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Preface

Hello, and thank you for taking the time to read this quick introduction to the book! I would like to
begin with an apology and a warning:

This book is still under development!

That is to say, there are some sections that are incomplete, as well as other sections which are
currently much more terse than I would like them to be.

The most recent version is freely available for download from the following website:
https://infinitedescent.xyz

As the book is undergoing constant changes, I advise that you do not print it in its entirety—if you
must print anything, then I suggest that you do it a few pages at a time, as needed.

This book was designed with inquiry and communication in mind, as they are central to a good
mathematical education. One of the upshots of this is that there are many exercises throughout the
book, requiring a more active approach to learning, rather than passive reading. These exercises are a
fundamental part of the book, and should be completed even if not required by the course instructor.
Another upshot of these design principles is that solutions to exercises are not provided—a student
seeking feedback on their solutions should speak to someone to get such feedback, be it another
student, a teaching assistant or a course instructor.

Navigating the book

This book need not, and emphatically should not, be read from front to back. The order of material
is chosen so that material appearing later depends only on material appearing earlier (with a couple
of exceptions, which are pointed out in the text).

The majority of introductory pure mathematics courses cover, at a minimum, symbolic logic, sets,
functions and relations. This material is the content of Part I. Such courses usually cover additional
topics from pure mathematics, with exactly which topics depending on what the course is preparing
students for. With this in mind, Part II serves as an introduction to a range of areas of pure mathem-
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atics, including number theory, combinatorics, set theory, real analysis, probability theory and order
theory.

It is not necessary to cover all of Part I before proceeding to topics in Part II. In fact, interspersing
material from Part II can be a useful way of motivating many of the abstract concepts that arise in
Part I.

The following table shows dependencies between sections. Previous sections within the same
chapter as a section should be considered ‘essential’ prerequisites unless indicated otherwise.

Section | Essential Recommended Useful
1.1 0
2.1 1.3
3.1 2.2
4.1 1.3 3.1 3.2
5.1 2.1 3.1 32,42
6.1 1.3 2.1,4.3 3.1
6.3 5.2
7.1 32,43 5.2
8.1 4.1,2.1 5.2
8.2 3.1 8.1
9.1 7.1 83
9.3 7.2
8.3 3.1 8.1 6.3,9.1
10.1 7.2 9.1,8.3
11.1 5.2
11.2 4.3,3.2 9.1 11.1

Prerequisites are cumulative. For example, in order to cover Section 9.3, you should first cover
Chapters 0 and 2 to 4 and Sections 7.1, 7.2, 9.1 and 9.2.

What the numbers, colours and symbols mean

Broadly speaking, the material in the book is broken down into enumerated items that fall into one
of five categories: definitions, results, remarks, examples and exercises. In Appendix A, we also
have proof extracts. To improve navigability, these categories are distinguished by name, colour and
symbol, as indicated in the following table.

Category Symbol Colour Category Symbol Colour
Definitions + Red Examples & Teal
Results 3 Blue Exercises S Gold
Remarks < Purple Proof extracts ] Teal

These items are enumerated according to their section—for example, Theorem 8.2.41 is in Sec-
tion 8.2. Definitions and theorems (important results) appear in a .

You will also encounter the symbols [J and <I whose meanings are as follows:

viii
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O End of proof. It is standard in mathematical documents to identify when a proof has ended by
drawing a small square or by writing ‘Q.E.D.’ (The latter stands for quod erat demonstrandum,
which is Latin for which was to be shown.)

< End of item. This is not a standard usage, and is included only to help you to identify when an
item has finished and the main content of the book continues.

Some subsections are labelled with the symbol *. This indicates that the material in that subsection
can be skipped without dire consequences.

Licence

This book is licensed under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) li-
cence. This means you’re welcome to share this book, provided that you give credit to the author
and that any copies or derivatives of this book are released under the same licence. The content of
the licence can be read in its full glory at the end of the book, and by following the following URL:

http://creativecommons.org/licenses/by-sa/4.0/

Comments and corrections

Any feedback, be it from students, teaching assistants, instructors or any other readers, would be
very much appreciated. Particularly useful are corrections of typographical errors, suggestions for
alternative ways to describe concepts or prove theorems, and requests for new content (e.g. if you
know of a nice example that illustrates a concept, or if there is a relevant concept you wish were
included in the book).

Such feedback can be sent to the author by email (clive@infinitedescent.xyz).
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Chapter 0

Getting started

Before we can start proving things, we need to eliminate certain kinds of statements that we might
try to prove. Consider the following statement:

This sentence is false.

Is it true or false? If you think about this for a couple of seconds then you’ll get into a bit of a pickle.

Now consider the following statement:
The happiest donkey in the world.

Is it true or false? Well it’s not even a sentence; it doesn’t make sense to even ask if it’s true or false!

Clearly we’ll be wasting our time trying to write proofs of statements like the two listed above—we
need to narrow our scope to statements that we might actually have a chance of proving (or perhaps
refuting)! This motivates the following (informal) definition.

4 Definition 0.1
A proposition is a statement to which it is possible to assign a truth value (‘true’ or ‘false’). If
a proposition is true, a proof of the proposition is a logically valid argument demonstrating that
it is true, which is pitched at such a level that a member of the intended audience can verify its
correctness.

Thus the statements given above are not propositions because there is no possible way of assigning
them a truth value. Note that, in Definition 0.1, all that matters is that it makes sense to say that it is
true or false, regardless of whether it actually is true or false—the truth value of many propositions
is unknown, even very simple ones.

Exercise 0.2
Think of an example of a true proposition, a false proposition, a proposition whose truth value you
don’t know, and a statement that is not a proposition. <
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Results in mathematical papers and textbooks may be referred to as propositions, but they may also
be referred to as theorems, lemmas or corollaries depending on their intended usage.

e A proposition is an umbrella term which can be used for any result.
o A theorem is a key result which is particularly important.
e A lemma is a result which is proved for the purposes of being used in the proof of a theorem.

e A corollary is a result which follows from a theorem without much additional effort.

These are not precise definitions, and they are not meant to be—you could call every result a pro-
position if you wanted to—but using these words appropriately helps readers work out how to read
a paper. For example, if you just want to skim a paper and find its key results, you’d look for results
labelled as theorems.

It is not much good trying to prove results if we don’t have anything to prove results about. With this
in mind, we will now introduce the number sets and prove some results about them in the context
of four topics, namely: division of integers, number bases, rational and irrational numbers, and
polynomials. These topics will provide context for the material in Part I, and serve as an introduction
to the topics covered in Part II.

We will not go into very much depth in this chapter. Rather, think of this as a warm-up exercise—a
quick, light introduction, with more proofs to be provided in the rest of the book.

Number sets

Later in this chapter, and then in much more detail in Chapter 2, we will encounter the notion of a set;
a set can be thought of as being a collection of objects. This seemingly simple notion is fundamental
to mathematics, and is so involved that we will not treat sets formally in this book. For now, the
following definition will suffice.

4 Definition 0.3 (to be revised in Definition 2.1.1)
A set is a collection of objects. The objects in the set are called elements of the set. If X is a set
and x is an object, then we write x € X (I£IEX code: x \in X) to denote the assertion that x is an
element of X.

The sets of concern to us first and foremost are the number sets—that is, sets whose elements are
particular types of number. At this introductory level, many details will be temporarily swept under
the rug; we will work at a level of precision which is appropriate for our current stage, but still allows
us to develop a reasonable amount of intuition.

In order to define the number sets, we will need three things: an infinite line, a fixed point on this
line, and a fixed unit of length.

So here we go. Here is an infinite line:
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The arrows indicate that it is supposed to extend in both directions without end. The points on the
line will represent numbers (specifically, real numbers, a misleading term that will be defined in
Definition 0.25). Now let’s fix a point on this line, and label it ‘0’:

This point can be thought of as representing the number zero; it is the point against which all other
numbers will be measured. Finally, let’s fix a unit of length:

—

This unit of length will be used, amongst other things, to compare the extent to which the other
numbers differ from zero.

4 Definition 0.4
The above infinite line, together with its fixed zero point and fixed unit length, constitute the (real)
number line.

‘We will use the number line to construct five sets of numbers of interest to us:

The set N of natural numbers—Definition 0.5;

The set Z of integers—Definition 0.11;

The set Q of rational numbers—Definition 0.24;

The set R of real numbers—Definition 0.25; and

The set C of complex numbers—Definition 0.31.

Each of these sets has a different character and is used for different purposes, as we will see both
later in this chapter and throughout this book.

Natural numbers (N)

The natural numbers are the numbers used for counting—they are the answers to questions of the
form ‘how many’—for example, I have three uncles, one dog and zero cats.

Counting is a skill humans have had for a very long time; we know this because there is evidence of
people using tally marks tens of thousands of years ago. Tally marks provide one method of counting
small numbers: starting with nothing, proceed through the objects you want to count one by one,
and make a mark for every object. When you are finished, there will be as many marks as there are
objects. We are taught from a young age to count with our fingers; this is another instance of making
tally marks, where now instead of making a mark we raise a finger.

Making a tally mark represents an increment in quantity—that is, adding one. On our number line,
we can represent an increment in quantity by moving to the right by the unit length. Then the
distance from zero we have moved, which is equal to the number of times we moved right by the
unit length, is therefore equal to the number of objects being counted.

3



4 Chapter 0. Getting started

4 Definition 0.5

The natural numbers are represented by the points on the number line which can be obtained by
starting at 0 and moving right by the unit length any number of times:

In more familiar terms, they are the non-negative whole numbers. We write N (IATgX code:
\mathbb{N}) for the set of all natural numbers; thus, the notation ‘n € N’ means that n is a nat-
ural number.

The natural numbers have very important and interesting mathematical structure, and are central to
the material in Chapter 7. A more precise characterisation of the natural numbers will be provided
in Section 4.1, and a mathematical construction of the set of natural numbers can be found in Sec-
tion B.1 (see Construction B.2.5). Central to these more precise characterisations will be the notions
of ‘zero’ and of ‘adding one’—just like making tally marks.

Aside

Some authors define the natural numbers to be the positive whole numbers, thus excluding zero.
We take O to be a natural number since our main use of the natural numbers will be for counting
finite sets, and a set with nothing in it is certainly finite! That said, as with any mathematical
definition, the choice about whether 0 € N or 0 ¢ N is a matter of taste or convenience, and is merely
a convention—it is not something that can be proved or refuted. <

Number bases

Writing numbers down is something that may seem easy to you now, but it likely took you several
years as a child to truly understand what was going on. Historically, there have been many different
systems for representing numbers symbolically, called numeral systems. First came the most prim-
itive of all, tally marks, appearing in the Stone Age and still being used for some purposes today.
Thousands of years and hundreds of numeral systems later, there is one dominant numeral system,
understood throughout the world: the Hindu—-Arabic numeral system. This numeral system con-
sists of ten symbols, called digits. It is a positional numeral system, meaning that the position of a
symbol in a string determines its numerical value.

In English, the Arabic numerals are used as the ten digits:
0123 456 7289

The right-most digit in a string is in the units place, and the value of each digit increases by a factor of
ten moving to the left. For example, when we write ‘2812°, the left-most ‘2’ represents the number
two thousand, whereas the last ‘2’ represents the number two.

The fact that there are ten digits, and that the numeral system is based on powers of ten, is a biolo-
gical accident corresponding with the fact that most humans have ten fingers. For many purposes,
this is inconvenient. For example, ten does not have many positive divisors (only four)—this has
implications for the ease of performing arithmetic; a system based on the number twelve, which has
six positive divisors, might be more convenient. Another example is in computing and digital elec-
tronics, where it is more convenient to work in a binary system, with just two digits, which represent

4
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‘off” and ‘on’ (or ‘low voltage’ and ‘high voltage’), respectively; arithmetic can then be performed
directly using sequences of logic gates in an electrical circuit.

It is therefore worthwhile to have some understanding of positional numeral systems based on num-
bers other than ten. The mathematical abstraction we make leads to the definition of base-b expan-
sion.

Definition 0.6
Let b > 1. The base-b expansion of a natural number 7 is the” string d,d,—1 ...dp such that

en=d, b +d_- b+ +dy-b°
e 0 <d; <bforeachi; and

e If n > 0 then d, # 0—the base-b expansion of zero is 0 in all bases b.

Certain number bases have names; for instance, the base-2, 3, 8, 10 and 16 expansions are respect-
ively called binary, ternary, octal, decimal and hexadecimal.

“The use of the word ‘the’ is troublesome here, since it assumes that every natural number has only one base-b expansion.
This fact actually requires proof—see Theorem 6.3.51.

Example 0.7
Consider the number 1023. Its decimal (base-10) expansion is 1023, since

1023=1-10>+0-10>4+2-10" +3-10°
Its binary (base-2) expansionis 1111111111, since
1023=1-2241-224+1-2741-204+1-22+1-2*+1-22+1.22+1-21 +1.2°

We can express numbers in base-36 by using the ten usual digits O through 9 and the twenty-six
letters A through Z; for instance, A represents 10, M represents 22 and Z represents 35. The base-36
expansion of 1023 is SF, since

1023 =28-36' +15-36" =S-36! +F-36"

Exercise 0.8

Find the binary, ternary, octal, decimal, hexadecimal and base-36 expansions of the number 21127,
using the letters A-F as additional digits for the hexadecimal expansion and the letters A—Z as
additional digits for the base-36 expansion. <

We sometimes wish to specify a natural number in terms of its base-b expansion; we have some
notation for this.

Notation 0.9
Let b > 1. If the numbers dy,d,...,d, are base-b digits (in the sense of Definition 0.6), then we
write

dedy ... dogy =dp-b" +dpy b 4 do B

for the natural number whose base-b expansion is d,d,_; ...dp. If there is no subscript (b) and a
base is not specified explicitly, the expansion will be assumed to be in base-10.

5
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¢ Example 0.10
Using our new notation, we have

1023 = 111111111105 = 1101220(3) = 1777g) = 102319 = 3FF ;) = SF(3)

Integers (Z)

The integers can be used for measuring the difference between two instances of counting. For
example, suppose I have five apples and five bananas. Another person, also holding apples and
bananas, wishes to trade. After our exchange, [ have seven apples and only one banana. Thus I have
two more apples and four fewer bananas.

Since an increment in quantity can be represented by moving to the right on the number line by the
unit length, a decrement in quantity can therefore be represented by moving to the left by the unit
length. Doing so gives rise to the integers.

4 Definition 0.11
The integers are represented by the points on the number line which can be obtained by starting at
0 and moving in either direction by the unit length any number of times:

We write Z (IATEX code: \mathbb{Z}) for the set of all integers; thus, the notation ‘n € Z’ means
that n is an integer.

The integers have such a fascinating structure that a whole chapter of this book is devoted to them—
see Chapter 6. This is to do with the fact that, although you can add, subtract and multiply two
integers and obtain another integer, the same is not true of division. This ‘bad behaviour’ of division
is what makes the integers interesting. We will now see some basic results about division.

Division of integers

The motivation we will soon give for the definition of the rational numbers (Definition 0.24) is that
the result of dividing one integer by another integer is not necessarily another integer. However, the
result is sometimes another integer; for example, I can divide six apples between three people, and
each person will receive an integral number of apples. This makes division interesting: how can we
measure the failure of one integer’s divisibility by another? How can we deduce when one integer
is divisible by another? What is the structure of the set of integers when viewed through the lens of
division? This motivates Definition 0.12.

4 Definition 0.12 (to be repeated in Definition 6.1.4)
Let a,b € Z. We say b divides a if a = gb for some integer g. Other ways of saying that b divides a
are: b is a divisor of a, b is a factor of a, or a is a multiple of b.

6
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< Example 0.13
The integer 12 is divisible by 1, 2, 3, 4, 6 and 12, since
12=12-1=6-2=4-3=3-4=2-6=1-12

It is also divisible by the negatives of all of those numbers; for example, 12 is divisible by —3 since

12=(—4)-(-3). <
% Exercise 0.14
Prove that 1 divides every integer, and that every integer divides 0. <

Using Definition 0.12, we can prove some general basic facts about divisibility.

+* Proposition 0.15
Leta,b,c € Z. If c divides b and b divides a, then ¢ divides a.

Proof
Suppose that ¢ divides b and b divides a. By Definition 0.12, it follows that

b=gc and a=rb

for some integers ¢ and r. Using the first equation, we may substitute gc for b in the second equation,
to obtain

a=r(gc)
But r(gc) = (rq)c, and rq is an integer, so it follows from Definition 0.12 that ¢ divides a. O
% Exercise 0.16

Leta,b,d € Z. Suppose that d divides a and d divides b. Given integers u and v, prove that d divides
au+bv. <

Some familiar concepts, such as evenness and oddness, can be characterised in terms of divisibility.

4 Definition 0.17
An integer n is even if it is divisible by 2; otherwise, n is odd.

It is not just interesting to know when one integer does divide another; however, proving that one
integer doesn’t divide another is much harder. Indeed, to prove that an integer b does not divide an
integer a, we must prove that a # gb for any integer g at all. We will look at methods for doing this
in Chapter 1; these methods use the following extremely important result, which will underlie all of
Chapter 6.

¢ Theorem 0.18 (Division theorem, to be repeated in Theorem 6.1.1)
Let a,b € Z with b # 0. There is exactly one way to write
a=gqgb+r

such that g and r are integers, and 0 < r < b (if b >0)or 0 < r < —b (if b < 0).

The number ¢ in Theorem 0.18 is called the quotient of a when divided by b, and the number r is
called the remainder.
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Example 0.19
The number 12 leaves a remainder of 2 when divided by 5, since 12 =2-542. <

Here’s a slightly more involved example.

Proposition 0.20
Suppose an integer a leaves a remainder of » when divided by an integer b, and that » > 0. Then —a
leaves a remainder of b — r when divided by b.

Proof
Suppose a leaves a remainder of r when divided by b. Then
a=qb+r
for some integer g. A bit of algebra yields
—a=—gb—r=—gb—r+(b—-b)=—(qg+1)b+(b—r)
Since 0 < r < b, we have 0 < b —r < b. Hence —(q + 1) is the quotient of —a when divided by b,
and b — r is the remainder. g

Exercise 0.21
Prove that if an integer a leaves a remainder of » when divided by an integer b, then a leaves a
remainder of » when divided by —b. <

We will finish this part on division of integers by connecting it with the material on number bases—
we can use the division theorem (Theorem 0.18) to find the base-b expansion of a given natural
number. It is based on the following observation: the natural number n whose base-b expansion is
dyd,_1---ddy is equal to

do+b(dy+b(dy+---+b(dr—1 +bd,)--))
Moreover, 0 < d; < b for all i. In particular n leaves a remainder of dy when divided by b. Hence

n—do

5 =dy+dob+---+db!

The base-b expansion of ”;}d‘) is therefore

drdrfl o 'dl

In other words, the remainder of n when divided by b is the last base-b digit of n, and then subtracting
this number from »n and dividing the result by b truncates the final digit. Repeating this process gives
us d1, and then d», and so on, until we end up with 0.

This suggests the following algorithm for computing the base-b expansion of a number n:

e Step 1. Let dp be the remainder when 7 is divided by b, and let ng = ”;}d‘) be the quotient. Fix

i=0.

e Step 2. Suppose n; and d; have been defined. If n; = 0, then proceed to Step 3. Otherwise, define
di;+1 to be the remainder when n; is divided by b, and define n; | = %
repeat Step 2.

. Increment i, and
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o Step 3. The base-b expansion of n, is
didi—1---dp

Example 0.22
We compute the base-17 expansion of 15213, using the letters A—G to represent the numbers 10
through 16.

e 15213 =894-17+15, s0dp = 15 =F and ny = 894.
e 894=52-17+10,s0d; =10=A and n; =52.
e 52=3-17+1,s0d, =1 and n, = 3.
e 3=0-174+3,s0d3 =3 and n3 = 0.
e The base-17 expansion of 15213 is therefore 31AF.
A quick verification gives
31AF(j7)=3-17"+1-1774+10-17+ 15 = 15213

as desired. <

Exercise 0.23
Find the base-17 expansion of 408735787 and the base-36 expansion of 1442151747. <

Rational numbers (Q)

Bored of eating apples and bananas, I buy a pizza which is divided into eight slices. A friend and
I decide to share the pizza. I don’t have much of an appetite, so I eat three slices and my friend
eats five. Unfortunately, we cannot represent the proportion of the pizza each of us has eaten using
natural numbers or integers. However, we’re not far off: we can count the number of equal parts
the pizza was split into, and of those parts, we can count how many we had. On the number line,
this could be represented by splitting the unit line segment from 0 to 1 into eight equal pieces, and
proceeding from there. This kind of procedure gives rise to the rational numbers.

Definition 0.24
The rational numbers are represented by the points at the number line which can be obtained by
dividing any of the unit line segments between integers into an equal number of parts.

The rational numbers are those of the form 7, where a,b € Z and b # 0. We write Q (IZTgX code:
\mathbb{Q}) for the set of all rational numbers; thus, the notation ‘g € Q* means that g is a rational
number.

The rational numbers are a very important example of a type of algebraic structure known as a
field—they are particularly central to algebraic number theory and algebraic geometry.
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Real numbers (R)

Quantity and change can be measured in the abstract using real numbers.

4 Definition 0.25
The real numbers are the points on the number line. We write R (IXTEX code: \mathbb{R}) for the

set of all real numbers; thus, the notation ‘a € R’ means that a is a real number.

The real numbers are central to real analysis, a branch of mathematics introduced in Chapter 8.
They turn the rationals into a continuum by ‘filling in the gaps’—specifically, they have the property
of completeness, meaning that if a quantity can be approximated with arbitrary precision by real
numbers, then that quantity is itself a real number.

We can define the basic arithmetic operations (addition, subtraction, multiplication and division) on
the real numbers, and a notion of ordering of the real numbers, in terms of the infinite number line.

e Ordering. A real number a is less than a real number b, written a < b, if a lies to the left of b
on the number line. The usual conventions for the symbols < (IXTEX code: \1e), > and > (IATEX
code: \ge) apply, for instance ‘a < b’ means that either a < b ora =b.

e Addition. Suppose we want to add a real number a to a real number b. To do this, we translate
a by b units to the right—if b < 0 then this amounts to translating a by an equivalent number of
units to the left. Concretely, take two copies of the number line, one above the other, with the
same choice of unit length; move the 0 of the lower number line beneath the point a of the upper
number line. Then a + b is the point on the upper number line lying above the point b of the lower
number line.

Here is an illustration of the fact that (—3) 45 = 2:

N +—> @

e Multiplication. This one is fun. Suppose we want to multiply a real number a by a real number
b. To do this, we scale the number line, and perhaps reflect it. Concretely, take two copies of the
number line, one above the other; align the O points on both number lines, and stretch the lower
number line evenly until the point 1 on the lower number line is below the point a on the upper
number line—note that if @ < 0 then the number line must be reflected in order for this to happen.
Then a - b is the point on the upper number line lying above b on the lower number line.

Here is an illustration of the fact that 5-4 = 20.

I I Il Il Il |
T T T T T T T T T T T T T T

6 7 8 9 10 I1 12 13 14 15 16 17 18 19 20 21 22 23 24

5
*
I
|
l
1

AT — @

S+---T+°

and here is an illustration of the fact that (—5) -4 = —20:

10
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% Exercise 0.26
Interpret the operations of subtraction and division as geometric transformations of the real number

line. <

We will take for granted the arithmetic properties of the real numbers in this chapter, waiting un-
til Section 8.1 to sink our teeth into the details. For example, we will take for granted the basic
properties of rational numbers, for instance

Eiaderc and a c
d  bd b d bd

ac

Z4
b

Rational and irrational numbers

Before we can talk about irrational numbers, we should say what they are.

4 Definition 0.27
An irrational number is a real number that is not rational.

Unlike N, Z,Q, R, C, there is no standard single letter expressing the irrational numbers. However,
by the end of Section 2.2, we will be able to write the set of irrational numbers as R\ Q.

Note in particular that ‘irrational’ does not simply mean ‘not rational’—that would imply that all
complex numbers which are not real are irrational—rather, the term ‘irrational’ means ‘real and not
rational’.

Proving that a real number is irrational is not particularly easy. We will get our foot in the door by
allowing ourselves to assume the following result, which is restated and proved in Proposition 4.3.12.

«+ Proposition 0.28
The real number /2 is irrational. O

We can use the fact that v/2 is irrational to prove some facts about the relationship between rational
numbers and irrational numbers.

+» Proposition 0.29
Let a and b be irrational numbers. It is possible that ab be rational.

Proof
Let a = b = v/2. Then a and b are irrational, and ab =2 = %, which is rational. O

% Exercise 0.30
Let r be a rational number and let @ be an irrational number. Prove that it is possible that ra be
rational, and it is possible that ra be irrational. <

11
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Complex numbers (C)

We have seen that multiplication by real numbers corresponds with scaling and reflection of the
number line—scaling alone when the multiplicand is positive, and scaling with reflection when it
is negative. We could alternatively interpret this reflection as a rotation by half a turn, since the
effect on the number line is the same. You might then wonder what happens if we rotate by arbitrary
angles, rather than only half turns.

What we end up with is a plane of numbers, not merely a line—see Figure 1. Moreover, it happens
that the rules that we expect arithmetic operations to satisfy still hold—addition corresponds with
translation, and multiplication corresponds with scaling and rotation. This resulting number set is
that of the complex numbers.

4 Definition 0.31
The complex numbers are those obtained by the non-negative real numbers upon rotation by any
angle about the point 0. We write C (IT5X code: \mathbb{C}) for the set of all complex numbers;
thus, the notation ‘z € C’ means that z is a complex number.

There is a particularly important complex number, i, which is the point in the complex plane exactly
one unit above 0—this is illustrated in Figure 1. Multiplication by i has the effect of rotating the
plane by a quarter turn anticlockwise. In particular, we have i = i-i = —1; the complex numbers
have the astonishing property that square roots of all complex numbers exist (including all the real
numbers).

In fact, every complex number can be written in the form a + bi, where a, b € R; this number corres-
ponds with the point on the complex plane obtained by moving a units to the right and b units up,
reversing directions as usual if a or b is negative. Arithmetic on the complex numbers works just as
with the real numbers; in particular, using the fact that i> = —1, we obtain

(a+bi)+(c+di)=(a+c)+ (b+d)i and (a+bi)-(c+di)= (ac—bd)+ (ad+ bc)i

We will discuss complex numbers further in the portion of this chapter on polynomials below.

Polynomials

The integers, rational numbers, real numbers and complex numbers are all examples of rings, which
means that they come equipped with nicely behaving notions of addition, subtraction and multiplic-
ation.

4 Definition 0.32
Let A be one Z, Q, R or C. A (univariate) polynomial over A in the indeterminate x is an
expression of the form
ap+ayx+ -+ ax"

where n € N and each a; € A. The numbers a;, are called the coefficients of the polynomial. If not all
coefficients are zero, the largest value of k for which a; # 0 is called the degree of the polynomial.
By convention, the degree of the polynomial 0 is —oe.

12
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Figure 1: Illustration of the complex plane, with some points labelled.

13



&

<+

14 Chapter 0. Getting started

Polynomials of degree 1, 2, 3, 4 and 5 are respectively called linear, quadratic, cubic, quartic and
quintic polynomials.

Example 0.33
The following expressions are all polynomials:

3 2a—1  (B3+i)x*—x

Their degrees are 0, 1 and 2, respectively. The first two are polynomials over Z, and the third is a

polynomial over C. <
Exercise 0.34
Write down a polynomial of degree 4 over R which is not a polynomial over Q. <
Notation 0.35

Instead of writing out the coefficients of a polynomial each time, we may write something like p(x)
or ¢(x). The ‘(x)’ indicates that x is the indeterminate of the polynomial. If & is a number'® and
p(x) is a polynomial in indeterminate x, we write p(ct) for the result of substituting « for x in the
expression p(x).

Note that, if A is any of the sets N, Z, Q, R or C, and p(x) is a polynomial over A, then p(a) € A for
all ¢ € A.

Example 0.36
Let p(x) = x*> —3x% +3x— 1. Then p(x) is a polynomial over Z with indeterminate x. For any integer
o, the value p(a) will also be an integer. For example

p(0)=0°-3.043.0-1=—1 and p(3)=3*-3.3243.3-1=8

Definition 0.37
Let p(x) be a polynomial. A root of p(x) is a complex number ¢ such that p(a) = 0.

The quadratic formula (Theorem 1.1.31) tells us that the roots of the polynomial x* + ax + b, where
a,b € C, are precisely the complex numbers

—a+va®—4b —a—va®—4b

> and >

Note our avoidance of the symbol ‘+’, which is commonly found in discussions of quadratic poly-
nomials. The symbol ‘4’ is dangerous because it may suppress the word ‘and’ or the word ‘or’,
depending on context—this kind of ambiguity is not something that we will want to deal with when
discussing the logical structure of a proposition in Chapter 1!

Example 0.38
Let p(x) = x*> — 2x+5. The quadratic formula tells us that the roots of p are

24+4—4-5 2—\A4—45
2 2

=1—y—4=1-2i

[2'When dealing with polynomials, we will typically reserve the letter x for the indeterminate variable, and use the Greek
letters a, B,y (IATEX code: \alpha, \beta, \gamma) for numbers to be substituted into a polynomial.

=1+v—-4=1+2i and

14
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The numbers 1+ 2i and 1 — 2i are related in that their real parts are equal and their imaginary parts
differ only by a sign. Exercise 0.39 generalises this observation. <

> Exercise 0.39

Let & = a+ bi be a complex number, where a,b € R. Prove that « is the root of a quadratic
polynomial over R, and find the other root of this polynomial. <

The following exercise proves the well-known result which classifies the number of real roots of a
polynomial over R in terms of its coefficients.

Exercise 0.40

Leta,b € C and let p(x) = x*> +ax+b. The value A = a®> — 4b is called the discriminant of p. Prove
that p has two roots if A # 0 and one root if A = 0. Moreover, if a,b € R, prove that p has no real
roots if A < 0, one real root if A = 0, and two real roots if A > 0. <

Example 0.41

Consider the polynomial x> —2x+ 5. Its discriminant is equal to (—2)? —4-5 = —16, which is
negative. Exercise 0.40 tells us that it has two roots, neither of which are real. This was verified by
Example 0.38, where we found that the roots of X2 —2x+5are 1+ 2iand 1 —2i.

Now consider the polynomial x> — 2x — 3. Tts discriminant is equal to (—2)? —4 - (—3) = 16, which
is positive. Exercise 0.40 tells us that it has two roots, both of which are real; and indeed

K —2x—3=(x+1)(x—3)

so the roots of x2 — 2x — 3 are —1 and 3. <

15
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Section 0.E
Chapter 0 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

0.1. The video-sharing website YouTube assigns to each video a unique identifier, which is a string
of 11 characters from the set

{A,B,...,Z,a,b,...,2,0,1,2,3,4,56,7,8,9,-,_}

This string is actually a natural number expressed in base-64, where the characters in the above
set represent the numbers O through 63, in the same order—thus C represents 2, c represents
28, 3 represents 55, and _ represents 63. According to this schema, find the natural number
whose base-64 expansion is dQw4w9WgXcQ, and find the base-64 expansion of the natural number
7159047702620056984.

0.2. Leta,b,c,d € Z. Under what conditions is (a+b+v/2)(c 4+ d+/2) an integer?

0.3. Suppose an integer m leaves a remainder of i when divided by 3, and an integer m leaves a
remainder of j when divided by 3, where 0 < i, j < 3. Prove that m+n and i + j leave the same
remainder when divided by 3.

0.4. What are the possible integers of n> when divided by 3, where n € Z?

4 Definition 0.E.1
A set X is closed under an operation ©® if, whenever a and b are elements of X, a ® b is also an
element of X.

In Questions 0.5 to 0.11, determine which of the number sets N, Z, Q and R are closed under the
operation ® defined in the question.

0.5.a0b=a+b 9. -
0.9.a0b pea
06.a0b=a—-b a
0.10.aGb=
0.7.a®b=(a—b)(a+Db) b*+1
0.8.a@b=(a—1)(b—1)+2(a+b) 0.11.a0ph—1¢ ?fb>0
0 ifbeQ

4 Definition 0.E.2
A complex number « is algebraic if p(a) = 0 for some nonzero polynomial p(x) over Q.

0.12. Let x be a rational number. Prove that x is an algebraic number.
0.13. Prove that v/2 is an algebraic number.
0.14. Prove that v/2 + /3 is an algebraic number.

0.15. Prove that x + yi is an algebraic number, where x and y are any two rational numbers.

16
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True-False questions

In Questions 0.16 to 0.23, determine (with proof) whether the statement is true or false.

0.16. Every integer is a natural number.

0.17. Every integer is a rational number.

0.18. Every integer divides zero.

0.19. Every integer divides its square.

0.20. The square of every rational number is a rational number.

0.21. The square root of every positive rational number is a rational number.

0.22. When an integer « is divided by a positive integer b, the remainder is always less than a.

0.23. Every quadratic polynomial has two distinct complex roots.

Always—-Sometimes—Never questions

In Questions 0.24 to 0.32, determine (with proof) whether the conclusion is always, sometimes or
never true under the given hypotheses.

0.24. Letn,by,b, € Nwith 1 <n < by < by. Then the base-b;| expansion of n is equal to the base-b;
expansion of 7.

0.25. Letn,by,by € Nwith 1 < by < by < n. Then the base-b; expansion of n is equal to the base-b,
expansion of 7.

0.26. Let a,b,c € Z and suppose that a divides ¢ and b divides c¢. Then ab divides c.

0.27. Let a,b,c € Z and suppose that a divides ¢ and b divides c. Then ab divides 2.

ax+b

0.28. Letx,y € Qand let a,b,c,d € Z with cy+d # 0. Then
cx+d

€ Q.
0.29. Let g be a rational number. Then a € Z and b € Z.

0.30. Let x € R and assume that x> € Q. Then x € Q.
0.31. Let x € R and assume that x> +1 € Q and x’ + 1 € Q. Then x € Q.

0.32. Let p(x) = ax? + bx+ ¢ be a polynomial with a,b,c € R and a # 0, and suppose that u -+ vi be
a complex root of p(x) with v 0. Then u — vi is a root of p(x).

17
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Core concepts
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Chapter 1

Logical structure

The goal of this chapter is to develop a methodical way of breaking up a proposition into smaller
components and seeing how these components fit together—this is called the logical structure of a
proposition. The logical structure of a proposition is very informative: it tells us what we need to do
in order to prove it, what we need to write in order to communicate our proof, and how to explore
the consequences of the proposition after it has been proved.

logical structure of a

proposition
strategies for proving structure and wording of consequences of
the proposition the proof the proposition

Sections 1.1 and 1.2 are dedicated to developing a system of symbolic logic for reasoning about
propositions. We will be able to represent a proposition using a string of variables and symbols,
and this expression will guide how we can prove the proposition and explore its consequences. In
Section 1.3 we will develop techniques for manipulating these logical expressions algebraically—
this, in turn, will yield new proof techniques (some have fancy names like ‘proof by contraposition’,
but some do not).

Exploring how the logical structure of a proposition informs the structure and wording of its proof
is the content of Appendix A.2.

21



22 Chapter 1. Logical structure

Section 1.1
Propositional logic

Every mathematical proof is written in the context of certain assumptions being made, and certain
goals to be achieved.

e Assumptions are the propositions which are known to be true, or which we are assuming to be
true for the purposes of proving something. They include theorems that have already been proved,
prior knowledge which is assumed of the reader, and assumptions which are explicitly made using
words like ‘suppose’ or ‘assume’.

e Goals are the propositions we are trying to prove in order to complete the proof of a result, or
perhaps just a step in the proof.

With every phrase we write, our assumptions and goals change. This is perhaps best illustrated by
example. In Example 1.1.1 below, we will examine the proof of Proposition 0.15 in detail, so that
we can see how the words we wrote affected the assumptions and goals at each stage in the proof.
We will indicate our assumptions and goals at any given stage using tables—the assumptions listed
will only be those assumptions which are made explicitly; prior knowledge and previously proved
theorems will be left implicit.

Example 1.1.1
The statement of Proposition 0.15 was as follows:

Leta,b,c € Z. If c divides b and b divides a, then ¢ divides a.

The set-up of the proposition instantly gives us our initial assumptions and goals:

Assumptions | Goals
If ¢ divides b and b divides a, then ¢
a,b,ceZ ..
divides a

We will now proceed through the proof, line by line, to see what effect the words we wrote had on
the assumptions and goals.

Since our goal was an expression of the form ‘if...then...’, it made sense to start by assuming the
‘if” statement, and using that assumption to prove the ‘then’ statement. As such, the first thing we
wrote in our proof was:

Suppose that ¢ divides b and b divides a.

Our updated assumptions and goals are reflected in the following table.

Assumptions Goals
a,b,cc€Z ¢ divides a
c divides b
b divides a

22
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Our next step in the proof was to unpack the definitions of ‘c divides b’ and ‘b divides a’, giving us
more to work with.
Suppose that ¢ divides b and b divides a. By Definition 0.12, it follows that
b=gc and a=rb
for some integers ¢ and r.

This introduces two new variables ¢, r and allows us to replace the assumptions ‘c divides b’ and ‘b
divides a’ with their definitions.

Assumptions Goals
a,b,c,q,r €7 c divides a
b=gqc
a=rb

At this point we have pretty much exhausted all of the assumptions we can make, and so our attention
turns towards the goal—that is, we must prove that ¢ divides a. At this point, it helps to ‘work
backwards’ by unpacking the goal: what does it mean for ¢ to divide a? Well, by Definition 0.12, we
need to prove that a is equal to some integer multiplied by c—this will be reflected in the following
table of assumptions and goals.

Since we are now trying to express a in terms of ¢, it makes sense to use the equations we have
relating a with b, and b with c, to relate a with c.
Suppose that ¢ divides b and b divides a. By Definition 0.12, it follows that
b=¢gc and a=rb

for some integers g and r. Using the first equation, we may substitute gc for b in the
second equation, to obtain
a=r(qc)

We are now very close, as indicated in the following table.

Assumptions \ Goals
a,b,c,q,r €% a = [some integer] - ¢
b=gqc
a=rb
a = rige)

Our final step was to observe that the goal has at last been achieved:

Suppose that ¢ divides b and b divides a. By Definition 0.12, it follows that

b=gc and a=rb

23
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for some integers ¢ and r. Using the first equation, we may substitute gc for b in the
second equation, to obtain

a=r(qc)
But r(gc) = (rq)c, and rq is an integer,

Assumptions Goals
a,b,c,q.reZ
b=gqc
a=rb
a=r(ge)
a=(rq)c
rq €Z

Now that there is nothing left to prove, it is helpful to reiterate that point so that the reader has some
closure on the matter.
Suppose that ¢ divides b and b divides a. By Definition 0.12, it follows that
b=gqc and a=rb

for some integers ¢ and r. Using the first equation, we may substitute gc for b in the
second equation, to obtain

a=r(qc)
But r(gc) = (rq)c, and rq is an integer, so it follows from Definition 0.12 that ¢ divides
a.
<
Symbolic logic

Consider again the proposition that we proved in Proposition 0.15 (for given integers a, b, ¢):
If ¢ divides b and b divides a, then ¢ divides a.

The three statements ‘c divides b’, ‘b divides a’ and ‘c divides a’ are all propositions in their own
right, despite the fact that they all appear inside a more complex proposition. We can examine the
logical structure of the proposition by replacing these simpler propositions with symbols, called
propositional variables. Writing P to represent ‘c divides b’, Q to represent ‘b divides a’ and R to
represent ‘c divides a’, we obtain:

If P and Q, then R.

24
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Breaking down the proposition in this way makes it clear that a feasible assume P and Q, and then
derive R from these assumptions—this is exactly what we did in the proof, which we examined
in great detail in Example 1.1.1. But importantly, it suggests that the same proof strategy might
work for other propositions which are also of the form ‘if P and Q, then R’, such as the following
proposition (for a given integer n):

If n > 2 and n is prime, then n is odd.

Observe that the simpler propositions are joined together to form a more complex proposition using
language, namely the word ‘and’ and the construction ‘if... then...’—we will represent these
constructions symbolically using logical operators, which will be introduced in Definition 1.1.3.

Zooming in even more closely, we can use Definition 0.12 to observe that ‘c divides b’ really means
‘b = gc for some g € Z’. The expression ‘for some g € Z’ introduces a new variable g, which
we must deal with appropriately in our proof. Words which we attach to variables in our proofs—
such as ‘any’, ‘exists’, ‘all’, ‘some’, ‘unique’ and ‘only’—will be represented symbolically using
quantifiers, which we will study in Section 1.2.

By breaking down a complex proposition into simpler statements which are connected together using
logical operators and quantifiers, we can more precisely identify what assumptions we can make at
any given stage in a proof of the proposition, and what steps are needed in order to finish the proof.

Propositional formulae

We begin our development of symbolic logic with some definitions to fix our terminology.

4 Definition 1.1.2
A propositional variable is a symbol that represents a proposition. Propositional variables may be
assigned truth values (‘true’ or ‘false’).

We will typically use the lower-case letters p, ¢, r and s as our propositional variables.

We will be able to form more complex expressions representing propositions by connecting together
simpler ones using logical operators such as A (which represents ‘and’), VV (which represents ‘or’),
= (which represents ‘if...then...") and — (which represents ‘not’).

The definition of the notions of logical operator and propositional formula given below is a little bit
difficult to digest, so it is best understood by considering examples of propositional formulae and
instances of logical operators. Fortunately we will see plenty of these, since they are the central
objects of study for the rest of this section.

4 Definition 1.1.3
A propositional formula is an expression that is either a propositional variable, or is built up from
simpler propositional formulae (‘subformulae’) using a logical operator. In the latter case, the truth
value of the propositional formula is determined by the truth values of the subformulae according to
the rules of the logical operator.

25
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On first sight, Definition 1.1.3 seems circular—it defines the term ‘propositional formula’ in terms
of propositional formulae! But in fact it is not circular; it is an example of a recursive definition
(we avoid circularity with the word ‘simpler’). To illustrate, consider the following example of a
propositional formula:

(pAq) =T

This expression represents a proposition of the form ‘if p and g, then r’, where p, g, r are themselves
propositions. It is built from the subformulae p A g and r using the logical operator =, and p A q is
itself built up from the subformulae p and g using the logical operator A.

The truth value of (p Ag) = r is then determined by the truth values of the constituent propositional
variables (p, g and r) according to the rules for the logical operators A and =-.

If this all seems a bit abstract, that is because it is abstract, and you are forgiven if it makes no sense
to you yet. From this point onwards, we will only study particular instances of logical operators,
which will make it all much easier to understand.

Conjunction (‘and’, N)

Conjunction is the logical operator which makes precise what we mean when we say ‘and’.

Definition 1.1.4
The conjunction operator is the logical operator A (IIEX code: \wedge), defined according to the
following rules:

e (AD) If pis true and q is true, then p A q is true;

e (AEp) If p Aq is true, then p is true;

e (AEp) If pAgqis true, then ¢ is true.

The expression p A g represents ‘p and g’.

It is not always obvious when conjunction is being used; sometimes it sneaks in without the word

‘and’ ever being mentioned! Be on the look-out for occasions like this, such as in the following
exercise.

Example 1.1.5
We can express the proposition ‘7 is a prime factor of 28’ in the form p A g, by letting p represent
the proposition ‘7 is prime’ and letting g represent the proposition “7 divides 28’. <
Exercise 1.1.6

Express the proposition ‘John is a mathematician who lives in Pittsburgh’ in the form p A g, for
propositions p and g. <

The rules in Definition 1.1.4 are examples of rules of inference—they tell us how to deduce (or
‘infer’) the truth of one propositional formula from the truth of other propositional formulae. In
particular, rules of inference never directly tell us when a proposition is false—in order to prove
something is false, we will prove its negation is true (see Definition 1.1.37).
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Rules of inference tell us how to use the logical structure of propositions in proofs:

e The rule (AI) is an introduction rule, meaning that it tells us how to prove a goal of the form
p N\ g—indeed, if we want to prove that p A q is true, (AI) tells us that it suffices to prove that p is
true and prove that g is true.

e The rules (AE}) and (AE») are elimination rules, meaning that they tell us how to use an assump-
tion of the form p A g—indeed, if we are assuming that p A g is true, we are then free to use the
fact that p is true and the fact that g is true.

