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Preface

Hello, and thank you for taking the time to read this quick introduction to the book! I would like to
begin with an apology and a warning:

This book is still under development!

That is to say, there are some sections that are incomplete, as well as other sections which are
currently much more terse than I would like them to be.

The most recent version is freely available for download from the following website:

https://infinitedescent.xyz

As the book is undergoing constant changes, I advise that you do not print it in its entirety—if you
must print anything, then I suggest that you do it a few pages at a time, as required.

This book was designed withinquiry and communicationin mind, as they are central to a good
mathematical education. One of the upshots of this is that there are many exercises throughout the
book, requiring a more active approach to learning, rather than passive reading. These exercises are a
fundamental part of the book, and should be completed even if not required by the course instructor.
Another upshot of these design principles is that solutions to exercises are not provided—a student
seeking feedback on their solutions should speak to someone to get such feedback, be it another
student, a teaching assistant or a course instructor.

Navigating the book

This book need not, and emphaticallyshould not, be read from front to back. The order of material
is chosen so that material appearing later depends only on material appearing earlier (with a couple
of exceptions, which are pointed out in the text).

The majority of introductory pure mathematics courses cover, at a minimum, symbolic logic, sets,
functions and relations. This material is the content of Part I. Such courses usually cover additional
topics from pure mathematics, with exactlywhichtopics depending on what the course is preparing
students for. With this in mind, Part II serves as an introduction to a range of areas of pure mathem-
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viii Preface

atics, including number theory, combinatorics, set theory, real analysis, probability theory and order
theory.

It is not necessary to cover all of Part I before proceeding to topics in Part II. In fact, interspersing
material from Part II can be a useful way of motivating many of the abstract concepts that arise in
Part I.

The following table shows dependencies between sections. Previous sections within the same
chapter as a section should be considered `essential' prerequisites unless indicated otherwise.

Section Essential Recommended Useful
1.1 0
2.1 1.3
3.1 1.3 2.2 2.3
4.1 2.1 2.2 2.3, 3.2
5.1 1.3 2.1, 3.3 2.2
5.3 4.2
6.1 2.3, 3.3 4.2
8.1 6.1 7.3
8.3 6.2
7.1 3.1, 2.1 4.2
7.2 2.2 7.1
7.3 2.2 7.1 5.3, 8.1
9.1 6.2 8.1, 7.3
10.1 4.2
10.2 3.3, 2.3 8.1 10.1

Prerequisites are cumulative. For example, in order to cover Section 8.3, you should �rst cover
Chapters 0, 2 and 3 and Sections 6.1, 6.2, 8.1 and 8.2.

What the numbers, colours and symbols mean

Broadly speaking, the material in the book is broken down into enumerated items that fall into one
of �ve categories: de�nitions, results, remarks, examples and exercises. In Appendix A, we also
have proof extracts. To improve navigability, these categories are distinguished by name, colour and
symbol, as indicated in the following table.

Category Symbol Colour
De�nitions F Red
Results C Blue
Remarks v Purple

Category Symbol Colour
Examples 0 Teal
Exercises . Gold
Proof extracts } Teal

These items are enumerated according to their section—for example, Theorem 7.2.41 is in Sec-
tion 7.2. De�nitions and theorems (important results) appear in a box.

You will also encounter the symbols� andC whose meanings are as follows:

viii



Preface ix

� End of proof. It is standard in mathematical documents to identify when a proof has ended by
drawing a small square or by writing `Q.E.D.' (The latter stands forquod erat demonstrandum,
which is Latin forwhich was to be shown.)

C End of item. This isnot a standard usage, and is included only to help you to identify when an
item has �nished and the main content of the book continues.

Some subsections are labelled with the symbol?. This indicates that the material in that subsection
can be skipped without dire consequences.

Licence

This book is licensed under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) li-
cence. This means you're welcome to share this book, provided that you give credit to the author
and that any copies or derivatives of this book are released under the same licence. The content of
the licence can be read in its full glory at the end of the book, and by following the following URL:

http://creativecommons.org/licenses/by-sa/4.0/

Comments and corrections

Any feedback, be it from students, teaching assistants, instructors or any other readers, would be
very much appreciated. Particularly useful are corrections of typographical errors, suggestions for
alternative ways to describe concepts or prove theorems, and requests for new content (e.g. if you
know of a nice example that illustrates a concept, or if there is a relevant concept you wish were
included in the book).

Such feedback can be sent to the author by email (clive@infinitedescent.xyz ).
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Chapter 0

Getting started

Before we can start proving things, we need to eliminate certain kinds of statements that we might
try to prove. Consider the following statement:

This sentence is false.

Is it true or false? If you think about this for a couple of seconds then you'll get into a bit of a pickle.

Now consider the following statement:

The happiest donkey in the world.

Is it true or false? Well it's not even a sentence; it doesn't make sense to evenaskif it's true or false!

Clearly we'll be wasting our time trying to write proofs of statements like the two listed above—we
need to narrow our scope to statements that we might actually have a chance of proving (or perhaps
refuting)! This motivates the following (informal) de�nition.

F De�nition 0.1
A proposition is a statement to which it is possible to assign atruth value (`true' or `false'). If
a proposition is true, aproof of the proposition is a logically valid argument demonstrating that
it is true, which is pitched at such a level that a member of the intended audience can verify its
correctness.

Thus the statements given above are not propositions because there is no possible way of assigning
them a truth value. Note that, in De�nition 0.1, all that matters is that itmakes senseto say that it is
true or false, regardless of whether it actuallyis true or false—the truth value of many propositions
is unknown, even very simple ones.

. Exercise 0.2
Think of an example of a true proposition, a false proposition, a proposition whose truth value you
don't know, and a statement that is not a proposition. C

1



2 Chapter 0. Getting started

Results in mathematical papers and textbooks may be referred to aspropositions, but they may also
be referred to astheorems, lemmasor corollariesdepending on their intended usage.

� A proposition is an umbrella term which can be used for any result.

� A theorem is a key result which is particularly important.

� A lemma is a result which is proved for the purposes of being used in the proof of a theorem.

� A corollary is a result which follows from a theorem without much additional effort.

These are not precise de�nitions, and they are not meant to be—you could call every result apro-
positionif you wanted to—but using these words appropriately helps readers work out how to read
a paper. For example, if you just want to skim a paper and �nd its key results, you'd look for results
labelled astheorems.

It is not much good trying to prove results if we don't have anything to prove results about. With this
in mind, we will now introduce thenumber setsand prove some results about them in the context
of four topics, namely: division of integers, number bases, rational and irrational numbers, and
polynomials. These topics will provide context for the material in Part I, and serve as an introduction
to the topics covered in Part II.

We will not go into very much depth in this chapter. Rather, think of this as a warm-up exercise—a
quick, light introduction, with more proofs to be provided in the rest of the book.

Number sets

Later in this chapter, and then in much more detail in Section 2.1, we will encounter the notion
of a set; a set can be thought of as being a collection of objects. This seemingly simple notion is
fundamental to mathematics, and is so involved that we will not treat sets formally in this book. For
now, the following de�nition will suf�ce.

F De�nition 0.3 (to be revised in De�nition 2.1.1)
A set is a collection of objects. The objects in the set are calledelementsof the set. IfX is a set
andx is an object, then we writex 2 X (LATEX code: x \in X ) to denote the assertion thatx is an
element ofX.

The sets of concern to us �rst and foremost are thenumber sets—that is, sets whose elements are
particular types ofnumber. At this introductory level, many details will be temporarily swept under
the rug; we will work at a level of precision which is appropriate for our current stage, but still allows
us to develop a reasonable amount of intuition.

In order to de�ne the number sets, we will need three things: an in�nite line, a �xed point on this
line, and a �xed unit of length.

So here we go. Here is an in�nite line:

2



Chapter 0. Getting started 3

The arrows indicate that it is supposed to extend in both directions without end. The points on the
line will represent numbers (speci�cally,real numbers, a misleading term that will be de�ned in
De�nition 0.25). Now let's �x a point on this line, and label it `0':

0

This point can be thought of as representing the number zero; it is the point against which all other
numbers will be measured. Finally, let's �x a unit of length:

This unit of length will be used, amongst other things, to compare the extent to which the other
numbers differ from zero.

F De�nition 0.4
The above in�nite line, together with its �xed zero point and �xed unit length, constitute the (real)
number line.

We will use the number line to construct �ve sets of numbers of interest to us:

� The setN of natural numbers—De�nition 0.5;

� The setZ of integers—De�nition 0.11;

� The setQ of rational numbers—De�nition 0.24;

� The setR of real numbers—De�nition 0.25; and

� The setC of complex numbers—De�nition 0.31.

Each of these sets has a different character and is used for different purposes, as we will see both
later in this chapter and throughout this book.

Natural numbers (N)

Thenatural numbersare the numbers used for counting—they are the answers to questions of the
form `how many'—for example, I havethreeuncles,onedog andzerocats.

Counting is a skill humans have had for a very long time; we know this because there is evidence of
people using tally marks tens of thousands of years ago. Tally marks provide one method of counting
small numbers: starting with nothing, proceed through the objects you want to count one by one,
and make a mark for every object. When you are �nished, there will be as many marks as there are
objects. We are taught from a young age to count with our �ngers; this is another instance of making
tally marks, where now instead of making a mark we raise a �nger.

Making a tally mark represents anincrementin quantity—that is, adding one. On our number line,
we can represent an increment in quantity by moving to the right by the unit length. Then the
distance from zero we have moved, which is equal to the number of times we moved right by the
unit length, is therefore equal to the number of objects being counted.

3



4 Chapter 0. Getting started

F De�nition 0.5
Thenatural numbers are represented by the points on the number line which can be obtained by
starting at 0 and moving right by the unit length any number of times:

0 1 2 3 4 5

In more familiar terms, they are thenon-negative whole numbers. We write N (LATEX code:
\mathbb{N} ) for the set of all natural numbers; thus, the notation `n 2 N' means thatn is a nat-
ural number.

The natural numbers have very important and interesting mathematical structure, and are central to
the material in Chapter 6. A more precise characterisation of the natural numbers will be provided
in Section 3.1, and a mathematical construction of the set of natural numbers can be found in Sec-
tion B.1 (see Construction B.2.5). Central to these more precise characterisations will be the notions
of `zero' and of `adding one'—just like making tally marks.

v Aside
Some authors de�ne the natural numbers to be thepositivewhole numbers, thus excluding zero.
We take 0 to be a natural number since our main use of the natural numbers will be for counting
�nite sets, and a set with nothing in it is certainly �nite! That said, as with any mathematical
de�nition, the choice about whether 02 N or 062N is a matter of taste or convenience, and is merely
a convention—it is not something that can be proved or refuted. C

Number bases

Writing numbers down is something that may seem easy to you now, but it likely took you several
years as a child to truly understand what was going on. Historically, there have been many different
systems for representing numbers symbolically, callednumeral systems. First came the most prim-
itive of all, tally marks, appearing in the Stone Age and still being used for some purposes today.
Thousands of years and hundreds of numeral systems later, there is one dominant numeral system,
understood throughout the world: theHindu–Arabic numeral system. This numeral system con-
sists of ten symbols, calleddigits. It is a positionalnumeral system, meaning that the position of a
symbol in a string determines its numerical value.

In English, theArabic numeralsare used as the ten digits:

0 1 2 3 4 5 6 7 8 9

The right-most digit in a string is in the units place, and the value of each digit increases by a factor of
ten moving to the left. For example, when we write `2812', the left-most `2' represents the number
two thousand, whereas the last `2' represents the number two.

The fact that there are ten digits, and that the numeral system is based on powers of ten, is a biolo-
gical accident corresponding with the fact that most humans have ten �ngers. For many purposes,
this is inconvenient. For example, ten does not have many positive divisors (only four)—this has
implications for the ease of performing arithmetic; a system based on the number twelve, which has
six positive divisors, might be more convenient. Another example is in computing and digital elec-
tronics, where it is more convenient to work in abinarysystem, with just two digits, which represent

4



Chapter 0. Getting started 5

`off' and `on' (or `low voltage' and `high voltage'), respectively; arithmetic can then be performed
directly using sequences oflogic gatesin an electrical circuit.

It is therefore worthwhile to have some understanding of positional numeral systems based on num-
bers other than ten. The mathematical abstraction we make leads to the de�nition ofbase-b expan-
sion.

F De�nition 0.6
Let b > 1. Thebase-b expansionof a natural numbern is thea stringdrdr� 1 : : :d0 such that

� n = dr � br + dr� 1 � br� 1 + � � � + d0 � b0;

� 0 6 di < b for eachi; and

� If n > 0 thendr 6= 0—the base-b expansion of zero is 0 in all basesb.

Certain number bases have names; for instance, the base-2, 3, 8, 10 and 16 expansions are respect-
ively calledbinary, ternary, octal, decimalandhexadecimal.

aThe use of the word `the' is troublesome here, since it assumes that every natural number has only one base-b expansion.
This fact actually requires proof—see Theorem 5.3.51.

0 Example 0.7
Consider the number 1023. Its decimal (base-10) expansion is 1023, since

1023= 1� 103 + 0� 102 + 2� 101 + 3� 100

Its binary (base-2) expansion is 1111111111, since

1023= 1� 29 + 1� 28 + 1� 27 + 1� 26 + 1� 25 + 1� 24 + 1� 23 + 1� 22 + 1� 21 + 1� 20

We can express numbers in base-36 by using the ten usual digits 0 through 9 and the twenty-six
letters A through Z; for instance, A represents 10, M represents 22 and Z represents 35. The base-36
expansion of 1023 is SF, since

1023= 28� 361 + 15� 360 = S� 361 + F� 360

C

. Exercise 0.8
Find the binary, ternary, octal, decimal, hexadecimal and base-36 expansions of the number 21127,
using the letters A–F as additional digits for the hexadecimal expansion and the letters A–Z as
additional digits for the base-36 expansion. C

We sometimes wish to specify a natural number in terms of its base-b expansion; we have some
notation for this.

F Notation 0.9
Let b > 1. If the numbersd0;d1; : : : ;dr are base-b digits (in the sense of De�nition 0.6), then we
write

drdr� 1 : : :d0(b) = dr � br + dr� 1 � br� 1 + � � � + d0 � b0

for the natural number whose base-b expansion isdrdr� 1 : : :d0. If there is no subscript(b) and a
base is not speci�ed explicitly, the expansion will be assumed to be in base-10.

5



6 Chapter 0. Getting started

0 Example 0.10
Using our new notation, we have

1023= 1111111111(2) = 1101220(3) = 1777(8) = 1023(10) = 3FF(16) = SF(36)

C

Integers (Z)

The integerscan be used for measuring the difference between two instances of counting. For
example, suppose I have �ve apples and �ve bananas. Another person, also holding apples and
bananas, wishes to trade. After our exchange, I have seven apples and only one banana. Thus I have
two more apples and four fewer bananas.

Since an increment in quantity can be represented by moving to the right on the number line by the
unit length, adecrementin quantity can therefore be represented by moving to theleft by the unit
length. Doing so gives rise to the integers.

F De�nition 0.11
Theintegersare represented by the points on the number line which can be obtained by starting at
0 and moving in either direction by the unit length any number of times:

� 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5

We writeZ (LATEX code: \mathbb{Z} ) for the set of all integers; thus, the notation `n 2 Z' means
thatn is an integer.

The integers have such a fascinating structure that a whole chapter of this book is devoted to them—
see Chapter 5. This is to do with the fact that, although you can add, subtract and multiply two
integers and obtain another integer, the same is not true of division. This `bad behaviour' of division
is what makes the integers interesting. We will now see some basic results about division.

Division of integers

The motivation we will soon give for the de�nition of the rational numbers (De�nition 0.24) is that
the result of dividing one integer by another integer is not necessarily another integer. However, the
result issometimesanother integer; for example, I can divide six apples between three people, and
each person will receive an integral number of apples. This makes division interesting: how can we
measure the failure of one integer's divisibility by another? How can we deduce when one integer
is divisible by another? What is the structure of the set of integers when viewed through the lens of
division? This motivates De�nition 0.12.

F De�nition 0.12 (to be repeated in De�nition 5.1.4)
Let a;b 2 Z. We sayb divides a if a = qb for some integerq. Other ways of saying thatb dividesa
are:b is adivisor of a, b is afactor of a, or a is amultipleof b.

6
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0 Example 0.13
The integer 12 is divisible by 1, 2, 3, 4, 6 and 12, since

12= 12� 1 = 6� 2 = 4� 3 = 3� 4 = 2� 6 = 1� 12

It is also divisible by the negatives of all of those numbers; for example, 12 is divisible by� 3 since
12= ( � 4) � (� 3). C

. Exercise 0.14
Prove that 1 divides every integer, and that every integer divides 0. C

Using De�nition 0.12, we can prove some general basic facts about divisibility.

C Proposition 0.15
Let a;b;c 2 Z. If c dividesb andb dividesa, thenc dividesa.

Proof
Suppose thatc dividesb andb dividesa. By De�nition 0.12, it follows that

b = qc and a = rb

for some integersq andr. Using the �rst equation, we may substituteqcfor b in the second equation,
to obtain

a = r(qc)

But r(qc) = ( rq)c, andrq is an integer, so it follows from De�nition 0.12 thatc dividesa. �

. Exercise 0.16
Let a;b;d 2 Z. Suppose thatd dividesa andd dividesb. Given integersu andv, prove thatd divides
au+ bv. C

Some familiar concepts, such as evenness and oddness, can be characterised in terms of divisibility.

F De�nition 0.17
An integern is evenif it is divisible by 2; otherwise,n is odd.

It is not just interesting to know when one integerdoesdivide another; however, proving that one
integerdoesn'tdivide another is much harder. Indeed, to prove that an integerb does not divide an
integera, we must prove thata 6= qb for anyintegerq at all. We will look at methods for doing this
in Chapter 1; these methods use the following extremely important result, which will underlie all of
Chapter 5.

C Theorem 0.18 (Division theorem, to be repeated in Theorem 5.1.1)
Let a;b 2 Z with b 6= 0. There is exactly one way to write

a = qb+ r

such thatq andr are integers, and 06 r < b (if b > 0) or 06 r < � b (if b < 0).

The numberq in Theorem 0.18 is called thequotient of a when divided byb, and the numberr is
called theremainder.

7
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0 Example 0.19
The number 12 leaves a remainder of 2 when divided by 5, since 12= 2� 5+ 2. C

Here's a slightly more involved example.

C Proposition 0.20
Suppose an integera leaves a remainder ofr when divided by an integerb, and thatr > 0. Then� a
leaves a remainder ofb� r when divided byb.

Proof
Supposea leaves a remainder ofr when divided byb. Then

a = qb+ r

for some integerq. A bit of algebra yields

� a = � qb� r = � qb� r + ( b� b) = � (q+ 1)b+ ( b� r)

Since 0< r < b, we have 0< b� r < b. Hence� (q+ 1) is the quotient of� a when divided byb,
andb� r is the remainder. �

. Exercise 0.21
Prove that if an integera leaves a remainder ofr when divided by an integerb, thena leaves a
remainder ofr when divided by� b. C

We will �nish this part on division of integers by connecting it with the material on number bases—
we can use the division theorem (Theorem 0.18) to �nd the base-b expansion of a given natural
number. It is based on the following observation: the natural numbern whose base-b expansion is
drdr� 1 � � � d1d0 is equal to

d0 + b(d1 + b(d2 + � � � + b(dr� 1 + bdr ) � � � ))

Moreover, 06 di < b for all i. In particularn leaves a remainder ofd0 when divided byb. Hence

n� d0

b
= d1 + d2b+ � � � + drbr� 1

The base-b expansion ofn� d0
b is therefore

drdr� 1 � � � d1

In other words, the remainder ofn when divided byb is the last base-b digit of n, and then subtracting
this number fromn and dividing the result byb truncates the �nal digit. Repeating this process gives
usd1, and thend2, and so on, until we end up with 0.

This suggests the following algorithm for computing the base-b expansion of a numbern:

� Step 1. Let d0 be the remainder whenn is divided byb, and letn0 = n� d0
b be the quotient. Fix

i = 0.

� Step 2.Supposeni anddi have been de�ned. Ifni = 0, then proceed to Step 3. Otherwise, de�ne
di+ 1 to be the remainder whenni is divided byb, and de�neni+ 1 = ni � di+ 1

b . Incrementi, and
repeat Step 2.

8
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� Step 3.The base-b expansion ofn, is
didi� 1 � � � d0

0 Example 0.22
We compute the base-17 expansion of 15213, using the letters A–G to represent the numbers 10
through 16.

� 15213= 894� 17+ 15, sod0 = 15= F andn0 = 894.

� 894= 52� 17+ 10, sod1 = 10= A andn1 = 52.

� 52= 3� 17+ 1, sod2 = 1 andn2 = 3.

� 3 = 0� 17+ 3, sod3 = 3 andn3 = 0.

� The base-17 expansion of 15213 is therefore 31AF.

A quick veri�cation gives

31AF(17) = 3� 173 + 1� 172 + 10� 17+ 15= 15213

as desired. C

. Exercise 0.23
Find the base-17 expansion of 408735787 and the base-36 expansion of 1442151747. C

Rational numbers (Q)

Bored of eating apples and bananas, I buy a pizza which is divided into eight slices. A friend and
I decide to share the pizza. I don't have much of an appetite, so I eat three slices and my friend
eats �ve. Unfortunately, we cannot represent the proportion of the pizza each of us has eaten using
natural numbers or integers. However, we're not far off: we can count the number of equal parts
the pizza was split into, and of those parts, we can count how many we had. On the number line,
this could be represented by splitting the unit line segment from 0 to 1 into eight equal pieces, and
proceeding from there. This kind of procedure gives rise to therational numbers.

F De�nition 0.24
The rational numbers are represented by the points at the number line which can be obtained by
dividing any of the unit line segments between integers into an equal number of parts.

� 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5

The rational numbers are those of the forma
b, wherea;b 2 Z andb 6= 0. We writeQ (LATEX code:

\mathbb{Q} ) for the set of all rational numbers; thus, the notation `q 2 Q' means thatq is a rational
number.

The rational numbers are a very important example of a type of algebraic structure known as a
�eld —they are particularly central to algebraic number theory and algebraic geometry.

9



10 Chapter 0. Getting started

Real numbers (R)

Quantity and change can be measured in the abstract usingreal numbers.

F De�nition 0.25
Thereal numbersare the points on the number line. We writeR (LATEX code:\mathbb{R} ) for the
set of all real numbers; thus, the notation `a 2 R' means thata is a real number.

The real numbers are central to real analysis, a branch of mathematics introduced in Chapter 7.
They turn the rationals into acontinuumby `�lling in the gaps'—speci�cally, they have the property
of completeness, meaning that if a quantity can be approximated with arbitrary precision by real
numbers, then that quantity is itself a real number.

We can de�ne the basic arithmetic operations (addition, subtraction, multiplication and division) on
the real numbers, and a notion of ordering of the real numbers, in terms of the in�nite number line.

� Ordering. A real numbera is less than a real numberb, written a < b, if a lies to the left ofb
on the number line. The usual conventions for the symbols6 (LATEX code:\le ), > and> (LATEX
code:\ge ) apply, for instanceà 6 b' means that eithera < b or a = b.

� Addition. Suppose we want to add a real numbera to a real numberb. To do this, wetranslate
a by b units to the right—ifb < 0 then this amounts to translatinga by an equivalent number of
units to the left. Concretely, take two copies of the number line, one above the other, with the
same choice of unit length; move the 0 of the lower number line beneath the pointa of the upper
number line. Thena+ b is the point on the upper number line lying above the pointb of the lower
number line.

Here is an illustration of the fact that(� 3)+ 5 = 2:

� 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5

� 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5 6 7 8

� Multiplication. This one is fun. Suppose we want to multiply a real numbera by a real number
b. To do this, wescalethe number line, and perhapsre�ect it. Concretely, take two copies of the
number line, one above the other; align the 0 points on both number lines, and stretch the lower
number line evenly until the point 1 on the lower number line is below the pointa on the upper
number line—note that ifa < 0 then the number line must be re�ected in order for this to happen.
Thena� b is the point on the upper number line lying aboveb on the lower number line.

Here is an illustration of the fact that 5� 4 = 20.

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4

and here is an illustration of the fact that(� 5) � 4 = � 20:

10
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-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

01234

. Exercise 0.26
Interpret the operations of subtraction and division as geometric transformations of the real number
line. C

We will take for granted the arithmetic properties of the real numbers in this chapter, waiting un-
til Section 7.1 to sink our teeth into the details. For example, we will take for granted the basic
properties of rational numbers, for instance

a
b

+
c
d

=
ad+ bc

bd
and

a
b

�
c
d

=
ac
bd

Rational and irrational numbers

Before we can talk about irrational numbers, we should say what they are.

F De�nition 0.27
An irrational number is a real number that is not rational.

Unlike N;Z;Q;R;C, there is no standard single letter expressing the irrational numbers. However,
by the end of Section 2.1, we will be able to write the set of irrational numbers asR nQ.

Note in particular that `irrational' does not simply mean `not rational'—that would imply that all
complex numbers which are not real are irrational—rather, the term `irrational' means `real and not
rational'.

Proving that a real number isirrational is not particularly easy. We will get our foot in the door by
allowing ourselves to assume the following result, which is restated and proved in Proposition 3.3.12.

C Proposition 0.28
The real number

p
2 is irrational.

We can use the fact that
p

2 is irrational to prove some facts about the relationship between rational
numbers and irrational numbers.

C Proposition 0.29
Let a andb be irrational numbers. It is possible thatabbe rational.

Proof
Let a = b =

p
2. Thena andb are irrational, andab= 2 = 2

1, which is rational. �

. Exercise 0.30
Let r be a rational number and leta be an irrational number. Prove that it is possible thatra be
rational, and it is possible thatra be irrational. C

11
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Complex numbers (C)

We have seen that multiplication by real numbers corresponds with scaling and re�ection of the
number line—scaling alone when the multiplicand is positive, and scaling with re�ection when it
is negative. We could alternatively interpret this re�ection as arotation by half a turn, since the
effect on the number line is the same. You might then wonder what happens if we rotate by arbitrary
angles, rather than only half turns.

What we end up with is aplaneof numbers, not merely a line—see Figure 1. Moreover, it happens
that the rules that we expect arithmetic operations to satisfy still hold—addition corresponds with
translation, and multiplication corresponds with scaling and rotation. This resulting number set is
that of thecomplex numbers.

F De�nition 0.31
The complex numbersare those obtained by the non-negative real numbers upon rotation by any
angle about the point 0. We writeC (LATEX code:\mathbb{C} ) for the set of all complex numbers;
thus, the notationz̀2 C' means thatz is a complex number.

There is a particularly important complex number,i, which is the point in the complex plane exactly
one unit above 0—this is illustrated in Figure 1. Multiplication byi has the effect of rotating the
plane by a quarter turn anticlockwise. In particular, we havei2 = i � i = � 1; the complex numbers
have the astonishing property that square roots ofall complex numbers exist (including all the real
numbers).

In fact, every complex number can be written in the forma+ bi, wherea;b 2 R; this number corres-
ponds with the point on the complex plane obtained by movinga units to the right andb units up,
reversing directions as usual ifa or b is negative. Arithmetic on the complex numbers works just as
with the real numbers; in particular, using the fact thati2 = � 1, we obtain

(a+ bi)+ ( c+ di) = ( a+ c)+ ( b+ d)i and (a+ bi) � (c+ di) = ( ac� bd)+ ( ad+ bc)i

We will discuss complex numbers further in the portion of this chapter on polynomials below.

Polynomials

The integers, rational numbers, real numbers and complex numbers are all examples ofrings, which
means that they come equipped with nicely behaving notions of addition, subtraction and multiplic-
ation.

F De�nition 0.32
Let A be oneZ, Q, R or C. A (univariate) polynomial over A in the indeterminate x is an
expression of the form

a0 + a1x+ � � � + anxn

wheren2 N and eachak 2 A. The numbersak are called thecoef�cients of the polynomial. If not all
coef�cients are zero, the largest value ofk for which ak 6= 0 is called thedegreeof the polynomial.
By convention, the degree of the polynomial 0 is� ¥ .

12
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-5 -4 -3 -2 -1 0 1 2 3 4 5

i

2i

3i

4i

5i

-2i

-3i

-4i

-5i

-i

Figure 1: Illustration of the complex plane, with some points labelled.
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14 Chapter 0. Getting started

Polynomials of degree 1, 2, 3, 4 and 5 are respectively calledlinear, quadratic, cubic, quartic and
quinticpolynomials.

0 Example 0.33
The following expressions are all polynomials:

3 2x� 1 (3+ i)x2 � x

Their degrees are 0, 1 and 2, respectively. The �rst two are polynomials overZ, and the third is a
polynomial overC. C

. Exercise 0.34
Write down a polynomial of degree 4 overR which is not a polynomial overQ. C

F Notation 0.35
Instead of writing out the coef�cients of a polynomial each time, we may write something likep(x)
or q(x). The (̀x)' indicates thatx is the indeterminate of the polynomial. Ifa is a number[a] and
p(x) is a polynomial in indeterminatex, we write p(a ) for the result ofsubstituting a for x in the
expressionp(x).

Note that, ifA is any of the setsN, Z, Q, R or C, andp(x) is a polynomial overA, thenp(a ) 2 A for
all a 2 A.

0 Example 0.36
Let p(x) = x3 � 3x2+ 3x� 1. Thenp(x) is a polynomial overZ with indeterminatex. For any integer
a , the valuep(a ) will also be an integer. For example

p(0) = 03 � 3� 02 + 3� 0� 1 = � 1 and p(3) = 33 � 3� 32 + 3� 3� 1 = 8

C

F De�nition 0.37
Let p(x) be a polynomial. Aroot of p(x) is a complex numbera such thatp(a ) = 0.

Thequadratic formula(Theorem 1.1.31) tells us that the roots of the polynomialx2 + ax+ b, where
a;b 2 C, are precisely the complex numbers

� a+
p

a2 � 4b
2

and
� a�

p
a2 � 4b

2

Note our avoidance of the symbol `� ', which is commonly found in discussions of quadratic poly-
nomials. The symbol `� ' is dangerous because it may suppress the word `and' or the word `or',
depending on context—this kind of ambiguity is not something that we will want to deal with when
discussing the logical structure of a proposition in Chapter 1!

0 Example 0.38
Let p(x) = x2 � 2x+ 5. The quadratic formula tells us that the roots ofp are

2+
p

4� 4� 5
2

= 1+
p

� 4 = 1+ 2i and
2�

p
4� 4� 5
2

= 1�
p

� 4 = 1� 2i

[a]When dealing with polynomials, we will typically reserve the letterx for the indeterminate variable, and use the Greek
lettersa ;b ;g (LATEX code:\alpha, \beta, \gamma ) for numbers to be substituted into a polynomial.

14



Chapter 0. Getting started 15

The numbers 1+ 2i and 1� 2i are related in that their real parts are equal and their imaginary parts
differ only by a sign. Exercise 0.39 generalises this observation. C

. Exercise 0.39
Let a = a+ bi be a complex number, wherea;b 2 R. Prove thata is the root of a quadratic
polynomial overR, and �nd the other root of this polynomial. C

The following exercise proves the well-known result which classi�es the number of real roots of a
polynomial overR in terms of its coef�cients.

. Exercise 0.40
Let a;b 2 C and letp(x) = x2 + ax+ b. The valueD= a2 � 4b is called thediscriminant of p. Prove
that p has two roots ifD6= 0 and one root ifD= 0. Moreover, ifa;b 2 R, prove thatp has no real
roots ifD< 0, one real root ifD= 0, and two real roots ifD> 0. C

0 Example 0.41
Consider the polynomialx2 � 2x+ 5. Its discriminant is equal to(� 2)2 � 4 � 5 = � 16, which is
negative. Exercise 0.40 tells us that it has two roots, neither of which are real. This was veri�ed by
Example 0.38, where we found that the roots ofx2 � 2x+ 5 are 1+ 2i and 1� 2i.

Now consider the polynomialx2 � 2x� 3. Its discriminant is equal to(� 2)2 � 4� (� 3) = 16, which
is positive. Exercise 0.40 tells us that it has two roots, both of which are real; and indeed

x2 � 2x� 3 = ( x+ 1)(x� 3)

so the roots ofx2 � 2x� 3 are� 1 and 3. C

15
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Section 0.E

Chapter 0 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

0.1. The video-sharing websiteYouTubeassigns to each video a unique identi�er, which is a string
of 11 characters from the set

f A;B; : : : ;Z;a;b; : : : ;z;0;1;2;3;4;5;6;7;8;9; - ;_g

This string is actually a natural number expressed in base-64, where the characters in the above
set represent the numbers 0 through 63, in the same order—thusC represents 2,c represents
28, 3 represents 55, and_ represents 63. According to this schema, �nd the natural number
whose base-64 expansion isdQw4w9WgXcQ, and �nd the base-64 expansion of the natural number
7159047702620056984.

0.2. Let a;b;c;d 2 Z. Under what conditions is(a+ b
p

2)(c+ d
p

2) an integer?

0.3. Suppose an integerm leaves a remainder ofi when divided by 3, and an integerm leaves a
remainder ofj when divided by 3, where 06 i; j < 3. Prove thatm+ n andi + j leave the same
remainder when divided by 3.

0.4. What are the possible integers ofn2 when divided by 3, wheren 2 Z?

F De�nition 0.E.1
A set X is closedunder an operation� if, whenevera andb are elements ofX, a � b is also an
element ofX.

In Questions 0.5 to 0.11, determine which of the number setsN, Z, Q andR are closed under the
operation� de�ned in the question.

0.5. a� b = a+ b

0.6. a� b = a� b

0.7. a� b = ( a� b)(a+ b)

0.8. a� b = ( a� 1)(b� 1)+ 2(a+ b)

0.9. a� b =
a

b2 + 1

0.10. a� b =
a

p
b2 + 1

0.11. a� b =

(
ab if b > 0
0 if b 62Q

F De�nition 0.E.2
A complex numbera is algebraic if p(a ) = 0 for some nonzero polynomialp(x) overQ.

0.12. Let x be a rational number. Prove thatx is an algebraic number.

0.13. Prove that
p

2 is an algebraic number.

0.14. Prove that
p

2+
p

3 is an algebraic number.

0.15. Prove thatx+ yi is an algebraic number, wherex andy are any two rational numbers.

16
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Core concepts
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Chapter 1

Logical structure

The goal of this chapter is to develop a methodical way of breaking up a proposition into smaller
components and seeing how these components �t together—this is called thelogical structureof a
proposition. The logical structure of a proposition is very informative: it tells us what we need to do
in order to prove it, what we need to write in order to communicate our proof, and how to explore
the consequences of the proposition after it has been proved.

logical structure of a
proposition

strategies for proving
the proposition

structure and wording of
the proof

consequences of
the proposition

Sections 1.1 and 1.2 are dedicated to developing a system ofsymbolic logicfor reasoning about
propositions. We will be able to represent a proposition using a string of variables and symbols,
and this expression will guide how we can prove the proposition and explore its consequences. In
Section 1.3 we will develop techniques for manipulating these logical expressions algebraically—
this, in turn, will yield new proof techniques (some have fancy names like `proof by contraposition',
but some do not).

Exploring how the logical structure of a proposition informs the structure and wording of its proof
is the content of Appendix A.2.

19



20 Chapter 1. Logical structure

Section 1.1

Propositional logic

Every mathematical proof is written in the context of certainassumptionsbeing made, and certain
goalsto be achieved.

� Assumptionsare the propositions which are known to be true, or which we are assuming to be
true for the purposes of proving something. They include theorems that have already been proved,
prior knowledge which is assumed of the reader, and assumptions which are explicitly made using
words like `suppose' or `assume'.

� Goals are the propositions we are trying to prove in order to complete the proof of a result, or
perhaps just a step in the proof.

With every phrase we write, our assumptions and goals change. This is perhaps best illustrated by
example. In Example 1.1.1 below, we will examine the proof of Proposition 0.15 in detail, so that
we can see how the words we wrote affected the assumptions and goals at each stage in the proof.
We will indicate our assumptions and goals at any given stage using tables—the assumptions listed
will only be those assumptions which are made explicitly; prior knowledge and previously proved
theorems will be left implicit.

0 Example 1.1.1
The statement of Proposition 0.15 was as follows:

Let a;b;c 2 Z. If c dividesb andb dividesa, thenc dividesa.

The set-up of the proposition instantly gives us our initial assumptions and goals:

Assumptions Goals

a;b;c 2 Z
If c dividesb andb dividesa, thenc

dividesa

We will now proceed through the proof, line by line, to see what effect the words we wrote had on
the assumptions and goals.

Since our goal was an expression of the form `if. . . then. . . ', it made sense to start by assuming the
`if' statement, and using that assumption to prove the `then' statement. As such, the �rst thing we
wrote in our proof was:

Suppose thatc dividesb andb dividesa.

Our updated assumptions and goals are re�ected in the following table.

Assumptions Goals
a;b;c 2 R c dividesa
c dividesb
b dividesa

20
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Our next step in the proof was to unpack the de�nitions of `c dividesb' and `b dividesa', giving us
more to work with.

Suppose thatc dividesb andb dividesa. By De�nition 0.12, it follows that

b = qc and a = rb

for some integersq andr.

This introduces two new variablesq; r and allows us to replace the assumptions `c dividesb' and `b
dividesa' with their de�nitions.

Assumptions Goals
a;b;c;q; r 2 Z c dividesa

b = qc
a = rb

At this point we have pretty much exhausted all of the assumptions we can make, and so our attention
turns towards the goal—that is, we must prove thatc dividesa. At this point, it helps to `work
backwards' by unpacking the goal: what does it mean forc to dividea? Well, by De�nition 0.12, we
need to prove thata is equal to some integer multiplied byc—this will be re�ected in the following
table of assumptions and goals.

Since we are now trying to expressa in terms ofc, it makes sense to use the equations we have
relatinga with b, andb with c, to relatea with c.

Suppose thatc dividesb andb dividesa. By De�nition 0.12, it follows that

b = qc and a = rb

for some integersq andr. Using the �rst equation, we may substituteqc for b in the
second equation, to obtain

a = r(qc)

We are now very close, as indicated in the following table.

Assumptions Goals
a;b;c;q; r 2 Z a = [ some integer] � c

b = qc
a = rb

a = r(qc)

Our �nal step was to observe that the goal has at last been achieved:

Suppose thatc dividesb andb dividesa. By De�nition 0.12, it follows that

b = qc and a = rb

21



22 Chapter 1. Logical structure

for some integersq andr. Using the �rst equation, we may substituteqc for b in the
second equation, to obtain

a = r(qc)

But r(qc) = ( rq)c, andrq is an integer,

Assumptions Goals
a;b;c;q; r 2 Z

b = qc
a = rb

a = r(qc)
a = ( rq)c

rq 2 Z

Now that there is nothing left to prove, it is helpful to reiterate that point so that the reader has some
closure on the matter.

Suppose thatc dividesb andb dividesa. By De�nition 0.12, it follows that

b = qc and a = rb

for some integersq andr. Using the �rst equation, we may substituteqc for b in the
second equation, to obtain

a = r(qc)

But r(qc) = ( rq)c, andrq is an integer, so it follows from De�nition 0.12 thatc divides
a.

C

Symbolic logic

Consider again the proposition that we proved in Proposition 0.15 (for given integersa;b;c):

If c dividesb andb dividesa, thenc dividesa.

The three statements `c dividesb', `b dividesa' and c̀ dividesa' are all propositions in their own
right, despite the fact that they all appear inside a more complex proposition. We can examine the
logical structure of the proposition by replacing these simpler propositions with symbols, called
propositional variables. Writing P to representc̀ dividesb', Q to representb̀ dividesa' and R to
representc̀ dividesa', we obtain:

If P andQ, thenR.
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Breaking down the proposition in this way makes it clear that a feasibleassume PandQ, and then
derive Rfrom these assumptions—this is exactly what we did in the proof, which we examined
in great detail in Example 1.1.1. But importantly, it suggests that the same proof strategy might
work for other propositions which are also of the form `ifP andQ, thenR', such as the following
proposition (for a given integern):

If n > 2 andn is prime, thenn is odd.

Observe that the simpler propositions are joined together to form a more complex proposition using
language, namely the word `and' and the construction `if. . . then. . . '—we will represent these
constructions symbolically usinglogical operators, which will be introduced in De�nition 1.1.3.

Zooming in even more closely, we can use De�nition 0.12 to observe that `c dividesb' really means
`b = qc for someq 2 Z'. The expression `for someq 2 Z' introduces a new variableq, which
we must deal with appropriately in our proof. Words which we attach to variables in our proofs—
such as `any', `exists', `all', `some', `unique' and `only'—will be represented symbolically using
quanti�ers, which we will study in Section 1.2.

