too much further, beware of the following common error that arises
when dealing with universal quantifiers.

Common error
Consider the following (non-)proof of the proposition Vn € Z, n*> > 0.

Let n be an arbitrary integer, say n = 17. Then 172 =289 > 0, so the statement
is true.

The error made here is that the writer has picked an arbitrary value of n, not the reader.
(In fact, the above argument actually proves 3n € Z, n*> > 0.)
The proof should make no assumptions about the value of n other than that it is an

integer. Here is a correct proof:
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Let n be an arbitrary integer. Either n > 0 or n < 0. If n > 0 then n? >0, since
the product of two nonnegative numbers is nonnegative; if n < 0 then n? >0,
since the product of two negative numbers is positive.

<

The strategy suggested by the elimination rule for the universal quantifier is one that we
use almost without thinking about it.

% Strategy 1.2.16 (Assuming universally quantified statements)
If an assumption in a proof has the form Vx € X, p(x), then we may assume that p(a) is
true whenever a is an element of X.

Existential quantification (‘there exists’, J)

4 Definition 1.2.17
The existential quantifier is the quantifier 3 (IATEX code: \exists) if p(x) is a logical
formula with free variable x with range X, then 3x € X, p(x) is the logical formula
defined according to the following rules:

* (3 Ifa € X and p(a) is true, then Ix € X, p(x);

* (3B) If 3x € X, p(x) is true, and ¢ can be derived from the assumption that p(a) is
true for some fixed a € X, then g is true.

The expression 3x € X, p(x) represents ‘there exists x € X such that p(x)’.

$
acX  pla) Ix e X, p(x) 9 o
dx e X, p(x) q

% Strategy 1.2.18 (Proving existentially quantified statements)
To prove a proposition of the form Ix € X, p(x), it suffices to prove p(a) for some
specific element a € X, which should be explicitly defined.

< Example 1.2.19
We prove that there is a natural number that is a perfect square and is one more than a
perfect cube. That is, we prove

IneN, ([BkeZ,n=kK|ABleZ,n="1+1))
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So define n = 9. Then n = 3% and n = 2% + 1, so that n is a perfect square and is one
more than a perfect cube, as required. <

The following proposition involves an existentially quantified statement—indeed, to
say that a polynomial f(x) has a real root is to say Ix € R, f(x) = 0.

Proposition 1.2.20
Fix a € R. The cubic polynomial x* + (1 — a®)x — a has a real root.

Proof
Let f(x) = x* + (1 — a®)x — a. Define x = a; then

flx) :f(a):a3+(1faz)afa:a3+afa3fa:0

Hence a is a root of f(x). Since a is real, f(x) has a real root. O

The following exercises require you to prove existentially quantified statements.

Exercise 1.2.21
Prove that there is a real number which is irrational but whose square is rational. <
Exercise 1.2.22
Prove that there is an integer which is divisible by zero. <
Example 1.2.23
Prove that, for all x,y € Q, if x < y then there is some z € Q withx < z < y. <

The elimination rule for the existential quantifier gives rise to the following proof
strategy.

Strategy 1.2.24 (Assuming existentially quantified statements)
If an assumption in the proof has the form Jx € X, p(x), then we may introduce a new
variable a € X and assume that p(a) is true.

It ought to be said that when using existential elimination in a proof, the variable a used
to denote a particular element of X for which p(a) is true should not already be in use
earlier in the proof.

Strategy 1.2.24 is very useful in proofs of divisibility, since the expression ‘a divides b’
is an existentially quantified statement—this was Exercise 1.2.8(a).

Proposition 1.2.25
Let n € Z. If n® is divisible by 3, then (n+ 1)3 — 1 is divisible by 3.

Proof
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Suppose n? is divisible by 3. Take g € Z such that n* = 3¢. Then

(n+1)°>—1

= +3n° +3n4+1) -1 expanding
=n’+3n>+3n simplifying
=3q+3n°+3n since n® = 3¢
=3(g+n*+n) factorising

Since ¢ +n?+4n € 7, we have proved that (n+ 1) — 1 is divisible by 3, as required. [

Uniqueness

The concept of uniqueness arises whenever we want to use the word ‘the’. For example,
in Definition 0.7 we defined the base-b expansion of a natural number 7 to be the string
drd,_ ...d1dy satisfying some properties. The issue with the word ‘the’ here is that we
don’t know ahead of time whether a natural number n may have base-b expansions other
than d,d,_1 .. .d;dy—this fact actually requires proof. To prove this fact, we would need
to assume that ese;—1 ...e1e9 were another base-b expansion of n, and prove that the
strings d,d,_1 ...d1dy and ese5_1 ... e1eq are the same—this is done in Theorem 7.3.51.