Each logical operator will come equipped with some introduction and/or elimination rules, which
tell us how to prove goals or use assumptions which include the logical operator in question. It is in
this way that the logical structure of a proposition informs proof strategies, like the following:

Strategy 1.1.7 (Proving conjunctions)
A proof of the proposition p A g can be obtained by tying together two proofs, one being a proof that
p is true and one being a proof that g is true.

Example 1.1.8

Suppose we are required to prove that 7 is a prime factor of 28. In Example 1.1.5 we expressed ‘7
is a prime factor of 28’ as the conjunction of the propositions *7 is prime’ and *7 divides 28’, and so
Strategy 1.1.7 breaks down the proof into two steps: first prove that 7 is prime, and then prove that
7 divides 28. <

Much like Strategy 1.1.7 was informed by the introduction rule for A, the elimination rules inform
how we may make use of an assumption involving a conjunction.

Strategy 1.1.9 (Assuming conjunctions)
If an assumption in a proof has the form p A g, then we may assume p and assume ¢ in the proof.

Example 1.1.10

Suppose that, somewhere in the process of proving a proposition, we arrive at the fact that 7 is a
prime factor of 28. Strategy 1.1.9 then allows us to use the separate facts that 7 is prime and that 7
divides 28. <

Strategies 1.1.7 and 1.1.9 seem almost obvious. To an extent they are obvious, and that is why we
are stating them first. But the real reason we are going through the process of precisely defining
logical operators, their introduction and elimination rules, and the corresponding proof strategies, is
that when you are in the middle of the proof of a complicated result, it is all too easy to lose track of
what you have already proved and what remains to be proved. Keeping track of the assumptions and
goals in a proof, and understanding what must be done in order to complete the proof, is a difficult
task.

To avoid drawing this process out too long, we need a compact way of expressing rules of inference
that allows us to simply read off corresponding proof strategies. We could use tables of assumptions
and goals like in Example 1.1.1, but this quickly becomes clunky—indeed, even the very simple
conjunction introduction rule (AI) doesn’t look very nice in this format:
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28 Chapter 1. Logical structure

Assumptions Goals Assumptions ‘ Goals
PAg s : p
q

Instead, we will represent rules of inference in the style of natural deduction. In this style, we
write the premises p1,p2,...,pr of a rule above a line, with a single conclusion g below the line,
representing the assertion that the truth of a proposition g follows from the truth of (all of) the
premises pi,pa, ..., Pk

P1 p2 Pk

For instance, the introduction and elimination rules for conjunction can be expressed concisely fol-
lows:

(AE2)

P q pAgG pPAq
phg p q

In addition to its clean and compact nature, this way of writing rules of inference is useful because
we can combine them into proof trees in order to see how to prove more complicated propositions.
For example, consider the following proof tree, which combines two instances of the conjunction
introduction rule.

D q
PAq r
(pAq)Nr

From this proof tree, we obtain a strategy for proving a proposition of the form (p A ¢) A r. Namely,
first prove p and prove g, to conclude p A g; and then prove r, to conclude (p A g) Ar. This illustrates
that the logical structure of a proposition informs how we may structure a proof of the proposition.

> Exercise 1.1.11

Write a proof tree whose conclusion is the propositional formula (p A g) A (r As), where p,q,r,s are
propositional variables. Express ‘2 is an even prime number and 3 is an odd prime number’ in the
form (p A gq) A (r As), for appropriate propositions p, g, r and s, and describe how your proof tree
suggests what a proof might look like. <

28



Section 1.1. Propositional logic 29

Disjunction (‘or’, V)

4 Definition 1.1.12
The disjunction operator is the logical operator V (IAT[gX code: \vee), defined according to the
following rules:

e (VIy) If pis true, then pV q is true;
e (VD) If g is true, then pV q is true;

e (VE)If pV g is true, and if r can be derived from p and from ¢, then r is true.

The expression p V g represents ‘p or g’.

The introduction and elimination rules for disjunction are represented diagramatically as follows.

[p] (]

$ $

p 9 pVgq r r
P V; q (VIp) ) V; q (VI2) - (VE)

We will discuss what the notation [p] ~» r and [g] ~> r means momentarily. First, we zoom in on
how the disjunction introduction rules inform proofs of propositions of the form ‘p or g’.

R
0‘0

Strategy 1.1.13 (Proving disjunctions)
In order to prove a proposition of the form p V g, it suffices to prove just one of p or g.

< Example 1.1.14
Suppose we want prove that 8192 is not divisible by 3. We know by the division theorem (The-
orem 0.18) that an integer is not divisible by 3 if and only if it leaves a remainder of 1 or 2 when
divided by 3, and so it suffices to prove the following:

8192 leaves a remainder of 1 v 8192 leaves a remainder of 2
when divided by 3 when divided by 3

A quick computation reveals that 8192 = 2730 x 3 42, so that 8192 leaves a remainder of 2 when
divided by 3. By Strategy 1.1.13, the proof is now complete, since the full disjunction follows by
(Vo). <

< Example 1.1.15
Let p,q,r,s be propositional variables. The propositional formula (pV ¢) A (rV s) represents ‘p or
g, and r or s”. What follows are two examples of truth trees for this propositional formula.

p r q )
PV q (V1) s (V1) Vg (VI2) Vs (VIz)
(AD) (AD)

(PVag)A(rVs) (PVa@) A (rVs)
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The proof tree on the left suggests the following proof strategy for (pV ¢) A (rV s). First prove p,
and deduce pV g¢; then prove r, and deduce rV s; and finally deduce (p V g) A (rV s). The proof tree
on the right suggests a different strategy, where p V ¢ is deduced by proving ¢ instead of p, and r Vs
is deduced by proving s instead of r.

Selecting which (if any) of these to use in a proof might depend on what we are trying to prove.
For example, for a fixed natural number n, let p represent ‘n is even’, let g represent ‘n is odd’, let
r represent ‘n > 2’ and let s represent ‘n is a perfect square’. Proving (pV ¢) A (rVs) when n =2
would be most easily done using the left-hand proof tree above, since p and r are evidently true
when n = 2. However, the second proof tree would be more appropriate for proving (pV g) A (rVs)
whenn = 1. <

Aside
If you haven’t already mixed up A and V, you probably will soon, so here’s a way of remembering
which is which:

fish n chips
If you forget whether it’s A or V that means ‘and’, just write it in place of the ‘n’ in ‘fish n chips’:
fish A chips fish V chips

Clearly the first looks more correct, so A means ‘and’. If you don’t eat fish (or chips), then worry
not, as this mnemonic can be modified to accommodate a wide variety of dietary restrictions; for
instance ‘mac n cheese’ or ‘quinoa n kale’ or, for the meat lovers, ‘ribs n brisket’. <

Recall the diagrammatic statement of the disjunction elimination rule:

pPVgq

(VE)

The curious notation [p] ~ r indicates that p is a temporary assumption. In the part of the proof
corresponding to [p] ~» r, we would assume that p is true and derive r from that assumption, and
remove the assumption that p is true from that point onwards. Likewise for [g] ~> r.

The proof strategy obtained from the disjunction elimination rule is called proof by cases.

Strategy 1.1.16 (Assuming disjunctions—proof by cases)

If an assumption in a proof has the form p V g, then we may derive a proposition r by splitting into
two cases: first, derive r from the temporary assumption that p is true, and then derive r from the
assumption that g is true.

The following example illustrates how Strategies 1.1.13 and 1.1.16 can be used together in a proof.

Example 1.1.17
Let n be a positive proper factor of 4, and suppose we want to prove that # is either even or a perfect
square.
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e Our assumption that n is a positive proper factor of 4 can be expressed as the disjunction n =1V
n=2.

e Our goal is to prove the disjunction ‘n is even V n is a perfect square’.
According to Strategy 1.1.9, we split into two cases, one in which n = 1 and one in which n = 2. In
each case, we must derive ‘n is even V n is a perfect square’, for which it suffices by Strategy 1.1.13

to derive either that n is even or that n is a perfect square. Thus a proof might look something like
this:

Since n is a positive proper factor of 4, eithern =1 or n = 2.

e Case 1. Suppose n = 1. Then since 1> = 1 we have n = 12, so that n is a perfect
square.

e (Case 2. Suppose n = 2. Then since 2 =2 x 1, we have that = is even.

Hence n is either even or a perfect square. <

Notice that in both Case 1 and Case 2, we did not explicitly mention that we had proved that
‘nis evenV n is a perfect square’, leaving that deducgion to the reader—we only mentioned it after
the proofs in each case were complete. <

The proof of Proposition 1.1.18 below splits into three cases, rather than just two.

Proposition 1.1.18
Let n € Z. Then n? leaves a remainder of 0 or 1 when divided by 3.

Proof
Let n € Z. By the division theorem (Theorem 0.18), one of the following must be true for some
keZ:

n=3k or n=3k+1 or n=3k+2

e Suppose n = 3k. Then
n? = (3k)* = 9k* =3 (3k%)

So n? leaves a remainder of 0 when divided by 3.
e Suppose n = 3k+ 1. Then
n? = (3k+1)? = 9k> + 6k + 1 = 3(3k*> +2k) + 1
So n? leaves a remainder of 1 when divided by 3.
e Suppose n = 3k+2. Then
n? = (3k+2)? = 9k* + 12k +4 = 3(3k* + 4k + 1)+ 1
So n? leaves a remainder of 1 when divided by 3.

In all cases, n” leaves a remainder of 0 or 1 when divided by 3. U

Note that in the proof of Proposition 1.1.18, unlike in Example 1.1.17, we did not explictly use
the word ‘case’, even though we were using proof by cases. Whether or not to make your proof
strategies explicit is up to you—discussion of this kind of matter can be found in Appendix A.2.
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32 Chapter 1. Logical structure

When completing the following exercises, try to keep track of exactly where you use the introduction

and elimination rules that we have seen so far.

% Exercise 1.1.19
Let 7 be an integer. Prove that n? leaves a remainder of 0, 1 or 4 when divided by 5.

%, Exercise 1.1.20

<

Let a,b € R and suppose a®> —4b # 0. Let a and 8 be the (distinct) roots of the polyonomial

x? +ax+ b. Prove that there is a real number ¢ such that either o — 8 = c or ¢ — 8 = ci.

Implication (‘if...then...’, =)

4 Definition 1.1.21

<

The implication operator is the logical operator = (IATX code: \Rightarrow), defined according

to the following rules:

e (=1) If g can be derived from the assumption that p is true, then p = ¢ is true;

e (=E)If p = g is true and p is true, then ¢ is true.

The expression p = g represents ‘if p, then g’.

(P
$
p;;q =1 p:”I% (=E)

% Strategy 1.1.22 (Proving implications)

In order to prove a proposition of the form p = ¢, it suffices to assume that p is true, and then derive

q from that assumption.

The following proposition illustrates how Strategy 1.1.22 can be used in a proof.

+* Proposition 1.1.23
Let x and y be real numbers. If x and x 4 y are rational, then y is rational.

Proof
Suppose x and x +y are rational. Then there exist integers a, b, c,d with b,d # 0 such that

a d + C
X = - an X = —
b YT

It then follows that
— (xty)—x= ¢ a_bc—ad
Y Y T Ty T T ba
Since bc — ad and bd are integers, and bd # 0, it follows that y is rational.
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The key phrase in the above proof was ‘Suppose x and x + y are rational.” This introduced the
assumptions x € Q and x+y € Q, and reduced our goal to that of deriving a proof that y is rational—
this was the content of the rest of the proof.

% Exercise 1.1.24
Let p(x) be a polynomial over C. Prove that if ¢ is a root of p(x), and a € C, then « is a root of
(x—a)p(x). <

The elimination rule for implication (=E) is more commonly known by the Latin name modus
ponens.

R

% Strategy 1.1.25 (Assuming implications—modus ponens)
If an assumption in a proof has the form p = ¢, and p is also assumed to be true, then we may
deduce that g is true.

Strategy 1.1.16 is frequently used to reduce a more complicated goal to a simpler one. Indeed, if we
know that p = ¢ is true, and if p is easy to verify, then it allows us to prove g by proving p instead.

¢ Example 1.1.26
Let f(x) = x> +ax+ b be a polynomial with a,b € R, and let A = a®> — 4b be its discriminant. Part
of Exercise 0.40 was to prove that:

(1) If A > 0, then f has two real roots;
(i) If A= 0, then f has one real root;

(iii) If A <0, then f has no real roots.

Given the polynomial f(x) = x% — 68+ 1156, it would be a pain to go through the process of solving
the equation f(x) = 0 in order to determine how many real roots f has. However, each of the
propositions (1), (ii) and (iii) take the form p = ¢, so Strategy 1.1.25 reduces the problem of finding
how many real roots f has to that of evaluating A and comparing it with 0. And indeed, (—68)% —
4 x 1156 = 0, so the implication (ii) together with (=E) tell us that f has one real root. <

A common task faced by mathematicians is to prove that two conditions are equivalent. For example,
given a polynomial f(x) = x> 4+ ax + b with a,b € R, we know that if a®> —4b > 0 then f has two
real roots, but is it also true that if f has two real roots then a> —4b > 0? (The answer is ‘yes’.) The
relationship between these two implications is that each is the converse of the other.

4 Definition 1.1.27
The converse of a proposition of the form p = ¢ is the proposition g = p.

A quick remark on terminology is pertinent. The following table summarises some common ways
of referring to the propositions ‘p = ¢’ and ‘g = p’.

P=4q q=7r
if p, then g if g, then p
ponlyifgqg pifqg

p is sufficient for g | p is necessary for g
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34 Chapter 1. Logical structure

We so often encounter the problem of proving both an implication and its converse that we introduce
a new logical operator that represents the conjunction of both.

4 Definition 1.1.28
The biconditional operator is the logical operator < (IATX code: \Leftrightarrow), defined by
declaring p < ¢ to mean (p = g) A (¢ = p). The expression p < g represents ‘p if and only if ¢’.

Many examples of biconditional statements come from solving equations; indeed, to say that the
values ¢, ..., Q, are the solutions to a particular equation is precisely to say that
xisasolution < X=0 OrX=0pOr --- Or X =0y

¢ Example 1.1.29
We find all real solutions x to the equation

Vx=34+Vx+4=17
Let’s rearrange the equation to find out what the possible solutions may be.
Vx=3+vVx+4=7
= (x=3)+2/(x=3)(x+4)+ (x+4) =49 squaring
=2y/(x—=3)(x+4) =48 —2x rearranging
= 4(x—3)(x+4) = (48 — 2x)? squaring
= 4x% +4x — 48 = 2304 — 192x + 4x? expanding
= 196x = 2352 rearranging
=>x=12 dividing by 196

You might be inclined to stop here. Unfortunately, all we have proved is that, given a real number
X, if x solves the equation v/x —3 4 +v/x+4 =7, then x = 12. This narrows down the set of possible
solutions to just one candidate—but we still need to check the converse, namely that if x = 12, then
x is a solution to the equation.

As such, to finish off the proof, note that
VI2=34+V124+4=V94+V16=3+4=7

and so the value x = 12 is indeed a solution to the equation. <

The last step in Example 1.1.29 may have seemed a little bit silly; but Example 1.1.30 demonstrates
that proving the converse when solving equations truly is necessary.

¢ Example 1.1.30
We find all real solutions x to the equation

x++/x=0
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We proceed as before, rearranging the equation to find all possible solutions.

x+/x=0
=x=—x rearranging
=x>=x squaring
=x(x—1)=0 rearranging

=x=0o0rx=1
Now certainly 0 is a solution to the equation, since
0+vV0=0+0=0

However, 1 is not a solution, since
1+VI=14+1=2

Hence it is actually the case that, given a real number x, we have
x+vx=0 & x=0

Checking the converse here was vital to our success in solving the equation! <

A slightly more involved example of a biconditional statement arising from the solution to an
equation—in fact, a class of equations—is the proof of the quadratic formula.

¥ Theorem 1.1.31 (Quadratic formula)
Let a,b € C. A complex number « is a root of the polynomial x> + ax + b if and only if

—a+va?—4b —a—+va*—4b

oa= or o=
2 2
Proof
First we prove that if o is aroot, then o is one of the values given in the statement of the proposition.
So suppose o be a root of the polynomial x> 4 ax + b. Then

a’+ao+b=0

The algebraic technique of ‘completing the square’ tells us that

a’4ao = (a+g)2—a—
B 2 4

and hence )

a\?2 a
Y D i p—
((x+2) 4+ 0

Rearranging yields

Taking square roots gives

aploYae-4 o a_-Va-4b
2 2 2 2
and, finally, subtracting 5 from both sides gives the desired result.
The proof of the converse is Exercise 1.1.32. U
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. Exercise 1.1.32

Complete the proof of the quadratic formula. That is, for fixed a,b € C, prove that if

—a+va?—4b —a—+va*—4b
0=———— or 0=———
2 2
then « is a root of the polynomial x> + ax + b. <

Another class of examples of biconditional propositions arise in finding necessary and sufficient
criteria for an integer n to be divisible by some number—for example, that an integer is divisible by
10 if and only if its base-10 expansion ends with the digit O.

Example 1.1.33
Let n € N. We will prove that n is divisible by 8 if and only if the number formed of the last three
digits of the base-10 expansion of # is divisible by 8.

First, we will do some ‘scratch work’. Let d.d,_1 ...ddp be the base-10 expansion of n. Then
n=d- 10" +dr—1 - 107 4+ 4 dy - 10+do
Define
n'=dydidy and n" =n—n'=d,d,_ ... .dyd3000
Now n—n' =1000-d,d,_1 ...dsds and 1000 = § - 125, so it follows that 8 divides n”.

Our goal is now to prove that 8 divides 7 if and only if 8 divides '

e (=) Suppose 8 divides n. Since 8 divides n”, it follows from Exercise 0.16 that 8 divides an + bn"
for all a,b € Z. But

nW=n—(n-n)=n—n"=1-n+(-1)-n"

so indeed 8 divides 7/, as required.

e (<) Suppose 8 divides n’. Since 8 divides n”, it follows from Exercise 0.16 that 8 divides an’ + bn”
for all a,b € Z. But
n=n+m-n)=n"+n"=1.1"+1.n"

so indeed 8 divides n, as required.

. Exercise 1.1.34

Prove that a natural number 7 is divisible by 3 if and only if the sum of its base-10 digits is divisible
by 3. <

Negation (‘not’, —)

So far we only officially know how to prove that true propositions are true. The negation operator
makes precise what we mean by ‘not’, which allows us to prove that false propositions are false.

4 Definition 1.1.35

A contradiction is a proposition that is known or assumed to be false. We will use the symbol L
(I&TgX code: \bot) to represent an arbitrary contradiction.
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Example 1.1.36
Some examples of contradictions include the assertion that 0 = 1, or that /2 is rational, or that the
equation x> = —1 has a solution x € R. <

Definition 1.1.37
The negation operator is the logical operator = (IATEX code: \neg), defined according to the fol-
lowing rules:

e (—I) If a contradiction can be derived from the assumption that p is true, then —p is true;

e (—E) If =p and p are both true, then a contradiction may be derived.

The expression —p represents ‘not p’ (or ‘p is false’).

[p]

§

_J‘;j (‘\I) % (ﬂE)

Aside

The rules (—1) and (—E) closely resemble (=1) and (=E)—indeed, we could simply define —p to
mean ‘p = 1’°, where L represents an arbitrary contradiction, but it will be easier later on to have a
primitive notion of negation. <

The introduction rule for negation (—1I) gives rise to a proof strategy called proof by contradiction,
which turns out to be extremely useful.

Strategy 1.1.38 (Proving negations—proof by contradiction)
In order to prove a proposition p is false (that is, that —p is true), it suffices to assume that p is true
and derive a contradiction.

The following proposition has a classic proof by contradiction.

Proposition 1.1.39
Let » be a rational number and let a be an irrational number. Then r + a is irrational.

Proof
By Definition 0.27, we need to prove that »+ a is real and not rational. It is certainly real, since r
and a are real, so it remains to prove that r + a is not rational.

Suppose r+ a is rational. Since r is rational, it follows from Proposition 1.1.23 that a is rational,
since
a=(r+a)—r

This contradicts the assumption that a is irrational. It follows that r+-a is not rational, and is therefore
irrational. O

Now you can try proving some elementary facts by contradiction.
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38 Chapter 1. Logical structure

v Exercise 1.1.40

Let x € R. Prove by contradiction that if x is irrational then —x and % are irrational. <

Exercise 1.1.41
Prove by contradiction that there is no least positive real number. That is, prove that there is not a
positive real number a such that a < b for all positive real numbers b. <

A proof need not be a ‘proof by contradiction’ in its entirety—indeed, it may be that only a small
portion of the proof uses contradiction. This is exhibited in the proof of the following proposition.

Proposition 1.1.42
Let a be an integer. Then a is odd if and only if a = 26+ 1 for some integer b.

Proof

Suppose a is odd. By the division theorem (Theorem 0.18), either a = 2b or a = 2b 4 1, for some
b € Z. If a = 2b, then 2 divides a, contradicting the assumption that a is odd; so it must be the case
thata =2b+1.

Conversely, suppose a = 2b+ 1. Then a leaves a remainder of 1 when divided by 2. However, by
the division theorem, the even numbers are precisely those that leave a remainder of 0 when divided
by 2. It follows that a is not even, so is odd. O

The elimination rule for the negation operator (—E) simply says that a proposition can’t be true and
false at the same time.

Strategy 1.1.43 (Assuming negations)
If an assumption in a proof has the form —p, then any derivation of p leads to a contradiction.

The main use of Strategy 1.1.43 is for obtaining the contradiction in a proof by contradiction—in
fact, we have already used it in our examples of proof by contradiction! As such, we will not dwell
on it further.

Logical axioms

We wrap up this section by introducing a couple of additional logical rules (axioms) that we will use
in our proofs.

The first is the so-called law of excluded middle, which appears so obvious that it is not even worth
stating (let alone naming)—what it says is that every proposition is either true or false. But beware,
as looks can be deceiving; the law of excluded middle is a non-constructive axiom, meaning that
it should not be accepted in settings it is important to keep track of how a proposition is proved—
simply knowing that a proposition is either true or false tells us nothing about how it might be proved
or refuted. In most mathematical contexts, though, it is accepted without a second’s thought.

Axiom 1.1.44 (Law of excluded middle)
Let p be a propositional formula. Then pV (—p) is true.
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The law of excluded middle can be represented diagramatically as follows; there are no premises
above the line, since we are simply asserting that it is true.

——F—F  LEM
pV(=p)

Strategy 1.1.45 (Using the law of excluded middle)
In order to prove a proposition q is true, it suffices to split into cases based on whether some other
proposition p is true or false, and prove that g is true in each case.

The proof of Proposition 1.1.46 below makes use of the law of excluded middle—note that we
defined ‘odd’ to mean ‘not even’ (Definition 0.17).

Proposition 1.1.46
Let a,b € Z. If ab is even, then either a is even or b is even (or both).

Proof
Suppose a,b € Z with ab even.

e Suppose a is even—then we’re done.

e Suppose a is odd. If b is also odd, then by Proposition 1.1.42 can write
a=2k+1 and b=20+1
for some integers k, /. This implies that

ab = (2k+1)(2041) = 4kl + 2k + 20+ 1 = 22kl +k+ ) + 1
€z

so that ab is odd. This contradicts the assumption that ab is even, and so b must in fact be even.

In both cases, either a or b is even. Ol

Exercise 1.1.47

Reflect on the proof of Proposition 1.1.46. Where in the proof did we use the law of excluded
middle? Where in the proof did we use proof by contradiction? What was the contradiction in
this case? Prove Proposition 1.1.46 twice more, once using contradiction and not using the law of
excluded middle, and once using the law of excluded middle and not using contradiction. <

Exercise 1.1.48

Let a and b be irrational numbers. By considering the number \@\[, prove that it is possible that a”
be rational. 4

Another logical rule that we will use is the principle of explosion, which is also known by its Latin
name, ex falso sequitur quodlibet, which approximately translates to ‘from falsity follows whatever
you like’.

Axiom 1.1.49 (Principle of explosion)
If a contradiction is assumed, any consequence may be derived.
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Expl
p

The principle of explosion is a bit confusing on first sight. To shed a tiny bit of intuition on it, think
of it as saying that both true and false propositions are consequences of a contradictory assumption.
For instance, suppose that —1 = 1. From this we can obtain consequences that are false, such as
0 =2 by adding 1 to both sides of the equation, and consequences that are true, such as 1 = 1 by
squaring both sides of the equation.

We will rarely use the principle of explosion directly in our mathematical proofs, but we will use it
in Section 1.3 for proving logical formulae are equivalent.
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Section 1.2

Variables and quantifiers

Free and bound variables

Everything we did in Section 1.1 concerned propositions and the logical rules concerning their
proofs. Unfortunately if all we have to work with is propositions then our ability to do mathem-
atical reasoning will be halted pretty quickly. For example, consider the following statement:

x is divisible by 7

This statement seems like the kind of thing we should probably be able to work with if we’re doing
mathematics. It makes sense if x is a integer, such as 28 or 41; but it doesn’t make sense at all if x
is a parrot called Alex.[?l Tn any case, even when it does make sense, its truth value depends on x;
indeed, ‘28 is divisible by 7’ is a true proposition, but ‘41 is divisible by 7’ is a false proposition.

This means that the statement ‘x is divisible by 7’ isn’t a proposition—gquel horreur! But it almost is
a proposition: if we know that x refers somehow to an integer, then it becomes a proposition as soon
as a particular numerical value of x is specified. The symbol x is called a free variable.

Definition 1.2.1

Let x be a variable that is understood to refer to an element of a set X. In a statement involving x, we
say x is free if it makes sense to substitute particular elements of X in the statement; otherwise, we
say x is bound.

To represent statements that have free variables in them abstractly, we generalise the notion of a
propositional variable (Definition 1.1.2) to that of a predicate.

Definition 1.2.2

A predicate is a symbol p together with a specified list of free variables x1,x2,...,x, (where n € N)
and, for each free variable x;, a specification of a set X; called the domain of discourse (or range)
of x;. We will typically write p(x1,x2,...,x,) in order to make the variables explicit.

The statements represented by predicates are those that become propositions when specific values
are substituted for their free variables from their respective domains of discourse. For example, ‘x is
divisible by 7’ is not a proposition, but it becomes a proposition when specific integers (such as 28
or 41) are substituted for x.

This is a lot to take in, so let’s look at some examples.

[2] Alex the parrot is the only non-human animal to have ever been observed to ask an existential question; he died in September
2007 so we may never know if he was divisible by 7, but it is unlikely. According to Time, his last words were ‘you be
good, see you tomorrow, I love you’. The reader is advised to finish crying before they continue reading about variables
and quantifiers.
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(i) We can represent the statement ‘x is divisible by 7’ discussed above by a predicate p(x) whose
only free variable x has Z as its domain of discourse. Then p(28) is the true proposition ‘28 is
divisible by 7’ and p(41) is the false proposition ‘41 is divisible by 7°.

(ii) A predicate with no free variables is precisely a propositional variable. This means that the
notion of a predicate generalises that of a propositional variable.

(iii) The expression ‘2" — 1 is prime’ can be represented by a predicate p(n) with one free variable
n, whose domain of discourse is the set N of natural numbers. Then p(3) is the true proposition
23 — 1 is prime’ and p(4) is the false proposition 2* — 1 is prime’.

(iv) The expression ‘x —y is rational’ can be represented by a predicate g(x,y) with free variables
x and y, whose domain of discourse is the set R of real numbers.

(v) The expression ‘there exist integers a and b such that x = a> + b** has free variable x and
bound variables a, b. It can be represented by a predicate r(x) with one free variable x, whose
domain of discourse is Z.

(vi) The expression ‘every even natural number n > 2 is divisible by k” has free variable k and
bound variable n. It can be represented by a predicate s(k) with one free variable k, whose
domain of discourse is N.

Quantifiers

Look again at the statements in parts (v) and (vi) of Example 1.2.3. Both contained bound variables,
which were so because we used words like ‘there exists’ and ‘every’—had we not used these words,
those variables would be free, as in ‘x = a* + b** and “n is divisible by k.

Expressions that refer to how many elements of a set make a statement true, such as ‘there exists’
and ‘every’, turn free variables into bound variables. We represent such expressions using symbols
called quantifiers, which are the central objects of study of this section.

The two main quantifiers used throughout mathematics are the universal quantifier V and the exisz-
ential quantifier 3. We will define these quantifiers formally later in this section, but for now, the
following informal definitions suffice:

e The expression ‘Vx € X, ...” denotes ‘for all x € X, ...” and will be defined formally in Defini-
tion 1.2.9;
e The expression ‘Ix € X, ...~ denotes ‘there exists x € X such that ...’ and will be defined formally

in Definition 1.2.17.

Note that we always place the quantifier before the statement, so even though we might write or say
things like ‘n = 2k for some integer k£’ or ‘x~ > 0 for all x € R’, we would express these statements
symbolically as ‘Fk € Z, n = 2k’ and ‘Vx € R, x> > 0, respectively.

We will define a third quantifier 3! in terms of ¥ and 3 to say that there is exactly one element of a set
making a statement true. There are plenty of other quantifiers out there, but they tend to be specific
to particular fields—examples include ‘almost everywhere’ in measure theory, ‘almost surely’ in
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probability theory, ‘for all but finitely many’ in set theory and related disciplines, and ‘for fresh’ in
the theory of nominal sets.

Using predicates, logical formulae and quantifiers, we are able to build up more complicated expres-
sions, called logical formulae. Logical formulae generalise propositional formulae (Definition 1.1.3)
in by allowing (free and bound) variables and quantification to occur.

Definition 1.2.4

A logical formula is an expression that is built from predicates using logical operators and quantifi-
ers; it may have both free and bound variables. The truth value of a logical formula depends on its
free variables according to the rules for logical operators and quantifiers.

Translating between plain English statements and purely symbolic logical formulae is an important
skill to obtain:

e The plain English statements are easier to understand and are the kinds of things you would speak
aloud or write down when discussing the mathematical ideas involved.

e The symbolic logical formulae are what provide the precision needed to guide a proof of the
statement being discussed—we will see strategies for proving statements involving quantifiers
soon.

The following examples and exercise concern translating between plain English statements and
purely symbolic logical formulae.

Example 1.2.5

Recall that an integer n is even if and only if it is divisible by 2. According to Definition 0.12, that
is to say that ‘n is even’ means ‘n = 2k for some integer k£’. Using quantifiers, we can express ‘n is
even’ as ‘Fk € Z,n =2k’.

The (false) proposition ‘every integer is even’ can then be written symbolically as follows. First
introduce a variable n to refer to an integer; to say ‘every integer is even’ is to say ‘Vn € Z, n is even’,
and so using the symbolic representation of ‘n is even’, we can express ‘every integer is even’ as
VneZ,3keZ,n=2k". <

Exercise 1.2.6
Find logical formulae that represent each of the following English statements.

(a) There is an integer that is divisible by every integer.
(b) There is no greatest odd integer.
(c) Between any two distinct rational numbers is a third distinct rational number.

(d) If an integer has a rational square root, then that root is an integer.

Example 1.2.7
Consider the following logical formula.

VaeR,(a>0=3becR, a=>h?)
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44 Chapter 1. Logical structure

If we translate this expression symbol-for-symbol, what it says is:

For every real number a, if a is non-negative,
then there exists a real number b such that a = b2.

Read in this way, it is not a particularly enlightening statement. However, we can distill the robotic
nature of the symbol-for-symbol reading by thinking more carefully about what the statement really
means.

Indeed, to say ‘a = b? for some real number b’ is exactly to say that a has a real square root—after
all, what is a square root of a if not a real number whose square is equal to a? This translation
eliminates explicit reference to the bound variable b, so that the statement now reads:

For every real number a, if a is non-negative, then a has a real square root.

We’re getting closer. Next note that instead of the clunky expression ‘for every real number a, if a is
non-negative, then ...’, we could just say ‘for every non-negative real number a, ... .

For every non-negative real number a, a has a real square root.
Finally, we can eliminate the bound variable a by simply saying:
Every non-negative real number has a real square root.

This is now a meaningful expression that is much easier to understand than the logical formula we
started with. <

Exercise 1.2.8

Find statements in plain English, involving as few variables as possible, that are represented by each
of the following logical formulae. (The domains of discourse of the free variables are indicated in
each case.)

(a) dg € Z, a = gb — free variables a,b € Z

(b) Ja€Z,3b € Z, (b+#0Abx=a)— free variable x € R

() VdeN,[(Ig€Z,n=qd) = (d=1Vd=n)] — free variable n € N
(d) VaeR,[a>0=3beR, (b>0Aa<b)]— no free variables

<

Now that we have a better understanding of how to translate between plain English statements and
logical formulae, we are ready to give a precise mathematical treatment of quantifiers. Just like with
logical operators in Section 1.1, quantifiers will be defined according to introduction rules, which tell
us how to prove a quantified formula, and elimination rules, which tell us how to use an assumption
that involves a quantifier.
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Universal quantification (‘for all’, )

The universal quantifier makes precise what we mean when we say ‘for all’, or ‘p(x) is always true
no matter what value x takes’.

4 Definition 1.2.9
The universal quantifier is the quantifier V (IIEX code: \forall); if p(x) is a logical formula
with free variable x with range X, then Vx € X, p(x) is the logical formula defined according to the
following rules:

e (VD) If p(x) can be derived from the assumption that x is an arbitrary element of X, then Vx €
X, p(x);

o (VE)Ifa € X and Vx € X, p(x) is true, then p(a) is true.

The expression Vx € X, p(x) represents ‘for all x € X, p(x)’.

[x € X]
$
p(x) Vx € X, p(x) acX
Vx e X, p(x) pla)

R

% Strategy 1.2.10 (Proving universally quantified statements)

To prove a proposition of the form Vx € X, p(x), it suffices to prove p(x) for an arbitrary element
x € X—in other words, prove p(x) whilst assuming nothing about the variable x other than that it is
an element of X.

Useful phrases for introducing an arbitrary variable of a set X in a proof include ‘fix x € X~ or ‘let
x € X’ or ‘take x € X’—more on this is discussed in Appendix A.2.

The proofs of the following propositions illustrate how a proof of a universally quantified statement
might look.

+» Proposition 1.2.11
The square of every odd integer is odd.

Proof
Let n be an odd integer. Then n = 2k + 1 for some k € Z by the division theorem (Theorem 0.18),
and so

n? = (2k41)? = 4k + 4k 41 = 2(2k* +2k) + 1

Since 2k* + 2k € Z, we have that n? is odd, as required. O

Note that in the proof of Proposition 1.2.11, we did not assume anything about n other than that it is
an odd integer.

+¢* Proposition 1.2.12
The base-10 expansion of the square of every natural number ends in one of the digits 0, 1,4, 5, 6 or
9.
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Proof
Fix n € N, and let
n= drdr—l .. .d()
be its base-10 expansion. Write
n=10m+d,

where m € N—that is, m is the natural number obtained by removing the final digit from n. Then
n? = 100m? + 20mdo + d3 = 10m(10m + 2do) + d?
Hence the final digit of n? is equal to the final digit of d3. But the possible values of d are
0 1 4 9 16 25 36 49 64 81

all of which end in one of the digits 0, 1,4, 5, 6 or 9. O
Exercise 1.2.13
Prove that every integer is rational. <
Exercise 1.2.14

Prove that every linear polynomial over QQ has a rational root. <

Exercise 1.2.15
Prove that, for all real numbers x and y, if x is irrational, then x +y and x — y are not both rational.
<

Before advancing too much further, beware of the following common error that arises when dealing
with universal quantifiers.

Common error
Consider the following (non-)proof of the proposition Vn € Z, n*> > 0.

Let 1 be an arbitrary integer, say n = 17. Then 17> = 289 > 0, so the statement is true.

The error made here is that the writer has picked an arbitrary value of n, not the reader. (In fact, the
above argument actually proves 3n € Z, n> > 0.)

The proof should make no assumptions about the value of n other than that it is an integer. Here is a
correct proof:

Let n be an arbitrary integer. Either n > 0 or n < 0. If n > 0 then n? > 0, since the
product of two nonnegative numbers is nonnegative; if n < 0 then n> > 0, since the
product of two negative numbers is positive.

<

The strategy suggested by the elimination rule for the universal quantifier is one that we use almost
without thinking about it.

Strategy 1.2.16 (Assuming universally quantified statements)
If an assumption in a proof has the form Vx € X, p(x), then we may assume that p(a) is true whenever
a is an element of X.
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Existential quantification (‘there exists’, J)

Definition 1.2.17

The existential quantifier is the quantifier 3 (IATEX code: \exists) if p(x) is a logical formula
with free variable x with range X, then 3x € X, p(x) is the logical formula defined according to the
following rules:

e (AN Ifa € X and p(a) is true, then 3x € X, p(x);

e (3B) If 3x € X, p(x) is true, and ¢ can be derived from the assumption that p(a) is true for some
fixed a € X, then q is true.

The expression Jx € X, p(x) represents ‘there exists x € X such that p(x)’.

la € X],[p(a)]

$
X
ae pla) @ Ixe X, p(x) q -
FIreX, px) q

Strategy 1.2.18 (Proving existentially quantified statements)
To prove a proposition of the form Ix € X, p(x), it suffices to prove p(a) for some specific element
a € X, which should be explicitly defined.

Example 1.2.19
We prove that there is a natural number that is a perfect square and is one more than a perfect cube.
That is, we prove

IneN, ([FkeZ,n=IKR|ABEZ,n="1+1))

So define n =9. Then n = 3% and n = 2° + 1, so that n is a perfect square and is one more than a
perfect cube, as required. <

The following proposition involves an existentially quantified statement—indeed, to say that a poly-
nomial f(x) has a real root is to say 3x € R, f(x) = 0.

Proposition 1.2.20
Fix a € R. The cubic polynomial x* + (1 — a*)x — a has a real root.

Proof
Let f(x) = x> + (1 — a?)x — a. Define x = a; then

f(x) :f(a):a3+(1*a2)afa:a3+a—a3—a:0

Hence a is a root of f(x). Since a is real, f(x) has a real root. O

The following exercises require you to prove existentially quantified statements.

Exercise 1.2.21

Prove that there is a real number which is irrational but whose square is rational. <
Exercise 1.2.22
Prove that there is an integer which is divisible by zero. <
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Example 1.2.23
Prove that, for all x,y € Q, if x < y then there is some z € Q with x < z < y. <

The elimination rule for the existential quantifier gives rise to the following proof strategy.

Strategy 1.2.24 (Assuming existentially quantified statements)
If an assumption in the proof has the form Jx € X, p(x), then we may introduce a new variable a € X
and assume that p(a) is true.

It ought to be said that when using existential elimination in a proof, the variable a used to denote a
particular element of X for which p(a) is true should not already be in use earlier in the proof.

Strategy 1.2.24 is very useful in proofs of divisibility, since the expression ‘a divides b’ is an exist-
entially quantified statement—this was Exercise 1.2.8(a).

Proposition 1.2.25
Let n € Z. If n® is divisible by 3, then (n+ 1)3 — 1 is divisible by 3.

Proof
Suppose n? is divisible by 3. Take ¢ € Z such that n* = 3¢. Then

(n+1)° -1
= (P43 +3n+1)—1 expanding
=n®+3n% +3n simplifying
=3¢+3n*+3n since n® = 3¢
=3(q+n*+n) factorising
Since g+ n? +n € Z, we have proved that (n+4 1) — 1 is divisible by 3, as required. U

Uniqueness

The concept of uniqueness arises whenever we want to use the word ‘the’. For example, in Defin-
ition 0.6 we defined the base-b expansion of a natural number n to be the string d,d,_; ...ddy
satisfying some properties. The issue with the word ‘the’ here is that we don’t know ahead of time
whether a natural number n may have base-b expansions other than d,d,—_ ...ddy—this fact actu-
ally requires proof. To prove this fact, we would need to assume that ese;_1 ...e1ep were another
base-b expansion of n, and prove that the strings d,d,_1 ...ddy and ese;_ .. . e eq are the same—this
is done in Theorem 6.3.51.

Uniqueness is typically coupled with existence, since we usually want to know if there is exactly
one object satisfying a property. This motivates the definition of the unique existential quantifier,
which encodes what we mean when we say ‘there is exactly one x € X such that p(x) is true’. The
‘existence’ part ensures that at least one x € X makes p(x) true; the ‘uniqueness’ part ensures that x
is the only element of X making p(x) true.
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Definition 1.2.26
The unique existential quantifier is the quantifier 3! ((IATgX code: \exists!)) defined such that
Jlx € X, p(x) is shorthand for

(IxeX, px)) AN VaeX,VbeX,[p(a)Ap(b)=a=b])

existence uniqueness

Example 1.2.27
Every positive real number has a unique positive square root. We can write this symbolically as

VaeR, (a>0=3beR, (b>0Ab*>=a))

Reading this from left to right, this says: for every real number q, if a is positive, then there exists a
unique real number b, which is positive and whose square is a. <

. Discussion 1.2.28

Explain why Definition 1.2.26 captures the notion of there being ‘exactly one’ element x € X making
p(x) true. Can you think of any other ways that 3!x € X, p(x) could be defined? <

Strategy 1.2.29 (Proving unique-existentially quantified statements)
A proof of a statement of the form 3!x € X, p(x), consists of two parts:

o Existence — prove that 3x € X, p(x) is true (e.g. using Strategy 1.2.18);

e Uniqueness — let a,b € X, assume that p(a) and p(b) are true, and derive a = b.

Alternatively, prove existence to obtain a fixed a € X such that p(a) is true, and then prove Vx €
X, [p(x) = x=a].

Example 1.2.30
We prove Example 1.2.27, namely that for each real a > 0 there is a unique b > 0 such that b*> = a.
So first fix a > 0.

o (Existence) The real number +/a is positive and satisfies (1/a)?> = a by definition. Its existence

will be deferred to a later time, but an informal argument for its existence could be provided using
‘number line’ arguments as in Chapter 0.

e (Uniqueness) Let y,z > 0 be real numbers such that y*> = a and 7> = a. Then y> = z>. Rearranging
and factorising yields
=2)0+2)=0

soeithery—z=0ory+z=0. If y+z=0 then z= —y, and since y > 0, this means that z < 0.
But this contradicts the assumption that z > 0. As such, it must be the case that y —z = 0, and
hence y = z, as required.

<

Exercise 1.2.31
For each of the propositions, write it out as a logical formula involving the 3! quantifier and then
prove it, using the structure of the logical formula as a guide.

a) For each real number a, the equation x> + 2ax + a = 0 has exactly one real solution x.
q y
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(b) There is a unique real number a for which the equation x> +a” = 0 has a real solution x.

(c) There is a unique natural number with exactly one positive divisor.

The unique existential quantifier will play a large role when we study functions in Section 3.1.

Quantifier alternation

Compare the following two statements:

(1) For every door, there is a key that can unlock it.

(i1) There is a key that can unlock every door.

Letting the variables x and y refer to doors and keys, respectively, and letting p(x,y) be the statement
‘door x can be unlocked by key y’, we can formulate these statements as:

@) Vx, 3y, p(x,y)
(i) Iy, Vx, p(x,y)

This is a typical ‘real-world” example of what is known as quantifier alternation—the two state-
ments differ only by the order of the front-loaded quantifiers, and yet they say very different things.
Statement (i) requires every door to be unlockable, but the keys might be different for different doors;
statement (ii), however, implies the existence of some kind of ‘master key’ that can unlock all the
doors.

Here’s another example with a more mathematical nature:

Exercise 1.2.32
Let p(x,y) be the statement ‘x+y is even’.

e Prove that Vx € Z, Jy € Z, p(x,y) is true.

e Prove that Jy € Z, Vx € Z, p(x,y) is false.

<

In both of the foregoing examples, you might have noticed that the V3’ statement says something
weaker than the ‘3V’ statement—in some sense, it is easier to make a V3 statement true than it is to
make an 3V statement true.