By breaking down a complex proposition into simpler statements which are connected together using
logical operators and quanti�ers, we can more precisely identify what assumptions we can make at
any given stage in a proof of the proposition, and what steps are needed in order to �nish the proof.

Propositional formulae

We begin our development of symbolic logic with some de�nitions to �x our terminology.

F De�nition 1.1.2
A propositional variable is a symbol that represents a proposition. Propositional variables may be
assignedtruth values (`true' or `false').

We will typically use the lower-case lettersp, q, r andsas our propositional variables.

We will be able to form more complex expressions representing propositions by connecting together
simpler ones usinglogical operatorssuch aŝ (which represents `and'),_ (which represents `or'),
) (which represents `if. . . then. . . ') and: (which represents `not').

The de�nition of the notions oflogical operatorandpropositional formulagiven below is a little bit
dif�cult to digest, so it is best understood by considering examples of propositional formulae and
instances of logical operators. Fortunately we will see plenty of these, since they are the central
objects of study for the rest of this section.

F De�nition 1.1.3
A propositional formula is an expression that is either a propositional variable, or is built up from
simpler propositional formulae (`subformulae') using alogical operator. In the latter case, the truth
value of the propositional formula is determined by the truth values of the subformulae according to
the rules of the logical operator.
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24 Chapter 1. Logical structure

On �rst sight, De�nition 1.1.3 seems circular—it de�nes the term `propositional formula' in terms
of propositional formulae! But in fact it is not circular; it is an example of arecursivede�nition
(we avoid circularity with the word `simpler'). To illustrate, consider the following example of a
propositional formula:

(p^ q) ) r

This expression represents a proposition of the form `ifp andq, thenr', where p;q; r are themselves
propositions. It is built from the subformulaep^ q andr using the logical operator) , andp^ q is
itself built up from the subformulaep andq using the logical operator̂.

The truth value of(p^ q) ) r is then determined by the truth values of the constituent propositional
variables (p, q andr) according to the rules for the logical operators^ and) .

If this all seems a bit abstract, that is because itis abstract, and you are forgiven if it makes no sense
to you yet. From this point onwards, we will only study particular instances of logical operators,
which will make it all much easier to understand.

Conjunction (`and', ^ )

Conjunction is the logical operator which makes precise what we mean when we say `and'.

F De�nition 1.1.4
Theconjunction operator is the logical operator^ (LATEX code: \wedge), de�ned according to the
following rules:

� (^ I) If p is true andq is true, thenp^ q is true;

� (^ E1) If p^ q is true, thenp is true;

� (^ E2) If p^ q is true, thenq is true.

The expressionp^ q representsp̀ andq'.

It is not always obvious when conjunction is being used; sometimes it sneaks in without the word
`and' ever being mentioned! Be on the look-out for occasions like this, such as in the following
exercise.

0 Example 1.1.5
We can express the proposition `7 is a prime factor of 28' in the formp^ q, by letting p represent
the proposition `7 is prime' and lettingq represent the proposition `7 divides 28'. C

. Exercise 1.1.6
Express the proposition `John is a mathematician who lives in Pittsburgh' in the formp^ q, for
propositionsp andq. C

The rules in De�nition 1.1.4 are examples ofrules of inference—they tell us how to deduce (or
`infer') the truth of one propositional formula from the truth of other propositional formulae. In
particular, rules of inference never directly tell us when a proposition isfalse—in order to prove
something is false, we will prove itsnegationis true (see De�nition 1.1.37).
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Rules of inference tell us how to use the logical structure of propositions in proofs:

� The rule (̂ I) is an introduction rule, meaning that it tells us how toprove a goalof the form
p^ q—indeed, if we want to prove thatp^ q is true, (̂ I) tells us that it suf�ces to prove thatp is
true and prove thatq is true.

� The rules (̂ E1) and (̂ E2) areelimination rules, meaning that they tell us how touse an assump-
tion of the form p^ q—indeed, if we are assuming thatp^ q is true, we are then free to use the
fact thatp is true and the fact thatq is true.

Each logical operator will come equipped with some introduction and/or elimination rules, which
tell us how to prove goals or use assumptions which include the logical operator in question. It is in
this way that the logical structure of a proposition informsproof strategies, like the following:

v Strategy 1.1.7 (Proving conjunctions)
A proof of the propositionp^ q can be obtained by tying together two proofs, one being a proof that
p is true and one being a proof thatq is true.

0 Example 1.1.8
Suppose we are required to prove that 7 is a prime factor of 28. In Example 1.1.5 we expressed `7
is a prime factor of 28' as the conjunction of the propositions `7 is prime' and `7 divides 28', and so
Strategy 1.1.7 breaks down the proof into two steps: �rst prove that 7 is prime, and then prove that
7 divides 28. C

Much like Strategy 1.1.7 was informed by the introduction rule for^ , the elimination rules inform
how we may make use of an assumption involving a conjunction.

v Strategy 1.1.9 (Assuming conjunctions)
If an assumption in a proof has the formp^ q, then we may assumep and assumeq in the proof.

0 Example 1.1.10
Suppose that, somewhere in the process of proving a proposition, we arrive at the fact that 7 is a
prime factor of 28. Strategy 1.1.9 then allows us to use the separate facts that 7 is prime and that 7
divides 28. C

Strategies 1.1.7 and 1.1.9 seem almostobvious. To an extent they are obvious, and that is why we
are stating them �rst. But the real reason we are going through the process of precisely de�ning
logical operators, their introduction and elimination rules, and the corresponding proof strategies, is
that when you are in the middle of the proof of a complicated result, it is all too easy to lose track of
what you have already proved and what remains to be proved. Keeping track of the assumptions and
goals in a proof, and understanding what must be done in order to complete the proof, is a dif�cult
task.

To avoid drawing this process out too long, we need a compact way of expressing rules of inference
that allows us to simply read off corresponding proof strategies. Wecoulduse tables of assumptions
and goals like in Example 1.1.1, but this quickly becomes clunky—indeed, even the very simple
conjunction introduction rule (̂I) doesn't look very nice in this format:
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26 Chapter 1. Logical structure

Assumptions Goals
... p^ q
...

 

Assumptions Goals
... p
... q

Instead, we will represent rules of inference in the style ofnatural deduction. In this style, we
write thepremises p1; p2; : : : ; pk of a rule above a line, with a singleconclusion qbelow the line,
representing the assertion that the truth of a propositionq follows from the truth of (all of) the
premisesp1; p2; : : : ; pk.

p1 p2 � � � pk
q

For instance, the introduction and elimination rules for conjunction can be expressed concisely fol-
lows:

p q
(^ I)

p^ q
p^ q

(^ E1)p
p^ q

(^ E2)q

In addition to its clean and compact nature, this way of writing rules of inference is useful because
we can combine them intoproof treesin order to see how to prove more complicated propositions.
For example, consider the following proof tree, which combines two instances of the conjunction
introduction rule.

p q
p^ q r
(p^ q) ^ r

From this proof tree, we obtain a strategy for proving a proposition of the form(p^ q) ^ r. Namely,
�rst prove p and proveq, to concludep^ q; and then prover, to conclude(p^ q) ^ r. This illustrates
that the logical structure of a proposition informs how we may structure a proof of the proposition.

. Exercise 1.1.11
Write a proof tree whose conclusion is the propositional formula(p^ q) ^ (r ^ s), wherep;q; r;sare
propositional variables. Express `2 is an even prime number and 3 is an odd prime number' in the
form (p^ q) ^ (r ^ s), for appropriate propositionsp, q, r ands, and describe how your proof tree
suggests what a proof might look like. C
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Disjunction (`or', _)

F De�nition 1.1.12
The disjunction operator is the logical operator_ (LATEX code: \vee ), de�ned according to the
following rules:

� (_ I1) If p is true, thenp_ q is true;

� (_ I2) If q is true, thenp_ q is true;

� (_ E) If p_ q is true, and ifr can be derived fromp and fromq, thenr is true.

The expressionp_ q representsp̀ or q'.

The introduction and elimination rules for disjunction are represented diagramatically as follows.

p
(_ I1)

p_ q
q

(_ I2)
p_ q

p_ q

[p]

 

r

[q]

 

r
(_ E)r

We will discuss what the notation[p]  r and[q]  r means momentarily. First, we zoom in on
how the disjunction introduction rules inform proofs of propositions of the form `p or q'.

v Strategy 1.1.13 (Proving disjunctions)
In order to prove a proposition of the formp_ q, it suf�ces to prove just one ofp or q.

0 Example 1.1.14
Suppose we want prove that 8192 is not divisible by 3. We know by the division theorem (The-
orem 0.18) that an integer is not divisible by 3 if and only if it leaves a remainder of 1 or 2 when
divided by 3, and so it suf�ces to prove the following:

8192 leaves a remainder of 1
when divided by 3

_
8192 leaves a remainder of 2

when divided by 3

A quick computation reveals that 8192= 2730� 3+ 2, so that 8192 leaves a remainder of 2 when
divided by 3. By Strategy 1.1.13, the proof is now complete, since the full disjunction follows by
(_ I2). C

0 Example 1.1.15
Let p;q; r;s be propositional variables. The propositional formula(p_ q) ^ (r _ s) representsp̀ or
q, andr or s'. What follows are two examples of truth trees for this propositional formula.

p
(_ I1)

p_ q
r (_ I1)

r _ s
(^ I)

(p_ q) ^ (r _ s)

q
(_ I2)

p_ q
s

(_ I2)
r _ s

(^ I)
(p_ q) ^ (r _ s)
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28 Chapter 1. Logical structure

The proof tree on the left suggests the following proof strategy for(p_ q) ^ (r _ s). First provep,
and deducep_ q; then prover, and deducer _ s; and �nally deduce(p_ q) ^ (r _ s). The proof tree
on the right suggests a different strategy, wherep_ q is deduced by provingq instead ofp, andr _ s
is deduced by provings instead ofr.

Selecting which (if any) of these to use in a proof might depend on what we are trying to prove.
For example, for a �xed natural numbern, let p representǹ is even', letq representǹ is odd', let
r representǹ > 2' and lets representǹ is a perfect square'. Proving(p_ q) ^ (r _ s) whenn = 2
would be most easily done using the left-hand proof tree above, sincep andr are evidently true
whenn = 2. However, the second proof tree would be more appropriate for proving(p_ q) ^ (r _ s)
whenn = 1. C

v Aside
If you haven't already mixed up̂ and_, you probably will soon, so here's a way of remembering
which is which:

�sh n chips

If you forget whether it'ŝ or _ that means `and', just write it in place of the `n' in `�sh n chips':

�sh ^ chips �sh _ chips

Clearly the �rst looks more correct, sô means `and'. If you don't eat �sh (or chips), then worry
not, as this mnemonic can be modi�ed to accommodate a wide variety of dietary restrictions; for
instance `mac n cheese' or `quinoa n kale' or, for the meat lovers, `ribs n brisket'. C

Recall the diagrammatic statement of the disjunction elimination rule:

p_ q

[p]

 

r

[q]

 

r
(_ E)r

The curious notation[p]  r indicates thatp is a temporary assumption. In the part of the proof
corresponding to[p]  r, we would assume thatp is true and deriver from that assumption, and
remove the assumption thatp is true from that point onwards. Likewise for[q]  r.

The proof strategy obtained from the disjunction elimination rule is calledproof by cases.

v Strategy 1.1.16 (Assuming disjunctions—proof by cases)
If an assumption in a proof has the formp_ q, then we may derive a propositionr by splitting into
two cases: �rst, deriver from the temporary assumption thatp is true, and then deriver from the
assumption thatq is true.

The following example illustrates how Strategies 1.1.13 and 1.1.16 can be used together in a proof.

0 Example 1.1.17
Let n be a positive proper factor of 4, and suppose we want to prove thatn is either even or a perfect
square.

28



Section 1.1. Propositional logic 29

� Our assumption thatn is a positive proper factor of 4 can be expressed as the disjunctionn = 1_
n = 2.

� Our goal is to prove the disjunction `n is even_ n is a perfect square'.

According to Strategy 1.1.9, we split into two cases, one in whichn = 1 and one in whichn = 2. In
each case, we must derive `n is even_ n is a perfect square', for which it suf�ces by Strategy 1.1.13
to derive either thatn is even or thatn is a perfect square. Thus a proof might look something like
this:

Sincen is a positive proper factor of 4, eithern = 1 orn = 2.

� Case 1. Supposen = 1. Then since 12 = 1 we haven = 12, so thatn is a perfect
square.

� Case 2.Supposen = 2. Then since 2= 2� 1, we have thatn is even.

Hencen is either even or a perfect square. C

Notice that in both Case 1 and Case 2, we did not explicitly mention that we had proved that
`n is even_ n is a perfect square', leaving that deducgion to the reader—we only mentioned it after
the proofs in each case were complete. C

The proof of Proposition 1.1.18 below splits intothreecases, rather than just two.

C Proposition 1.1.18
Let n 2 Z. Thenn2 leaves a remainder of 0 or 1 when divided by 3.

Proof
Let n 2 Z. By the division theorem (Theorem 0.18), one of the following must be true for some
k 2 Z:

n = 3k or n = 3k+ 1 or n = 3k+ 2

� Supposen = 3k. Then
n2 = ( 3k)2 = 9k2 = 3� (3k2)

Son2 leaves a remainder of 0 when divided by 3.

� Supposen = 3k+ 1. Then

n2 = ( 3k+ 1)2 = 9k2 + 6k+ 1 = 3(3k2 + 2k)+ 1

Son2 leaves a remainder of 1 when divided by 3.

� Supposen = 3k+ 2. Then

n2 = ( 3k+ 2)2 = 9k2 + 12k+ 4 = 3(3k2 + 4k+ 1)+ 1

Son2 leaves a remainder of 1 when divided by 3.

In all cases,n2 leaves a remainder of 0 or 1 when divided by 3. �

Note that in the proof of Proposition 1.1.18, unlike in Example 1.1.17, we did not explictly use
the word `case', even though we were using proof by cases. Whether or not to make your proof
strategies explicit is up to you—discussion of this kind of matter can be found in Appendix A.2.
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30 Chapter 1. Logical structure

When completing the following exercises, try to keep track of exactly where you use the introduction
and elimination rules that we have seen so far.

. Exercise 1.1.19
Let n be an integer. Prove thatn2 leaves a remainder of 0, 1 or 4 when divided by 5. C

. Exercise 1.1.20
Let a;b 2 R and supposea2 � 4b 6= 0. Let a and b be the (distinct) roots of the polyonomial
x2 + ax+ b. Prove that there is a real numberc such that eithera � b = c or a � b = ci. C

Implication (`if. . . then. . . ', ) )

F De�nition 1.1.21
Theimplication operator is the logical operator) (LATEX code:\Rightarrow ), de�ned according
to the following rules:

� () I) If q can be derived from the assumption thatp is true, thenp ) q is true;

� () E) If p ) q is true andp is true, thenq is true.

The expressionp ) q represents `ifp, thenq'.

[p]

 

q
() I)p ) q

p ) q p
() E)q

v Strategy 1.1.22 (Proving implications)
In order to prove a proposition of the formp ) q, it suf�ces to assume thatp is true, and then derive
q from that assumption.

The following proposition illustrates how Strategy 1.1.22 can be used in a proof.

C Proposition 1.1.23
Let x andy be real numbers. Ifx andx+ y are rational, theny is rational.

Proof
Supposex andx+ y are rational. Then there exist integersa;b;c;d with b;d 6= 0 such that

x =
a
b

and x+ y =
c
d

It then follows that

y = ( x+ y) � x =
c
d

�
a
b

=
bc� ad

bd
Sincebc� ad andbd are integers, andbd 6= 0, it follows thaty is rational. �
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The key phrase in the above proof was `Supposex and x+ y are rational.' This introduced the
assumptionsx 2 Q andx+ y 2 Q, and reduced our goal to that of deriving a proof thaty is rational—
this was the content of the rest of the proof.

. Exercise 1.1.24
Let p(x) be a polynomial overC. Prove that ifa is a root ofp(x), anda 2 C, thena is a root of
(x� a)p(x). C

The elimination rule for implication () E) is more commonly known by the Latin namemodus
ponens.

v Strategy 1.1.25 (Assuming implications—modus ponens)
If an assumption in a proof has the formp ) q, and p is also assumed to be true, then we may
deduce thatq is true.

Strategy 1.1.16 is frequently used to reduce a more complicated goal to a simpler one. Indeed, if we
know thatp ) q is true, and ifp is easy to verify, then it allows us to proveq by provingp instead.

0 Example 1.1.26
Let f (x) = x2 + ax+ b be a polynomial witha;b 2 R, and letD= a2 � 4b be its discriminant. Part
of Exercise 0.40 was to prove that:

(i) If D> 0, thenf has two real roots;

(ii) If D= 0, thenf has one real root;

(iii) If D< 0, thenf has no real roots.

Given the polynomialf (x) = x2 � 68+ 1156, it would be a pain to go through the process of solving
the equationf (x) = 0 in order to determine how many real rootsf has. However, each of the
propositions (i), (ii) and (iii) take the formp ) q, so Strategy 1.1.25 reduces the problem of �nding
how many real rootsf has to that of evaluatingD and comparing it with 0. And indeed,(� 68)2 �
4� 1156= 0, so the implication (ii) together with () E) tell us thatf has one real root. C

A common task faced by mathematicians is to prove that two conditions are equivalent. For example,
given a polynomialf (x) = x2 + ax+ b with a;b 2 R, we know thatif a2 � 4b > 0 then f has two
real roots, but is it also true that iff has two real roots thena2 � 4b > 0? (The answer is `yes'.) The
relationship between these two implications is that each is theconverseof the other.

F De�nition 1.1.27
Theconverseof a proposition of the formp ) q is the propositionq ) p.

A quick remark on terminology is pertinent. The following table summarises some common ways
of referring to the propositions `p ) q' and `q ) p'.

p ) q q ) p
if p, thenq if q, thenp
p only if q p if q

p is suf�cient for q p is necessary forq
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32 Chapter 1. Logical structure

We so often encounter the problem of proving both an implication and its converse that we introduce
a new logical operator that represents the conjunction of both.

F De�nition 1.1.28
Thebiconditional operator is the logical operator, (LATEX code: \Leftrightarrow ), de�ned by
declaringp , q to mean(p ) q) ^ (q ) p). The expressionp , q representsp̀ if and only if q'.

Many examples of biconditional statements come from solving equations; indeed, to say that the
valuesa1; : : : ;an are the solutions to a particular equation is precisely to say that

x is a solution , x = a1 or x = a2 or � � � or x = an

0 Example 1.1.29
We �nd all real solutionsx to the equation

p
x� 3+

p
x+ 4 = 7

Let's rearrange the equation to �nd out what the possible solutions may be.
p

x� 3+
p

x+ 4 = 7

) (x� 3)+ 2
p

(x� 3)(x+ 4)+ ( x+ 4) = 49 squaring

) 2
p

(x� 3)(x+ 4) = 48� 2x rearranging

) 4(x� 3)(x+ 4) = ( 48� 2x)2 squaring

) 4x2 + 4x� 48= 2304� 192x+ 4x2 expanding

) 196x = 2352 rearranging

) x = 12 dividing by 196

You might be inclined to stop here. Unfortunately, all we have proved is that, given a real number
x, if x solves the equation

p
x� 3+

p
x+ 4 = 7, then x= 12. This narrows down the set of possible

solutions to just one candidate—but we still need to check the converse, namely thatif x = 12, then
x is a solution to the equation.

As such, to �nish off the proof, note that
p

12� 3+
p

12+ 4 =
p

9+
p

16= 3+ 4 = 7

and so the valuex = 12 is indeed a solution to the equation. C

The last step in Example 1.1.29 may have seemed a little bit silly; but Example 1.1.30 demonstrates
that proving the converse when solving equations truly is necessary.

0 Example 1.1.30
We �nd all real solutionsx to the equation

x+
p

x = 0
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We proceed as before, rearranging the equation to �nd all possible solutions.

x+
p

x = 0

) x = �
p

x rearranging

) x2 = x squaring

) x(x� 1) = 0 rearranging

) x = 0 orx = 1

Now certainly 0 is a solution to the equation, since

0+
p

0 = 0+ 0 = 0

However, 1 isnot a solution, since
1+

p
1 = 1+ 1 = 2

Hence it is actually the case that, given a real numberx, we have

x+
p

x = 0 , x = 0

Checking the converse here was vital to our success in solving the equation! C

A slightly more involved example of a biconditional statement arising from the solution to an
equation—in fact, a class of equations—is the proof of the quadratic formula.

C Theorem 1.1.31 (Quadratic formula)
Let a;b 2 C. A complex numbera is a root of the polynomialx2 + ax+ b if and only if

a =
� a+

p
a2 � 4b

2
or a =

� a�
p

a2 � 4b
2

Proof
First we prove thatif a is a root,thena is one of the values given in the statement of the proposition.
So supposea be a root of the polynomialx2 + ax+ b. Then

a 2 + aa + b = 0

The algebraic technique of `completing the square' tells us that

a 2 + aa =
�

a +
a
2

� 2
�

a2

4

and hence �
a +

a
2

� 2
�

a2

4
+ b = 0

Rearranging yields
�

a +
a
2

� 2
=

a2

4
� b =

a2 � 4b
4

Taking square roots gives

a +
a
2

=

p
a2 � 4b

2
or a +

a
2

=
�

p
a2 � 4b
2

and, �nally, subtractinga
2 from both sides gives the desired result.

The proof of the converse is Exercise 1.1.32. �
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. Exercise 1.1.32
Complete the proof of the quadratic formula. That is, for �xeda;b 2 C, prove that if

a =
� a+

p
a2 � 4b

2
or a =

� a�
p

a2 � 4b
2

thena is a root of the polynomialx2 + ax+ b. C

Another class of examples of biconditional propositions arise in �nding necessary and suf�cient
criteria for an integern to be divisible by some number—for example, that an integer is divisible by
10 if and only if its base-10 expansion ends with the digit 0.

0 Example 1.1.33
Let n 2 N. We will prove thatn is divisible by 8 if and only if the number formed of the last three
digits of the base-10 expansion ofn is divisible by 8.

First, we will do some `scratch work'. Letdrdr� 1 : : :d1d0 be the base-10 expansion ofn. Then

n = dr � 10r + dr� 1 � 10r� 1 + � � � + d1 � 10+ d0

De�ne
n0= d2d1d0 and n00= n� n0= drdr� 1 : : :d4d3000

Now n� n0= 1000� drdr� 1 : : :d4d3 and 1000= 8� 125, so it follows that 8 dividesn00.

Our goal is now to prove that 8 dividesn if and only if 8 dividesn0.

� () ) Suppose 8 dividesn. Since 8 dividesn00, it follows from Exercise 0.16 that 8 dividesan+ bn00

for all a;b 2 Z. But
n0= n� (n� n0) = n� n00= 1� n+ ( � 1) � n00

so indeed 8 dividesn0, as required.

� (( ) Suppose 8 dividesn0. Since 8 dividesn00, it follows from Exercise 0.16 that 8 dividesan0+ bn00

for all a;b 2 Z. But
n = n0+ ( n� n0) = n0+ n00= 1� n0+ 1� n00

so indeed 8 dividesn, as required.

C

. Exercise 1.1.34
Prove that a natural numbern is divisible by 3 if and only if the sum of its base-10 digits is divisible
by 3. C

Negation (`not', : )

So far we only of�cially know how to prove that true propositions aretrue. The negation operator
makes precise what we mean by `not', which allows us to prove that false propositions arefalse.

F De�nition 1.1.35
A contradiction is a proposition that is known or assumed to be false. We will use the symbol?
(LATEX code:\bot ) to represent an arbitrary contradiction.
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0 Example 1.1.36
Some examples of contradictions include the assertion that 0= 1, or that

p
2 is rational, or that the

equationx2 = � 1 has a solutionx 2 R. C

F De�nition 1.1.37
The negation operator is the logical operator: (LATEX code: \neg ), de�ned according to the fol-
lowing rules:

� (: I) If a contradiction can be derived from the assumption thatp is true, then: p is true;

� (: E) If : p andp are both true, then a contradiction may be derived.

The expression: p represents `notp' (or ` p is false').

[p]

 
? (: I): p

: p p
(: E)

?

v Aside
The rules (: I) and (: E) closely resemble () I) and () E)—indeed, we could simply de�ne: p to
mean p̀ ) ? ', where? represents an arbitrary contradiction, but it will be easier later on to have a
primitive notion of negation. C

The introduction rule for negation (: I) gives rise to a proof strategy calledproof by contradiction,
which turns out to be extremely useful.

v Strategy 1.1.38 (Proving negations—proof by contradiction)
In order to prove a propositionp is false (that is, that: p is true), it suf�ces to assume thatp is true
and derive a contradiction.

The following proposition has a classic proof by contradiction.

C Proposition 1.1.39
Let r be a rational number and leta be an irrational number. Thenr + a is irrational.

Proof
By De�nition 0.27, we need to prove thatr + a is real and not rational. It is certainly real, sincer
anda are real, so it remains to prove thatr + a is not rational.

Supposer + a is rational. Sincer is rational, it follows from Proposition 1.1.23 thata is rational,
since

a = ( r + a) � r

This contradicts the assumption thata is irrational. It follows thatr + a is not rational, and is therefore
irrational. �

Now you can try proving some elementary facts by contradiction.
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. Exercise 1.1.40
Let x 2 R. Prove by contradiction that ifx is irrational then� x and 1

x are irrational. C

. Exercise 1.1.41
Prove by contradiction that there is no least positive real number. That is, prove that there is not a
positive real numbera such thata 6 b for all positive real numbersb. C

A proof need not be a `proof by contradiction' in its entirety—indeed, it may be that only a small
portion of the proof uses contradiction. This is exhibited in the proof of the following proposition.

C Proposition 1.1.42
Let a be an integer. Thena is odd if and only ifa = 2b+ 1 for some integerb.

Proof
Supposea is odd. By the division theorem (Theorem 0.18), eithera = 2b or a = 2b+ 1, for some
b 2 Z. If a = 2b, then 2 dividesa, contradicting the assumption thata is odd; so it must be the case
thata = 2b+ 1.

Conversely, supposea = 2b+ 1. Thena leaves a remainder of 1 when divided by 2. However, by
the division theorem, the even numbers are precisely those that leave a remainder of 0 when divided
by 2. It follows thata is not even, so is odd. �

The elimination rule for the negation operator (: E) simply says that a proposition can't be true and
false at the same time.

v Strategy 1.1.43 (Assuming negations)
If an assumption in a proof has the form: p, then any derivation ofp leads to a contradiction.

The main use of Strategy 1.1.43 is for obtaining the contradiction in a proof by contradiction—in
fact, we have already used it in our examples of proof by contradiction! As such, we will not dwell
on it further.

Logical axioms

We wrap up this section by introducing a couple of additional logical rules (axioms) that we will use
in our proofs.

The �rst is the so-calledlaw of excluded middle, which appears so obvious that it is not even worth
stating (let alone naming)—what it says is that every proposition is either true or false. But beware,
as looks can be deceiving; the law of excluded middle is a non-constructive axiom, meaning that
it should not be accepted in settings it is important to keep track of how a proposition is proved—
simply knowing that a proposition is either true or false tells us nothing about how it might be proved
or refuted. In most mathematical contexts, though, it is accepted without a second's thought.

C Axiom 1.1.44 (Law of excluded middle)
Let p be a propositional formula. Thenp_ (: p) is true.
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The law of excluded middle can be represented diagramatically as follows; there are no premises
above the line, since we are simply asserting that it is true.

LEM
p_ (: p)

v Strategy 1.1.45 (Using the law of excluded middle)
In order to prove a propositionq is true, it suf�ces to split into cases based on whether some other
propositionp is true or false, and prove thatq is true in each case.

The proof of Proposition 1.1.46 below makes use of the law of excluded middle—note that we
de�ned `odd' to mean `not even' (De�nition 0.17).

C Proposition 1.1.46
Let a;b 2 Z. If ab is even, then eithera is even orb is even (or both).

Proof
Supposea;b 2 Z with abeven.

� Supposea is even—then we're done.

� Supposea is odd. Ifb is also odd, then by Proposition 1.1.42 can write

a = 2k+ 1 and b = 2` + 1

for some integersk; `. This implies that

ab= ( 2k+ 1)(2` + 1) = 4k` + 2k+ 2` + 1 = 2(2k` + k+ `| {z }
2Z

) + 1

so thatab is odd. This contradicts the assumption thatab is even, and sob must in fact be even.

In both cases, eithera or b is even. �

. Exercise 1.1.47
Re�ect on the proof of Proposition 1.1.46. Where in the proof did we use the law of excluded
middle? Where in the proof did we use proof by contradiction? What was the contradiction in
this case? Prove Proposition 1.1.46 twice more, once using contradiction and not using the law of
excluded middle, and once using the law of excluded middle and not using contradiction. C

. Exercise 1.1.48
Let a andb be irrational numbers. By considering the number

p
2

p
2
, prove that it is possible thatab

be rational. C

Another logical rule that we will use is theprinciple of explosion, which is also known by its Latin
name,ex falso sequitur quodlibet, which approximately translates to `from falsity follows whatever
you like'.

C Axiom 1.1.49 (Principle of explosion)
If a contradiction is assumed, any consequence may be derived.
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? Explp

The principle of explosion is a bit confusing on �rst sight. To shed a tiny bit of intuition on it, think
of it as saying that both true and false propositions are consequences of a contradictory assumption.
For instance, suppose that� 1 = 1. From this we can obtain consequences that are false, such as
0 = 2 by adding 1 to both sides of the equation, and consequences that are true, such as 1= 1 by
squaring both sides of the equation.

We will rarely use the principle of explosion directly in our mathematical proofs, but we will use it
in Section 1.3 for proving logical formulae are equivalent.
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Section 1.2

Variables and quanti�ers

Free and bound variables

Everything we did in Section 1.1 concernedpropositionsand the logical rules concerning their
proofs. Unfortunately if all we have to work with is propositions then our ability to do mathem-
atical reasoning will be halted pretty quickly. For example, consider the following statement:

x is divisible by 7

This statement seems like the kind of thing we should probably be able to work with if we're doing
mathematics. It makes sense ifx is a integer, such as 28 or 41; but it doesn't make sense at all ifx
is a parrot called Alex.[a] In any case, even when it does make sense, its truth value depends onx;
indeed, `28 is divisible by 7' is a true proposition, but `41 is divisible by 7' is a false proposition.

This means that the statement `x is divisible by 7' isn't a proposition—quel horreur! But it almostis
a proposition: if we know thatx refers somehow to an integer, then it becomes a proposition as soon
as a particular numerical value ofx is speci�ed. The symbolx is called afree variable.

F De�nition 1.2.1
Let x be a variable that is understood to refer to an element of a setX. In a statement involvingx, we
sayx is free if it makes sense to substitute particular elements ofX in the statement; otherwise, we
sayx is bound.

To represent statements that have free variables in them abstractly, we generalise the notion of a
propositional variable (De�nition 1.1.2) to that of apredicate.

F De�nition 1.2.2
A predicate is a symbolp together with a speci�ed list of free variablesx1;x2; : : : ;xn (wheren 2 N)
and, for each free variablexi , a speci�cation of a setXi called thedomain of discourse(or range)
of xi . We will typically write p(x1;x2; : : : ;xn) in order to make the variables explicit.

The statements represented by predicates are those that become propositions when speci�c values
are substituted for their free variables from their respective domains of discourse. For example, `x is
divisible by 7' is not a proposition, but it becomes a proposition when speci�c integers (such as 28
or 41) are substituted forx.

This is a lot to take in, so let's look at some examples.

0 Example 1.2.3
[a]Alex the parrot is the only non-human animal to have ever been observed to ask an existential question; he died in September

2007 so we may never know if he was divisible by 7, but it is unlikely. According toTime, his last words were `you be
good, see you tomorrow, I love you'. The reader is advised to �nish crying before they continue reading about variables
and quanti�ers.
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(i) We can represent the statement `x is divisible by 7' discussed above by a predicatep(x) whose
only free variablex hasZ as its domain of discourse. Thenp(28) is the true proposition `28 is
divisible by 7' andp(41) is the false proposition `41 is divisible by 7'.

(ii) A predicate with no free variables is precisely a propositional variable. This means that the
notion of a predicate generalises that of a propositional variable.

(iii) The expression `2n � 1 is prime' can be represented by a predicatep(n) with one free variable
n, whose domain of discourse is the setN of natural numbers. Thenp(3) is the true proposition
`23 � 1 is prime' andp(4) is the false proposition `24 � 1 is prime'.

(iv) The expressionx̀� y is rational' can be represented by a predicateq(x;y) with free variables
x andy, whose domain of discourse is the setR of real numbers.

(v) The expression `there exist integersa andb such thatx = a2 + b2' has free variablex and
bound variablesa;b. It can be represented by a predicater(x) with one free variablex, whose
domain of discourse isZ.

(vi) The expression `every even natural numbern > 2 is divisible byk' has free variablek and
bound variablen. It can be represented by a predicates(k) with one free variablek, whose
domain of discourse isN.

C

Quanti�ers

Look again at the statements in parts (v) and (vi) of Example 1.2.3. Both contained bound variables,
which were so because we used words like `there exists' and `every'—had we not used these words,
those variables would be free, as in `x = a2 + b2' and `n is divisible byk'.

Expressions that refer tohow manyelements of a set make a statement true, such as `there exists'
and `every', turn free variables into bound variables. We represent such expressions using symbols
calledquanti�ers, which are the central objects of study of this section.

The two main quanti�ers used throughout mathematics are theuniversalquanti�er 8 and theexist-
ential quanti�er 9. We will de�ne these quanti�ers formally later in this section, but for now, the
following informal de�nitions suf�ce:

� The expression8̀x 2 X; : : : ' denotes `for allx 2 X, . . . ' and will be de�ned formally in De�ni-
tion 1.2.9;

� The expression9̀x2 X; : : : ' denotes `there existsx2 X such that . . . ' and will be de�ned formally
in De�nition 1.2.17.

Note that we always place the quanti�erbeforethe statement, so even though we might write or say
things like ǹ = 2k for some integerk' or `x2 > 0 for all x 2 R', we would express these statements
symbolically as 9̀k 2 Z; n = 2k' and `8x 2 R; x2 > 0', respectively.

We will de�ne a third quanti�er9! in terms of8 and9 to say that there isexactly oneelement of a set
making a statement true. There are plenty of other quanti�ers out there, but they tend to be speci�c
to particular �elds—examples include `almost everywhere' in measure theory, `almost surely' in
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probability theory, `for all but �nitely many' in set theory and related disciplines, and `for fresh' in
the theory of nominal sets.

Using predicates, logical formulae and quanti�ers, we are able to build up more complicated expres-
sions, calledlogical formulae. Logical formulae generalise propositional formulae (De�nition 1.1.3)
in by allowing (free and bound) variables and quanti�cation to occur.

F De�nition 1.2.4
A logical formula is an expression that is built from predicates using logical operators and quanti�-
ers; it may have both free and bound variables. The truth value of a logical formula depends on its
free variables according to the rules for logical operators and quanti�ers.

Translating between plain English statements and purely symbolic logical formulae is an important
skill to obtain:

� The plain English statements are easier to understand and are the kinds of things you would speak
aloud or write down when discussing the mathematical ideas involved.

� The symbolic logical formulae are what provide the precision needed to guide a proof of the
statement being discussed—we will see strategies for proving statements involving quanti�ers
soon.

The following examples and exercise concern translating between plain English statements and
purely symbolic logical formulae.

0 Example 1.2.5
Recall that an integern is even if and only if it is divisible by 2. According to De�nition 0.12, that
is to say that ǹ is even' meansǹ = 2k for some integerk'. Using quanti�ers, we can express `n is
even' as 9̀k 2 Z; n = 2k'.

The (false) proposition `every integer is even' can then be written symbolically as follows. First
introduce a variablen to refer to an integer; to say `every integer is even' is to say `8n2 Z; n is even',
and so using the symbolic representation of `n is even', we can express `every integer is even' as
8n 2 Z; 9k 2 Z; n = 2k'. C

. Exercise 1.2.6
Find logical formulae that represent each of the following English statements.

(a) There is an integer that is divisible by every integer.

(b) There is no greatest odd integer.

(c) Between any two distinct rational numbers is a third distinct rational number.

(d) If an integer has a rational square root, then that root is an integer.

C

0 Example 1.2.7
Consider the following logical formula.

8a 2 R; (a > 0 ) 9 b 2 R; a = b2)
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If we translate this expression symbol-for-symbol, what it says is:

For every real numbera, if a is non-negative,
then there exists a real numberb such thata = b2.

Read in this way, it is not a particularly enlightening statement. However, we can distill the robotic
nature of the symbol-for-symbol reading by thinking more carefully about what the statementreally
means.

Indeed, to sayà = b2 for some real numberb' is exactly to say thata has a real square root—after
all, what is a square root ofa if not a real number whose square is equal toa? This translation
eliminates explicit reference to the bound variableb, so that the statement now reads:

For every real numbera, if a is non-negative, thena has a real square root.

We're getting closer. Next note that instead of the clunky expression `for every real numbera, if a is
non-negative, then . . . ', we could just say `for every non-negative real numbera, . . . '.

For every non-negative real numbera, a has a real square root.

Finally, we can eliminate the bound variablea by simply saying:

Every non-negative real number has a real square root.

This is now a meaningful expression that is much easier to understand than the logical formula we
started with. C

. Exercise 1.2.8
Find statements in plain English, involving as few variables as possible, that are represented by each
of the following logical formulae. (The domains of discourse of the free variables are indicated in
each case.)

(a) 9q 2 Z; a = qb— free variablesa;b 2 Z

(b) 9a 2 Z; 9b 2 Z; (b 6= 0^ bx= a) — free variablex 2 R

(c) 8d 2 N; [(9q 2 Z; n = qd) ) (d = 1_ d = n)] — free variablen 2 N

(d) 8a 2 R; [a > 0 ) 9 b 2 R; (b > 0^ a < b)] — no free variables

C

Now that we have a better understanding of how to translate between plain English statements and
logical formulae, we are ready to give a precise mathematical treatment of quanti�ers. Just like with
logical operators in Section 1.1, quanti�ers will be de�ned according tointroduction rules, which tell
us how to prove a quanti�ed formula, andelimination rules, which tell us how to use an assumption
that involves a quanti�er.
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Universal quanti�cation (`for all', 8)

The universal quanti�er makes precise what we mean when we say `for all', or `p(x) is always true
no matter what valuex takes'.

F De�nition 1.2.9
The universal quanti�er is the quanti�er8 (LATEX code: \forall ); if p(x) is a logical formula
with free variablex with rangeX, then8x 2 X; p(x) is the logical formula de�ned according to the
following rules:

� (8I) If p(x) can be derived from the assumption thatx is an arbitrary element ofX, then8x 2
X; p(x);

� (8E) If a 2 X and8x 2 X; p(x) is true, thenp(a) is true.

The expression8x 2 X; p(x) represents `for allx 2 X, p(x)'.

[x 2 X]
 

p(x)
8x 2 X; p(x)

8x 2 X; p(x) a 2 X
p(a)

v Strategy 1.2.10 (Proving universally quanti�ed statements)
To prove a proposition of the form8x 2 X; p(x), it suf�ces to provep(x) for an arbitrary element
x 2 X—in other words, provep(x) whilst assuming nothing about the variablex other than that it is
an element ofX.

Useful phrases for introducing an arbitrary variable of a setX in a proof include `�x x 2 X' or `let
x 2 X' or `takex 2 X'—more on this is discussed in Appendix A.2.

The proofs of the following propositions illustrate how a proof of a universally quanti�ed statement
might look.

C Proposition 1.2.11
The square of every odd integer is odd.

Proof
Let n be an odd integer. Thenn = 2k+ 1 for somek 2 Z by the division theorem (Theorem 0.18),
and so

n2 = ( 2k+ 1)2 = 4k2 + 4k+ 1 = 2(2k2 + 2k)+ 1

Since 2k2 + 2k 2 Z, we have thatn2 is odd, as required. �

Note that in the proof of Proposition 1.2.11, we did not assume anything aboutn other than that it is
an odd integer.

C Proposition 1.2.12
The base-10 expansion of the square of every natural number ends in one of the digits 0, 1, 4, 5, 6 or
9.
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Proof
Fix n 2 N, and let

n = drdr� 1 : : :d0

be its base-10 expansion. Write
n = 10m+ d0

wherem2 N—that is,m is the natural number obtained by removing the �nal digit fromn. Then

n2 = 100m2 + 20md0 + d2
0 = 10m(10m+ 2d0) + d2

0

Hence the �nal digit ofn2 is equal to the �nal digit ofd2
0. But the possible values ofd2

0 are

0 1 4 9 16 25 36 49 64 81

all of which end in one of the digits 0, 1, 4, 5, 6 or 9. �

. Exercise 1.2.13
Prove that every integer is rational. C

. Exercise 1.2.14
Prove that every linear polynomial overQ has a rational root. C

. Exercise 1.2.15
Prove that, for all real numbersx andy, if x is irrational, thenx+ y andx� y are not both rational.