Uniqueness is typically coupled with existence, since we usually want to know if there
is exactly one object satisfying a property. This motivates the definition of the unigue
existential quantifier, which encodes what we mean when we say ‘there is exactly one
X € X such that p(x) is true’. The ‘existence’ part ensures that at least one x € X makes
p(x) true; the ‘uniqueness’ part ensures that x is the only element of X making p(x)
true.

4 Definition 1.2.26
The unique existential quantifier is the quantifier 3! ((I&TEX code: \exists!))
defined such that 3!x € X, p(x) is shorthand for

(IxeX,p(x)) AN VaeX,VbeX,[(pla)Ap(b))=a=D])

existence uniqueness

¢ Example 1.2.27
Every positive real number has a unique positive square root. We can write this sym-
bolically as
VaeR, (a>0=3beR, (b>0Ab*=a))

Reading this from left to right, this says: for every real number a, if a is positive, then
there exists a unique real number b, which is positive and whose square is a. <
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% Discussion 1.2.28
Explain why Definition 1.2.26 captures the notion of there being ‘exactly one’ element
x € X making p(x) true. Can you think of any other ways that 3!x € X, p(x) could be
defined? <

% Strategy 1.2.29 (Proving unique-existentially quantified statements)
A proof of a statement of the form 3!x € X, p(x), consists of two parts:

* Existence — prove that Jx € X, p(x) is true (e.g. using Strategy 1.2.18);

* Uniqueness — let a,b € X, assume that p(a) and p(b) are true, and derive a = b.

Alternatively, prove existence to obtain a fixed a € X such that p(a) is true, and then
prove Vx € X, [p(x) = x =d].

< Example 1.2.30
We prove Example 1.2.27, namely that for each real a > 0 there is a unique b > 0 such
that b*> = a. So first fix a > 0.

+ (Existence) The real number +/a is positive and satisfies (1/a)? = a by definition. Its
existence will be deferred to a later time, but an informal argument for its existence

could be provided using ‘number line’ arguments as in Chapter 0.
« (Uniqueness) Let y,z > 0 be real numbers such that y> = a and z*> = a. Then y* = z°.

Rearranging and factorising yields

O—2)y+2)=0

soeithery—z=0o0ry+z=0. If y4+z =0 then z = —y, and since y > 0, this means
that z < 0. But this contradicts the assumption that z > 0. As such, it must be the case
that y — z = 0, and hence y = z, as required.

% Exercise 1.2.31
For each of the propositions, write it out as a logical formula involving the 3! quantifier
and then prove it, using the structure of the logical formula as a guide.

(a) For each real number a, the equation x” +2ax+a? = 0 has exactly one real solution
Xx.

(b) There is a unique real number a for which the equation x> + 4> = 0 has a real
solution x.

(c) There is a unique natural number with exactly one positive divisor.
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The unique existential quantifier will play a large role when we study functions in Sec-
tion 3.1.

Quantifier alternation

Compare the following two statements:

(i) For every door, there is a key that can unlock it.

(i1) There is a key that can unlock every door.

Letting the variables x and y refer to doors and keys, respectively, and letting p(x,y) be
the statement ‘door x can be unlocked by key y’, we can formulate these statements as:

@) Vx, 3y, p(x,y)
(i) 3y, Vx, p(x,y)

This is a typical ‘real-world’ example of what is known as quantifier alternation—the
two statements differ only by the order of the front-loaded quantifiers, and yet they say
very different things. Statement (i) requires every door to be unlockable, but the keys
might be different for different doors; statement (ii), however, implies the existence of
some kind of ‘master key’ that can unlock all the doors.

Here’s another example with a more mathematical nature:

Exercise 1.2.32

Let p(x,y) be the statement ‘x+y is even’.

* Prove that Vx € Z, 3y € Z, p(x,y) is true.