This idea is formalised in Theorem 1.2.33 below, which despite its abstract nature, has an extremely
simple proof.
Theorem 1.2.33

Let p(x,y) be a logical formula with free variables x € X and y € Y. Then

JyeY,¥xe X, p(x,y) = VxeX,yeY, pxy)
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Proof
Suppose Jy € Y, Vx € X, p(x,y) is true. We need to prove Vx € X, Iy € Y, p(x,y), so fix a € X—our
goal is now to prove dy € Y, p(a,y).

Using our assumption 3y € ¥, Vx € X, p(x,y), we may choose b € Y such that Vx, p(x,b) is true. But
then p(a,b) is true, so we have proved Jy € Y, p(a,y), as required. O

Statements of the form Jy € ¥, Vx € X, p(x,y) imply some kind of uniformity: a value of y making
Vx € X, p(x,y) true can be thought of as a ‘one size fits all” solution to the problem of proving p(x,y)
for a given x € X. Later in your studies, it is likely that you will encounter the word ‘uniform’ many
times—it is precisely this notion of quantifier alternation that the word ‘uniform’ refers to.
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Section 1.3
Logical equivalence

We motivate the content of this section with an example.

< Example 1.3.1
Consider the following two logical formulae, where P denotes the set of all prime numbers.

(1) VneP, (n>2= 3k € Z,n=2k+1]);
(2) =3n e P, (n>2A[3k € Z, n=2k)).

The logical formula (1) translates to ‘every prime number greater than two is odd’, and the lo-
gical formula (2) translates to ‘there does not exist an even prime number greater than two’. These
statements are evidently equivalent—they mean the same thing—but they suggest different proof
strategies:

(1) Fix a prime number 7, assume that n > 2, and then prove that n = 2k + 1 for some k € Z.

(2) Assume that there is some prime number 7 such that n > 2 and n = 2k for some k € Z, and derive
a contradiction.

While statement (1) more directly translates the plain English statement ‘every prime number greater
than two is odd’, it is the proof strategy suggested by (2) that is easier to use. Indeed, if # is a prime
number such that n > 2 and n = 2k for some k € Z, then 2 is a divisor of n other than 1 and #n (since
1 < 2 < n), contradicting the assumption that # is prime. <

The notion of logical equivalence, captures precisely the sense in which the logical formulae in (1)
and (2) in Example 1.3.1 ‘mean the same thing’. Being able to transform a logical formula into a
different (but equivalent) form allows us to identify a wider range of feasible proof strategies.

4 Definition 1.3.2
Let p and g be logical formulae. We say that p and ¢ are logically equivalent, and write p = ¢
(I4TEX code: \equiv), if ¢ can be derived from p and p can be derived from gq.

Logical equivalence of propositional formulae

While Definition 1.3.2 defines logical equivalence between arbitrary logical formulae, we will start
by focusing our attention on logical equivalence between propositional formulae, like those we saw
in Section 1.1.

First, let’s look at a couple of examples of what proofs of logical equivalence might look like. Be
warned—they’re not very nice to read! But there is light at the end of the tunnel. After struggling
through Examples 1.3.3 and 1.3.4 and Exercise 1.3.5, we will introduce a very quick and easy tool
for proving propositional formulae are logically equivalent.

¢ Example 1.3.3
We demonstrate that p A (gV r) = (pAq) V (p Ar), where p, g and r are propositional variables.
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o First assume that p A (¢ V r) is true. Then p is true and g V r is true by definition of conjunction.
By definition of disjunction, either ¢ is true or r is true.

o If g is true, then p A g is true by definition of conjunction.
o If r is true, then p A r is true by definition of conjunction.
In both cases we have that (p A g) V (p Ar) is true by definition of disjunction.
e Now assume that (p Aq)V (pAr) is true. Then either p A q is true or p A r is true, by definition of
disjunction.
o If p Agis true, then p is true and q is true by definition of conjunction.
o If p Aris true, then p is true and r is true by definition of conjunction.

In both cases we have that p is true, and that gV r is true by definition of disjunction. Hence
pA(qVr)is true by definition of conjunction.

Since we can derive (p Aq) V (p Ar) from p A (¢ V r) and vice versa, it follows that
pA(gVr)=(pAg)V(pAr)
as required. <

Example 1.3.4
We prove that p = g = (—p) V g, where p, g and r are propositional variables.

e First assume that p = ¢ is true. By the law of exluded middle (Axiom 1.1.44), either p is true or
—p is true—we derive (—p) V g in each case.

o If p is true, then since p = ¢ is true, it follows from (=E) that ¢ is true, and so (—p) V ¢ is true
by (VIp);
o If =p is true, then (—p) V g is true by (VI).
In both cases, we see that (—p) V g is true.
e Now assume that (—p) V g is true. To prove that p = ¢ is true, it suffices by (=) to assume that

p is true and derive g. So assume p is true. Since (—p)V q is true, we have that either —p is true
or ¢ is true.

o If —p is true, then we obtain a contradiction from the assumption that p is true, and so g is true
by the principle of explosion (Axiom 1.1.49).

o If g is true... well, then g is true—there is nothing more to prove!

In both cases we have that g is true. Hence p = ¢ is true.
We have derived (—p) V g from p = ¢ and vice versa, and so the two formulae are logically equival-
ent. <

Exercise 1.3.5
Let p, g and r be propositional variables. Prove that the propositional formula (pV ¢) = r is logically
equivalent to (p = r) A(g=r). <

Working through the derivations each time we want to prove logical equivalence can become cum-
bersome even for small examples like Examples 1.3.3 and 1.3.4 and Exercise 1.3.5.

The following theorem reduces the problem of proving logical equivalence between propositional
formulae to the purely algorithmic task of checking when the formulae are true and when they are
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false in a (relatively) small list of cases. We will streamline this process even further using truth
tables (Definition 1.3.7).

o2

Theorem 1.3.6
Two propositional formulae are logically equivalent if and only if their truth values are the same
under any assignment of truth values to their constituent propositional variables.

Idea of proof
A formal proof of this fact is slightly beyond our reach at this point, although we will be able to
prove it formally by structural induction, introduced in Section 11.2.

The idea of the proof is that, since propositional formulae are built up from simpler propositional
formulae using logical operators, the truth value of a more complex propositional formula is determ-
ined by the truth values of its simpler subformulae. If we keep ‘chasing’ these subformulae, we end
up with just propositional variables.

For example, the truth value of (p = r) A (¢ = r) is determined by the truth values of p=-rand g =-r
according to the rules for the conjunction operator A. In turn, the truth value of p = r is determined
by the truth values of p and r according to the implication operator =, and the truth value of g = r
is determined by the truth values of g and r according to the implication operator again. It follows
that the truth value of the whole propositional formula (p = r) A (¢ = r) is determined by the truth
values of p,q,r according to the rules for A and =-.

If some assignment of truth values to propositional variables makes one propositional formula true
but another false, then it must be impossible to derive one from the other—otherwise we’d obtain a
contradiction. Hence both propositional formulae must have the same truth values no matter what
assignment of truth values is given to their constituent propositional variables.

We now develop a systematic way of checking the truth values of a propositional formula under each
assignment of truth values to its constituent propositional variables.

4 Definition 1.3.7
The truth table of a propositional formula is the table with one row for each possible assignment of
truth values to its constituent propositional variables, and one column for each subformula (including
the propositional variables and the propositional formula itself). The entries of the truth table are the
truth values of the subformulae.

¢ Example 1.3.8
The following are the truth tables for —p, pAg, pV g and p = gq.

p|-p P__q | phg p__q|pVg P _q|p=q
v | x v v v v v v v v v
X | v v X X v X v v X X
X v X X v X v v
X X X X X X X X v
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In Example 1.3.8 we have used the symbol v (I&ZIEX code: \checkmark) to mean ‘true’ and X
(IATEX code: \times) to mean ‘false’. Some authors adopt other conventions, such as 7,F or T, L
(I&TEX code: \top, \bot) or 1,0 or 0, I—the possibilites are endless!

Exercise 1.3.9
Use the definitions of A, V and = to justify the truth tables in Example 1.3.8. <

The next example shows how the truth tables for the individual logical operators (as in Ex-
ample 1.3.8) may be combined to form a truth table for a more complicated propositional formula
that involves three propositional variables.

Example 1.3.10
The following is the truth table for (p Aq)V (pAr).

P g r | pAg pAr| (pAg)V(pAr)
v v V| V7 7
v v o X v X v
v o x v X v v
v X X X % %
X v v X X X
X \/ X X X X
X x v X X «
X X X X X «
prsgﬁ;ﬁg:dl ;?lffrgrlfﬁﬁz main formula

Some comments about the construction of this truth table are pertinent:

e The propositional variables appear first. Since there are three of them, there are 2° = 8 rows. The
column for p contains four v's followed by four xs; the column for g contains two v's, two Xs,
and then repeats; and the column for r contains one v, one x, and then repeats.

e The next group of columns are the next-most complicated subformulae. Each is constructed by
looking at the relevant columns further to the left and comparing with the truth table for conjunc-
tion.

e The final column is the main formula itself, which again is constructed by looking at the relevant
columns further to the left and comparing with the truth table for disjunction.

Our choices of where to put the vertical bars and what order to put the rows in were not the only
choices that could have been made, but when constructing truth tables for more complex logical
formulae, it is useful to develop a system and stick to it. <

Returning to Theorem 1.3.6, we obtain the following strategy for proving that two propositional
formulae are logically equivalent.

Strategy 1.3.11 (Logical equivalence using truth tables)
In order to prove that propositional formulae are logically equivalent, it suffices to show that they
have identical columns in a truth table.
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¢ Example 1.3.12
In Example 1.3.3 we proved that pA (¢Vr) = (pAq)V (pAr). We prove this again using truth
tables. First we construct the truth table for p A (g Vr):

p_q r |qVr|pA(gVr)
v v Y v v
v VvV ox v v
v x V v v
v X X X X
x v Y v X
x v X v X
X X v v X
X X X X X

Note that the column for p A (¢ V r) is identical to that of (p Ag) V (p Ar) in Example 1.3.10. Hence
the two formulae are logically equivalent. <

To avoid having to write out two truth tables, it can be helpful to combine them into one. For
example, the following truth table exhibits that p A (¢ V r) is logically equivalent to (p Aq) V (p Ar):

p_q r |l gVr|pA(gVr) || pAg pAr | (pAg)V(pAr)
v v v v v v v
v v X v v v X v
v o x v v v X v v
v X X X X X X X
x v v X X X X
x v X v X X X X
X X v N X X X X
X X X X X X X X

In the following exercises, we use truth tables to repeat the proofs of logical equivalence from Ex-
ample 1.3.4 and Exercise 1.3.5.

% Exercise 1.3.13
Use a truth table to prove that p = g = (—p) Vq. <

& Exercise 1.3.14
Let p, g and r be propositional variables. Use a truth table to prove that the propositional formula
(pVq) = rislogically equivalent to (p = r) A (g = r). <

Some proof strategies

We are now in good shape to use logical equivalence to derive some more sophisticated proof
strategies.

++* Theorem 1.3.15 (Law of double negation)
Let p be a propositional variable. Then p = ——p.

56



Section 1.3. Logical equivalence 57

Proof
The proof is almost trivialised using truth tables. Indeed, consider the following truth table.

p|-p|-p
V| x v
x | v X
The columns for p and ——p are identical, and so p = —~—p. U

The law of double negation is important because it suggests a second way that we can prove state-
ments by contradiction. Indeed, it says that proving a proposition p is equivalent to proving ——p,
which amounts to assuming —p and deriving a contradiction.

0,
0‘0

Strategy 1.3.16 (Proof by contradiction (indirect version))
In order to prove a proposition p is true, it suffices to assume that p is false and derive a contradiction.

At first sight, Strategy 1.3.16 looks very similar to Strategy 1.1.38, which we also termed proof by
contradiction. But there is an important difference between the two:

e Strategy 1.1.38 says that to prove that a proposition is false, it suffices to assume that it is #rue and
derive a contradiction;

e Strategy 1.3.16 says that to prove that a proposition is frue, it suffices to assume that it is false and
derive a contradiction.

The former is a direct proof technique, since it arises directly from the definition of the negation
operator; the latter is an indirect proof technique, since it arises from a logical equivalence, namely
the law of double negation.

¢ Example 1.3.17
We prove that if a, b and ¢ are non-negative real numbers satisfying a”> 4+ b> = ¢2, then a+b > c.

Indeed, let a, b, c € R with a,b,c > 0, and assume that a® +b? = 2. Towards a contradiction, assume
that it is not the case that a + b > ¢. Then we must have a + b < c¢. But then

(a+b)? = (a+b)(a+b) < (a+b)c<c-c=c?

and so
32> (a+b)2:a2+2ab+b2 =c2+2ab>c?

This implies that c2 > ¢%, which is a contradiction. So it must be the case that a+b > ¢, as required.
<

The next proof strategy we derive concerns proving implications.

4 Definition 1.3.18
The contrapositive of a proposition of the form p = ¢ is the proposition —g = —p.

- Theorem 1.3.19 (Law of contraposition)
Let p and g be propositional variables. Then p = g = (—q) = (—p).
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Proof
We build the truth tables for p = g and (—¢q) = (—p).

p_ql|lr=qll-q -pr| (9= (p)
v oV v X X v
v X X VA X
x v v X v v
X X v v v v
The columns for p = ¢ and (—q) = (—p) are identical, so they are logically equivalent. O

Theorem 1.3.19 suggests the following proof strategy.

Strategy 1.3.20 (Proof by contraposition)
In order to prove a proposition of the form p = ¢, it suffices to assume that g is false and derive that
p is false.

Example 1.3.21
Fix two natural numbers m and n. We will prove that if mn > 64, then either m > 8 or n > 8.

By contraposition, it suffices to assume that it is not the case that m > 8 or n > §, and derive that it
is not the case that mn > 64.

So assume that neither m > 8 nor n > 8. Then m < 8 and n < §, so that mn < 64, as required. <

Exercise 1.3.22

Use the law of contraposition to prove that p < g = (p = q) A ((—p) = (—¢q)), and use the proof
technique that this equivalence suggests to prove that an integer is even if and only if its square is
even. <

It feels good to invoke impressive-sounding results like proof by contraposition, but in practice, the
logical equivalence between any two different propositional formulae suggests a new proof tech-
nique, and not all of these techniques have names. And indeed, the proof strategy in the following
exercise, while useful, has no slick-sounding name—at least, not one that would be widely under-
stood.

. Exercise 1.3.23

Prove that pV ¢ = (—p) = ¢. Use this logical equivalence to suggest a new strategy for proving
propositions of the form p V ¢, and use this strategy to prove that if two integers sum to an even
number, then either both integers are even or both are odd. <

Negation

In pure mathematics it is common to ask whether or not a certain property holds of a mathematical
object. For example, in Section 8.2, we will look at convergence of sequences of real numbers: to
say that a sequence xo,x1,x2,... of real numbers converges (Definition 8.2.15) is to say

JaecR,VeeR, (e>0=3INeN,VneN, [n>N=|x,—a| <g])
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This is already a relatively complicated logical formula. But what if we wanted to prove that a se-
quence does not converge? Simply assuming the logical formula above and deriving a contradiction
might work sometimes, but it is not particularly enlightening.

Our next goal is to develop a systematic method for negating complicated logical formulae. With this
done, we will be able to negate the logical formula expressing ‘the sequence xg,x1,x2,... converges’
as follows

VacR,JecR, (e>0AVYNeN,TneN, [n=NA|x,—al| > €]

Granted, this is still a complicated expression, but when broken down element by element, it provides
useful information about how it may be proved.

The rules for negating conjunctions and disjunctions are instances of de Morgan’s laws, which ex-
hibit a kind of duality between A and V.

Theorem 1.3.24 (de Morgan’s laws for logical operators)
Let p and g be logical formulae. Then:

(@ ~(pAg) = (-p)V(—q); and
() ~(pVq)=(—p)A(—q).

Proof of (a)
Consider the following truth table.

p_q || prg| ~(prg) || ~p —q | (2p)V(—9)
v oV v X X X X
v oo X v x v v
x Vv X v v X v
X X X v v v v
The columns for —(p Ag) and (—p) V (—q) are identical, so they are logically equivalent. O

Exercise 1.3.25

Prove Theorem 1.3.24(b) thrice: once using the definition of logical equivalence directly (like we
did in Examples 1.3.3 and 1.3.4 and Exercise 1.3.5), once using a truth table, and once using part (a)
together with the law of double negation. <

Example 1.3.26
We often use de Morgan’s laws for logical operators without thinking about it. For example to say
that ‘neither 3 nor 7 is even’ is equivalent to saying ‘3 is odd and 7 is odd’. The former statement
translates to

—[(3is even) V (7 is even)]

while the second statement translates to
[-(3is even)] A [(7 is even)]
<

Exercise 1.3.27
Prove that —(p = ¢) = p A (—q) twice, once using a truth table, and once using Exercise 1.3.13
together with de Morgan’s laws and the law of double negation. <
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De Morgan’s laws for logical operators generalise to statements about quantifiers, expressing a sim-
ilar duality between V and 3 as we have between A and V.

Theorem 1.3.28 (de Morgan’s laws for quantifiers)
let p(x) be a logical formula with free variable x ranging over a set X. Then:

(@) “Vxe X, p(x) =3Ixe X, -p(x); and
(b) -Ixe X, p(x) =VxeX, p(x).

Proof
Unfortunately, since these logical formulae involve quantifiers, we do not have truth tables at our
disposal, so we must assume each formula and derive the other.

We start by proving the equivalence in part (b), and then we derive (a) as a consequence.

e Assume —3x € X, p(x). To prove Vx € X, =p(x), fix some x € X. If p(x) were true, then we’d have
Jx € X, p(x), which contradicts our main assumption; so we have —p(x). But then Vx € X, —p(x)
is true.

e Assume Vx € X, -p(x). For the sake of contradiction, assume Ix € X, p(x) were true. Then we
obtain some a € X for which p(a) is true. But —p(a) is true by the assumption that Vx € X, —p(a),
so we obtain a contradiction. Hence —dx € X, p(x) is true.

This proves that =3x € X, p(x) =Vx € X, -p(x).

Now (a) follows from (b) using the law of double negation (Theorem 1.3.15):

b
e X, plx)=-IxeX, -px) (E) =Vx €X, o —p(x) =-VxeX, p(x)

as required. |

The proof strategy suggested by the logical equivalence in Theorem 1.3.28(b) is so important that it
has its own name.

Strategy 1.3.29 (Proof by counterexample)
To prove that a proposition of the form Vx € X, p(x) is false, it suffices to find a single element a € X
such that p(a) is false. The element a is called a counterexample to the proposition Vx € X, p(x).

Example 1.3.30

We prove by counterexample that not every integer is divisible by a prime number. Indeed, let x = 1.
The only integral factors of 1 are 1 and —1, neither of which are prime, so that 1 is not divisible by
any primes. <

Exercise 1.3.31 a
Prove by counterexample that not every rational number can be expressed as A where a € Z is even

and b € Z is odd. <

We have now seen how to negate the logical operators —, A, V and =, as well as the quantifiers V
and 4.

60



Section 1.3. Logical equivalence 61

4 Definition 1.3.32
A logical formula is maximally negated if the only instances of the negation operator — appear
immediately before a predicate (or other proposition not involving logical operators or quantifiers).

¢ Example 1.3.33
The following propositional formula is maximally negated:

[P (g= (=n)] = (sA (1))
Indeed, all instances of — appear immediately before propositional variables.

However the following propositional formula is not mmaximally negated:

(mq) =q

Here the subformula ——¢ contains a negation operator immediately before another negation operator
(—g). However by the law of double negation, this is equivalent to ¢ = ¢, which is maximally
negated trivially since there are no negation operators to speak of. <

% Exercise 1.3.34
Determine which of the following logical formulae are maximally negated.

(@ VxeX, (-px)) =VyeX,~(r(x,y) As(x,y));
(b) Vxe X, (—p(x)) =Yy € X, (—r(x,y)) V (=s(x,y));
© VxeR, [x>1= (IyeR, [x<yA-(2<y)):
d) - eR, x> 1A(WER, x<y=x* <))
<
The following theorem allows us to replace logical formulae by maximally negated ones, which in

turn suggests proof strategies that we can use for proving that complicated-looking propositions are
false.

*+ Theorem 1.3.35
Every logical formula (built using only the logical operators and quantifiers we have seen so far) is
logically equivalent to a maximally negated logical formula.

Idea of proof
Much like Theorem 1.3.6, a precise proof of Theorem 1.3.35 requires some form of induction argu-
ment, so instead we will give an idea of the proof.

Every logical formula we have seen so far is built from predicates using the logical operators A, V,=
and — and the quantifiers V and 3—indeed, the logical operator < was defined in terms of A and =,
and the quantifier 3 was defined in terms of the quantifiers V and 3 and the logical operators A and
=.

But the results in this section allow us to push negations ‘inside’ each of these logical operators and
quantifiers, as summarised in the following table.
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Negation outside Negation inside ~ Proof
-(pAg) = (-p)V(—q) Theorem 1.3.24(a)
-(pVvgqg) = (-p)A(—q) Theorem 1.3.24(b)
-(p=q) = pAr(~q) Exercise 1.3.27
=(-p) = p Theorem 1.3.15
-VxeX,p(x) = 3IxeX,—-p(x) Theorem 1.3.28(a)
-dxeX,p(x) = VxeX,-p(x) Theorem 1.3.28(b)

Repeatedly applying these rules to a logical formula eventually yields a logically equivalent, max-
imally negated logical formula.

¢ Example 1.3.36
Recall the logical formula from page 58 expressing the assertion that a sequence xg,x;,x7, ... of real
numbers converges:

JaeR,VeeR, (e>0=INeN,VneN, [n>N=|x,—a|l <g])

We will maximally negate this to obtain a logical formula expressing the assertion that the sequence
does not converge.

Let’s start at the beginning. The negation of the formula we started with is:
—JacR,VecR, (e>0=3INeN,VneN, [n>N=|x, —a| <g|)

The key to maximally negating a logical formula is to ignore information that is not immediately
relevant. Here, the expression that we are negating takes the form —Ja € R, (stuff). It doesn’t
matter what the ‘stuff’ is just yet; all that matters is that we are negating an existentially quantified
statement, and so de Morgan’s laws for quantifiers tells us that this is logically equivalent to Va &
R, —(stuff). We apply this rule and just re-write the ‘stuff’, to obtain:

VaeR, -VeceR, (e>0=3INeN,VneN,[n =N = |x,—a| <g])

Now we are negating a universally quantified statement, Ve € R, (stuff) which, by de Morgan’s
laws for quantifiers, is equivalent to 3¢ € R, —(stuff):

VaceR,Je€R, ~(e>0=INeN,VneN,[n=>N=|x,—a| < €])
At this point, the statement being negated is of the form (stuff) = (junk), which by Exercise 1.3.27
negates to (stuff) A =(junk). Here, ‘stuff’ is € > 0 and ‘junk’ is INeN,Vn e N, [n > N = |x, —
a| < €]. So performing this negation yields:

VaeR,Je €R, (e>0AN-INeN,VheN, [n>=N=|x,—a| < €]

Now we are negating an existentially quantified formula again, so using de Morgan’s laws for quan-
tifiers gives:

VacR,3e R, (e>0AVNeN,-VneN, [n>N=|x,—a| <¢g])

The formula being negated here is univerally quantified, so using de Morgan’s laws for quantifiers
again gives:

VaeR,Je €R, (e>0AVYNeN,IneN, -[n>N=|x,—a| <¢g])
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We’re almost there! The statement being negated here is an implication, so applying the rule —(p =
q) = p A (—q) again yields:

VaeR,Je R, (e >0NVYNeN,TneN,[n=NA—(jx, —a| <€)])

At this point, strictly speaking, the formula is maximally negated, since the statement being neg-
ated does not involve any other logical opreators or quantifiers. However, since —(|x, —a| < €) is
equivalent to |x, —a| > &, we can go one step further to obtain:

VacR,3Jee€R, (e >0AVYNeN,IneN, [n>=NA|x, —al > g])

This is as negated as we could ever dream of, and so we stop here. <

% Exercise 1.3.37
Find a maximally negated propositional formula that is logically equivalent to —(p < q). <

% Exercise 1.3.38
Maximally negate the following logical formula, then prove that it is true or prove that it is false.

IeER, x> 1A(VYER, x<y=x*<y])]

Tautologies

The final concept that we introduce in this chapter is that of a fautology, which can be thought of as
the opposite of a contradiction. The word ‘tautology’ has other implications when used colloquially,
but in the context of symbolic logic it has a precise definition.

4 Definition 1.3.39
A tautology is a proposition or logical formula that is true, no matter how truth values are assigned
to its component propositional variables and predicates.

The reason we are interested in tautologies is that tautologies can be used as assumptions at any
point in a proof, for any reason.

% Strategy 1.3.40 (Assuming tautologies)
Let p be a proposition. Any tautology may be assumed in any proof of p.

¢ Example 1.3.41
The law of excluded middle (Axiom 1.1.44) says precisely that p\V (—p) is a tautology. This means
that when proving any result, we may split into cases based on whether a proposition is true or false,
just as we did in Proposition 1.1.46. <

< Example 1.3.42
The formula p = (¢ = p) is a tautology.

A direct proof of this fact is as follows. In order to prove p = (¢ = p) is true, it suffices to assume p
and derive ¢ = p. So assume p. Now in order to prove g = p, it suffices to assume ¢ and derive p.
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So assume g. But we’re already assuming that p is true! So ¢ = p is true, and hence p = (¢ = p)
is true.

A proof using truth tables is as follows:

p_qla=p|p=(q=p
v Vv v v
VA v v
X v X v
X X v v
We see that p = (¢ = p) is true regardless of the truth values of p and g. <
% Exercise 1.3.43
Prove that each of the following is a tautology:
@ [(p=qa)N(g=r)]=(p=r)
®) [p=(g=1r]=p=9q9) = (p=r);
() IyeY,VxeX, p(x,y)=>VxeX, Iy, plx,y);
@ [~(pAg)l = [(=p)V (=q)];
(@) (VxeX, px)) < (I X, p(x)).
For each, try to interpret what it means, and how it might be useful in a proof. <

You may have noticed parallels between de Morgan’s laws for logical operators and quantifiers, and
parts (d) and (e) of Exercise 1.3.43, respectively. They almost seem to say the same thing, except
that in Exercise 1.3.43 we used ‘<’ and in Theorems 1.3.24 and 1.3.28 we used ‘=’. There is an
important difference, though: if p and g are logical formulae, then p = ¢ is itself a logical formula,
which we may study as a mathematical object in its own right. However, p = ¢ is not a logical
formula: it is an assertion about logical formulae, namely that the logical formulae p and g are
equivalent.

There is, nonetheless, a close relationship between < and =—this relationship is summarised in the
following theorem.

K3

Theorem 1.3.44
Let p and g be logical formulae.

(a) g can be derived from p if and only if p = ¢ is a tautology;
(b) p=gqifandonly if p < ¢ is a tautology.

Proof

For (a), note that a derivation of g from p is sufficient to establish the truth of p = ¢ by the intro-
duction rule for conjunction (=1), and so if ¢ can be derived from p, then p = ¢ is a tautology.
Conversely, if p = ¢ is a tautology, then g can be derived from p using the elimination rule for
conjunction (=E) together with the (tautological) assumption that p = ¢ is true.
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Now (b) follows from (a), since logical equivalence is defined in terms of derivation in each direction,
and < is simply the conjunction of two implications. O

Aaand breathe! All this new notation can be overwhelming at first, but it will be worth it in the end.
This chapter was all about teaching you a new language—new symbols, new terminology—because
without it, our future pursuits will be impossible. If you’re stuck now, then don’t worry: you’ll soon
get the hang of it, especially when we start using this new language in context. You can, of course,
refer back to the results in this chapter for reference at any point in the future.
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Section 1.E
Chapter 1 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

1.1. For fixed n € N, let p represent the proposition ‘n is even’, let g represent the proposition ‘n is
prime’ and let r represent the proposition ‘n = 2°. For each of the following propositional formulae,

translate it into plain English and determine whether it is true for all n € N, true for some values of

n and false for some values of n, or false for all n € N.

@ (pAg)=>r
(b) gA(=r) = (-p)
© ((=p)V(=q))V (=)

@ (pAg)A(-r)
1.2. For each of the following plain English statements, translate it into a symbolic propositional
formula. The propositional variables in your formulae should represent the simplest propositions

that they can.
(a) Guinea pigs are quiet, but they’re loud when they’re hungry.
(b) It doesn’t matter that 2 is even, it’s still a prime number.
(c) V2 can’tbe an integer because it is a rational number.
1.3. Let p and ¢ be propositions, and assume that p = (—gq) is true and that (—g) = p is false. Which
of the following are true, and which are false?
(a) g being false is necessary for p to be true.
(b) g being false is sufficient for p to be true.
(c) p being true is necessary for ¢ to be false.
(d) p being true is sufficient for p to be false.

In Questions 1.4 to 1.7, use the definitions of the logical operators in Section 1.1 to describe what
steps should be followed in order to prove the propositional formula in the question; the letters p, ¢,

r and s are propositional variables.
L4. (pAg) = (-r)

1.5.(pvqg) = (r=ys)
16.(p=q) & (-p=—q)
1.7.(pA(=q)) V(g A (=p))
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1.8. Find a statement in plain English, involving no variables at all, that is equivalent to the logical
formulaVa € Q,Vb € Q, (a<b=3IceR,[a<c<b A =(c € Q)]). Then prove this statement,
using the structure of the logical formula as a guide.

1.9. Find a purely symbolic logical formula that is equivalent to the following statement, and then
prove it: “No matter which integer you may choose, there will be an integer greater than it.”

1.10. Let X be a set and let p(x) be a predicate. Find a logical formula representing the statement
‘there are exactly two elements x € X such that p(x) is true’. Use the structure of this logical formula
to describe how a proof should be structured, and use this structure to prove that there are exactly
two real numbers x such that x> = 1.
1.11. Prove that

peq=(p=qAN((=p)=(79)
How might this logical equivalence help you to prove statements of the form ‘p if and only if ¢’ ?

1.12. Prove using truth tables that p = g # ¢ = p. Give an example of propositions p and ¢ such
that p = ¢ is true but g = p is false.

In Questions 1.13 to 1.16, find a logical formula whose column in a truth table is as shown.

)4 q

v X
1.13. v X v

x v v

X X X

)4 q

v v
1.14. v x X

x v

X X X

P q r

v v Y v

v v X v

v o x Y X
1.15. v x X X

x v X

x v X X

x X v

X X X v

)4 q r

v v v

v v X X

v o x VY X
1.16. v x X X

x v Y v

x v X X

X X v

X X X X
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1.17. A new logical operator 1 is defined by the following rules:

(i) If a contradiction can be derived from the assumption that p is true, then p 1 g is true;
(ii) If a contradiction can be derived from the assumption that ¢ is true, then p 1 ¢ is true;

(iii) If r is any proposition, and if p 1 ¢, p and g are all true, then r is true.

This question explores this curious new logical operator.

(a) Prove that p T p = —p, and deduce that ((p 1 p) T (p T p)) = p.
(b) Provethat pvVg=(p1tp)T(¢Tq)and pAg=(pTq)T(pTq).
(c) Find a propositional formula using only the logical operator 1 that is equivalent to p = gq.

1.18. Let X be Z or QQ, and define a logical formula p by:
VxeX,IyeX,(x<yA[VzeX,~(x<zAz<Y)])

Write out —p as a maximally negated logical formula. Prove that p is true when X = 7Z, and p is
false when X = Q.

1.19. Use Definition 1.2.26 to write out a maximally negated logical formula that is equivalent to
—3!x € X, p(x). Describe the strategy that this equivalence suggests for proving that there is not a
unique x € X such that p(x) is true, and use this strategy to prove that, for all a € R, if a # —1 then
there is not a unique x € R such that x* — 2ax*> + a> — 1 = 0.

1.20. Define a new quantifier V! such that de Morgan’s laws for quantifiers (Theorem 1.3.28) hold
with V and J replaced by V! and 3!, respectively.

True-False questions

In Questions 1.21 to 1.30, determine (with proof) whether the statement is true or false.
1.21. Every implication is logically equivalent to its contrapositive.
1.22. Every implication is logically equivalent to its converse.

1.23. Every propositional formula whose only logical operators are conjunctions and negations is
logically equivalent to a propositional formula whose only logical operators are disjunctions and
negations.

1.24. Every propositional formula whose only logical operators are conjunctions is logically equi-
valent to a propositional formula whose only logical operators are disjunctions.

1.25. The formulae p A (g Vr) and (p A q) V r are logically equivalent.
1.26. The formulae pV (¢Vr) and (pV q) A (pVr) are logically equivalent.

1.27. The logical formulae —Vx € X, Vy € Y, p(x,y) and 3x € X,Vy € Y, p(x,y) are logically equi-
valent.

1.28. =Vx > 0, 3y € R, y? = x is logically equivalent to Vx < 0, Iy ¢ R, y* # x.
1.29. =Vx >0, 3y € R, y> = x is logically equivalent to 3x > 0, Vy € R, y* # x.
20,

1.30. =Vx Jy € R, y* = x is logically equivalent to 3x < 0, Vy € R, y* = x.
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Always—Sometimes—Never questions

In Questions 1.31 to 1.35, determine (with proof) whether the conclusion is always, sometimes or
never true under the given hypotheses.

1.31. Let p and g be propositions and assume that p is true. Then p = ¢ is true.
1.32. Let p and g be propositions and assume that p is false. Then p = ¢q is true.

1.33. Let X and Y be sets and let p(x,y) be a predicate with free variables x € X and y € Y. Then
the logical formulae Vx € X, Vy € Y, p(x,y) and Vy € ¥, Vx € X, p(x,y) are logically equivalent.

1.34. Let X and Y be sets and let p(x,y) be a predicate with free variables x € X and y € Y. Then
the logical formulae Vx € X, 3y € Y, p(x,y) and Jy € ¥, Vx € X, p(x,y) are logically equivalent.

1.35. Let X and Y be sets and let p(x,y) be a predicate with free variables x € X and y € Y. Then
the logical formulae Vx € X, Vy € Y, p(x,y) and 3x € X, Iy € Y, —p(x,y) are logically equivalent.
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Chapter 2

Sets

We saw an informal definition of a set in Chapter 0, but so far the only sets that we have seen are the
number sets (N, Z and so on).

In Section 2.1, we will study sets in the abstract—in particular, the sets that we study are arbitrary
collections of mathematical objects, not just numbers. This is essential for further study in pure
mathematics, since most (if not all) areas of pure mathematics concern certain kinds of sets!

In Section 2.2, we will then define some operations that allow us to form new sets out of old sets,
and prove some identities of an algebraic nature that are closely related to the rules governing logical
operators and quantifiers that we saw in Chapter 1.
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Section 2.1
Sets

We begin by redefining the notion of a sef with a notch more precision than we provided in Chapter 0.
At their core, sets seem extremely simple—sets are just collections of objects—except that if not kept
in check, this characterisation of a set leads to logical inconsistencies, such as the infamous Russell’s
paradox.

These logical paradoxes can be overcome by restricting ourselves to working inside a universe % ,
which we consider to be a set which is so big that it contains all of the mathematical objects that
we want to talk about. This is a subtle issue, which is well beyond the scope of this section, but is
discussed further in Section B. 1.

Definition 2.1.1
A set is a collection of elements from a specified universe of discourse. The collection of everything
in the universe of discourse is called the universal set, denoted by % (I5TX code: \mathcal{U}).

The expression x € X (I4TEX code: \in) denotes the statement that x is an element of X; we write

x & X (I5TEX code: \not\in) to mean —(x € X), that is that x is not an element of X.

Example 2.1.2
In Chapter 0, we introduced five sets: the set N of natural numbers, the set Z of integers, the set Q
of rational numbers, the set R of real numbers and the set C of complex numbers. <

Exercise 2.1.3
Which of the following propositions are true, and which are false?

1 1 1
—eZ — 7 7 —
26 26@ 0) IS4 26%

<

We will avoid referring explicitly to the universal set % whenever possible, but it will always be
there in the background. This is convenient because we no longer need to worry about the domain of
discourse of free variables (as we did in Definition 1.2.2), so that we can abbreviate ‘Vx € %, p(x)’
by ‘Vx, p(x)’, and ‘Ix € %, p(x)* by ‘Ix, p(x)’.

Note that under this convention:

e Vx € X, p(x) is logically equivalent to Vx, (x € X = p(x)); and

e dx € X, p(x) is logically equivalent to 3x, (x € X A p(x)).
Specifying a set

One way of defining a set is simply to describe it in words, like we have done up to now. There are
other, more concise ways of specifying sets, which also remove such ambiguity from the process.
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Lists. One way is simply to provide a list of the elements of the set. To specify that the list denotes
a set, we enclose the list with {curly brackets} (IsTEX code: \{,\}). For example, the following is
a specification of a set X, whose elements are the natural numbers between 0 and 5 (inclusive):

X = {O’ 172737475}

Implied lists. Sometimes a list might be too long to write out—maybe even infinite—or the length
of the list might depend on a variable. In these cases it will be convenient to use an implied list, in
which some elements of the list are written, and the rest are left implicit by writing an ellipsis ‘...’
(I&TgX code: \dots). For example, the statement

X ={1,4,9,...,n°}

means that X is the set whose elements are all the square numbers from 1 to n?, where n is some
number. Implied lists can be ambiguous, since they rely on the reader’s ability to infer the pattern
being followed, so use with caution!

Set-builder notation. In general, implied lists can be ambiguous, so in practice they are avoided
unless the implied list is very simple, such as a set of consecutive numbers like {3,4,...,9}. In fact,
many sets can’t even be listed in this way.

To get around this, we can use set-builder notation, which is a means of specifying a set in terms of
the properties its elements satisfy. Given a set X, the set of elements of X satisfying some property
p(x) is denoted

{xreX|p)}

The bar ‘|’ (IXTEX code: \mid) separates the variable name from the formula that they make true—
some authors use a colon instead (as in {x € X : p(x)}).

The set {x € X | p(x)} is read aloud as ‘the set of x € X such that p(x)’, but beware—neither the bar
‘|” nor the colon ‘> mean ‘such that’ in other contexts.

Example 2.1.4
The set of all even integers can be written in set-builder notation as

{n€7Z|niseven}
For comparison, the set of all even natural numbers can be written as
{neN|niseven} ={0,2,4,6,...}

Note that —6 is an element of the former set but not of the latter set, since —6 is an integer but is not
a natural number.

Note moreover that the expression
{n € Q| niseven}

is meaningless, since we have not defined a notion of ‘evenness’ for rational numbers. <

Strategy 2.1.5
Let X be a set and let p(x) be a logical formula with free variable x € X. In order to prove a € {x €
X | p(x)}, it suffices to prove a € X and that p(a) is true.
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. Exercise 2.1.6

A dyadic rational is a rational number that can be expressed as an integer divided by a power of 2.
Express the set of all dyadic rationals using set-builder notation. <

An alternate form of set-builder notation uses an expression involving one or more variables to the
left of the vertical bar, and the range of the variable(s) to the right. The elements of the set are then
the values of the expression as the variable(s) vary as indicated—that is:

{expr(x) | x € X} is defined to mean {y | Ix € X, y = expr(x)}

where expr(x) is the expression in question.

Example 2.1.7

The expression {3k +2 | k € Z} denotes the set of all integers of the form 3k +2, where k € Z. It
is shorthand for {n € Z | 3k € Z, n = 3k+2}. In implied list notation, we could write this set as
{..,—4,—-1,2,5,8,...}. <

Exercise 2.1.8
Express the set of dyadic rationals (defined in Exercise 2.1.6) in this alternate form of set-builder
notation. <

Set-builder notation is useful for defining sets based on the properties they satisfy, as in Defini-
tions 2.1.9 and 2.1.11 below.

Definition 2.1.9
Let n € N. The set [n] is defined by [n] = {k € N |1 < k < n}.

Example 2.1.10

In implied list notation, [n] = {1,2,...,n}. For example, [4] = {1,2,3,4}. Note that [0] has no
elements (it is empty—see Definition 2.1.27), since there are no natural numbers k satisfying the
inequality 1 < k< 0. <

While not particularly interesting yet, sets of the form [r] will be fundamental throughout Chapter 7,
as they are used to define the notion of a finite set, as well as the size of a finite set.
Intervals are particular subsets of R that are ubiquitous in mathematics, particularly in analysis and

topology.

Definition 2.1.11 (Intervals of the real line)
Let a,b € R. The open interval (a,b), the closed interval [a,b], and the half-open intervals [a,b)
and (a,b] from a to b are defined by

(a,b) ={xeR|a<x<b} (a,b)={xeR|a<x<b}
[a,b)={xeR|a<x<b} [a,b] ={xeR|a<x<b}

We further define the unbounded intervals (—e,a), (—oo,a], [a,o0) and (a,e°) (ILTEX code:
\infty) by

(—eo,a)={xeR|x<a} (a,0) ={x e R| x> a}
(—eo,al ={xeR|x<a} [a,00) ={x€R |x>a}
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< Example 2.1.12
The following illustration depicts the open interval (—2,5).

-2 5

The hollow circles o indicate that the endpoints are not included in the interval. <

Be warned that the use of the symbol o is misleading, since it suggests that the symbol e on its own
has a specific meaning (or, worse, that it refers to a real number). It doesn’t—it is just a symbol
that suggests unboundedness of the interval in question. A less misleading way of writing [a, ), for
instance, might be [a, —) or R>4; however, [a,0) is standard, so it is what we will write.

& Exercise 2.1.13
For each of the following illustrations, find the interval that it depicts. A filled circle e indicates that
an end-point is included in the interval, whereas a hollow circle o indicates that an end-point is not
included in the interval.

-2 5
(a) < C .

-2 5
(b) < ® o >

5

(c) <=

-2
(d) < ® >

<

Subsets

It is often the case that everything that is also an element of one set is an element of another set. For
example, every integer is a rational number; that is

VneZ,neQ
We can say this more concisely by saying that Z is a subset of Q.
4 Definition 2.1.14
Let X be a set. A subset of X is a set U such that
Va,(aeU =a€X)

We write U C X (IATX code: \subseteq) for the assertion that U is a subset of X.

Additionally, the notation U ¢ X (I5TgX code: \nsubseteq) means that U is not a subset of X, and
the notation U g X (IATEX code: \subsetneqq) means that U is a proper subset of X, that is a
subset of X that is not equal to X.
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76 Chapter 2. Sets

Strategy 2.1.15 (Proving a subset containment)
In order to prove that a set U is a subset of a set X, it suffices to take an arbitrary element a € U and
prove that a € X.

Example 2.1.16
Every set is a subset of itself—that is, X C X for all sets X. The proof of this is extremely simple: we
must prove Vx € X, x € X. But then this is trivial: let x € X, then x € X by assumption. Done! <

Example 2.1.17
Leta,b,c,d € R witha < ¢ <d < b. Then [c,d] C (a,b). Indeed, let x € [c,d]. Then ¢ < x < d. But
then

a<c<x<d<b = a<x<b

so that [c,d] C (a,b), as required. <

Exercise 2.1.18
Leta,b,c,d € R with a < b and ¢ < d. Prove that [a,b) C (c,d] ifand only ifa > cand b < d. <

Example 2.1.19
The number sets from Chapter O are related by the following chain of subset inclusions.

NCZCQCRCcCC

<

The following proposition proves a property of subsethood known as transitivity—we’ll revisit this
property in Section 5.1.

Proposition 2.1.20
LetX,Y,Zbesets. f X CYandY CZ, then X C Z.

Proof
Suppose that X C Y and Y C Z. We need to prove X C Z.

Soleta € X. Since X CY, it follows from Definition 2.1.14 that a € Y; and since Y C Z, it follows
again from Definition 2.1.14 thata € Z.

Hence X C Z, as required. Ol

Set equality

This section is all about defining sets, comparing sets, and building new sets from old, and so to
make much more progress, we first need to establish what we mean when we say that two sets are
equal.