C

Before advancing too much further, beware of the following common error that arises when dealing
with universal quanti�ers.

v Common error
Consider the following (non-)proof of the proposition8n 2 Z; n2 > 0.

Let n be an arbitrary integer, sayn = 17. Then 172 = 289> 0, so the statement is true.

The error made here is that thewriter has picked an arbitrary value ofn, not thereader. (In fact, the
above argument actually proves9n 2 Z; n2 > 0.)

The proof should make no assumptions about the value ofn other than that it is an integer. Here is a
correct proof:

Let n be an arbitrary integer. Eithern > 0 or n < 0. If n > 0 thenn2 > 0, since the
product of two nonnegative numbers is nonnegative; ifn < 0 thenn2 > 0, since the
product of two negative numbers is positive.

C

The strategy suggested by the elimination rule for the universal quanti�er is one that we use almost
without thinking about it.

v Strategy 1.2.16 (Assuming universally quanti�ed statements)
If an assumption in a proof has the form8x2 X; p(x), then we may assume thatp(a) is true whenever
a is an element ofX.
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Existential quanti�cation (`there exists', 9)

F De�nition 1.2.17
The existential quanti�er is the quanti�er9 (LATEX code: \exists )(LATEX code: \exists )9; if
p(x) is a logical formula with free variablex with rangeX, then9x 2 X; p(x) is the logical formula
de�ned according to the following rules:

� (9I) If a 2 X andp(a) is true, then9x 2 X; p(x);

� (9E) If 9x 2 X; p(x) is true, andq can be derived from the assumption thatp(a) is true for some
�xed a 2 X, thenq is true.

The expression9x 2 X; p(x) represents `there existsx 2 X such thatp(x)'.

a 2 X p(a)
(9I)

9x 2 X; p(x)
9x 2 X; p(x)

[a 2 X]; [p(a)]

 

q
(9E)q

v Strategy 1.2.18 (Proving existentially quanti�ed statements)
To prove a proposition of the form9x 2 X; p(x), it suf�ces to provep(a) for some speci�c element
a 2 X, which should be explicitly de�ned.

0 Example 1.2.19
We prove that there is a natural number that is a perfect square and is one more than a perfect cube.
That is, we prove

9n 2 N; ([9k 2 Z; n = k2] ^ [9` 2 Z; n = `3 + 1])

So de�nen = 9. Thenn = 32 andn = 23 + 1, so thatn is a perfect square and is one more than a
perfect cube, as required. C

The following proposition involves an existentially quanti�ed statement—indeed, to say that a poly-
nomial f (x) has a real root is to say9x 2 R; f (x) = 0.

C Proposition 1.2.20
Fix a 2 R. The cubic polynomialx3 + ( 1� a2)x� a has a real root.

Proof
Let f (x) = x3 + ( 1� a2)x� a. De�ne x = a; then

f (x) = f (a) = a3 + ( 1� a2)a� a = a3 + a� a3 � a = 0

Hencea is a root of f (x). Sincea is real, f (x) has a real root. �

The following exercises require you to prove existentially quanti�ed statements.

. Exercise 1.2.21
Prove that there is a real number which is irrational but whose square is rational. C

. Exercise 1.2.22
Prove that there is an integer which is divisible by zero. C
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0 Example 1.2.23
Prove that, for allx;y 2 Q, if x < y then there is somez2 Q with x < z< y. C

The elimination rule for the existential quanti�er gives rise to the following proof strategy.

v Strategy 1.2.24 (Assuming existentially quanti�ed statements)
If an assumption in the proof has the form9x 2 X; p(x), then we may introduce a new variablea 2 X
and assume thatp(a) is true.

It ought to be said that when using existential elimination in a proof, the variablea used to denote a
particular element ofX for which p(a) is true should not already be in use earlier in the proof.

Strategy 1.2.24 is very useful in proofs of divisibility, since the expression `a dividesb' is an exist-
entially quanti�ed statement—this was Exercise 1.2.8(a).

C Proposition 1.2.25
Let n 2 Z. If n3 is divisible by 3, then(n+ 1)3 � 1 is divisible by 3.

Proof
Supposen3 is divisible by 3. Takeq 2 Z such thatn3 = 3q. Then

(n+ 1)3 � 1

= ( n3 + 3n2 + 3n+ 1) � 1 expanding

= n3 + 3n2 + 3n simplifying

= 3q+ 3n2 + 3n sincen3 = 3q

= 3(q+ n2 + n) factorising

Sinceq+ n2 + n 2 Z, we have proved that(n+ 1)3 � 1 is divisible by 3, as required. �

Uniqueness

The concept of uniqueness arises whenever we want to use the word `the'. For example, in De�n-
ition 0.6 we de�ned the base-b expansion of a natural numbern to be the string drdr� 1 : : :d1d0
satisfying some properties. The issue with the word `the' here is that we don't know ahead of time
whether a natural numbern may have base-b expansions other thandrdr� 1 : : :d1d0—this fact actu-
ally requires proof. To prove this fact, we would need to assume thateses� 1 : : :e1e0 were another
base-b expansion ofn, and prove that the stringsdrdr� 1 : : :d1d0 andeses� 1 : : :e1e0 are the same—this
is done in Theorem 5.3.51.

Uniqueness is typically coupled withexistence, since we usually want to know if there isexactly
oneobject satisfying a property. This motivates the de�nition of theunique existentialquanti�er,
which encodes what we mean when we say `there is exactly onex 2 X such thatp(x) is true'. The
`existence' part ensures that at least onex 2 X makesp(x) true; the `uniqueness' part ensures thatx
is the only element ofX makingp(x) true.
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F De�nition 1.2.26
Theunique existential quanti�er is the quanti�er9! ((LATEX code: \exists! )) de�ned such that
9!x 2 X; p(x) is shorthand for

(9x 2 X; p(x)
| {z }

existence

) ^ (8a 2 X; 8b 2 X; [p(a) ^ p(b) ) a = b]
| {z }

uniqueness

)

0 Example 1.2.27
Every positive real number has a unique positive square root. We can write this symbolically as

8a 2 R; (a > 0 ) 9 !b 2 R; (b > 0^ b2 = a))

Reading this from left to right, this says: for every real numbera, if a is positive, then there exists a
unique real numberb, which is positive and whose square isa. C

. Discussion 1.2.28
Explain why De�nition 1.2.26 captures the notion of there being `exactly one' elementx2 X making
p(x) true. Can you think of any other ways that9!x 2 X; p(x) could be de�ned? C

v Strategy 1.2.29 (Proving unique-existentially quanti�ed statements)
A proof of a statement of the form9!x 2 X; p(x), consists of two parts:

� Existence— prove that9x 2 X; p(x) is true (e.g. using Strategy 1.2.18);

� Uniqueness— let a;b 2 X, assume thatp(a) andp(b) are true, and derivea = b.

Alternatively, prove existence to obtain a �xeda 2 X such thatp(a) is true, and then prove8x 2
X; [p(x) ) x = a].

0 Example 1.2.30
We prove Example 1.2.27, namely that for each reala > 0 there is a uniqueb > 0 such thatb2 = a.
So �rst �x a > 0.

� (Existence) The real number
p

a is positive and satis�es(
p

a)2 = a by de�nition. Its existence
will be deferred to a later time, but an informal argument for its existence could be provided using
`number line' arguments as in Chapter 0.

� (Uniqueness) Let y;z> 0 be real numbers such thaty2 = a andz2 = a. Theny2 = z2. Rearranging
and factorising yields

(y� z)(y+ z) = 0

so eithery� z= 0 or y+ z= 0. If y+ z= 0 thenz= � y, and sincey > 0, this means thatz< 0.
But this contradicts the assumption thatz > 0. As such, it must be the case thaty � z = 0, and
hencey = z, as required.

C

. Exercise 1.2.31
For each of the propositions, write it out as a logical formula involving the9! quanti�er and then
prove it, using the structure of the logical formula as a guide.

(a) For each real numbera, the equationx2 + 2ax+ a2 = 0 has exactly one real solutionx.
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(b) There is a unique real numbera for which the equationx2 + a2 = 0 has a real solutionx.

(c) There is a unique natural number with exactly one positive divisor.

C

The unique existential quanti�er will play a large role when we study functions in Section 2.2.

Quanti�er alternation

Compare the following two statements:

(i) For every door, there is a key that can unlock it.

(ii) There is a key that can unlock every door.

Letting the variablesx andy refer to doors and keys, respectively, and lettingp(x;y) be the statement
`doorx can be unlocked by keyy', we can formulate these statements as:

(i) 8x; 9y; p(x;y)

(ii) 9y; 8x; p(x;y)

This is a typical `real-world' example of what is known asquanti�er alternation—the two state-
ments differ only by the order of the front-loaded quanti�ers, and yet they say very different things.
Statement (i) requires every door to be unlockable, but the keys might be different for different doors;
statement (ii), however, implies the existence of some kind of `master key' that can unlock all the
doors.

Here's another example with a more mathematical nature:

. Exercise 1.2.32
Let p(x;y) be the statement `x+ y is even'.

� Prove that8x 2 Z; 9y 2 Z; p(x;y) is true.

� Prove that9y 2 Z; 8x 2 Z; p(x;y) is false.

C

In both of the foregoing examples, you might have noticed that the `89' statement says something
weakerthan the 9̀8' statement—in some sense, it is easier to make a89 statement true than it is to
make an98 statement true.

This idea is formalised in Theorem 1.2.33 below, which despite its abstract nature, has an extremely
simple proof.

C Theorem 1.2.33
Let p(x;y) be a logical formula with free variablesx 2 X andy 2 Y. Then

9y 2 Y; 8x 2 X; p(x;y) ) 8 x 2 X; 9y 2 Y; p(x;y)
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Proof
Suppose9y 2 Y; 8x 2 X; p(x;y) is true. We need to prove8x 2 X; 9y 2 Y; p(x;y), so �x a 2 X—our
goal is now to prove9y 2 Y; p(a;y).

Using our assumption9y 2 Y; 8x 2 X; p(x;y), we may chooseb 2 Y such that8x; p(x;b) is true. But
thenp(a;b) is true, so we have proved9y 2 Y; p(a;y), as required. �

Statements of the form9y 2 Y; 8x 2 X; p(x;y) imply some kind ofuniformity: a value ofy making
8x2 X; p(x;y) true can be thought of as a `one size �ts all' solution to the problem of provingp(x;y)
for a givenx 2 X. Later in your studies, it is likely that you will encounter the word `uniform' many
times—it is precisely this notion of quanti�er alternation that the word `uniform' refers to.
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Section 1.3

Logical equivalence

We motivate the content of this section with an example.

0 Example 1.3.1
Consider the following two logical formulae, whereP denotes the set of all prime numbers.

(1) 8n 2 P; (n > 2 ) [9k 2 Z; n = 2k+ 1]);

(2) :9 n 2 P; (n > 2^ [9k 2 Z; n = 2k]).

The logical formula (1) translates to `every prime number greater than two is odd', and the lo-
gical formula (2) translates to `there does not exist an even prime number greater than two'. These
statements are evidentlyequivalent—they mean the same thing—but they suggest different proof
strategies:

(1) Fix a prime numbern, assume thatn > 2, and then prove thatn = 2k+ 1 for somek 2 Z.

(2) Assume that there is some prime numbern such thatn> 2 andn= 2k for somek 2 Z, and derive
a contradiction.

While statement (1) more directly translates the plain English statement `every prime number greater
than two is odd', it is the proof strategy suggested by (2) that is easier to use. Indeed, ifn is a prime
number such thatn > 2 andn = 2k for somek 2 Z, then 2 is a divisor ofn other than 1 andn (since
1 < 2 < n), contradicting the assumption thatn is prime. C

The notion oflogical equivalence, captures precisely the sense in which the logical formulae in (1)
and (2) in Example 1.3.1 `mean the same thing'. Being able to transform a logical formula into a
different (but equivalent) form allows us to identify a wider range of feasible proof strategies.

F De�nition 1.3.2
Let p andq be logical formulae. We say thatp andq are logically equivalent, and writep � q
(LATEX code:\equiv ), if q can be derived fromp andp can be derived fromq.

Logical equivalence of propositional formulae

While De�nition 1.3.2 de�nes logical equivalence between arbitrary logical formulae, we will start
by focusing our attention on logical equivalence betweenpropositionalformulae, like those we saw
in Section 1.1.

First, let's look at a couple of examples of what proofs of logical equivalence might look like. Be
warned—they're not very nice to read! But there is light at the end of the tunnel. After struggling
through Examples 1.3.3 and 1.3.4 and Exercise 1.3.5, we will introduce a very quick and easy tool
for proving propositional formulae are logically equivalent.

0 Example 1.3.3
We demonstrate thatp^ (q_ r) � (p^ q) _ (p^ r), wherep, q andr are propositional variables.
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� First assume thatp^ (q_ r) is true. Thenp is true andq_ r is true by de�nition of conjunction.
By de�nition of disjunction, eitherq is true orr is true.

� If q is true, thenp^ q is true by de�nition of conjunction.

� If r is true, thenp^ r is true by de�nition of conjunction.

In both cases we have that(p^ q) _ (p^ r) is true by de�nition of disjunction.

� Now assume that(p^ q) _ (p^ r) is true. Then eitherp^ q is true orp^ r is true, by de�nition of
disjunction.

� If p^ q is true, thenp is true andq is true by de�nition of conjunction.

� If p^ r is true, thenp is true andr is true by de�nition of conjunction.

In both cases we have thatp is true, and thatq_ r is true by de�nition of disjunction. Hence
p^ (q_ r) is true by de�nition of conjunction.

Since we can derive(p^ q) _ (p^ r) from p^ (q_ r) and vice versa, it follows that

p^ (q_ r) � (p^ q) _ (p^ r)

as required. C

0 Example 1.3.4
We prove thatp ) q � (: p) _ q, wherep, q andr are propositional variables.

� First assume thatp ) q is true. By the law of exluded middle (Axiom 1.1.44), eitherp is true or
: p is true—we derive(: p) _ q in each case.

� If p is true, then sincep ) q is true, it follows from () E) thatq is true, and so(: p) _ q is true
by (_ I2);

� If : p is true, then(: p) _ q is true by (_ I1).

In both cases, we see that(: p) _ q is true.

� Now assume that(: p) _ q is true. To prove thatp ) q is true, it suf�ces by () I) to assume that
p is true and deriveq. So assumep is true. Since(: p) _ q is true, we have that either: p is true
or q is true.

� If : p is true, then we obtain a contradiction from the assumption thatp is true, and soq is true
by the principle of explosion (Axiom 1.1.49).

� If q is true. . . well, thenq is true—there is nothing more to prove!

In both cases we have thatq is true. Hencep ) q is true.

We have derived(: p) _ q from p ) q and vice versa, and so the two formulae are logically equival-
ent. C

. Exercise 1.3.5
Let p, q andr be propositional variables. Prove that the propositional formula(p_ q) ) r is logically
equivalent to(p ) r) ^ (q ) r). C

Working through the derivations each time we want to prove logical equivalence can become cum-
bersome even for small examples like Examples 1.3.3 and 1.3.4 and Exercise 1.3.5.

The following theorem reduces the problem of proving logical equivalence betweenpropositional
formulae to the purely algorithmic task of checking when the formulae are true and when they are
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false in a (relatively) small list of cases. We will streamline this process even further usingtruth
tables(De�nition 1.3.7).

C Theorem 1.3.6
Two propositional formulae are logically equivalent if and only if their truth values are the same
under any assignment of truth values to their constituent propositional variables.

Idea of proof
A formal proof of this fact is slightly beyond our reach at this point, although we will be able to
prove it formally bystructural induction, introduced in Section 10.2.

The idea of the proof is that, since propositional formulae are built up from simpler propositional
formulae using logical operators, the truth value of a more complex propositional formula is determ-
ined by the truth values of its simpler subformulae. If we keep `chasing' these subformulae, we end
up with just propositional variables.

For example, the truth value of(p) r) ^ (q) r) is determined by the truth values ofp) r andq) r
according to the rules for the conjunction operator^ . In turn, the truth value ofp ) r is determined
by the truth values ofp andr according to the implication operator) , and the truth value ofq ) r
is determined by the truth values ofq andr according to the implication operator again. It follows
that the truth value of the whole propositional formula(p ) r) ^ (q ) r) is determined by the truth
values ofp;q; r according to the rules for̂ and) .

If some assignment of truth values to propositional variables makes one propositional formula true
but another false, then it must be impossible to derive one from the other—otherwise we'd obtain a
contradiction. Hence both propositional formulae must have the same truth values no matter what
assignment of truth values is given to their constituent propositional variables.

We now develop a systematic way of checking the truth values of a propositional formula under each
assignment of truth values to its constituent propositional variables.

F De�nition 1.3.7
Thetruth table of a propositional formula is the table with one row for each possible assignment of
truth values to its constituent propositional variables, and one column for each subformula (including
the propositional variables and the propositional formula itself). The entries of the truth table are the
truth values of the subformulae.

0 Example 1.3.8
The following are the truth tables for: p, p^ q, p_ q andp ) q.

p : p
X �
� X

p q p^ q
X X X
X � �
� X �
� � �

p q p_ q
X X X
X � X
� X X
� � �

p q p ) q
X X X
X � �
� X X
� � X

C
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In Example 1.3.8 we have used the symbolX (LATEX code: \checkmark ) to mean `true' and�
(LATEX code: \times ) to mean `false'. Some authors adopt other conventions, such asT;F or > ;?
(LATEX code:\top,\bot ) or 1;0 or 0;1—the possibilites are endless!

. Exercise 1.3.9
Use the de�nitions of̂ , _ and) to justify the truth tables in Example 1.3.8. C

The next example shows how the truth tables for the individual logical operators (as in Ex-
ample 1.3.8) may be combined to form a truth table for a more complicated propositional formula
that involves three propositional variables.

0 Example 1.3.10
The following is the truth table for(p^ q) _ (p^ r).

p q r p^ q p^ r (p^ q) _ (p^ r)
X X X X X X
X X � X � X
X � X � X X
X � � � � �
� X X � � �
� X � � � �
� � X � � �
� � � � � �
| {z } | {z } | {z }

propositional
variables

intermediate
subformulae main formula

Some comments about the construction of this truth table are pertinent:

� The propositional variables appear �rst. Since there are three of them, there are 23 = 8 rows. The
column forp contains fourX s followed by four� s; the column forq contains twoX s, two� s,
and then repeats; and the column forr contains oneX , one� , and then repeats.

� The next group of columns are the next-most complicated subformulae. Each is constructed by
looking at the relevant columns further to the left and comparing with the truth table for conjunc-
tion.

� The �nal column is the main formula itself, which again is constructed by looking at the relevant
columns further to the left and comparing with the truth table for disjunction.

Our choices of where to put the vertical bars and what order to put the rows in were not the only
choices that could have been made, but when constructing truth tables for more complex logical
formulae, it is useful to develop a system and stick to it. C

Returning to Theorem 1.3.6, we obtain the following strategy for proving that two propositional
formulae are logically equivalent.

v Strategy 1.3.11 (Logical equivalence using truth tables)
In order to prove that propositional formulae are logically equivalent, it suf�ces to show that they
have identical columns in a truth table.
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0 Example 1.3.12
In Example 1.3.3 we proved thatp^ (q_ r) � (p^ q) _ (p^ r). We prove this again using truth
tables. First we construct the truth table forp^ (q_ r):

p q r q_ r p^ (q_ r)
X X X X X
X X � X X
X � X X X
X � � � �
� X X X �
� X � X �
� � X X �
� � � � �

Note that the column forp^ (q_ r) is identical to that of(p^ q) _ (p^ r) in Example 1.3.10. Hence
the two formulae are logically equivalent. C

To avoid having to write out two truth tables, it can be helpful to combine them into one. For
example, the following truth table exhibits thatp^ (q_ r) is logically equivalent to(p^ q) _ (p^ r):

p q r q_ r p^ (q_ r) p^ q p^ r (p^ q) _ (p^ r)
X X X X X X X X
X X � X X X � X
X � X X X � X X
X � � � � � � �
� X X X � � � �
� X � X � � � �
� � X X � � � �
� � � � � � � �

In the following exercises, we use truth tables to repeat the proofs of logical equivalence from Ex-
ample 1.3.4 and Exercise 1.3.5.

. Exercise 1.3.13
Use a truth table to prove thatp ) q � (: p) _ q. C

. Exercise 1.3.14
Let p, q andr be propositional variables. Use a truth table to prove that the propositional formula
(p_ q) ) r is logically equivalent to(p ) r) ^ (q ) r). C

Some proof strategies

We are now in good shape to use logical equivalence to derive some more sophisticated proof
strategies.

C Theorem 1.3.15 (Law of double negation)
Let p be a propositional variable. Thenp � :: p.
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Proof
The proof is almost trivialised using truth tables. Indeed, consider the following truth table.

p : p :: p
X � X
� X �

The columns forp and:: p are identical, and sop � :: p. �

The law of double negation is important because it suggests a second way that we can prove state-
ments by contradiction. Indeed, it says that proving a propositionp is equivalent to proving:: p,
which amounts to assuming: p and deriving a contradiction.

v Strategy 1.3.16 (Proof by contradiction (indirect version))
In order to prove a propositionp is true, it suf�ces to assume thatp is false and derive a contradiction.

At �rst sight, Strategy 1.3.16 looks very similar to Strategy 1.1.38, but there is an important differ-
ence:

� Strategy 1.1.38 says that to prove that a proposition isfalse, it suf�ces to assume that it istrueand
derive a contradiction;

� Strategy 1.3.16 says that to prove that a proposition istrue, it suf�ces to assume that it isfalseand
derive a contradiction.

The former is adirect proof technique, since it arises directly from the de�nition of the negation
operator; the latter is anindirect proof technique, since it arises from a logical equivalence, namely
the law of double negation.

0 Example 1.3.17
We prove that ifa, b andc are non-negative real numbers satisfyinga2 + b2 = c2, thena+ b > c.

Indeed, leta;b;c2 R with a;b;c> 0, and assume thata2+ b2 = c2. Towards a contradiction, assume
that it is not the case thata+ b > c. Then we must havea+ b < c. But then

(a+ b)2 = ( a+ b)(a+ b) < (a+ b)c < c� c = c2

and so
c2 > (a+ b)2 = a2 + 2ab+ b2 = c2 + 2ab> c2

This implies thatc2 > c2, which is a contradiction. So it must be the case thata+ b > c, as required.
C

The next proof strategy we derive concerns proving implications.

F De�nition 1.3.18
Thecontrapositiveof a proposition of the formp ) q is the proposition: q ) : p.

C Theorem 1.3.19 (Law of contraposition)
Let p andq be propositional variables. Thenp ) q � (: q) ) (: p).

55



56 Chapter 1. Logical structure

Proof
We build the truth tables forp ) q and(: q) ) (: p).

p q p ) q : q : p (: q) ) (: p)
X X X � � X
X � � X � �
� X X � X X
� � X X X X

The columns forp ) q and(: q) ) (: p) are identical, so they are logically equivalent. �

Theorem 1.3.19 suggests the following proof strategy.

v Strategy 1.3.20 (Proof by contraposition)
In order to prove a proposition of the formp ) q, it suf�ces to assume thatq is false and derive that
p is false.

0 Example 1.3.21
Fix two natural numbersm andn. We will prove that ifmn> 64, then eitherm> 8 orn > 8.

By contraposition, it suf�ces to assume that it isnot the case thatm> 8 or n > 8, and derive that it
is not the case thatmn> 64.

So assume that neitherm> 8 norn > 8. Thenm6 8 andn 6 8, so thatmn6 64, as required. C

. Exercise 1.3.22
Use the law of contraposition to prove thatp , q � (p ) q) ^ (( : p) ) (: q)) , and use the proof
technique that this equivalence suggests to prove that an integer is even if and only if its square is
even. C

It feels good to invoke impressive-sounding results likeproof by contraposition, but in practice, the
logical equivalence betweenany two different propositional formulae suggests a new proof tech-
nique, and not all of these techniques have names. And indeed, the proof strategy in the following
exercise, while useful, has no slick-sounding name—at least, not one that would be widely under-
stood.

. Exercise 1.3.23
Prove thatp_ q � (: p) ) q. Use this logical equivalence to suggest a new strategy for proving
propositions of the formp_ q, and use this strategy to prove that if two integers sum to an even
number, then either both integers are even or both are odd. C

Negation

In pure mathematics it is common to ask whether or not a certain property holds of a mathematical
object. For example, in Section 7.2, we will look at convergence of sequences of real numbers: to
say that a sequencex0;x1;x2; : : : of real numbersconverges(De�nition 7.2.15) is to say

9a 2 R; 8e 2 R; (e > 0 ) 9 N 2 N; 8n 2 N; [n > N ) j xn � aj < e])
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This is already a relatively complicated logical formula. But what if we wanted to prove that a se-
quencedoes notconverge? Simply assuming the logical formula above and deriving a contradiction
might work sometimes, but it is not particularly enlightening.

Our next goal is to develop a systematic method for negating complicated logical formulae. With this
done, we will be able to negate the logical formula expressing `the sequencex0;x1;x2; : : : converges'
as follows

8a 2 R; 9e 2 R; (e > 0^8 N 2 N; 9n 2 N; [n > N ^ j xn � aj > e])

Granted, this is still a complicated expression, but when broken down element by element, it provides
useful information about how it may be proved.

The rules for negating conjunctions and disjunctions are instances ofde Morgan's laws, which ex-
hibit a kind of duality between̂ and_.

C Theorem 1.3.24 (de Morgan's laws for logical operators)
Let p andq be logical formulae. Then:

(a) : (p^ q) � (: p) _ (: q); and

(b) : (p_ q) � (: p) ^ (: q).

Proof of (a)
Consider the following truth table.

p q p^ q : (p^ q) : p : q (: p) _ (: q)
X X X � � � �
X � � X � X X
� X � X X � X
� � � X X X X

The columns for: (p^ q) and(: p) _ (: q) are identical, so they are logically equivalent. �

. Exercise 1.3.25
Prove Theorem 1.3.24(b) thrice: once using the de�nition of logical equivalence directly (like we
did in Examples 1.3.3 and 1.3.4 and Exercise 1.3.5), once using a truth table, and once using part (a)
together with the law of double negation. C

0 Example 1.3.26
We often use de Morgan's laws for logical operators without thinking about it. For example to say
that `neither 3 nor 7 is even' is equivalent to saying `3 is odd and 7 is odd'. The former statement
translates to

: [(3 is even) _ (7 is even)]

while the second statement translates to

[: (3 is even)] ^ [: (7 is even)]

C

. Exercise 1.3.27
Prove that: (p ) q) � p^ (: q) twice, once using a truth table, and once using Exercise 1.3.13
together with de Morgan's laws and the law of double negation. C
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De Morgan's laws for logical operators generalise to statements about quanti�ers, expressing a sim-
ilar duality between8 and9 as we have between̂and_.

C Theorem 1.3.28 (de Morgan's laws for quanti�ers)
let p(x) be a logical formula with free variablex ranging over a setX. Then:

(a) :8 x 2 X; p(x) � 9 x 2 X; : p(x); and

(b) :9 x 2 X; p(x) � 8 x 2 X; : p(x).

Proof
Unfortunately, since these logical formulae involve quanti�ers, we do not have truth tables at our
disposal, so we must assume each formula and derive the other.

We start by proving the equivalence in part (b), and then we derive (a) as a consequence.

� Assume:9 x2 X; p(x). To prove8x2 X; : p(x), �x some x2 X. If p(x) were true, then we'd have
9x 2 X; p(x), which contradicts our main assumption; so we have: p(x). But then8x 2 X; : p(x)
is true.

� Assume8x 2 X; : p(x). For the sake of contradiction, assume9x 2 X; p(x) were true. Then we
obtain somea2 X for which p(a) is true. But: p(a) is true by the assumption that8x2 X; : p(a),
so we obtain a contradiction. Hence:9 x 2 X; p(x) is true.

This proves that:9 x 2 X; p(x) � 8 x 2 X; : p(x).

Now (a) follows from (b) using the law of double negation (Theorem 1.3.15):

9x 2 X; : p(x) � ::9 x 2 X; : p(x)
(b)
� :8 x 2 X; :: p(x) � :8 x 2 X; p(x)

as required. �

The proof strategy suggested by the logical equivalence in Theorem 1.3.28(b) is so important that it
has its own name.

v Strategy 1.3.29 (Proof by counterexample)
To prove that a proposition of the form8x 2 X; p(x) is false, it suf�ces to �nd a single elementa 2 X
such thatp(a) is false. The elementa is called acounterexampleto the proposition8x 2 X; p(x).

0 Example 1.3.30
We prove by counterexample that not every integer is divisible by a prime number. Indeed, letx = 1.
The only integral factors of 1 are 1 and� 1, neither of which are prime, so that 1 is not divisible by
any primes. C

. Exercise 1.3.31
Prove by counterexample that not every rational number can be expressed as

a
b

wherea 2 Z is even

andb 2 Z is odd. C

We have now seen how to negate the logical operators: , ^ , _ and) , as well as the quanti�ers8
and9.
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F De�nition 1.3.32
A logical formula ismaximally negated if the only instances of the negation operator: appear
immediately before a predicate (or other proposition not involving logical operators or quanti�ers).

0 Example 1.3.33
The following propositional formula is maximally negated:

[p^ (q ) (: r))] , (s^ (: t))

Indeed, all instances of: appear immediately before propositional variables.

However the following propositional formula isnot mmaximally negated:

(:: q) ) q

Here the subformula:: q contains a negation operator immediately before another negation operator
(:: q). However by the law of double negation, this is equivalent toq ) q, which is maximally
negated trivially since there are no negation operators to speak of. C

. Exercise 1.3.34
Determine which of the following logical formulae are maximally negated.

(a) 8x 2 X; (: p(x)) ) 8 y 2 X; : (r(x;y) ^ s(x;y)) ;

(b) 8x 2 X; (: p(x)) ) 8 y 2 X;(: r(x;y)) _ (: s(x;y)) ;

(c) 8x 2 R; [x > 1 ) (9y 2 R; [x < y^ : (x2 6 y)])] ;

(d) :9 x 2 R; [x > 1^ (8y 2 R; [x < y ) x2 6 y])].

C

The following theorem allows us to replace logical formulae by maximally negated ones, which in
turn suggests proof strategies that we can use for proving that complicated-looking propositions are
false.

C Theorem 1.3.35
Every logical formula (built using only the logical operators and quanti�ers we have seen so far) is
logically equivalent to a maximally negated logical formula.

Idea of proof
Much like Theorem 1.3.6, a precise proof of Theorem 1.3.35 requires some form of induction argu-
ment, so instead we will give an idea of the proof.

Every logical formula we have seen so far is built from predicates using the logical operators^ ;_; )
and: and the quanti�ers8 and9—indeed, the logical operator, was de�ned in terms of̂ and) ,
and the quanti�er9 was de�ned in terms of the quanti�ers8 and9 and the logical operatorŝ and
) .

But the results in this section allow us to push negations `inside' each of these logical operators and
quanti�ers, as summarised in the following table.
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Negation outside Negation inside Proof
: (p^ q) � (: p) _ (: q) Theorem 1.3.24(a)
: (p_ q) � (: p) ^ (: q) Theorem 1.3.24(b)

: (p ) q) � p^ (: q) Exercise 1.3.27
: (: p) � p Theorem 1.3.15

:8 x 2 X; p(x) � 9 x 2 X; : p(x) Theorem 1.3.28(a)
:9 x 2 X; p(x) � 8 x 2 X; : p(x) Theorem 1.3.28(b)

Repeatedly applying these rules to a logical formula eventually yields a logically equivalent, max-
imally negated logical formula.

0 Example 1.3.36
Recall the logical formula from page 56 expressing the assertion that a sequencex0;x1;x2; : : : of real
numbers converges:

9a 2 R; 8e 2 R; (e > 0 ) 9 N 2 N; 8n 2 N; [n > N ) j xn � aj < e])

We will maximally negate this to obtain a logical formula expressing the assertion that the sequence
does not converge.

Let's start at the beginning. The negation of the formula we started with is:

:9 a 2 R; 8e 2 R; (e > 0 ) 9 N 2 N; 8n 2 N; [n > N ) j xn � aj < e])

The key to maximally negating a logical formula is to ignore information that is not immediately
relevant. Here, the expression that we are negating takes the form:9 a 2 R; (stuff). It doesn't
matter what the `stuff' is just yet; all that matters is that we are negating an existentially quanti�ed
statement, and so de Morgan's laws for quanti�ers tells us that this is logically equivalent to8a 2
R; : (stuff). We apply this rule and just re-write the `stuff', to obtain:

8a 2 R; :8 e 2 R; (e > 0 ) 9 N 2 N; 8n 2 N; [n > N ) j xn � aj < e])

Now we are negating a universally quanti�ed statement,:8 e 2 R; (stuff) which, by de Morgan's
laws for quanti�ers, is equivalent to9e 2 R; (stuff):

8a 2 R; 9e 2 R; : (e > 0 ) 9 N 2 N; 8n 2 N; [n > N ) j xn � aj < e])

At this point, the statement being negated is of the form(stuff) ) (junk), which by Exercise 1.3.27
negates to(stuff) ^ : (junk). Here, `stuff' ise > 0 and `junk' is9N 2 N;8n 2 N; [n > N ) j xn �
aj < e]. So performing this negation yields:

8a 2 R; 9e 2 R; (e > 0^ :9 N 2 N; 8n 2 N; [n > N ) j xn � aj < e])

Now we are negating an existentially quanti�ed formula again, so using de Morgan's laws for quan-
ti�ers gives:

8a 2 R; 9e 2 R; (e > 0^8 N 2 N; :8 n 2 N; [n > N ) j xn � aj < e])

The formula being negated here is univerally quanti�ed, so using de Morgan's laws for quanti�ers
againgives:

8a 2 R; 9e 2 R; (e > 0^8 N 2 N; 9n 2 N; : [n > N ) j xn � aj < e])
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We're almost there! The statement being negated here is an implication, so applying the rule: (p )
q) � p^ (: q) again yields:

8a 2 R; 9e 2 R; (e > 0^8 N 2 N; 9n 2 N; [n > N ^ : (jxn � aj < e)])

At this point, strictly speaking, the formula is maximally negated, since the statement being neg-
ated does not involve any other logical opreators or quanti�ers. However, since: (jxn � aj < e) is
equivalent tojxn � aj > e, we can go one step further to obtain:

8a 2 R; 9e 2 R; (e > 0^8 N 2 N; 9n 2 N; [n > N ^ j xn � aj > e])

This is as negated as we could ever dream of, and so we stop here. C

. Exercise 1.3.37
Find a maximally negated propositional formula that is logically equivalent to: (p , q). C

. Exercise 1.3.38
Maximally negate the following logical formula, then prove that it is true or prove that it is false.

9x 2 R; [x > 1^ (8y 2 R; [x < y ) x2 6 y])]

C

Tautologies

The �nal concept that we introduce in this chapter is that of atautology, which can be thought of as
the opposite of a contradiction. The word `tautology' has other implications when used colloquially,
but in the context of symbolic logic it has a precise de�nition.

F De�nition 1.3.39
A tautology is a proposition or logical formula that is true, no matter how truth values are assigned
to its component propositional variables and predicates.

The reason we are interested in tautologies is that tautologies can be used as assumptions at any
point in a proof, for any reason.

v Strategy 1.3.40 (Assuming tautologies)
Let p be a proposition. Any tautology may be assumed in any proof ofp.

0 Example 1.3.41
The law of excluded middle (Axiom 1.1.44) says precisely thatp_ (: p) is a tautology. This means
that when proving any result, we may split into cases based on whether a proposition is true or false,
just as we did in Proposition 1.1.46. C

0 Example 1.3.42
The formulap ) (q ) p) is a tautology.

A direct proof of this fact is as follows. In order to provep ) (q ) p) is true, it suf�ces to assumep
and deriveq ) p. So assumep. Now in order to proveq ) p, it suf�ces to assumeq and derivep.
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So assumeq. But we're already assuming thatp is true! Soq ) p is true, and hencep ) (q ) p)
is true.

A proof using truth tables is as follows:

p q q ) p p ) (q ) p)
X X X X
X � X X
� X � X
� � X X

We see thatp ) (q ) p) is true regardless of the truth values ofp andq. C

. Exercise 1.3.43
Prove that each of the following is a tautology:

(a) [(p ) q) ^ (q ) r)] ) (p ) r);

(b) [p ) (q ) r)] ) [(p ) q) ) (p ) r)];

(c) 9y 2 Y; 8x 2 X; p(x;y) ) 8 x 2 X; 9y 2 Y; p(x;y);

(d) [: (p^ q)] , [(: p) _ (: q)];

(e) (:8 x 2 X; p(x)) , (9x 2 X; : p(x)) .

For each, try to interpret what it means, and how it might be useful in a proof. C

You may have noticed parallels between de Morgan's laws for logical operators and quanti�ers, and
parts (d) and (e) of Exercise 1.3.43, respectively. They almost seem to say the same thing, except
that in Exercise 1.3.43 we used `, ' and in Theorems 1.3.24 and 1.3.28 we used `� '. There is an
important difference, though: ifp andq are logical formulae, thenp ) q is itself a logical formula,
which we may study as a mathematical object in its own right. However,p � q is not a logical
formula: it is an assertionabout logical formulae, namely that the logical formulaep and q are
equivalent.

There is, nonetheless, a close relationship between, and� —this relationship is summarised in the
following theorem.

C Theorem 1.3.44
Let p andq be logical formulae.

(a) q can be derived fromp if and only if p ) q is a tautology;

(b) p � q if and only if p , q is a tautology.

Proof
For (a), note that a derivation ofq from p is suf�cient to establish the truth ofp ) q by the intro-
duction rule for conjunction () I), and so ifq can be derived fromp, then p ) q is a tautology.
Conversely, ifp ) q is a tautology, thenq can be derived fromp using the elimination rule for
conjunction () E) together with the (tautological) assumption thatp ) q is true.
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Now (b) follows from (a), since logical equivalence is de�ned in terms of derivation in each direction,
and, is simply the conjunction of two implications. �

Aaand breathe!All this new notation can be overwhelming at �rst, but it will be worth it in the end.
This chapter was all about teaching you a new language—new symbols, new terminology—because
without it, our future pursuits will be impossible. If you're stuck now, then don't worry: you'll soon
get the hang of it, especially when we start using this new language in context. You can, of course,
refer back to the results in this chapter for reference at any point in the future.
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64 Chapter 1. Logical structure

Section 1.E

Chapter 1 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

1.1. For �xed n 2 N, let p represent the proposition `n is even', letq represent the proposition `n is
prime' and letr represent the proposition `n = 2'. For each of the following propositional formulae,
translate it into plain English and determine whether it is true for alln 2 N, true for some values of
n and false for some values ofn, or false for alln 2 N.

(a) (p^ q) ) r

(b) q^ (: r) ) (: p)

(c) (( : p) _ (: q)) _ (: r)

(d) (p^ q) ^ (: r)

1.2. For each of the following plain English statements, translate it into a symbolic propositional
formula. The propositional variables in your formulae should represent the simplest propositions
that they can.

(a) Guinea pigs are quiet, but they're loud when they're hungry.

(b) It doesn't matter that 2 is even, it's still a prime number.

(c)
p

2 can't be an integer because it is a rational number.

1.3. Let p andq be propositions, and assume thatp ) (: q) is true and that(: q) ) p is false. Which
of the following are true, and which are false?

(a) q being false is necessary forp to be true.

(b) q being false is suf�cient forp to be true.

(c) p being true is necessary forq to be false.

(d) p being true is suf�cient forp to be false.

1.4. Find a statement in plain English, involving no variables at all, that is equivalent to the logical
formula8a 2 Q; 8b 2 Q; (a < b ) 9 c 2 R; [a < c < b ^ : (c 2 Q)]) . Then prove this statement,
using the structure of the logical formula as a guide.

1.5. Find a purely symbolic logical formula that is equivalent to the following statement, and then
prove it: “No matter which integer you may choose, there will be an integer greater than it.”

1.6. Prove that
p , q � (p ) q) ^ (( : p) ) (: q))

How might this logical equivalence help you to prove statements of the form `p if and only if q'?

1.7. Prove using truth tables thatp ) q 6� q ) p. Give an example of propositionsp andq such that
p ) q is true butq ) p is false.
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1.8. A new logical operator" is de�ned by the following rules:

(i) If a contradiction can be derived from the assumption thatp is true, thenp " q is true;

(ii) If a contradiction can be derived from the assumption thatq is true, thenp " q is true;

(iii) If r is any proposition, and ifp " q, p andq are all true, thenr is true.