* Prove that 3y € Z, Vx € Z, p(x,y) is false.

g

In both of the foregoing examples, you might have noticed that the V3’ statement says
something weaker than the ‘3V’ statement—in some sense, it is easier to make a V3
statement true than it is to make an 3V statement true.

This idea is formalised in Theorem 1.2.33 below, which despite its abstract nature, has
an extremely simple proof.
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++* Theorem 1.2.33
Let p(x,y) be a logical formula with free variables x € X and y € Y. Then

Jyet,VxeX, plx,y)=VxeX,Iyey, p(x,y)

Proof
Suppose Jy € Y, Vx € X, p(x,y) is true. We need to prove Vx € X, Iy € Y, p(x,y), so fix
a € X—our goal is now to prove Jy € Y, p(a,y).

Using our assumption y € Y, Vx € X, p(x,y), we may choose b € Y such that Vx, p(x,b)
is true. But then p(a, D) is true, so we have proved Jy € Y, p(a,y), as required. O

Statements of the form Jy € ¥, Vx € X, p(x,y) imply some kind of uniformity: a value
of y making Vx € X, p(x,y) true can be thought of as a ‘one size fits all” solution to the
problem of proving p(x,y) for a given x € X. Later in your studies, it is likely that you
will encounter the word ‘uniform’ many times—it is precisely this notion of quantifier
alternation that the word ‘uniform’ refers to.
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TL;DR — summary of Section 1.2

Variables and logical formulae

1.2.1
1.2.2

1.2.4

A variable is free if a value can be substituted for it; otherwise it is bound.

A predicate p(x,y,z,...) represents a statement involving some free variables
X,¥,z,... that becomes a proposition when values for the variables are substi-
tuted.

A logical formula is an expression built using predicates, logical operators and
quantifiers.

Quantifiers

1.2.9

1.2.17

1.2.26

The universal quantifier (V) represents for all’. We prove Vx € X, p(x) by
introducing a variable x € X and, assuming nothing about x other than that
it is an element of X, deriving p(x); we can use an assumption of the form
Vx € X, p(x) by deducing p(a) whenever we know thata € X.

The existential quantifier () represents ‘there exists... such that...’. We
prove dx € X, p(x) by finding (with proof) an element a € X for which p(a)
is true; we can use an assumption of the form 3x € X, p(x) by introducing a
variable a € X and assuming that p(a) is true.

The unique existential quantifier (3!) represents ‘there exists a unique. .. such
that...’. We prove 3!x € X, p(x) in two parts: (1) Prove 3x € X, p(x); and (2)
Let a,b € X, assume that p(a) and p(b) are true, and derive a = b.

Quantifier alternation

1.2.33

For any logical formula p(x,y), we have that 3y € Y, Vx € X, p(x,y) implies
Vx € X, 3y €Y, p(x,y), but not necessarily vice versa.
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Section 1.3

Logical equivalence

We motivate the content of this section with an example.

< Example 1.3.1
Consider the following two logical formulae, where P denotes the set of all prime num-
bers.

(1) VneP,(n>2=[3ke€Z,n=2k+1]);
(2) =3ne P, (n>2AN[3Fk € Z,n=2k]).

The logical formula (1) translates to ‘every prime number greater than two is odd’, and
the logical formula (2) translates to ‘there does not exist an even prime number greater
than two’. These statements are evidently equivalent—they mean the same thing—but
they suggest different proof strategies:

(1) Fix a prime number 7, assume that n > 2, and then prove that n = 2k + 1 for some
keZ.

(2) Assume that there is some prime number #z such that n > 2 and n = 2k for some
k € Z, and derive a contradiction.

While statement (1) more directly translates the plain English statement ‘every prime
number greater than two is odd’, it is the proof strategy suggested by (2) that is easier
to use. Indeed, if n is a prime number such that n > 2 and n = 2k for some k € Z, then 2
is a divisor of n other than 1 and n (since 1 < 2 < n), contradicting the assumption that
n is prime. <

The notion of logical equivalence, captures precisely the sense in which the logical
formulae in (1) and (2) in Example 1.3.1 ‘mean the same thing’. Being able to transform
a logical formula into a different (but equivalent) form allows us to identify a wider
range of feasible proof strategies.