Discussion 2.1.21
Let X and Y be sets. What should it mean to say that X and Y are equal? Try to provide a precise
definition of equality of sets before reading on. <

There are different possible notions of ‘sameness’ for sets: we might want to say that two sets X and
Y are equal when they have quite literally the same definition; or we might want to say that X and
Y are equal when they contain the same objects as elements. For instance, suppose X is ‘the set of
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all odd natural numbers’ and Y is ‘the set of all integers that are differences of consecutive perfect
squares’—in this case, the first of these characterisations of equality might lead us to say X # Y,
whereas the second would lead us to say X =Y.

Clearly, we have to state our terms at some point. And that point is now.

Axiom 2.1.22 (Set extensionality)
Let X and Y be sets. Then X =Y if and only if Va, (a € X < a € Y), or equivalently, if X C Y and
Y CX.

This characterisation of set equality suggests the following strategy for proving that two sets are
equal.

Strategy 2.1.23 (Proof by double containment)
In order to prove that a set X is equal to a set Y, it suffices to:

e Prove X C7,i.e.leta € X be an arbitrary element, and derive a € Y; and then

e Prove X DY, i.e.leta €Y be an arbitrary element, and derive a € X.

We often write ‘(C)’ and ‘(2)’ to indicate the direction of the containment being proved.

Example 2.1.24
We prove that {x € R | x> < 1} = [~1, 1] by double containment.

o (O Letae{x€R|x2< 1}. Then a € R and a® < 1, so that (1 —a)(14+a) =1—-a>>0. It
follows that either:
o l—a>0and 1+a>0,in whichcasea < 1anda > —1, so thata € [—1,1].
o l—a<0and1+a<0,inwhichcasea > 1 and a < —1, which is a contradiction since —1 < 1.
So we must have a € [—1, 1], as required.

e (D) Letac[—1,1]. Then —1 < a < 1, so |a| < 1, and hence a? = |a|2 <1l,sothata e {x R |
x? < 1}, as required.

Exercise 2.1.25
Prove that {x € R | x> < x} = (0,1). <

The set extensionality axiom has the consequence that sets are independent of the order in which
their elements appear in list notation, and they are independent of how many times a single element
is written—that is, an element of a set is only ‘counted’ once, even if it appears multiple times in list
notation. This is illustrated in the following exercise.

Exercise 2.1.26
Prove by double containment that {0,1} = {1,0} and {0,0} = {0}. <
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78 Chapter 2. Sets

Inhabitation and emptiness

Another fundamental example of a set is the empty set, which is the set with no elements. But we
have to be slightly careful about how we use the word ‘the’, since it implies uniqueness, and we
don’t know (yet) that two sets with no elements are necessarily equal. So first we will define what it
means for a set to be empty, and then we’ll show that there is exactly one empty set.

Definition 2.1.27
A set X is inhabited (or nonempty) if it has at least one element; otherwise, it is empty.

The assertion that X is inhabited is equivalent to the logical formula Ja, a € X, and the assertion that
X is empty is equivalent to the logical formula —=3a, a € X. This suggests the following strategy for
proving that a set is inhabited, or that it is empty.

Strategy 2.1.28 (Proving that a set is inhabited or empty)

In order to prove a set X is inhabited, it suffices to exhibit an element. In order to prove a set
X is empty, assume that X is inhabited—that is, that there is some element a € X—and derive a
contradiction.

In other texts, the term nonempty is more common than inhabited, but there are reasons to prefer
latter. Indeed, the statement ‘X is non-empty’ translates more directly to —(—3a, a € X), which
has an unnecessary double-negative and suggests a proof of inhabitation by contradiction. For this
reason, we use the term inhabited in this book.

Emptiness may seem like a trivial condition—and it is—but owing to its canonicity, it arises all over
the place.

Example 2.1.29

The set {x € R | 2= 2} is inhabited since, for example V2 R and \/52 = 2. However, the set
{x € Q| x* =2} is empty since, if it were inhabited, then there would be a rational number x such
that x> = 2, contrary to Proposition 0.28. <

Example 2.1.30

We observed in Example 2.1.10 that the set [0] is empty; here’s a more formal proof. Towards a
contradiction, suppose [0] is inhabited. Then there is some k € N such that 1 < k < 0. It follows that
1 < 0, which contradicts the fact that 0 < 1. Hence [0] is empty, after all. <

Exercise 2.1.31
Let a,b € R. Prove that [a,b] is empty if and only if @ > b, and that (a,b) is empty if and only if
a>b. <

The next exercise is a logical technicality, which is counterintuitive for the same reason that makes
the principle of explosion (Axiom 1.1.49) difficult to grasp. However, it is extremely useful for
proving facts about the empty set, as we will see soon in Theorem 2.1.33.

Exercise 2.1.32

Let E be an empty set and let p(x) be a predicate with one free variable x with domain of discourse
E. Show that the proposition Vx € E, p(x) is true, and that the proposition Jx € E, p(x) is false.
What does the proposition Vx € E, x # x mean in English? Is it true? <
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Thanks to the axiom of extensionality (Axiom 2.1.22), any two empty sets must be equal since they
both contain the same elements—namely, no elements at all! This is made formal in the following
theorem.

*» Theorem 2.1.33
Let E and E’ be sets. If E and E’ are empty, then E = E’.
Proof. Suppose that E and E’ are empty. The assertion that E = E’ is equivalent to
(Va€E,acE'Y\N(Na€E',acE)
ButVa € E,a € E' and Va € E’, a € E are both true by Exercise 2.1.32 since E and E’ are empty.

So E = E/, as claimed. O

Knowing that there is one and only one empty set means that we may now make the following
definition, without worrying about whether the word ‘the’ is problematic.

4 Definition 2.1.34

The empty set (also known as the null set) is the set with no elements, and is denoted by & (IATEX
code: \varnothing).

Some authors write {} instead of &, since {} is simply the empty set expressed in list notation.

%, Exercise 2.1.35
Let X be a set. Prove that @ C X. <
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80 Chapter 2. Sets

Section 2.2
Set operations

In Example 2.1.24 we noted that [0, o) is the set of all non-negative real numbers. What if we wanted
to talk about the set of all non-negative rational numbers instead? It would be nice if there was some
expression in terms of [0,c0) and Q to denote this set.

This is where set operations come in—they allow us to use previously defined sets to introduce new
sets.

Intersection (M)

The intersection of two sets is the set of things which are elements of both sets.

Definition 2.2.1
Let X and Y be sets. The (pairwise) intersection of X and Y, denoted X NY (IATEX code: \cap), is
defined by

XNY={alaeXNhaeY}

Example 2.2.2

By definition of intersection, we have x € [0,00) N Q if and only if x € [0,00) and x € Q. Since
x €[0,00) if and only if x is a non-negative real number (see Example 2.1.24), it follows that [0,00) NQ
is the set of all non-negative rational numbers. <

Exercise 2.2.3
Prove that [0,0) NZ = N. <

Exercise 2.2.4
Write down the elements of the set

{0,1,4,7}n{1,2,3,4,5}

Exercise 2.2.5
Express [—2,5)N[4,7) as a single interval. <

Proposition 2.2.6
Let X and Y be sets. Prove that X C Y if and only if XNY = X.

Proof
Suppose that X C Y. We prove X NY = X by double containment.

e (C) Suppose a € XNY. Then a € X and a € Y by definition of intersection, so in particular we
have a € X.

e (2O) Suppose a € X. Thena € Y since X C Y, so that a € X NY by definition of intersection.

Conversely, suppose that XNY = X. To prove that X CY,letac X. Thena € XNY since X =XNY,
so that a € Y by definition of intersection, as required. U
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%, Exercise 2.2.7
Let X be a set. Prove that XN @ = @. <

4 Definition 2.2.8
Let X and Y be sets. We say X and Y are disjoint if X NY is empty.

< Example 2.2.9
The sets {0,2,4} and {1,3,5} are disjoint, since they have no elements in common. <

% Exercise 2.2.10
Let a,b,c,d € R with a < b and ¢ < d. Prove that the open intervals (a,b) and (c,d) are disjoint if
andonly if b < cord < a. <

Union (U)
The union of two sets is the set of things which are elements of at least one of the sets.

4 Definition 2.2.11
Let X and Y be sets. The (pairwise) union of X and Y, denoted X UY (IATEX code: \cup), is defined
by
XUY={ala€eXVaeY}

¢ Example 2.2.12
Let E be the set of even integers and O be the set of odd integers. Since every integer is either
even or odd, EUO = Z. Note that EN O = &, thus {E, 0} is an example of a partition of Z—see
Definition 5.2.21. <

%, Exercise 2.2.13
Write down the elements of the set

{0,1,4,7}U{1,2,3,4,5}

% Exercise 2.2.14
Express [—2,5)U[4,7) as a single interval. <

The union operation allows us to define the following class of sets that will be particularly useful for
us when studying counting principles in Section 7.2.

% Exercise 2.2.15
Let X and Y be sets. Prove that X C Y ifandonly if X UY =Y. <

¢ Example 2.2.16
Let X,Y,Z be sets. We prove that X N (Y UZ) = (XNY)U(XNZ).

o (O)LetxeXN(YUZ). Thenx € X, and eitherx €Y orx € Z. If x €Y then x € XNY, and if
x € Z then x € X NZ. In either case, we have x € (XNY)U (X NZ).

e (D) Letxe (XNY)U(XNZ). Then either x € XNY or x € X NZ. In both cases we have x € X
by definition of intersection In the first case we have x € Y, and in the second case we have x € Z;
in either case, we have x € YUZ, so thatx € XN (Y UZ).
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% Exercise 2.2.17
Let X,Y,Z be sets. Prove that X U (Y NZ) = (XUY)N(XUZ). <

Indexed families of sets

We will often have occasion to take the intersection or union not of just two sets, but of an arbitrary
collection of sets (even of infinitely many sets). For example, we might want to know which real
numbers are elements of [0, 1 + %) for each n > 1, and which real numbers are elements of at least
one of such sets.

Our task now is therefore to generalise our pairwise notions of intersection and union to arbitrary
collections of sets, called indexed families of sets.

4 Definition 2.2.18
An (indexed) family of sets is a specification of a set X; for each element i of some indexing set /.
We write {X; | i € I} for the indexed family of sets.

< Example 2.2.19
The sets [0,1+ %) mentioned above assemble into an indexed family of sets, whose indexing set is
{n € N|n>1}. We can abbreviate this family of sets by

{[0,1+7) [n>1}

Observe that we have left implicit the fact that the variable n is ranging over the natural numbers and
just written ‘n > 1” on the right of the vertical bar, rather than separately defining/ = {n € N |n > 1}
and writing {[0,1+ 1) |n e I}. <

4 Definition 2.2.20
The (indexed) intersection of an indexed family {X; | i € I'} is defined by

ﬂXi ={a|Viel,aeX;} (YIEX code: \bigcap_{i \in I})
icl

The (indexed) union of {X; | i € I} is defined by

UXi={a|3iel,aeX;} (&TEX code: \bigcup_{i \in I})
iel
< Example 2.2.21
We prove that the intersection of the half-open intervals [0,14 1) forn > 1 is [0,1]. We will use the
notation ﬂ as shorthand for ﬂ

n=1 ne{xeN | x>1}

e (C)Letxe ﬂ[o,1+%).

n=1

Thenx € [0,1+ %) for all n > 1. In particular, x > 0.
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To see that x < 1, assume that x > 1—we will derive a contradiction. Since x > 1, we have
x—1>0. Let N > 1 be some natural number greater or equal to )ﬁ, so that % < x—1. Then

x>1+ %, and hence x ¢ [0,1 + %), contradicting the assumption that x € [0, 1 4+ %) foralln > 1.

So we must have x < 1 after all, and hence x € [0, 1].
e (D) Letxe[0,1].

1
To prove that x € ﬂ [0,1+ —), we need to show that x € [0,1+ 1) foralln > 1. So fix n > 1.
n
n>1
Since x € [0,1], we have x > 0 and x < 1 < 1—&—%, so that x € [O,H—%), as required.

1
Hence ﬂ [0,14 =) = [0, 1] by double containment. <
n>1 n
% Exercise 2.2.22 .
Express U [0,14 —) as an interval. <
n
n=1
% Exercise 2.2.23
Prove that (| [n] =@ and | J[n] ={keN|k>1}. <
neN neN

Indexed intersections and unions generalise their pairwise counterparts, as the following exercise
proves.

% Exercise 2.2.24
Let X; and X, be sets. Prove that

XinXa= (X% and X UX= ] X
ke2]

ke[2]
<
% Exercise 2.2.25
Find a family of sets {X,, | n € N} such that:
0 UX=N;
neN
(ii) ()X, =2;and
neN
(iii)) X;NX; # o foralli,jeN.
<

Relative complement ()

4 Definition 2.2.26
Let X and Y be sets. The relative complement of ¥ in X, denoted X \ Y (I5TzX code: \setminus),
is defined by
X\Y={xecX|x¢gY}
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Example 2.2.27
Let E be the set of all even integers. Then n € Z \ E if and only if n is an integer and 7 is not an even
integer; that is, if and only if n is odd. Thus Z \ E is the set of all odd integers.

Moreover, n € N\ E if and only if 7 is a natural number and » is not an even integer. Since the even
integers which are natural numbers are precisely the even natural numbers, N\ E is precisely the set
of all odd natural numbers. <

Exercise 2.2.28
Write down the elements of the set

{0,1,4,7}\ {1,2,3,4,5}

Exercise 2.2.29
Express [-2,5)\ [4,7) and [4,7) \ [-2,5) as intervals. <

Exercise 2.2.30
Let X and Y be sets. Prove that Y \ (Y \ X) =X NY, and deduce that X C Y if and only if ¥ \ (Y \
X)=X. <

Comparison with logical operators and quantifiers

The astute reader will have noticed some similarities between set operations and the logical operators
and quantifiers that we saw in Chapter 1.

Indeed, this can be summarised in the following table. In each row, the expressions in both columns
are equivalent, where p denotes ‘a € X’, g denotes ‘a € Y’, and r(i) denotes ‘a € X;’.

sets logic
agX -p
aeXnNy pPAq
aeXUY pVq
ac(\X; | Viel r(i)
il
ac|JX; | Jiel r(i)
il
aceX\Y | pA(—q)

This translation between logic and set theory does not stop there; in fact, as the following the-
orem shows, De Morgan’s laws for the logical operators (Theorem 1.3.24) and for quantifiers (The-
orem 1.3.28) also carry over to the set operations of union and intersection.
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«+» Theorem 2.2.31 (De Morgan’s laws for sets)
Given sets A,X,Y and a family {X; | i € I}, we have

(@ A\(XUY)=(A\X)N(A\Y);
(b) A\ (XNY) = (A\X)U(A\Y);
© A\UJXi=A\Xy);

i€l iel

@ A\Nxi=JA\x).

iel icl

Proof of (a)
Let a be arbitrary. By definition of union and relative complement, the assertion thata € A\ (X UY)
is equivalent to the logical formula

acAN—-(aeXVaeY)
By de Morgan’s laws for logical operators, this is equivalent to
acANagXNadY)
which, in turn, is equivalent to
acANagX)N(acANagY
But then by definition of intersection and relative complement, this is equivalent to

ac(A\X)N(A\Y)

Hence A\ (XUY) = (A\X)N(A\Y), as required. O
% Exercise 2.2.32

Complete the proof of de Morgan’s laws for sets. <

Power sets

4 Definition 2.2.33
Let X be a set. The power set of X, written &?(X) (I&TgX code: \mathcal{P}), is the set of all
subsets of X.

< Example 2.2.34
There are four subsets of {1,2}, namely

o, {1}, {2}, {12}

so Z(X) ={2,{1},{2},{1,2}}. <
% Exercise 2.2.35
Write out the elements of #2({1,2,3}). <

& Exercise 2.2.36
Let X be a set. Show that @ € &(X) and X € & (X). <
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. Exercise 2.2.37

Write out the elements of #(2), Z((2)) and P (P (P (9))). <

Power sets are often a point of confusion because they bring the property of being a subset of one
set to that of being an element of another, in the sense that for all sets U and X we have

UCX & Ue2(X)

This distinction looks easy to grasp, but when the sets U and X look alike, it’s easy to fall into various
traps. Here’s a simple example.

Example 2.2.38
It is true that @ C &, but false that @ € &. Indeed,

e O C @ means Vx € &, x € &; but propositions of the form Vx € &, p(x) are always true, as
discussed in Exercise 2.1.32.

o The empty set has no elements; if & € & were true, it would mean that & had an element (that
element being @). So it must be the case that & ¢ &.

<

The following exercise is intended to help you overcome similar potential kinds of confusion by
means of practice. Try to think precisely about what the definitions involved are.

Exercise 2.2.39
Determine, with proof, whether or not each of the following statements is true.

(@) P(@)e 2(2(D));

(b) o€ {{z}}

© {2} e{{2}}

@) 2(2(2)) e{2,{2,{2}}}.

Repeat the exercise with all instances of ‘€’ replaced by ‘C’. <

Product (x)

4 Definition 2.2.40

Let X and Y be sets. The (pairwise) cartesian product of X and Y is the set X x Y (I4TEX code:
\times) defined by
XxY={(a,b) |laeXNbeY}

The elements (a,b) € X x Y are called ordered pairs, whose defining property is that, for all a,x € X
and all b,y € Y, we have (a,b) = (x,y) if and only ifa =x and b = y.

& Example 2.2.41

If you have ever taken calculus, you will probably be familiar with the set R x R.

RxR={(x,y)|x,y € R}
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Formally, this is the set of ordered pairs of real numbers. Geometrically, if we interpret R as an
infinite line, the set R x R is the (real) plane: an element (x,y) € R x R describes the point in the
plane with coordinates (x,y).

We can investigate this further. For example, the following set:

R x {0} = {(x,0) |x € R}

is precisely the x-axis. We can describe graphs as subsets of R x R. Indeed, the graph of y = x? is
given by

G={(x,y) eRxR|y=x*}={(x,x*) |[xeR} CRxR

<
Exercise 2.2.42
Write down the elements of the set {1,2} x {3,4,5}. <
Exercise 2.2.43
Let X be a set. Prove that X x @ = @. <
Exercise 2.2.44

Let X, Y and Z be sets. Under what conditions is it true that X x Y =Y x X? Under what conditions
is it true that (X xY) X Z =X x (Y x Z)? <

‘We might have occasion to take cartesian products of more than two sets. For example, whatever the
set R x R x R is, its elements should be ordered triples (a,b,c) consisting of elements a,b,c € R.
This is where the following definition comes in handy.

4 Definition 2.2.45

Let n € N and let X1,X5,...,X, be sets. The (n-fold) cartesian product of X;,X5,..., X, is the set

n
[ ] Xk (8TEX code: \prod_{k=1}"{n}) defined by
k=1

n
[1%={(a1,a2,...,an) | ax € Xi forall 1 <k < n}
k=1

n
The elements (aj,az,...,a,) € HXk are called ordered k-tuples, whose defining property is that,
k=1
for all 1 < k < nand all a, by € Xi, we have (aj,az,...,a,) = (b1,b2,...,by) if and only if a; = by
forall1 <k <n.

n
Given a set X, write X" to denote the set HX . We might on occasion also write
k=1

n
X1 x Xy x - x X = [[ X
k=1

Example 2.2.46

In Exercise 2.2.44 you might have noticed that the sets (X x Y) x Z and X x (Y x Z) are not always
equal—Definition 2.2.45 introduces a third potentially non-equal cartesian product of X, ¥ and Z.
For example, consider when X =Y = Z = R. Then
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e The elements of (R x R) x R are ordered pairs ((a,b),c), where (a,b) is itself an ordered pair of
real numbers and c is a real number.

e The elements of R x (R x R) are ordered pairs (a, (b,c)), where a is a real number and (b, c) is
an ordered pair of real numbers.

e The elements of R x R x R (= R?) are ordered triples (a,b,c), where a, b and c are real numbers.

So, although these three sets appear to be the same, zooming in closely on the definitions reveals
that there are subtle differences between them. A sense in which they are the same is that there are
bijections between them—the notion of a bijection will be introduced in Section 3.2. <
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Section 2.E
Chapter 2 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Sets

2.1. Express the following sets in the indicated form of notation.

(@) {nez|] n? < 20} in list notation;

(b) {4k+3 |k € N} in implied list notation;

(c) The set of all odd multiples of six in set-builder notation;

(d) The set {1,2,5,10,17,...,n> +1,...} in set-builder notation.
2.2. Find sets X, for each n € N such that X, g X, for all n € N. Can any of the sets X, be empty?
2.3. Express the set & ({@,{@,{@}}}) in list notation.
2.4.Let X be asetand let U,V C X. Prove that U and V are disjoint if and only if U C X \ V.

2.5. For each of the following statements, determine whether or not it is true for all sets A and X,
and prove your claim.

(a) If X\ A =0, then X =A. (c) f X\A=A,thenA = 2.

(b) If X\A =X, thenA = @. (d) X\ (X\A)=A.

2.6. For each of the following statements, determine whether it is true for all sets X,Y, false for all
sets X,Y, or true for some choices of X and Y and false for others.

@) Z(XUY)=P2(X)UP(Y) © P(XxY)=P((X)x P(Y)
(b) 2(XNY)=2(X)N () @ 2(X\Y)=2(X)\ 2(Y)

2.7. Let F be a set whose elements are all sets. Prove thatif VA € F, Vx € A, x € F, then F C Z(F).

Questions 2.8 to 2.13 concern the symmetric difference of sets, defined below.

4 Definition 2.E.1

The symmetric difference of sets X and Y is the set X AY (I&IzX code: \triangle) defined by
XAY ={a|a€cX oracY butnot both}

2.8. Prove that X AY = (X \Y)U(Y'\X) = (XUY)\(XNY) for all sets X and Y.
2.9.Let X be a set. Provethat X AX =@ and X A & = X.
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2.10. Let X and Y be sets. Prove that X =Y if and only if X A Y = @.
2.11. Prove that sets X and Y are disjoint if and only if X AY =X UY.
2.12. Prove that X A (Y AZ) = (X AY)AZ for all sets X, Y and Z.
2.13. Prove that XN(Y AZ) = (XNY) A (XNZ) for all sets X, ¥ and Z.

4 Definition 2.E.2
A subset U C R is open if, for all a € U, there exists 6 > 0 such that (¢ —6,a+6) C U.

In Questions Questions 2.14 to 2.17 you will prove some elementary facts about open subsets of R.

2.14. For each of the following subsets of R, determine (with proof) whether it is open:

(a) @ (¢) (0,1]; (e) R\Z;

(b) (0,1); d Z; " Q.
2.15. Prove that a subset U C R is open if and only if, for all a € U, there exist u,v € R such that
u<a<vand (u,v) CU.

2.16. In this question you will prove that the intersection of finitely many open sets is open, but the
intersection of infinitely many open sets might not be open.
(a) Let n > 1 and suppose U;,Us,...,U, are open subsets of R. Prove that the intersection U; N
UN---NU, is open.

(b) Prove that (0,1+ %) is open for all n > 1, but that ﬂ (0,14 %) is not open.

n>1

2.17. Prove that a subset U C R is open if and only if it can be expressed as a union of open
intervals—more precisely, U C R is open if and only if, for some indexing set /, there exist real
numbers a;, b; for each i € I, such that U = U(a,-, b;).
il
2.18. Let {A, | n € N} and {B, | n € N} be families of sets such that, for all i € N, there exists some
j = isuch that B; C A;. Prove that [ | A, = ("] By.
neN neN

True—False questions

In Questions 2.19 to 2.24, determine (with proof) whether the statement is true or false.
2.19. If Eisasetand -Vx,x € E, then E = &.

2.20.If Eisasetand Vx, ~x € E, then E = &.

2.21.{1,2,3} ={1,2,1,3,2,1}

222.0€0

2.23. o € {o}

2.24. g € {{@}}.
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Always—Sometimes—Never questions

In Questions 2.25 to 2.40, determine (with proof) whether the conclusion is always, sometimes or
never true under the given hypotheses.

2.25.
2.26.
2.27.
2.28.
2.29.
2.30.
2.31.
2.32.

2.33

Let a and b be arbitrary objects. Then {a,b} = {b,a}.

Let a, b and ¢ be arbitrary objects. Then {a,b} = {a,c}.

Let X and Y be sets and suppose there is some a suchthata € X < a €Y. ThenX =Y.
Let X and Y be sets and suppose there is some a such thata € X buta €Y. Then X =Y.
Let X and Y be sets with X #Y. ThenVa,a € X = a &Y.

Let X and Y be sets with XNY = @. ThenVa,a € X =a ¢7Y.

Let X and Y be sets with X # Y. Then Ja,a € X Aa ¢7Y.

Let X and Y be sets of sets and suppose that X € Y. Then X C Y.

.Let X be a set. Then & € Z(X).
2.34.
2.35.
2.36.
2.37.
2.38.
2.39.
2.40.

Let X be a set. Then {@} € Z(X).

Let X be a set. Then {&,X} C & (X).

Let X and Y be sets such that (X)) = Z(Y). Then X =Y.

Let X and Y be sets such that X\ Y = &. Then X =Y.

LetX,Y and Z be sets such that X \Y =Zand Y CZ. Then X =Y UZ.
Let X and Y be sets. Then XUY =XNY.

Let X beasetandletA C X. ThenA € X.
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Chapter 3

Functions

If sets are the bread of mathematics, then functions are the butter. As we will see in subsequent
chapters of this book, functions are central in almost every area of mathematical study: they allow
us to transform elements of one set into elements of another, to define ‘infinity’, and to capture
real-world notions such as probability and randomness in the abstract.

It is likely (but not assumed) that you have seen functions before, such as real-valued functions in
calculus or linear transformations in linear algebra. However, we will study functions in the abstract;
the ‘inputs’ and ‘outputs’ of our functions need not be numbers, vectors or points in space; they can
be anything at all—in fact, the inputs or outputs to our functions might themselves be functions!

We introduce the notion of a function abstractly in Section 3.1. Much of our time will be spent
developing basic notions involving functions, including graphs, composition, images and preimages.

We will zoom in on two properties in particular in Section 3.2, namely injectivity and surjectivity.
These properties allow us to compare the sizes of sets we will use them extensively in Chapters 7
and 9 for doing exactly that.
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Section 3.1
Functions

One way of studying interactions between sets is by studying functions between them, which we
will define informally in Definition 3.1.1. Functions are mathematical objects which assign to each
element of one set exactly one element of another. Almost every branch of mathematics studies
functions, be it directly or indirectly, and almost every application of mathematics arises from a
translation of the abstract notion of a function to the real world. Just one example of this is the theory
of computation—functions provide precisely the language necessary to describe the deterministic
input-output behaviour of algorithms.

You might have come across the notion of a function before now. In schools, functions are often
introduced as being like machines—they have inputs and outputs, and on a given input they always
return the same output. For instance, there is a function which takes integers as inputs and gives
integers as outputs, which on the input x returns the integer x + 3.

This characterisation of functions, however, is clearly not precise enough for the purposes of math-
ematical proof. A next approximation to a precise definition of a function might look something like
this:

Definition 3.1.1
A function f from a set X to a set Y is a specification of elements f(x) € Y for x € X, such that

VxeX,3lyel, y=f(x)
Given x € X, the (unique!) element f(x) € Y is called the value of f at x.

The set X is called the domain (or source) of f, and Y is called the codomain (or target) of f. We
write f: X — Y (I&[gX code: £ : X \to Y) to denote the assertion that f is a function with domain
X and codomain Y.

This is better—we’re now talking about sets, and not mysterious ‘machines’.

Moreover, this definition establishes a close relationship between functions and the 3! quantifier:
indeed, to say that f assigns to each element of X a unique element of Y is to say precisely that

VxeX,3lyel,y=f(x)

Conversely, any true proposition of the form Vx € X, 3!y € ¥, p(x,y) defines a function f: X — Y:
the function f assigns to each x € X the unique y € Y such that p(x,y) is true. In other words,
Vx € X, p(x, f(x)) is true!

We can use this to generate some examples of functions.

Example 3.1.2
Example 1.2.27 said that every positive real number has a unique positive square root; we proved
this in Example 1.2.30. What this means is that there is a function

iR SR> whereR™’ = {xeR|x>0}
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defined by letting r(x) be the (unique) positive square root of x, for each x € R>?. That is, we have
a function r defined by r(x) = /x. <

Exercise 3.1.3

Recall Exercise 1.2.31. Which of the statements (a), (b) or (c) is of the form Vx € X, ly € ¥, p(x,y)?
For each statement of this form, determine the domain and codomain of the corresponding function,
and write an expression defining this function. <

Specifying a function

Just like with sets, there are many ways to specify a function f : X — Y, but when we do so, we must
be careful that what we write really does define a function!

This correctness of specification is known as well-definedness, and ultimately amounts to verify-
ing that the condition Vx € X, 3!y € Y, f(x) = y holds for the specification of f. Namely rotality,
existence and uniqueness:

e Totality. A value f(x) should be specified for each x € X—this corresponds to the ‘Vx € X’
quantifier in the definition of functions.

e Existence. For each x € X, the specified value f(x) should actually exist, and should be an
element of Y—this corresponds to the existence part of the ‘3!y € Y’ quantifier in the definition of
functions.

o Uniqueness. For each x € X, the specified value f(x) should refer to only one element of Y —this
corresponds to the uniqueness part of the ‘3!y € Y’ quantifier in the definition of functions.

When specifying a function, you should justify each of these components of well-definedness unless
they are extremely obvious. You will probably find that, in most cases, the only component in need
of justification is uniqueness, but keep all three in mind.

Lists. If X is finite, then we can specify a function f : X — Y by simply listing the values of f at all
possible elements x € X. For example, we can define a function

f:4{1,2,3} — {red,yellow, green, blue, purple}

by declaring

f(1)=red, f(2)=purple, f(3)=green
Note that the function is at this point completely specified: we know its values at all elements of the
domain {1,2,3}. It doesn’t matter that some of the elements of the codomain (yellow and blue) are
unaccounted for—all that matters is that each element of the domain is associated with exactly one
element of the codomain.

Unfortunately, most of the sets that we work with will be infinite, or of an unspecified finite size; in
these cases, simply writing a list of values isn’t sufficient. Fortunately for us, there are other ways
of specifying functions.

Formulae. In many cases, particularly when the domain X and codomain Y are number sets, we
can define a function by giving a formula for the value of f(x) for each x € X. For example, we can
define a function f : R — R by letting

f(x) =x*+3forallx e R
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By cases. It will at times be convenient to define a function using different specifications for different

elements of the domain. A very simple example is the absolute value function |—| : R — R, defined
forxeR
X ifx>0
x| = .
—x ifx<0

Here we have split into two cases based on the conditions x > 0 and x < 0.
When specifying a function f : X — Y by cases, it is important that the conditions be:

e exhaustive: given x € X, at least one of the conditions on X must hold; and

e compatible: if any x € X satisfies more than one condition, the specified value must be the same
no matter which condition is picked.

For the absolute value function defined above, these conditions are satisfied. Indeed, for x € R, it
is certainly the case that x > 0 or x < 0, so the conditions are exhaustive. Moreover, given x € R,
if both x > 0 and x < 0, then x = 0—so we need to check that the specification yields the same
value when x = 0 regardless of which condition we pick. The x > 0 condition yields the value 0,
and the x < 0 condition yields the value —0, which is equal to 0—so the conditions are compatible.
We could have used x < 0 instead of x < 0; in this case the conditions are mutually exclusive, so
certainly compatible because they do not overlap.

Algorithms. You might, on first exposure to functions, have been taught to think of a function as a
machine which, when given an input, produces an output. This ‘machine’ is defined by saying what
the possible inputs and outputs are, and then providing a list of instructions (an algorithm) for the
machine to follow, which on any input produces an output—and, moreover, if fed the same input,
the machine always produces the same output.

For example, we might instruct a machine to take rational numbers as inputs and give rational num-
bers as outputs, and to follow the following sequence of steps on a given input

multiply by 2 — add 5 — square the result — divide by 6

This ‘machine’ defines a function M : Q — Q which, in equation form, is specified by

(2x+5)?

M(x) = forallx e Q

In our more formal set-up, therefore, we can define a function M : I — O by specifying:

e aset / of all inputs;
e aset O of potential outputs; and

e a deterministic!? algorithm which describes how an input x € I is transformed into an output
M(x) € 0.

That is, the domain is the set I of all possible ‘inputs’, the codomain is a set O containing all
the possible ‘outputs’, and the function M is a rule specifying how an input is associated with the
corresponding output.

[2The word ‘deterministic’ just means that the algorithm always produces the same output on a single input.
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For now, we will use algorithmic specifications of functions only sparingly—this is because it is
much harder to make formal what is meant by an ‘algorithm’, and it is important to check that a
given algorithm is deterministic.

Function equality

In Section 2.1 we discussed how there may be many different possible ways of characterising equal-
ity of sets. This matter was resolved by declaring that two sets are equal if and only if they have the
same elements (this was Axiom 2.1.22).

A similar matter arises for functions. For example, consider the function f : R — R defined by
f(x) =2xfor all x € R, and the function g : R — R, defined by letting g(x) be the result of taking x,
multiplying it by three, dividing the result by four, dividing the result by six, and then multiplying
the result by sixteen. It so happens that g(x) = 2x for all x € R as well, but that is not how g is
defined; moreover, if f and g were implemented as algorithms, then it would take longer to compute
the values of g than it would take to compute the values of f.

Should we consider f and g to be equal? If we are only interested in whether f and g have the same
values on each argument, then the answer should be ‘yes’; if we are interested in the algorithmic
behaviour of f and g, then the answer should be ‘no’.

We resolve this dilemma with the following axiom. By adopting this axiom, we are stating that the

functions f and g discussed above are equal.

¢ Axiom 3.1.4 (Function extensionality)
Let f: X — Y and g: A — B be functions. Then f = g if and only if the following conditions hold:

i) X=AandY =B; and

(ii) f(x) =g(x) forallx € X.

0,
0‘0

Strategy 3.1.5 (Proving two functions are equal)
Given functions f,g : X — Y with the same domain and codomain, in order to prove that f = g, it
suffices to prove that f(x) = g(x) for all x € X.

A consequence of Axiom 3.1.4 is that, for fixed sets X and Y, a function X — Y is uniquely de-
termined by its input-output pairs. This set is called the graph of the function; the proof of the
equivalence between functions and their graphs is the content of Theorem 3.1.9.

4 Definition 3.1.6
Let f: X — Y be a function. The graph of f is the subset Gr(f) C X x ¥ (I5TgX code: \mathrm{Gr})
defined by

Gr(f) ={(x,f(x)) [ x € X} = {(x,y) X xY |y = f(x)}

¢ Example 3.1.7
Given a (sufficiently well-behaved) function f : R — R, we can represent Gr(f) C R x R by plotting
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it on a pair of axes using Cartesian coordinates in the usual way. For example, if f is defined by
f(x) = 3 forall x € R, then its graph

can be represented by graph plot in Figure 3.1.
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Figure 3.1: Graph of the function f : R — R defined by f(x) = 5 forall x € R

% Exercise 3.1.8
Find a function f : Z — Z whose graph is equal to the set

{-..,(=2,-5),(-1,-2),(0,1),(1,4),(2,7),(3,10),...}

<

Theorem 3.1.9 below provides a way of verifying that a function is well-defined by characterising
their graphs.

+#+ Theorem 3.1.9
Let X and Y be sets. A subset G C X X Y is the graph of a function if and only if
VxeX,3lyeY, (x,y)€G

Proof

(=). Suppose G C X x Y is the graph of a function, say G = Gr(f) for some f : X — Y. Then for
each x € X, it follows from well-definedness of f that f(x) is the unique element y € Y for which
(x,y) € G. That s, (x, f(x)) € G, and if y € Y with (x,y) € G, then y = f(x).
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(«<). Suppose G C X x Y satisfies Vx € X,y € ¥, (x,y) € G. Define a function f : X — Y by,
for each x € X, defining the value f(x) to be the unique element y € Y for which (x,y) € G. Well-
definedness of f is then immediate from our assumption of the existence and uniqueness of such a
value of y for each x € X. U

Example 3.1.10
The set G defined by
G ={(1,red),(2,red),(3,green)}

is the graph of a function f: {1,2,3} — {red, green,blue}. The function f is defined by

f(1)=red, f(2)=red, f(3)=green

However, G is not the graph of a function {1,2,3,4} — {red,green,blue}, since G contains no
elements of the form (4,y) for y € {red, green, blue}. Moreover, the set G’ defined by

G ={(1,red),(2,red), (2,blue), (3,green) }
does not define the graph of a function {1,2,3} — {red,green,blue}, since there is not a unique
element of the form (2,y) in G'—rather, there are two of them! <

Exercise 3.1.11
For each of the following specifications of sets X, Y, G, determine whether or not G is the graph of
a function from X to Y.

(@ X=R,Y=R,G={(a,a*) |a e R};

b) X=R,Y =R, G={(d?a)|acR};

(©) X =RV Y =R>", G={(a%a)|ac R}, where R*® = {x e R | x > 0};
D X=QY=Q G6G={(x,y) eQxQ[xy=1}

e) X=Q,Y=Q,G={(a,a) |acZ};

<

Aside

In light of Theorem 3.1.9, some people choose to define functions X — Y as particular subsets of
X x Y—that is, they identify functions with their graphs. This is particularly useful when studying
the logical foundations of mathematics. We avoid this practice here, because it is not conceptually
necessary, and it would preclude other possible ways of encoding functions. <

We will now look at some more examples (and non-examples) of functions.

Example 3.1.12

Example 1.2.27 gives a prime example of a function: it says that for every positive real number a
there is a unique positive real number b such that b> = a. This unique b is precisely the positive
square root y/a of a. Writing R>? for the set of positive real numbers, we have thus established that
taking the positive square root defines a function R~ — R>0, <

There is a class of functions called identity functions that, despite being very simple, are so important
that we will give them a numbered definition!
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Definition 3.1.13
Let X be a set. The identity function on X is the function idy : X — X (IXIEX code:
\mathrm{id}_X) defined by idy (x) = x for all x € X.

You should convince yourself that the specification of idy given in Definition 3.1.13 is well-defined.

Another interesting example of a function is the empty function, which is useful in coming up with
counterexamples and proving combinatorial identities (see Section 7.2).

Definition 3.1.14
Let X be a set. The empty function with codomain X is the (unique!) function & — X. It has no
values, since there are no elements of its domain.

Again, you should convince yourself that this specification is well-defined. Conceptually, convincing
yourself of this is not easy; but writing down the proof of well-definedness is extremely easy—you
will find that there is simply nothing to prove!

Example 3.1.15

Define f : R — R by the equation f(x)? = x for all x € R. This is not well-defined for a few reasons.
First, if x < O then there is no real number y such that y2 = x, so for x < O there are no possible
values of f(x) in the codomain of f, so existence fails. Second, if x > 0 then there are in fact two real
numbers y such that y> = x, namely the positive square root /x and the negative square root —+/x.
The specification of f does not indicate which of these values to take, so uniqueness fails.

Notice that the function r : R>? — R>? from Example 3.1.2 is (well-)defined by the equation r(x)? =
x for all x € R>Y. This illustrates why it is very important to specify the domain and codomain when
defining a function. <

Exercise 3.1.16
Which of the following specifications of functions are well-defined?

(a) g:Q — Q defined by the equation (x+ 1)g(x) =1 for all x € Q;
(b) h:N— Q defined by (x+ 1)h(x) =1forallx € N;

(¢) k:N— Ndefined by (x+1)k(x) =1forallx € N;

(d) ¢:N — N defined by ¢(x) = ¢(x) for all x € N.

<

% Exercise 3.1.17

Find a condition on sets X and Y such that the specification of a function i : X UY — {0, 1} given by

)= {0 ifzeX

1 ifzeY

to be well-defined. <
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Composition of functions

In our section on sets, we talked about various operations that can be performed on sets—union,
intersection, and so on. There are also operations on functions, by far the most important of which is
composition. To understand how composition works, let’s revisit the algorithmically defined func-
tion M : Q — Q from page 96:

multiply by 2 — add 5 — square the result — divide by 6

The function M is, in some sense, a sequence of functions, performed one-by-one until the desired
result is reached. This is precisely composition of functions.

Definition 3.1.18
Given functions f: X — Y and g : Y — Z, their composite go f (I&I5X code: g \circ f) (read ‘g
composed with f~ or ‘g after f” or even just ‘g f”) is the function go f : X — Z defined by

(g0£)(x) = g(f(x)) forall x € X

Intuitively, g o f is the function resulting from first applying f, and then applying g, to the given
input.

Common error

Function composition is in some sense written ‘backwards’: in the expression go f, the function
which is applied first is written last—there is a good reason for this: the argument to the function is
written after the function! However, this mis-match often trips students up on their first exposure to
function composition, so be careful! <

Example 3.1.19
The function M from page 96 can be defined as the composite

M= ((koh)og)of
where

e f:Q — Qisdefined by f(x) =2x forall x € Q;
e g:Q — Qis defined by g(x) = x+ 5 forall x € Q;
e h:Q — Qis defined by A(x) = x> for all x € Q;
o k:Q — Qis defined by k(x) = ¢ forall x € Q.
<

Exercise 3.1.20
Let f,g,h,k: Q@ — Q be as in Example 3.1.19. Compute equations defining the following compos-
ites:

(@) fog
(b) gof;
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(©) ((fog)oh)ok;
(d) fo(go(hok));
(e) (gog)o(gog)-

<
¢ Example 3.1.21
Let f: X — Y be any function. Then
idyof=f=foidyx
To see this, let x € X. Then
(idy o f)(x) = idy (f(x)) by definition of composition
=f(x) by definition of idy
= f(idx (x)) by definition of idy
= (foidy)(x) by definition of composition
Equality of the three functions in question follows. <

& Exercise 3.1.22
Prove that composition of functions is associative, thatis,if f : X —Y,g:Y —-Zand h:Z — W are
functions, then
ho(gof)=(hog)of: X > W
As a consequence of associativity, when we want to compose more than two functions, it doesn’t
matter what order we compose the functions in. As such, we can just write hogo f. <

% Exercise 3.1.23
Let f: X — Y and g : Z — W be functions, and suppose that Y ; Z. Note that there is a function
h:X — W defined by h(x) = g(f(x)) for all x € X. Write & as a composite of functions involving f
and g. <

Characteristic functions

A class of functions that are particularly useful for proving results about sets are characteristic
functions.

4 Definition 3.1.24
Let X be a set and let U C X. The characteristic function of U in X is the function y : X — {0,1}
(I&TgX code: \chi_{U}) defined by

@_{ ifacu
a) =
4 0 ifagU

< Example 3.1.25
Consider the subset U = {1,3,5} C [6]. Then the values of the characteristic function xy : [6] —
{0,1} are given by

xu(2) =0

X 1

1 XU 1
=0 Xu(6) =0
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<
*#» Theorem 3.1.26
LetX beasetandlet U,V C X. Then U =V if and only if xy = xv.
Proof
e (=) Assume U =V and leta € X. Then
xv(a)=1<aclU by definition of yy
SacV sinceU =V
S qvla)=1 by definition of yy
Likewise xy(a) = 0 if and only if xy (a) = 0, so that yy = xv by function extensionality.
e (<) Assume Yy = xv and let a € X. Then
aclU<yyla)=1 by definition of yy
< v(a) =1 since xu = xv
SacV by definition of )y
so U =V by set extensionality.
O
% Strategy 3.1.27 (Proving set identities using characteristic functions)
In order to prove that two subsets U and V of a set X are equal, it suffices to prove that yy = xv.
*#» Theorem 3.1.28
Let X be asetand let U,V C X. Then
@ 2unv(a) = xu(a)xv(a) forall a € X;
(b) xvuv(a) = xu(a)+ xv(a) — xu(a)xv(a) for all a € X;
(© xx\w(a)=1-yu(a)forallacX.
Proof of (a)
Let a € X. Since the only values that Xy (a) and Xy (a) can take are 0 and 1, we have
1 if yy(a)=1and xy(a) =1
(@) (@) = (.) “
0 otherwise
But xy(a) = 1 ifand only if @ € U and yy(a) = 1 if and only if a € V, so that
(@)1 (@) 1 ifaecUNV
a a) =
Xu\a)xy 0 ifagUunV
This is exactly to say that xy (a)xv(a) = xunv(a), as required. O
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% Exercise 3.1.29
Prove parts (b) and (c) of Theorem 3.1.28. <

Theorem 3.1.28 can be used in conjunction with Strategy 3.1.27 to prove set theoretic identities
using their characteristic functions.