This question explores this curious new logical operator.

(a) Prove thatp " p � : p, and deduce that(( p " p) " (p " p)) � p.

(b) Prove thatp_ q � (p " p) " (q " q) andp^ q � (p " q) " (p " q).

(c) Find a propositional formula using only the logical operator" that is equivalent top ) q.

1.9. Let X beZ or Q, and de�ne a logical formulap by:

8x 2 X; 9y 2 X; (x < y^ [8z2 X; : (x < z^ z< y)])

Write out : p as a maximally negated logical formula. Prove thatp is true whenX = Z, andp is
false whenX = Q.

1.10. Use De�nition 1.2.26 to write out a maximally negated logical formula that is equivalent to
:9 !x 2 X; p(x). Describe the strategy that this equivalence suggests for proving that there is not a
uniquex 2 X such thatp(x) is true, and use this strategy to prove that, for alla 2 R, if a 6= � 1 then
there is not a uniquex 2 R such thatx4 � 2ax2 + a2 � 1 = 0.

1.11. Let X be a set and letp(x) be a predicate. Find a logical formula representing the statement
`there are exactly two elementsx 2 X such thatp(x) is true'. Use the structure of this logical formula
to describe how a proof should be structured, and use this structure to prove that there are exactly
two real numbersx such thatx2 = 1.
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Section 2.1

Sets and set operations

We begin by rede�ning the notion of asetwith a notch more precision than we provided in Chapter 0.
At their core, sets seem extremely simple—sets are just collections of objects—except that if not kept
in check, this characterisation of a set leads to logical inconsistencies, such as the infamousRussell's
paradox.

These logical paradoxes can be overcome by restricting ourselves to working inside auniverseU ,
which we consider to be a set which is so big that it contains all of the mathematical objects that
we want to talk about. This is a subtle issue, which is well beyond the scope of this section, but is
discussed further in Section B.1.

F De�nition 2.1.1
A setis a collection ofelementsfrom a speci�eduniverse of discourse. The collection of everything
in the universe of discourse is called theuniversal set, denoted byU (LATEX code:\mathcal{U} ).

The expressionx 2 X (LATEX code: \in ) denotes the statement thatx is an element ofX; we write
x 62X (LATEX code:\not\in ) to mean: (x 2 X), that is thatx is not an element ofX.

0 Example 2.1.2
In Chapter 0, we introduced �ve sets: the setN of natural numbers, the setZ of integers, the setQ
of rational numbers, the setR of real numbers and the setC of complex numbers. C

. Exercise 2.1.3
Which of the following propositions are true, and which are false?

1
2

2 Z
1
2

2 Q Z 2 Q Z 2 U
1
2

2 U

C

We will avoid referring explicitly to the universal setU whenever possible, but it will always be
there in the background. This is convenient because we no longer need to worry about the domain of
discourse of free variables (as we did in De�nition 1.2.2), so that we can abbreviate `8x 2 U ; p(x)'
by `8x; p(x)', and 9̀x 2 U ; p(x)' by `9x; p(x)'.

Note that under this convention:

� 8 x 2 X; p(x) is logically equivalent to8x; (x 2 X ) p(x)) ; and

� 9 x 2 X; p(x) is logically equivalent to9x; (x 2 X ^ p(x)) .

Specifying a set

One way of de�ning a set is simply to describe it in words, like we have done up to now. There are
other, more concise ways of specifying sets, which also remove such ambiguity from the process.
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Lists. One way is simply to provide alist of the elements of the set. To specify that the list denotes
a set, we enclose the list withf curly bracketsg (LATEX code: \{,\} ). For example, the following is
a speci�cation of a setX, whose elements are the natural numbers between 0 and 5 (inclusive):

X = f 0;1;2;3;4;5g

Implied lists. Sometimes a list might be too long to write out—maybe even in�nite—or the length
of the list might depend on a variable. In these cases it will be convenient to use animplied list , in
which some elements of the list are written, and the rest are left implicit by writing an ellipsis `: : : '
(LATEX code:\dots ). For example, the statement

X = f 1;4;9; : : : ;n2g

means thatX is the set whose elements are all the square numbers from 1 ton2, wheren is some
number. Implied lists can be ambiguous, since they rely on the reader's ability to infer the pattern
being followed, so use with caution!

Set-builder notation. In general, implied lists can be ambiguous, so in practice they are avoided
unless the implied list is very simple, such as a set of consecutive numbers likef 3;4; : : : ;9g. In fact,
many sets can't even be listed in this way.

To get around this, we can useset-builder notation, which is a means of specifying a set in terms of
the properties its elements satisfy. Given a setX, the set of elements ofX satisfying some property
p(x) is denoted

f x 2 X j p(x)g

The bar j̀' (LATEX code: \mid ) separates the variable name from the formula that they make true—
some authors use a colon instead (as inf x 2 X : p(x)g).

The setf x 2 X j p(x)g is read aloud as `the set ofx 2 X such thatp(x)', but beware—neither the bar
`j' nor the colon `:' mean `such that' in other contexts.

0 Example 2.1.4
The set of all even integers can be written in set-builder notation as

f n 2 Z j n is eveng

For comparison, the set of all even natural numbers can be written as

f n 2 N j n is eveng = f 0;2;4;6; : : :g

Note that� 6 is an element of the former set but not of the latter set, since� 6 is an integer but is not
a natural number.

Note moreover that the expression
f n 2 Q j n is eveng

is meaningless, since we have not de�ned a notion of `evenness' for rational numbers. C

v Strategy 2.1.5
Let X be a set and letp(x) be a logical formula with free variablex 2 X. In order to provea 2 f x 2
X j p(x)g, it suf�ces to provea 2 X and thatp(a) is true.
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. Exercise 2.1.6
A dyadic rational is a rational number that can be expressed as an integer divided by a power of 2.
Express the set of all dyadic rationals using set-builder notation. C

An alternate form of set-builder notation uses an expression involving one or more variables to the
left of the vertical bar, and the range of the variable(s) to the right. The elements of the set are then
the values of the expression as the variable(s) vary as indicated—that is:

f expr(x) j x 2 Xg is de�ned to meanf y j 9x 2 X; y = expr(x)g

whereexpr(x) is the expression in question.

0 Example 2.1.7
The expressionf 3k+ 2 j k 2 Zg denotes the set of all integers of the form 3k+ 2, wherek 2 Z. It
is shorthand forf n 2 Z j 9k 2 Z; n = 3k+ 2g. In implied list notation, we could write this set as
f : : : ; � 4; � 1;2;5;8; : : :g. C

. Exercise 2.1.8
Express the set of dyadic rationals (de�ned in Exercise 2.1.6) in this alternate form of set-builder
notation. C

Set-builder notation is useful for de�ning sets based on the properties they satisfy, as in De�ni-
tions 2.1.9 and 2.1.11 below.

F De�nition 2.1.9
Let n 2 N. The set[n] is de�ned by[n] = f k 2 N j 1 6 k 6 ng.

0 Example 2.1.10
In implied list notation,[n] = f 1;2; : : : ;ng. For example,[4] = f 1;2;3;4g. Note that[0] has no
elements (it isempty—see De�nition 2.1.26), since there are no natural numbersk satisfying the
inequality 16 k 6 0. C

While not particularly interesting yet, sets of the form[n] will be fundamental throughout Chapter 6,
as they are used to de�ne the notion of a�nite set, as well as thesizeof a �nite set.

Intervals are particular subsets ofR that are ubiquitous in mathematics, particularly in analysis and
topology.

F De�nition 2.1.11 (Intervals of the real line)
Let a;b 2 R. Theopen interval (a;b), theclosed interval [a;b], and thehalf-open intervals [a;b)
and(a;b] from a to b are de�ned by

(a;b) = f x 2 R j a < x < bg (a;b] = f x 2 R j a < x 6 bg

[a;b) = f x 2 R j a 6 x < bg [a;b] = f x 2 R j a 6 x 6 bg

We further de�ne theunbounded intervals (� ¥ ;a), (� ¥ ;a], [a;¥ ) and (a;¥ ) (LATEX code:
\infty ) by

(� ¥ ;a) = f x 2 R j x < ag (a;¥ ) = f x 2 R j x > ag

(� ¥ ;a] = f x 2 R j x 6 ag [a;¥ ) = f x 2 R j x > ag

70



Section 2.1. Sets and set operations 71

0 Example 2.1.12
The following illustration depicts the open interval(� 2;5).

� 2 5

The hollow circles� indicate that the endpoints are not included in the interval. C

Be warned that the use of the symbol¥ is misleading, since it suggests that the symbol¥ on its own
has a speci�c meaning (or, worse, that it refers to a real number). It doesn't—it is just a symbol
that suggests unboundedness of the interval in question. A less misleading way of writing[a;¥ ), for
instance, might be[a; ! ) or R> a; however,[a;¥ ) is standard, so it is what we will write.

. Exercise 2.1.13
For each of the following illustrations, �nd the interval that it depicts. A �lled circle� indicates that
an end-point is included in the interval, whereas a hollow circle� indicates that an end-point is not
included in the interval.

(a)
� 2 5

(b)
� 2 5

(c)
5

(d)
� 2

C

Subsets

It is often the case that everything that is also an element of one set is an element of another set. For
example, every integer is a rational number; that is

8n 2 Z; n 2 Q

We can say this more concisely by saying thatZ is asubsetof Q.

F De�nition 2.1.14
Let X be a set. Asubsetof X is a setU such that

8a; (a 2 U ) a 2 X)

We writeU � X (LATEX code:\subseteq ) for the assertion thatU is a subset ofX.

Additionally, the notationU * X (LATEX code:\nsubseteq ) means thatU is not a subset ofX, and
the notationU $ X (LATEX code: \subsetneqq ) means thatU is a proper subsetof X, that is a
subset ofX that is not equal toX.
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v Strategy 2.1.15 (Proving a subset containment)
In order to prove that a setU is a subset of a setX, it suf�ces to take an arbitrary elementa 2 U and
prove thata 2 X.

0 Example 2.1.16
Every set is a subset of itself—that is,X � X for all setsX. The proof of this is extremely simple: we
must prove8x 2 X; x 2 X. But then this is trivial: letx 2 X, thenx 2 X by assumption. Done! C

0 Example 2.1.17
Let a;b;c;d 2 R with a < c < d < b. Then[c;d] � (a;b). Indeed, letx 2 [c;d]. Thenc 6 x 6 d. But
then

a < c 6 x 6 d < b ) a < x < b

so that[c;d] � (a;b), as required. C

. Exercise 2.1.18
Let a;b;c;d 2 R with a < b andc < d. Prove that[a;b) � (c;d] if and only if a > c andb 6 d. C

0 Example 2.1.19
The number sets from Chapter 0 are related by the following chain of subset inclusions.

N � Z � Q � R � C

C

The following proposition proves a property of subsethood known astransitivity—we'll revisit this
property in Section 4.1.

C Proposition 2.1.20
Let X;Y;Z be sets. IfX � Y andY � Z, thenX � Z.

Proof
Suppose thatX � Y andY � Z. We need to proveX � Z.

So leta 2 X. SinceX � Y, it follows from De�nition 2.1.14 thata 2 Y; and sinceY � Z, it follows
again from De�nition 2.1.14 thata 2 Z.

HenceX � Z, as required. �

Set equality

This section is all about de�ning sets, comparing sets, and building new sets from old, and so to
make much more progress, we �rst need to establish what we mean when we say that two sets are
equal.

. Discussion 2.1.21
Let X andY be sets. What should it mean to say thatX andY are equal? Try to provide a precise
de�nition of equality of sets before reading on. C

There are different possible notions of `sameness' for sets: we might want to say that two setsX and
Y are equal when they have quite literally the same de�nition; or we might want to say thatX and
Y are equal when they contain the same objects as elements. For instance, supposeX is `the set of
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all odd natural numbers' andY is `the set of all integers that are differences of consecutive perfect
squares'—in this case, the �rst of these characterisations of equality might lead us to sayX 6= Y,
whereas the second would lead us to sayX = Y.

Clearly, we have to state our terms at some point. And that point is now.

C Axiom 2.1.22 (Set extensionality)
Let X andY be sets. ThenX = Y if and only if 8a; (a 2 X , a 2 Y), or equivalently, ifX � Y and
Y � X.

This characterisation of set equality suggests the following strategy for proving that two sets are
equal.

v Strategy 2.1.23 (Proof by double containment)
In order to prove that a setX is equal to a setY, it suf�ces to:

� ProveX � Y, i.e. leta 2 X be an arbitrary element, and derivea 2 Y; and then

� ProveX � Y, i.e. leta 2 Y be an arbitrary element, and derivea 2 X.

We often write `(� )' and `(� )' to indicate the direction of the containment being proved.

0 Example 2.1.24
We prove thatf x 2 R j x2 6 1g = [ � 1;1] by double containment.

� (� ) Let a 2 f x 2 R j x2 6 1g. Thena 2 R anda2 6 1, so that(1 � a)(1+ a) = 1� a2 > 0. It
follows that either:

� 1� a > 0 and 1+ a > 0, in which casea 6 1 anda > � 1, so thata 2 [� 1;1].

� 1� a6 0 and 1+ a6 0, in which casea> 1 anda6 � 1, which is a contradiction since� 1< 1.

So we must havea 2 [� 1;1], as required.

� (� ) Let a 2 [� 1;1]. Then� 1 6 a 6 1, sojaj 6 1, and hencea2 = jaj2 6 1, so thata 2 f x 2 R j
x2 6 1g, as required.

C

. Exercise 2.1.25
Prove thatf x 2 R j x2 < xg = ( 0;1). C

Inhabitation and emptiness

Another fundamental example of a set is theempty set, which is the set with no elements. But we
have to be slightly careful about how we use the word `the', since it impliesuniqueness, and we
don't know (yet) that two sets with no elements are necessarily equal. So �rst we will de�ne what it
means for a set to be empty, and then we'll show that there is exactly one empty set.

F De�nition 2.1.26
A setX is inhabited (or nonempty) if it has at least one element; otherwise, it isempty.
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The assertion thatX is inhabited is equivalent to the logical formula9a; a 2 X, and the assertion that
X is empty is equivalent to the logical formula:9 a; a 2 X. This suggests the following strategy for
proving that a set is inhabited, or that it is empty.

v Strategy 2.1.27 (Proving that a set is inhabited or empty)
In order to prove a setX is inhabited, it suf�ces to exhibit an element. In order to prove a set
X is empty, assume thatX is inhabited—that is, that there is some elementa 2 X—and derive a
contradiction.

In other texts, the termnonemptyis more common thaninhabited, but there are reasons to prefer
latter. Indeed, the statement `X is non-empty' translates more directly to: (:9 a; a 2 X), which
has an unnecessary double-negative and suggests a proof of inhabitation by contradiction. For this
reason, we use the terminhabitedin this book.

Emptiness may seem like a trivial condition—and it is—but owing to its canonicity, it arises all over
the place.

0 Example 2.1.28
The setf x 2 R j x2 = 2g is inhabited since, for example

p
2 2 R and

p
2

2
= 2. However, the set

f x 2 Q j x2 = 2g is empty since, if it were inhabited, then there would be a rational numberx such
thatx2 = 2, contrary to Proposition 0.28. C

0 Example 2.1.29
We observed in Example 2.1.10 that the set[0] is empty; here's a more formal proof. Towards a
contradiction, suppose[0] is inhabited. Then there is somek 2 N such that 16 k 6 0. It follows that
1 6 0, which contradicts the fact that 0< 1. Hence[0] is empty, after all. C

. Exercise 2.1.30
Let a;b 2 R. Prove that[a;b] is empty if and only ifa > b, and that(a;b) is empty if and only if
a > b. C

The next exercise is a logical technicality, which is counterintuitive for the same reason that makes
the principle of explosion (Axiom 1.1.49) dif�cult to grasp. However, it is extremely useful for
proving facts about the empty set, as we will see soon in Theorem 2.1.32.

. Exercise 2.1.31
Let E be an empty set and letp(x) be a predicate with one free variablex with domain of discourse
E. Show that the proposition8x 2 E; p(x) is true, and that the proposition9x 2 E; p(x) is false.
What does the proposition8x 2 E; x 6= x mean in English? Is it true? C

Thanks to the axiom of extensionality (Axiom 2.1.22), any two empty sets must be equal since they
both contain the same elements—namely, no elements at all! This is made formal in the following
theorem.

C Theorem 2.1.32
Let E andE0be sets. IfE andE0are empty, thenE = E0.

Proof. Suppose thatE andE0are empty. The assertion thatE = E0 is equivalent to

8a 2 E; a 2 E0) ^ (8a 2 E0; a 2 E
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But 8a 2 E; a 2 E0 and8a 2 E0; a 2 E are both true by Exercise 2.1.31 sinceE andE0 are empty.
SoE = E0, as claimed.

Knowing that there is one and only one empty set means that we may now make the following
de�nition, without worrying about whether the word `the' is problematic.

F De�nition 2.1.33
Theempty set(also known as thenull set) is the set with no elements, and is denoted by? (LATEX
code:\varnothing ).

Some authors writefg instead of? , sincefg is simply the empty set expressed in list notation.

. Exercise 2.1.34
Let X be a set. Prove that? � X. C

Set operations

In Example 2.1.24 we noted that[0;¥ ) is the set of all non-negative real numbers. What if we wanted
to talk about the set of all non-negative rational numbers instead? It would be nice if there was some
expression in terms of[0;¥ ) andQ to denote this set.

This is whereset operationscome in—they allow us to use previously de�ned sets to introduce new
sets.

Intersection (\ )

Theintersectionof two sets is the set of things which are elements of both sets.

F De�nition 2.1.35
Let X andY be sets. The (pairwise) intersection of X andY, denotedX \ Y (LATEX code:\cap ), is
de�ned by

X \ Y = f a j a 2 X ^ a 2 Yg

0 Example 2.1.36
By de�nition of intersection, we havex 2 [0;¥ ) \ Q if and only if x 2 [0;¥ ) and x 2 Q. Since
x2 [0;¥ ) if and only if x is a non-negative real number (see Example 2.1.24), it follows that[0;¥ ) \ Q
is the set of all non-negative rational numbers. C

. Exercise 2.1.37
Prove that[0;¥ ) \ Z = N. C

. Exercise 2.1.38
Write down the elements of the set

f 0;1;4;7g \ f 1;2;3;4;5g

C
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. Exercise 2.1.39
Express[� 2;5) \ [4;7) as a single interval. C

C Proposition 2.1.40
Let X andY be sets. Prove thatX � Y if and only if X \ Y = X.

Proof
Suppose thatX � Y. We proveX \ Y = X by double containment.

� (� ) Supposea 2 X \ Y. Thena 2 X anda 2 Y by de�nition of intersection, so in particular we
havea 2 X.

� (� ) Supposea 2 X. Thena 2 Y sinceX � Y, so thata 2 X \ Y by de�nition of intersection.

Conversely, suppose thatX \ Y = X. To prove thatX � Y, leta2 X. Thena2 X \ Y sinceX = X \ Y,
so thata 2 Y by de�nition of intersection, as required. �

. Exercise 2.1.41
Let X be a set. Prove thatX \ ? = ? . C

F De�nition 2.1.42
Let X andY be sets. We sayX andY aredisjoint if X \ Y is empty.

0 Example 2.1.43
The setsf 0;2;4g andf 1;3;5g are disjoint, since they have no elements in common. C

. Exercise 2.1.44
Let a;b;c;d 2 R with a < b andc < d. Prove that the open intervals(a;b) and(c;d) are disjoint if
and only ifb < c or d < a. C

Union ([ )

Theunionof two sets is the set of things which are elements of at least one of the sets.

F De�nition 2.1.45
Let X andY be sets. The (pairwise) union of X andY, denotedX [ Y (LATEX code:\cup ), is de�ned
by

X [ Y = f a j a 2 X _ a 2 Yg

0 Example 2.1.46
Let E be the set of even integers andO be the set of odd integers. Since every integer is either
even or odd,E [ O = Z. Note thatE \ O = ? , thusf E;Og is an example of apartition of Z—see
De�nition 4.2.21. C

. Exercise 2.1.47
Write down the elements of the set

f 0;1;4;7g [ f 1;2;3;4;5g

C
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. Exercise 2.1.48
Express[� 2;5) [ [4;7) as a single interval. C

The union operation allows us to de�ne the following class of sets that will be particularly useful for
us when studying counting principles in Section 6.2.

. Exercise 2.1.49
Let X andY be sets. Prove thatX � Y if and only if X [ Y = Y. C

0 Example 2.1.50
Let X;Y;Z be sets. We prove thatX \ (Y [ Z) = ( X \ Y) [ (X \ Z).

� (� ) Let x 2 X \ (Y [ Z). Thenx 2 X, and eitherx 2 Y or x 2 Z. If x 2 Y thenx 2 X \ Y, and if
x 2 Z thenx 2 X \ Z. In either case, we havex 2 (X \ Y) [ (X \ Z).

� (� ) Let x 2 (X \ Y) [ (X \ Z). Then eitherx 2 X \ Y or x 2 X \ Z. In both cases we havex 2 X
by de�nition of intersection In the �rst case we havex 2 Y, and in the second case we havex 2 Z;
in either case, we havex 2 Y [ Z, so thatx 2 X \ (Y [ Z).

C

. Exercise 2.1.51
Let X;Y;Z be sets. Prove thatX [ (Y \ Z) = ( X [ Y) \ (X [ Z). C

Indexed families of sets

We will often have occasion to take the intersection or union not of just two sets, but of an arbitrary
collection of sets (even of in�nitely many sets). For example, we might want to know which real
numbers are elements of[0;1+ 1

n) for eachn > 1, and which real numbers are elements of at least
one of such sets.

Our task now is therefore to generalise our pairwise notions of intersection and union to arbitrary
collections of sets, calledindexed familiesof sets.

F De�nition 2.1.52
An (indexed) family of setsis a speci�cation of a setXi for each elementi of someindexing setI .
We writef Xi j i 2 Ig for the indexed family of sets.

0 Example 2.1.53
The sets[0;1+ 1

n) mentioned above assemble into an indexed family of sets, whose indexing set is
f n 2 N j n > 1g. We can abbreviate this family of sets by

f [0;1+ 1
n) j n > 1g

Observe that we have left implicit the fact that the variablen is ranging over the natural numbers and
just written ǹ> 1' on the right of the vertical bar, rather than separately de�ningI = f n2 N j n> 1g
and writingf [0;1+ 1

n) j n 2 Ig. C
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F De�nition 2.1.54
The (indexed) intersectionof an indexed familyf Xi j i 2 Ig is de�ned by

\

i2 I

Xi = f a j 8i 2 I ; a 2 Xig (LATEX code:\bigcap_{i \in I} )

The (indexed) union of f Xi j i 2 Ig is de�ned by
[

i2 I

Xi = f a j 9i 2 I ; a 2 Xig (LATEX code:\bigcup_{i \in I} )

0 Example 2.1.55
We prove that the intersection of the half-open intervals[0;1+ 1

n) for n > 1 is [0;1]. We will use the
notation

\

n> 1

as shorthand for
\

n2f x2N j x> 1g

.

� (� ) Let x 2
\

n> 1

[0;1+
1
n

).

Thenx 2 [0;1+ 1
n) for all n > 1. In particular,x > 0.

To see thatx 6 1, assume thatx > 1—we will derive a contradiction. Sincex > 1, we have
x� 1 > 0. Let N > 1 be some natural number greater or equal to1

x� 1, so that 1
N 6 x� 1. Then

x > 1+ 1
N , and hencex 62[0;1+ 1

N ), contradicting the assumption thatx 2 [0;1+ 1
n) for all n > 1.

So we must havex 6 1 after all, and hencex 2 [0;1].

� (� ) Let x 2 [0;1].

To prove thatx 2
\

n> 1

[0;1+
1
n

), we need to show thatx 2 [0;1+ 1
n) for all n > 1. So �x n > 1.

Sincex 2 [0;1], we havex > 0 andx 6 1 < 1+ 1
n, so thatx 2 [0;1+ 1

n), as required.

Hence
\

n> 1

[0;1+
1
n

) = [ 0;1] by double containment. C

. Exercise 2.1.56

Express
[

n> 1

[0;1+
1
n

) as an interval. C

. Exercise 2.1.57
Prove that

\

n2N

[n] = ? and
[

n2N

[n] = f k 2 N j k > 1g. C

Indexed intersections and unions generalise their pairwise counterparts, as the following exercise
proves.

. Exercise 2.1.58
Let X1 andX2 be sets. Prove that

X1 \ X2 =
\

k2[2]

Xk and X1 [ X2 =
[

k2[2]

Xk

C
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. Exercise 2.1.59
Find a family of setsf Xn j n 2 Ng such that:

(i)
[

n2N

Xn = N;

(ii)
\

n2N

Xn = ? ; and

(iii) Xi \ Xj 6= ? for all i; j 2 N.

C

Relative complement (n)

F De�nition 2.1.60
Let X andY be sets. Therelative complementof Y in X, denotedX nY (LATEX code:\setminus ),
is de�ned by

X nY = f x 2 X j x 62Yg

0 Example 2.1.61
Let E be the set of all even integers. Thenn 2 Z nE if and only if n is an integer andn is not an even
integer; that is, if and only ifn is odd. ThusZ nE is the set of all odd integers.

Moreover,n 2 N nE if and only if n is a natural number andn is not an even integer. Since the even
integers which are natural numbers are precisely the even natural numbers,NnE is precisely the set
of all odd natural numbers. C

. Exercise 2.1.62
Write down the elements of the set

f 0;1;4;7gn f1;2;3;4;5g

C

. Exercise 2.1.63
Express[� 2;5) n[4;7) and[4;7) n[� 2;5) as intervals. C

. Exercise 2.1.64
Let X andY be sets. Prove thatY n(Y nX) = X \ Y, and deduce thatX � Y if and only if Y n(Y n
X) = X. C

Comparison with logical operators and quanti�ers

The astute reader will have noticed some similarities between set operations and the logical operators
and quanti�ers that we saw in Chapter 1.

Indeed, this can be summarised in the following table. In each row, the expressions in both columns
are equivalent, wherep denotesà 2 X', q denotesà 2 Y', and r(i) denotesà 2 Xi '.
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80 Chapter 2. Sets and functions

sets logic
a 62X : p

a 2 X \ Y p^ q
a 2 X [ Y p_ q
a 2

\

i2 I

Xi 8i 2 I ; r(i)

a 2
[

i2 I

Xi 9i 2 I ; r(i)

a 2 X nY p^ (: q)

This translation between logic and set theory does not stop there; in fact, as the following the-
orem shows, De Morgan's laws for the logical operators (Theorem 1.3.24) and for quanti�ers (The-
orem 1.3.28) also carry over to the set operations of union and intersection.

C Theorem 2.1.65 (De Morgan's laws for sets)
Given setsA;X;Y and a familyf Xi j i 2 Ig, we have

(a) An(X [ Y) = ( AnX) \ (AnY);

(b) An(X \ Y) = ( AnX) [ (AnY);

(c) An
[

i2 I

Xi =
\

i2 I

(AnXi);

(d) An
\

i2 I

Xi =
[

i2 I

(AnXi).

Proof of (a)
Let a be arbitrary. By de�nition of union and relative complement, the assertion thata 2 An(X [ Y)
is equivalent to the logical formula

a 2 A^ : (a 2 X _ a 2 Y)

By de Morgan's laws for logical operators, this is equivalent to

a 2 A^ (a 62X ^ a 62Y)

which, in turn, is equivalent to

a 2 A^ a 62X) ^ (a 2 A^ a 62Y

But then by de�nition of intersection and relative complement, this is equivalent to

a 2 (AnX) \ (AnY)

HenceAn(X [ Y) = ( AnX) \ (AnY), as required. �

. Exercise 2.1.66
Complete the proof of de Morgan's laws for sets. C

Power sets

F De�nition 2.1.67
Let X be a set. Thepower setof X, written P (X) (LATEX code: \mathcal{P} ), is the set of all
subsets ofX.
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0 Example 2.1.68
There are four subsets off 1;2g, namely

? ; f 1g; f 2g; f 1;2g

soP (X) = f ? ; f 1g; f 2g; f 1;2gg. C

. Exercise 2.1.69
Write out the elements ofP (f 1;2;3g). C

. Exercise 2.1.70
Let X be a set. Show that? 2 P (X) andX 2 P (X). C

. Exercise 2.1.71
Write out the elements ofP (? ), P (P (? )) andP (P (P (? ))) . C

Power sets are often a point of confusion because they bring the property of being asubsetof one
set to that of being anelementof another, in the sense that for all setsU andX we have

U � X , U 2 P (X)

This distinction looks easy to grasp, but when the setsU andX look alike, it's easy to fall into various
traps. Here's a simple example.

0 Example 2.1.72
It is true that? � ? , but false that? 2 ? . Indeed,

� ? � ? means8x 2 ? ; x 2 ? ; but propositions of the form8x 2 ? ; p(x) are always true, as
discussed in Exercise 2.1.31.

� The empty set has no elements; if? 2 ? were true, it would mean that? had an element (that
element being? ). So it must be the case that? 62? .

C

The following exercise is intended to help you overcome similar potential kinds of confusion by
means of practice. Try to think precisely about what the de�nitions involved are.

. Exercise 2.1.73
Determine, with proof, whether or not each of the following statements is true.

(a) P (? ) 2 P (P (? )) ;

(b) ? 2 ff ? gg;

(c) f ? g 2 ff ? gg;

(d) P (P (? )) 2 f ? ; f ? ; f ? ggg.

Repeat the exercise with all instances of `2 ' replaced by �̀ '. C
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Product (� )

F De�nition 2.1.74
Let X andY be sets. The (pairwise) cartesian product of X andY is the setX � Y (LATEX code:
\times ) de�ned by

X � Y = f (a;b) j x 2 X ^ y 2 Yg

The elements(a;b) 2 X � Y are calledordered pairs, whose de�ning property is that, for alla;x2 X
and allb;y 2 Y, we have(a;b) = ( x;y) if and only if a = x andb = y.

0 Example 2.1.75
If you have ever taken calculus, you will probably be familiar with the setR � R.

R � R = f (x;y) j x;y 2 Rg

Formally, this is the set of ordered pairs of real numbers. Geometrically, if we interpretR as an
in�nite line, the setR � R is the (real) plane: an element(x;y) 2 R � R describes the point in the
plane with coordinates(x;y).

We can investigate this further. For example, the following set:

R � f 0g = f (x;0) j x 2 Rg

is precisely thex-axis. We can describe graphs as subsets ofR � R. Indeed, the graph ofy = x2 is
given by

G = f (x;y) 2 R � R j y = x2g = f (x;x2) j x 2 Rg � R � R

C

. Exercise 2.1.76
Write down the elements of the setf 1;2g � f 3;4;5g. C

. Exercise 2.1.77
Let X be a set. Prove thatX � ? = ? . C

. Exercise 2.1.78
Let X, Y andZ be sets. Under what conditions is it true thatX � Y = Y � X? Under what conditions
is it true that(X � Y) � Z = X � (Y � Z)? C

We might have occasion to take cartesian products of more than two sets. For example, whatever the
setR � R � R is, its elementsshouldbe ordered triples(a;b;c) consisting of elementsa;b;c 2 R.
This is where the following de�nition comes in handy.
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F De�nition 2.1.79
Let n 2 N and letX1;X2; : : : ;Xn be sets. The (n-fold) cartesian product of X1;X2; : : : ;Xn is the set

n

Õ
k= 1

Xk (LATEX code:\prod_{k=1}�{n} ) de�ned by

n

Õ
k= 1

Xk = f (a1;a2; : : : ;an) j ak 2 Xk for all 1 6 k 6 ng

The elements(a1;a2; : : : ;an) 2
n

Õ
k= 1

Xk are calledordered k-tuples, whose de�ning property is that,

for all 1 6 k 6 n and allak;bk 2 Xk, we have(a1;a2; : : : ;an) = ( b1;b2; : : : ;bn) if and only if ak = bk
for all 1 6 k 6 n.

Given a setX, write Xn to denote the set
n

Õ
k= 1

X. We might on occasion also write

X1 � X2 � � � � � Xn =
n

Õ
k= 1

Xk

0 Example 2.1.80
In Exercise 2.1.78 you might have noticed that the sets(X � Y) � Z andX � (Y � Z) are not always
equal—De�nition 2.1.79 introduces athird potentially non-equal cartesian product ofX, Y andZ.
For example, consider whenX = Y = Z = R. Then

� The elements of(R � R) � R are ordered pairs((a;b);c), where(a;b) is itself an ordered pair of
real numbers andc is a real number.

� The elements ofR � (R � R) are ordered pairs(a; (b;c)) , wherea is a real number and(b;c) is
an ordered pair of real numbers.

� The elements ofR � R � R (= R3) are ordered triples(a;b;c), wherea, b andc are real numbers.

So, although these three setsappearto be the same, zooming in closely on the de�nitions reveals
that there are subtle differences between them. A sense in which they are the same is that there are
bijectionsbetween them—the notion of a bijection will be introduced in Section 2.3. C
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Section 2.2

Functions

One way of studying interactions between sets is by studyingfunctionsbetween them, which we
will de�ne informally in De�nition 2.2.1. Functions are mathematical objects which assign to each
element of one set exactly one element of another. Almost every branch of mathematics studies
functions, be it directly or indirectly, and almost every application of mathematics arises from a
translation of the abstract notion of a function to the real world. Just one example of this is the theory
of computation—functions provide precisely the language necessary to describe the deterministic
input-output behaviour of algorithms.

You might have come across the notion of a function before now. In schools, functions are often
introduced as being likemachines—they have inputs and outputs, and on a given input they always
return the same output. For instance, there is a function which takes integers as inputs and gives
integers as outputs, which on the inputx returns the integerx+ 3.

This characterisation of functions, however, is clearly not precise enough for the purposes of math-
ematical proof. A next approximation to a precise de�nition of a function might look something like
this:

F De�nition 2.2.1
A function f from a setX to a setY is a speci�cation of elementsf (x) 2 Y for x 2 X, such that

8x 2 X; 9!y 2 Y; y = f (x)

Givenx 2 X, the (unique!) elementf (x) 2 Y is called thevalueof f at x.

The setX is called thedomain (or source) of f , andY is called thecodomain(or target) of f . We
write f : X ! Y (LATEX code:f : X \to Y ) to denote the assertion thatf is a function with domain
X and codomainY.

This is better—we're now talking about sets (and not mysterious `machines'), which we have ex-
plored in Section 2.1.

Moreover, this de�nition establishes a close relationship between functions and the9! quanti�er:
indeed, to say thatf assigns to each element ofX a unique element ofY is to say precisely that

8x 2 X; 9!y 2 Y; y = f (x)

Conversely, any true proposition of the form8x 2 X; 9!y 2 Y; p(x;y) de�nes a functionf : X ! Y:
the function f assigns to eachx 2 X the uniquey 2 Y such thatp(x;y) is true. In other words,
8x 2 X; p(x; f (x)) is true!

We can use this to generate some examples of functions.

0 Example 2.2.2
Example 1.2.27 said that every positive real number has a unique positive square root; we proved
this in Example 1.2.30. What this means is that there is a function

r : R> 0 ! R> 0 whereR> 0 = f x 2 R j x > 0g
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de�ned by lettingr(x) be the (unique) positive square root ofx, for eachx 2 R> 0. That is, we have
a functionr de�ned byr(x) =

p
x. C

. Exercise 2.2.3
Recall Exercise 1.2.31. Which of the statements (a), (b) or (c) is of the form8x2 X; 9!y2 Y; p(x;y)?
For each statement of this form, determine the domain and codomain of the corresponding function,
and write an expression de�ning this function. C

Specifying a function

Just like with sets, there are many ways to specify a functionf : X ! Y, but when we do so, we must
be careful that what we write reallydoesde�ne a function!

This correctness of speci�cation is known aswell-de�nedness, and ultimately amounts to verify-
ing that the condition8x 2 X; 9!y 2 Y; f (x) = y holds for the speci�cation off . Namelytotality,
existenceanduniqueness:

� Totality. A value f (x) should be speci�ed for eachx 2 X—this corresponds to the `8x 2 X'
quanti�er in the de�nition of functions.

� Existence. For eachx 2 X, the speci�ed valuef (x) should actually exist, and should be an
element ofY—this corresponds to theexistencepart of the 9̀!y 2 Y' quanti�er in the de�nition of
functions.

� Uniqueness.For eachx 2 X, the speci�ed valuef (x) should refer to only one element ofY—this
corresponds to theuniquenesspart of the 9̀!y 2 Y' quanti�er in the de�nition of functions.

When specifying a function, you should justify each of these components of well-de�nedness unless
they are extremely obvious. You will probably �nd that, in most cases, the only component in need
of justi�cation is uniqueness, but keep all three in mind.

Lists. If X is �nite, then we can specify a functionf : X ! Y by simply listing the values off at all
possible elementsx 2 X. For example, we can de�ne a function

f : f 1;2;3g ! f red;yellow;green;blue;purpleg

by declaring
f (1) = red; f (2) = purple; f (3) = green

Note that the function is at this point completely speci�ed: we know its values at all elements of the
domainf 1;2;3g. It doesn't matter that some of the elements of the codomain (yellowandblue) are
unaccounted for—all that matters is that each element of the domain is associated with exactly one
element of the codomain.

Unfortunately, most of the sets that we work with will be in�nite, or of an unspeci�ed �nite size; in
these cases, simply writing a list of values isn't suf�cient. Fortunately for us, there are other ways
of specifying functions.

Formulae. In many cases, particularly when the domainX and codomainY are number sets, we
can de�ne a function by giving a formula for the value off (x) for eachx 2 X. For example, we can
de�ne a functionf : R ! R by letting

f (x) = x2 + 3 for all x 2 R
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By cases.It will at times be convenient to de�ne a function using different speci�cations for different
elements of the domain. A very simple example is theabsolute value functionj�j : R ! R, de�ned
for x 2 R

jxj =

(
x if x > 0
� x if x 6 0

Here we have split into two cases based on the conditionsx > 0 andx 6 0.

When specifying a functionf : X ! Y by cases, it is important that the conditions be:

� exhaustive: givenx 2 X, at least one of the conditions onX must hold; and

� compatible: if any x 2 X satis�es more than one condition, the speci�ed value must be the same
no matter which condition is picked.

For the absolute value function de�ned above, these conditions are satis�ed. Indeed, forx 2 R, it
is certainly the case thatx > 0 or x 6 0, so the conditions are exhaustive. Moreover, givenx 2 R,
if both x > 0 andx 6 0, thenx = 0—so we need to check that the speci�cation yields the same
value whenx = 0 regardless of which condition we pick. Thex > 0 condition yields the value 0,
and thex 6 0 condition yields the value� 0, which is equal to 0—so the conditions are compatible.
We could have usedx < 0 instead ofx 6 0; in this case the conditions aremutually exclusive, so
certainly compatible because they do not overlap.

Algorithms. You might, on �rst exposure to functions, have been taught to think of a function as a
machinewhich, when given aninput, produces anoutput. This `machine' is de�ned by saying what
the possible inputs and outputs are, and then providing a list of instructions (analgorithm) for the
machine to follow, which on any input produces an output—and, moreover, if fed the same input,
the machine always produces the same output.

For example, we might instruct a machine to take rational numbers as inputs and give rational num-
bers as outputs, and to follow the following sequence of steps on a given input

multiply by 2 ! add 5! square the result! divide by 6

This `machine' de�nes a functionM : Q ! Q which, in equation form, is speci�ed by

M(x) =
(2x+ 5)2

6
for all x 2 Q

In our more formal set-up, therefore, we can de�ne a functionM : I ! O by specifying:

� a setI of all inputs;

� a setO of potentialoutputs; and

� a deterministic[a] algorithm which describes how an inputx 2 I is transformed into an output
M(x) 2 O.

That is, the domain is the setI of all possible `inputs', the codomain is a setO containing all
the possible `outputs', and the functionM is a rule specifying how an input is associated with the
corresponding output.

[a]The word `deterministic' just means that the algorithm always produces the same output on a single input.
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For now, we will use algorithmic speci�cations of functions only sparingly—this is because it is
much harder to make formal what is meant by an `algorithm', and it is important to check that a
given algorithm is deterministic.

Function equality

In Section 2.1 we discussed how there may be many different possible ways of characterising equal-
ity of sets. This matter was resolved by declaring that two sets are equal if and only if they have the
same elements (this was Axiom 2.1.22).