4 Definition 1.3.2
Let p and ¢ be logical formulae. We say that p and g are logically equivalent, and write
p = q (IATEX code: \equiv), if g can be derived from p and p can be derived from g.
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Logical equivalence of propositional formulae

While Definition 1.3.2 defines logical equivalence between arbitrary logical formulae,
we will start by focusing our attention on logical equivalence between propositional
formulae, like those we saw in Section 1.1.

First, let’s look at a couple of examples of what proofs of logical equivalence might
look like. Be warned—they’re not very nice to read! But there is light at the end of the
tunnel. After struggling through Examples 1.3.3 and 1.3.4 and Exercise 1.3.5, we will
introduce a very quick and easy tool for proving propositional formulae are logically
equivalent.

Example 1.3.3
We demonstrate that pA (gVr) = (pAq)V (pAr), where p, g and r are propositional
variables.

* First assume that p A (¢V r) is true. Then p is true and ¢ V r is true by definition of
conjunction. By definition of disjunction, either g is true or r is true.

o If g is true, then p A g is true by definition of conjunction.
o If r is true, then p A r is true by definition of conjunction.
In both cases we have that (p Ag) V (p Ar) is true by definition of disjunction.
* Now assume that (p Aq) V (p Ar) is true. Then either p A g is true or p Ar is true, by
definition of disjunction.
o If p Agis true, then p is true and q is true by definition of conjunction.
o If p Aris true, then p is true and r is true by definition of conjunction.

In both cases we have that p is true, and that ¢ V r is true by definition of disjunction.
Hence p A (g V r) is true by definition of conjunction.

Since we can derive (p Agq) V (p Ar) from p A (¢ V r) and vice versa, it follows that

pA(qVr)=(pAq)V(pAr)
as required. <

Example 1.3.4
We prove that p = g = (—p) V ¢, where p, g and r are propositional variables.

* First assume that p = ¢ is true. By the law of excluded middle (Axiom 1.1.44), either
p is true or —p is true—we derive (—p) V ¢ in each case.

o If p is true, then since p = q is true, it follows from (=E) that g is true, and so
(=p) Vg is true by (VIp);

o If =p is true, then (—p) V g is true by (VI;).
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In both cases, we see that (—p) V g is true.

* Now assume that (—p) V q is true. To prove that p = ¢ is true, it suffices by (=1) to
assume that p is true and derive g. So assume p is true. Since (—p)V q is true, we
have that either —p is true or ¢ is true.

o If =p is true, then we obtain a contradiction from the assumption that p is true, and
80 g is true by the principle of explosion (Axiom 1.1.49).

o If g is true... well, then ¢ is true—there is nothing more to prove!

In both cases we have that ¢ is true. Hence p = ¢ is true.

We have derived (—p) V ¢ from p = ¢ and vice versa, and so the two formulae are
logically equivalent. <

v Exercise 1.3.5

Let p, g and r be propositional variables. Prove that the propositional formula (p V
q) = ris logically equivalent to (p = r) A (¢ = r). 4

Working through the derivations each time we want to prove logical equivalence can
become cumbersome even for small examples like Examples 1.3.3 and 1.3.4 and Exer-
cise 1.3.5.

The following theorem reduces the problem of proving logical equivalence between
propositional formulae to the purely algorithmic task of checking when the formulae
are true and when they are false in a (relatively) small list of cases. We will streamline
this process even further using truth tables (Definition 1.3.7).

Theorem 1.3.6

Two propositional formulae are logically equivalent if and only if their truth values
are the same under any assignment of truth values to their constituent propositional
variables.

Idea of proof
A formal proof of this fact is slightly beyond our reach at this point, although we will
be able to prove it formally by structural induction, introduced in Section 12.2.

The idea of the proof is that, since propositional formulae are built up from simpler
propositional formulae using logical operators, the truth value of a more complex pro-
positional formula is determined by the truth values of its simpler subformulae. If we
keep ‘chasing’ these subformulae, we end up with just propositional variables.

For example, the truth value of (p = r) A (¢ = r) is determined by the truth values of
p = rand g = r according to the rules for the conjunction operator A. In turn, the truth
value of p = ris determined by the truth values of p and r according to the implication
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operator =, and the truth value of ¢ = r is determined by the truth values of ¢ and r
according to the implication operator again. It follows that the truth value of the whole
propositional formula (p = r) A (¢ = r) is determined by the truth values of p,q,r
according to the rules for A and =.