¢ Example 3.1.30
In Example 2.2.16 we proved that X N (Y UZ) = (XNY)U (X NZ) for all sets X, Y and Z. We prove
this again using characteristic functions, considering X, Y and Z as subsets of a universal set 7.

Soleta € U. Then

Axn(yuz) (a)

= xx(a)xruz(a) by Theorem 3.1.28(a)
= xx(a)(xy (@) + xz(a) — xy(a) xz(a)) by Theorem 3.1.28(b)
= xx(a)xy(a) + xx(a)xz(a) — xx(a)xy (a)xz(a) rearranging

= xx () 2y (a) + xx (@) xz(a) — xx (@) 2y (@) Xz(a) since xx(a)” = xx(a)
= xxrv (@) + xxnz(a) — xxnv (@) xxnz(a) by Theorem 3.1.28(a)
= Xxrv)uxnz) (@) by Theorem 3.1.28(b)

Using Strategy 3.1.27, it follows that XN (Y UZ) = (X NY)U (X NZ). <

& Exercise 3.1.31
Use characteristic functions to prove de Morgan’s laws for pairwise unions and intersections (The-
orem 2.2.31). <

Images and preimages

4 Definition 3.1.32
Let f: X — Y be a function and let U C X. The image of U under f is the subset f[U] C Y (also
written f,(U) (IXTX code: £_*) or even just f(U)) is defined by

flUI={fx) |xeU}={yeY|[Ixel,y=f(x)}
That is, f[U] is the set of values that the function f takes when given inputs from U.
The image of f is the image of the entire domain, i.e. the set f[X].

¢ Example 3.1.33
Let f: R — R be defined by f(x) = x2. The image of f is the set R>? of all nonnegative real
numbers. Let’s prove this:

o (f[R] CR?Y). Lety € f[R]. Then y = x* for some x € R. But x> > 0, so we must have y € R>,
as required.

o (R®YC f[R]). Lety € R*. Then ,/y € R, and y = (,/y)*> = f(/7)- Hence y € f[R], as required.

We have shown by double containment that f[R] = R>?, <

% Exercise 3.1.34
For each of the following functions f and subsets U of their domain, describe the image f[U].
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(a) f:7Z — Z defined by f(n) =3n, withU =N;
(b) f:X — X x X (where X is any set) defined by f(x) = (x,x) with U = X;
(©) f:{a,b,c} —{1,2,3} defined by f(a) =1, f(b) =3 and f(c) = 1, with U = {a,b,c}.

% Exercise 3.1.35
Prove that f[@] = & for all functions f. <

¢ Example 3.1.36
Let f: X — Y be a function and let U,V C X. Then f[UNV] C flU]N f[V]. To see this, let
y € flUNV]. Then y = f(x) for some x € UNV. By definition of intersection, x € U and x € V.
Since x € U and y = f(x), we have y € f[U]; likewise, since x € V, we have y € f[V]. But then by
definition of intersection, we have y € f[U]N f[V]. <

% Exercise 3.1.37
Let f: X — Y be a function and let U,V C X. We saw in Example 3.1.36 that f[UNV] C f[U]N f[V].
Determine which of the following is true, and for each, provide a proof of its truth or falsity:

@ fUlnfivic riunvi;
(b) flUVV]C fIUIUSV];
(© flUJUfVIC flUUV].

4 Definition 3.1.38
Let f: X — Y be a function and let V C Y. The preimage of V under f is the subset f~![V] (IATEX
code: £°{-1}) (also written f*(V) (I&TigX code: £~*), or just f~!(V)) is defined by

fTVI={xeX|fx)eVvi={xeX | eV, fx) =y}

That is, f~![V] is the set of all the elements of its domain X that the function f sends to elements of
V.

< Example 3.1.39
Let f : Z — 7Z be the function defined by f(x) = x? for all x € X. Then

o f1{1,4,9}] ={-3,-2,-1,1,2,3};

o 711{1,2,3,4,5,6,7,8,9}] = {—3,—2,—1,1,2,3} too, since the other elements of [9] are not per-
fect squares, and hence not of the form f(x) for x € Z;

e f![N] = Z, since for any x € Z we have f(x) > 0, so that f(x) € N.

<

< Example 3.1.40
Let f: X — Y be a function, let U C X and let V C Y. Then f[U] C V if and only if U C f~![V].
The proof is as follows.
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(=). Suppose f[U] C V; we’ll prove U C f~![V]. So fix x € U. Then f(x) € f[U] by definition
of image. But then f(x) € V by our assumption that f[U] C V, and so x € f~![V] by definition of
preimage. Since x was arbitrarily chosen from U, it follows that U C f~![V].

(«<=). Suppose U C f~![V]; we’ll prove f[U] C V. So fix y € f[U]. Then y = f(x) for some x € U
by definition of image. But then x € f~![V] by our assumption that U C f~![V], and so f(x) € V
by definition of preimage. But y = f(x), so y € V, and since y was arbitrarily chosen, it follows that
flU]CV. <

The following exercise demonstrates that preimages interact very nicely with the basic set operations
(intersection, union and relative complement):

% Exercise 3.1.41
Let f: X — Y be a function. Prove that f~'[@] = @ and f~![Y] = X. <

% Exercise 3.1.42
Let X be a set. Prove that every function f : X — {0,1} is the characteristic function of the subset

S ex. <
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Section 3.2
Injections and surjections

To motivate some of the definitions to come, look at the dots (e) and stars (x) below. Are there more
dots or more stars?

Pause for a second and think about how you knew the answer to this question.
Indeed, there are more dots than stars. There are a couple of ways to arrive at this conclusion:

(1) You could count the number of dots, count the number of stars, and then compare the two
numbers; or

(i1) You could notice that the dots and the stars are evenly spaced, but that the line of dots is longer
than the line of stars.

It is likely that you chose method (ii). In fact, it is likely that you haven’t even counted the number
of dots or the number of stars yet—and you don’t need to! We can conclude that there are more dots
than stars by simply pairing up dots with stars—we eventually run out of stars, and there are still
dots left over, so there must have been more dots than stars.

Injectivity

One way of formalising this act of pairing up stars with dots mathematically is to define a function
f: 8§ — D from the set S of stars to the set D of dots, where the value of f at each star is the dot that
it is paired with. We of course must do this in such a way that each dot is paired with at most one
star:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

It is a property of this function—called injectivity—that allows us to deduce that there are more dots
than stars.

Intuitively, a function f : X — Y is injective if it puts the elements of X in one-to-one correspondence
with the elements of a subset of Y—just like how the stars are in one-to-one correspondence with a
subset of the dots in the example above.
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Definition 3.2.1
A function f : X — Y is injective (or one-to-one) if

VYa,be X, f(a)=f(b) =a=b

An injective function is said to be an injection.

Strategy 3.2.2 (Proving a function is injective)
In order to prove that a function f : X — Y is injective, it suffices to fix a,b € X, assume that
f(a) = f(b), and then derive a = b.

By contraposition, f : X — Y being injective is equivalent to saying, for all a,b € X, if a # b, then
f(a) # f(b). This is usually less useful for proving that a function is injective, but it does provide a
good intuition—it says that f sends distinct inputs to distinct outputs.

The following is a very simple example from elementary arithmetic:

Example 3.2.3

Define f : Z — Z by letting f(x) = 2n+ 1 for all n € Z. We’ll prove that f is injective. Fix m,n € Z,
and assume that f(m) = f(n). By definition of f, we have 2m+ 1 = 2n+ 1. Subtracting 1 yields
2m = 2n, and dividing by 2 yields m = n. Hence f is injective. <

The following example is slightly more sophisticated.

Proposition 3.2.4
Let f: X — Y and g: Y — Z be functions. If f and g are injective, then go f is injective.

Proof
Suppose that f and g are injective and let a,b € X. We need to prove that

(gof)(a) =(gof)(b) = a=b

So assume (go f)(a) = (go f)(b). By definition of function composition, this implies that g(f(a)) =
g(f(b)). By injectivity of g, we have f(a) = f(b); and by injectivity of f, we have a = b. O

Exercise 3.2.5
Let f: X — Y and g: Y — Z be functions. Prove that if g o f is injective, then f is injective. <

Exercise 3.2.6

Write out what it means to say a function f : X — Y is not injective, and say how you would prove
that a given function is not injective. Give an example of a function which is not injective, and use
your proof technique to write a proof that it is not injective. <

Exercise 3.2.7
For each of the following functions, determine whether it is injective or not injective.

e f:N = Z, defined by f(n) =n? forall n € N.
e g:7Z — N, defined by g(n) = n* forall n € Z.
o h:NxNxN— N, defined by h(x,y,z) =2%-3”-5% for all x,y,z € N.
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. Exercise 3.2.8

Let a,b € R with b # 0, and define f: R — R by f(r) = a+ br for all r € R. Prove that f is
injective. <

Surjectivity

Let’s revisit the rows of dots and stars that we saw earlier. Beforehand, we made our idea that there
are more dots than stars formal by proving the existence of an injection f : § — D from the set S of
stars to the set D of dots.

However, we could have drawn the same conclusion instead from defining a function D — S, which
in some sense covers the stars with dots—that is, every star is paired up with at least one dot.

T

This property is called surjectivity—a function f : X — Y is surjective if every element of Y is a
value of f. This is made precise in Definition 3.2.9.

Definition 3.2.9
A function f : X — Y is surjective (or onto) if

Vye?Y, IxeX, f(x)=y

A surjective function is said to be a surjection.

Strategy 3.2.10
To prove that a function f : X — Y is surjective, it suffices to take an arbitrary element y € Y and, in
terms of y, find an element x € X such that f(x) =y.

In order to find x, it is often useful to start from the equation f(x) =y and derive some possible
values of x. But be careful—in order to complete the proof, it is necessary to verify that the equation
f(x) =y is true for the chosen value of x.

Example 3.2.11
Fix n € Nwith n > 0, and define a function r: Z — {0, 1,...,n— 1} by letting r(a) be the remainder of
a when divided by n (see Theorem 0.18). This function is surjective, since for each k € {0,1,...,n—
1} we have r(k) = k. <
Exercise 3.2.12

For each of the following pairs of sets (X,Y), determine whether the function f : X — Y defined by
f(x) =2x+1is surjective.

(@) X=ZandY = {x€Z|xis odd};
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(b) X=ZandY =7,
(©) X=QandY =Q;
(d) X=RandY =R.

% Exercise 3.2.13
Let f: X — Y be a function. Find a subset V C Y and a surjection g : X — V agreeing with f (that

is, such that g(x) = f(x) for all x € X). <
% Exercise 3.2.14
Let f : X — Y be a function. Prove that f is surjective if and only if ¥ = f[X] <

% Exercise 3.2.15
Let f: X — Y be a function. Prove that there is a set Z and functions

p:X—Z7Z and i:Z—Y

such that p is surjective, i is injective, and f =io p. <

% Exercise 3.2.16
Let f: X — Z(X) be a function. By considering the set B= {x € X | x & f(x)}, prove that f is not
surjective. <

Bijectivity

Bijective functions formalise the idea of putting sets into one-to-one correspondence—each element
of one set is paired with exactly one element of another.

4 Definition 3.2.17
A function f : X — Y is bijective if it is injective and surjective. A bijective function is said to be a
bijection.

% Proof tip
To prove that a function f is bijective, prove that it is injective and surjective. <

¢ Example 3.2.18
Let D C Q be the set of dyadic rational numbers, that is

D{xGQ

x;lforsomeaEZandnEN}

Let k € N, and define f: D — D by f(x) = 5. We will prove that f is a bijection.
o (Injectivity) Fix x,y € D and suppose that f(x) = f(y). Then zx—k = %, so that x =y, as required.

e (Surjectivity) Fix y € D. We need to find x € D such that f(x) = y. Well certainly if 2¥y € D then
we have

so it suffices to prove that 2¥y € D. Since y € D, we must have y = 5 for some n € N.
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o Ifkgnthenn—keNandSOZky:2n",k eD.

o Ifk>nthenkfn>0and2ky:2k_"aGZ; but Z C D since if a € Z then a = 2“—0 So again
we have 2¢y € D.

In both cases we have 2fy € D; and f (2ky) =1, so that f is surjective.

Since f is both injective and surjective, it is bijective. <
Exercise 3.2.19
Let X be a set. Prove that the identity function idy : X — X is a bijection. <
Exercise 3.2.20

Letn € Nand let {X; | I <k < n} be afamily of sets. Prove by induction on # that there is a bijection
n+1 n

1% — X | x X, <
k=1 k=1

Exercise 3.2.21

Let f: X — Y and g: Y — Z be bijections. Prove that go f is a bijection. <

Inverses

Our next goal is to characterise injections, surjections and bijections in terms of other functions,
called inverses.

Recall Definition 3.2.1, which says that a function f : X — Y is injective if, for all a,b € X, if
f(a) = f(b) thena =b.

Exercise 3.2.22
Let f: X — Y be a function. Prove that f is injective if and only if

Vye fIX],3xeX,y= f(x)

<

Thinking back to Section 3.1, you might notice that this means that the logical formula ‘y = f(x)’
defines a function f[X] — X—specifically, if f is injective then there is a function g : f[X] — X which
is (well-)defined by specifying x = g(f(x)) for all x € X. Thinking of f as an encoding function,
we then have that g is the corresponding decoding function—decoding is possible by injectivity of
f. df f were not injective then distinct elements of X might have the same encoding, in which case
we’re stuck if we try to decode them!)

Exercise 3.2.23

Define a function e : N x N — N by e(m,n) = 2™ -3". Prove that e is injective. We can think of
e as encoding pairs of natural numbers as single natural numbers—for example, the pair (4,1) is
encoded as 2*-3! = 48. For each of the following natural numbers k, find the pairs of natural
numbers encoded by e as k:

1 24 7776 59049 396718580736
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In Exercise 3.2.23, we were able to decode any natural number of the form 2 - 3" for m,n € N. This
process of decoding yields a function

d:{keN|k=2".3"forsome m,n € N} - NxN

What would happen if we tried to decode a natural number not of the form 2™ - 3" for m,n € N, say
5 or 100? Well... it doesn’t really matter! All we need to be true is that d(e(m,n)) = (m,n) for all
(m,n) € N x N; the value of d on other natural numbers is irrelevant.

4 Definition 3.2.24
Let f: X — Y be a function. A left inverse (or post-inverse) for f is a function g : ¥ — X such that

gof=idy.

¢ Example 3.2.25
Lete: N x N — N be as in Exercise 3.2.23. Define a function d : N — N x N by

d(k) = (m,n) if k=2".3" for some m,n € N
- (0,0) otherwise

Note that d is well-defined by the fundamental theorem of arithmetic (Theorem 6.2.12). Moreover,
given m,n € N, we have
d(e(m,n)) =d(2"-3") = (m,n)

and so d is a left inverse for e. <

% Exercise 3.2.26
Let f: X — Y be a function. Prove that if f has a left inverse, then f is injective. <

Exercise 3.2.26 gives us a new strategy for proving that a function is injective.

% Strategy 3.2.27 (Proving a function is injective by finding a left inverse)
In order to prove that a function f : X — Y is injective, it suffices to find a function g : ¥ — X such
that g(f(x)) = x for all x € X.

It would be convenient if the converse to Exercise 3.2.26 were true—and it is, provided that we
impose the condition that the domain of the function be inhabited.

{* Proposition 3.2.28
Let f: X — Y be a function. If f is injective and X is inhabited, then f has a left inverse.

Proof
Suppose that f is injective and X is inhabited. Fix xo € X—note that this element exists since X is
inhabited—and define g : Y — X as follows.

x ify= f(x) for some x € X
gly) = :
xo otherwise

The only part of the specification of g that might cause it to fail to be well-defined is the case when
y = f(x) for some x € X. The reason why g is well-defined is precisely injectivity of f: if y = f(x)
for some x € X, then the value of x € X for which y = f(x) is unique. (Indeed, if a € X satisfied
y = f(a), then we’d have a = x by injectivity of f.)
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So g is indeed well-defined. To see that g is a left inverse for f, let x € X. Letting y = f(x), we see
that y falls into the first case in the specification of g, so that g(f(x)) = g(y) = a for the value of
a € X for which y = f(a)—but as noted above, we have a = x by injectivity of f. O

% Exercise 3.2.29
Let f: X — Y be a function with left inverse g : ¥ — X. Prove that g is a surjection. <

We established a relationship between injections and left inverses in Exercise 3.2.26 and proposi-
tion 3.2.28, so it might come as no surprise that there is a relationship between surjections and right
inverses.

4 Definition 3.2.30
Let f: X — Y be a function. A right inverse (or pre-inverse) for f is a function g : ¥ — X such that
fog=idy.

¢ Example 3.2.31
Define f : R — R> by f(x) = x*. Note that f is surjective, since for each y € R*? we have VYER
and f(,/y) = y. However f is not injective; for instance

f=1)=1=f(1)

Here are three right inverses for f:

The positive square root function g : R*? — R defined by g(y) = Vyforally e R>°. Indeed, for
each y € R*" we have

Fe0) =f(V3) = (Vy)* =y

The negative square root function / : R*? — R defined by h(y) = —y/yforallye R>Y, Indeed,
for each y € R*? we have

The function k : R*® — R defined by

VY if 2n <y <2n+1forsomen €N
k(y) = .
—y/y otherwise

Note that k is well-defined, and again f(k(y)) = y for all y € R*? since no matter what value k(y)
takes, it is equal to either |/y or —,/y.

There are many more right inverses for f—in fact, there are infinitely many more! <

& Exercise 3.2.32

Let f: X — Y be a function. Prove that if f has a right inverse, then f is surjective. <

Strategy 3.2.33 (Proving a function is surjective by finding a right inverse)
In order to prove that a function f : X — Y is surjective, it suffices to find a function g : ¥ — X such

that f(g(y)) =y forally €Y.
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Interlude: the axiom of choice

It would be convenient if the converse to Exercise 3.2.32 were true—that is, if f : X — Y is surjective,
then it has a right inverse. Let’s examine what a proof of this fact would entail. The fact that
f X —Y is surjective can be expressed as

VyeY,IxeX, f(x)=y

A right inverse would be a function g : ¥ — X, so by Definition 3.1.1, it must satisfy the following
condition
VyeY,AxeX, gly)=x

The temptation is therefore to construct g : ¥ — X as follows. Let y € Y. By definition of surjectivity,
there exists some x € X such that f(x) = y—define g(y) to be such an element x. Then we have

f(g(y)) = f(x) =y, as required.

There is an extremely subtle—but important—issue with this construction.

By choosing g(y) to be a fixed element of X such that f(x) =y, we are assuming ahead of time that
there is a mechanism for choosing, for each y € Y, a unique element of f~![{y}] to be the value of
g(y). In other words we are assuming that some statement R(x,y) satisfies the property

VyeY,3xeX, xe f{y} ARx,Y)]

But by Definition 3.1.1, this assumption is saying exactly that there exists a function ¥ — X that
associates to each y € Y an element x € X such that f(x) = y.

To state this in plainer terms: we tried to prove that there exists a right inverse for f by assuming
that there exists a right inverse for f. Evidently, this is not a valid proof strategy.

Surprisingly, it turns out that neither the assumption that every surjection has a right inverse, nor the
assumption that there exists a surjection with no right inverse, leads to a contradiction. As such, the
assertion that every surjection has a right inverse is provably unprovable, although the proof that it
is unprovable is far beyond the scope of this textbook.

Nonetheless, the construction of a right inverse that we gave above didn’t feel like we were abusing
the fabric of mathematics and logic.

The essence of the proof is that if a statement of the form Va € A, 3b € B, p(a,b) is true, then we
should be able to define a function 4 : A — B such that p(a,h(a)) is true for all a € A: the function i
‘chooses’ for each a € A a particular element b = h(a) € B such that p(a,b) is true.

What makes this possible is to axiom of choice, stated precisely below.

Axiom 3.2.34 (Axiom of choice)

Let {X; | i € I'} be a family of inhabited sets. Then there is a function 4 : [ — UXi such that A(i) € X;
icl

foreachicl.

There are reasons to keep track of the axiom of choice:
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e The axiom of choice is perhaps the strangest assumption that we make—most of the other axioms
that we have stated have been ‘evidently true’, but this is not the case for the axiom of choice;

e There are fields of mathematics which require the translation of results about sets into results
about other kinds of objects—knowing whether the axiom of choice is necessary to prove a result
tells us whether this is possible;

e The axiom of choice is highly non-constructive: if a proof of a result that does not use the axiom
of choice is available, it usually provides more information than a proof of the same result that
does use the axiom of choice.

With this in mind, when we need to invoke the axiom of choice to prove a result, we will mark the
result with the letters AC. This can be freely ignored on first reading, but readers may find it useful
when using this book as a reference at a later date.

Proposition”® 3.2.35

Let X and Y be sets and let p(x,y) be a logical formula with free variables x € X and y € Y. If
Vx € X,Vy €Y, p(x,y) is true, then there exists a function /2 : X — Y such that Vx € X, p(x,h(x)) is
true.

Proof

For each a € X, define Y, = {b €Y | p(a,b)}. Note that ¥, is inhabited for each a € X by the
assumption that Vx € X, 3y € Y, p(x,y) is true. Since ¥, C Y for each a € X, by the axiom of choice
there exists a function 4 : X — Y such that h(a) € Y, for all @ € X. But then p(a,h(a)) is true for
each a € X by definition of the sets ¥,. g

In light of Proposition 3.2.35, the axiom of choice manifests itself in proofs as the following proof
strategy.

Strategy”“ 3.2.36 (Making choices)
If an assumption in a proof has the form Vx € X, 3y € ¥, p(x,y), then we may make a choice, for
each a € A, of a particular element b = b, € B for which p(a,b) is true.

Back to inverses

‘We now return to the converse of Exercise 3.2.32.

Proposition”® 3.2.37
Every surjection has a right inverse.

Proof

Let f: X — Y be a surjection, and define g : ¥ — X as follows. Given y € Y, define g(y) to be a
particular choice of x € X such that f(x) = y—note that there exists such an element x € X since f
is surjective, so g exists by Strategy 3.2.36. But then by definition of g we have f(g(y)) =y for all
y €Y, so that g is a surjection. O

It seems logical that we might be able to classify bijections as being those functions which have a
left inverse and a right inverse. We can actually say something stronger—the left and right inverse
can be taken to be the same function! (In fact, Proposition 3.2.43 establishes that they are necessarily
the same function.)
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Definition 3.2.38
Let f: X — Y be a function. A (two-sided) inverse for f is a function g : Y — X which is both a left
inverse and a right inverse for f.

It is customary to simply say ‘inverse’ rather than ‘two-sided inverse’.

Example 3.2.39

Let D be the set of dyadic rational numbers, as defined in Example 3.2.18. There, we defined a
function f : D — D defined by f(x) = 2"7 for all x € D, where k is some fixed natural number. We
find an inverse for f.

Define g : D — D by g(x) = 2x. Then

e ¢ is aleft inverse for f. To see this, note that for all x € D we have
X k X
8(f(x) :8(?) =2 ok Tt
e gisarightinverse for f. To see this, note that for all y € D we have
2ky
fle) =r@y) =5 =y

Since g is a left inverse for f and a right inverse for f, it is a two-sided inverse for f. <

. Exercise 3.2.40

The following functions have two-sided inverses. For each, find its inverse and prove that it is indeed
an inverse.

() f:R— Rdefined by f(x) = 2.
(b) g: Z(N) = F(N) defined by g(X) = N\ X.
(¢) h:NxN — N defined by h(m,n) =2"(2n+1) — 1 for all m,n € N.

<

In light of the correspondences between injections and left inverses, and surjections and right in-
verses, it may be unsurprising that there is a correspondence between bijections and two-sided in-
verses.

Exercise 3.2.41
Let f : X — Y be a function. Then f is bijective if and only if f has an inverse. <

Strategy 3.2.42 (Proving a function is bijective by finding an inverse)
In order to prove that a function f : X — Y is bijective, it suffices to find a function g : ¥ — X such
that g(f(x)) =xforallx € X and f(g(y)) =yforallyeY.

When proving a function f : X — Y is bijective by finding an inverse g : ¥ — X, it is important to
check that g is both a left inverse and a right inverse for f. If you only prove that g is a left inverse
for f, for example, then you have only proved that f is injective!

It turns out that if a function has both a left and a right inverse, then they must be equal. This is the
content of the following proposition.
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«* Proposition 3.2.43
Let f: X — Y be a function and suppose ¢ : Y — X is a left inverse for f and r: ¥ — X is a right
inverse for f. Then ¢ =r.

Proof
The proof is deceptively simple:

{=/{oidy by definition of identity functions
=/lo(for) since r is a right inverse for f
=(lof)or by Exercise 3.1.22
=idyor since / is a left inverse for f
=r by definition of identity functions

0

There is some intuition behind why the left and right inverses of a function f : X — Y should be
equal if they both exist.

o A leftinverse ¢ :Y — X exists only if f is injective. It looks at each element y € Y and, if it is in
the image of f, returns the (unique) value x € X for which f(x) =y.

e A right inverse r: Y — X exists only if f is surjective. It looks at each element y € Y and picks
out one of the (possibly many) values x € X for which f(x) =y.

When f is a bijection, every element of Y is in the image of f (by surjectivity), and is a value of f
at a unique element of X (by injectivity), and so the left and right inverses are forced to return the
same value on each input—hence they are equal.

It follows from Proposition 3.2.43 that, for any function f : X — Y, any two inverses for f are
equal—that is, every bijective function has a unique inverse!

4 Notation 3.2.44
Let f: X — Y be a function. Write f~! : ¥ — X to denote the (unique) inverse for f, if it exists.

¢ Proposition 3.2.45
Let f: X — Y be a bijection. A function g :Y — X is a left inverse for f if and only if it is a right
inverse for f.

Proof
We will prove the two directions separately.

e (=) Suppose g: Y — X is a left inverse for f—that is, g(f(x)) = x for all x € X. We prove that
f(g(y)) =y forall y € Y, thus establishing that g is a right inverse for f. So lety € Y. Since f is
a bijection, it is in particular a surjection, so there exists x € X such that y = f(x). But then

f(e(y)) = fg(f(x))) since y = f(x)
= f(x) since g(f(x)) =x
=y since y = f(x)

So indeed g is a right inverse for f.

e (<) Suppose g : Y — X is a right inverse for f—that is, f(g(y)) =y for all y € Y. We prove
that g(f(x)) = x for all x € X, thus establishing that g is a left inverse for f. So let x € X.
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Letting y = f(x), we have f(g(y)) =y since g is a right inverse for f. This says precisely that
F(g(f(x)) = f(x), since y = f(x). By injectivity of f, we have g(f(x)) = x, as required.

O

Exercise 3.2.46
Let f: X — Y be a bijection. Prove that f~! : ¥ — X is a bijection. <

Exercise 3.2.47
Let f: X — Y and g : Y — Z be bijections. Prove that go f : X — Z is a bijection, and write an
expression for its inverse in terms of f~! and g~ <

Exercise 3.2.48
Let f: X — A and g:Y — B be bijections. Prove that there is a bijection X XY — A X B, and describe
its inverse. <

At the beginning of this section we motivated the definitions of injections, surjections and bijections
by using them to compare two quantities (of dots and stars)—however, as you might have noticed,
we have not yet actually proved that thais intuition aligns with reality. For example, how do we
know that if there is an injection f : X — Y then Y has at least as many elements as X ?

Answering this seemingly simple question is surprisingly difficult and has different answers depend-
ing on whether the sets involved are finite or infinite. In fact, the words ‘“finite’, ‘infinite’ and ‘size’
are themselves defined in terms of injections, surjections and bijections! We therefore leave this task
to future sections.

In Section 7.1, we define what it means for a set to be finite and what the size of a finite set is
(Definition 7.1.1), and then prove that the sizes of finite sets can be compared by finding an injection,
surjection or bijection between them Theorem 7.1.6.

Comparing the sizes of infinite sets, and even defining what ‘size’ means for infinite sets, is another
can of worms entirely and leads to some fascinating mathematics. For example, we can prove some
counterintuitive results, such as the set N of natural numbers and the set QQ of rational numbers have
the same size. The journey down this rabbit hole begins in Chapter 9.
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Section 3.E
Chapter 3 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

3.1. Show that there is only one function whose codomain is empty. What is its domain?

4 Definition 3.E.1
A function f : R — R is even if f(—x) = f(x) for all x € R, and it is odd if f(—x) = — f(x) for all
xeR.

3.2. Let n € N. Prove that the function f : R — R defined by f(x) = x" for all x € R is even if and
only if n is even, and odd if and only if n is odd.

3.3. Prove that there is a unique function f : R — R that is both even and odd.

3.4.LetU CR, and let xyy : R — {0, 1} be the indicator function of U.

(a) Prove that yp is an even function if and only if U = {—u |u € U};

(b) Prove that x is an odd function if and only if R\ U = {—u | u € U}.

3.5. Prove that for every function f: R — R, there is a unique even function g : R — R and a unique
odd function 4 : R — R such that f(x) = g(x) 4+ h(x) for all x € R.

3.6. Let {6, : [n] — [n] | n € N} be a family of functions such that f o 6,, = 6,0 f forall f : [m] — [n].
Prove that 6, = id|,) foralln € N.

3.7.Let X be a set and let U,V C X. Describe the indicator function yyay of the symmetric differ-
ence of U and V (see Definition 2.E.1) in terms of yy and xy.

Images and preimages

In Questions 3.8 to 3.11, find the image f[U] of the subset U of the codomain of the function f
described in the question.

3.8. f:R=R; f(x) =V1+x*forallx e R; U =R.
39.f:ZXZ—1Z; f(a,b) =a+2bforall (a,b) € ZxZ;U = {1} xZ.
3.10. f:N— Z(N); f(0)=2 and f(n+1) = f(n)U{n} foralln e N; U =N.

3.11. f: RR — RR (where R¥ is the set of all functions R — R); f(h)(x) = h(|x|) for all h € RF
and all x € R; U = RR,

In Questions 3.12 to 3.14, find the preimage f~![V] of the subset V of the codomain of the function
f described in the question.

312, f:R—=R; f(x) =V1+x2forallx e R; V = (-5,5].
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3.13. f1ZXZ—Z; f(a,b) =a+2bforall (a,b) € ZxZ;V ={n€Z|nisodd}.
3.14. f: Z(N) x Z(N) - Z(N); f(A,B)=ANnBforall (A,B) e Z(N) x Z(N); V ={ga}.

3.15.Let f: X — Y be a function. For each of the following statements, either prove it is true or
find a counterexample.

(a) U C f![f[U]] forall U C X; (c) VCfIf V] forall V CY;
(b) £ fU)] CU forallU C X; (@ fIf V)] CViorallV CY.

3.16. Let f : X — Y be a function, let A be a set, and let p: X — A and i : A — Y be functions such
that the following conditions hold:

(1) iisinjective;
(ii) iop = f; and

(iii) If g: X — B and j : B — Y are functions such that j is injective and jo g = f, then there is a
unique function u : A — B such that jou =1i.

Prove that there is a unique bijection v : A — f[X] such that i(a) = v(a) for all a € f[X].
3.17.Let f: X — Y be a function and let U,V C Y. Prove that:

@ fHunv]=fulng v

(b) fHHUuV]=fu]ufV]; and

© fHIP\UI=X\ /U]
Thus preimages preserve the basic set operations.
3.18.Let f: X — Y and g : Y — Z be functions.

(a) Prove that (go f)[U] = g[f[U]] forall U C X;

(b) Prove that (go f)~'[W] = f'[¢g~'[W]] forall W C Z.

Injections, surjections and bijections
3.19. (a) Prove that, for all functions f: X — Y and g:Y — Z, if go f is bijective, then f is
injective and g is surjective.

(b) Find an example of a function f : X — Y and a function g : Y — Z such that g o f is bijective, f
is not surjective and g is not injective.

3.20. For each of the following pairs (U,V) of subsets of R, determine whether the specification
‘f(x) = x> —4x+7 for all x € U’ defines a function f : U — V and, if it does, determine whether f
is injective and whether f is surjective.

(@ U=RandV =R; () U=[3,4)andV = [4,7);
(b) U= (1,4)and V =[3,7); ) U= (3,4 andV = [4,7);
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(€) U=1[2,00)and V = [3,00); (f) U=1[2,00) and V =R.

3.21. For each of the following pairs of sets X and Y, find (with proof) a bijection f: X — Y.
(@) X=ZandY =N;

(b) X=RandY =(—1,1);

(¢) X=[0,1]and Y = (0,1);

(d) X =la,b] and Y = (c,d), where a,b,c,d € R witha < b and ¢ < d.

a+b+1

3.22. Prove that the function f : N x N — N defined by f(a,b) = ( 5

) + b for all (a,b) €
N x N is a bijection.

3.23. Let ¢ : X — X be a function such that e o e = e. Prove that there exist a set Y and functions
f:X—Yandg:Y — X suchthatgo f=c¢and fog =idy.

True-False questions

In Questions 3.24 to 3.31, determine (with proof) whether the statement is true or false.

3.24. The set G = {(x,y) € R x R | x> = y?} is the graph of a function.

3.25. The set G = {(x,y) € Z x N | x> = y?} is the graph of a function.

3.26. Every function with empty domain has an empty codomain.

3.27. Every function with empty codomain has an empty domain.

3.28. The image of a function is a subset of its domain.

3.29. Given a function f : X — Y, the assignment V > f~![V] defines a function 22(Y) — 2 (X).
3.30. Let f, g and h be composable functions. If 2o go f is injective, then g is injective.

3.31. Every left inverse is surjective and every right inverse is injective.

Always—Sometimes—Never questions

In Questions 3.32 to 3.43, determine (with proof) whether the conclusion is always, sometimes or
never true under the given hypotheses.

3.32. Let f : X — Y be a function and let U C X. Then there is a function g : U — Y defined by
g(x) = f(x)forallxe U.

3.33. Let f: X — Y be a function and let V C Y. Then there is a function g : X — V defined by
g(x) = f(x) forall x € X.

3.34. Let X be a set. Then there is a unique function X — {0}.
3.35. Let X be a set. Then there is a unique function X — &.
3.36.Let X and Y be sets and let G C X x Y. Then G is the graph of a function f : X — Y.
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3.37.Let f: {1,2,3} = {1,2},let G = Gr(f) and let G’ = {(y,x) | (x,y) € G}. Then G’ is the graph
of a function {1,2} — {1,2,3}.

3.38. Let f: X — Y be a function and let U C X be inhabited. Then f[U] is inhabited.
3.39. Let f : X — Y be a function and let V C Y be inhabited. Then f~![V] is inhabited.
3.40. Let f: {1,2} — {1,2,3} be a function. Then f is injective.

3.41. Let f: {1,2} — {1,2,3} be a function. Then f is surjective.

3.42. Let a,b,c,d € R and define f : R*? — R? by f(x,y) = (ax + by,cx +dy) for all (x,y) € R%.
Then f is injective if and only if f is surjective.

3.43.Let U,V C R and suppose that x> € V for all x € U. The function f : U — V defined by
f(x) = x? is injective.
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Section 4.1
Peano’s axioms

The purpose of this section is to forget everything we think we know about the natural numbers, and
reconstruct our former knowledge (and more!) using the following fundamental property:

Every natural number can be obtained in a unique way by
starting from zero and adding one some finite number of times.

This is slightly imprecise—it is not clear what is meant by ‘adding one some finite number of times’,
for example. Worse still, we are going to define what ‘finite’ means in terms of natural numbers in
Section 7.1, so we’d better not refer to finiteness in our definition of natural numbers!

The following definition captures precisely the properties that we need in order to characterise the
idea of N that we have in our minds. To begin with, N should be a set. Whatever the elements of
this set N actually are, we will think about them as being natural numbers. One of the elements, in
particular, should play the role of the natural number O—this will be the zero element z € N; and
there should be a notion of ‘adding one’—this will be the successor function s : N — N. Thus given
an element n € N, though of as a natural number, we think about the element s(n) as the natural
number ‘n+ 1’. Note that this is strictly for the purposes of intuition: we will define ‘+’ and ‘1’ in
terms of z and s, not vice versa.

4 Definition 4.1.1
A notion of natural numbers is a set N, together with an element z € N, called a zero element, and
a function s : N — N called a successor function, satisfying the following properties:

(i) z ¢ s[N]; that is, z # s(n) for any n € N.
(ii) s is injective; that is, for all m,n € N, if s(m) = s(n), then m = n.

(iii) N is generated by z and s; that is, for all sets X, if z € X and for all n € N we have n € X =
s(n) € X, then N C X.

The properties (i), (ii) and (iii) are called Peano’s axioms.

Note that Definition 4.1.1 does not specify what N, z and s actually are; it just specifies the properties
that they must satisfy. It turns out that it doesn’t really matter what notion of natural numbers we
use, since any two notions are essentially the same. We will not worry about the specifics here—that
task is left to Section B.2: a particular notion of natural numbers is defined in Construction B.2.5,
and the fact that all notions of natural numbers are ‘essentially the same’ is made precise and proved
in Theorem B.2.8.

We can define all the concepts involving natural numbers that we are familiar with, and prove all the
properties that we take for granted, just from the element z € N and the successor function s : N — N.

For instance, we define ‘0’ to mean z, define ‘1’ to mean s(z), define 2’ to mean s(s(z)), and so on.
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For instance, ‘12’ is defined to mean

s(s(s(s(s(s(s(s(s(s(s(s(2))))))))))))

From now on, then, let’s write O instead of z for the zero element of N. It would be nice if we could
write ‘n+ 1’ instead of s(n), but we must first define what ‘+’ means. In order to do this, we need a
way of defining expressions involving natural numbers; this is what the recursion theorem allows us
to do.

Theorem 4.1.2 (Recursion theorem)
Let X be a set. Forall a € X and all #: N x X — X, there is a unique function f : N — X such that
f(0) =aand f(s(n)) = h(n,f(n)) foralln € N.

Proof
Letae X and h: N x X — X. We prove existence and uniqueness of f separately.

e Define f : N — X by specifying f(0) =a and f(s(n)) = h(n, f(n)). Since h is a function and s is
injective, existence and uniqueness of x € X such that f(n) = x is guaranteed, provided that f(n)
is defined, so we need only verify totality.

Solet D= {n € N| f(n) is defined}. Then:
o 0 € D, since f(0) is defined to be equal to a.

o Let n € N and suppose n € D. Then f(n) is defined and f(s(n)) = h(n, f(n)), so that f(s(n)) is
defined, and hence s(n) € D.

By condition (iii) of Definition 4.1.1, we have N C D, so that f(n) is defined for all n € N, as
required.

e To see that f is unique, suppose g : N — X were another function such that g(0) =@ and g(s(n)) =
h(n,g(n)) foralln € N.
To see that f =g, let E={n € N| f(n) = g(n)}. Then
o 0 € E,since f(0) =a=g(0).
o Let n € N and suppose that n € E. Then f(n) = g(n), and so

f(s(n)) = h(n, f(n)) = h(n,g(n)) = g(s(n))

and so s(n) € E.

Again, condition (iii) of Definition 4.1.1 is satisfied, so that N C E. It follows that f(n) = g(n) for
allneN,and so f = g.

Thus we have established the existence and uniqueness of a function f : N — X such that f(0) =a
and f(s(n)) = h(n, f(n)) for all n € N. O

The recursion theorem allows us to define expressions involving natural numbers by recursion; this
is Strategy 4.1.3.

Strategy 4.1.3 (Definition by recursion)
In order to specify a function f : N — X, it suffices to define f(0) and, for given n € N, assume that
f(n) has been defined, and define f(s(n)) in terms of n and f(n).
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Example 4.1.4
‘We can use recursion to define addition on the natural numbers as follows.

For fixed m € N, we can define a function add,, : N — N by recursion by:
add,,(0) =m and add,(s(n)) =s(add,(n)) foralln e N

In more familiar notation, for m,n € N, define the expression ‘m+n’ to mean add,,(n). Another
way of expressing the recursive definition of add,, (n) is to say that, for each m € N, we are defining
m+ n by recursion on n as follows:

m+0=m and m+s(n)=s(m+n)forallneN

<

We can use the recursive definition of addition to prove familiar equations between numbers. The
following proposition is a proof that 2 +2 = 4. This may seem silly, but notice that the expression
242 =4’ is actually shorthand for the following:

add,(5(0)) (s(s(0))) = s(s(s(s(0))))
We must therefore be careful to apply the definitions in its proof.

Proposition 4.1.5

242=4

Proof

We use the recursive definition of addition.

242=2+4s(1) since 2 =s(1)

=s(241) by definition of +
=s(2+s(0)) since 1 = 5(0)
=s(s(24+0)) by definition of +
=s(s(2)) by definition of +
=s(3) since 3 = 5(2)
=4 since 4 = 5(3)

as required. 0

The following result allows us to drop the notation ‘s(n)” and just write ‘n+ 1’ instead.

Proposition 4.1.6
For all n € N, we have s(n) =n+ 1.

Proof
Let n € N. Then by the recursive definition of addition we have

n+1=n+s(0)=s(n+0)=s(n)
as required. 0
In light of Proposition 4.1.6, we will now abandon the notation s(n), and write n+ 1 instead.

We can define the arithmetic operations of multiplication and exponentiation by recursion, too.
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& Example 4.1.7

Fix m € N. Define m - n for all n € N by recursion on 7 as follows:
m-0=0 and m-(n+1)=(m-n)+mforallnecN

Formally, what we have done is define a function mult,, : N — N recursively by mult,,(z) = z and
mult,, (s(n)) = addyy,,(») (m) for all n € N. But the definition we provided is easier to understand.

<
Proposition 4.1.8
2:2=4
Proof
We use the recursive definitions of addition and recursion.
22:2(1+1) since2=1+1
=(2-1)+ by definition of -
=2 (0+1)) +2 since | =0+1
=((2-0)+2)+2 by definition of -
=(0+2)+2 by definition of -
=0+(1+1))+2 since2=1+1
=({(0+1)+1)+2 by definition of +
=(1+1)+2 since 1 =0+ 1
=242 since2=1+1
=4 by Proposition 4.1.5
as required. U

Exercise 4.1.9
Given m € N, define m" for all n € N by recursion on n, and prove that 2% = 4 using the recursive
definitions of exponentiation, multiplication and addition. <

We could spend the rest of our lives doing long computations involving recursively defined arithmetic
operations, so at this point we will stop, and return to taking for granted the facts that we know about
arithmetic operations.

There are, however, a few more notions that we need to define by recursion so that we can use them
in our proofs later.

4 Definition 4.1.10

n
Given n € N, the sum of n real numbers a;,as,...,a, is the real number Z ay. defined by recursion
k=1
onn € Nby
n+1

Zak—O and Zak— <Zn:ak> +apy foralln € N

k=0
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4 Definition 4.1.11

n
Given n € N, the product of n real numbers ay,ay,...,a, is the real number H ay, defined by recur-
k=1
sion on n € N by

0 n+1 n
Hak: 1 and Hak: ay | -apsq foralln e N
k=1 k=1 k=0

¢ Example 4.1.12
Let x; = i% for each i € N. Then

5
in:1+4+9+16+25:55
i=1

and

5
xi=1-4-9.16-25 = 14400
i=1

=

& Exercise 4.1.13
Let x1,x2 € R. Working strictly from the definitions of indexed sum and indexed product, prove that

2 2
in =x1+xp and Hx,- =X]-X
i=1 i=1

Binomials and factorials
4 Definition 4.1.14 (to be redefined in Definition 7.2.10)
Let n € N. The factorial of n, written n!, is defined recursively by

0!=1 and (n+1)!=m+1)-n!foralln>0

Put another way, we have
n
n! = Hi
i=1

for all n € N—recall Definition 4.1.11 to see why these definitions are really just two ways of word-
ing the same thing.