A similar matter arises for functions. For example, consider the functionf : R ! R de�ned by
f (x) = 2x for all x 2 R, and the functiong : R ! R, de�ned by lettingg(x) be the result of takingx,
multiplying it by three, dividing the result by four, dividing the result by six, and then multiplying
the result by sixteen. It so happens thatg(x) = 2x for all x 2 R as well, but that is not howg is
de�ned; moreover, iff andg were implemented as algorithms, then it would take longer to compute
the values ofg than it would take to compute the values off .

Should we considerf andg to beequal? If we are only interested in whetherf andg have the same
values on each argument, then the answer should be `yes'; if we are interested in the algorithmic
behaviour off andg, then the answer should be `no'.

We resolve this dilemma with the following axiom. By adopting this axiom, we are stating that the
functions f andg discussed above are equal.

C Axiom 2.2.4 (Function extensionality)
Let f : X ! Y andg : A ! B be functions. Thenf = g if and only if the following conditions hold:

(i) X = A andY = B; and

(ii) f (x) = g(x) for all x 2 X.

v Strategy 2.2.5 (Proving two functions are equal)
Given functionsf ;g : X ! Y with the same domain and codomain, in order to prove thatf = g, it
suf�ces to prove thatf (x) = g(x) for all x 2 X.

A consequence of Axiom 2.2.4 is that, for �xed setsX andY, a functionX ! Y is uniquely de-
termined by its input-output pairs. This set is called thegraph of the function; the proof of the
equivalence between functions and their graphs is the content of Theorem 2.2.9.

F De�nition 2.2.6
Let f : X ! Y be a function. Thegraph of f is the subset Gr( f ) � X � Y (LATEX code:\mathrm{Gr} )
de�ned by

Gr( f ) = f (x; f (x)) j x 2 Xg = f (x;y) 2 X � Y j y = f (x)g

0 Example 2.2.7
Given a (suf�ciently well-behaved) functionf : R ! R, we can represent Gr( f ) � R � R by plotting
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it on a pair of axes using Cartesian coordinates in the usual way. For example, iff is de�ned by
f (x) = x

2 for all x 2 R, then its graph

Gr( f ) =
� �

x;
x
2

� �
�
�
� x 2 R

�

can be represented by graph plot in Figure 2.1.

x

y

� 7 � 6 � 5 � 4 � 3 � 2 � 1 1 2 3 4 5 6 7

� 3

� 2

� 1

1

2

3
y =

x
2

Figure 2.1: Graph of the functionf : R ! R de�ned by f (x) = x
2 for all x 2 R

C

. Exercise 2.2.8
Find a functionf : Z ! Z whose graph is equal to the set

f : : : ; (� 2; � 5); (� 1; � 2); (0;1); (1;4); (2;7); (3;10); : : :g

C

Theorem 2.2.9 below provides a way of verifying that a function is well-de�ned by characterising
their graphs.

C Theorem 2.2.9
Let X andY be sets. A subsetG � X � Y is the graph of a function if and only if

8x 2 X; 9!y 2 Y; (x;y) 2 G

Proof
() ). SupposeG � X � Y is the graph of a function, sayG = Gr( f ) for somef : X ! Y. Then for
eachx 2 X, it follows from well-de�nedness off that f (x) is the unique elementy 2 Y for which
(x;y) 2 G. That is,(x; f (x)) 2 G, and ify 2 Y with (x;y) 2 G, theny = f (x).
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(( ). SupposeG � X � Y satis�es 8x 2 X; 9!y 2 Y; (x;y) 2 G. De�ne a function f : X ! Y by,
for eachx 2 X, de�ning the valuef (x) to be the unique elementy 2 Y for which (x;y) 2 G. Well-
de�nedness off is then immediate from our assumption of the existence and uniqueness of such a
value ofy for eachx 2 X. �

0 Example 2.2.10
The setG de�ned by

G = f (1; red); (2; red); (3;green)g

is the graph of a functionf : f 1;2;3g ! f red;green;blueg. The functionf is de�ned by

f (1) = red; f (2) = red; f (3) = green

However,G is not the graph of a functionf 1;2;3;4g ! f red;green;blueg, sinceG contains no
elements of the form(4;y) for y 2 f red;green;blueg. Moreover, the setG0de�ned by

G0= f (1; red); (2; red); (2;blue); (3;green)g

does not de�ne the graph of a functionf 1;2;3g ! f red;green;blueg, since there is not aunique
element of the form(2;y) in G0—rather, there are two of them! C

. Exercise 2.2.11
For each of the following speci�cations of setsX, Y, G, determine whether or notG is the graph of
a function fromX to Y.

(a) X = R, Y = R, G = f (a;a2) j a 2 Rg;

(b) X = R, Y = R, G = f (a2;a) j a 2 Rg;

(c) X = R> 0, Y = R> 0, G = f (a2;a) j a 2 R> 0g, whereR> 0 = f x 2 R j x > 0g;

(d) X = Q, Y = Q, G = f (x;y) 2 Q � Q j xy= 1g.

(e) X = Q, Y = Q, G = f (a;a) j a 2 Zg;

C

v Aside
In light of Theorem 2.2.9, some people choose to de�ne functionsX ! Y as particular subsets of
X � Y—that is, they identify functions with their graphs. This is particularly useful when studying
the logical foundations of mathematics. We avoid this practice here, because it is not conceptually
necessary, and it would preclude other possible ways of encoding functions. C

We will now look at some more examples (and non-examples) of functions.

0 Example 2.2.12
Example 1.2.27 gives a prime example of a function: it says that for every positive real numbera
there is a unique positive real numberb such thatb2 = a. This uniqueb is precisely the positive
square root

p
a of a. Writing R> 0 for the set of positive real numbers, we have thus established that

taking the positive square root de�nes a functionR> 0 ! R> 0. C

There is a class of functions calledidentity functionsthat, despite being very simple, are so important
that we will give them a numbered de�nition!
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F De�nition 2.2.13
Let X be a set. Theidentity function on X is the function idX : X ! X (LATEX code:
\mathrm{id}_X ) de�ned by idX(x) = x for all x 2 X.

You should convince yourself that the speci�cation of idX given in De�nition 2.2.13 is well-de�ned.

Another interesting example of a function is theempty function, which is useful in coming up with
counterexamples and proving combinatorial identities (see Section 6.2).

F De�nition 2.2.14
Let X be a set. Theempty function with codomainX is the (unique!) function? ! X. It has no
values, since there are no elements of its domain.

Again, you should convince yourself that this speci�cation is well-de�ned. Conceptually, convincing
yourself of this is not easy; but writing down the proof of well-de�nedness is extremely easy—you
will �nd that there is simply nothing to prove!

0 Example 2.2.15
De�ne f : R ! R by the equationf (x)2 = x for all x 2 R. This is not well-de�ned for a few reasons.
First, if x < 0 then there is no real numbery such thaty2 = x, so for x < 0 there are no possible
values off (x) in the codomain off , soexistencefails. Second, ifx > 0 then there are in facttworeal
numbersy such thaty2 = x, namely the positive square root

p
x and the negative square root�

p
x.

The speci�cation off does not indicate which of these values to take, souniquenessfails.

Notice that the functionr : R> 0 ! R> 0 from Example 2.2.2is (well-)de�ned by the equationr(x)2 =
x for all x 2 R> 0. This illustrates why it is very important to specify the domain and codomain when
de�ning a function. C

. Exercise 2.2.16
Which of the following speci�cations of functions are well-de�ned?

(a) g : Q ! Q de�ned by the equation(x+ 1)g(x) = 1 for all x 2 Q;

(b) h : N ! Q de�ned by(x+ 1)h(x) = 1 for all x 2 N;

(c) k : N ! N de�ned by(x+ 1)k(x) = 1 for all x 2 N;

(d) ` : N ! N de�ned by`(x) = `(x) for all x 2 N.

C

. Exercise 2.2.17
Find a condition on setsX andY such that the speci�cation of a functioni : X [ Y ! f 0;1g given by

i(z) =

(
0 if z2 X
1 if z2 Y

to be well-de�ned. C
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Composition of functions

In our section on sets, we talked about various operations that can be performed on sets—union,
intersection, and so on. There are also operations on functions, by far the most important of which is
composition. To understand how composition works, let's revisit the algorithmically de�ned func-
tion M : Q ! Q from page 86:

multiply by 2 ! add 5! square the result! divide by 6

The functionM is, in some sense, asequenceof functions, performed one-by-one until the desired
result is reached. This is preciselycomposition of functions.

F De�nition 2.2.18
Given functionsf : X ! Y andg : Y ! Z, theircompositeg� f (LATEX code:g \circ f ) (read g̀
composed withf ' or `g after f ' or even just g̀ f ') is the functiong� f : X ! Z de�ned by

(g� f )(x) = g( f (x)) for all x 2 X

Intuitively, g � f is the function resulting from �rst applyingf , and then applyingg, to the given
input.

v Common error
Function composition is in some sense written `backwards': in the expressiong� f , the function
which is applied�rst is writtenlast—there is a good reason for this: the argument to the function is
written after the function! However, this mis-match often trips students up on their �rst exposure to
function composition, so be careful! C

0 Example 2.2.19
The functionM from page 86 can be de�ned as the composite

M = (( k� h) � g) � f

where

� f : Q ! Q is de�ned by f (x) = 2x for all x 2 Q;

� g : Q ! Q is de�ned byg(x) = x+ 5 for all x 2 Q;

� h : Q ! Q is de�ned byh(x) = x2 for all x 2 Q;

� k : Q ! Q is de�ned byk(x) = x
6 for all x 2 Q.

C

. Exercise 2.2.20
Let f ;g;h;k : Q ! Q be as in Example 2.2.19. Compute equations de�ning the following compos-
ites:

(a) f � g;

(b) g� f ;
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(c) (( f � g) � h) � k;

(d) f � (g� (h� k)) ;

(e) (g� g) � (g� g).

C

0 Example 2.2.21
Let f : X ! Y be any function. Then

idY � f = f = f � idX

To see this, letx 2 X. Then

(idY � f )(x) = idY( f (x)) by de�nition of composition

= f (x) by de�nition of idY

= f (idX(x)) by de�nition of idX

= ( f � idX)(x) by de�nition of composition

Equality of the three functions in question follows. C

. Exercise 2.2.22
Prove that composition of functions isassociative, that is, if f : X ! Y, g : Y ! Z andh : Z ! W are
functions, then

h� (g� f ) = ( h� g) � f : X ! W

As a consequence of associativity, when we want to compose more than two functions, it doesn't
matter what order we compose the functions in. As such, we can just writeh� g� f . C

. Exercise 2.2.23
Let f : X ! Y andg : Z ! W be functions, and suppose thatY $ Z. Note that there is a function
h : X ! W de�ned byh(x) = g( f (x)) for all x 2 X. Write h as a composite of functions involvingf
andg. C

Characteristic functions

A class of functions that are particularly useful for proving results about sets arecharacteristic
functions.

F De�nition 2.2.24
Let X be a set and letU � X. Thecharacteristic function of U in X is the functioncU : X ! f 0;1g
(LATEX code:\chi_{U} ) de�ned by

cU (a) =

(
1 if a 2 U
0 if a 62U

0 Example 2.2.25
Consider the subsetU = f 1;3;5g � [6]. Then the values of the characteristic functioncU : [6] !
f 0;1g are given by

cU (1) = 1 cU (2) = 0 cU (3) = 1
cU (4) = 0 cU (5) = 1 cU (6) = 0
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C

C Theorem 2.2.26
Let X be a set and letU;V � X. ThenU = V if and only if cU = cV .

Proof
� (� ) AssumeU = V and leta 2 X. Then

cU (a) = 1 , a 2 U by de�nition of cU

, a 2 V sinceU = V

, cV (a) = 1 by de�nition of cV

LikewisecU (a) = 0 if and only if cV (a) = 1, so thatcU = cV by function extensionality.

� (� ) AssumecU = cV and leta 2 X. Then

a 2 U , cU (a) = 1 by de�nition of cU

, cV (a) = 1 sincecU = cV

, a 2 V by de�nition of cV

soU = V by set extensionality.

�

v Strategy 2.2.27 (Proving set identities using characteristic functions)
In order to prove that two subsetsU andV of a setX are equal, it suf�ces to prove thatcU = cV .

C Theorem 2.2.28
Let X be a set and letU;V � X. Then

(a) cU\ V (a) = cU (a)cV (a) for all a 2 X;

(b) cU[ V (a) = cU (a)+ cV (a) � cU (a)cV (a) for all a 2 X;

(c) cXnU (a) = 1� cU (a) for all a 2 X.

Proof of (a)
Let a 2 X. Since the only values thatcU (a) andcV (a) can take are 0 and 1, we have

cU (a)cV (a) =

(
1 if cU (a) = 1 andcV (a) = 1
0 otherwise

But cU (a) = 1 if and only if a 2 U andcV (a) = 1 if and only if a 2 V, so that

cU (a)cV (a) =

(
1 if a 2 U \ V
0 if a 62U \ V

This is exactly to say thatcU (a)cV (a) = cU\ V (a), as required. �
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. Exercise 2.2.29
Prove parts (b) and (c) of Theorem 2.2.28. C

Theorem 2.2.28 can be used in conjunction with Strategy 2.2.27 to prove set theoretic identities
using their characteristic functions.

0 Example 2.2.30
In Example 2.1.50 we proved thatX \ (Y [ Z) = ( X \ Y) [ (X \ Z) for all setsX, Y andZ. We prove
this again using characteristic functions, consideringX, Y andZ as subsets of a universal setU .

So leta 2 U. Then

cX\ (Y[ Z)(a)

= cX(a)cY[ Z(a) by Theorem 2.2.28(a)

= cX(a)( cY(a)+ cZ(a) � cY(a)cZ(a)) by Theorem 2.2.28(b)

= cX(a)cY(a)+ cX(a)cZ(a) � cX(a)cY(a)cZ(a) rearranging

= cX(a)cY(a)+ cX(a)cZ(a) � cX(a)2cY(a)cZ(a) sincecX(a)2 = cX(a)

= cX\ Y(a)+ cX\ Z(a) � cX\ Y(a)cX\ Z(a) by Theorem 2.2.28(a)

= c(X\ Y)[ (X\ Z)(a) by Theorem 2.2.28(b)

Using Strategy 2.2.27, it follows thatX \ (Y [ Z) = ( X \ Y) [ (X \ Z). C

. Exercise 2.2.31
Use characteristic functions to prove de Morgan's laws for pairwise unions and intersections (The-
orem 2.1.65). C

Images and preimages

F De�nition 2.2.32
Let f : X ! Y be a function and letU � X. Theimage ofU under f is the subsetf [U] � Y (also
written f� (U) (LATEX code:f_* ) or even justf (U)) is de�ned by

f [U] = f f (x) j x 2 Ug = f y 2 Y j 9x 2 U; y = f (x)g

That is, f [U] is the set of values that the functionf takes when given inputs fromU.

Theimage of f is the image of the entire domain, i.e. the setf [X].

0 Example 2.2.33
Let f : R ! R be de�ned by f (x) = x2. The image off is the setR> 0 of all nonnegative real
numbers. Let's prove this:

� ( f [R] � R> 0). Let y 2 f [R]. Theny = x2 for somex 2 R. But x2 > 0, so we must havey 2 R> 0,
as required.

� (R> 0 � f [R]). Let y 2 R> 0. Then
p

y 2 R, andy = (
p

y)2 = f (
p

y). Hencey 2 f [R], as required.

We have shown by double containment thatf [R] = R> 0. C

. Exercise 2.2.34
For each of the following functionsf and subsetsU of their domain, describe the imagef [U].
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(a) f : Z ! Z de�ned by f (n) = 3n, with U = N;

(b) f : X ! X � X (whereX is any set) de�ned byf (x) = ( x;x) with U = X;

(c) f : f a;b;cg ! f 1;2;3g de�ned by f (a) = 1, f (b) = 3 andf (c) = 1, withU = f a;b;cg.

C

. Exercise 2.2.35
Prove thatf [? ] = ? for all functions f . C

0 Example 2.2.36
Let f : X ! Y be a function and letU;V � X. Then f [U \ V] � f [U] \ f [V]. To see this, let
y 2 f [U \ V]. Theny = f (x) for somex 2 U \ V. By de�nition of intersection,x 2 U andx 2 V.
Sincex 2 U andy = f (x), we havey 2 f [U]; likewise, sincex 2 V, we havey 2 f [V]. But then by
de�nition of intersection, we havey 2 f [U] \ f [V]. C

. Exercise 2.2.37
Let f : X ! Y be a function and letU;V � X. We saw in Example 2.2.36 thatf [U \ V] � f [U]\ f [V].
Determine which of the following is true, and for each, provide a proof of its truth or falsity:

(a) f [U] \ f [V] � f [U \ V];

(b) f [U [ V] � f [U] [ f [V];

(c) f [U] [ f [V] � f [U [ V].

C

F De�nition 2.2.38
Let f : X ! Y be a function and letV � Y. Thepreimage ofV under f is the subsetf � 1[V] (LATEX
code:f�{-1} ) (also writtenf � (V) (LATEX code:f�* ), or just f � 1(V)) is de�ned by

f � 1[V] = f x 2 X j f (x) 2 Vg = f x 2 X j 9y 2 V; f (x) = yg

That is, f � 1[V] is the set of all the elements of its domainX that the functionf sends to elements of
V.

0 Example 2.2.39
Let f : Z ! Z be the function de�ned byf (x) = x2 for all x 2 X. Then

� f � 1[f 1;4;9g] = f� 3; � 2; � 1;1;2;3g;

� f � 1[f 1;2;3;4;5;6;7;8;9g] = f� 3; � 2; � 1;1;2;3g too, since the other elements of[9] are not per-
fect squares, and hence not of the formf (x) for x 2 Z;

� f � 1[N] = Z, since for anyx 2 Z we havef (x) > 0, so thatf (x) 2 N.

C

0 Example 2.2.40
Let f : X ! Y be a function, letU � X and letV � Y. Then f [U] � V if and only if U � f � 1[V].
The proof is as follows.
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() ). Supposef [U] � V; we'll prove U � f � 1[V]. So �x x 2 U. Then f (x) 2 f [U] by de�nition
of image. But thenf (x) 2 V by our assumption thatf [U] � V, and sox 2 f � 1[V] by de�nition of
preimage. Sincex was arbitrarily chosen fromU, it follows thatU � f � 1[V].

(( ). SupposeU � f � 1[V]; we'll prove f [U] � V. So �x y 2 f [U]. Theny = f (x) for somex 2 U
by de�nition of image. But thenx 2 f � 1[V] by our assumption thatU � f � 1[V], and sof (x) 2 V
by de�nition of preimage. Buty = f (x), soy 2 V, and sincey was arbitrarily chosen, it follows that
f [U] � V. C

The following exercise demonstrates that preimages interact very nicely with the basic set operations
(intersection, union and relative complement):

. Exercise 2.2.41
Let f : X ! Y be a function and letU;V � Y. Prove that:

(a) f � 1[U \ V] = f � 1[U] \ f � 1[V];

(b) f � 1[U [ V] = f � 1[U] [ f � 1[V]; and

(c) f � 1[Y nU] = X n f � 1[U].

C

. Exercise 2.2.42
Let f : X ! Y be a function. Prove thatf � 1[? ] = ? and f � 1[Y] = X. C

. Exercise 2.2.43
Let f : X ! Y be a function. Provide a proof of the truth or falsity of each of the following statements:

(a) U � f � 1[ f [U]] for all U � X;

(b) f � 1[ f [U]] � U for all U � X;

(c) V � f [ f � 1[V]] for all V � Y;

(d) f [ f � 1[V]] � V for all V � Y.

C

. Exercise 2.2.44
Let X be a set. Prove that every functionf : X ! f 0;1g is the characteristic function of the subset
f � 1[f 1g] � X. C
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Section 2.3

Injections and surjections

To motivate some of the de�nitions to come, look at the dots (� ) and stars (?) below. Are there more
dots or more stars?

� � � � � � � � � � � � � � � � � � �

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Pause for a second and think about how you knew the answer to this question.

Indeed, there are more dots than stars. There are a couple of ways to arrive at this conclusion:

(i) You could count the number of dots, count the number of stars, and then compare the two
numbers; or

(ii) You could notice that the dots and the stars are evenly spaced, but that the line of dots is longer
than the line of stars.

It is likely that you chose method (ii). In fact, it is likely that you haven't even counted the number
of dots or the number of stars yet—and you don't need to! We can conclude that there are more dots
than stars by simply pairing up dots with stars—we eventually run out of stars, and there are still
dots left over, so there must have been more dots than stars.

Injectivity

One way of formalising this act of pairing up stars with dots mathematically is to de�ne a function
f : S! D from the setSof stars to the setD of dots, where the value off at each star is the dot that
it is paired with. We of course must do this in such a way that each dot is paired with at most one
star:

� � � � � � � � � � � � � � � � � � �

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

It is a property of this function—calledinjectivity—that allows us to deduce that there are more dots
than stars.

Intuitively, a functionf : X ! Y is injective if it puts the elements ofX in one-to-one correspondence
with the elements of a subset ofY—just like how the stars are in one-to-one correspondence with a
subset of the dots in the example above.
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F De�nition 2.3.1
A function f : X ! Y is injective (or one-to-one) if

8a;b 2 X; f (a) = f (b) ) a = b

An injective function is said to be aninjection.

v Strategy 2.3.2 (Proving a function is injective)
In order to prove that a functionf : X ! Y is injective, it suf�ces to �x a;b 2 X, assume that
f (a) = f (b), and then derivea = b.

By contraposition,f : X ! Y being injective is equivalent to saying, for alla;b 2 X, if a 6= b, then
f (a) 6= f (b). This is usually less useful forprovingthat a function is injective, but it does provide a
good intuition—it says thatf sends distinct inputs to distinct outputs.

The following is a very simple example from elementary arithmetic:

0 Example 2.3.3
De�ne f : Z ! Z by letting f (x) = 2n+ 1 for all n 2 Z. We'll prove that f is injective. Fixm;n 2 Z,
and assume thatf (m) = f (n). By de�nition of f , we have 2m+ 1 = 2n+ 1. Subtracting 1 yields
2m= 2n, and dividing by 2 yieldsm= n. Hencef is injective. C

The following example is slightly more sophisticated.

C Proposition 2.3.4
Let f : X ! Y andg : Y ! Z be functions. Iff andg are injective, theng� f is injective.

Proof
Suppose thatf andg are injective and leta;b 2 X. We need to prove that

(g� f )(a) = ( g� f )(b) ) a = b

So assume(g� f )(a) = ( g� f )(b). By de�nition of function composition, this implies thatg( f (a)) =
g( f (b)) . By injectivity of g, we havef (a) = f (b); and by injectivity of f , we havea = b. �

. Exercise 2.3.5
Let f : X ! Y andg : Y ! Z be functions. Prove that ifg� f is injective, thenf is injective. C

. Exercise 2.3.6
Write out what it means to say a functionf : X ! Y is not injective, and say how you would prove
that a given function is not injective. Give an example of a function which is not injective, and use
your proof technique to write a proof that it is not injective. C

. Exercise 2.3.7
For each of the following functions, determine whether it is injective or not injective.

� f : N ! Z, de�ned by f (n) = n2 for all n 2 N.

� g : Z ! N, de�ned byg(n) = n2 for all n 2 Z.

� h : N � N � N ! N, de�ned byh(x;y;z) = 2x � 3y � 5z for all x;y;z2 N.

C
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. Exercise 2.3.8
Let a;b 2 R with b 6= 0, and de�ne f : R ! R by f (t) = a+ bt for all t 2 R. Prove thatf is
injective. C

Surjectivity

Let's revisit the rows of dots and stars that we saw earlier. Beforehand, we made our idea that there
are more dots than stars formal by proving the existence of an injectionf : S! D from the setSof
stars to the setD of dots.

However, we could have drawn the same conclusion instead from de�ning a functionD ! S, which
in some sensecoversthe stars with dots—that is, every star is paired up with at least one dot.

� � � � � � � � � � � � � � � � � � �

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

This property is calledsurjectivity—a function f : X ! Y is surjective if every element ofY is a
value of f . This is made precise in De�nition 2.3.9.

F De�nition 2.3.9
A function f : X ! Y is surjective (or onto) if

8y 2 Y; 9x 2 X; f (x) = y

A surjective function is said to be asurjection.

v Strategy 2.3.10
To prove that a functionf : X ! Y is surjective, it suf�ces to take an arbitrary elementy 2 Y and, in
terms ofy, �nd an elementx 2 X such thatf (x) = y.

In order to �nd x, it is often useful to start from the equationf (x) = y and derive some possible
values ofx. But be careful—in order to complete the proof, it is necessary to verify that the equation
f (x) = y is true for the chosen value ofx.

0 Example 2.3.11
Fix n2 N with n> 0, and de�ne a functionr : Z ! f 0;1; : : : ;n� 1gby lettingr(a) be the remainder of
a when divided byn (see Theorem 0.18). This function is surjective, since for eachk 2 f 0;1; : : : ;n�
1g we haver(k) = k. C

. Exercise 2.3.12
For each of the following pairs of sets(X;Y), determine whether the functionf : X ! Y de�ned by
f (x) = 2x+ 1 is surjective.

(a) X = Z andY = f x 2 Z j x is oddg;
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(b) X = Z andY = Z;

(c) X = Q andY = Q;

(d) X = R andY = R.

C

. Exercise 2.3.13
Let f : X ! Y be a function. Find a subsetV � Y and a surjectiong : X ! V agreeing withf (that
is, such thatg(x) = f (x) for all x 2 X). C

. Exercise 2.3.14
Let f : X ! Y be a function. Prove thatf is surjective if and only ifY = f [X] C

. Exercise 2.3.15
Let f : X ! Y be a function. Prove that there is a setZ and functions

p : X ! Z and i : Z ! Y

such thatp is surjective,i is injective, andf = i � p. C

. Exercise 2.3.16
Let f : X ! P (X) be a function. By considering the setB = f x 2 X j x 62f (x)g, prove thatf is not
surjective. C

Bijectivity

Bijective functions formalise the idea of putting sets into one-to-one correspondence—each element
of one set is paired with exactly one element of another.

F De�nition 2.3.17
A function f : X ! Y is bijective if it is injective and surjective. A bijective function is said to be a
bijection.

v Proof tip
To prove that a functionf is bijective, prove that it is injective and surjective. C

0 Example 2.3.18
Let D � Q be the set ofdyadic rational numbers, that is

D =
�

x 2 Q

�
�
�
� x =

a
2n for somea 2 Z andn 2 N

�

Let k 2 N, and de�nef : D ! D by f (x) = x
2k . We will prove thatf is a bijection.

� (Injectivity ) Fix x;y 2 D and suppose thatf (x) = f (y). Then x
2k = y

2k , so thatx = y, as required.

� (Surjectivity ) Fix y 2 D. We need to �ndx 2 D such thatf (x) = y. Well certainly if 2ky 2 D then
we have

f (2ky) =
2ky
2k = y

so it suf�ces to prove that 2ky 2 D. Sincey 2 D, we must havey = a
2n for somen 2 N.
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� If k 6 n thenn� k 2 N and so 2ky = a
2n� k 2 D.

� If k > n thenk� n > 0 and 2ky = 2k� na 2 Z; but Z � D since ifa 2 Z thena = a
20 . So again

we have 2ky 2 D.

In both cases we have 2ky 2 D; and f (2ky) = y, so thatf is surjective.

Since f is both injective and surjective, it is bijective. C

. Exercise 2.3.19
Let X be a set. Prove that the identity function idX : X ! X is a bijection. C

. Exercise 2.3.20
Let n2 N and letf Xk j 16 k 6 ng be a family of sets. Prove by induction onn that there is a bijection
n+ 1

Õ
k= 1

Xk !

 
n

Õ
k= 1

Xk

!

� Xn. C

. Exercise 2.3.21
Let f : X ! Y andg : Y ! Z be bijections. Prove thatg� f is a bijection. C

Inverses

Our next goal is to characterise injections, surjections and bijections in terms of other functions,
calledinverses.

Recall De�nition 2.3.1, which says that a functionf : X ! Y is injective if, for all a;b 2 X, if
f (a) = f (b) thena = b.

. Exercise 2.3.22
Let f : X ! Y be a function. Prove thatf is injective if and only if

8y 2 f [X]; 9!x 2 X; y = f (x)

C

Thinking back to Section 2.2, you might notice that this means that the logical formula `y = f (x)'
de�nes a functionf [X] ! X—speci�cally, if f is injective then there is a functiong: f [X] ! X which
is (well-)de�ned by specifyingx = g( f (x)) for all x 2 X. Thinking of f as anencodingfunction,
we then have thatg is the correspondingdecodingfunction—decoding is possible by injectivity of
f . (If f were not injective then distinct elements ofX might have the same encoding, in which case
we're stuck if we try to decode them!)

. Exercise 2.3.23
De�ne a functione : N � N ! N by e(m;n) = 2m � 3n. Prove thate is injective. We can think of
e as encodingpairs of natural numbers as single natural numbers—for example, the pair(4;1) is
encoded as 24 � 31 = 48. For each of the following natural numbersk, �nd the pairs of natural
numbers encoded byeask:

1 24 7776 59049 396718580736

C
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In Exercise 2.3.23, we were able to decode any natural number of the form 2m � 3n for m;n 2 N. This
process of decoding yields a function

d : f k 2 N j k = 2m � 3n for somem;n 2 Ng ! N � N

What would happen if we tried to decode a natural number not of the form 2m � 3n for m;n 2 N, say
5 or 100? Well. . . it doesn't really matter! All we need to be true is thatd(e(m;n)) = ( m;n) for all
(m;n) 2 N � N; the value ofd on other natural numbers is irrelevant.

F De�nition 2.3.24
Let f : X ! Y be a function. Aleft inverse (or post-inverse) for f is a functiong : Y ! X such that
g� f = idX.

0 Example 2.3.25
Let e: N � N ! N be as in Exercise 2.3.23. De�ne a functiond : N ! N � N by

d(k) =

(
(m;n) if k = 2m � 3n for somem;n 2 N
(0;0) otherwise

Note thatd is well-de�ned by the fundamental theorem of arithmetic (Theorem 5.2.12). Moreover,
givenm;n 2 N, we have

d(e(m;n)) = d(2m � 3n) = ( m;n)

and sod is a left inverse fore. C

. Exercise 2.3.26
Let f : X ! Y be a function. Prove that iff has a left inverse, thenf is injective. C

Exercise 2.3.26 gives us a new strategy for proving that a function is injective.

v Strategy 2.3.27 (Proving a function is injective by �nding a left inverse)
In order to prove that a functionf : X ! Y is injective, it suf�ces to �nd a functiong : Y ! X such
thatg( f (x)) = x for all x 2 X.

It would be convenient if the converse to Exercise 2.3.26 were true—and it is, provided that we
impose the condition that the domain of the function be inhabited.

C Proposition 2.3.28
Let f : X ! Y be a function. Iff is injective andX is inhabited, thenf has a left inverse.

Proof
Suppose thatf is injective andX is inhabited. Fixx0 2 X—note that this element exists sinceX is
inhabited—and de�neg : Y ! X as follows.

g(y) =

(
x if y = f (x) for somex 2 X
x0 otherwise

The only part of the speci�cation ofg that might cause it to fail to be well-de�ned is the case when
y = f (x) for somex 2 X. The reason whyg is well-de�ned is precisely injectivity off : if y = f (x)
for somex 2 X, then the value ofx 2 X for which y = f (x) is unique. (Indeed, ifa 2 X satis�ed
y = f (a), then we'd havea = x by injectivity of f .)
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Sog is indeed well-de�ned. To see thatg is a left inverse forf , let x 2 X. Lettingy = f (x), we see
that y falls into the �rst case in the speci�cation ofg, so thatg( f (x)) = g(y) = a for the value of
a 2 X for whichy = f (a)—but as noted above, we havea = x by injectivity of f . �

. Exercise 2.3.29
Let f : X ! Y be a function with left inverseg : Y ! X. Prove thatg is a surjection. C

We established a relationship between injections and left inverses in Exercise 2.3.26 and proposi-
tion 2.3.28, so it might come as no surprise that there is a relationship between surjections andright
inverses.

F De�nition 2.3.30
Let f : X ! Y be a function. Aright inverse (or pre-inverse) for f is a functiong : Y ! X such that
f � g = idY.

0 Example 2.3.31
De�ne f : R ! R> 0 by f (x) = x2. Note thatf is surjective, since for eachy 2 R> 0 we have

p
y 2 R

and f (
p

y) = y. Howeverf is not injective; for instance

f (� 1) = 1 = f (1)

Here are three right inverses forf :

� The positive square root functiong : R> 0 ! R de�ned byg(y) =
p

y for all y 2 R> 0. Indeed, for
eachy 2 R> 0 we have

f (g(y)) = f (
p

y) = (
p

y)2 = y

� The negative square root functionh : R> 0 ! R de�ned by h(y) = �
p

y for all y 2 R> 0. Indeed,
for eachy 2 R> 0 we have

f (h(y)) = f (�
p

y) = ( �
p

y)2 = y

� The functionk : R> 0 ! R de�ned by

k(y) =

( p
y if 2n 6 y < 2n+ 1 for somen 2 N

�
p

y otherwise

Note thatk is well-de�ned, and againf (k(y)) = y for all y 2 R> 0 since no matter what valuek(y)
takes, it is equal to either

p
y or �

p
y.

There are many more right inverses forf —in fact, there are in�nitely many more! C

. Exercise 2.3.32
Let f : X ! Y be a function. Prove that iff has a right inverse, thenf is surjective. C

v Strategy 2.3.33 (Proving a function is surjective by �nding a right inverse)
In order to prove that a functionf : X ! Y is surjective, it suf�ces to �nd a functiong : Y ! X such
that f (g(y)) = y for all y 2 Y.
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Interlude: the axiom of choice

It would be convenient if the converse to Exercise 2.3.32 were true—that is, iff : X ! Y is surjective,
then it has a right inverse. Let's examine what a proof of this fact would entail. The fact that
f : X ! Y is surjective can be expressed as

8y 2 Y; 9x 2 X; f (x) = y

A right inverse would be a functiong : Y ! X, so by De�nition 2.2.1, it must satisfy the following
condition

8y 2 Y; 9!x 2 X; g(y) = x

The temptation is therefore to constructg :Y ! X as follows. Lety2 Y. By de�nition of surjectivity,
there exists somex 2 X such thatf (x) = y—de�ne g(y) to be such an elementx. Then we have
f (g(y)) = f (x) = y, as required.

There is an extremely subtle—but important—issue with this construction.

By choosingg(y) to be a �xed element ofX such thatf (x) = y, we are assuming ahead of time that
there is a mechanism for choosing, for eachy 2 Y, a unique element off � 1[f yg] to be the value of
g(y). In other words we are assuming that some statementR(x;y) satis�es the property

8y 2 Y; 9!x 2 X; [x 2 f � 1[f yg] ^ R(x;y)]

But by De�nition 2.2.1, this assumption is saying exactly that there exists a functionY ! X that
associates to eachy 2 Y an elementx 2 X such thatf (x) = y.

To state this in plainer terms: we tried to prove that there exists a right inverse forf by assuming
that there exists a right inverse forf . Evidently, this is not a valid proof strategy.

Surprisingly, it turns out that neither the assumption that every surjection has a right inverse, nor the
assumption that there exists a surjection with no right inverse, leads to a contradiction. As such, the
assertion that every surjection has a right inverse isprovably unprovable, although the proof that it
is unprovable is far beyond the scope of this textbook.

Nonetheless, the construction of a right inverse that we gave above didn'tfeel like we were abusing
the fabric of mathematics and logic.

The essence of the proof is that if a statement of the form8a 2 A; 9b 2 B; p(a;b) is true, then we
should be able to de�ne a functionh : A ! B such thatp(a;h(a)) is true for alla 2 A: the functionh
`chooses' for eacha 2 A a particular elementb = h(a) 2 B such thatp(a;b) is true.

What makes this possible is toaxiom of choice, stated precisely below.

C Axiom 2.3.34 (Axiom of choice)
Let f Xi j i 2 Ig be a family of inhabited sets. Then there is a functionh : I !

[

i2 I

Xi such thath(i) 2 Xi

for eachi 2 I .

There are reasons to keep track of the axiom of choice:

104



Section 2.3. Injections and surjections 105

� The axiom of choice is perhaps thestrangestassumption that we make—most of the other axioms
that we have stated have been `evidently true', but this is not the case for the axiom of choice;

� There are �elds of mathematics which require the translation of results about sets into results
about other kinds of objects—knowing whether the axiom of choice is necessary to prove a result
tells us whether this is possible;

� The axiom of choice is highly non-constructive: if a proof of a result that does not use the axiom
of choice is available, it usually provides more information than a proof of the same result that
does use the axiom of choice.

With this in mind, when we need to invoke the axiom of choice to prove a result, we will mark the
result with the lettersAC. This can be freely ignored on �rst reading, but readers may �nd it useful
when using this book as a reference at a later date.

C Proposition AC 2.3.35
Let X andY be sets and letp(x;y) be a logical formula with free variablesx 2 X andy 2 Y. If
8x 2 X; 8y 2 Y; p(x;y) is true, then there exists a functionh : X ! Y such that8x 2 X; p(x;h(x)) is
true.

Proof
For eacha 2 X, de�ne Ya = f b 2 Y j p(a;b)g. Note thatYa is inhabited for eacha 2 X by the
assumption that8x 2 X; 9y 2 Y; p(x;y) is true. SinceYa � Y for eacha 2 X, by the axiom of choice
there exists a functionh : X ! Y such thath(a) 2 Ya for all a 2 X. But thenp(a;h(a)) is true for
eacha 2 X by de�nition of the setsYa. �

In light of Proposition 2.3.35, the axiom of choice manifests itself in proofs as the following proof
strategy.

v StrategyAC 2.3.36 (Making choices)
If an assumption in a proof has the form8x 2 X; 9y 2 Y; p(x;y), then we may make a choice, for
eacha 2 A, of a particular elementb = ba 2 B for which p(a;b) is true.

Back to inverses

We now return to the converse of Exercise 2.3.32.

C Proposition AC 2.3.37
Every surjection has a right inverse.

Proof
Let f : X ! Y be a surjection, and de�neg : Y ! X as follows. Giveny 2 Y, de�ne g(y) to be a
particular choice ofx 2 X such thatf (x) = y—note that there exists such an elementx 2 X since f
is surjective, sog exists by Strategy 2.3.36. But then by de�nition ofg we havef (g(y)) = y for all
y 2 Y, so thatg is a surjection. �

It seems logical that we might be able to classify bijections as being those functions which have a
left inverse and a right inverse. We can actually say something stronger—the left and right inverse
can be taken to be the same function! (In fact, Proposition 2.3.43 establishes that they are necessarily
the same function.)
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F De�nition 2.3.38
Let f : X ! Y be a function. A (two-sided) inversefor f is a functiong : Y ! X which is both a left
inverse and a right inverse forf .

It is customary to simply say `inverse' rather than `two-sided inverse'.

0 Example 2.3.39
Let D be the set of dyadic rational numbers, as de�ned in Example 2.3.18. There, we de�ned a
function f : D ! D de�ned by f (x) = x

2k for all x 2 D, wherek is some �xed natural number. We
�nd an inverse forf .

De�ne g : D ! D by g(x) = 2kx. Then

� g is a left inverse forf . To see this, note that for allx 2 D we have

g( f (x)) = g(
x
2k ) = 2k �

x
2k = x

� g is a right inverse forf . To see this, note that for ally 2 D we have

f (g(y)) = f (2ky) =
2ky
2k = y

Sinceg is a left inverse forf and a right inverse forf , it is a two-sided inverse forf . C

. Exercise 2.3.40
The following functions have two-sided inverses. For each, �nd its inverse and prove that it is indeed
an inverse.

(a) f : R ! R de�ned by f (x) = 2x+ 1
3 .

(b) g : P (N) ! P (N) de�ned byg(X) = N nX.

(c) h : N � N ! N de�ned byh(m;n) = 2m(2n+ 1) � 1 for all m;n 2 N.

C

In light of the correspondences between injections and left inverses, and surjections and right in-
verses, it may be unsurprising that there is a correspondence betweenbijectionsandtwo-sided in-
verses.

. Exercise 2.3.41
Let f : X ! Y be a function. Thenf is bijective if and only if f has an inverse. C

v Strategy 2.3.42 (Proving a function is bijective by �nding an inverse)
In order to prove that a functionf : X ! Y is bijective, it suf�ces to �nd a functiong : Y ! X such
thatg( f (x)) = x for all x 2 X and f (g(y)) = y for all y 2 Y.

When proving a functionf : X ! Y is bijective by �nding an inverseg : Y ! X, it is important to
check thatg is botha left inverseanda right inverse forf . If you only prove thatg is a left inverse
for f , for example, then you have only proved thatf is injective!