If some assignment of truth values to propositional variables makes one propositional
formula true but another false, then it must be impossible to derive one from the other—
otherwise we’d obtain a contradiction. Hence both propositional formulae must have
the same truth values no matter what assignment of truth values is given to their con-
stituent propositional variables.

We now develop a systematic way of checking the truth values of a propositional for-
mula under each assignment of truth values to its constituent propositional variables.

4 Definition 1.3.7
The truth table of a propositional formula is the table with one row for each possible
assignment of truth values to its constituent propositional variables, and one column for
each subformula (including the propositional variables and the propositional formula
itself). The entries of the truth table are the truth values of the subformulae.

¢ Example 1.3.8
The following are the truth tables for —p, pAg, pV g and p = q.

p|-p P _q|phg P _q|pVvg P 4| p=yq
v X v v v v v v v v
X | v v X X v X v v X X
x X x v x Vv v
X X X X X X X X v

g

In Example 1.3.8 we have used the symbol v' (IATEX code: \checkmark) to mean ‘true’
and x (IXIEX code: \times) to mean ‘false’. Some authors adopt other conventions,
such as T,F or T, 1 (I&IEX code: \top,\bot) or 1,0 or 0,1—the possibilites are
endless!

% Exercise 1.3.9
Use the definitions of A, V and = to justify the truth tables in Example 1.3.8. <

The next example shows how the truth tables for the individual logical operators (as in
Example 1.3.8) may be combined to form a truth table for a more complicated propos-
itional formula that involves three propositional variables.

66



Section 1.3. Logical equivalence 67

< Example 1.3.10
The following is the truth table for (p Aq) V (p Ar).

p_q r |phg pAr| (pPAgVI(pAT)
v v v v v Vs
v v X v X v
v o ox Vv X v v
v X X X % «
x v Y X X %
X v X X X x
X x v X X X
X X X X % «
propositional intermediate .
variables subformulae main formula

Some comments about the construction of this truth table are pertinent:

* The propositional variables appear first. Since there are three of them, there are 2° = 8
rows. The column for p contains four v's followed by four xs; the column for ¢
contains two v's, two xs, and then repeats; and the column for r contains one v', one
%, and then repeats.

* The next group of columns are the next-most complicated subformulae. Each is con-
structed by looking at the relevant columns further to the left and comparing with the
truth table for conjunction.

* The final column is the main formula itself, which again is constructed by looking
at the relevant columns further to the left and comparing with the truth table for
disjunction.

Our choices of where to put the vertical bars and what order to put the rows in were
not the only choices that could have been made, but when constructing truth tables for
more complex logical formulae, it is useful to develop a system and stick to it. <

Returning to Theorem 1.3.6, we obtain the following strategy for proving that two pro-
positional formulae are logically equivalent.

% Strategy 1.3.11 (Logical equivalence using truth tables)
In order to prove that propositional formulae are logically equivalent, it suffices to show
that they have identical columns in a truth table.

< Example 1.3.12
In Example 1.3.3 we proved that pA(gVr) = (pAgq)V (p Ar). We prove this again
using truth tables. First we construct the truth table for p A (g V r):
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P g r | qVr|pA(gVr)
v v/ v v
v v X v v
v x v v v
vV X X X X
x v Y v X
x v X v X
X X v X
X X X X X

Note that the column for p A (¢ V r) is identical to that of (p Agq)V (p Ar) in Ex-
ample 1.3.10. Hence the two formulae are logically equivalent. <

To avoid having to write out two truth tables, it can be helpful to combine them into one.
For example, the following truth table exhibits that p A (¢ V r) is logically equivalent to

(pA@)V(pAT):

P q r | gqVr|pA@@Vr) || pAg pAT | (PAQV(PAT)
v v v v v v v v
v v X v v v X v
v x Vv v v X v v
v X X X X X X X
x v Y v X X X X
x v X v X X X X
X X v X X X X
X X X X X X X X

In the following exercises, we use truth tables to repeat the proofs of logical equivalence
from Example 1.3.4 and Exercise 1.3.5.