4 Definition 4.1.15 (to be redefined in Definition 7.2.4)
Let n,k € N. The binomial coefficient (}) (IXTgX code: \binom{n}{k}) (read ‘n choose k’) is
defined by recursion on n and on k by

@ - (kil) -0 (Zﬂ) B (D i (kil)
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This definition gives rise to an algorithm for computing binomial coefficients: they fit into a diagram
known as Pascal’s triangle, with each binomial coefficient computed as the sum of the two lying
above it (with zeroes omitted):

B e = 12
RGRGIREIGD BENER
RGIRGINE RGNS 146 41
G O 6 6 @ 6 L5 10 10 5 1
% Exercise 4.1.16
Write down the next two rows of Pascal’s triangle. <
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Section 4.2
Weak induction

Just as recursion exploited the structure of the natural numbers to define expressions involving natural
numbers, induction exploits the very same structure to prove results about natural numbers.

Theorem 4.2.1 (Weak induction principle)
Let p(n) be logical formula with free variable n € N, and let ny € N. If

(i) p(no) is true; and

(ii) For all n > ny, if p(n) is true, then p(n+ 1) is true;
then p(n) is true for all n > ny.

Proof
Define X = {n € N| p(ng +n) is true}; that is, given a natural number n, we have n € X if and only
if p(no +n) is true. Then

e 0 € X, since ny+0 = np and p(ng) is true by (i).

e Let n € N and assume n € X. Then p(ng+n) is true. Since ng+n > ng and p(ng+n) is true, we
have p(ng+n+1) is true by (ii). Butthenn+1 € X.

So by Definition 4.1.1(iii) we have N C X. Hence p(no+n) is true for all n € N. But this is equivalent
to saying that p(n) is true for all n > ny. O

Strategy 4.2.2 (Proof by (weak) induction)
In order to prove a proposition of the form Vn € N, p(n), it suffices to prove that p(0) is true and
that, for all n € N, if p(n) is true, then p(n+ 1) is true.

Some terminology has evolved for proofs by induction, which we mention now:

The proof of p(ng) is called the base case;

The proof of Vn > ny, (p(n) = p(n+ 1)) is called the induction step;
o In the induction step, the assumption p(n) is called the induction hypothesis;

e In the induction step, the proposition p(n+ 1) is called the induction goal.

The following diagram illustrates the weak induction principle.
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To interpret this diagram:

The shaded diamond represents the base case p(ny);
The square represents the induction hypothesis p(n);
The dashed circle represents the induction goal p(n+1);

The arrow represents the implication we must prove in the induction step.

We will use analogous diagrams to illustrate the other induction principles in this section.

Proposition 4.2.3
n

1
Letn € N. Then Zk: n(nt1)
k=1 2
Proof
We proceed by induction on n > 0.
0 0(0+1)
o (Base case) We need to prove Z k= 7
k=1

0(0+1 0
This is true, since ( ;_ ) =0, and Z k = 0 by Definition 4.1.10.
k=1

n
1
(Induction step) Let n > 0 and suppose that Z k= n(”;' )

k=1

; this is the induction hypothesis.

ntl (n4+1)(n+2)

We need to prove that Z k= ; this is the induction goal.

k=1 :
We proceed by calculation:
n+1 n
Y k=Y k|)+@n+1) by Definition 4.1.10
k=1 k=1
1
= n(nt1) +(n+1) by induction hypothesis
=(n+1) g + l) factorising
1 2
= % rearranging
The result follows by induction. U

Before moving on, let’s reflect on the proof of Proposition 4.2.3 to highlight some effective ways of
writing a proof by induction.

We began the proof by indicating that it was a proof by induction. While it is clear in this section
that most proofs will be by induction, that will not always be the case, so it is good practice to
indicate the proof strategy at hand.

The base case and induction step are clearly labelled in the proof. This is not strictly necessary
from a mathematical perspective, but it helps the reader to navigate the proof and to identify what
the goal is at each step.
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o We began the induction step by writing, ‘Let n > ng and suppose that [...induction hypothesis
goes here...]’. This is typically how your induction step should begin, since the proposition
being proved in the induction step is of the form Vn > ng, (p(n) = ---).

e Before proving anything in the base case or induction step, we wrote out what it was that we were
trying to prove in that part of the proof. This is helpful because it helps to remind us (and the
person reading the proof) what we are aiming to achieve.

Look out for these features in the proof of the next proposition, which is also by induction on n > 0.

¢ Proposition 4.2.4
The natural number n° — n is divisible by 3 for all n € N.

Proof
We proceed by induction on n > 0.

o (Base case) We need to prove that 0° — 0 is divisible by 3. Well
0°~0=0=3x0
s0 0° — 0 is divisible by 3.

e (Induction step) Let n € N and suppose that n* — 7 is divisible by 3. Then n? —n = 3k for some
ke Z.

We need to prove that (n+ 1)* — (n+ 1) is divisible by 3; in other words, we need to find some

natural number ¢ such that
(n+1)>°—(n+1)=3¢

We proceed by computation.

(n+1)°—(n+1)

=P +3n°+3n+1)—n—1 expand brackets
=n’—n+3n*+3n+1-1 rearrange terms
=’ —n+3n*+3n since 1 —1=0
= 3k+3n’+3n by induction hypothesis
=3(k+n*+n) factorise
Thus we have expressed (n+ 1)3 — (n+4 1) in the form 3¢ for some ¢ € Z; specifically, ¢ = k +
n* +n.
The result follows by induction. U
% Exercise 4.2.5
Prove by induction that zn: 2k =2"1 _1forallneN. <
k=0

The following proposition has a proof by induction in which the base case is not zero.

¢ Proposition 4.2.6
For all n > 4, we have 3n < 2".

Proof
We proceed by induction on n > 4.
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e (Base case) p(4) is the statement 3 -4 < 2%, This is true, since 12 < 16.

o (Induction step) Suppose 7 > 4 and that 3n < 2". We want to prove 3(n+1) < 21, Well,

3(n+1)=3n+3 expanding
<2"+3 by induction hypothesis
<2" 424 since 3 < 16 =2*
<2" 42" since n > 4
=2.2" simplifying
=t simplifying

So we have proved 3(n+ 1) < 2"*!, as required.

The result follows by induction. 0

Note that the proof in Proposition 4.2.6 says nothing about the truth or falsity of p(n) forn=0,1,2,3.
In order to assert that these cases are false, you need to show them individually; indeed:

e 3x0=0and?2° = 1, hence p(0) is true;
e 3x1=23and2' =2, hence p(1) is false;
e 3x2=06and 2% =4, hence p(2) is false;
e 3x3=09and?2’ =8, hence p(3) is false.

So we deduce that p(n) is true when n =0 or n > 4, and false when n € {1,2,3}.

%, Exercise 4.2.7
Find all natural numbers 7 such that n® < 5. <

& Exercise 4.2.8
Prove that (1 +x)'2 456789 > 1 4123 456 789 x for all real x > —1. b

Sometimes a ‘proof’ by induction might appear to be complete nonsense. The following is a classic
example of a ‘fail by induction’:

& Example 4.2.9
The following argument supposedly proves that every horse is the same colour.

o (Base case) Suppose there is just one horse. This horse is the same colour as itself, so the base
case is immediate.

o (Induction step) Suppose that every collection of n horses is the same colour. Let X be a set of
n+ 1 horses. Removing the first horse from X, we see that the last n horses are the same colour
by the induction hypothesis. Removing the last horse from X, we see that the first n horses are the
same colour. Hence all the horses in X are the same colour.

By induction, we’re done. <

Exercise 4.2.10
Write down the statement p(n) that Example 4.2.9 attempted to prove for all n > 1. Convince
yourself that the proof of the base case is correct, then write down—with quantifiers—exactly the
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proposition that the induction step is meant to prove. Explain why the argument in the induction step
failed to prove this proposition. <

There are several ways to avoid situations like that of Example 4.2.9 by simply putting more thought
into writing the proof. Some tips are:

e State p(n) explicitly. In the statement ‘all horses are the same colour’ it is not clear exactly what
the induction variable is. However, we could have said:

Let p(n) be the statement ‘every set of n horses has the same colour’.

e Refer explicitly to the base case ng in the induction step. In Example 4.2.9, our induction hypo-
thesis simply stated ‘assume every set of n horses has the same colour’. Had we instead said:

Let n > 1 and assume every set of n horses has the same colour.
We may have spotted the error in what was to come.

What follows are a couple more examples of proofs by weak induction.

Proposition 4.2.11

2

n n
For all n € N, we have Zk3 = Zk .
k=0 k=0
Proof
. . ! n(n+1) .

We proved in Proposition 4.2.6 that Z k= > for all n € N, thus it suffices to prove that

Z 8- (n + 1)
for all n € N.
We proceed by induction on n > 0.

02(0+1)2

e (Base case) We need to prove that 0° = . This is true since both sides of the equation

are equal to 0.

2 2 n+1
1
%. We need to prove that Z K=

n
o (Induction step) Fix n € N and suppose that Z k=
k=0
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w. This is true since:

n+1

Y K= Z K+ (n+1)° by definition of sum
= @ +(n+1)° by induction hypothesis
= m(n+ 1)2:—4(;1—1— 1’ (algebra)
= (n+ 1)2(n24—|—4(n +1)) (algebra)
= W (algebra)

4
By induction, the result follows. U

In the next proposition, we prove the correctness of a well-known formula for the sum of an arith-
metic progression of real numbers.

«* Proposition 4.2.12
Leta,d € R. Then

“ n+1)(2a+nd

Z (a+kd) = (n+1)Q2a+nd)

k=0 2
foralln € N.
Proof
We proceed by induction on n > 0.

0
0+1)(2a+0d

o (Base case) We need to prove that Z (a+kd) = %ﬂw). This is true, since

1-(2a)  (0+1)(2a+0d)

0
2
Z (a+kd)=a+0d=a=' =

2 2
< 1)(2 d
o (Induction step) Fix n € N and suppose that Z (a+kd)= (n—l—)(fa—&-n)‘ We need to prove:
k=0
! 2)(2 1)d
Y (a+kd) (n+2)(2a+ (n+1)d)
k=0 2
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This is true, since

n+1
Z(a—i—kd)
k=0
n
= Z (a+kd)+ (a+ (n+1)d) by definition of sum
k=0
1)(2 d
= W +(a+ (n+1)d) by induction hypothesis
1)(2 d)+2a+2 1)d
= (nt1)@2atn )2+ at2(ntl) (algebra)
1)-2 1)-nd+2a+2 1)d
= (n+1)-2a+(n+ )Zn +2a+2(n+1) (algebra)
2 1+1 1)(nd+2d
= ant1+ )—l—én—i— )(nd +2d) (algebra)
2 2 1 2)d
= a(n+ )+(Z+ J(n+2) (algebra)
2)(2 1)d
= (n+2)( a;— (n+1)d) (algebra)
By induction, the result follows. O

The following exercises generalises Exercise 4.2.5 to prove the correctness of a formula for the sum
of a geometric progression of real numbers.

Exercise 4.2.13
Leta,r € R with r # 1. Then

for all n € N. [You may assume that 'r/ = r*/ for all i, j € N.] <

When attempting the following exercise, you might find that your induction step requires an auxiliary
result, which itself has a proof by induction.

Exercise 4.2.14
Prove by induction that 7" — 2 -4" 41 is divisible by 18 for all n € N. <

Binomials and factorials

Proof by induction turns out to be a very useful way of proving facts about binomial coefficients (Z)
and factorials n!.

Example 4.2.15

We prove that Z (n) = 2" by induction on .
i=o \!

o (Base case) We need to prove (J) = 1 and 2° = 1. These are both true by the definitions of
binomial coefficients and exponents.
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o (Induction step) Fix n > 0 and suppose that

5(0) -~

Vil (n+ 1) — 2ﬂ+1

i=0 \ !

We need to prove

This is true, since

1 1
= (n—(i)— ) + (n—i— > splitting the sum
i=1
u 1
:1+Z<’;il> letting j =i—1
j=0
L n n
=1+Y ( .>+<.+1)> by Definition 4.1.15
S\
n n n n
=1+) (]) +) (j—!— 1) separating the sums
j=0 j=0

n
Now Z ( ) = 2" by the induction hypothesis. Moreover, reindexing the sum using k = j+ 1
j=0

n
J
n n+1 n
5(0)-E )50 (5
o\l = \k = \k n+1
By the induction hypothesis, we have

50 =50 -6)-r

n < n
and (n+1) =0, s0 thatjgz) <j+ 1) —_on_ 1

Putting this together, we have

1+jzn‘6(';>+f(."1>:1+2"+(2"—1)

=0 \J T

yieldé

=2.2"
:211+]

so the induction step is finished.

By induction, we’re done. <
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%, Exercise 4.2.16
Prove by induction on n > 1 that

i=0
<
¢ Theorem 4.2.17
Let n,k € N. Then
n!
if k <
(”) —dKm—ky O
& 0 ifk>n
Proof
We proceed by induction on n.
o (Base case) When n = 0, we need to prove that (2) = % for all k < 0, and that (2) =0 for all

k> 0.
If £ < 0then k =0, since k € N. Hence we need to prove

0 _ o
0/ 00!
But this is true since (0) =land & =L —1,

0 010! — TxI
If k > 0 then (2) = 0 by Definition 4.1.15.

e (Induction step) Fix n € N and suppose that (}) = ; forall k <nand (}) = 0 for all k > n.

k!(nnik).
We need to prove that, for all k < n+ 1, we have

n+1\  (n+1)!
k) Kn+1—k)!
and that ("J]gl) =0forallk >n+1.

So fix k € N. There are four possible cases: either (i) k =0, or (i) 0 < k < n, or (iii) k =n—+1, or
(iv) k > n+ 1. In cases (i), (ii) and (iii), we need to prove the factorial formula for (":1); in case

(iv), we need to prove that (”zl) =0.

(i) Suppose k = 0. Then ("{') = 1 by Definition 4.1.15, and

(n+1)!  (n+1)!
Ki(n+1—k)! 0l(n+1)!

since 01 =1. So (ngl) = 0("(1:43‘)'

(ii) If 0 < k < nthen k = £+ 1 for some natural number ¢ < n. Then £+ 1 < n, so we can use
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the induction hypothesis to apply factorial formula to both (;’) and ( éi 1). Hence
(n + 1)
k
:(’ZI;) since k =/£+1
= (’Z) + (61 1) by Definition 4.1.15

n! n!
Nn—0! D) n—t—1)!

by induction hypothesis

Now note that

n! B n! (+1 n! (+1)
On—0" On—=0" L+1  (L+1)(n—10)!
and
n! n! n—~{ n! (n—0)
= . = (n—
L+Dln—L-1)! ({+DIn—C=1)! n—¢ ({L+1)(n—20)!
Piecing this together, we have
n! n!
e T CE ]
n!
=—"[({+1 -
T D+ =0
nl(n+1)
(D (n—0)!
B (n+1)!
(D (n—0)!
so that (}1) = % Now we’re done; indeed,
(n+1)! (1)
E+D(n—0)!  k(n+1—k)!
since k = £+ 1.
(iii) If k=n+1, then
<n—|—1> = (n—i—l) since k=n+1
k n+1
- (”>+< " > by Definition 4.1.15
n n+1
!
- +0 by induction hypothesis
n!0!
and % = 1, so again the two quantities are equal.
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(iv) If k > n+1, then k = ¢+ 1 for some ¢ > n, and so by Definition 4.1.15 and the induction
hypothesis we have

SYRGHE DR

On first reading, this proof is long and confusing, especially in the induction step where we are
required to split into four cases. We will give a much simpler proof in Section 7.2 (see The-
orem 7.2.42), where we prove the statement combinatorially by putting the elements of two sets
in one-to-one correspondence.

O

We can use Theorem 4.2.17 to prove useful identities involving binomial coefficients.

& Example 4.2.18
Let n,k,¢ € N with £ < k < n then

Indeed:
n\ (k
k) \L
n! k!

= . by Th 4.2.17

K(n—k)! olk—0) v Hheorem

nlk! : :

= =0 combine fractions

B 1k!
T 0n— k) (k—0)! cancel i

n!(n—40)! . (n—20)!

= Itiply by ————

0n— k) (k—0)1(n—0)! P DY o)
= n (n—0)! separate fractions
T 0= k—0)l(n—k)! P
= n! (n—0)! rearrangin
T 00— k=0 (n—0)—(k—0) ging

n\ (n—"¢
= <£> <k—£) by Theorem 4.2.17
<
% Exercise 4.2.19
Prove that () = (,",) for all n,k € N with k < n. N

A very useful application of binomial coefficients in elementary algebra is to the binomial theorem.

¢ Theorem 4.2.20 (Binomial theorem)
Letn € N and x,y € R. Then
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Proof
In the case when y = 0 we have y"~% = 0 for all k < n, and so the equation reduces to

xn — xnyn—n
which is true, since y° = 1. So for the rest of the proof, we will assume that y # 0.

We will now reduce to the case when y = 1; and extend to arbitrary y # 0 afterwards.

n
We prove (1 +x)" = Z (Z) x* by induction on n.
k=0
o (Base case) (1+x)° =1and (J)x°=1-1=1, so the statement is true when n = 0.
o (Induction step) Fix n € N and suppose that

(14x)" = Zn: (Z)xk

k=0

n+1 n n+1 k
We need to show that (1+x)""" =) e 5 Well,

k=0
(1 _|_x)n+1
=(1+x)(1+x)" by laws of indices
n
=1+x)- E <Z)JJ‘ by induction hypothesis
k=0

n\ i Lo (n\ 4 .
= X +x Z X by expanding (x+ 1)

k = \k

M= Ip
N
= 3
N——
=
=
+
S ?V‘M=

)ka distributing x

T
[=}

k — k—1 in second sum

1
(" K ()t splitting the sums
k k—1 n

by Definition 4.1.15

»
S s L=

N
>~ S
N~
=

-
JF

e

Il +
N 2N
»
(]
—_
~__
=

-

I
N
=

(=}
+
(ngE

~
I

I
Y
S S
N
=
(=)
+
~
1=
/—3\/-\
~ +
—_
"
=
+
N
N~
=
=
t

Il
7N
S
—
N~
=
(=}
_l’_
™
7N
S
= +
—_
~~
=
-
_l’_
2N
S S
+ +
— —
~
=
x

see (x) below

I
kel =
Il +
o —_
/}O-i-
> +

—_

~

=

.

The step labelled () holds because

) =1=("0) = ()

1= n+1
T \n+1
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n
By induction, we’ve shown that (1 +x)" = Z (Z) xf forall n € N.
i=0

When y # 0 is not necessarily equal to 1, we have that

o (23] = ) 6) £ L)

The middle equation follows by what we just proved; the leftmost and rightmost equations are simple
algebraic rearrangements. g

Example 4.2.21
In Example 4.2.15 we saw that

5=

This follows quickly from the binomial theorem, since
" n " (n
2= (1+1)"= Aknh =
=g () =g
Likewise, in Exercise 4.2.16 you proved that the alternating sum of binomial coefficients is zero;

that is, for n € N, we have
1 n
(—1)"( ) =0
LU

The proof is greatly simplified by applying the binomial theorem. Indeed, by the binomial theorem,

we have
0= 0" = (—141)" = i <Z>(_1)k1nk _ i(_l)k<z>

k=0 k=0

Both of these identities can be proved much more elegantly, quickly and easily using enumerative
combinatorics. This will be the topic covered in Section 7.2. <
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Section 4.3
Strong induction

Consider the following example, which we will attempt to prove by induction.

Example 4.3.1
Define a sequence recursively by

n
bo=1 and b, =1+4) biforallneN
k=0
We will attempt to prove by induction that b, = 2" for all n € N.
e (Base case) By definition of the sequence we have by = 1 = 2°. So far so good.

o (Induction step) Fix n € N, and suppose that b,, = 2"". We need to show that b, | = ontl

n
Well, by =1+ ) by =...uhoh.
k=0

Here’s what went wrong. If we could replace each b by 2¥ in the sum, then we’d be able to complete
the proof. However we cannot justify this substitution: our induction hypothesis only gives us
information about b,,, not about a general term by for k < n. <

The strong induction principle looks much like the weak induction principle, except that its in-
duction hypothesis is more powerful. Despite its name, strong induction is no stronger than weak
induction; the two principles are equivalent. In fact, we’ll prove the strong induction principle by
weak induction!

Theorem 4.3.2 (Strong induction principle)
Let p(x) be a statement about natural numbers and let ny € N. If

(i) p(no) is true; and
(ii) For all n € N, if p(k) is true for all ng < k < n, then p(n+ 1) is true;
then p(n) is true for all n > ny.

Proof
For each n > ny, let g(n) be the assertion that p(k) is true for all ny < k < n.

Notice that g(n) implies p(n) for all n > ng, since given n > n, if p(k) is true for all ng < k < n,
then in particular p(k) is true when k = n.

So it suffices to prove g(n) is true for all n > ny. We do so by weak induction.

o (Base case) g(ng) is equivalent to p(ng), since the only natural number & with ng < k < ng is ng
itself; hence g(np) is true by condition (i).

o (Induction step) Let n > ng and suppose g(n) is true. Then p(k) is true for all ny <k < n.

143
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We need to prove that g(n+ 1) is true—that is, that p(k) is true for all np < k < n+ 1. But we
know p(k) is true for all ny < k < n—this is the induction hypothesis—and then p(rn+ 1) is true
by condition (ii). So we have that p(k) is true for all np < k < n+ 1 after all.

By induction, g(n) is true for all n > ng. Hence p(n) is true for all n > ny. O

% Strategy 4.3.3 (Proof by strong induction)
In order to prove a proposition of the form Vn > ng, p(n), it suffices to prove that p(ng) is true and
that, for all n > ny, if p(k) is true for all ny < k < n, then p(n+ 1) is true.

Like with weak induction, we can illustrate how strong induction works diagrammatically. The
induction hypothesis, represented by the large square, now encompasses p(k) for all ng < k < n,
where p(ng) is the base case.

/ \
‘ (o) = (o) (o) o
\ 7

Observe that the only difference from weak induction is the induction hypothesis.

e Weak induction step: Fix n > no, ‘ assume p(n) is true ‘ , derive p(n+1);

e Strong induction step: Fix n > ny, ‘ assume p(k) is true for all nop < k < n|, derive p(n+1).

We now use strong induction to complete the proof of Example 4.3.1.
¢ Example 4.3.4 (Example 4.3.1 revisited)
Define a sequence recursively by
n
bo=1 and by 1=1+)Y biforallneN
k=0

We will prove by strong induction that b,, = 2" for all n € N.

o (Base case) By definition of the sequence we have by = 1 = 20.

e (Induction step) Fix n € N, and suppose that by, = 2 for all k < n. We need to show that b, | =
21+l This is true, since

n
bpr1 =1+ Z by, by the recursive formula for b,
k=0
n
=1+Y 2 by the induction hypothesis
k=0
=1+ (2" 1) by Exercise 4.2.5
— 2n+1
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By induction, it follows that b, = 2" for all n € N. <

The following theorem adapts the strong induction principle to proofs where we need to refer to a
fixed number of previous steps in our induction step.

¢ Theorem 4.3.5 (Strong induction principle (multiple base cases))
Let p(n) be a logical formula with free variable n € N and let ng < n; € N. If
(i) p(no),p(no+1),...,p(ny) are all true; and

(ii) For all n > ny, if p(k) is true for all nyp < k < n, then p(n+1) is true;

then p(n) is true for all n > ny.

Proof
The fact that p(n) is true for all n > ng follows from strong induction. Indeed:

o (Base case) p(ny) is true by (i);

e (Induction step) Fix n > ng and assume p(k) is true for all ny < k < n. Then:
o If n < ny, then n+ 1 < ny, so that p(n) is true by (i);
o If n > ny, then p(n+ 1) is true by (ii).

In both cases we see that p(n+ 1) is true, as required.
Thus by strong induction, we have that p(n) is true for all n > ny. U
% Strategy 4.3.6 (Proof by strong induction with multiple base cases)
In order to prove a statement of the form Vn > ng, p(n), it suffices to prove p(k) for all k € {ng,no+
1,...,n}, where n; > ng, and then given n > n, assuming p(k) is true for all ny < k < n, prove that
p(n+1) is true.
This kind of strong induction differs from the usual kind in two main ways:

e There are multiple base cases p(ng), p(no+1),..., p(n1), not just one.

e The induction step refers to both the least base case ny and the greatest base case n;: the variable
n in the induction step is taken to be greater than or equal to n1, while the induction hypothesis
assumes p(k) for all ny < k < n.

The following diagram illustrates how strong induction with multiple base cases works.

‘ h @ @ N @ l\ n+l Il
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Note the difference in quantification of variables in the induction step between regular strong induc-
tion and strong induction with multiple base cases:

e One base case. Fix n > and assume p(k) is true for all <k<n.
e Multiple base cases. Fix n > and assume p(k) is true for all <k<n

Getting the quantification of the variables n and k in the strong induction step is crucial, since the
quantification affects what may be assumed about n and k.

The need for multiple base cases often arises when proving results about recursively defined se-
quences, where the definition of a general term depends on the values of a fixed number of previous
terms.

7 Example 4.3.7
Define the sequence

ap=0, a =1, a,=3a,_1—2a,,foralln>?2

We find and prove a general formula for a, in terms of n. Writing out the first few terms in the
sequence establishes a pattern that we might attempt to prove:

3 4 5 6 7 8
7 15 31 63 127 255

n |
an‘

0 1 2
0 1 3

1

It appears that a, = 2" — 1 for all n > 0. We prove this by strong induction, taking the cases n = 0
and n = 1 as our base cases.

o (Base cases) By definition of the sequence, we have:
o ap=0=2%—1;and
car=1=2"-1;
so the claim is true whenn=0and n = 1.
e (Induction step) Fix n > 1 and assume that a; = 2k 1 for all 0 < k < n. We need to prove that
ap+1 = 2n+l —1.

Well since n > 1, we have n+ 1 > 2, so we can apply the recursive formula to a,,+;. Thus

ant1 = 3a, —2a,—1 by definition of a4
=3(2"—1)—2(2""'-1) by induction hypothesis
=3.2"—3-2.2""142 expanding
=3.2"-3-2"42 using laws of indices
=2.2"—-1 simplifying
=2l using laws of indices
So the result follows by induction. <

The following exercises have proofs by strong induction with multiple base cases.
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» Exercise 4.3.8

Define a sequence recursively by ap =4, a; =9 and a, = 5a,,_1 — 6a,_5 for all n > 2. Prove that
a,=3-2"+3"foralln € N. <

Exercise 4.3.9
The Tribonacci sequence is the sequence fy,t1,1,,... defined by

tn=0, 1 =0, =1, t,=t,_1+t,r+t, 3foralln>3

Prove that 1, < 2" 3 for all n > 3. <

> Exercise 4.3.10

The Frobenius coin problem asks when a given amount of money can be obtained from coins of
given denominations. For example, a value of 7 dubloons cannot be obtained using only 3 dubloon
and 5 dubloon coins, but for all n > 8, a value of n dubloons can be obtained using only 3 dubloon
and 5 dubloon coins. Prove this. <

Well-ordering principle

The underlying reason why we can perform induction and recursion on the natural numbers is be-
cause of the way they are ordered. Specifically, the natural numbers satisfy the well-ordering prin-
ciple: if a set of natural numbers has at least one element, then it has a least element. This sets the
natural numbers apart from the other number sets; for example, Z has no least element, since if a € Z
thena—1€Zanda—1 < a.

Theorem 4.3.11 (Well-ordering principle)
Let X be a set of natural numbers. If X is inhabited, then X has a least element.

Idea of proof
Under the assumption that X is a set of natural numbers, the proposition we want to prove has the
form p = ¢g. Namely

X is inhabited =- X has a least element

Assuming X is inhabited doesn’t really give us much to work with, so let’s try the contrapositive:
X has no leastelement = X is empty

The assumption that X has no least element does give us something to work with. Under this as-
sumption we need to deduce that X is empty.

We will do this by ‘forcing X up’ by strong induction. Certainly 0 ¢ X, otherwise it would be the

least element. If none of the numbers 0, 1,...,n are elements of X then neither can n+ 1 be, since if
it were then it would be the least element of X. Let’s make this argument formal.
Proof

Let X be a set of natural numbers containing no least element. We prove by strong induction that
n¢X foralln e N.

o (Base case) 0 ¢ X since if 0 € X then 0 must be the least element of X, as it is the least natural
number.
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e (Induction step) Suppose k € X forall 0 < k < n. If n+1 € X then n+ 1 is the least element of
X; indeed, if  <n+1 then 0 < £ < n, so ¢ ¢ X by the induction hypothesis. This contradicts the
assumption that X has no least element, son+1 ¢ X.

By strong induction, n ¢ X for each n € N. Since X is a set of natural numbers, and it contains no
natural numbers, it follows that X is empty. g

The following proof that v/2 is irrational is a classic application of the well-ordering principle.

Proposition 4.3.12
The number v/2 is irrational.

To prove Proposition 4.3.12 we will use the following lemma, which uses the well-ordering principle
to prove that fractions can be ‘cancelled to lowest terms’.

$* Lemma 4.3.13

Let g be a positive rational number. There is a pair of nonzero natural numbers a, b such that g =
and such that the only natural number which divides both a and b is 1.

Proof

First note that we can express ¢ as the ratio of two nonzero natural numbers, since g is a positive
rational number. By the well-ordering principle, there is a least natural number a such that g = § for
some positive b € N.

Suppose that some natural number d other than 1 divides both a and b. Note that d # 0, since if
d = 0 then that would imply a = 0. Since d # 1, it follows that d > 2.

Since d divides a and b, there exist natural numbers o', b’ such that a = a'd and b = b'd. Moreover,
a',b’ > 0since a,b,d > 0. It follows that

a dd d

q:zzm:b/

But d > 2, and hence
, a _a

a=-S5<a
contradicting minimality of a. Hence our assumption that some natural number d other than 1 divides
both a and b was false—it follows that the only natural number dividing both a and b is 1. U

We are now ready to prove that v/2 is irrational.

Proof of Proposition 4.3.12
Suppose /2 is rational. Since v/2 > 0, this means that we can write

a
2=—
V2 ;

where a and b are both positive natural numbers. By Lemma 4.3.13, we may assume that the only
natural number dividing @ and b is 1.

Multiplying the equation /2 = 5 and squaring yields

a* =2b*
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Hence a? is even. By Proposition 1.1.46, a is even, so we can write a = 2¢ for some ¢ > 0. Then
a® = (2¢)? = 4¢?, and hence

4¢* = 2p°
Dividing by 2 yields

2% = b?

and hence b? is even. By Proposition 1.1.46 again, b is even.

But if a and b are both even, the natural number 2 divides both a and b. This contradicts the fact
that the only natural number dividing both a and b is 1. Hence our assumption that /2 is rational is
incorrect, and v/2 is irrational. O

2
0‘0

Writing tip

In the proof of Proposition 4.3.12 we could have separately proved that a®> being even implies a
is even, and that b? being even implies b is even. This would have required us to repeat the same
proof twice, which is somewhat tedious! Proving auxiliary results separately (as in Lemma 4.3.13)
and then quoting them in later theorems can improve the readability of the main proof, particularly
when the auxiliary results are particularly technical. Doing so also helps emphasise the important
steps. <

% Exercise 4.3.14
What goes wrong in the proof of Proposition 4.3.12 if we try instead to prove that /4 is irrational?
<

& Exercise 4.3.15
Prove that /3 is irrational. <
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Section 4.E
Chapter 4 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Recursive definitions

In Questions 4.1 to 4.5, use the recursive definitions of addition, multiplication and exponentiation
directly to prove the desired equation.

4.1.143=4
4.2.0+5=5
4.3.2.3=6
4.4.0-5=0
4.5.23=38

4.6. Give arecursive definition of new quantifiers 3=" for n € N, where given a set X and a predicate
p(x), the logical formula 3="x € X, p(x) means ‘there are exactly n elements x € X such that p(x)
is true’. That is, define 370, and then define 3="*! in terms of 3=".

4.7. Use the recursive definition of binomial coefficients (Definition 4.1.15) to prove directly that

5

4.8. (a) Find the number of trailing Os in the decimal expansion of 41!.

(b) Find the number of trailing Os in the binary expansion of 41!.

4.9.Let N be aset, letz€ N and let s : N — N. Prove that (N, z,s) is a notion of natural numbers (in
the sense of Definition 4.1.1) if and only if, for every set X, every element a € X and every function
f:X — X, there is a unique function 4 : N — X such that 4(z) =a and ho f = soh.

Proofs by induction

4.10. Let a € N and assume that the last digit in the decimal expansion of a is 6. Prove that the last
digit in the decimal expansion of a” is 6 for all n > 1.

ap—1+an+1

4.11. Leta,b € R, and let ag,ay,a, ... be a sequence such thatay =a,a; =b and a, = 5

forall n > 1. Prove that a, = a+ (b —a)n for all n € N.
4.12. Let f : R — R be a function such that f(x+y) = f(x) + f(y) for all x,y € R.

(a) Prove by induction that there is a real number a such that f(n) = an for all n € N.

(b) Deduce that f(n) = an for all n € Z.
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(c) Deduce further that f(x) = ax for all x € Q.

4.13. Let f : R — R be a function such that £(0) >0 and f(x+y) = f(x)f(y) forall x,y € R. Prove
that there is some positive real number a such that f(x) = " for all rational numbers x..

4.14. Let a,b € Z. Prove that b — a divides " — a" for all n € N.

Some examples from calculus

Questions 4.15 to 4.20 assume familiarity with the basic techniques of differential and integral cal-

culus.
n

4.15. Prove that e (xe*) = (n+x)e* forall n € N.
X

n

4.16. Find and prove an expression for (x?¢*) for all n € N.

d xl‘l

4.17. Let f and g be differentiable functions. Prove that

1 (0e00) = ¥ () 7900

U
dx k=0

for all n € N, where the notation h(") denotes the ™ derivative of h.
4.18. Find and prove an expression for the n'" derivative of log(x) for all n € N.

4.19. Prove that (cos 6 +isin0)" = cos(n0) +isin(nf) for all 6 € R and all n € N.

A 1 i
4.20. (a) Prove that / " sin™ 2 (x) dx = ntlofe
0

Cn+2Jo

sin”(x) dx for all n € N.

T

. . 2 .oy T 2n
(b) Use induction to prove that /0 sin”(x) dx = Pt ( | ) foralln € N.

(c¢) Find and prove an expression for / * sin?! (x) dx foralln € N.
0

True-False questions

In Questions 4.21 to 4.29, determine (with proof) whether the statement is true or false.
4.21. Every factorial is positive.
4.22. Every binomial coefficient is positive.

4.23. Every proof by strong induction can be turned into a proof by weak induction by changing
only the induction hypothesis.

4.24. Every proof by weak induction can be turned into a proof by strong induction by changing
only the induction hypothesis.

4.25. Given a set X, a surjection f : N — X and a logical formula p(x) with free variable x € X, if
p(f(0)) is true and Vn € N, (p(f(n)) = p(f(n+1))) is true, then Vx € X, p(x) is true.
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4.26. Given some logical formula p(x) with free variable x € N, if for all x € N there exists some
v < x such that p(x) is false, then p(x) is false for all x € N.

4.27. Every inhabited subset of the set Q=° of nonnegative rational numbers has a least element.
4.28. Every inhabited subset of the set Z of integers has a least element.

4.29. Every inhabited subset of the set Z~ of negative integers has a greatest element.

Always—Sometimes—Never questions

In Questions 4.30 to 4.32, determine (with proof) whether the conclusion is always, sometimes or
never true under the given hypotheses.

n n n
4.30. Let n,k,¢ € Z. Then (k+€> = (k) + (6)

4.31. Letm,n > 2. Then (m+n)! =m! +n!.

4.32. Let p(x) be a logical formula with free variable x € Z, and suppose that p(0) is true and, for
all n € Z, if p(n) is true, then p(n+ 1) and p(n—2) are true. Then Vn € Z, p(n) is true.
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Section 5.1
Relations

Many interesting results or concepts in mathematics arise from observing how the elements of one
set interact with the elements of another set, or how elements of a single set interact with each other.
We can make this idea of ‘interaction’ precise using the notion of a relation.

Definition 5.1.1
Let X and Y be sets. A (binary) relation from X to Y is a logical formula R(x,y) with two free
variables x € X and y € Y. We call X the domain of R and Y the codomain of R.

A relation R is homogeneous if it has the same domain and codomain X, in which case we say that
R is arelation on X.

Givenx € X and y € Y, if R(x,y) is true then we say ‘x is related to y by R’, and write x R y (I5TgX
code: x \mathrel{R} y).

Example 5.1.2
We have already seen many examples of relations.

e Divisibility (‘x divides y’) is a relation on Z.
e The inequality relation < is a relation on R.

e For any set X, equality = is a relation on X.

Logical equivalence = is a relation on the set of all logical formulae.

e For any set X, the subset relation C is a relation on £(X).

These relations were all homogeneous, but not all relations are:

e For any set X, the elementhood relation € is a relation from X to & (X).

e Every function f : X — Y induces a relation Ry from X to Y, defined by taking x Ry y to mean

flx)=y.

. Exercise 5.1.3

Give three more examples of relations, not all of which are homogeneous. <

Like with sets and functions, we must determine when to declare that two relations are equal. For
example, consider the relation R on R defined for a,b € R by letting a R b mean Ix € R, a +x> = b.
It so happens that a R b if and only if a < b—we’ll prove this in Example 5.1.5. So should R be equal
to <? On the one hand you might say ‘yes’, since < and R relate the same pairs of real numbers. On
the other hand you might say ‘no’, since the fact that < and R relate the same pairs of real numbers
was not immediate and required proof. In fact, if we were to replace R by Q, it then < and R would
not relate the same pairs of elements, since for instance 0 < 2 but there is no rational number x such
that 0+ x> = 2.
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But as with sets and functions, we settle for the extensional notion of equality: just as two sets are
equal when they have the same elements (Axiom 2.1.22), and two functions are equal when they
have the same values (Axiom 3.1.4), we consider two relations to be equal when they relate the
same pairs of elements (Axiom 5.1.4).

++» Axiom 5.1.4 (Relation extensionality)
Let R and S be relations. Then R = S if and only if R and S have the same domain X and codomain
Y, and
VxeX,VyeY,(xRy<xSy)

That is, two relations with the same domain and codomain are equal precisely when they relate the
same pairs of elements.

¢ Example 5.1.5
Recall the relation R on R that we defined above for a,b € R by letting a R b if and only if a +x> = b
for some x € R. To see that R = <, note that a+ (b — a) = b, and that b — a is the square of a real
number if and only if b —a > 0, which occurs if and only if a < b. <

% Exercise 5.1.6
Let R and S be relations on R defined for a,b € R by letting

aRb < b—acQ and aSb < IneZ, (n#0)Anlb—a)cZ

Prove that R = S. <

The true reason why Axiom 5.1.4 is powerful is that it allows us to reason about relations entirely
set theoretically by working with their graphs—the sets of pairs of elements that they relate—rather
than with the particular formulae defining the relation.

4 Definition 5.1.7
Let R be a relation from a set X to a set Y. The graph of R is the set Gr(R) (IXTX code:
\mathrm{Gr}{R}) of pairs (x,y) € X x Y for which x R y. That is

Gr(R) ={(x,y) eX XY | xRy} CX xY

¢ Example 5.1.8
The graph of the relation < on [3] is

{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}
Likewise, the graph of the relation < viewed as a relation from [2] to [4] is
{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4)}

This demonstrates that the graph of a relation is sensitive to the domain (and codomain) of the
relation. <

¢ Example 5.1.9
Consider the relation C from R to R defined by x Cy < x> 4 y> = 1. Then

Gr(C) = {(x,y) eRxR | +y* =1}

Plotting Gr(C) on a standard pair of axes yields a circle with radius 1 centred at the point (0,0),
shown below with a unit grid.
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Note that Gr(C) is not the graph of a function f : [0, 1] — R, since for example both (0,1) and (0,—1)
are elements of Gr(C), the value f(0) would not be uniquely defined. <

% Exercise 5.1.10
Let R be the relation on Z defined for x,y € Z by letting x R y if and only if x> = y*. Describe its
graph Gr(R) CZ x Z. <
% Exercise 5.1.11

Let f: X — Y be a function, and define the relation Ry from X to Y as in Example 5.1.2. Prove that
Gr(Ry) = Gr(f)—that is, the graph of the relation Ry is equal to the graph of the function f. <

4 Definition 5.1.12
The discrete relation from a set X to a set Y is the relation Dy y defined by letting x Dx y y be true
for all x,y € X.

The empty relation from a set X to a set Y is the relation @ y (I&IEX code: \varnothing) defined
by letting x Dy y y be false for all x,y € X.

& Exercise 5.1.13
Let X and Y be sets. Describe the graphs Gr(Dy y) and Gr(@y y). <

It turns out that, for fixed sets X and Y, relations from X to Y correspond with subsets of X x Y—see
Theorem 5.1.14 below. This fact is so convenient that many (if not most) authors actually define
‘relation from X to Y’ to mean ‘subset of X x Y.

¢+ Theorem 5.1.14
Let X and Y be sets. Every subset G C X x Y is the graph of a unique relation R from X to Y.

Proof
Fix G C X x Y. Define a relation R by

VxeX,VyeY, xRy < (x,y) €G
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Then certainly G = Gr(R), since for all x € X and y € Y we have

(x,yy €G < xRy & (xny) €Gr(R)

Moreover, if S is a relation from X to Y such that G = Gr(S), then, forallx € X andy € Y
xSye(x,y) €Gr(S) & (x,y) EGS xRy
soS=R.

Hence there is exactly one relation from X to Y whose graph is G. U

Theorem 5.1.14 suggests that, for the purposes of defining relations and proving that relations are
equal, we may work entirely set theoretically with the graphs of the relations.

Strategy 5.1.15 (Relations as graphs)

In order to specify a relation R, it suffices to specify its domain X, its codomain Y, and its graph
Gr(R) C X x Y. Furthermore, in order to prove that two relations R and S are equal, it suffices to
prove that they have the same domain and codomain, and that their graphs are equal.

Example 5.1.16

Consider the set G = {(2m+i,2n+i) |mn € Z, i € {0,1}}. Since G C Z X Z, it is the graph of a
(unique) relation R on Z, which is necessarily defined for a,b € Z by letting a R b if and only if there
are integers m and n, and i € {0, 1}, such that = 2m+i and b = 2n+i. But this says precisely that
a and b both leave the same remainder (namely /) when divided by 2, so that R can be described by
saying that, for all a,b € Z, we have a R b if and only if a and b are both even or both odd. <

Definition 5.1.17
Let X be a set. The diagonal subset of X x X is the set Ay (I&[EX code: \Delta_X) defined by
Ax = {(x,x) |xeX}.

To see why Ay is called the ‘diagonal’ subset, try plotting Agx C R X R on a standard pair of axes
(like in Example 5.1.9).

> Exercise 5.1.18

Let X be a set. Prove that Ay = Gr(=). <

Properties of homogeneous relations

Most of the relations of interest to us in this book are homogeneous—that is, relations on a set. In
fact, they broadly fall into one of two categories: equivalence relations, which are relations that
‘behave like =’; and order relations, which are relations that ‘behave like <’. We will study equi-
valence relations in Section 5.2 and order relations in Section 11.1, but examples of such relations
pop up throughout the book. (In fact, we have already seen several!)

Our task for the rest of this section is to isolate the properties that a relation must satisfy in order to
be classified as an equivalence relation or an order relation.
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To aid with intuition, we will illustrate these properties with diagrams: given a relation R, the fact
that a R b will be represented diagramatically as follows:

OO

A reflexive relation is one that relates every element of its domain to itself.

4 Definition 5.1.19
A relation R on a set X is reflexive if a R a for all a € X.

< Example 5.1.20
Given any set X, the equality relation = on X is reflexive, since a = a for all a € X. <

¢ Example 5.1.21
Let R be the relation on R defined for a,b € R by a R b if and only if b —a € Q. Then R is reflexive,
since for alla € R, we havea —a =0 € QQ, so that a R a. <

% Exercise 5.1.22
Let X be a set. Prove that C is a reflexive relation on (X)), but & is not. <

% Exercise 5.1.23
Prove that the relation ‘x divides y’ on Z is reflexive. <

The next exercise demonstrates that when determining if a relation is reflexive, we must be careful
to specify its domain.