It turns out that if a function has both a left and a right inverse, then they must be equal. This is the
content of the following proposition.
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C Proposition 2.3.43
Let f : X ! Y be a function and suppose` : Y ! X is a left inverse forf andr : Y ! X is a right
inverse forf . Then` = r.

Proof
The proof is deceptively simple:

` = ` � idY by de�nition of identity functions

= ` � ( f � r) sincer is a right inverse forf

= ( ` � f ) � r by Exercise 2.2.22

= idX � r since` is a left inverse forf

= r by de�nition of identity functions

�

There is some intuition behind why the left and right inverses of a functionf : X ! Y should be
equal if they both exist.

� A left inverse` : Y ! X exists only if f is injective. It looks at each elementy 2 Y and, if it is in
the image off , returns the (unique) valuex 2 X for which f (x) = y.

� A right inverser : Y ! X exists only if f is surjective. It looks at each elementy 2 Y and picks
out one of the (possibly many) valuesx 2 X for which f (x) = y.

When f is a bijection, every element ofY is in the image off (by surjectivity), and is a value off
at a unique element ofX (by injectivity), and so the left and right inverses are forced to return the
same value on each input—hence they are equal.

It follows from Proposition 2.3.43 that, for any functionf : X ! Y, any two inverses forf are
equal—that is, every bijective function has auniqueinverse!

F Notation 2.3.44
Let f : X ! Y be a function. Writef � 1 : Y ! X to denote the (unique) inverse forf , if it exists.

C Proposition 2.3.45
Let f : X ! Y be a bijection. A functiong : Y ! X is a left inverse forf if and only if it is a right
inverse forf .

Proof
We will prove the two directions separately.

� () ) Supposeg : Y ! X is a left inverse forf —that is,g( f (x)) = x for all x 2 X. We prove that
f (g(y)) = y for all y 2 Y, thus establishing thatg is a right inverse forf . So lety 2 Y. Sincef is
a bijection, it is in particular a surjection, so there existsx 2 X such thaty = f (x). But then

f (g(y)) = f (g( f (x))) sincey = f (x)

= f (x) sinceg( f (x)) = x

= y sincey = f (x)

So indeedg is a right inverse forf .

� (( ) Supposeg : Y ! X is a right inverse forf —that is, f (g(y)) = y for all y 2 Y. We prove
that g( f (x)) = x for all x 2 X, thus establishing thatg is a left inverse forf . So let x 2 X.
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Letting y = f (x), we havef (g(y)) = y sinceg is a right inverse forf . This says precisely that
f (g( f (x)) = f (x), sincey = f (x). By injectivity of f , we haveg( f (x)) = x, as required.

�

. Exercise 2.3.46
Let f : X ! Y be a bijection. Prove thatf � 1 : Y ! X is a bijection. C

. Exercise 2.3.47
Let f : X ! Y andg : Y ! Z be bijections. Prove thatg � f : X ! Z is a bijection, and write an
expression for its inverse in terms off � 1 andg� 1. C

. Exercise 2.3.48
Let f : X ! A andg :Y ! B be bijections. Prove that there is a bijectionX � Y ! A� B, and describe
its inverse. C

At the beginning of this section we motivated the de�nitions of injections, surjections and bijections
by using them to compare two quantities (of dots and stars)—however, as you might have noticed,
we have not yet actually proved that thais intuition aligns with reality. For example, how do we
know that if there is an injectionf : X ! Y thenY has at least as many elements asX?

Answering this seemingly simple question is surprisingly dif�cult and has different answers depend-
ing on whether the sets involved are �nite or in�nite. In fact, the words `�nite', `in�nite' and `size'
are themselves de�ned in terms of injections, surjections and bijections! We therefore leave this task
to future sections.

In Section 6.1, we de�ne what it means for a set to be �nite and what the size of a �nite set is
(De�nition 6.1.1), and then prove that the sizes of �nite sets can be compared by �nding an injection,
surjection or bijection between them Theorem 6.1.6.

Comparing the sizes of in�nite sets, and even de�ning what `size' means for in�nite sets, is another
can of worms entirely and leads to some fascinating mathematics. For example, we can prove some
counterintuitive results, such as the setN of natural numbers and the setQ of rational numbers have
the same size. The journey down this rabbit hole begins in Chapter 8.
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Section 2.E

Chapter 2 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Set notation

2.1. Express the following sets in the indicated form of notation.

(a) f n 2 Z j n2 < 20g in list notation;

(b) f 4k+ 3 j k 2 Ng in implied list notation;

(c) The set of all odd multiples of six in set-builder notation;

(d) The setf 1;2;5;10;17; : : : ;n2 + 1; : : :g in set-builder notation.

Set operations

2.2. For each of the following statements, determine whether it is true for all setsX;Y, false for all
setsX;Y, or true for some choices ofX andY and false for others.

(a) P (X [ Y) = P (X) [ P (Y)

(b) P (X \ Y) = P (X) \ P (Y)

(c) P (X � Y) = P (X) � P (Y)

(d) P (X nY) = P (X) nP (Y)

Questions 2.3 to 2.7 concern thesymmetric differenceof sets, de�ned below.

F De�nition 2.E.1
Thesymmetric differenceof setsX andY is the setX 4 Y (LATEX code:\triangle ) de�ned by

X 4 Y = f a j a 2 X or a 2 Y buta 62X \ Yg

2.3. Prove thatX 4 Y = ( X nY) [ (Y nX) = ( X [ Y) n(X \ Y) for all setsX andY.

2.4. Let X be a set. Prove thatX 4 X = ? andX 4 ? = X.

2.5. Let X andY be sets. Prove thatX = Y if and only if X 4 Y = ? .

2.6. Prove that setsX andY are disjoint if and only ifX 4 Y = X [ Y.

2.7. Prove thatX 4 (Y 4 Z) = ( X 4 Y) 4 Z for all setsX, Y andZ.
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Functions

2.8. Show that there is only one function whose codomain is empty. What is its domain?

F De�nition 2.E.2
A function f : R ! R is evenif f (� x) = f (x) for all x 2 R, and it isodd if f (� x) = � f (x) for all
x 2 R.

2.9. Let n 2 N. Prove that the functionf : R ! R de�ned by f (x) = xn for all x 2 R is even if and
only if n is even, and odd if and only ifn is odd.

2.10. Prove that there is a unique functionf : R ! R that is both even and odd.

2.11. Prove that for every functionf : R ! R, there is a unique even functiong : R ! R and a
unique odd functionh : R ! R such thatf (x) = g(x)+ h(x) for all x 2 R.

2.12. Let f qn : [n] ! [n] j n2 Ngbe a family of functions such thatf � qm = qn � f for all f : [m] ! [n].
Prove thatqn = id[n] for all n 2 N.

2.13. Let X be a set and letU;V � X. Describe the indicator functioncU4 V of the symmetric
difference ofU andV (De�nition 2.E.1) in terms ofcU andcV .

Images and preimages

2.14. Let f : X ! Y be a function. For each of the following statements, either prove it is true or
�nd a counterexample.

(a) U � f � 1[ f [U]] for all U � X;

(b) f � 1[ f [U]] � U for all U � X;

(c) V � f [ f � 1[V]] for all V � Y;

(d) f [ f � 1[V]] � V for all V � Y.

Injections, surjections and bijections

2.15. (a) Prove that, for all functionsf : X ! Y and g : Y ! Z, if g � f is bijective, thenf is
injective andg is surjective.

(b) Find an example of a functionf : X ! Y and a functiong : Y ! Z such thatg� f is bijective, f
is not surjective andg is not injective.

2.16. For each of the following pairs(U;V) of subsets ofR, determine whether the speci�cation
` f (x) = x2 � 4x+ 7 for all x 2 U' de�nes a function f : U ! V and, if it does, determine whetherf
is injective and whetherf is surjective.

(a) U = R andV = R;

(b) U = ( 1;4) andV = [ 3;7);

(c) U = [ 3;4) andV = [ 4;7);

(d) U = ( 3;4] andV = [ 4;7);

(e) U = [ 2;¥ ) andV = [ 3;¥ );

(f) U = [ 2;¥ ) andV = R.

2.17. For each of the following pairs of setsX andY, �nd (with proof) a bijection f : X ! Y.
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(a) X = Z andY = N;

(b) X = R andY = ( � 1;1);

(c) X = [ 0;1] andY = ( 0;1);

(d) X = [ a;b] andY = ( c;d), wherea;b;c;d 2 R with a < b andc < d.

2.18. Prove that the functionf : N � N ! N de�ned by f (a;b) =
�

a+ b+ 1
2

�
+ b for all (a;b) 2

N � N is a bijection.
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Section 3.1

Peano's axioms

The purpose of this section is to forget everything we think we know about the natural numbers, and
reconstruct our former knowledge (and more!) using the following fundamental property:

Every natural number can be obtained in a unique way by
starting from zero and adding one some �nite number of times.

This is slightly imprecise—it is not clear what is meant by `adding one some �nite number of times',
for example. Worse still, we are going to de�ne what `�nite' means in terms of natural numbers in
Section 6.1, so we'd better not refer to �niteness in our de�nition of natural numbers!

The following de�nition captures precisely the properties that we need in order to characterise the
idea ofN that we have in our minds. To begin with,N should be a set. Whatever the elements of
this setN actuallyare, we will think about them as being natural numbers. One of the elements, in
particular, should play the role of the natural number 0—this will be thezero element z2 N; and
there should be a notion of `adding one'—this will be thesuccessor function s: N ! N. Thus given
an elementn 2 N, though of as a natural number, we think about the elements(n) as the natural
number ǹ+ 1'. Note that this is strictly for the purposes of intuition: we will de�ne `+ ' and `1' in
terms ofzands, not vice versa.

F De�nition 3.1.1
A notion of natural numbers is a setN, together with an elementz2 N, called azero element, and
a functions: N ! N called asuccessor function, satisfying the following properties:

(i) z62s[N]; that is,z6= s(n) for anyn 2 N.

(ii) s is injective; that is, for allm;n 2 N, if s(m) = s(n), thenm= n.

(iii) N is generated byzands; that is, for all setsX, if z2 X ands(n) 2 X for all n2 N, thenN � X.

The properties (i), (ii) and (iii) are calledPeano's axioms.

Note that De�nition 3.1.1 does not specify whatN, zandsactually are; it just speci�es the properties
that they must satisfy. It turns out that it doesn't really matter what notion of natural numbers we
use, since any two notions are essentially the same. We will not worry about the speci�cs here—that
task is left to Section B.2: a particular notion of natural numbers is de�ned in Construction B.2.5,
and the fact that all notions of natural numbers are `essentially the same' is made precise and proved
in Theorem B.2.8.

We can de�ne all the concepts involving natural numbers that we are familiar with, and prove all the
properties that we take for granted, just from the elementz2 N and the successor functions: N ! N.

For instance, we de�ne `0' to meanz, de�ne `1' to means(z), de�ne `2' to means(s(z)) , and so on.
For instance, `12' is de�ned to mean

s(s(s(s(s(s(s(s(s(s(s(s(z))))))))))))
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From now on, then, let's write 0 instead ofz for the zero element ofN. It would be nice if we could
write `n+ 1' instead ofs(n), but we must �rst de�ne what+̀ ' means. In order to do this, we need a
way of de�ning expressions involving natural numbers; this is what therecursion theoremallows us
to do.

C Theorem 3.1.2 (Recursion theorem)
Let X be a set. For alla 2 X and allh : N � X ! X, there is a unique functionf : N ! X such that
f (0) = a and f (s(n)) = h(n; f (n)) for all n 2 N.

Proof
Let a 2 X andh : N � X ! X. We prove existence and uniqueness off separately.

� De�ne f : N ! X by specifyingf (0) = a and f (s(n)) = h(n; f (n)) . Sinceh is a function ands is
injective, existence and uniqueness ofx 2 X such thatf (n) = x is guaranteed, provided thatf (n)
is de�ned, so we need only verify totality.

So letD = f n 2 N j f (n) is de�nedg. Then:

� 0 2 D, sincef (0) is de�ned to be equal toa.

� Let n 2 N and supposen 2 D. Then f (n) is de�ned andf (s(n)) = h(n; f (n)) , so thatf (s(n)) is
de�ned, and hences(n) 2 D.

By condition (iii) of De�nition 3.1.1, we haveN � D, so that f (n) is de�ned for all n 2 N, as
required.

� To see thatf is unique, supposeg : N ! X were another function such thatg(0) = a andg(s(n)) =
h(n;g(n)) for all n 2 N.

To see thatf = g, let E = f n 2 N j f (n) = g(n)g. Then

� 0 2 E, sincef (0) = a = g(0).

� Let n 2 N and suppose thatn 2 E. Then f (n) = g(n), and so

f (s(n)) = h(n; f (n)) = h(n;g(n)) = g(s(n))

and sos(n) 2 E.

Again, condition (iii) of De�nition 3.1.1 is satis�ed, so thatN � E. It follows that f (n) = g(n) for
all n 2 N, and sof = g.

Thus we have established the existence and uniqueness of a functionf : N ! X such thatf (0) = a
and f (s(n)) = h(n; f (n)) for all n 2 N. �

The recursion theorem allows us to de�ne expressions involving natural numbersby recursion; this
is Strategy 3.1.3.

v Strategy 3.1.3 (De�nition by recursion)
In order to specify a functionf : N ! X, it suf�ces to de�ne f (0) and, for givenn 2 N, assume that
f (n) has been de�ned, and de�nef (s(n)) in terms ofn and f (n).

0 Example 3.1.4
We can use recursion to de�ne addition on the natural numbers as follows.
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For �xed m2 N, we can de�ne a function addm : N ! N by recursion by:

addm(0) = m and addm(s(n)) = s(addm(n)) for all n 2 N

In more familiar notation, form;n 2 N, de�ne the expressionm̀+ n' to mean addm(n). Another
way of expressing the recursive de�nition of addm(n) is to say that, for eachm2 N, we are de�ning
m+ n by recursion onn as follows:

m+ 0 = m and m+ s(n) = s(m+ n) for all n 2 N

C

We can use the recursive de�nition of addition to prove familiar equations between numbers. The
following proposition is a proof that 2+ 2 = 4. This may seem silly, but notice that the expression
`2+ 2 = 4' is actually shorthand for the following:

adds(s(0)) (s(s(0))) = s(s(s(s(0))))

We must therefore be careful to apply the de�nitions in its proof.

C Proposition 3.1.5
2+ 2 = 4

Proof
We use the recursive de�nition of addition.

2+ 2 = 2+ s(1) since 2= s(1)

= s(2+ 1) by de�nition of +

= s(2+ s(0)) since 1= s(0)

= s(s(2+ 0)) by de�nition of +

= s(s(2)) by de�nition of +

= s(3) since 3= s(2)

= 4 since 4= s(3)

as required. �

The following result allows us to drop the notation `s(n)' and just write ǹ+ 1' instead.

C Proposition 3.1.6
For all n 2 N, we haves(n) = n+ 1.

Proof
Let n 2 N. Then by the recursive de�nition of addition we have

n+ 1 = n+ s(0) = s(n+ 0) = s(n)

as required. �

In light of Proposition 3.1.6, we will now abandon the notations(n), and writen+ 1 instead.

We can de�ne the arithmetic operations of multiplication and exponentiation by recursion, too.
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0 Example 3.1.7
Fix m2 N. De�ne m� n for all n 2 N by recursion onn as follows:

m� 0 = 0 and m� (n+ 1) = ( m� n)+ m for all n 2 N

Formally, what we have done is de�ne a function multm : N ! N recursively by multm(z) = z and
multm(s(n)) = addmultm(n)(m) for all n 2 N. But the de�nition we provided is easier to understand.

C

C Proposition 3.1.8
2� 2 = 4

Proof
We use the recursive de�nitions of addition and recursion.

2� 2 = 2� (1+ 1) since 2= 1+ 1

= ( 2� 1)+ 2 by de�nition of �

= ( 2� (0+ 1))+ 2 since 1= 0+ 1

= (( 2� 0)+ 2)+ 2 by de�nition of �

= ( 0+ 2)+ 2 by de�nition of �

= ( 0+ ( 1+ 1))+ 2 since 2= 1+ 1

= (( 0+ 1)+ 1)+ 2 by de�nition of +

= ( 1+ 1)+ 2 since 1= 0+ 1

= 2+ 2 since 2= 1+ 1

= 4 by Proposition 3.1.5

as required. �

. Exercise 3.1.9
Givenm2 N, de�ne mn for all n 2 N by recursion onn, and prove that 22 = 4 using the recursive
de�nitions of exponentiation, multiplication and addition. C

We could spend the rest of our lives doing long computations involving recursively de�ned arithmetic
operations, so at this point we will stop, and return to taking for granted the facts that we know about
arithmetic operations.

There are, however, a few more notions that we need to de�ne by recursion so that we can use them
in our proofs later.

F De�nition 3.1.10

Thesumof real numbersa1;a2; : : : ;an is the real number
n

å
k= 1

ak de�ned by recursion onn 2 N by

0

å
k= 1

ak = 0 and
n+ 1

å
k= 1

ak =

 
n

å
k= 0

ak

!

+ an+ 1 for all n 2 N
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F De�nition 3.1.11

Theproduct of real numbersa1;a2; : : : ;an is the real number
n

Õ
k= 1

ak de�ned by recursion onn 2 N

by
0

Õ
k= 1

ak = 1 and
n+ 1

Õ
k= 1

ak =

 
n

Õ
k= 0

ak

!

� an+ 1 for all n 2 N

0 Example 3.1.12
Let xi = i2 for eachi 2 N. Then

5

å
i= 1

xi = 1+ 4+ 9+ 16+ 25= 55

and
5

Õ
i= 1

xi = 1� 4� 9� 16� 25= 14400

C

. Exercise 3.1.13
Let x1;x2 2 R. Working strictly from the de�nitions of indexed sum and indexed product, prove that

2

å
i= 1

xi = x1 + x2 and
2

Õ
i= 1

xi = x1 � x2

C

Binomials and factorials

F De�nition 3.1.14 (to be rede�ned in De�nition 6.2.10)
Let n 2 N. Thefactorial of n, writtenn!, is de�ned recursively by

0! = 1 and (n+ 1)! = ( n+ 1) � n! for all n > 0

Put another way, we have

n! =
n

Õ
i= 1

i

for all n 2 N—recall De�nition 3.1.11 to see why these de�nitions are really just two ways of word-
ing the same thing.

F De�nition 3.1.15 (to be rede�ned in De�nition 6.2.4)
Let n;k 2 N. The binomial coef�cient

� n
k

�
(LATEX code: \binom{n}{k} ) (read ǹ choosek') is

de�ned by recursion onn andonk by
�

n
0

�
= 1;

�
0

k+ 1

�
= 0;

�
n+ 1
k+ 1

�
=

�
n
k

�
+

�
n

k+ 1

�
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This de�nition gives rise to an algorithm for computing binomial coef�cients: they �t into a diagram
known asPascal's triangle, with each binomial coef�cient computed as the sum of the two lying
above it (with zeroes omitted):

� 0
0

�
1� 1

0

� � 1
1

�
1 1� 2

0

� � 2
1

� � 2
2

�
= 1 2 1� 3

0

� � 3
1

� � 3
2

� � 3
3

�
1 3 3 1� 4

0

� � 4
1

� � 4
2

� � 4
3

� � 4
4

�
1 4 6 4 1� 5

0

� � 5
1

� � 5
2

� � 5
3

� � 5
4

� � 5
5

�
1 5 10 10 5 1

...
...

...
...

...
...

...
...

...

. Exercise 3.1.16
Write down the next two rows of Pascal's triangle. C
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Section 3.2

Weak induction

Just as recursion exploited the structure of the natural numbers tode�ne expressionsinvolving natural
numbers, induction exploits the very same structure toprove resultsabout natural numbers.

C Theorem 3.2.1 (Weak induction principle)
Let p(n) be logical formula with free variablen 2 N, and letn0 2 N. If

(i) p(n0) is true; and

(ii) For all n > n0, if p(n) is true, thenp(n+ 1) is true;

thenp(n) is true for alln > n0.

Proof
De�ne X = f n 2 N j p(n0 + n) is trueg; that is, given a natural numbern, we haven 2 X if and only
if p(n0 + n) is true. Then

� 0 2 X, sincen0 + 0 = n0 andp(n0) is true by (i).

� Let n 2 N and assumen 2 X. Thenp(n0 + n) is true. Sincen0 + n > n0 andp(n0 + n) is true, we
havep(n0 + n+ 1) is true by (ii). But thenn0 + n+ 1 2 X.

So by De�nition 3.1.1(iii) we haveN � X. Hencep(n0+ n) is true for alln2 N. But this is equivalent
to saying thatp(n) is true for alln > n0. �

v Strategy 3.2.2 (Proof by (weak) induction)
In order to prove a proposition of the form8n 2 N; p(n), it suf�ces to prove thatp(0) is true and
that, for alln 2 N, if p(n) is true, thenp(n+ 1) is true.

Some terminology has evolved for proofs by induction, which we mention now:

� The proof ofp(n0) is called thebase case;

� The proof of8n > n0; ( p(n) ) p(n+ 1)) is called theinduction step;

� In the induction step, the assumptionp(n) is called theinduction hypothesis;

� In the induction step, the propositionp(n+ 1) is called theinduction goal.

The following diagram illustrates the weak induction principle.

n0 n0 + 1 � � � n� 1 n n+ 1
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To interpret this diagram:

� The shaded diamond represents the base casep(n0);

� The square represents the induction hypothesisp(n);

� The dashed circle represents the induction goalp(n+ 1);

� The arrow represents the implication we must prove in the induction step.

We will use analogous diagrams to illustrate the other induction principles in this section.

C Proposition 3.2.3

Let n 2 N. Then
n

å
k= 1

k =
n(n+ 1)

2

Proof
We proceed by induction onn > 0.

� (Base case) We need to prove
0

å
k= 1

k =
0(0+ 1)

2
.

This is true, since
0(0+ 1)

2
= 0, and

0

å
k= 1

k = 0 by De�nition 3.1.10.

� (Induction step) Let n > 0 and suppose that
n

å
k= 1

k =
n(n+ 1)

2
; this is the induction hypothesis.

We need to prove that
n+ 1

å
k= 1

k =
(n+ 1)(n+ 2)

2
; this is the induction goal.

We proceed by calculation:

n+ 1

å
k= 1

k =

 
n

å
k= 1

k

!

+ ( n+ 1) by De�nition 3.1.10

=
n(n+ 1)

2
+ ( n+ 1) by induction hypothesis

= ( n+ 1)
� n

2
+ 1

�
factorising

=
(n+ 1)(n+ 2)

2
rearranging

The result follows by induction. �

Before moving on, let's re�ect on the proof of Proposition 3.2.3 to highlight some effective ways of
writing a proof by induction.

� We began the proof by indicating that it was a proof by induction. While it is clear in this section
that most proofs will be by induction, that will not always be the case, so it is good practice to
indicate the proof strategy at hand.

� The base case and induction step are clearly labelled in the proof. This is not strictlynecessary
from a mathematical perspective, but it helps the reader to navigate the proof and to identify what
the goal is at each step.
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� We began the induction step by writing, `Letn > n0 and suppose that [. . .induction hypothesis
goes here. . . ]'. This is typically how your induction step should begin, since the proposition
being proved in the induction step is of the form8n > n0; ( p(n) ) � � � ).

� Before proving anything in the base case or induction step, we wrote out what it was that we were
trying to prove in that part of the proof. This is helpful because it helps to remind us (and the
person reading the proof) what we are aiming to achieve.

Look out for these features in the proof of the next proposition, which is also by induction onn > 0.

C Proposition 3.2.4
The natural numbern3 � n is divisible by 3 for alln 2 N.

Proof
We proceed by induction onn > 0.

� (Base case) We need to prove that 03 � 0 is divisible by 3. Well

03 � 0 = 0 = 3� 0

so 03 � 0 is divisible by 3.

� (Induction step) Let n 2 N and suppose thatn3 � n is divisible by 3. Thenn3 � n = 3k for some
k 2 Z.

We need to prove that(n+ 1)3 � (n+ 1) is divisible by 3; in other words, we need to �nd some
natural number̀ such that

(n+ 1)3 � (n+ 1) = 3`

We proceed by computation.

(n+ 1)3 � (n+ 1)

= ( n3 + 3n2 + 3n+ 1) � n� 1 expand brackets

= n3 � n+ 3n2 + 3n+ 1� 1 rearrange terms

= n3 � n+ 3n2 + 3n since 1� 1 = 0

= 3k+ 3n2 + 3n by induction hypothesis

= 3(k+ n2 + n) factorise

Thus we have expressed(n+ 1)3 � (n+ 1) in the form 3̀ for some` 2 Z; speci�cally, ` = k+
n2 + n.

The result follows by induction. �

. Exercise 3.2.5

Prove by induction that
n

å
k= 0

2k = 2n+ 1 � 1 for all n 2 N. C

The following proposition has a proof by induction in which the base case is not zero.

C Proposition 3.2.6
For all n > 4, we have 3n < 2n.

Proof
We proceed by induction onn > 4.
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� (Base case) p(4) is the statement 3� 4 < 24. This is true, since 12< 16.

� (Induction step) Supposen > 4 and that 3n < 2n. We want to prove 3(n+ 1) < 2n+ 1. Well,

3(n+ 1) = 3n+ 3 expanding

< 2n + 3 by induction hypothesis

< 2n + 24 since 3< 16= 24

6 2n + 2n sincen > 4

= 2� 2n simplifying

= 2n+ 1 simplifying

So we have proved 3(n+ 1) < 2n+ 1, as required.

The result follows by induction. �

Note that the proof in Proposition 3.2.6 says nothing about the truth or falsity ofp(n) for n= 0;1;2;3.
In order to assert that these cases are false, you need to show them individually; indeed:

� 3� 0 = 0 and 20 = 1, hencep(0) is true;

� 3� 1 = 3 and 21 = 2, hencep(1) is false;

� 3� 2 = 6 and 22 = 4, hencep(2) is false;

� 3� 3 = 9 and 23 = 8, hencep(3) is false.

So we deduce thatp(n) is true whenn = 0 orn > 4, and false whenn 2 f 1;2;3g.

. Exercise 3.2.7
Find all natural numbersn such thatn5 < 5n. C

. Exercise 3.2.8
Prove that(1+ x)123 456 789> 1+ 123 456 789x for all realx > � 1. C

Sometimes a `proof' by induction might appear to be complete nonsense. The following is a classic
example of a `fail by induction':

0 Example 3.2.9
The following argument supposedly proves that every horse is the same colour.

� (Base case) Suppose there is just one horse. This horse is the same colour as itself, so the base
case is immediate.

� (Induction step) Suppose that every collection ofn horses is the same colour. LetX be a set of
n+ 1 horses. Removing the �rst horse fromX, we see that the lastn horses are the same colour
by the induction hypothesis. Removing the last horse fromX, we see that the �rstn horses are the
same colour. Hence all the horses inX are the same colour.

By induction, we're done. C

. Exercise 3.2.10
Write down the statementp(n) that Example 3.2.9 attempted to prove for alln > 1. Convince
yourself that the proof of the base case is correct, then write down—with quanti�ers—exactly the
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proposition that the induction step is meant to prove. Explain why the argument in the induction step
failed to prove this proposition. C

There are several ways to avoid situations like that of Example 3.2.9 by simply putting more thought
into writing the proof. Some tips are:

� Statep(n) explicitly. In the statement `all horses are the same colour' it is not clear exactly what
the induction variable is. However, we could have said:

Let p(n) be the statement `every set ofn horses has the same colour'.

� Refer explicitly to the base casen0 in the induction step. In Example 3.2.9, our induction hypo-
thesis simply stated `assume every set ofn horses has the same colour'. Had we instead said:

Let n > 1 and assume every set ofn horses has the same colour.

We may have spotted the error in what was to come.

What follows are a couple more examples of proofs by weak induction.

C Proposition 3.2.11

For all n 2 N, we have
n

å
k= 0

k3 =

 
n

å
k= 0

k

! 2

.

Proof

We proved in Proposition 3.2.6 that
n

å
k= 0

k =
n(n+ 1)

2
for all n 2 N, thus it suf�ces to prove that

n

å
k= 0

k3 =
n2(n+ 1)2

4

for all n 2 N.

We proceed by induction onn > 0.

� (Base case) We need to prove that 03 =
02(0+ 1)2

4
. This is true since both sides of the equation

are equal to 0.

� (Induction step) Fix n 2 N and suppose that
n

å
k= 0

k3 =
n2(n+ 1)2

4
. We need to prove that

n+ 1

å
k= 0

k3 =
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(n+ 1)2(n+ 2)2

4
. This is true since:

n+ 1

å
i= 0

k3 =
n

å
i= 0

k3 + ( n+ 1)3 by de�nition of sum

=
n2(n+ 1)2

4
+ ( n+ 1)3 by induction hypothesis

=
n2(n+ 1)2 + 4(n+ 1)3

4
(algebra)

=
(n+ 1)2(n2 + 4(n+ 1))

4
(algebra)

=
(n+ 1)2(n+ 2)2

4
(algebra)

By induction, the result follows. �

In the next proposition, we prove the correctness of a well-known formula for the sum of anarith-
metic progressionof real numbers.

C Proposition 3.2.12
Let a;d 2 R. Then

n

å
k= 0

(a+ kd) =
(n+ 1)(2a+ nd)

2

for all n 2 N.

Proof
We proceed by induction onn > 0.

� (Base case) We need to prove that
0

å
k= 0

(a+ kd) =
(0+ 1)(2a+ 0d)

2
. This is true, since

0

å
k= 0

(a+ kd) = a+ 0d = a =
2a
2

=
1� (2a)

2
=

(0+ 1)(2a+ 0d)
2

� (Induction step) Fix n 2 N and suppose that
n

å
k= 0

(a+ kd) =
(n+ 1)(2a+ nd)

2
. We need to prove:

n+ 1

å
k= 0

(a+ kd) =
(n+ 2)(2a+ ( n+ 1)d)

2
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This is true, since

n+ 1

å
k= 0

(a+ kd)

=
n

å
k= 0

(a+ kd)+ ( a+ ( n+ 1)d) by de�nition of sum

=
(n+ 1)(2a+ nd)

2
+ ( a+ ( n+ 1)d) by induction hypothesis

=
(n+ 1)(2a+ nd)+ 2a+ 2(n+ 1)d

2
(algebra)

=
(n+ 1) � 2a+ ( n+ 1) � nd+ 2a+ 2(n+ 1)d

2
(algebra)

=
2a(n+ 1+ 1)+ ( n+ 1)(nd+ 2d)

2
(algebra)

=
2a(n+ 2)+ ( n+ 1)(n+ 2)d

2
(algebra)

=
(n+ 2)(2a+ ( n+ 1)d)

2
(algebra)

By induction, the result follows. �

The following exercises generalises Exercise 3.2.5 to prove the correctness of a formula for the sum
of ageometric progressionof real numbers.

. Exercise 3.2.13
Let a; r 2 R with r 6= 1. Then

n

å
k= 0

arn =
a(1� rn+ 1)

1� r

for all n 2 N. C

When attempting the following exercise, you might �nd that your induction step requires an auxiliary
result, which itself has a proof by induction.

. Exercise 3.2.14
Prove by induction that 7n � 2� 4n + 1 is divisible by 18 for alln 2 N. C

Binomials and factorials

Proof by induction turns out to be a very useful way of proving facts about binomial coef�cients
� n

k

�

and factorialsn!.

0 Example 3.2.15

We prove that
n

å
i= 0

�
n
i

�
= 2n by induction onn.

� (Base case) We need to prove
� 0

0

�
= 1 and 20 = 1. These are both true by the de�nitions of

binomial coef�cients and exponents.
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� (Induction step) Fix n > 0 and suppose that

n

å
i= 0

�
n
i

�
= 2n

We need to prove
n+ 1

å
i= 0

�
n+ 1

i

�
= 2n+ 1

This is true, since

n+ 1

å
i= 0

�
n+ 1

i

�

=
�

n+ 1
0

�
+

n+ 1

å
i= 1

�
n+ 1

i

�
splitting the sum

= 1+
n

å
j= 0

�
n+ 1
j + 1

�
letting j = i � 1

= 1+
n

å
j= 0

��
n
j

�
+

�
n

j + 1

��
by De�nition 3.1.15

= 1+
n

å
j= 0

�
n
j

�
+

n

å
j= 0

�
n

j + 1

�
separating the sums

Now
n

å
j= 0

�
n
j

�
= 2n by the induction hypothesis. Moreover, reindexing the sum usingk = j + 1

yields
n

å
j= 0

�
n

j + 1

�
=

n+ 1

å
k= 1

�
n
k

�
=

n

å
k= 1

�
n
k

�
+

�
n

n+ 1

�

By the induction hypothesis, we have

n

å
k= 1

�
n
k

�
=

n

å
k= 0

�
n
k

�
�

�
n
0

�
= 2n � 1

and
� n

n+ 1

�
= 0, so that

n

å
j= 0

�
n

j + 1

�
= 2n � 1.

Putting this together, we have

1+
n

å
j= 0

�
n
j

�
+

n

å
j= 0

�
n

j + 1

�
= 1+ 2n + ( 2n � 1)

= 2� 2n

= 2n+ 1

so the induction step is �nished.

By induction, we're done. C
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. Exercise 3.2.16
Prove by induction onn > 1 that

n

å
i= 0

(� 1) i
�

n
i

�
= 0

C

C Theorem 3.2.17
Let n;k 2 N. Then

�
n
k

�
=

8
<

:

n!
k!(n� k)!

if k 6 n

0 if k > n

Proof
We proceed by induction onn.

� (Base case) Whenn = 0, we need to prove that
� 0

k

�
= 0!

k!(� k)! for all k 6 0, and that
� 0

k

�
= 0 for all

k > 0.

If k 6 0 thenk = 0, sincek 2 N. Hence we need to prove
�

0
0

�
=

0!
0!0!

But this is true since
� 0

0

�
= 1 and 0!

0!0! = 1
1� 1 = 1.

If k > 0 then
� 0

k

�
= 0 by De�nition 3.1.15.

� (Induction step) Fix n 2 N and suppose that
� n

k

�
= n!

k!(n� k)! for all k 6 n and
� n

k

�
= 0 for all k > n.

We need to prove that, for allk 6 n+ 1, we have
�

n+ 1
k

�
=

(n+ 1)!
k!(n+ 1� k)!

and that
� n+ 1

k

�
= 0 for all k > n+ 1.

So �x k 2 N. There are four possible cases: either (i)k = 0, or (ii) 0< k 6 n, or (iii) k = n+ 1, or
(iv) k > n+ 1. In cases (i), (ii) and (iii), we need to prove the factorial formula for

� n+ 1
k

�
; in case

(iv), we need to prove that
� n+ 1

k

�
= 0.

(i) Supposek = 0. Then
� n+ 1

0

�
= 1 by De�nition 3.1.15, and

(n+ 1)!
k!(n+ 1� k)!

=
(n+ 1)!

0!(n+ 1)!
= 1

since 0!= 1. So
� n+ 1

0

�
= (n+ 1)!

0!(n+ 1)! .

(ii) If 0 < k 6 n thenk = ` + 1 for some natural number` < n. Then` + 1 6 n, so we can use
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the induction hypothesis to apply factorial formula to both
� n

`

�
and

� n
`+ 1

�
. Hence

�
n+ 1

k

�

=
�

n+ 1
` + 1

�
sincek = ` + 1

=
�

n
`

�
+

�
n

` + 1

�
by De�nition 3.1.15

=
n!

`!(n� `)!
+

n!
(` + 1)!(n� ` � 1)!

by induction hypothesis

Now note that

n!
`!(n� `)!

=
n!

`!(n� `)!
�
` + 1
` + 1

=
n!

(` + 1)!(n� `)!
� (` + 1)

and
n!

(` + 1)!(n� ` � 1)!
=

n!
(` + 1)!(n� ` � 1)!

�
n� `
n� `

=
n!

(` + 1)!(n� `)!
� (n� `)

Piecing this together, we have

n!
`!(n� `)!

+
n!

(` + 1)!(n� ` � 1)!

=
n!

(` + 1)!(n� `)!
� [(` + 1)+ ( n� `)]

=
n!(n+ 1)

(` + 1)!(n� `)!

=
(n+ 1)!

(` + 1)!(n� `)!

so that
� n+ 1

`+ 1

�
= (n+ 1)!

(`+ 1)!(n� `)! . Now we're done; indeed,

(n+ 1)!
(` + 1)!(n� `)!

=
(n+ 1)!

k!(n+ 1� k)!

sincek = ` + 1.

(iii) If k = n+ 1, then
�

n+ 1
k

�
=

�
n+ 1
n+ 1

�
sincek = n+ 1

=
�

n
n

�
+

�
n

n+ 1

�
by De�nition 3.1.15

=
n!

n!0!
+ 0 by induction hypothesis

= 1

and (n+ 1)!
(n+ 1)!0! = 1, so again the two quantities are equal.
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130 Chapter 3. Mathematical induction

(iv) If k > n+ 1, thenk = ` + 1 for somè > n, and so by De�nition 3.1.15 and the induction
hypothesis we have

�
n+ 1

k

�
=

�
n+ 1
` + 1

�
IH=

�
n
`

�
+

�
n

` + 1

�
= 0+ 0 = 0

�

On �rst reading, this proof is long and confusing, especially in the induction step where we are
required to split into four cases. We will give a much simpler proof in Section 6.2 (see The-
orem 6.2.42), where we prove the statementcombinatoriallyby putting the elements of two sets
in one-to-one correspondence.

We can use Theorem 3.2.17 to prove useful identities involving binomial coef�cients.

0 Example 3.2.18
Let n;k; ` 2 N with ` 6 k 6 n then

�
n
k

��
k
`

�
=

�
n
`

��
n� `
k� `

�

Indeed:
�

n
k

��
k
`

�

=
n!

k!(n� k)!
�

k!
`!(k � `!)

by Theorem 3.2.17

=
n!k!

k!`!(n� k)!(k � `)!
combine fractions

=
n!

`!(n� k)!(k � `)!
cancelk!

=
n!(n� `)!

`!(n� k)!(k � `)!(n� `)!
multiply by

(n� `)!
(n� `)!

=
n!

`!(n� `!)
�

(n� `)!
(k � `)!(n� k)!

separate fractions

=
n!

`!(n� `!)
�

(n� `)!
(k � `)!((n� `) � (k � `)) !

rearranging

=
�

n
`

��
n� `
k� `

�
by Theorem 3.2.17

C

. Exercise 3.2.19
Prove that

� n
k

�
=

� n
n� k

�
for all n;k 2 N with k 6 n. C

A very useful application of binomial coef�cients in elementary algebra is to the binomial theorem.

C Theorem 3.2.20 (Binomial theorem)
Let n 2 N andx;y 2 R. Then

(x+ y)n =
n

å
k= 0

�
n
k

�
xkyn� k
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Proof
In the case wheny = 0 we haveyn� k = 0 for all k < n, and so the equation reduces to

xn = xnyn� n

which is true, sincey0 = 1. So for the rest of the proof, we will assume thaty 6= 0.

We will now reduce to the case wheny = 1; and extend to arbitraryy 6= 0 afterwards.

We prove(1+ x)n =
n

å
k= 0

�
n
k

�
xk by induction onn.

� (Base case) (1+ x)0 = 1 and
� 0

0

�
x0 = 1� 1 = 1, so the statement is true whenn = 0.

� (Induction step) Fix n 2 N and suppose that

(1+ x)n =
n

å
k= 0

�
n
k

�
xk

We need to show that(1+ x)n+ 1 =
n+ 1

å
k= 0

�
n+ 1

k

�
xk. Well,

(1+ x)n+ 1

= ( 1+ x)(1+ x)n by laws of indices

= ( 1+ x) �
n

å
k= 0

�
n
k

�
xk by induction hypothesis

=
n

å
k= 0

�
n
k

�
xk + x�

n

å
k= 0

�
n
k

�
xk by expanding(x+ 1)

=
n

å
k= 0

�
n
k

�
xk +

n

å
k= 0

�
n
k

�
xk+ 1 distributingx

=
n

å
k= 0

�
n
k

�
xk +

n+ 1

å
k= 1

�
n

k� 1

�
xk k ! k� 1 in second sum

=
�

n
0

�
x0 +

n

å
k= 1

��
n
k

�
+

�
n

k� 1

��
xk +

�
n
n

�
xn+ 1 splitting the sums

=
�

n
0

�
x0 +

n

å
k= 1

�
n+ 1

k

�
xk +

�
n
n

�
xn+ 1 by De�nition 3.1.15

=
�

n+ 1
0

�
x0 +

n

å
k= 1

�
n+ 1

k

�
xk +

�
n+ 1
n+ 1

�
xn+ 1 see(� ) below

=
n+ 1

å
k= 0

�
n+ 1

k

�
xk

The step labelled(� ) holds because
�

n
0

�
= 1 =

�
n+ 1

0

�
and

�
n
n

�
= 1 =

�
n+ 1
n+ 1

�
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By induction, we've shown that(1+ x)n =
n

å
i= 0

�
n
k

�
xk for all n 2 N.