% Exercise 1.3.13
Use a truth table to prove that p = g = (—p) Vq. <

% Exercise 1.3.14
Let p, g and r be propositional variables. Use a truth table to prove that the propositional
formula (pV g) = ris logically equivalent to (p = r) A (g = r). <

Some proof strategies

We are now in good shape to use logical equivalence to derive some more sophisticated
proof strategies.
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++* Theorem 1.3.15 (Law of double negation)
Let p be a propositional variable. Then p = ——p.

Proof
The proof is almost trivialised using truth tables. Indeed, consider the following truth
table.

pl-p|—p
v | X v
X | v X
The columns for p and ——p are identical, and so p = —~—p. (|

The law of double negation is important because it suggests a second way that we can
prove statements by contradiction. Indeed, it says that proving a proposition p is equi-
valent to proving ——p, which amounts to assuming —p and deriving a contradiction.

| Strategy 1.3.16 (Proof by contradiction (indirect version))
In order to prove a proposition p is true, it suffices to assume that p is false and derive
a contradiction.

At first sight, Strategy 1.3.16 looks very similar to Strategy 1.1.38, which we also
termed proof by contradiction. But there is an important difference between the two:

» Strategy 1.1.38 says that to prove that a proposition is false, it suffices to assume that
it is true and derive a contradiction;

» Strategy 1.3.16 says that to prove that a proposition is frue, it suffices to assume that
it is false and derive a contradiction.

The former is a direct proof technique, since it arises directly from the definition of the
negation operator; the latter is an indirect proof technique, since it arises from a logical
equivalence, namely the law of double negation.

& Example 1.3.17
We prove that if a, b and ¢ are non-negative real numbers satisfying a®> +b* = ¢2, then
a+b>c.

Indeed, let a,b,c € R with a,b,c > 0, and assume that a*> 4+ b*> = ¢>. Towards a contra-
diction, assume that it is not the case that a + b > ¢. Then we must have a+ b < ¢. But
then

(a+b)*=(a+b)(a+b)<(a+b)c<c-c=c
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and so
> (a+b)? =d®+2ab+b* = * +2ab > ¢*
This implies that c® > ¢%, which is a contradiction. So it must be the case that a+b > c,

as required. <

The next proof strategy we derive concerns proving implications.

4 Definition 1.3.18
The contrapositive of a proposition of the form p = ¢ is the proposition ~g = —p.

«+* Theorem 1.3.19 (Law of contraposition)
Let p and g be propositional variables. Then p = g = (—q) = (—p).

Proof
We build the truth tables for p = g and (—g) = (—p).

p qllp=ql| g -p| (-9 =(-p)
v v X X v
v X X v X X
X v X v v
X X v v oV v

The columns for p = ¢ and (—g) = (—p) are identical, so they are logically equivalent.
([

Theorem 1.3.19 suggests the following proof strategy.

R
*

Strategy 1.3.20 (Proof by contraposition)
In order to prove a proposition of the form p = g, it suffices to assume that ¢ is false
and derive that p is false.

¢ Example 1.3.21
Fix two natural numbers m and n. We will prove that if mn > 64, then either m > 8 or
n>8.

By contraposition, it suffices to assume that it is not the case that m > 8 or n > 8, and
derive that it is not the case that mn > 64.

So assume that neither m > 8 nor n > 8. Then m < 8 and n < 8, so that mn < 64, as
required. <
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Exercise 1.3.22

Use the law of contraposition to prove that p < g = (p = q) A ((—p) = (—q)), and use
the proof technique that this equivalence suggests to prove that an integer is even if and
only if its square is even. <

It feels good to invoke impressive-sounding results like proof by contraposition, but
in practice, the logical equivalence between any two different propositional formulae
suggests a new proof technique, and not all of these techniques have names. And in-
deed, the proof strategy in the following exercise, while useful, has no slick-sounding
name—at least, not one that would be widely understood.

Exercise 1.3.23

Prove that p\VV g = (—p) = ¢. Use this logical equivalence to suggest a new strategy for
proving propositions of the form pV g, and use this strategy to prove that if two integers
sum to an even number, then either both integers are even or both are odd. <

Negation

In pure mathematics it is common to ask whether or not a certain property holds of a
mathematical object. For example, in Section 9.2, we will look at convergence of se-
quences of real numbers: to say that a sequence xg,x,X2, ... of real numbers converges
(Definition 9.2.15) is to say

JaeR,VeeR, (e>0=3INeN,VneN, n>N=|x,—a| <g])

This is already a relatively complicated logical formula. But what if we wanted to prove
that a sequence does not converge? Simply assuming the logical formula above and
deriving a contradiction might work sometimes, but it is not particularly enlightening.