% Exercise 5.1.24
Let G={(1,1),(2,2),(3,3)}. Let R be the relation on [3] whose graph is G, and let S be the relation
on [4] whose graph is G. Prove that R is reflexive, but S is not. <

Symmetric relations are those for which the direction of the relation doesn’t matter: two elements
are either each related to the other, or not related at all.

4 Definition 5.1.25
A relation R on a set X is symmetric if, for all a,b € X, if aR b, then bR a.

¢ Example 5.1.26
Given any set X, the equality relation = on X is symmetric, since for all a,b € X, if a = b, then
b=a. <
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< Example 5.1.27
Let R be the relation on R defined for a,b € R by a R b if and only if b —a € Q. Then R is symmetric.

To see this, let a,b € R and assume thata R b. Thenb—a € Q, sothatb —a = P for some P.gqE€EZL
q

with ¢ # 0. But then
—PD
a—b=—(b—a)=—
(b—a) 4
so that a — b € Q. Hence b R a, as required. <

% Exercise 5.1.28
Find all subsets U C Z such that the relation ‘x divides y’ on U is symmetric. <

We showed in Exercise 5.1.24 that reflexivity of a relation is sensitive to its domain. The next
exercise demonstrates that symmetry is not sensitive to the domain—that is, it is an intrinsic property
of the relation.

% Exercise 5.1.29
Let R and S be relations such that Gr(R) = Gr(S). Note that the domain of R might be different from
the domain of S. Prove that R is symmetric if and only if S is symmetric. <

A condition related to symmetry, but in a sense opposite to it, is antisymmetry. It says that the only
way that two elements of a set can each be related to the other is if they are equal.

4 Definition 5.1.30
Let X be a set. A relation R on X is antisymmetric if, for all a,b € X,ifaR b and b R a, then a = b.

A word of warning here is that ‘antisymmetric’ does not mean the same thing as ‘not symmetric’—
indeed, we we will see, equality is both symmetric and antisymmetric, and many relations are neither
symmetric nor antisymmetric. [Even more confusingly, there is a notion of asymmetric relation,
which also does not mean ‘not symmetric’.]

¢ Example 5.1.31
Given any set X, the equality relation = on X is antisymmetric, since for all a,b € X, if a = b and
b=a,thena=>b. <

¢ Example 5.1.32
The order relation < on R is antisymmetric, since forall a,b € R,ifa<band b < a,thena=b. <

%, Exercise 5.1.33
Prove that the relation ‘x divides y’ on N is antisymmetric, but not on Z. <

% Exercise 5.1.34
Let X be a set. Prove that C is an antisymmetric relation on & (X). <

% Exercise 5.1.35
Let X be a set and let R be a relation on X. Prove that R is both symmetric and antisymmetric if and
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only if Gr(R) C Ayx, where Ay is the diagonal subset of X x X (see Definition 5.1.17). Deduce that
the only reflexive, symmetric and antisymmetric relation on a set X is the equality relationon X. <

The last property we will study in some detail is transitivity. Transitive relations are those for which
we can skip over intermediate related elements—for example, we can deduce 0 < 3 from the facts
that0 < land 1 <2and2 < 3.

Definition 5.1.36
A relation R on a set X is transitive if, for all a,b,c € X,ifaRband bR c, thena R c.

Example 5.1.37
Given any set X, the equality relation = on X is transitive since, for all a,b,c € X,ifa=b and b = c,
thena =c. <

Example 5.1.38
Let R be the relation on R defined for a,b € R by a R b if and only if b —a € Q. Then R is transitive.

To see this, let a,b,c € R and assume thata Rband b Rc. Then b—a € Q and ¢ — b € Q, so there
exist p,q,r,s € Z with g, s # 0 such that

b—a=L and c—p="
s

It follows that

cma=(c—b)+(b-ay=2 4 =P
q A

qs
so that c —a € Q. Hence a R c, as required. <
Exercise 5.1.39
Let X be a set. Prove that C is a transitive relation on & (X). <
Exercise 5.1.40
Prove that the relation ‘x divides y’ on Z is transitive. <

Like symmetry, transitive is an intrinsic property of relations—that is, transitivity is not sensitive to
the domain of the relation—as the next exercise demonstrates.

Exercise 5.1.41
Let R and S be relations such that Gr(R) = Gr(S). Note that the domain of R might be different from
the domain of S. Prove that R is transitive if and only if S is transitive. <

A fundamental property of transitive relations is that we can prove two elements a and b are related
by finding a chain of related elements starting at @ and finishing at . This is the content of the
following proposition.

Proposition 5.1.42
Let R be a relation on a set X. Then R is transitive if and only if, for any finite sequence xg,x1,...,X,
of elements of X such that x;_; R x; for all i € [n], we have xp R x;,.

160



Section 5.1. Relations 161

Proof
For the sake of abbreviation, let p(n) be the assertion that, for any n > 1 and any sequence
X0,X1,...,%, of elements of X such that x;_ R x; for all i € [n], we have xo R x,.

We prove the two directions of the proposition separately.

e (=) Suppose R is transitive. For n > 1. We prove p(n) is true for all n > 1 by induction.
¢ (Base case) When n = 1 this is immediate, since we assume that xg R x.

¢ (Induction step) Fix n > 1 and suppose p(n) is true. Let xo, . .., X,, X, is a sequence such that
Xi—1 Rx; forall i € [n+ 1]. We need to prove that xo R X, 1.

By the induction hypothesis we know that xy R x,,. By definition of the sequence we have
Xn R x,,41. By transitivity, we have xg R x4 1.

So by induction, we have proved the = direction.

e (<) Suppose p(n) is true for all n > 1. Then in particular p(2) is true, which is precisely the
assertion that R is transitive.

So we’re done. O

That is, Proposition 5.1.42 states that for a transitive relation R on a set X, if xp,x1,...,x, € X, then
xoRxtR---Rx, = xoRux,

where ‘xo Rx; R --- R x;,” abbreviates the assertion that x; R x;;| for each i < n.
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Section 5.2
Equivalence relations and partitions

An equivalence relation on a set X is a relation on X that, to a certain extent, behaves like equality.
That is, equivalence relations give us a way of saying that two elements of a set are ‘similar’, without
having to be equal. As an example, we might be interested in when the base-10 expansions of two
natural numbers end in the same digit, or when two finite sets have the same number of elements.

Definition 5.2.1
A relation R on a set X is an equivalence relation if it is reflexive, symmetric and transitive.

To denote a relation that we know (or suspect) is an equivalence relation, we will usually use a
symbol like ‘~’ (IATEX code: \sim) or ‘=" (I&EX code: \equiv) or ‘=’ (IIEX code: \approx)
instead of a letter like ‘R’ or S’.

Example 5.2.2

Given any set X, it follows from Examples 5.1.20, 5.1.26 and 5.1.37 that the equality relation = is
an equivalence relation on X. This is a relief, since we motivated equivalence relations by saying
that they are those that behave like equality! <

Example 5.2.3
Let R be the relation on R defined for a,b € R by a R b if and only if b —a € Q. Piecing together
Examples 5.1.21, 5.1.27 and 5.1.38, we see that R is an equivalence relation on R. <
Exercise 5.2.4

Given a function f : X — Y, define a relation ~¢ on X by
anib & fla)=f(b)

for all a,b € X. Prove that ~ is an equivalence relation on X. <

The equivalence relation in the next exercise comes back with a vengeance in Section 9.2, where we
will use it to compare the sizes of (finite and) infinite sets.

Exercise 5.2.5

Let .7 be some set whose elements are all sets. (For example, we could take . = Z(X) for some
fixed set X.) Define a relation = (I&IX code: \cong) on . by letting U = V if and only if there
exists a bijection f: U — V, forall U,V € .%. Prove that & is an equivalence relation on .. <

A first look at modular arithmetic

A particularly useful family of equivalence relations is given by congruence of integers, which allows
us to do modular arithmetic—this is the topic of Section 6.3. For a fixed integer n, this relation
identifies two integers when they have the same remainder upon division by 7 (as in Theorem 0.18).
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4 Definition 5.2.6

Fix n € Z. Given integers a,b € Z, we say a is congruent to » modulo 7, and write
a=b mod n (41X code: a \equiv b \bmod{n})
if n divides a — b. If a is not congruent to » modulo n, write
a # b mod n (IAZTEX code: \not\equiv)

The number 7 is called the modulus of the congruence.

Before we prove that congruence is modulo 7 is an equivalence relation for all n € Z, it is worthwhile
to get a feel for how it works.

Example 5.2.7
Leta,b € Z. Then a = b mod 2 if and only if a and b are both even or both odd—that is, if and only
if they have the same parity.

Indeed, by the division theorem, we can write @ = 2k +i and b = 2¢ + j for some k,¢ € Z and
i,j€{0,1}. Then
b—a = 2k+i)—(20+j) = 2k—0)+(i—))

Note that i — j € {—1,0,1}, and so a = b mod 2 if and only if i = j. But this occurs if and only if
i = j =0, in which case a and b are both even, or i = j = 1, in which case a and b are both odd. <

Example 5.2.8

Let a,b € N. Then a = b mod 10 if and only if 10 divides b — a, which occurs if and only if the last
digit in the decimal expansion of b — a is 0. But this implies that the decimal expansions of a and b
have the same last digit. So the relation of congruence modulo 10 on N is the same as the relation of
‘having the same last (decimal) digit’. <

Exercise 5.2.9

Let n € Z. Prove that if n # 0, then a = b mod n if and only if @ and b have the same remainder
when divided by 7. <
Exercise 5.2.10

Let a,b € Z. When is it true that a = b mod 0? <

Having got a better feel for how congruence works, we now prove that, for each n € Z, congruence
modulo  is an equivalence relation on Z.

i+ Theorem 5.2.11

Let n € Z. Then congruence modulo 7 is an equivalence relation on Z. That is:

(@) a=amodnforallac Z;
(b) For all a,b € Z, if a = b mod n, then b = a mod n;
(¢c) Foralla,b,c € Z, if a=b mod n and b = ¢ mod n, then a = ¢ mod n.

Proof

(a) Leta € Z. Note that a —a = 0, which is divisible by n since 0 = 0 x n, and hence a = a mod n.
So congruence modulo 7 is reflexive.
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(b) Leta,b € Z and suppose a = b mod n. Then n divides a — b, so that a — b = kn for some k € Z.
Hence b —a = —kn, and so n divides b — a, so that b = a mod n as required. So congruence
modulo 7 is symmetric.

(c) Leta,b,c € Z and suppose that a = b mod n and b = ¢ mod n. Then n divides both a — b and
b — ¢, so there exist k, ¢ € Z such that

a—b=kn and b—c=/n

Hence a —c = (a—b) + (b —¢) = (k+¢)n, so that n divides a — c¢. Hence a = ¢ mod n, as
required. So congruence modulo 7 is transitive.

Since congruence modulo 7 is reflexive, symmetric and transitive, it is an equivalence relation. [

Equivalence classes

What makes equivalence relations so useful is they give us a way of ignoring information that is
irrelevant to the task at hand.

For example, suppose a and b are two very large natural numbers, each with several trillion (decimal)
digits. We want to know what the last digit of ab is. To find this out, it would be silly to compute ab
and then look at its last digit. Instead, we can observe that the last digit of a product of two integers
depends only on the last digit of each integer—for example, 1527 x 9502 has the same last digit as
7 x 2 = 14. By using the equivalence relation ‘has the same last digit as’, we are able to ignore the
irrelevant information about a and b—that is, all but one of their trillions of digits—and simplify the
problem considerably.

To make this precise, we introduce the notion of an equivalence class. For a set X with an equival-
ence relation, the equivalence class of an element a € X will be the set of elements of X that a is
equivalent to. By working with the equivalence classes of elements of X, rather than the elements
of X themselves, we are able to regard two equivalent elements as being ‘the same’.

4 Definition 5.2.12
Let X be a set and let ~ be an equivalence relation on X. The ~-equivalence class of an element
a € X is the set [a].. (IKTEX code: [x]_{\sim}) defined by

[a~={xeX]|a~x}

The quotient of X by ~ is the set X/~ (I&EX code: X/{\sim}) of all ~-equivalence classes of
elements of X; that is
X/~={ld~|aeX}

“ BIEX tip
Putting {curly brackets} around the command for a symbol like ~ (\sim) tells IATEX to consider the
symbol as a symbol, rather than as a connective. Compare the following:

TEX code Output
X/\sim =Y X/~=Y
X/{\sim} =Y X/~=Y
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This is because, without braces, IATEX thinks you’re saying ‘X-forward-slash is related to is equal to
Y’, which clearly makes no sense; putting braces around \sim signifies to I&EX that the ~ symbol
is being considered as an object in its own right, rather than as a connective. <

Example 5.2.13

Let ~ be the relation of congruence modulo 2 on Z. We showed in Example 5.2.7 that, for all
a,b € Z we have a = b mod 2 if and only if a and b have the same parity. But this means that, for all
[a]~ is the set of all integers with the same parity as a—that is:

e If a is even, then [a].. is the set of all even integers; and

e If a is odd, then [a].. is the set of all odd integers.

It follows that Z/~ = {[0]-,[1]~} = {E, O}, where E is the set of all even integers and O is the set
of all odd integers. <

Exercise 5.2.14
Let =~ be the relation of congruence modulo 10 on N. Describe the equivalence classes, and give an
explicit expression of the quotient N/ in list notation. <

Example 5.2.15
Let f: X — Y be a function, and let ~ be the equivalence relation on X that we defined in Exer-
cise 5.2.4. Given a € X, we have

la]op =fxeX[ar~px}={xeX[f(a) =f(x)}

Thus we have [a].., = S (@)} <

Exercise 5.2.16
Let f: X — Y be a function. Prove that f is injective if and only if each ~ ¢-equivalence class has a
unique element, where ~ ¢ is the equivalence relation defined in Exercise 5.2.4. <

The next result demonstrates that an equivalence relation ~ on a set X ‘descends’ to the equality
relation = on the quotient X /~. This means that if we would rather deal with equality than with the
equivalence relation itself, then we may do so by working inside the quotient X /~ rather than in the
set X.

Theorem 5.2.17
Let ~ be an equivalence relation on a set X. Then for all a,b € X, we have a ~ b if and only if
[a]~. = [b]~.

Proof
The proof is an exercise in piecing together the properties of equivalence relations.

Fix a,b € X.

e (=) Suppose a ~ b. We prove [a].. = [b].. by double containment.

¢ (Q) Let x € [a].—then a ~ x. We are assuming that a ~ b, so that b ~ a by symmetry, and so
b ~ x by transitivity. So x € [b]..

o (D) Let x € [b].—then b ~ x. We are assuming that a ~ b, and so a ~ x by transitivity. So
X € [a]~.
We have shown by double containment that [a].. = []~.
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o (<) Assume [a].. = [b]~. We have b ~ b by reflexivity, and so b € [b]... But then b € [d].., so that
a ~ b, as required.

So a ~ b if and only if [a]. = []~. O

For congruence, special terminology and notation exists for equivalence classes and quotients.

4 Definition 5.2.18
Let n € Z. The congruence class of an integer a modulo 7 is defined by

[al, = [d]zmodn = {x*€Z |a=xmod n}
The set of all congruence classes modulo 7 is denoted by
Z/nZ = 7Z/= modn = {[a],|a € Z}

¢ Example 5.2.19
Using the terminology of congruence classes, Example 5.2.13 can be rephrased by saying that
Z/2Z = {[0]2,[1]2}. Moreover, Theorem 5.2.17 gives us a more succinct proof: for all a € Z,
we have ¢ = 0 mod 2 if and only if a is even, and a = 1 mod 2 if and only if a is odd. Therefore for
all a € Z, we have [a], = [0], or [a], = [1]2, and so

222 = {lala|acZ}y = {[0],[1]2}

Additionally, [0] is the set of all even integers and [1], is the set of all odd integers. <

The next exercise generalises the previous one, proving that congruence classes correspond with
remainders.

% Exercise 5.2.20
Let n € Z with n # 0. Prove that the function

i:{0, 1, ..., |n| -1} = Z/nZ

defined by i(r) = [r], for all 0 < r < |n| is a bijection. <

Partitions

A partition of a set X is a way of breaking X up into mutually disjoint subsets. They will be an im-
mensely useful tool for counting how many elements a finite set has in Chapter 7, and will reappear
in Section 9.3 for defining arithmetic operations with cardinal numbers.
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4 Definition 5.2.21
A partition of a set X is a collection % = {U; | i € I} of subsets of X such that the following
conditions hold:

(a) Foreachi € I, the subset U; is inhabited;

(b) The sets U; for i € I are pairwise disjoint—that is, U; N U; is empty for all i, j € I with i # j;

© Jui=x.

i€l

Note that, by contraposition, condition (b) in Exercise 5.2.26 is equivalent to saying that for all
i,j€1,if U;NUj is inhabited, then i = j—this is useful for verifying pairwise disjointness in proofs.

% Strategy 5.2.22 (Proving a family of subsets forms a partition)
Let X be a set. In order to prove a collection %7 C & (X)) is a partition of X, it suffices to prove:
(a) Each U € % is inhabited;
(b) Forall U,V € %, if UNYV is inhabited, then U =V;
(¢) Forall a € X, there is some U € 7% such thata € U.

¢ Example 5.2.23
We can partition Z as E U O, where E is the set of all even integers and O is the set of all odd integers:

(a) E and O are inhabited, since 0 € E and 1 € O.

(b) The family {E, O} is pairwise disjoint if and only if £ N O is empty; and it is, since no integer
can be both even and odd.

(¢) EUO = Z since every integer is either even or odd.

< Example 5.2.24
The sets {2n,2n+ 1} for n € N form a partition of N:

(a) 2n € {2n,2n+ 1} for each n € N, so the sets are all inhabited.

(b) Suppose that m,n € N and that {2m,2m+ 1} N {2n,2n+ 1} is inhabited. Note that 2m # 2n+ 1
and 2n # 2m+ 1 by the division theorem (Theorem 6.1.1), so either 2m =2n or 2m+1=2n+1.
But in both cases we see that m = n. Hence the sets {2n,2n+ 1} for n € N are pairwise disjoint.

(c) Given a € N, we have a = 2n+ i, where n € N is the quotient of a when divided by 2, and
where i € {0,1} is the remainder of @ when divided by 2. But then a € {2n,2n+ 1}. Thus

U{2n.2n+1} =N.

neN

% Exercise 5.2.25
Let f: X — Y be a surjection, and define a collection .# of subsets of X by

F={f""l{p}] |beY}
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That is, .% is the set of subsets of X given by the preimages of individual elements of ¥ under f.
Prove that .Z is a partition of X. Where in your proof do you use surjectivity of f? <

Exercise 5.2.26
Let X be a set and let % = {U; | i € I} be a family of inhabited subsets of X. Prove that % is a
partition of X if and only if for reach a € X, there is a unique set U; € % with a € U;. <

Exercise 5.2.27
If ~ be an equivalence relation on X, then X/~ is a partition X. Deduce that, for all a,b € X, we
have a ~ b if and only if [a] = [b]~. <

In fact, the converse of Exercise 5.2.27 is also true, as we prove next.

Proposition 5.2.28
Let X be a set and let % be a partition of X. Then % = X/~ for exactly one equivalence relation ~
on X.

Proof
Define a relation ~ by
x~y & JUeU,xeUandyeU
for all x,y € X. That is, x ~ y if and only if x and y are elements of the same set of the partition. We
check that ~ is an equivalence relation.

o Reflexivity. Let x € X. Then x € U for some U € % since U U =X. Hence x ~ x.
Uew
e Symmetry. Let x,y € X and suppose x ~ y. Then there is some U € % withx € U and y € U.

But then it is immediate that y ~ x.

e Transitivity. Let x,y,z € X and suppose that x ~ y and y ~ z. Then there exist U,V € % with
x,y €U and y,z€ V. Thus y e UNV. Since % is a partition of X, its elements are pairwise
disjoint; thus if U #V then UNV = @&. Hence U =V. Thusx € U and z € U, so x ~ z.

The definition of ~ makes it immediate that X /~ = % .

To prove that ~ is the only such relation, suppose ~ is another equivalence relation on X for which
X/~ =% . Then, given x,y € X, we have:

x~yes U e, xeUNyeU by definition of ~
S zeX, x€a Ny € 7~ since Z# =X/~
SeX,xrzANyrz by definition of [z]~
SRy by symmetry and transitivity
So~==. U

Exercise 5.2.27 and Proposition 5.2.28 prove that equivalence relations and quotients are essentially
the same thing: the quotient of a set by an equivalence relation is a partition of the set, and every
partition of a set is the quotient by a unique equivalence relation!

The following lemma can be skipped over without grave consequences—it is a technical result with
an extremely fiddly proof, but we will use it at a couple of points later in the book. It says that, given
two partitioned sets, if we can pair up the sets in the partition, and pair up the elements in each pair
of paired-up partitions, then we can pair up the elements of each set.
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*» Lemma 5.2.29

Let X and Y be sets, let {U; | i € I'} be a partition of X and let {V; | j € J} be a partition of Y. If there
exists:

e A bijection f: 1 — J; and
e Foreachi € [, abijection g; : Ui = Vy(;);

then there exists a bijection h: X — Y.

Proof
Given a € X, let i(a) be the unique element of 7 such that a € X;(,). Note that this is valid since
{X; | i € I} is a partition of X. Likewise, given b € Y, let j(b) be the unique element of J such that
beYy).

J(b)

Define /1 : X — Y by h(a) = gi(4)(a) for all a € X. This is well-defined since

h(a) = gi(a)(@) € Yp(i(a)) €Y
This also shows that j(h(a)) = f(i(a)).

Now define k : Y — X by k(b) = g;,ll (o)) (b) forall b € Y. Then k is well-defined: indeed, g-1(;(;)
is a function from Uf—l (j(b)) O Vj<b), and so

_ -l
This also shows that i(k(b)) = £~ (j(b)).

Then k is an inverse for 4. To see this, let a € X; then

k(h(a)) =g, Gy (@) by definition of k
=871 ((ay (1(@) since j(h(a)) = f(i(a))
= gi_(;) (h(a)) since £~ o f=id;
= g;@; (8i(ay(@)) by definition of &
=a since gi’(;) 0 8i(a) = idx;,,

A similarly tedious computation reveals that A(k(b)) = b forall b € Y:

h(k(b)) = 8ik(v))(k(D)) by definition of &
— g1 (K(B)) since i(k(b)) = £~ (j(b)
= 81060 (871 ) (B)) by definition of k
=b since g1 (p)) © gj_'*ll Gy = 191y,
So k is an inverse for A, as required. O

Exercise 5.2.30

Let X and Y be sets, let ~ be an equivalence relation on X and let ~ be an equivalence relation on
Y. Assume that there is a bijection p : X/~ — Y /=, and for each equivalence class E € X/~ there
is a bijection hg : E — p(E). Use Lemma 5.2.29 to prove that there is a bijection h: X — Y. <
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The quotient function

We will now show that equivalence relations on a set X are essentially the same thing as surjections
from X to another set.

4 Definition 5.2.31
Let X be a set and let ~ be an equivalence relation on X. The quotient function for ~ is the
function g... : X — X/~ defined by g(a) = [a]~. for each a € X. That is, the quotient function sends
each element of X to its ~-equivalence class.

¢ Example 5.2.32
Recall that, given a € Z, we have [a], = [0]» if a is even, and [a], = [1]2 is a is odd. Thus the quotient
function g, : Z — Z /27 can be viewed as telling us the parity of an integer. <

% Exercise 5.2.33
Let n € Z with n # 0. Describe the quotient function g, : Z — Z/nZ in terms of remainders. <

Exercise 5.2.34
Let ~ be an equivalence relation on a set X. Prove that the quotient function ¢. : X — X/~ is
surjective. <

The theorem we prove next can be viewed as the converse to Exercise 5.2.34. It proves that every
surjection ‘is’ a quotient function, in the sense that given any surjection p : X — A, we can view A as
a quotient of X by a suitably-defined equivalence relation, and then p ‘is’ the corresponding quotient
function.

*#» Theorem 5.2.35
Let X be a set. Then for every set A and every surjection p : X — A, there exist a unique equivalence
relation ~ on X and bijection f : X/~ — A such that f([x]) = p(x) for all x € X.

Proof
Let A be aset and p : X — A be a surjection.

o (Existence) Define a relation ~ on X by x ~ y if and only if p(x) = p(y). Then ~ is an equivalence
relation by Exercise 5.2.4.

Moreover, given x € X, we have

K~ ={yeX|px)=p()}=p"{p)}]

So define f: X /~ — A by letting f([x]~.) = p(x). Then f is well-defined, since if [x]. = [y].. then

x ~y, so that p(x) = p(y).

Furthermore, f is a bijection:

o (Injectivity) Let [x].,[y]~ € X/~ and assume f([x].) = f([y]~). Then p(x) = p(y), so that
x ~y, and hence [x]. = [y]~.

o (Surjectivity) Let a € A. Since p is a surjection, there is some x € X such that p(x) = a. But
then f([.) = p(x) = a.

So we have established that there exist an equivalence relation ~ on X and a bijection f : X/~ — A

such that f([x]~) = p(x) for all x € X.
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e (Uniqueness) Suppose == is another equivalence relation on X and that g : X /~ — A is a bijection
such that g([x]~) = p(x) for all x € X. We prove that ~ = =, and then that g = £, so that ~ and f
are unique.

So let x,y € X. Then

x~y<e p(x)=p(y) by definition of ~
< g(H~) =2(bl=) by definition of g
& [xx =D~ since g is bijective
xRy by Exercise 5.2.27

so that f = g, as required.

O

In light of Theorem 5.2.35, we have now established the equivalence of three notions for a given set
X:

equivalence relations
on X

partitions surjections with

of X N ’ domain X
%, Exercise 5.2.36

Give an explicit description of the dashed arrow in the above diagram. That is, describe the corres-
pondence between partitions of a set X and surjections whose domain is X. <
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Section 5.E
Chapter 5 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Properties of relations

5.1. For each of the eight subsets
P C {reflexive, symmetric, transitive }

find a relation satisfying (only) the properties in P.

5.2. Prove that if R is a symmetric, antisymmetric relation on a set X, then it is a subrelation of the
equality relation—that is, Gr(R) C Gr(=).

5.3. A relation R on a set X is left-total if for all x € X, there exists some y € X such that xRy. Prove
that every left-total, symmetric, transitive relation is reflexive.

Equivalence relations

4 Definition 5.E.1
Let R be a relation on a set X and let f : X — Y be a function. The transport of R along f is
the relation S on Y defined for ¢,d € Y by letting ¢ S d if and only if there exist a,b € X such that
f(a)=c, f(b) =d and a R b. That is

Gr(S) = {(f(a),f(b)) | a,b € X, aR b}

5.4.Let X and Y be sets and let f : X — Y. Prove that if ~ is an equivalence relation on X, then the
transport of ~ along f is an equivalence relation on Y.

4 Definition 5.E.2
Let R be any relation on a set X. The equivalence relation generated by R is the relation ~ on
X defined as follows. Given x,y € X, say x ~g y if and only if for some k € N there is a sequence
(ag,ai,...,a;) of elements of X such that agp = x, a; =y and, for all 0 < i < k, either a;Ra;;; or
ai+1Ra;.

5.5. Fix n € Z and let R be the relation on Z defined by xRy if and only if y = x 4 n. Prove that ~g
is the relation of congruence modulo 7.

5.6. Let X be a set and let R be the subset relation on Z(X). Prove that U ~g V forall U,V C X.

5.7. Let X be a set, fix two distinct elements a,b € X, and define a relation R on X by declaring aRb
only—that is, for all x,y € X, we have xRy if and only if x = a and y = b. Prove that the relation ~g
is defined by x ~ y if and only if either x =y or {x,y} = {a,b}.

172



Section 5.E. Chapter 5 exercises 173

In Questions 5.8 to 5.11, let R be a relation on a set X, and let ~g be the equivalence relation
generated by R (as in Definition 5.E.2). In these questions, you will prove that ~p is the ‘smallest’
equivalence relation extending R.

5.8. Prove that ~p, is an equivalence relation on X.
5.9. Prove that xRy = x ~g y for all x,y € X.

5.10. Prove that if ~ is any equivalence relation on X and xRy = x ~ y for all x,y € X, then
x~py=x~yforall x,y € X.

5.11. Prove that if R is an equivalence relation, then ~p = R.

True-False questions

In Questions 5.12 to 5.18, determine (with proof) whether the statement is true or false.
5.12. Every reflexive relation is symmetric.

5.13. There is a unique relation that is reflexive, symmetric and antisymmetric.

5.14. Every relation that is not symmetric is antisymmetric.

5.15. Every symmetric, antisymmetric relation is reflexive.

5.16. The empty set is the graph of a relation on N.

5.17. For all sets X, the graph of a function X — X is the graph of a relation on X.

5.18. For all sets X, the graph of a relation on X is the graph of a function X — X.

Always—Sometimes—Never questions

In Questions 5.19 to 5.20, determine (with proof) whether the conclusion is always, sometimes or
never true under the given hypotheses.

5.19. Let ~ be an equivalence relation on a set X. Then the relation ~ on #(X) \ {@}, defined by
A~ Bif and only if x ~ y for all x € A and y € B, is an equivalence relation.

5.20. Let ~ be an equivalence relation on a set X. Then the relation ~ on Z(X) \ {@}, defined by
A =~ B if and only if x ~ y for some x € A and y € B, is an equivalence relation.
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Section 6.1
Division

This section introduces the notion of divisibility. As we have already mentioned, it is not always the
case that one integer can divide another. As you read through this section, note that we never use
fractions; everything we do is infernal to Z, and does not require that we ‘spill over’ to Q at any
point. This will help you when you study ring theory in the future, and is a good practice to mimic
in your own work.

The following theorem, called the division theorem, is the crux of everything that is to follow.

3+ Theorem 6.1.1 (Division theorem)
Let a,b € Z with b # 0. There exist unique g, r € Z such that

a=gb+r and 0<r<|b

Strategy
Let’s look at the simple case when a > 0 and » > 0. We can always find g, r such that a = gb +r, for
example ¢ = 0 and r = a. Moreover, by increasing g we can reduce r, since

gb+r=(q+1)b+(r—>)

We will keep doing this until the ‘remainder’ is as small as it can be without being negative. As an
example, consider the case when a = 14 and b = 5. This procedure gives

14=0x5+14
=1x5+9
=2x5+4 < least nonnegative remainder
=3x54+(-1)

This procedure shows that in this case we should take ¢ =2 and r = 4, since 14 =2 x 5+4 and
0<4<|5]

We can show that such a descending sequence of remainders terminates using the well-ordering

principle, and then we must argue that the quotient and remainder that we obtain are unique. <

Proof
We may assume that b > 0: if not, replace b by —b and g by —q. We may also assume that a > 0.
Otherwise, replace a by —a, g by —(¢+1) and r by b —r.

Thus, what follows assumes that a > 0 and b > 0.

o Existence. We prove that such integers g,r exist by the well-ordering principle. Namely, we
define a sequence (ry,),en such that a =nb+r, and ro > r; > ry > ---, and use this sequence to
find the values of ¢, r.

o Let rp = a. Then a = 0b + ry, as required.
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© Suppose r,, has been defined, and let r,, | = r, —b. Then

(n+Db+rpp=m+1D)b+r,—b
=nb+b+r,—b
=nb+r=a

Since b > 0, we must have r,, | < r, for all n.

Let R=NnN{r, | n € N}. Thatis, R is the set of terms of the sequence which are non-negative.
Since ro = a > 0, we have that ry € R and hence R is inhabited. By the well-ordering principle, R
has a least element r; for some k € N.

Define g = k and r = r;. By construction we have a = gb+r and r > 0, so it remains to show that
r<b. Well,if r > bthen r —b > 0, but r — b = ry 1, so this would imply ;| € R, contradicting
minimality of r. Hence r < b, so g, r are as required.

e Uniqueness. Suppose ¢',r also satisfy a = ¢'b++ and 0 < ¥/ < b. If we can show that /' = r
then this proves that ¢ = ¢': indeed, if gb+ r = ¢'b + r then we can subtract r and then divide by
b, since b > 0.

First note that ¢ > 0. If ¢ < O then ¢’ < —1, so
azq/b—l—r/ <—b+7

and hence ¥ > a+b > b since a > 0. This contradicts the assumption that r < b. So ¢’ > 0.

Since ¢’ > 0, we also know that a = ¢'b+r,, and hence ' = ry € R. By minimality of r we have
r < 7. It remains to show that » = #/. If not then r < #/. Thus

gh+r=¢b+vV >¢db+r = qgb>4db = g>q
and hence g = ¢’ +1 for some ¢t > 1. But then
gb+r =a=qgb+r=(q+t)b+r=qb+(th+r)
so 7’ =tb+r > b, contradicting ' < b. So r = ¥ as desired, and hence g = ¢'.
At long last, we are done. U
4 Definition 6.1.2
Let a,b € Z with b # 0, and let g, r be the unique integers such that
a=qgb+r and 0<r<|b|

We say ¢ is the quotient and r is the remainder of a divided by b.

¢ Example 6.1.3
Some examples of division include:

14=2x5+4, —14=-3x5+1, 15=3x540
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4 Definition 6.1.4
Let a,b € Z. We say b divides a, or that b is a divisor (or factor) of a, if there exists g € Z such
that a = gb. To denote the fact that b divides a we write b | a (ISTEX code: \mid). For the negation
—(b | a) write bt a (ILTEX code: \nmid).

Thus, when b # 0, saying b | a is equivalent to saying that the remainder of a divided by b is 0.

< Example 6.1.5
5 divides 15 since 15 = 3 x 5. However, 5 does not divide 14: we know that the remainder of 14
divided by 5 is 4, not 0—and it can’t be both since we proved in the division theorem that remainders
are unique! <
% Exercise 6.1.6
Show that if a € Z then 1 | a, —1 | a and a | 0. For which integers a does a | 1? For which integers a
does 0 | a? <

We now introduce the very basic notion of a unit. This notion is introduced to rule out trivialities.
Units become interesting when talking about general rings, but in Z, the units are very familiar.

4 Definition 6.1.7
Let u € Z. We say u is a unit if u | 1; that is, u is a unit if there exists v € Z such that uv = 1.

¢ Proposition 6.1.8
The only units in Z are 1 and —1.

Proof

First note that 1 and —1 are units, since 1 -1 =1 and (—1)-(—1) = 1. Now suppose that u € Z is a
unit, and let v € Z be such that uv = 1. Certainly u # 0, since Ov =07# 1. If u > 1 or u < —1 then
v=1¢7. Sowemusthaveu e {—1,1}. O

Exercise 6.1.6 shows that —1, 0 and 1 are, from the point of view of divisibility, fairly trivial. For
this reason, most of the results we discuss regarding divisibility will concern nonzero nonunits, i.e.
all integers except —1, O or 1.

Greatest common divisors

4 Definition 6.1.9
Leta,b € Z. An integer d is a greatest common divisor of ¢ and b if:

(a) d|aandd | b;
(b) If ¢ is another integer such that g | a and g | b, then ¢ | d.

¢ Example 6.1.10
2 is a greatest common divisor of 4 and 6; indeed:

(a) 4=2x2,and6=3x2,502 |4 and 2| 6;

(b) Suppose ¢ |4 and g | 6. The divisors of 4 are +1,+2,+4 and the divisors of 6 are +1, +2, +3,
+6. Since ¢ divides both, it must be the case that ¢ € {—2,—1,1,2}; in any case, ¢ | 2.

180



Section 6.1. Division 181

Likewise, —2 is a greatest common divisor of 4 and 6. <

% Exercise 6.1.11
There are two greatest common divisors of 6 and 15; find both. <

We will now prove that greatest common divisors exist—that is, any two integers have a greatest
common divisor—and that they are unique up to sign.

o2

Theorem 6.1.12
Every pair of integers a, b has a greatest common divisor.

Proof

First note that if a = b = 0, then 0 is a greatest common divisor for a and b. Moreover, we may take
a, b to be non-negative, since divisibility is insensitive to sign. So suppose that a,b > 0 and that a,b
are not both zero.

Define a set X C Z by
X ={au+bv|u,veZ, aut+bv >0}

That is, X is the set of positive integers of the form au + bv.

X is inhabited. To see this, note that a> > 0 or b*> > 0 since a # 0 or b # 0, so letting u =a and v ="b
in the expression au + bv, we see that

an+bv=a*>+b*>0 = da*+b*eX

By the well-ordering principle, X has a least element d, and by definition of X there exist u,v € Z
such that d = au+ bv.

We will prove that d is a greatest common divisor for a and b.
e d|a. If a= 0, then this is immediate, so suppose that a > 0. Let ¢, r € Z be such that
a=qd+r and 0<r<d
Nowa=a-1+b-0,s0a e X, and hence d < a. Moreover
r=a—qd=a—q(au+bv)=a(l —qu)+b(—qv)

If » > 0 then this implies that r € X; but this would contradict minimality of d, since r < d. So we
must have r = 0 after all.

e d | b. The proof of this is identical to the proof that d | a.

e Suppose ¢ is an integer dividing both @ and b. Then g | au+ bv by Exercise 0.16. Since au+bv =d,
we have ¢ | d.

So d is a greatest common divisor of a and b after all. O

% Exercise 6.1.13
Leta,b € Z. If d and d' are two greatest common divisors of a and b, then either d =d’ ord = —d'.
<
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< Aside

A consequence of Theorem 6.1.12 and Exercise 6.1.13 is that every pair of integers has a unique
non-negative greatest common divisor! Written symbolically, we can say

S .
V(a,b)erZ,El!deZ,( d > 0 and d is a greatest )

common divisor for a and b

As discussed in Section 3.1, since this is a formula of the form ‘for all ... there exists a unique ...’,
this defines a function gcd : Z x Z — Z. We won’t explicitly refer to the fact that gcd is a function;
rather, we’ll just concern ourselves with its values, as in Notation 6.1.14. <

Exercise 6.1.13 justifies our use of the following notation to refer to greatest common divisors.

4 Notation 6.1.14

Let a,b € Z. Denote by gcd(a,b) (IKTEX code: \mathrm{gcd}) the (unique!) non-negative greatest
common divisor of a and b.

Example 6.1.15

In Example 6.1.10, we saw that both 2 and —2 are greatest common divisors of 4 and 6. Using

Notation 6.1.14, we can now write gcd(4,6) = 2. <
. Exercise 6.1.16

For each n € Z, let D, C Z be the set of divisors of n. Prove that D, N Dj, = Dygcq(q,p) for all a,b € Z.
<

Our goal for the rest of this subsection is to investigate the behaviour of greatest common divisors,
find out how to compute them, and look into the implications they have for solutions to certain kinds
of equations.

Theorem 6.1.17
Leta,b,q,r € Z, and suppose that a = gb+r. Then
ged(a,b) = ged(b, r)

Proof
Let d = gcd(a,b). We check that d satisfies the conditions required to be a greatest common divisor
of b and r.

Note that d | a and d | b, so let s,¢ € Z be such that a = sd and b = td.
e d | b by definition, and d | r since
r=a—qb=sd—qtd = (s—qt)d
e Suppose d’ |band d’' | r; say b =ud’ and r = vd' with u,v € Z. Then d’ | a, since
a=qb+r=qud +vd = (qu+v)d
sod'|d since d = ged(a,b).

So d is a greatest common divisor of b and r. Since d > 0, the result is shown. O
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Combined with the division theorem (Theorem 6.1.1), Theorem 6.1.17 gives a relatively fast al-
gorithm for computing the greatest common divisor of two integers, known as the Euclidean al-
gorithm.

% Strategy 6.1.18 (Euclidean algorithm)
Let a,b € Z. To compute ged(a,b), proceed as follows.

e Setrg=|a| and r| = |b|.
e Given r,_; and r,,_1, define r, to be the remainder of r,,_, divided by r,,_;.
e Stop when r, = 0; then r,,_; = ged(a, b).

< Example 6.1.19
We will find the greatest common divisor of 148 and 28.

148 =5 x 28+ 8
28 =3x8+4
8 =2x[4]+0 « Stop!

Hence gcd(148,28) = 4. Here the sequence of remainders is given by:

}’():14-87 r1:28, V2=8, r3:4, r4:O

< Example 6.1.20
The Euclidean algorithm works surprisingly quickly, even for relatively large numbers. Consider the
problem of computing ged(1311,5757) for example:

5757=4x1311+513
1311 =2 x 513 +285
513 =1x285+228
285 =1x228+457

228 =4 x[57]+0 ¢ Stop!
Hence gcd(1311,5757) = 57. Here the sequence of remainders is given by:
ro=>5757, r =1311, rn =513, r3 =285 =228, rs=57, re=0

<

< Example 6.1.21
Here’s an example where one of the numbers is negative: we compute the value of ged(—420,76):

—420 = (—6) x 76+ 36

76 =2x36+4
36 =9 x[4]+0 « Stop!
Hence ged(—420,76) = 4. <
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Example 6.1.22
Use the Euclidean algorithm to compute the greatest common divisors of the following pairs of
integers

(12,9), (100,35), (7125,1300), (1010,101010), (—4,14)

<

The following theorem will be useful when we study modular arithmetic in Section 6.3; it is called
a ‘lemma’ for historical reasons, and is really an important result in its own right.

Theorem 6.1.23 (Bézout’s lemma)
Leta,b,c € Z, and let d = ged(a,b). The equation

ax+by=c
has a solution (x,y) € Z x Z if and only if d | c.

Proof
(=) Write a = d'd and b = b'd, for ', b’ € Z. If there exist x,y € Z such that ax + by = c, then

c=ax+by=ddx+bdy=(dx+by)d
andsod | c.
(<) Suppose d | ¢, and let ¢ = kd for some k € Z.

If ¢ = 0, then a solution is x =y = 0. If ¢ < 0, then ax + by = ¢ if and only if a(—x) +b(—y) = —c;
so we may assume that ¢ > 0.

We proved in Theorem 6.1.12 that a greatest common divisor of a and b is a least element of the set
X ={au+bv|uyveZ, aut+bv >0}
So let u,v € Z be such that au+ bv = d. Then
a(ku) +b(kv) = k(au+bv) =kd =c
and so letting x = ku and y = kv, we see that the equation ax+ by = c has a solution (x,y) € Zx Z. [
Bézout’s lemma completely characterises when the equation ax + by = ¢ has a solution. An easy

generalisation of Bézout’s lemma provides a complete characterisation of when solutions to linear
Diophantine equations exist, that is equations of the form

ax+by=c

where a,b, c € Z. We will soon develop an algorithm for computing all solutions to these equations.

Example 6.1.24
Here are some examples of applications of Bézout’s lemma.

e Consider the equation 1311x 4 5757y = 12963. We computed in Example 6.1.20 that
gcd(1311,5757) = 57. But 57 1 12963 since 12963 = 227 x 57 +24. By Bézout’s lemma,
the equation 1311x 45757y = 12963 has no integer solutions.
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e For fixed z, the equation 4u + 6v = z has solutions exactly when z is even, since gcd(4,6) = 2.

e For fixed a,b, the equation au + bv = 0 always has solution. Indeed, setting u = b and v = —a
gives a solution; but we knew one had to exist since by Exercise 6.1.6 we know that d | 0 for all
deZ.

<

% Exercise 6.1.25
Which of the following equations have solutions?

(@) 12u+9v=—18

) Ru+% =1

(c) 100u+35v =125

(d) 7125u+1300v =0

(e) 10104+ 101010v =1010101010101010
® 1du—4v=12

Coprimality

4 Definition 6.1.26
Leta,b € Z. We say a and b are coprime (or relatively prime), and write a L b (I&IgX code: \perp)
(read ‘a is coprime to b’), if ged(a,b) = 1.

& Example 6.1.27
4 1 9. To see this, note that if d | 4 then d € {—4,—-2,—1,1,2,4}, and if d | 9 then
de{-9,-3,—-1,1,3,9}. Hence if d |4 and d |9, then d =1 or d = —1. It follows that

gcd(4,9) =1. <
% Exercise 6.1.28
Which integers in the set [15] are coprime to 15? <

¢ Proposition 6.1.29
Let a,b € Z. The following are equivalent:

(1) a and b are coprime;
(2) Ifd € Z with d | a and d | b, then d is a unit.