Wheny 6= 0 is not necessarily equal to 1, we have that

(x+ y)n = yn �
�

1+
x
y

� n

= yn �
n

å
k= 0

�
n
k

� �
x
y

� k

=
n

å
k= 0

�
n
k

�
xkyn� k

The middle equation follows by what we just proved; the leftmost and rightmost equations are simple
algebraic rearrangements. �

0 Example 3.2.21
In Example 3.2.15 we saw that

n

å
k= 0

�
n
k

�
= 2n

This follows quickly from the binomial theorem, since

2n = ( 1+ 1)n =
n

å
k= 0

�
n
k

�
� 1k � 1n� k =

n

å
k= 0

�
n
k

�

Likewise, in Exercise 3.2.16 you proved that the alternating sum of binomial coef�cients is zero;
that is, forn 2 N, we have

n

å
k= 0

(� 1)k
�

n
k

�
= 0

The proof is greatly simpli�ed by applying the binomial theorem. Indeed, by the binomial theorem,
we have

0 = 0n = ( � 1+ 1)n =
n

å
k= 0

�
n
k

�
(� 1)k1n� k =

n

å
k= 0

(� 1)k
�

n
k

�

Both of these identities can be proved much more elegantly, quickly and easily usingenumerative
combinatorics. This will be the topic covered in Section 6.2. C
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Section 3.3

Strong induction

Consider the following example, which we will attempt to prove by induction.

0 Example 3.3.1
De�ne a sequence recursively by

b0 = 1 and bn+ 1 = 1+
n

å
k= 0

bk for all n 2 N

We will attempt to prove by induction thatbn = 2n for all n 2 N.

� (Base case) By de�nition of the sequence we haveb0 = 1 = 20. So far so good.

� (Induction step) Fix n 2 N, and suppose thatbn = 2n. We need to show thatbn+ 1 = 2n+ 1.

Well, bn+ 1 = 1+
n

å
k= 0

bk = : : : uh oh.

Here's what went wrong. If we could replace eachbk by 2k in the sum, then we'd be able to complete
the proof. However we cannot justify this substitution: our induction hypothesis only gives us
information aboutbn, not about a general termbk for k < n. C

The strong induction principle looks much like the weak induction principle, except that its in-
duction hypothesis is more powerful. Despite its name, strong induction is no stronger than weak
induction; the two principles are equivalent. In fact, we'll prove the strong induction principleby
weak induction!

C Theorem 3.3.2 (Strong induction principle)
Let p(x) be a statement about natural numbers and letn0 2 N. If

(i) p(n0) is true; and

(ii) For all n 2 N, if p(k) is true for alln0 6 k 6 n, thenp(n+ 1) is true;

thenp(n) is true for alln > n0.

Proof
For eachn > n0, let q(n) be the assertion thatp(k) is true for alln0 6 k 6 n.

Notice thatq(n) implies p(n) for all n > n0, since givenn > n0, if p(k) is true for alln0 6 k 6 n,
then in particularp(k) is true whenk = n.

So it suf�ces to proveq(n) is true for alln > n0. We do so by weak induction.

� (Base case) q(n0) is equivalent top(n0), since the only natural numberk with n0 6 k 6 n0 is n0
itself; henceq(n0) is true by condition (i).

� (Induction step) Let n > n0 and supposeq(n) is true. Thenp(k) is true for alln0 6 k 6 n.
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134 Chapter 3. Mathematical induction

We need to prove thatq(n+ 1) is true—that is, thatp(k) is true for alln0 6 k 6 n+ 1. But we
know p(k) is true for alln0 6 k 6 n—this is the induction hypothesis—and thenp(n+ 1) is true
by condition (ii). So we have thatp(k) is true for alln0 6 k 6 n+ 1 after all.

By induction,q(n) is true for alln > n0. Hencep(n) is true for alln > n0. �

v Strategy 3.3.3 (Proof by strong induction)
In order to prove a proposition of the form8n > n0; p(n), it suf�ces to prove thatp(n0) is true and
that, for alln > n0, if p(k) is true for alln0 6 k 6 n, thenp(n+ 1) is true.

Like with weak induction, we can illustrate how strong induction works diagrammatically. The
induction hypothesis, represented by the large square, now encompassesp(k) for all n0 6 k 6 n,
wherep(n0) is the base case.

n0 n0 + 1 � � � n� 1 n n+ 1

Observe that the only difference from weak induction is the induction hypothesis.

� Weak induction step: Fix n > n0, assumep(n) is true , derivep(n+ 1);

� Strong induction step: Fix n > n0, assumep(k) is true for alln0 6 k 6 n , derivep(n+ 1).

We now use strong induction to complete the proof of Example 3.3.1.

0 Example 3.3.4 (Example 3.3.1 revisited)
De�ne a sequence recursively by

b0 = 1 and bn+ 1 = 1+
n

å
k= 0

bk for all n 2 N

We will prove by strong induction thatbn = 2n for all n 2 N.

� (Base case) By de�nition of the sequence we haveb0 = 1 = 20.

� (Induction step) Fix n 2 N, and suppose thatbk = 2k for all k 6 n. We need to show thatbn+ 1 =
2n+ 1. This is true, since

bn+ 1 = 1+
n

å
k= 0

bk by the recursive formula forbn+ 1

= 1+
n

å
k= 0

2k by the induction hypothesis

= 1+ ( 2n+ 1 � 1) by Exercise 3.2.5

= 2n+ 1
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By induction, it follows thatbn = 2n for all n 2 N. C

The following theorem adapts the strong induction principle to proofs where we need to refer to a
�xed number of previous steps in our induction step.

C Theorem 3.3.5 (Strong induction principle (multiple base cases))
Let p(n) be a logical formula with free variablen 2 N and letn0 < n1 2 N. If

(i) p(n0); p(n0 + 1); : : : ; p(n1) are all true; and

(ii) For all n > n1, if p(k) is true for alln0 6 k 6 n, thenp(n+ 1) is true;

thenp(n) is true for alln > n0.

Proof
The fact thatp(n) is true for alln > n0 follows from strong induction. Indeed:

� (Base case) p(n0) is true by (i);

� (Induction step) Fix n > n0 and assumep(k) is true for alln0 6 k 6 n. Then:

� If n < n1, thenn+ 1 6 n1, so thatp(n) is true by (i);

� If n > n1, thenp(n+ 1) is true by (ii).

In both cases we see thatp(n+ 1) is true, as required.

Thus by strong induction, we have thatp(n) is true for alln > n0. �

v Strategy 3.3.6 (Proof by strong induction with multiple base cases)
In order to prove a statement of the form8n > n0; p(n), it suf�ces to provep(k) for all k 2 f n0;n0 +
1; : : : ;n1g, wheren1 > n0, and then givenn > n1, assumingp(k) is true for alln0 6 k 6 n, prove that
p(n+ 1) is true.

This kind of strong induction differs from the usual kind in two main ways:

� There are multiple base casesp(n0); p(n0 + 1); : : : ; p(n1), not just one.

� The induction step refers to both the least base casen0 and the greatest base casen1: the variable
n in the induction step is taken to be greater than or equal ton1, while the induction hypothesis
assumesp(k) for all n0 6 k 6 n.

The following diagram illustrates how strong induction with multiple base cases works.

n0 � � � n1 n1 + 1 � � � n n+ 1
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Note the difference in quanti�cation of variables in the induction step between regular strong induc-
tion and strong induction with multiple base cases:

� One base case.Fix n > n0 and assumep(k) is true for all n0 6 k 6 n.

� Multiple base cases.Fix n > n1 and assumep(k) is true for all n0 6 k 6 n.

Getting the quanti�cation of the variablesn andk in the strong induction step is crucial, since the
quanti�cation affects what may be assumed aboutn andk.

The need for multiple base cases often arises when proving results about recursively de�ned se-
quences, where the de�nition of a general term depends on the values of a �xed number of previous
terms.

0 Example 3.3.7
De�ne the sequence

a0 = 0; a1 = 1; an = 3an� 1 � 2an� 2 for all n > 2

We �nd and prove a general formula foran in terms ofn. Writing out the �rst few terms in the
sequence establishes a pattern that we might attempt to prove:

n 0 1 2 3 4 5 6 7 8
an 0 1 3 7 15 31 63 127 255

It appears thatan = 2n � 1 for all n > 0. We prove this by strong induction, taking the casesn = 0
andn = 1 as our base cases.

� (Base cases) By de�nition of the sequence, we have:

� a0 = 0 = 20 � 1; and

� a1 = 1 = 21 � 1;

so the claim is true whenn = 0 andn = 1.

� (Induction step) Fix n > 1 and assume thatak = 2k � 1 for all 06 k 6 n. We need to prove that
an+ 1 = 2n+ 1 � 1.

Well sincen > 1, we haven+ 1 > 2, so we can apply the recursive formula toan+ 1. Thus

an+ 1 = 3an � 2an� 1 by de�nition of an+ 1

= 3(2n � 1) � 2(2n� 1 � 1) by induction hypothesis

= 3� 2n � 3� 2� 2n� 1 + 2 expanding

= 3� 2n � 3� 2n + 2 using laws of indices

= 2� 2n � 1 simplifying

= 2n+ 1 � 1 using laws of indices

So the result follows by induction. C

The following exercises have proofs by strong induction with multiple base cases.
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. Exercise 3.3.8
De�ne a sequence recursively bya0 = 4, a1 = 9 andan = 5an� 1 � 6an� 2 for all n > 2. Prove that
an = 3� 2n + 3n for all n 2 N. C

. Exercise 3.3.9
TheTribonacci sequenceis the sequencet0; t1; t2; : : : de�ned by

t0 = 0; t1 = 0; t2 = 1; tn = tn� 1 + tn� 2 + tn� 3 for all n > 3

Prove thattn 6 2n� 3 for all n > 3. C

. Exercise 3.3.10
The Frobenius coin problemasks when a given amount of money can be obtained from coins of
given denominations. For example, a value of 7 dubloons cannot be obtained using only 3 dubloon
and 5 dubloon coins, but for alln > 8, a value ofn dubloonscanbe obtained using only 3 dubloon
and 5 dubloon coins. Prove this. C

Well-ordering principle

The underlying reason why we can perform induction and recursion on the natural numbers is be-
cause of the way they are ordered. Speci�cally, the natural numbers satisfy thewell-ordering prin-
ciple: if a set of natural numbers has at least one element, then it has a least element. This sets the
natural numbers apart from the other number sets; for example,Z has no least element, since ifa2 Z
thena� 1 2 Z anda� 1 < a.

C Theorem 3.3.11 (Well-ordering principle)
Let X be a set of natural numbers. IfX is inhabited, thenX has a least element.

Idea of proof
Under the assumption thatX is a set of natural numbers, the proposition we want to prove has the
form p ) q. Namely

X is inhabited ) X has a least element

AssumingX is inhabited doesn't really give us much to work with, so let's try the contrapositive:

X has no least element ) X is empty

The assumption thatX has no least elementdoesgive us something to work with. Under this as-
sumption we need to deduce thatX is empty.

We will do this by `forcingX up' by strong induction. Certainly 062X, otherwise it would be the
least element. If none of the numbers 0;1; : : : ;n are elements ofX then neither cann+ 1 be, since if
it were thenit would be the least element ofX. Let's make this argument formal.

Proof
Let X be a set of natural numbers containing no least element. We prove by strong induction that
n 62X for all n 2 N.

� (Base case) 0 62X since if 02 X then 0 must be the least element ofX, as it is the least natural
number.

137



138 Chapter 3. Mathematical induction

� (Induction step) Supposek 62X for all 0 6 k 6 n. If n+ 1 2 X thenn+ 1 is the least element of
X; indeed, if` < n+ 1 then 06 ` 6 n, so` 62X by the induction hypothesis. This contradicts the
assumption thatX has no least element, son+ 1 62X.

By strong induction,n 62X for eachn 2 N. SinceX is a set of natural numbers, and it contains no
natural numbers, it follows thatX is empty. �

The following proof that
p

2 is irrational is a classic application of the well-ordering principle.

C Proposition 3.3.12
The number

p
2 is irrational.

To prove Proposition 3.3.12 we will use the following lemma, which uses the well-ordering principle
to prove that fractions can be `cancelled to lowest terms'.

C Lemma 3.3.13
Let q be a positive rational number. There is a pair of nonzero natural numbersa;b such thatq = a

b
and such that the only natural number which divides botha andb is 1.

Proof
First note that we can expressq as the ratio of two nonzero natural numbers, sinceq is a positive
rational number. By the well-ordering principle, there is aleastnatural numbera such thatq = a

b for
some positiveb 2 N.

Suppose that some natural numberd other than 1 divides botha andb. Note thatd 6= 0, since if
d = 0 then that would implya = 0. Sinced 6= 1, it follows thatd > 2.

Sinced dividesa andb, there exist natural numbersa0;b0such thata = a0d andb = b0d. Moreover,
a0;b0> 0 sincea;b;d > 0. It follows that

q =
a
b

=
a0d
b0d

=
a0

b0

But d > 2, and hence
a0=

a
d

6
a
2

< a

contradicting minimality ofa. Hence our assumption that some natural numberd other than 1 divides
botha andb was false—it follows that the only natural number dividing botha andb is 1. �

We are now ready to prove that
p

2 is irrational.

Proof of Proposition 3.3.12
Suppose

p
2 is rational. Since

p
2 > 0, this means that we can write

p
2 =

a
b

wherea andb are both positive natural numbers. By Lemma 3.3.13, we may assume that the only
natural number dividinga andb is 1.

Multiplying the equation
p

2 = a
b and squaring yields

a2 = 2b2

138



Section 3.3. Strong induction 139

Hencea2 is even. By Proposition 1.1.46,a is even, so we can writea = 2c for somec > 0. Then
a2 = ( 2c)2 = 4c2, and hence

4c2 = 2b2

Dividing by 2 yields
2c2 = b2

and henceb2 is even. By Proposition 1.1.46 again,b is even.

But if a andb are both even, the natural number 2 divides botha andb. This contradicts the fact
that the only natural number dividing botha andb is 1. Hence our assumption that

p
2 is rational is

incorrect, and
p

2 is irrational. �

v Writing tip
In the proof of Proposition 3.3.12 we could have separately proved thata2 being even impliesa
is even, and thatb2 being even impliesb is even. This would have required us to repeat the same
proof twice, which is somewhat tedious! Proving auxiliary results separately (as in Lemma 3.3.13)
and then quoting them in later theorems can improve the readability of the main proof, particularly
when the auxiliary results are particularly technical. Doing so also helps emphasise the important
steps. C

. Exercise 3.3.14
What goes wrong in the proof of Proposition 3.3.12 if we try instead to prove that

p
4 is irrational?

C

. Exercise 3.3.15
Prove that

p
3 is irrational. C
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Section 3.E

Chapter 3 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Recursive de�nitions

In Questions 3.1 to 3.5, use the recursive de�nitions of addition, multiplication and exponentiation
directly to prove the desired equation.

3.1. 1+ 3 = 4

3.2. 0+ 5 = 5

3.3. 2� 3 = 6

3.4. 0� 5 = 0

3.5. 23 = 8

3.6. Give a recursive de�nition of new quanti�ers9= n for n2 N, where given a setX and a predicate
p(x), the logical formula9= nx 2 X; p(x) means `there are exactlyn elementsx 2 X such thatp(x)
is true'. That is, de�ne9= 0, and then de�ne9= n+ 1 in terms of9= n.

3.7. Use the recursive de�nition of binomial coef�cients (De�nition 3.1.15) to prove directly that�
4
2

�
= 6.

3.8. (a) Find the number of trailing 0s in the decimal expansion of 41!.

(b) Find the number of trailing 0s in the binary expansion of 41!.

3.9. Let N be a set, letz2 N and lets: N ! N. Prove that(N;z;s) is a notion of natural numbers (in
the sense of De�nition 3.1.1) if and only if, for every setX, every elementa 2 X and every function
f : X ! X, there is a unique functionh : N ! X such thath(z) = a andh� f = s� h.

Proofs by induction

3.10. Let a 2 N and assume that the last digit in the decimal expansion ofa is 6. Prove that the last
digit in the decimal expansion ofan is 6 for all n > 1.

3.11. Let f : R ! R be a function such thatf (0) > 0 andf (x+ y) = f (x) f (y) for all x;y 2 R. Prove
that there is some positive real numbera such thatf (x) = ax for all rational numbersx..
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Section 4.1

Relations

Many interesting results or concepts in mathematics arise from observing how the elements of one
set interact with the elements of another set, or how elements of a single set interact with each other.
We can make this idea of `interaction' precise using the notion of arelation.

F De�nition 4.1.1
Let X andY be sets. A (binary) relation from X to Y is a logical formulaR(x;y) with two free
variablesx 2 X andy 2 Y. We callX thedomain of R andY thecodomainof R.

A relationR is homogeneousif it has the same domain and codomainX, in which case we say that
R is a relationon X.

Givenx 2 X andy 2 Y, if R(x;y) is true then we say `x is related to y by R', and writex R y(LATEX
code:x \mathrel{R} y ).

0 Example 4.1.2
We have already seen many examples of relations.

� Divisibility (` x dividesy') is a relation onZ.

� The inequality relation6 is a relation onR.

� For any setX, equality= is a relation onX.

� Logical equivalence� is a relation on the set of all logical formulae.

� For any setX, the subset relation� is a relation onP (X).

These relations were all homogeneous, but not all relations are:

� For any setX, the elementhood relation2 is a relation fromX to P (X).

� Every function f : X ! Y induces a relationRf from X to Y, de�ned by takingx Rf y to mean
f (x) = y.

C

. Exercise 4.1.3
Give three more examples of relations, not all of which are homogeneous. C

Like with sets and functions, we must determine when to declare that two relations are equal. For
example, consider the relationRonR de�ned for a;b 2 R by lettinga R bmean9x 2 R; a+ x2 = b.
It so happens thataRbif and only if a 6 b—we'll prove this in Example 4.1.5. So shouldRbe equal
to 6 ? On the one hand you might say `yes', since6 andRrelate the same pairs of real numbers. On
the other hand you might say `no', since the fact that6 andR relate the same pairs of real numbers
was not immediate and required proof. In fact, if we were to replaceR by Q, it then6 andRwould
not relate the same pairs of elements, since for instance 06 2 but there is no rational numberx such
that 0+ x2 = 2.

142



Section 4.1. Relations 143

But as with sets and functions, we settle for theextensionalnotion of equality: just as two sets are
equal when they have the same elements (Axiom 2.1.22), and two functions are equal when they
have the same values (Axiom 2.2.4), we consider two relations to be equal when they relate the
same pairs of elements (Axiom 4.1.4).

C Axiom 4.1.4 (Relation extensionality)
Let R andSbe relations. ThenR= Sif and only if R andShave the same domainX and codomain
Y, and

8x 2 X; 8y 2 Y; (x R y, x S y)

That is, two relations with the same domain and codomain are equal precisely when they relate the
same pairs of elements.

0 Example 4.1.5
Recall the relationRonR that we de�ned above fora;b 2 R by lettinga R bif and only if a+ x2 = b
for somex 2 R. To see thatR= 6 , note thata+ ( b� a) = b, and thatb� a is the square of a real
number if and only ifb� a > 0, which occurs if and only ifa 6 b. C

. Exercise 4.1.6
Let R andSbe relations onR de�ned for a;b 2 R by letting

a R b , b� a 2 Q and a S b , 9 n 2 Z; (n 6= 0) ^ n(b� a) 2 Z

Prove thatR= S. C

The true reason why Axiom 4.1.4 is powerful is that it allows us to reason about relations entirely
set theoretically by working with theirgraphs—the sets of pairs of elements that they relate—rather
than with the particular formulae de�ning the relation.

F De�nition 4.1.7
Let R be a relation from a setX to a setY. The graph of R is the set Gr(R) (LATEX code:
\mathrm{Gr}{R} ) of pairs(x;y) 2 X � Y for whichx R y. That is

Gr(R) = f (x;y) 2 X � Y j x R yg � X � Y

0 Example 4.1.8
The graph of the relation6 on [3] is

f (1;1); (1;2); (1;3); (2;2); (2;3); (3;3)g

Likewise, the graph of the relation6 viewed as a relation from[2] to [4] is

f (1;1); (1;2); (1;3); (1;4); (2;2); (2;3); (2;4)g

This demonstrates that the graph of a relation is sensitive to the domain (and codomain) of the
relation. C

0 Example 4.1.9
Consider the relationC from R to R de�ned byx C y, x2 + y2 = 1. Then

Gr(C) = f (x;y) 2 R � R j x2 + y2 = 1g

Plotting Gr(C) on a standard pair of axes yields a circle with radius 1 centred at the point(0;0),
shown below with a unit grid.
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x

y

Note that Gr(C) is not the graph of a functionf : [0;1] ! R, since for example both(0;1) and(0; � 1)
are elements of Gr(C), the valuef (0) would not be uniquely de�ned. C

. Exercise 4.1.10
Let R be the relation onZ de�ned for x;y 2 Z by lettingx R yif and only if x2 = y2. Describe its
graph Gr(R) � Z � Z. C

. Exercise 4.1.11
Let f : X ! Y be a function, and de�ne the relationRf from X to Y as in Example 4.1.2. Prove that
Gr(Rf ) = Gr( f )—that is, the graph of therelation Rf is equal to the graph of thefunction f. C

F De�nition 4.1.12
Thediscrete relation from a setX to a setY is the relationDX;Y de�ned by lettingx DX;Y y be true
for all x;y 2 X.

Theempty relation from a setX to a setY is the relation? X;Y (LATEX code:\varnothing ) de�ned
by lettingx ? X;Y y be false for allx;y 2 X.

. Exercise 4.1.13
Let X andY be sets. Describe the graphs Gr(DX;Y) and Gr(? X;Y). C

It turns out that, for �xed setsX andY, relations fromX toY correspond with subsets ofX � Y—see
Theorem 4.1.14 below. This fact is so convenient that many (if not most) authors actually de�ne
`relation fromX to Y' to mean `subset ofX � Y'.

C Theorem 4.1.14
Let X andY be sets. Every subsetG � X � Y is the graph of a unique relationR from X to Y.

Proof
Fix G � X � Y. De�ne a relationR by

8x 2 X; 8y 2 Y; x Ry, (x;y) 2 G

144



Section 4.1. Relations 145

Then certainlyG = Gr(R), since for allx 2 X andy 2 Y we have

(x;y) 2 G , x R y , (x;y) 2 Gr(R)

Moreover, ifSis a relation fromX to Y such thatG = Gr(S), then, for allx 2 X andy 2 Y

x S y, (x;y) 2 Gr(S) , (x;y) 2 G , x R y

soS= R.

Hence there is exactly one relation fromX to Y whose graph isG. �

Theorem 4.1.14 suggests that, for the purposes of de�ning relations and proving that relations are
equal, we may work entirely set theoretically with the graphs of the relations.

v Strategy 4.1.15 (Relations as graphs)
In order to specify a relationR, it suf�ces to specify its domainX, its codomainY, and its graph
Gr(R) � X � Y. Furthermore, in order to prove that two relationsR andS are equal, it suf�ces to
prove that they have the same domain and codomain, and that their graphs are equal.

0 Example 4.1.16
Consider the setG = f (2m+ i;2n+ i) j m;n 2 Z; i 2 f 0;1gg. SinceG � Z � Z, it is the graph of a
(unique) relationRonZ, which is necessarily de�ned fora;b 2 Z by lettinga R bif and only if there
are integersmandn, andi 2 f 0;1g, such thata = 2m+ i andb = 2n+ i. But this says precisely that
a andb both leave the same remainder (namelyi) when divided by 2, so thatR can be described by
saying that, for alla;b 2 Z, we havea R bif and only if a andb are both even or both odd. C

F De�nition 4.1.17
Let X be a set. Thediagonal subsetof X � X is the setDX (LATEX code: \Delta_X ) de�ned by
DX = f (x;x) j x 2 Xg.

To see whyDX is called the `diagonal' subset, try plottingDR � R � R on a standard pair of axes
(like in Example 4.1.9).

. Exercise 4.1.18
Let X be a set. Prove thatDX = Gr(=) . C

Properties of homogeneous relations

Most of the relations of interest to us in this book are homogeneous—that is, relationson a set. In
fact, they broadly fall into one of two categories:equivalence relations, which are relations that
`behave like= '; and order relations, which are relations that `behave like6 '. We will study equi-
valence relations in Section 4.2 and order relations in Section 10.1, but examples of such relations
pop up throughout the book. (In fact, we have already seen several!)

Our task for the rest of this section is to isolate the properties that a relation must satisfy in order to
be classi�ed as an equivalence relation or an order relation.
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To aid with intuition, we will illustrate these properties with diagrams: given a relationR, the fact
thata R bwill be represented diagramatically as follows:

a b

A re�exive relation is one that relates every element of its domain to itself.

F De�nition 4.1.19
A relationR on a setX is re�exive if a R afor all a 2 X.

a

0 Example 4.1.20
Given any setX, the equality relation= onX is re�exive, sincea = a for all a 2 X. C

0 Example 4.1.21
Let Rbe the relation onR de�ned for a;b 2 R by a R bif and only if b� a 2 Q. ThenR is re�exive,
since for alla 2 R, we havea� a = 0 2 Q, so thata R a. C

. Exercise 4.1.22
Let X be a set. Prove that� is a re�exive relation onP (X), but$ is not. C

. Exercise 4.1.23
Prove that the relation `x dividesy' on Z is re�exive. C

The next exercise demonstrates that when determining if a relation is re�exive, we must be careful
to specify its domain.

. Exercise 4.1.24
Let G = f (1;1); (2;2); (3;3)g. Let Rbe the relation on[3] whose graph isG, and letSbe the relation
on [4] whose graph isG. Prove thatR is re�exive, butSis not. C

Symmetric relations are those for which thedirectionof the relation doesn't matter: two elements
are either each related to the other, or not related at all.

F De�nition 4.1.25
A relationR on a setX is symmetric if, for all a;b 2 X, if a R b, thenb R a.

a b

0 Example 4.1.26
Given any setX, the equality relation= on X is symmetric, since for alla;b 2 X, if a = b, then
b = a. C
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0 Example 4.1.27
Let Rbe the relation onR de�ned fora;b2 R by a R bif and only if b� a2 Q. ThenRis symmetric.

To see this, leta;b 2 R and assume thata R b. Thenb� a 2 Q, so thatb� a =
p
q

for somep;q 2 Z

with q 6= 0. But then

a� b = � (b� a) =
� p
q

so thata� b 2 Q. Henceb R a, as required. C

. Exercise 4.1.28
Find all subsetsU � Z such that the relation `x dividesy' on U is symmetric. C

We showed in Exercise 4.1.24 that re�exivity of a relation is sensitive to its domain. The next
exercise demonstrates that symmetry isnotsensitive to the domain—that is, it is anintrinsic property
of the relation.

. Exercise 4.1.29
Let RandSbe relations such that Gr(R) = Gr(S). Note that the domain ofRmight be different from
the domain ofS. Prove thatR is symmetric if and only ifSis symmetric. C

A condition related to symmetry, but in a sense opposite to it, isantisymmetry. It says that the only
way that two elements of a set can each be related to the other is if they are equal.

F De�nition 4.1.30
Let X be a set. A relationRonX is antisymmetric if, for all a;b 2 X, if a R bandb R a, thena = b.

a b ) a = b

A word of warning here is that `antisymmetric' does not mean the same thing as `not symmetric'—
indeed, we we will see, equality is both symmetric and antisymmetric, and many relations are neither
symmetric nor antisymmetric. [Even more confusingly, there is a notion ofasymmetric relation,
which also does not mean `not symmetric'.]

0 Example 4.1.31
Given any setX, the equality relation= on X is antisymmetric, since for alla;b 2 X, if a = b and
b = a, thena = b. C

0 Example 4.1.32
The order relation6 onR is antisymmetric, since for alla;b 2 R, if a 6 b andb 6 a, thena = b. C

. Exercise 4.1.33
Prove that the relation `x dividesy' on N is antisymmetric, but not onZ. C

. Exercise 4.1.34
Let X be a set. Prove that� is an antisymmetric relation onP (X). C

. Exercise 4.1.35
Let X be a set and letRbe a relation onX. Prove thatR is both symmetric and antisymmetric if and
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only if Gr(R) � DX, whereDX is the diagonal subset ofX � X (see De�nition 4.1.17). Deduce that
the only re�exive, symmetric and antisymmetric relation on a setX is the equality relation onX. C

The last property we will study in some detail istransitivity. Transitive relations are those for which
we can skip over intermediate related elements—for example, we can deduce 0< 3 from the facts
that 0< 1 and 1< 2 and 2< 3.

F De�nition 4.1.36
A relationR on a setX is transitive if, for all a;b;c 2 X, if a R bandb R c, thena R c.

a b c

0 Example 4.1.37
Given any setX, the equality relation= onX is transitive since, for alla;b;c 2 X, if a = b andb = c,
thena = c. C

0 Example 4.1.38
Let Rbe the relation onR de�ned for a;b 2 R by a R bif and only if b� a 2 Q. ThenRis transitive.

To see this, leta;b;c 2 R and assume thata R bandb R c. Thenb� a 2 Q andc� b 2 Q, so there
exist p;q; r;s2 Z with q;s6= 0 such that

b� a =
p
q

and c� b =
r
s

It follows that
c� a = ( c� b)+ ( b� a) =

p
q

+
r
s

=
ps+ qr

qs
so thatc� a 2 Q. Hencea R c, as required. C

. Exercise 4.1.39
Let X be a set. Prove that� is a transitive relation onP (X). C

. Exercise 4.1.40
Prove that the relation `x dividesy' on Z is transitive. C

Like symmetry, transitive is an intrinsic property of relations—that is, transitivity is not sensitive to
the domain of the relation—as the next exercise demonstrates.

. Exercise 4.1.41
Let RandSbe relations such that Gr(R) = Gr(S). Note that the domain ofRmight be different from
the domain ofS. Prove thatR is transitive if and only ifSis transitive. C

A fundamental property of transitive relations is that we can prove two elementsa andb are related
by �nding a chain of related elements starting ata and �nishing atb. This is the content of the
following proposition.

C Proposition 4.1.42
Let Rbe a relation on a setX. ThenRis transitive if and only if, for any �nite sequencex0;x1; : : : ;xn
of elements ofX such thatxi� 1 R xi for all i 2 [n], we havex0 R xn.
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Proof
For the sake of abbreviation, letp(n) be the assertion that, for anyn > 1 and any sequence
x0;x1; : : : ;xn of elements ofX such thatxi� 1 R xi for all i 2 [n], we havex0 R xn.

We prove the two directions of the proposition separately.

� () ) SupposeR is transitive. Forn > 1. We provep(n) is true for alln > 1 by induction.

� (Base case) Whenn = 1 this is immediate, since we assume thatx0 R x1.

� (Induction step) Fix n > 1 and supposep(n) is true. Letx0; : : : ;xn;xn+ 1 is a sequence such that
xi� 1 R xi for all i 2 [n+ 1]. We need to prove thatx0 R xn+ 1.
By the induction hypothesis we know thatx0 R xn. By de�nition of the sequence we have
xn R xn+ 1. By transitivity, we havex0 R xn+ 1.

So by induction, we have proved the) direction.

� (( ) Supposep(n) is true for alln > 1. Then in particularp(2) is true, which is precisely the
assertion thatR is transitive.

So we're done. �

That is, Proposition 4.1.42 states that for a transitive relationR on a setX, if x0;x1; : : : ;xn 2 X, then

x0 R x1 R�� � R xn ) x0 R xn

where x̀0 R x1 R�� � R xn' abbreviates the assertion thatxi R xi+ 1 for eachi < n.
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Section 4.2

Equivalence relations and partitions

An equivalence relation on a setX is a relation onX that, to a certain extent,behaves like equality.
That is, equivalence relations give us a way of saying that two elements of a set are `similar', without
having to be equal. As an example, we might be interested in when the base-10 expansions of two
natural numbers end in thesamedigit, or when two �nite sets have thesamenumber of elements.

F De�nition 4.2.1
A relationR on a setX is anequivalence relationif it is re�exive, symmetric and transitive.

To denote a relation that we know (or suspect) is an equivalence relation, we will usually use a
symbol like �̀ ' (LATEX code: \sim ) or �̀ ' (LATEX code: \equiv ) or �̀ ' (LATEX code: \approx )
instead of a letter likeR̀' or `S'.

0 Example 4.2.2
Given any setX, it follows from Examples 4.1.20, 4.1.26 and 4.1.37 that the equality relation= is
an equivalence relation onX. This is a relief, since we motivated equivalence relations by saying
that they are those that behave like equality! C

0 Example 4.2.3
Let R be the relation onR de�ned for a;b 2 R by a R bif and only if b� a 2 Q. Piecing together
Examples 4.1.21, 4.1.27 and 4.1.38, we see thatR is an equivalence relation onR. C

. Exercise 4.2.4
Given a functionf : X ! Y, de�ne a relation� f onX by

a � f b , f (a) = f (b)

for all a;b 2 X. Prove that� f is an equivalence relation onX. C

The equivalence relation in the next exercise comes back with a vengeance in Section 8.2, where we
will use it to compare the sizes of (�nite and) in�nite sets.

. Exercise 4.2.5
Let S be some set whose elements are all sets. (For example, we could takeS = P (X) for some
�xed set X.) De�ne a relation�= (LATEX code: \cong ) on S by lettingU �= V if and only if there
exists a bijectionf : U ! V, for all U;V 2 S . Prove that�= is an equivalence relation onS . C

A �rst look at modular arithmetic

A particularly useful family of equivalence relations is given bycongruenceof integers, which allows
us to domodular arithmetic—this is the topic of Section 5.3. For a �xed integern, this relation
identi�es two integers when they have the same remainder upon division byn (as in Theorem 0.18).
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F De�nition 4.2.6
Fix n 2 Z. Given integersa;b 2 Z, we saya is congruent to b modulo n, and write

a � b modn (LATEX code:a \equiv b \bmod{n} )

if n dividesa� b. If a is not congruent tob modulon, write

a 6� b modn (LATEX code:\not\equiv )

The numbern is called themodulus of the congruence.

Before we prove that congruence is modulon is an equivalence relation for alln2 Z, it is worthwhile
to get a feel for how it works.

0 Example 4.2.7
Let a;b 2 Z. Thena � b mod 2 if and only ifa andb are both even or both odd—that is, if and only
if they have the sameparity.

Indeed, by the division theorem, we can writea = 2k + i and b = 2` + j for somek;` 2 Z and
i; j 2 f 0;1g. Then

b� a = ( 2k+ i) � (2` + j) = 2(k� `)+ ( i � j)

Note thati � j 2 f� 1;0;1g, and soa � b mod 2 if and only ifi = j. But this occurs if and only if
i = j = 0, in which casea andb are both even, ori = j = 1, in which casea andb are both odd. C

0 Example 4.2.8
Let a;b 2 N. Thena � b mod 10 if and only if 10 dividesb� a, which occurs if and only if the last
digit in the decimal expansion ofb� a is 0. But this implies that the decimal expansions ofa andb
have the same last digit. So the relation of congruence modulo 10 onN is the same as the relation of
`having the same last (decimal) digit'. C

. Exercise 4.2.9
Let n 2 Z. Prove that ifn 6= 0, thena � b modn if and only if a andb have the same remainder
when divided byn. C

. Exercise 4.2.10
Let a;b 2 Z. When is it true thata � b mod 0? C

Having got a better feel for how congruence works, we now prove that, for eachn 2 Z, congruence
modulon is an equivalence relation onZ.

C Theorem 4.2.11
Let n 2 Z. Then congruence modulon is an equivalence relation onZ. That is:

(a) a � a modn for all a 2 Z;

(b) For alla;b 2 Z, if a � b modn, thenb � a modn;

(c) For alla;b;c 2 Z, if a � b modn andb � c modn, thena � c modn.

Proof
(a) Leta 2 Z. Note thata� a = 0, which is divisible byn since 0= 0� n, and hencea � a modn.

So congruence modulon is re�exive.
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(b) Leta;b 2 Z and supposea � b modn. Thenn dividesa� b, so thata� b = kn for somek 2 Z.
Henceb� a = � kn, and son dividesb� a, so thatb � a modn as required. So congruence
modulon is symmetric.

(c) Let a;b;c 2 Z and suppose thata � b modn andb � c modn. Thenn divides botha� b and
b� c, so there existk; ` 2 Z such that

a� b = kn and b� c = `n

Hencea� c = ( a � b) + ( b � c) = ( k+ `)n, so thatn dividesa � c. Hencea � c modn, as
required. So congruence modulon is transitive.

Since congruence modulon is re�exive, symmetric and transitive, it is an equivalence relation.�

Equivalence classes

What makes equivalence relations so useful is they give us a way of ignoring information that is
irrelevant to the task at hand.

For example, supposea andb are two very large natural numbers, each with several trillion (decimal)
digits. We want to know what the last digit ofab is. To �nd this out, it would be silly to computeab
and then look at its last digit. Instead, we can observe that the last digit of a product of two integers
depends only on the last digit of each integer—for example, 1527� 9502 has the same last digit as
7� 2 = 14. By using the equivalence relation `has the same last digit as', we are able to ignore the
irrelevant information abouta andb—that is, all but one of their trillions of digits—and simplify the
problem considerably.

To make this precise, we introduce the notion of anequivalence class. For a setX with an equival-
ence relation, the equivalence class of an elementa 2 X will be the set of elements ofX that a is
equivalent to. By working with theequivalence classesof elements ofX, rather than the elements
of X themselves, we are able to regard two equivalent elements as being `the same'.

F De�nition 4.2.12
Let X be a set and let� be an equivalence relation onX. The� -equivalence classof an element
a 2 X is the set[a]� (LATEX code:[x]_{\sim} ) de�ned by

[a]� = f x 2 X j a � xg

The quotient of X by � is the setX=� (LATEX code: X/{\sim} ) of all � -equivalence classes of
elements ofX; that is

X=� = f [a]� j a 2 Xg

v LATEX tip
Putting{ curly brackets} around the command for a symbol like� (\sim ) tells LATEX to consider the
symbolas a symbol, rather than as a connective. Compare the following:

TEX code Output
X/\sim = Y X= � = Y

X/{\sim} = Y X=� = Y
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This is because, without braces, LATEX thinks you're sayingX̀-forward-slash is related to is equal to
Y', which clearly makes no sense; putting braces around\sim signi�es to LATEX that the� symbol
is being considered as an object in its own right, rather than as a connective. C

0 Example 4.2.13
Let � be the relation of congruence modulo 2 onZ. We showed in Example 4.2.7 that, for all
a;b 2 Z we havea � b mod 2 if and only ifa andb have the same parity. But this means that, for all
[a]� is the set of all integers with the same parity asa—that is:

� If a is even, then[a]� is the set of all even integers; and

� If a is odd, then[a]� is the set of all odd integers.

It follows thatZ=� = f [0]� ; [1]� g = f E;Og, whereE is the set of all even integers andO is the set
of all odd integers. C

. Exercise 4.2.14
Let � be the relation of congruence modulo 10 onN. Describe the equivalence classes, and give an
explicit expression of the quotientN=� in list notation. C

0 Example 4.2.15
Let f : X ! Y be a function, and let� f be the equivalence relation onX that we de�ned in Exer-
cise 4.2.4. Givena 2 X, we have

[a]� f = f x 2 X j a � f xg = f x 2 X j f (a) = f (x)g

Thus we have[a]� f = f � 1[f f (a)g]. C

. Exercise 4.2.16
Let f : X ! Y be a function. Prove thatf is injective if and only if each� f -equivalence class has a
unique element, where� f is the equivalence relation de�ned in Exercise 4.2.4. C

The next result demonstrates that an equivalence relation� on a setX `descends' to the equality
relation= on the quotientX=� . This means that if we would rather deal with equality than with the
equivalence relation itself, then we may do so by working inside the quotientX=� rather than in the
setX.

C Theorem 4.2.17
Let � be an equivalence relation on a setX. Then for alla;b 2 X, we havea � b if and only if
[a]� = [ b]� .

Proof
The proof is an exercise in piecing together the properties of equivalence relations.

Fix a;b 2 X.

� () ) Supposea � b. We prove[a]� = [ b]� by double containment.

� (� ) Let x 2 [a]� —thena � x. We are assuming thata � b, so thatb � a by symmetry, and so
b � x by transitivity. Sox 2 [b]� .

� (� ) Let x 2 [b]� —thenb � x. We are assuming thata � b, and soa � x by transitivity. So
x 2 [a]� .