Our next goal is to develop a systematic method for negating complicated logical for-
mulae. With this done, we will be able to negate the logical formula expressing ‘the
sequence xg,Xx1,x2,... converges’ as follows

VaeR,Je € R, (e>0AYNeN,IneN, [n =2 NAlx,—a| > ¢€])
Granted, this is still a complicated expression, but when broken down element by ele-
ment, it provides useful information about how it may be proved.

The rules for negating conjunctions and disjunctions are instances of de Morgan’s laws,
which exhibit a kind of duality between A and V.
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Theorem 1.3.24 (de Morgan’s laws for logical operators)
Let p and g be logical formulae. Then:

(@ —(pAq)=(—p)V(~g); and
() ~(pVq)=(—p)A(=q).

Proof of (a)
Consider the following truth table.

P q |l prg| ~(prg) || mp —q | (=p)V(=g)
v oV v X X X X
v X X v X v v
X v X v v X v
X X X v v v v

The columns for —(pAgq) and (—p) V (—q) are identical, so they are logically equivalent.
]

Exercise 1.3.25

Prove Theorem 1.3.24(b) thrice: once using the definition of logical equivalence dir-
ectly (like we did in Examples 1.3.3 and 1.3.4 and Exercise 1.3.5), once using a truth
table, and once using part (a) together with the law of double negation. <

Example 1.3.26

We often use de Morgan’s laws for logical operators without thinking about it. For
example, to say that ‘neither 3 nor 7 is even’ is equivalent to saying ‘3 is odd and 7 is
odd’. The former statement translates to

—[(3is even) V (7 is even)]
while the second statement translates to
[-(3 is even)] A [(7 is even)]

g

Exercise 1.3.27
Prove that ~(p = ¢q) = p A (—gq) twice, once using a truth table, and once using Exer-
cise 1.3.13 together with de Morgan’s laws and the law of double negation. <

De Morgan’s laws for logical operators generalise to statements about quantifiers, ex-
pressing a similar duality between V and 3 as we have between A and V.
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Theorem 1.3.28 (de Morgan’s laws for quantifiers)
let p(x) be a logical formula with free variable x ranging over a set X. Then:

(a) “Vx € X, p(x) =3x € X, -p(x); and
(b) ~Ix e X, p(x) =Vxe X, -p(x).

Proof
Unfortunately, since these logical formulae involve quantifiers, we do not have truth
tables at our disposal, so we must assume each formula and derive the other.

We start by proving the equivalence in part (b), and then we derive (a) as a consequence.

* Assume —3x € X, p(x). To prove Vx € X, =p(x), fix some x € X. If p(x) were true,
then we’d have 3x € X, p(x), which contradicts our main assumption; so we have
—p(x). But then Vx € X, =p(x) is true.

* Assume Vx € X, -p(x). For the sake of contradiction, assume 3x € X, p(x) were
true. Then we obtain some a € X for which p(a) is true. But —p(a) is true by the
assumption that Vx € X, —p(a), so we obtain a contradiction. Hence —3x € X, p(x)
is true.

This proves that =3x € X, p(x) =Vx € X, -p(x).
Now (a) follows from (b) using the law of double negation (Theorem 1.3.15):

b
IxeX, —pkx)=-—-IxeX, plx) Y —VxeX,px)=-VxeX, px)

as required. ([

The proof strategy suggested by the logical equivalence in Theorem 1.3.28(b) is so
important that it has its own name.

Strategy 1.3.29 (Proof by counterexample)

To prove that a proposition of the form Vx € X, p(x) is false, it suffices to find a single
element a € X such that p(a) is false. The element a is called a counterexample to the
proposition Vx € X, p(x).

Example 1.3.30

We prove by counterexample that not every integer is divisible by a prime number.
Indeed, let x = 1. The only integral factors of 1 are 1 and —1, neither of which are
prime, so that 1 is not divisible by any primes. <

Exercise 1.3.31 u
Prove by counterexample that not every rational number can be expressed as b where

a € Zisevenand b € Z is odd. <
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