Proof
We prove that condition (1) implies condition (2), and vice versa.

e (1)=(2). Suppose a and b are coprime, and fix d € Z withd | a and d | b. Then d | ged(a,b) =1,
so d is a unit.

e (2)=(1). Suppose condition (2) above holds. We prove that 1 satisfies the conditions required to
be a greatest common divisor of @ and b. The fact that 1 | @ and 1 | b is automatic; and the fact that
ifd | aand d | bimplies d | 1 is precisely the condition (2) that we are assuming.
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Hence the two conditions are equivalent. g

Exercise 6.1.30
Let a and b be integers, not both zero, and let d = ged(a,b). The integers § and 2 are coprime. <

The following corollary is a specialisation of Bézout’s lemma to the case when a and b are coprime.

Corollary 6.1.31
Let a,b € Z. The equation au+ bv = 1 has a solution if and only if @ and b are coprime. Moreover,
if a and b are coprime, then the equation au + bv = z has a solution for all z € Z.

Proof

By Bézout’s lemma (Theorem 6.1.23), the equation au + bv = 1 has a solution if and only if
gcd(a,b) | 1. But the only positive divisor of 1 is 1, so a solution exists if and only if gcd(a,b) = 1,
which is precisely the assertion that @ and b are coprime.

If @ and b are coprime, then 1 = ged(a, b) | z for all z € Z. So by Bézout’s lemma again, the equation
au+ bv = z has a solution for all z € Z. 0

A useful consequence of Bézout’s lemma is the following result:

Proposition 6.1.32
Let a,b,c € Z. If a and b are coprime and a | bc, then a | c.

Proof
By Bézout’s lemma (Theorem 6.1.23) there exist integers u and v such that au+ bv = 1. Multiplying
by ¢ gives acu+ bcv = c. Since a | be, we can write be = ka for some k € Z, and so acu + kav = c.
But then

(cut+kvia=c

which proves that a | c. O

Linear Diophantine equations

We have now seen two important results:

e The Euclidean algorithm, which was a procedure for computing the greatest common divisor of
two integers.

e Bézout’s lemma, which provides a necessary and sufficient condition for equations of the form
ax + by = c to have an integer solution.

We will now develop the reverse Euclidean algorithm, which provides a method for computing
a solutions to (bivariate) linear Diophantine equations, when such a solution exists. Then we will
prove a theorem that characterises all integer solutions in terms of a given solution.

Example 6.1.33
Suppose we want to find integers x and y such that 327x 4 114y = 18. Running the Euclidean
algorithm yields that ged(327,114) = 3 — see below. For reasons soon to become apparent, we
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rearrange each equation to express the remainder on its own.

327 =2 x 114499 = 99 =327 -2x 114 (1)

114 =1x994 15 = 15=114—1x99 )
99 = 6x 1549 = 9=99-6x15 3)
15=1x9+6 = 6=15—1x9 4)
9=1x64+3 = 3=9-1x6 )
6=2%x340

We can then express 3 in the form 327u + 114v by successively substituting the equations into each
other:

Equation (5) expresses 3 as a linear combination of 6 and 9. Substituting equation (4) yields:

3=9—1x(15-1x9) = 3=2x9—1x15

This now expresses 3 as a linear combination of 9 and 15. Substituting equation (3) yields:

3=2%x(99-6x15)—1x15 = 3=(-13)x15+2x99

This now expresses 3 as a linear combination of 15 and 99. Substituting equation (2) yields:

3=(—13)x (114—1x99)+2x99 = 3=15x99—13x 114

This now expresses 3 as a linear combination of 99 and 114. Substituting equation (1) yields:

3=15x(327-2x114)—13x 114 = 3= (—43)x 114+ 15x 327

Now that we’ve expressed 3 as a linear combination of 114 and 327, we’re nearly done: we know
that 18 = 6 x 3, so multiplying through by 6 gives

18 = (—258) x 114 +90 x 327

Hence (x,y) = (90, —258) is a solution to the equation 327x+ 114y = 18. <

Proof tip
Let a,b € Z and let d = gcd(a,b). To find integers x,y such that ax+ by = d:

(i) Run the Euclidean algorithm on the pair (a,b), keeping track of all quotients and remainders.
(i) Rearrange each equation of the form r,_» = g, r,—1 + r,, to isolate r,.

(iii) Substitute for the remainders r in reverse order until gcd(a, b) is expressed in the form ax+ by
for some x,y € Z.

This process is called the reverse Euclidean algorithm. <
Exercise 6.1.34
Find a solution (x,y) € Z x Z to the equation 630x + 385y = 4340. <

Now that we have a procedure for computing one solution to the equation ax + by = ¢, we need to
come up with a procedure for computing all solutions. This can be done by proving the following
theorem.
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Theorem 6.1.35
Let a,b,c € Z, where a and b are not both zero. Suppose that xg and yg are integers such that
axy + byy = c. Then, (x,y) € Z x Z is another solution to the equation ax + by = c if and only if

b
xX=xo+k ———— and y=yo—k-

a
gcd(a,b) gcd(a,b)

for some k € Z.

Thus, as soon as we’ve found one solution (x,y) = (xo,yo) to the equation ax+ by = c, this theorem
tells us what all other solutions must look like.

Proof of Theorem 6.1.35
We prove the two directions separately.

(=). First suppose that (xo,yo) is an integer solution to the equation ax+ by = c. Let k € Z and let

b a
= k [ d — — k -
= At gcd(a,b) an Y=o gcd(a,b)
Then
ax+ by
PSR S B (S by definition of x and
=al x — -k ————— X
0 ged(a,b) Y0 ged(a,b) Y Y
b a
- b ke —7 kb — L i
(axo +byo) +a ecd(a.b) acd(a.b) rearranging
kab — kab
= (axp + byo) + M combining the fractions
= axo + byy since kab — kab =0
=c since (xo,yo) is a solution

so (x,y) is indeed a solution to the equation.

(«<=). First suppose that a L b. Fix a solution (xg,yp) to the equation ax + by = ¢, and let (x,y) be
another solution. Then

a(x—x0) +b(y—yo) = (axo +byo) — (ax+by) =c—c=0
so that
a(x—xp) =b(yo—y)

Now « and b are coprime, so by Proposition 6.1.32, we have a | yo —y and b | x — xo. Let k,/ € Z be
such that x — xg = kb and yy — y = fa. Then substituting into the above equation yields

a-kb=>b-Ya
and hence (k— £)ab = 0. Since ab # 0, we have k = ¢, so that
x=xo+kb and y=yy—ka

Now we drop the assumption that @ L b. Let gcd(a,b) =d > 1. We know that d | ¢, by Bézout’s

lemma (Theorem 6.1.23), and so
abo_c
d d d

188



&

<+

Section 6.1. Division 189

is another linear Diophantine equations, and moreover 5 L % by Exercise 6.1.30. By what we proved

above, we have

b
x:xo—&—k-g and y:yo—k-g

for some k € Z. But this is exactly what we sought to prove! |

Example 6.1.36
We know that (x,y) = (90, —258) is a solution to the equation 327x+ 114y = 18, and
327 327 14 114

S - L\ d — = 38
gcd(327,114) 3 M 327, 114) - 3

so this theorem tells us that (x,y) € Z x Z is a solution to the equation 327x + 114y = 18 if and only
if
x=90-+38k and y=—258—-109

for some k € Z. <

Exercise 6.1.37
Find all integers x,y such that
630x 4 385y = 4340

Least common multiples

You would be forgiven for wondering why so much of the foregoing section was devoted to greatest
common divisors, with no mention of least common multiples. We will now give the latter some
attention.

Definition 6.1.38
Let a,b € Z. An integer m is a least common multiple of a and b if:

(a) a|mandb|m;

(b) If ¢ is another integer such that a | c and b | ¢, then m | c.

The definition of least common multiple is dual to that of greatest common divisor (Definition 6.1.9).
This means that many properties of greatest common divisors have corresponding ‘dual’ properties,
which hold of least common multiples. As such, we will not say much here about least common
multiples, and that which we do say is in the form of exercises.

. Exercise 6.1.39

Leta,b € Z. Prove that a and b have a least common multiple. Furthermore, prove that least common
multiples are unique up to sign, in the sense that if m,m’ are two least common multiples of a and b,
thenm=m' orm= —m'. <

As with greatest common divisors, Exercise 6.1.39 justifies the following definition.
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4 Definition 6.1.40
Given a,b € Z, denote by Icm(a,b) (IKIEX code: \mathrm{lcm}) the non-negative least common

multiple of a and b.

% Exercise 6.1.41
Let a,b € Z. Prove that gcd(a,b) -1em(a,b) = |ab|. <
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Section 6.2
Prime numbers

Thinking of divisibility as a way of breaking down an integer, for example 12 =2 x 2 x 3, our goal
now is to show that there are particular integers that are atomic—they are the building blocks of the
integers, in the sense that:

e Every integer can be broken into a product of these atomic integers. ..
e ...and these atomic integers cannot themselves be broken down any further. ..

e ...and there is an essentially unique way to write an integer as a product of these atomic integers.

There are a couple of fairly vague terms used here: ‘atomic’ and ‘essentially unique’. But as always,
we will make these terms precise when we need to.

Primes and irreducibles

There are two ways that we might want to characterise the so-called atomic integer that we just
mentioned.

e One way that an integer might be atomic is if it allows us to break down products of integers—this
leads to the notion of prime (Definition 6.2.1).

e Another way is that an integer might be atomic is if it cannot be split up as a product of more than
one integer (in a nontrivial way)—this leads to the notion of irreducible (Definition 6.2.6).

Conveniently, as we will show in Theorem 6.2.11, these two notions coincide. But the fact that they
coincide is not obvious, and uses essential properties of the integers that do not hold in more general
structures.

The definition of prime that we are about to give comes from abstract algebra (specifically, from ring
theory). It might seem strange, but we will soon be able to show that the more familiar definition—
that is, having exactly two positive divisors—is equivalent to this one.

4 Definition 6.2.1
An integer p is (ring theoretically) prime if p is a nonzero nonunit and, for all a,b € Z, if p | ab
then p |aor p | b.

< Example 6.2.2
2 is prime. To see this, suppose it isn’t. Then there exist a,b € Z such that 2 | ab but 2 divides neither
a nor b. Thus a and b are both odd, meaning that ab is odd... but this contradicts the assumption
that 2 | ab.

However, 18 is not prime. Indeed, 18 | 12 x 15 but 18 divides neither 12 nor 15. <

% Exercise 6.2.3
Using Definition 6.2.1, prove that 3 and 5 are prime, and that 4 is not prime. <
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Example 6.2.4
Let k € Z with 0 < k < 5. We’ll show that 5 | (3).

Well, by Theorem 4.2.17 we know that

51= (2)1&(5—1«)1

By Definition 4.1.14, we have

S5x4l= (5> XX Xkx1x--x(5—k)
S~—~— k — —-
=5! =k! =(5-k)!

Since 5 is prime, it must divide one of the factors on the right-hand side of this equation. Thus,
either 5 divides (z), or it divides ¢ forsome 1 < ¢ <kor1 </ <5—k Butk<35and35—k <3, so
it cannot divide any of these values of /—if it did, it would imply 5 < ¢ < kor 5 < £ < 5 —k, which

is nonsense. Hence 5 must divide (2) <

Exercise 6.2.5
Let p € Z be a positive prime and let 0 < k < p. Show that p | (7). <

We now arrive at our second notion of atomic, capturing the idea that it should not be possible to
break an atomic integer into smaller parts.

Definition 6.2.6
An integer a is irreducible if ¢ is a nonzero nonunit and, for all m,n € Z, if a = mn, then either m
or n is a unit. Otherwise, a is reducible.

The notion of irreducible captures more closely the more familiar notion of ‘prime’, as the next
result shows.

Proposition 6.2.7
Let p € Z be a nonzero nonunit. Then p is irreducible if and only if the only divisors of p are p, —p,
1 and —1.

Proof

Suppose p is irreducible and that a | p. Then p = ab for some b € Z. Since p is irreducible, either a
or b is a unit. If a is a unit then b = £p, and if b is a unit then a = +p. So the only divisors of p are
+1 and £p.

Conversely, suppose that the only divisors of p are +1 and +p, and let a,b € Z with p = ab. We
want to prove that a or b is a unit. Since a | p, we have a € {1,—1,p,—p}. fa=+1, thenaisa
unit; if @ = +p, then b = +1, so that b is a unit. In any case, either a or b is a unit, and hence p is
irreducible. O

Example 6.2.8
A couple of examples of reducible and irreducible numbers are:

e 2isirreducible: if 2 = mn then either m or n is even, otherwise we’d be expressing an even number
as the product of two odd numbers. We may assume m is even, say m = 2k; then 2 = 2kn, so kn =1
and hence 7 is a unit.
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e 20 is reducible since 20 = 4 x 5 and neither 4 nor 5 is a unit.

<
» Exercise 6.2.9
Let p € Z. Prove that if p is ring theoretically prime, then p is irreducible. <
Lemma 6.2.10
Let a € Z be a nonzero nonunit. Then there are irreducibles py,..., p, such thata = p; X -+ X p,,.
Proof

We may assume a > 0, since if a < 0 we can just multiply by —1.
We proceed by strong induction on a > 2. The base case has a = 2 since we consider only nonunits.

o (Base case) We have shown that 2 is irreducible, so setting p; = 2 yields a product of primes.

o (Induction step) Let a > 2 and suppose that each integer k with 2 < k < a has an expression as a
product of irreducibles. If a + 1 is irreducible then we’re done; otherwise we can write a+ 1 = st,
where s,t € Z are nonzero nonunits. We may assume further that s and ¢ are positive. Moreover,
s<a+1landt <a-+1since s,t > 2.

By the induction hypothesis, s and ¢ have expressions as products of irreducibles. Write
S=p1X---Xpy and t=q;X---Xqy
This gives rise to an expression of a as a product of irreducibles:

a=St=py X XPy X g1 XXy

=5 =t

The result follows by induction. g

Theorem 6.2.11
Let p € Z. Then p is ring theoretically prime if and only if p is irreducible.

Proof
We prove the two directions separately.

e Prime = irreducible. This was Exercise 6.2.9.

o Irreducible = prime. Suppose p is irreducible. Let a,b € Z and suppose p | ab. We need to
show that p | a or p | b. It suffices to show that if p{a then p | b.

So suppose pta. Letd = ged(p,a). Since d | p and p is irreducible, we must have d = 1 ord = p
by Proposition 6.2.7. Since p{a and d | a, we must therefore have d = 1.

By Bézout’s lemma (Theorem 6.1.23), there exist u,v € Z such that au + pv = 1. Multiplying by
b gives abu+ pbv = b. Since p | ab, there exists k € Z such that pk = ab. Define g = ku+ bv; then

b = abu+ pbv = pku+ pbv = p(ku+bv) = gp

so p | b, as required.

So we’re done. Ol

Since primes and irreducibles are the same thing in Z, we will refer to them as ‘primes’, unless we
need to emphasise a particular aspect of them.
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Prime factorisation

Having described prime numbers in two ways, each of which emphasises their nature of being “un-
breakable’ by multiplication, we will extend Lemma 6.2.10 to prove that every integer can be ex-
pressed as a product of primes in an essentially unique way.

¢ Theorem 6.2.12 (Fundamental theorem of arithmetic)
Let a € Z be a nonzero nonunit. There exist primes py,..., px € Z such that

a=pypX---XPpg

Moreover, this expression is essentially unique: if @ = g; X --- X g is another expression of a as a
product of primes, then k = ¢ and, re-ordering the g; if necessary, for each i there is a unit u; such
that g; = u;p;.

Proof
We showed that such a factorisation exists in Lemma 6.2.10, with the word ‘prime’ replaced by the
word ‘irreducible’. It remains to prove (essential) uniqueness.

Let k be least such that there is an expression of a as a product of k primes, namely a = p; X --- X py.
Leta =g X --- X gy be any other such expression. We prove by induction on k that ¢ = k and, after
re-ordering if necessary, for each i there is a unit u; such that ¢; = u;p;.

e (Base case) If k = 1 then a = p; is itself prime. Then we have p; = ¢ X --- X g. Since pj is
prime, p; | g; for some j; by relabelling g; and ¢; we may assume that j = 1, so that p; | 1. By
irreducibility of g; we have g = u; p; for some unit u;.

o (Induction step) Let k > 1 and suppose that any integer which can be expressed as a product of
k primes is (essentially) uniquely expressible in such a way. Suppose a has an expression as a
product of k+ 1 primes, and that k+ 1 is the least such number. Suppose also that

A=Dp1 X XPp X Ppt1 =q1 X XqQyp

Note that £ > k+ 1. Since py is prime we must have pyy | ¢; for some j; by relabelling ¢; and
qq if necessary, we may assume that j = ¢, so that py | g;. As before, g = uy41 pr+1 for some
unit ug4 . Dividing through by py1 gives

PL X X P =41 X Xqp—1 XUy

Replacing g;—1 by qy—_ug+1, which is still prime, we can apply the induction hypothesis to obtain
k=4{¢—1, so k+ 1=/, and, after reordering if necessary ¢; = u;p; for all i < k. Since this also
holds for i = k+ 1, the induction step is complete.

The result follows by induction. 0

< Example 6.2.13
Here are some examples of numbers written as products of primes:

e 12 =2x2x3. We could also write this as 2 x 3 x 2 or (—2) x (—3) x 2, and so on.

e 53 =53 is an expression of 53 as a product of primes.
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e —1000=2x5x(—2)x5x%x2x5.

e We can view any unit as a product of no primes. (Don’t dwell on this point for too long as it will
not arise very often!)

% Exercise 6.2.14
Express the following numbers as products of primes:

16 —240 5050 111111 —123456789

<

To make things slightly more concise, we introduce a standard way of expressing a number as a
product of primes:

4 Definition 6.2.15
The canonical prime factorisation of a nonzero integer a is the expression in the form

— il i
a=upft -l

where r > 0 and:

e yu=1ifa>0,andu=—-1ifa<0;
e The numbers p; are all positive primes;
e p1<p2<--<pr

o ji > 1foralli.
We call j; the multiplicity of p; in a, and we call u the sign of a.

Typically we omit u if u = 1 (unless a = 1), and just write a minus sign (—) if u = —1.

¢ Example 6.2.16
The canonical prime factorisations of the integers given in Example 6.2.13 are:

o 12=2%.3.
e 53 =753,
e —1000=—23.53.

e 1=1.
<
% Exercise 6.2.17
Write out the canonical prime factorisations of the numbers from Exercise 6.2.14, which were:
16 —240 5050 111111 —123456789
<
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The following exercise provides another tool for computing greatest common divisors of pairs of
integers by looking at their prime factorisations.

> Exercise 6.2.18

Let py1, p2, ..., pr be distinct primes, and let k;, ¢; € N for all 1 < i < r. Define

ky

_ Sk k> ‘
m=py Xpy X XPDy !

and n:pflxpgzxmxpr

Prove that
ged(m,n) = pi' x p5? x -+ x plr

where u; = min{k;,¢;} forall 1 <i<r. 4

Example 6.2.19
We use Exercise 6.2.18 to compute the greatest common divisor of 17640 and 6468.

First we compute the prime factorisations of 17640 and 6468:
17640 =2°.3%.5.7% and 6468 =22.3-7%-11
It now follows from Exercise 6.2.18 that

ged(17640,6468) =22.3'.50.72.11°
=4.3.1-49-1
— 588

Exercise 6.2.18 allows us to provide a concise proof of the following result.

Corollary 6.2.20
Let p € Z be prime, let a € Z be nonzero, and let k > 1. Then a L p* if and only if p ta.

Proof
By the fundamental theorem of arithmetic, we can write

a=p’ xpj' x--xpl

where p1,...,p, are the primes other than p appearing in the prime factorisation of 4, and j, j; € N
for all 1 <i < r. Note that p | a if and only if j > 1.

Furthermore we have
k_ ko 0 0
P =D Xpp X Xpy

By Exercise 6.2.18 it follows that
ged(a, p¥) = p™IAE x pd s x pO = pminlik
Now:
e If min{j,k} =0 then j =0, in which case p { a, and gcd(a, p*) = p* = 1;
e If min{j,k} > 0then j > 1, in which case p | @, and p | ged(a, p¥), so ged(a, p*) # 1.

In particular, p { a if and only if a L p*. U
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Distribution of primes

So far we have seen several examples of prime numbers; to name a few, we’ve seen 2, 3, 5 and 53.
It might seem like the prime numbers go on forever, but proving this is less than obvious.

Exercise 6.2.21
Let P be an inhabited finite set of positive prime numbers and let m be the product of all the elements
of P. That is, for some n > 1 let

P:{pl,...,pn} and m:plx...xpn

where each py € P is a positive prime. Using the fundamental theorem of arithmetic, show that m+ 1
has a positive prime divisor which is not an element of P. <

Theorem 6.2.22
There are infinitely many primes.

Proof

We prove that there are infinitely many positive prime numbers—the result then follows immediately.
Let P be the set of all positive prime numbers. Then P is inhabited, since 2 € P, for example. If
P were finite, then by Exercise 6.2.21, there would be a positive prime which is not an element of
P—but P contains all positive primes, so that is impossible. Hence there are infinitely many positive
primes. d

This is one proof of many and is attributed to Euclid, who lived around 2300 years ago. We might
hope that a proof of the infinitude of primes gives some insight into how the primes are distributed.
That is, we might ask questions like: how frequently do primes occur? How fast does the sequence
of primes grow? How likely is there to be a prime number in a given set of integers?

As a starting point, Euclid’s proof gives an algorithm for writing an infinite list of primes:
e Let p; =2; we know that 2 is prime;

e Given py,..., s, let p 11 be the smallest positive prime factor of p; X --- X p, + 1.
The first few terms produced would be:

e p| =2 by definition;

e 2+ 1 =73, which is prime, so py = 3;

e 2x3+1=7, which is prime, so p3 =7;

2 x 3 x7+1 =43, which is prime, so ps =43;
e 2x3x7x43+1=1807=13x139,s0 ps =13;
o 2x3xT7x43 x13+1=23479 =53 x 443, so pe = 53;

e ...and soon.
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The sequence obtained, called the Euclid—Mullin sequence, is a bit bizarre:
2,3,7,43,13,53,5,6221671,38709183810571,139,2801,11,17,5471,...

Big primes like 38709183810571 often appear before small primes like 11. It remains unknown
whether or not every positive prime number appears in this list!

The chaotic nature of this sequence makes it difficult to extract information about how the primes
are distributed: the numbers p; X --- X p, + 1 grow very quickly—indeed, it must be the case that
p1 X -+ X pp+1 > 2" for all n—so the upper bounds for the sequence grow at least exponentially.

Another proof of the infinitude of primes that gives a (slightly) tighter bound can be obtained using
the following exercise.

% Exercise 6.2.23
Let n € Z with n > 2. Prove that the set {k € Z | n < k < n!} contains a prime number. <
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Section 6.3
Modular arithmetic

Recall the definition of congruence modulo an integer from Section 5.2.

4 Definition 5.2.6
Fix n € Z. Given integers a,b € Z, we say a is congruent to » modulo 7, and write

a=b mod n (41X code: a \equiv b \bmod{n})
if n divides a — b. If a is not congruent to » modulo n, write
a # b mod n (IAZTEX code: \not\equiv)

The number 7 is called the modulus of the congruence.
In Section 5.2, we proved that congruence is an equivalence relation:

*#» Theorem 5.2.11
Let n € Z. Then congruence modulo 7 is an equivalence relation on Z. That is:

(@) a=amod nforalla € Z;
(b) For all a,b € Z, if a = b mod n, then b = a mod n;

(¢c) Foralla,b,c € Z, if a=b mod n and b = ¢ mod n, then a = ¢ mod n.

In this section, we turn our attention to addition, subtraction, multiplication and division: our goal is
to find out how much arithmetic can be done with equality replaced by congruence. For example:

(i) Can we add a number to both sides of a congruence? That is, given a,b,c,n € Z, is it the case
that a = b mod n implies a + ¢ = b+ ¢ mod n?

(i1) Can we multiply both sides of a congruence by a number? That is, given a,b,c,n € Z, is it the
case that a = b mod n implies ac = bc mod n?

(iii)) Can we divide both sides of a congruence by a nonzero common factor? That is, given
a,b,c,n € Z with ¢ Z 0 mod n, is it the case that if ac = bc mod n implies a = b mod n?

The answers to (i) and (ii) are ‘yes’, as we will prove; but surprisingly, the answer to (iii) is ‘no’
(except under certain circumstances). For example, 2 x 3 =4 x 3 mod 6, but 2 # 4 mod 6, even
though 3 # 0 mod 6.

In light of this, it is important from the outset to point out that, although congruence is written with

a symbol that looks like that of equality (‘=" vs. ‘="), and although it is an equivalence relation, we
can only treat congruence like equality inasmuch as we prove that we can. Specifically:
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e In Theorem 5.2.11 we proved that congruence is an equivalence relation. This allows us to make
some basic inferences about congruences—for example, transitivity means that the following im-
plication is valid:

—-5=18=41=64mod23 = —5=64mod?23

e Theorem 6.3.3, which we will prove soon, tells us that we can treat congruence like equality for
the purposes of addition, multiplication and subtraction. Thus it will be valid to write things like

x=7mod12 = 2x+5=19mod 12

and we’ll be able to replace values by congruent values in congruences, provided they’re only
being added, subtracted or multiplied. For example, from the knowledge that 2°° = 1 mod 61 and
60! = —1 mod 61, we will be able to deduce

200.3=60!-xmod 61 = 3= —xmod 61

After we have worked out what arithmetic properties carry over to congruence, we will be able to
prove some interesting theorems involving congruences and discuss their applications.

The first result we prove gives us a few equivalent ways of talking about congruence.

¢ Proposition 6.3.1
Fix a modulus n and let a,b € Z. The following are equivalent:

(1) a and b leave the same remainder when divided by #;
(ii) a = b+ kn for some k € Z;
(iiil) a = b mod n.

Proof
We prove (i) < (iii) and (ii) < (iii).

e (i) = (iii). Suppose a and b leave the same remainder when divided by #, and let g;,q2,7 € Z be
such that
a=qn+r, b=gn+r and 0<r<n

Then a — b = (q1 — g2)n, which proves that n | a — b, and so a = b mod n.
e (iii) = (i). Suppose that a = b mod n, so that b — a = gn for some g € Z. Write
a=qn+ry, b=gn+r, and 0<r,rp<n

We may further assume that r| < ry. (If not, swap the roles of a and b—this is fine, since n | b —a
if and only if n | @ — b.) Now we have

b—a=qn= (@an+nr)—(qin+r)=gn
= (@—q—gn+(r2—r)=0 rearranging

since 0 < r; < rp <nwehave 0 < rp—r; <n, so that r, — ry is the remainder of O when divided
by n. That is, r, —r; =0, so r; = rp. Hence a and b have the same remainder when divided by n.
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e (ii) < (iii). We unpack the definitions of (ii) and (iii) to see that they are equivalent. Indeed

(ii)) < a=b+kn for some k € Z

& a—b=knforsome k € Z rearranging

snla—b by definition of divisibility
< a=bmodn by definition of congruence
& (iii)

O

% Discussion 6.3.2
Where in the proof of Proposition 6.3.1 did we rely on the convention that the modulus 7 is positive?
Is the result still true if 7 is negative? <

We now prove that we can treat congruence like equality for the purposes of adding, subtracting and
multiplying (but not dividing!) integers.

i+ Theorem 6.3.3 (Modular arithmetic)
Fix a modulus n, and let ay,a,b;,by € Z be such that

a; =by mod n and ay =by mod n

Then the following congruences hold:

(a) a1 +ay; = b1+ by mod n;
(b) ajay = b1b2 mod n,
(C) a) —day = b] —bz mod n.

Proof
By Definition 5.2.6 that n | a; — by and n | ay — by, so there exist q1,¢> € Z such that

ai—by =qn and a)—by =qn
This implies that
(a1+a2) — (b1 +b2) = (a1 —b1) + (a2 —b2) = qin+qn = (q1 +q2)n
son | (a; +az) — (by +by). This proves (a).

The algebra for (b) is slightly more involved:
aay —biby = (qin+b1)(qan+b2) —biby
= qi1gon* +bigan+baqin+biby —b1by
= qiqon” +bigan+bygin
= (q192n+b1g2 +b2gq1)n
This shows that n | ajay — by b, thus proving (b).
Now (a) and (b) together imply (c). Indeed, we know that —1 = —1 mod n and b; = b, mod n, so by

(b) we have —by = —b, mod n. We also know that a; = a, mod n, and hence a; — by = a, — by mod
n by (a). U
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Theorem 6.3.3 allows us to perform algebraic manipulations with congruences as if they were equa-
tions, provided all we’re doing is adding, multiplying and subtracting.

Example 6.3.4
We will solve the congruence 3x —5 = 2x+ 3 mod 7 for x:

3x—5=2x+3mod 7

< x—5=3mod7 (=) subtract 2x («<=) add 2x
& x=8mod7 (=)add 5 (<) subtract 5
& x=1mod7 since 8 =1 mod 7

So the integers x for which 3x — 5 and 2x 4 3 leave the same remainder when divided by 7, are
precisely the integers x which leave a remainder of 1 when divided by 7:

3x—5=2x+3mod 7 & x="Tq+ 1 forsome g €Z

. Exercise 6.3.5

For which integers x does the congruence 5x+ 1 = x+ 8 mod 3 hold? Characterise such integers x
in terms of their remainder when divided by 3. <

So far this all feels like we haven’t done very much: we’ve just introduced a new symbol = which
behaves just like equality. .. but does it really? The following exercises should expose some more
ways in which congruence does behave like equality, and some in which it doesn 1.

Exercise 6.3.6
Fix a modulus 7. Is it true that

a=bmodn = d“*=bmodn

for all a,b € Z and k € N? If so, prove it; if not, provide a counterexample. <

Exercise 6.3.7
Fix a modulus 7. Is it true that

k=fmodn = d"=da"'modn

for all k,£ € N and a € Z? If so, prove it; if not, provide a counterexample. <

Exercise 6.3.8
Fix a modulus 7. Is it true that

ga=gbmodn = a=bmodn

for all a,b,q € Z with g # 0 mod n? If so, prove it; if not, provide a counterexample. <

Example 6.3.9
Now that we have seen several things that we can do with modular arithmetic, let’s look at some
things that we cannot do:

e We cannot talk about fractions in modular arithmetic; for instance, it is invalid to say 2x = 1 mod 5
implies x = % mod 5.
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e We cannot take square roots in modular arithmetic; for instance, it is invalid to say ¥ =3mod4
implies x = ++/3 mod 4. In fact, it is invalid to say X2 =1mod 8 implies x = +1 mod 8§, since
for example 32 = 1 mod 8 but 3 # +1 mod 8.

e We cannot replace numbers in exponents by other numbers they are congruent to; for instance, it
is invalid to say x* = 23 mod 4 implies x = 2 mod 4.

Multiplicative inverses

We made a big deal about the fact that fractions don’t make sense in modular arithmetic. That is, it
is invalid to say

1
2x=1mod5 = XEE mod 5
Despite this, we can still make sense of ‘division’, provided we change what we mean when we say

‘division’. Indeed, the congruence 2x = 1 mod 5 has a solution:

2x=1mod 5
& 6x=3mod>5S (=) multiply by 3 (<) subtract 3
< x=3mod5 since 6 =1 mod 5

Here we didn’t divide by 2, but we still managed to cancel the 2 by instead multiplying through by
3. For the purposes of solving the equation this had the same effect as division by 2 would have had
if we were allowed to divide. The key here was that 2 x 3 =1 mod 5.

Definition 6.3.10
Fix a modulus n. Given a € Z, a multiplicative inverse for « modulo 7 is an integer u such that
au =1 mod n.

Example 6.3.11
Some examples of multiplicative inverses are as follows:

e 2 is a multiplicative inverse of itself modulo 3, since 2 x2 =4 =1 mod 3.
e 2 is a multiplicative inverse of 3 modulo 5, since 2 X3 =6 =1 mod 5.
e 7 is also a multiplicative inverse of 3 modulo 5, since 3 x 7=21 =1 mod 5.

e 3 has no multiplicative inverse modulo 6. Indeed, suppose u € Z with 3u = 1 mod 6. Then
6|3u—1,s03u—1=6q for some g € Z. But then

1=3u—6g=3(u—2q)

which implies that 3 | 1, which is nonsense.

<

Knowing when multiplicative inverses exist is very important for solving congruences: if « is a mul-
tiplicative inverse for a modulo n, then we can solve equations of the form ax = b mod n extremely
easily:

ax=bmodn = x=ubmodn
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. Exercise 6.3.12

Forn=17,8,9,10,11,12, either find a multiplicative inverse for 6 modulo 7, or show that no multi-
plicative inverse exists. Can you spot a pattern? <

Some authors write a~! to denote multiplicative inverses. We refrain from this, since it suggests that
multiplicative inverses are unique—but they’re not, as you’ll see in the following exercise.

Exercise 6.3.13
Let n be a modulus and let a € Z. Suppose that « is a multiplicative inverse for a modulo n. Prove
that, for all k € Z, u+ kn is a multiplicative inverse for a modulo n. <

Proposition 6.3.14
Let a € Z and let n be a modulus. Then a has a multiplicative inverse modulo » if and only if a L n.

Proof

Note that a has a multiplicative inverse # modulo » if and only if there is a solution («,v) to the
equation au +nv = 1. Indeed, au = 1 mod n if and only if n | au — 1, which occurs if and only
if there is some g € Z such that au — 1 = nq. Setting ¢ = —v and rearranging yields the desired
equivalence.

By Bézout’s lemma (Theorem 6.1.23), such a solution (u,v) exists if and only if gcd(a,n) | 1. This

occurs if and only if ged(a,n) = 1, i.e. if and only if a L n. O
Proof tip

To solve a congruence of the form ax = b mod n when a L n, first find a multiplicative inverse u for
a modulo n, and then simply multiply through by u to obtain x = ub mod n. <

Corollary 6.3.15
Let a, p € Z, where p is a positive prime. If p { a then a has a multiplicative inverse modulo p.

Proof

Suppose pta, and let d = ged(a, p). Since d | p and p is prime we have d = 1 ord = p. Since d | a
and p 1 a we can’t have d = p; therefore d = 1. By Proposition 6.3.14, a has a multiplicative inverse
modulo p. 0

Example 6.3.16
11 is prime, so each of the integers a with 1 < a < 10 should have a multiplicative inverse modulo
11. And indeed, the following are all congruent to 1 modulo 11:

Ixl=1 2x6=12 3x4=12 4x3=12 5x9=45
6x2=12 7x8=56 8x7=56 9x5=45 10x10=100

> Exercise 6.3.17

Find all integers x such that 25x —4 = 4x+ 3 mod 13. <

Orders and totients

For any modulus n, there are only finitely many possible remainders modulo n. A nice consequence
of this finiteness is that, when a L n, we can choose some power of a to be its multiplicative inverse,
as proved in the following exercise.
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%, Exercise 6.3.18
Let n be a modulus and let @ € Z with a L n. Prove that there exists k > 1 such that & = 1 mod n.
<

Exercise 6.3.18, together with the well-ordering principle, justify the following definition.

4 Definition 6.3.19
Let n be a modulus and let ¢ € Z with a L n. The order of a modulo # is the least k > 1 such that
k —
a“ =1 mod n.

Note that this definition makes sense by Exercise 6.3.18 and the well-ordering principle.

< Example 6.3.20
The powers of 7 modulo 100 are:

e 7' =750 7! =7 mod 100;

e 7> =49, 50 7> = 49 mod 100;
e 73 =343, 50 7° =43 mod 100;
e 74 =2401, so 7* = 1 mod 100.

Hence the order of 7 modulo 100 is 4, and 73 and 43 are multiplicative inverses of 7 modulo 100. <

Our focus turns to computing specific values of k such that ¢ = 1 mod n, whenevera € Z and a | n.
We first focus on the case when r is prime; then we develop the machinery of fotients to study the
case when 7 is not prime.

¢ Lemma 6.3.21
Let a,b € Z and let p € Z be a positive prime. Then (a+b)? = a” + b” mod p.

Proof
By the binomial theorem (Theorem 4.2.20), we have

(a+b)P = i (l/:) d“bP*

k=0

By Exercise 6.2.5, p | (i) forall 0 < k < p, and hence (i’)akb”’k =0mod p forall 0 < k < p. Thus
(a+b)f = (5) a0+ <p) aP’bP™P = aP +bP mod p
p
as desired. 0

i+ Theorem 6.3.22 (Fermat’s little theorem)
Let a, p € Z with p a positive prime. Then a” = a mod p.

Proof
We may assume that a > 0, otherwise replace a by its remainder modulo p.

We will prove that a” = a mod p by induction on a.
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e (BC) Since p > 0 we have 0 = 0, hence 07 = 0 mod p.

e (IS) Fix a > 0 and suppose a” = a mod p. Then (a+ 1)? = a” + 1” mod p by Lemma 6.3.21.
Now a” = a mod p by the induction hypothesis, and 17 = 1, so we have (a+1)? =a+ 1 mod p.

By induction, we’re done. O

The following consequence of Theorem 6.3.22 is often also referred to as ‘Fermat’s little theorem’,
but is slightly less general since it requires an additional hypothesis. In keeping with the wider
mathematical community, we will refer to both Theorem 6.3.22 and Corollary 6.3.23 as ‘Fermat’s
little theorem’.

Corollary 6.3.23 (Fermat’s little theorem — alternative version)
Let a, p € Z with p a positive prime and p { a. Then a”~! = 1 mod p.

Proof
Since p1 a, it follows that a L p. Theorem 6.3.22 tells us that a” = a mod p. By Proposition 6.3.14,
a has a multiplicative inverse b modulo p. Hence

a’b = ab mod p
But a”b = a’~'ab mod p, and ab = 1 mod p, so we get
a”'=1mod p
as required. O

Corollary 6.3.23 can be useful for computing remainders of humongous numbers when divided by
smaller primes.

Example 6.3.24
We compute the remainder of when divided by 7. Since 712, it follows from Fermat’s little
theorem (Corollary 6.3.23) that 2° = 1 mod 7. Now 1000 = 166 x 6+ 4, so

21000

21000 = 2166><6+4 = (26)166 .24 = 24 = 16 = 2 mOd 7
so the remainder of 2'%%° when divided by 7 is 2. <

Exercise 6.3.25
Find the remainder of 324488 when divided by 13. <

Unfortunately, the hypothesis that p is prime in Fermat’s little theorem cannot be disposed of. For
example, 6 is not prime, and 567! = 5% = 3125 = 520 x 6+ 5, s0 5° = 5 mod 6. Our next order of
business is to generalise Corollary 6.3.23 by removing the requirement that the modulus p be prime,
and replacing p — 1 by the totient of the modulus.

Definition 6.3.26
Let n € Z. The totient of n is the natural number @(n) (IZTEX code: \varphi (n)) defined by

¢(n) = {k & [|n[] [ k L n}|

That is, @(n) is the number of integers from 1 up to |n| which are coprime to n. The function
¢ : Z — N is called Euler’s totient function.
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< Example 6.3.27
Here are some examples of totients:

e The elements of [6] which are coprime to 6 are 1 and 5, so ¢(6) =2.

o If p is a positive prime, then by Corollary 6.2.20, every element of [p] is coprime to p except for
p itself. Hence if p is a positive prime then ¢(p) = p — 1. More generally, if p is prime then

o(p) =Ipl—1.
<

% Exercise 6.3.28
Let n € Z and let p > 0 be prime. Prove that if p | n, then @ (pn) = p- @(n). Deduce that ¢(p~) =
pF— p*=! for all prime p >0 and all k > 1. <

% Exercise 6.3.29
Let n € Z and let p > 0 be prime. Prove that if p { n, then @(pn) = (p—1)@(n). <

Together, Exercises 6.3.28 and 6.3.29 allow us to compute the totient of any integer with up to two
primes in its prime factorisation.

¢ Example 6.3.30
We compute ¢(100). The prime factorisation of 100 is 2> x 52. Applying Exercise 6.3.28 twice

P(2°x5%) =2x5%x@(2x5)=10¢(10)
Finally, Exercise 6.3.29 tells us that
0(10)=9p(2x5)=1xp(5)=1x4=4

Hence ¢(100) = 40. <

% Exercise 6.3.31
Prove that ¢(100) = 40, this time using the inclusion—exclusion principle. <

Euler’s theorem uses totients to generalise Fermat’s little theorem (Theorem 6.3.22) to arbitrary
moduli, not just prime ones.

+ Theorem 6.3.32 (Euler’s theorem)
Let n be a modulus and let a € Z with a L n. Then
a®" =1 mod n

Proof
By definition of totient, the set X defined by

X={ken]|kLn}
has ¢(n) elements. List the elements as
X= {XI 3 X250 e 7x(p(n)}

Note that ax; L n for all i, so let y; be the (unique) element of X such that ax; = y; mod n.
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Note that if i # j then y; # y;. We prove this by contraposition; indeed, since a L n, by Proposi-
tion 6.3.14, a has a multiplicative inverse, say b. Then

yi=yjmodn = ax; =ax; mod n = bax; =bax; modn = x; =x; mod n
and x; = x; mod n if and only if i = j. Thus

X= {x17-x27"'7-x(p(n)} = {)’17)’27~-->)’¢(n)}

This means that the product of the ‘x;’s is equal to the product of the ‘y;’s, and hence

X1 Xg(n)

=1 Yo(n) mod n since {x,...} ={y1,...}
= (axy) ... (axp(y)) mod n since y; = ax; mod n
=qa®" . x,- ... “Xg(n) Mod n rearranging

Since each x; is coprime to n, we can cancel the x; terms (by multiplying by their multiplicative
inverses) to obtain
a?™ =1 mod n

as required. U

Example 6.3.33
Some examples of Euler’s theorem in action are as follows:

e We have seen that ¢(6) = 2, and we know that 5 L 6. And, indeed,
5900 =52 =25 =4x6+1
50 52(°) = 1 mod 6.
e By Exercise 6.3.28, we have
e(121) = (11 =112—11' =121 - 11 =110

Moreover, given a € Z, a | 121 if and only if 11 { @ by Corollary 6.2.20. Hence a''® = 1 mod 121
whenever 111 a.

Exercise 6.3.34
Use Euler’s theorem to prove that the last two digits of 37° are ‘67" <

Example 6.3.35
Let n be a modulus and let a € Z with a | n. Prove that the order of a modulo n divides ¢(n). <

A formula for the totient of an arbitrary nonzero integer is proved in Theorem 6.3.59—its proof is an
application of the Chinese remainder theorem Theorem 6.3.46, and uses the techniques for counting
finite sets discussed in Section 7.2.
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Wilson’s theorem

We conclude this chapter on number theory with Wilson’s theorem, which is a nice result that com-
pletely characterises prime numbers in the sense that we can tell when a number is prime by com-
puting the remainder of (n — 1)! when divided by n.

Let’s test a few numbers first:

n | (n—1)! | remainder

2 1 1

3 2 2

4 6 2

5 24 4

6 120 0

7 720 6

8 | 5040 0
n (n—1)! remainder
9 40320 0
10 362880 0
11 3628800 10
12 39916800 0
13 | 479001600 12
14 | 6227020800 0
15 | 87178291200 0

It’s tempting to say that an integer n > 1 is prime if and only if n{ (n — 1)!, but this isn’t true since it
fails when n = 4. But it’s extremely close to being true.

Theorem 6.3.36 (Wilson’s theorem)
Let n > 1 be a modulus. Then n is prime if and only if (n — 1)! = —1 mod n.

The following sequence of exercises will piece together into a proof of Wilson’s theorem.

. Exercise 6.3.37
Let n € Z be composite. Prove that if n > 4, thenn | (n—1)!. <
Exercise 6.3.38
Let p be a positive prime and let @ € Z. Prove that, if a> = 1 mod p, thena =1 mod p ora = —1 mod
p. <

Exercise 6.3.38 implies that the only elements of [p — 1] that are their own multiplicative inverses
are 1 and p — 1; this morsel of information allows us 