We have shown by double containment that[a]� = [ b]� .
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� (( ) Assume[a]� = [ b]� . We haveb � b by re�exivity, and sob 2 [b]� . But thenb 2 [a]� , so that
a � b, as required.

Soa � b if and only if [a]� = [ b]� . �

For congruence, special terminology and notation exists for equivalence classes and quotients.

F De�nition 4.2.18
Let n 2 Z. Thecongruence classof an integera modulon is de�ned by

[a]n = [ a]� modn = f x 2 Z j a � x modng

The set of all congruence classes modulon is denoted by

Z=nZ = Z=� modn = f [a]n j a 2 Zg

0 Example 4.2.19
Using the terminology of congruence classes, Example 4.2.13 can be rephrased by saying that
Z=2Z = f [0]2; [1]2g. Moreover, Theorem 4.2.17 gives us a more succinct proof: for alla 2 Z,
we havea � 0 mod 2 if and only ifa is even, anda � 1 mod 2 if and only ifa is odd. Therefore for
all a 2 Z, we have[a]2 = [ 0]2 or [a]2 = [ 1]2, and so

Z=2Z = f [a]2 j a 2 Zg = f [0]2; [1]2g

Additionally, [0]2 is the set of all even integers and[1]2 is the set of all odd integers. C

The next exercise generalises the previous one, proving that congruence classes correspond with
remainders.

. Exercise 4.2.20
Let n 2 Z with n 6= 0. Prove that the function

i : f 0; 1; : : : ; jnj � 1g ! Z=nZ

de�ned byi(r) = [ r]n for all 0 6 r < jnj is a bijection. C

Partitions

A partition of a setX is a way of breakingX up into mutually disjoint subsets. They will be an im-
mensely useful tool for counting how many elements a �nite set has in Chapter 6, and will reappear
in Section 8.3 for de�ning arithmetic operations with cardinal numbers.
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F De�nition 4.2.21
A partition of a setX is a collectionU = f Ui j i 2 Ig of subsets ofX such that the following
conditions hold:

(a) For eachi 2 I , the subsetUi is inhabited;

(b) The setsUi for i 2 I arepairwise disjoint—that is,Ui \ U j is empty for alli; j 2 I with i 6= j;

(c)
[

i2 I

Ui = X.

Note that, by contraposition, condition (b) in Exercise 4.2.26 is equivalent to saying that for all
i; j 2 I , if Ui \ U j is inhabited, theni = j—this is useful for verifying pairwise disjointness in proofs.

v Strategy 4.2.22 (Proving a family of subsets forms a partition)
Let X be a set. In order to prove a collectionU � P (X) is a partition ofX, it suf�ces to prove:

(a) EachU 2 U is inhabited;

(b) For allU;V 2 U , if U \ V is inhabited, thenU = V;

(c) For alla 2 X, there is someU 2 U such thata 2 U.

0 Example 4.2.23
We can partitionZ asE[ O, whereE is the set of all even integers andO is the set of all odd integers:

(a) E andO are inhabited, since 02 E and 12 O.

(b) The familyf E;Og is pairwise disjoint if and only ifE \ O is empty; and it is, since no integer
can be both even and odd.

(c) E [ O = Z since every integer is either even or odd.

C

0 Example 4.2.24
The setsf 2n;2n+ 1g for n 2 N form a partition ofN:

(a) 2n 2 f 2n;2n+ 1g for eachn 2 N, so the sets are all inhabited.

(b) Suppose thatm;n 2 N and thatf 2m;2m+ 1g\ f 2n;2n+ 1g is inhabited. Note that 2m6= 2n+ 1
and 2n6= 2m+ 1 by the division theorem (Theorem 5.1.1), so either 2m= 2n or 2m+ 1= 2n+ 1.
But in both cases we see thatm= n. Hence the setsf 2n;2n+ 1g for n 2 N are pairwise disjoint.

(c) Givena 2 N, we havea = 2n+ i, wheren 2 N is the quotient ofa when divided by 2, and
wherei 2 f 0;1g is the remainder ofa when divided by 2. But thena 2 f 2n;2n+ 1g. Thus[

n2N

f 2n;2n+ 1g = N.

C

. Exercise 4.2.25
Let f : X ! Y be a surjection, and de�ne a collectionF of subsets ofX by

F = f f � 1[f bg] j b 2 Yg
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That is,F is the set of subsets ofX given by the preimages of individual elements ofY under f .
Prove thatF is a partition ofX. Where in your proof do you use surjectivity off ? C

. Exercise 4.2.26
Let X be a set and letU = f Ui j i 2 Ig be a family of inhabited subsets ofX. Prove thatU is a
partition ofX if and only if for reacha 2 X, there is a unique setUi 2 U with a 2 Ui . C

. Exercise 4.2.27
If � be an equivalence relation onX, thenX=� is a partitionX. Deduce that, for alla;b 2 X, we
havea � b if and only if [a]� = [ b]� . C

In fact, the converse of Exercise 4.2.27 is also true, as we prove next.

C Proposition 4.2.28
Let X be a set and letU be a partition ofX. ThenU = X=� for exactly one equivalence relation�
onX.

Proof
De�ne a relation� by

x � y , 9 U 2 U ; x 2 U andy 2 U

for all x;y 2 X. That is,x � y if and only if x andy are elements of the same set of the partition. We
check that� is an equivalence relation.

� Re�exivity. Let x 2 X. Thenx 2 U for someU 2 U since
[

U2U

U = X. Hencex � x.

� Symmetry. Let x;y 2 X and supposex � y. Then there is someU 2 U with x 2 U andy 2 U.
But then it is immediate thaty � x.

� Transitivity. Let x;y;z 2 X and suppose thatx � y andy � z. Then there existU;V 2 U with
x;y 2 U andy;z 2 V. Thusy 2 U \ V. SinceU is a partition ofX, its elements are pairwise
disjoint; thus ifU 6= V thenU \ V = ? . HenceU = V. Thusx 2 U andz2 U, sox � z.

The de�nition of � makes it immediate thatX=� = U .

To prove that� is the only such relation, suppose� is another equivalence relation onX for which
X=� = U . Then, givenx;y 2 X, we have:

x � y , 9 U 2 U ; x 2 U ^ y 2 U by de�nition of �

, 9 z2 X; x 2 [z]� ^ y 2 [z]� sinceU = X=�

, 9 z2 X; x � z^ y � z by de�nition of [z]�
, x � y by symmetry and transitivity

So� = � . �

Exercise 4.2.27 and Proposition 4.2.28 prove that equivalence relations and quotients are essentially
the same thing: the quotient of a set by an equivalence relation is a partition of the set, and every
partition of a set is the quotient by a unique equivalence relation!

The following lemma can be skipped over without grave consequences—it is a technical result with
an extremely �ddly proof, but we will use it at a couple of points later in the book. It says that, given
two partitioned sets, if we can pair up the sets in the partition, and pair up the elements in each pair
of paired-up partitions, then we can pair up the elements of each set.
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C Lemma 4.2.29
Let X andY be sets, letf Ui j i 2 Ig be a partition ofX and letf Vj j j 2 Jg be a partition ofY. If there
exists:

� A bijection f : I ! J; and

� For eachi 2 I , a bijectiongi : Ui ! Vf (i) ;

then there exists a bijectionh : X ! Y.

Proof
Given a 2 X, let i(a) be the unique element ofI such thata 2 Xi(a) . Note that this is valid since
f Xi j i 2 Ig is a partition ofX. Likewise, givenb 2 Y, let j(b) be the unique element ofJ such that
b 2 Yj(b) .

De�ne h : X ! Y by h(a) = gi(a)(a) for all a 2 X. This is well-de�ned since

h(a) = gi(a)(a) 2 Yf (i(a)) � Y

This also shows thatj(h(a)) = f (i(a)) .

Now de�ne k : Y ! X by k(b) = g� 1
f � 1( j(b))

(b) for all b 2 Y. Thenk is well-de�ned: indeed,gf � 1( j(b))

is a function fromU f � 1( j(b)) to Vj(b) , and so

k(b) = g� 1
f � 1( j(b)) (b) 2 U f � 1( j(b)) � X

This also shows thati(k(b)) = f � 1( j(b)) .

Thenk is an inverse forh. To see this, leta 2 X; then

k(h(a)) = g� 1
f � 1( j(h(a))) (h(a)) by de�nition of k

= g� 1
f � 1( f (i(a))) (h(a)) since j(h(a)) = f (i(a))

= g� 1
i(a)(h(a)) since f � 1 � f = idI

= g� 1
i(a)(gi(a)(a)) by de�nition of h

= a sinceg� 1
i(a) � gi(a) = idXi(a)

A similarly tedious computation reveals thath(k(b)) = b for all b 2 Y:

h(k(b)) = gi(k(b)) (k(b)) by de�nition of h

= gf � 1( j(b)) (k(b)) sincei(k(b)) = f � 1( j(b))

= gf � 1( j(b)) (g
� 1
f � 1( j(b)) (b)) by de�nition of k

= b sincegf � 1( j(b)) � g� 1
f � 1( j(b)) = idYj(b)

Sok is an inverse forh, as required. �

. Exercise 4.2.30
Let X andY be sets, let� be an equivalence relation onX and let� be an equivalence relation on
Y. Assume that there is a bijectionp : X=� ! Y=� , and for each equivalence classE 2 X=� there
is a bijectionhE : E ! p(E). Use Lemma 4.2.29 to prove that there is a bijectionh : X ! Y. C
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The quotient function

We will now show that equivalence relations on a setX are essentially the same thing assurjections
from X to another set.

F De�nition 4.2.31
Let X be a set and let� be an equivalence relation onX. The quotient function for � is the
functionq� : X ! X=� de�ned byq(a) = [ a]� for eacha 2 X. That is, the quotient function sends
each element ofX to its � -equivalence class.

0 Example 4.2.32
Recall that, givena2 Z, we have[a]2 = [ 0]2 if a is even, and[a]2 = [ 1]2 is a is odd. Thus the quotient
functionq2 : Z ! Z=2Z can be viewed as telling us the parity of an integer. C

. Exercise 4.2.33
Let n 2 Z with n 6= 0. Describe the quotient functionqn : Z ! Z=nZ in terms of remainders. C

. Exercise 4.2.34
Let � be an equivalence relation on a setX. Prove that the quotient functionq� : X ! X=� is
surjective. C

The theorem we prove next can be viewed as the converse to Exercise 4.2.34. It proves that every
surjection `is' a quotient function, in the sense that given any surjectionp : X ! A, we can viewA as
a quotient ofX by a suitably-de�ned equivalence relation, and thenp `is' the corresponding quotient
function.

C Theorem 4.2.35
Let X be a set. Then for every setA and every surjectionp : X ! A, there exist a unique equivalence
relation� onX and bijectionf : X=� ! A such thatf ([x]) = p(x) for all x 2 X.

Proof
Let A be a set andp : X ! A be a surjection.

� (Existence) De�ne a relation� onX by x � y if and only if p(x) = p(y). Then� is an equivalence
relation by Exercise 4.2.4.

Moreover, givenx 2 X, we have

[x]� = f y 2 X j p(x) = p(y)g = p� 1[f p(x)g]

So de�ne f : X=� ! A by letting f ([x]� ) = p(x). Thenf is well-de�ned, since if[x]� = [ y]� then
x � y, so thatp(x) = p(y).

Furthermore,f is a bijection:

� (Injectivity ) Let [x]� ; [y]� 2 X=� and assumef ([x]� ) = f ([y]� ). Then p(x) = p(y), so that
x � y, and hence[x]� = [ y]� .

� (Surjectivity ) Let a 2 A. Sincep is a surjection, there is somex 2 X such thatp(x) = a. But
then f ([x]� ) = p(x) = a.

So we have established that there exist an equivalence relation� onX and a bijectionf : X=� ! A
such thatf ([x]� ) = p(x) for all x 2 X.
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� (Uniqueness) Suppose� is another equivalence relation onX and thatg : X=� ! A is a bijection
such thatg([x]� ) = p(x) for all x 2 X. We prove that� = � , and then thatg = f , so that� and f
are unique.

So letx;y 2 X. Then

x � y , p(x) = p(y) by de�nition of �

, g([x]� ) = g([y]� ) by de�nition of g

, [x]� = [ y]� sinceg is bijective

, x � y by Exercise 4.2.27

It follows that� = � , and then for allx 2 X we have

f ([x]� ) = p(x) = g([x]� ) = g([x]� )

so thatf = g, as required.

�

In light of Theorem 4.2.35, we have now established the equivalence of three notions for a given set
X:

equivalence relations
onX

partitions
of X

surjections with
domainX

. Exercise 4.2.36
Give an explicit description of the dashed arrow in the above diagram. That is, describe the corres-
pondence between partitions of a setX and surjections whose domain isX. C
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Section 4.E

Chapter 4 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Properties of relations

4.1. For each of the eight subsets

P � f re�exive;symmetric; transitiveg

�nd a relation satisfying (only) the properties inP.

4.2. Prove that ifR is a symmetric, antisymmetric relation on a setX, then it is a subrelation of the
equality relation—that is, Gr(R) � Gr(=) .

4.3. A relationRon a setX is left-total if for all x 2 X, there exists somey2 X such thatxRy. Prove
that every left-total, symmetric, transitive relation is re�exive.

Equivalence relations

F De�nition 4.E.1
Let R be a relation on a setX and let f : X ! Y be a function. Thetransport of R along f is
the relationS onY de�ned for c;d 2 Y by lettingc S dif and only if there exista;b 2 X such that
f (a) = c, f (b) = d anda R b. That is

Gr(S) = f ( f (a); f (b)) j a;b 2 X; a R bg

4.4. Let X andY be sets and letf : X ! Y. Prove that if� is an equivalence relation onX, then the
transport of� along f is an equivalence relation onY.

F De�nition 4.E.2
Let R be any relation on a setX. Theequivalence relation generated byR is the relation� R on
X de�ned as follows. Givenx;y 2 X, sayx � R y if and only if for somek 2 N there is a sequence
(a0;a1; : : : ;ak) of elements ofX such thata0 = x, ak = y and, for all 06 i < k, eitherai Rai+ 1 or
ai+ 1Rai .

4.5. Fix n 2 Z and letR be the relation onZ de�ned byxRyif and only if y = x+ n. Prove that� R
is the relation of congruence modulon.

4.6. Let X be a set and letR be the subset relation onP (X). Prove thatU � R V for all U;V � X.

4.7. Let X be a set, �x two distinct elementsa;b 2 X, and de�ne a relationRonX by declaringaRb
only—that is, for allx;y 2 X, we havexRyif and only if x = a andy = b. Prove that the relation� R
is de�ned byx � R y if and only if eitherx = y or f x;yg = f a;bg.
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In Questions 4.8 to 4.11, letR be a relation on a setX, and let� R be the equivalence relation
generated byR (as in De�nition 4.E.2). In these questions, you will prove that� R is the `smallest'
equivalence relation extendingR.

4.8. Prove that� R is an equivalence relation onX.

4.9. Prove thatxRy) x � R y for all x;y 2 X.

4.10. Prove that if� is any equivalence relation onX and xRy) x � y for all x;y 2 X, then
x � R y ) x � y for all x;y 2 X.

4.11. Prove that ifR is an equivalence relation, then� R = R.
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Section 5.1

Division

This section introduces the notion ofdivisibility. As we have already mentioned, it is not always the
case that one integer can divide another. As you read through this section, note that we never use
fractions; everything we do isinternal to Z, and does not require that we `spill over' toQ at any
point. This will help you when you study ring theory in the future, and is a good practice to mimic
in your own work.

The following theorem, called the division theorem, is the crux of everything that is to follow.

C Theorem 5.1.1 (Division theorem)
Let a;b 2 Z with b 6= 0. There exist uniqueq;r 2 Z such that

a = qb+ r and 06 r < jbj

v Strategy
Let's look at the simple case whena > 0 andb > 0. We can always �ndq;r such thata = qb+ r, for
exampleq = 0 andr = a. Moreover, by increasingq we can reducer, since

qb+ r = ( q+ 1)b+ ( r � b)

We will keep doing this until the `remainder' is as small as it can be without being negative. As an
example, consider the case whena = 14 andb = 5. This procedure gives

14= 0� 5+ 14

= 1� 5+ 9

= 2� 5+ 4  least nonnegative remainder

= 3� 5+ ( � 1)

= � � �

This procedure shows that in this case we should takeq = 2 andr = 4, since 14= 2� 5+ 4 and
0 6 4 < j5j.

We can show that such a descending sequence of remainders terminates using the well-ordering
principle, and then we must argue that the quotient and remainder that we obtain are unique.C

Proof
We may assume thatb > 0: if not, replaceb by � b andq by � q. We may also assume thata > 0.
Otherwise, replacea by � a, q by � (q+ 1) andr by b� r.

Thus, what follows assumes thata > 0 andb > 0.

� Existence. We prove that such integersq; r exist by the well-ordering principle. Namely, we
de�ne a sequence(rn)n2N such thata = nb+ rn andr0 > r1 > r2 > � � � , and use this sequence to
�nd the values ofq; r.

� Let r0 = a. Thena = 0b+ r0, as required.
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� Supposern has been de�ned, and letrn+ 1 = rn � b. Then

(n+ 1)b+ rn+ 1 = ( n+ 1)b+ rn � b

= nb+ b+ rn � b

= nb+ r = a

Sinceb > 0, we must havern+ 1 < rn for all n.

Let R= N \ f rn j n 2 Ng. That is,R is the set of terms of the sequence which are non-negative.
Sincer0 = a > 0, we have thatr0 2 Rand henceR is inhabited. By the well-ordering principle,R
has a least elementrk for somek 2 N.

De�ne q = k andr = rk. By construction we havea = qb+ r andr > 0, so it remains to show that
r < b. Well, if r > b thenr � b > 0, butr � b = rk+ 1, so this would implyrk+ 1 2 R, contradicting
minimality of r. Hencer < b, soq;r are as required.

� Uniqueness.Supposeq0; r0 also satisfya = q0b+ r0 and 06 r0< b. If we can show thatr0= r
then this proves thatq = q0: indeed, ifqb+ r = q0b+ r then we can subtractr and then divide by
b, sinceb > 0.

First note thatq0> 0. If q0< 0 thenq06 � 1, so

a = q0b+ r06 � b+ r0

and hencer0> a+ b > b sincea > 0. This contradicts the assumption thatr < b. Soq0> 0.

Sinceq0> 0, we also know thata = q0b+ rq0, and hencer0= rq0 2 R. By minimality of r we have
r 6 r0. It remains to show thatr = r0. If not thenr < r0. Thus

qb+ r = q0b+ r0> q0b+ r ) qb> q0b ) q > q0

and henceq = q0+ t for somet > 1. But then

q0b+ r0= a = qb+ r = ( q0+ t)b+ r = q0b+ ( tb+ r)

sor0= tb+ r > b, contradictingr0< b. Sor = r0as desired, and henceq = q0.

At long last, we are done. �

F De�nition 5.1.2
Let a;b 2 Z with b 6= 0, and letq; r be the unique integers such that

a = qb+ r and 06 r < jbj

We sayq is thequotient andr is theremainder of a divided byb.

0 Example 5.1.3
Some examples of division include:

14= 2� 5+ 4; � 14= � 3� 5+ 1; 15= 3� 5+ 0

C
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F De�nition 5.1.4
Let a;b 2 Z. We sayb divides a, or thatb is adivisor (or factor) of a, if there existsq 2 Z such
thata = qb. To denote the fact thatb dividesa we writeb j a (LATEX code: \mid ). For the negation
: (b j a) write b - a (LATEX code:\nmid ).

Thus, whenb 6= 0, sayingb j a is equivalent to saying that the remainder ofa divided byb is 0.

0 Example 5.1.5
5 divides 15 since 15= 3� 5. However, 5 does not divide 14: we know that the remainder of 14
divided by 5 is 4, not 0—and it can't be both since we proved in the division theorem that remainders
are unique! C

. Exercise 5.1.6
Show that ifa 2 Z then 1j a, � 1 j a anda j 0. For which integersa doesa j 1? For which integersa
does 0j a? C

We now introduce the very basic notion of aunit. This notion is introduced to rule out trivialities.
Units become interesting when talking about general rings, but inZ, the units are very familiar.

F De�nition 5.1.7
Let u 2 Z. We sayu is aunit if u j 1; that is,u is a unit if there existsv 2 Z such thatuv= 1.

C Proposition 5.1.8
The only units inZ are 1 and� 1.

Proof
First note that 1 and� 1 are units, since 1� 1 = 1 and(� 1) � (� 1) = 1. Now suppose thatu 2 Z is a
unit, and letv 2 Z be such thatuv= 1. Certainlyu 6= 0, since 0v = 0 6= 1. If u > 1 or u < � 1 then
v = 1

u 62Z. So we must haveu 2 f� 1;1g. �

Exercise 5.1.6 shows that� 1, 0 and 1 are, from the point of view of divisibility, fairly trivial. For
this reason, most of the results we discuss regarding divisibility will concernnonzero nonunits, i.e.
all integers except� 1, 0 or 1.

Greatest common divisors

F De�nition 5.1.9
Let a;b 2 Z. An integerd is agreatest common divisorof a andb if:

(a) d j a andd j b;

(b) If q is another integer such thatq j a andq j b, thenq j d.

0 Example 5.1.10
2 is a greatest common divisor of 4 and 6; indeed:

(a) 4= 2� 2, and 6= 3� 2, so 2j 4 and 2j 6;

(b) Supposeq j 4 andq j 6. The divisors of 4 are� 1; � 2; � 4 and the divisors of 6 are� 1, � 2, � 3,
� 6. Sinceq divides both, it must be the case thatq 2 f� 2; � 1;1;2g; in any case,q j 2.
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Likewise,� 2 is a greatest common divisor of 4 and 6. C

. Exercise 5.1.11
There are two greatest common divisors of 6 and 15; �nd both. C

We will now prove that greatest common divisorsexist—that is, any two integers have a greatest
common divisor—and that they areunique up to sign.

C Theorem 5.1.12
Every pair of integersa;b has a greatest common divisor.

Proof
First note that ifa = b = 0, then 0 is a greatest common divisor fora andb. Moreover, we may take
a;b to be non-negative, since divisibility is insensitive to sign. So suppose thata;b > 0 and thata;b
are not both zero.

De�ne a setX � Z by
X = f au+ bvj u;v 2 Z; au+ bv> 0g

That is,X is the set of positive integers of the formau+ bv.

X is inhabited. To see this, note thata2 > 0 orb2 > 0 sincea 6= 0 orb 6= 0, so lettingu = a andv = b
in the expressionau+ bv, we see that

au+ bv= a2 + b2 > 0 ) a2 + b2 2 X

By the well-ordering principle,X has a least elementd, and by de�nition ofX there existu;v 2 Z
such thatd = au+ bv.

We will prove thatd is a greatest common divisor fora andb.

� d j a. If a = 0, then this is immediate, so suppose thata > 0. Letq; r 2 Z be such that

a = qd+ r and 06 r < d

Now a = a� 1+ b� 0, soa 2 X, and henced 6 a. Moreover

r = a� qd = a� q(au+ bv) = a(1� qu)+ b(� qv)

If r > 0 then this implies thatr 2 X; but this would contradict minimality ofd, sincer < d. So we
must haver = 0 after all.

� d j b. The proof of this is identical to the proof thatd j a.

� Supposeq is an integer dividing bothaandb. Thenqj au+ bvby Exercise 0.16. Sinceau+ bv= d,
we haveq j d.

Sod is a greatest common divisor ofa andb after all. �

. Exercise 5.1.13
Let a;b 2 Z. If d andd0are two greatest common divisors ofa andb, then eitherd = d0or d = � d0.

C
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v Aside
A consequence of Theorem 5.1.12 and Exercise 5.1.13 is that every pair of integers has a unique
non-negative greatest common divisor! Written symbolically, we can say

8(a;b) 2 Z � Z; 9!d 2 Z;
�

d > 0 andd is a greatest
common divisor fora andb

�

As discussed in Section 2.2, since this is a formula of the form `for all . . . there exists a unique . . . ',
this de�nes a function gcd :Z � Z ! Z. We won't explicitly refer to the fact that gcd is a function;
rather, we'll just concern ourselves with its values, as in Notation 5.1.14. C

Exercise 5.1.13 justi�es our use of the following notation to refer to greatest common divisors.

F Notation 5.1.14
Let a;b 2 Z. Denote by gcd(a;b) (LATEX code:\mathrm{gcd} ) the (unique!) non-negative greatest
common divisor ofa andb.

0 Example 5.1.15
In Example 5.1.10, we saw that both 2 and� 2 are greatest common divisors of 4 and 6. Using
Notation 5.1.14, we can now write gcd(4;6) = 2. C

. Exercise 5.1.16
For eachn 2 Z, let Dn � Z be the set of divisors ofn. Prove thatDa \ Db = Dgcd(a;b) for all a;b 2 Z.

C

Our goal for the rest of this subsection is to investigate the behaviour of greatest common divisors,
�nd out how to compute them, and look into the implications they have for solutions to certain kinds
of equations.

C Theorem 5.1.17
Let a;b;q; r 2 Z, and suppose thata = qb+ r. Then

gcd(a;b) = gcd(b; r)

Proof
Let d = gcd(a;b). We check thatd satis�es the conditions required to be a greatest common divisor
of b andr.

Note thatd j a andd j b, so lets;t 2 Z be such thata = sdandb = td.

� d j b by de�nition, andd j r since

r = a� qb= sd� qtd = ( s� qt)d

� Supposed0j b andd0j r; sayb = ud0andr = vd0with u;v 2 Z. Thend0j a, since

a = qb+ r = qud0+ vd0= ( qu+ v)d0

sod0j d sinced = gcd(a;b).

Sod is a greatest common divisor ofb andr. Sinced > 0, the result is shown. �
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Combined with the division theorem (Theorem 5.1.1), Theorem 5.1.17 gives a relatively fast al-
gorithm for computing the greatest common divisor of two integers, known as theEuclidean al-
gorithm.

v Strategy 5.1.18 (Euclidean algorithm)
Let a;b 2 Z. To compute gcd(a;b), proceed as follows.

� Setr0 = jaj andr1 = jbj.

� Givenrn� 2 andrn� 1, de�ne rn to be the remainder ofrn� 2 divided byrn� 1.

� Stop whenrn = 0; thenrn� 1 = gcd(a;b).

0 Example 5.1.19
We will �nd the greatest common divisor of 148 and 28.

148= 5� 28+ 8

28= 3� 8+ 4

8 = 2� 4 + 0  Stop!

Hence gcd(148;28) = 4. Here the sequence of remainders is given by:

r0 = 148; r1 = 28; r2 = 8; r3 = 4; r4 = 0

C

0 Example 5.1.20
The Euclidean algorithm works surprisingly quickly, even for relatively large numbers. Consider the
problem of computing gcd(1311;5757) for example:

5757= 4� 1311+ 513

1311= 2� 513+ 285

513= 1� 285+ 228

285= 1� 228+ 57

228= 4� 57 + 0  Stop!

Hence gcd(1311;5757) = 57. Here the sequence of remainders is given by:

r0 = 5757; r1 = 1311; r2 = 513; r3 = 285; r4 = 228; r5 = 57; r6 = 0

C

0 Example 5.1.21
Here's an example where one of the numbers is negative: we compute the value of gcd(� 420;76):

� 420= ( � 6) � 76+ 36

76= 2� 36+ 4

36= 9� 4 + 0  Stop!

Hence gcd(� 420;76) = 4. C
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0 Example 5.1.22
Use the Euclidean algorithm to compute the greatest common divisors of the following pairs of
integers

(12;9); (100;35); (7125;1300); (1010;101010); (� 4;14)

C

The following theorem will be useful when we study modular arithmetic in Section 5.3; it is called
a `lemma' for historical reasons, and is really an important result in its own right.

C Theorem 5.1.23 (Bézout's lemma)
Let a;b;c 2 Z, and letd = gcd(a;b). The equation

ax+ by= c

has a solution(x;y) 2 Z � Z if and only if d j c.

Proof
() ) Write a = a0d andb = b0d, for a0;b02 Z. If there existx;y 2 Z such thatax+ by= c, then

c = ax+ by= a0dx+ b0dy= ( a0x+ b0y)d

and sod j c.

(( ) Supposed j c, and letc = kd for somek 2 Z.

If c = 0, then a solution isx = y = 0. If c < 0, thenax+ by= c if and only if a(� x) + b(� y) = � c;
so we may assume thatc > 0.

We proved in Theorem 5.1.12 that a greatest common divisor ofa andb is a least element of the set

X = f au+ bvj u;v 2 Z; au+ bv> 0g

So letu;v 2 Z be such thatau+ bv= d. Then

a(ku)+ b(kv) = k(au+ bv) = kd = c

and so lettingx= kuandy= kv, we see that the equationax+ by= chas a solution(x;y) 2 Z � Z. �

Bézout's lemma completely characterises when the equationax+ by = c has a solution. An easy
generalisation of Bézout's lemma provides a complete characterisation of when solutions tolinear
Diophantine equationsexist, that is equations of the form

ax+ by= c

wherea;b;c 2 Z. We will soon develop an algorithm for computingall solutions to these equations.

0 Example 5.1.24
Here are some examples of applications of Bézout's lemma.

� Consider the equation 1311x + 5757y = 12963. We computed in Example 5.1.20 that
gcd(1311;5757) = 57. But 57- 12963 since 12963= 227� 57+ 24. By Bézout's lemma,
the equation 1311x+ 5757y = 12963 has no integer solutions.
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� For �xed z, the equation 4u+ 6v = zhas solutions exactly whenz is even, since gcd(4;6) = 2.

� For �xed a;b, the equationau+ bv = 0 always has solution. Indeed, settingu = b andv = � a
gives a solution; but we knew one had to exist since by Exercise 5.1.6 we know thatd j 0 for all
d 2 Z.

C

. Exercise 5.1.25
Which of the following equations have solutions?

(a) 12u+ 9v = � 18

(b) 12u+ 9v = 1

(c) 100u+ 35v = 125

(d) 7125u+ 1300v = 0

(e) 1010u+ 101010v = 1010101010101010

(f) 14u� 4v = 12

C

Coprimality

F De�nition 5.1.26
Let a;b2 Z. We saya andb arecoprime (or relatively prime), and writea? b (LATEX code:\perp )
(read à is coprime tob'), if gcd(a;b) = 1.

0 Example 5.1.27
4 ? 9. To see this, note that ifd j 4 then d 2 f� 4; � 2; � 1;1;2;4g, and if d j 9 then
d 2 f� 9; � 3; � 1;1;3;9g. Hence if d j 4 and d j 9, then d = 1 or d = � 1. It follows that
gcd(4;9) = 1. C

. Exercise 5.1.28
Which integers in the set[15] are coprime to 15? C

C Proposition 5.1.29
Let a;b 2 Z. The following are equivalent:

(1) a andb are coprime;

(2) If d 2 Z with d j a andd j b, thend is a unit.

Proof
We prove that condition (1) implies condition (2), and vice versa.

� (1)) (2). Supposea andb are coprime, and �xd 2 Z with d j a andd j b. Thend j gcd(a;b) = 1,
sod is a unit.

� (2)) (1). Suppose condition (2) above holds. We prove that 1 satis�es the conditions required to
be a greatest common divisor ofa andb. The fact that 1j a and 1j b is automatic; and the fact that
if d j a andd j b impliesd j 1 is precisely the condition (2) that we are assuming.
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Hence the two conditions are equivalent. �

. Exercise 5.1.30
Let a andb be integers, not both zero, and letd = gcd(a;b). The integersad and b

d are coprime. C

The following corollary is a specialisation of Bézout's lemma to the case whena andb are coprime.

C Corollary 5.1.31
Let a;b 2 Z. The equationau+ bv= 1 has a solution if and only ifa andb are coprime. Moreover,
if a andb are coprime, then the equationau+ bv= zhas a solution for allz2 Z.

Proof
By Bézout's lemma (Theorem 5.1.23), the equationau+ bv = 1 has a solution if and only if
gcd(a;b) j 1. But the only positive divisor of 1 is 1, so a solution exists if and only if gcd(a;b) = 1,
which is precisely the assertion thata andb are coprime.

If a andb are coprime, then 1= gcd(a;b) j z for all z2 Z. So by Bézout's lemma again, the equation
au+ bv= zhas a solution for allz2 Z. �

A useful consequence of Bézout's lemma is the following result:

C Proposition 5.1.32
Let a;b;c 2 Z. If a andb are coprime anda j bc, thena j c.

Proof
By Bézout's lemma (Theorem 5.1.23) there exist integersu andv such thatau+ bv= 1. Multiplying
by c givesacu+ bcv= c. Sincea j bc, we can writebc= ka for somek 2 Z, and soacu+ kav= c.
But then

(cu+ kv)a = c

which proves thata j c. �

Linear Diophantine equations

We have now seen two important results:

� TheEuclidean algorithm, which was a procedure for computing the greatest common divisor of
two integers.

� Bézout's lemma, which provides a necessary and suf�cient condition for equations of the form
ax+ by= c to have an integer solution.

We will now develop thereverse Euclidean algorithm, which provides a method for computing
a solutions to (bivariate) linear Diophantine equations, when such a solution exists. Then we will
prove a theorem that characterisesall integer solutions in terms of a given solution.

0 Example 5.1.33
Suppose we want to �nd integersx and y such that 327x+ 114y = 18. Running the Euclidean
algorithm yields that gcd(327;114) = 3 — see below. For reasons soon to become apparent, we
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rearrange each equation to express the remainder on its own.

327= 2� 114+ 99 ) 99= 327� 2� 114 (1)

114= 1� 99+ 15 ) 15= 114� 1� 99 (2)

99= 6� 15+ 9 ) 9 = 99� 6� 15 (3)

15= 1� 9+ 6 ) 6 = 15� 1� 9 (4)

9 = 1� 6+ 3 ) 3 = 9� 1� 6 (5)

6 = 2� 3+ 0

We can then express 3 in the form 327u+ 114v by successively substituting the equations into each
other:

� Equation (5) expresses 3 as a linear combination of 6 and 9. Substituting equation (4) yields:

3 = 9� 1� (15� 1� 9) ) 3 = 2� 9� 1� 15

� This now expresses 3 as a linear combination of 9 and 15. Substituting equation (3) yields:

3 = 2� (99� 6� 15) � 1� 15 ) 3 = ( � 13) � 15+ 2� 99

� This now expresses 3 as a linear combination of 15 and 99. Substituting equation (2) yields:

3 = ( � 13) � (114� 1� 99)+ 2� 99 ) 3 = 15� 99� 13� 114

� This now expresses 3 as a linear combination of 99 and 114. Substituting equation (1) yields:

3 = 15� (327� 2� 114) � 13� 114 ) 3 = ( � 43) � 114+ 15� 327

Now that we've expressed 3 as a linear combination of 114 and 327, we're nearly done: we know
that 18= 6� 3, so multiplying through by 6 gives

18= ( � 258) � 114+ 90� 327

Hence(x;y) = ( 90; � 258) is a solution to the equation 327x+ 114y = 18. C

v Proof tip
Let a;b 2 Z and letd = gcd(a;b). To �nd integersx;y such thatax+ by= d:

(i) Run the Euclidean algorithm on the pair(a;b), keeping track of all quotients and remainders.

(ii) Rearrange each equation of the formrn� 2 = qnrn� 1 + rn to isolatern.

(iii) Substitute for the remaindersrk in reverse order until gcd(a;b) is expressed in the formax+ by
for somex;y 2 Z.

This process is called thereverse Euclidean algorithm. C

. Exercise 5.1.34
Find a solution(x;y) 2 Z � Z to the equation 630x+ 385y = 4340. C

Now that we have a procedure for computingonesolution to the equationax+ by= c, we need to
come up with a procedure for computingall solutions. This can be done by proving the following
theorem.
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C Theorem 5.1.35
Let a;b;c 2 Z, wherea and b are not both zero. Suppose thatx0 and y0 are integers such that
ax0 + by0 = c. Then,(x;y) 2 Z � Z is another solution to the equationax+ by= c if and only if

x = x0 + k�
b

gcd(a;b)
and y = y0 � k �

a
gcd(a;b)

for somek 2 Z.

Thus, as soon as we've found one solution(x;y) = ( x0;y0) to the equationax+ by= c, this theorem
tells us what all other solutions must look like.

Proof of Theorem 5.1.35
We prove the two directions separately.

() ). First suppose that(x0;y0) is an integer solution to the equationax+ by= c. Let k 2 Z and let

x = x0 + k�
b

gcd(a;b)
and y = y0 � k �

a
gcd(a;b)

Then

ax+ by

= a
�

x0 + k�
b

gcd(a;b)

�
+ b

�
y0 � k �

a
gcd(a;b)

�
by de�nition of x andy

= ( ax0 + by0) + ak�
b

gcd(a;b)
� kb�

a
gcd(a;b)

rearranging

= ( ax0 + by0) +
kab� kab
gcd(a;b)

combining the fractions

= ax0 + by0 sincekab� kab= 0

= c since(x0;y0) is a solution

so(x;y) is indeed a solution to the equation.

(( ). First suppose thata ? b. Fix a solution(x0;y0) to the equationax+ by= c, and let(x;y) be
another solution. Then

a(x� x0) + b(y� y0) = ( ax0 + by0) � (ax+ by) = c� c = 0

so that
a(x� x0) = b(y0 � y)

Now a andb are coprime, so by Proposition 5.1.32, we havea j y0 � y andb j x� x0. Let k; ` 2 Z be
such thatx� x0 = kbandy0 � y = `a. Then substituting into the above equation yields

a� kb= b� `a

and hence(k� `)ab= 0. Sinceab6= 0, we havek = `, so that

x = x0 + kb and y = y0 � ka

Now we drop the assumption thata ? b. Let gcd(a;b) = d > 1. We know thatd j c, by Bézout's
lemma (Theorem 5.1.23), and so

a
d

x+
b
d

y =
c
d
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is another linear Diophantine equations, and moreovera
d ? b

d by Exercise 5.1.30. By what we proved
above, we have

x = x0 + k�
b
d

and y = y0 � k �
a
d

for somek 2 Z. But this is exactly what we sought to prove! �

0 Example 5.1.36
We know that(x;y) = ( 90; � 258) is a solution to the equation 327x+ 114y = 18, and

327
gcd(327;114)

=
327
3

= 109 and
114

gcd(327;114)
=

114
3

= 38

so this theorem tells us that(x;y) 2 Z � Z is a solution to the equation 327x+ 114y = 18 if and only
if

x = 90+ 38k and y = � 258� 109k

for somek 2 Z. C

. Exercise 5.1.37
Find all integersx;y such that

630x+ 385y = 4340

C

Least common multiples

You would be forgiven for wondering why so much of the foregoing section was devoted to greatest
common divisors, with no mention of least common multiples. We will now give the latter some
attention.

F De�nition 5.1.38
Let a;b 2 Z. An integerm is aleast common multipleof a andb if:

(a) a j m andb j m;

(b) If c is another integer such thata j c andb j c, thenmj c.

The de�nition of least common multiple isdualto that of greatest common divisor (De�nition 5.1.9).
This means that many properties of greatest common divisors have corresponding `dual' properties,
which hold of least common multiples. As such, we will not say much here about least common
multiples, and that which wedosay is in the form of exercises.

. Exercise 5.1.39
Let a;b2 Z. Prove thata andb have a least common multiple. Furthermore, prove that least common
multiples are unique up to sign, in the sense that ifm;m0are two least common multiples ofa andb,
thenm= m0or m= � m0. C

As with greatest common divisors, Exercise 5.1.39 justi�es the following de�nition.
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F De�nition 5.1.40
Givena;b 2 Z, denote by lcm(a;b) (LATEX code: \mathrm{lcm} ) the non-negative least common
multiple ofa andb.

. Exercise 5.1.41
Let a;b 2 Z. Prove that gcd(a;b) � lcm(a;b) = jabj. C
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Section 5.2

Prime numbers

Thinking of divisibility as a way ofbreaking downan integer, for example 12= 2� 2� 3, our goal
now is to show that there are particular integers that areatomic—they are the building blocks of the
integers, in the sense that:

� Every integer can be broken into a product of these atomic integers. . .

� . . . and these atomic integers cannot themselves be broken down any further. . .

� . . .andthere is an essentially unique way to write an integer as a product of these atomic integers.

There are a couple of fairly vague terms used here: `atomic' and `essentially unique'. But as always,
we will make these terms precise when we need to.

Primes and irreducibles

There are two ways that we might want to characterise the so-calledatomic integer that we just
mentioned.

� One way that an integer might be atomic is if it allows us to break down products of integers—this
leads to the notion ofprime(De�nition 5.2.1).

� Another way is that an integer might be atomic is if it cannot be split up as a product of more than
one integer (in a nontrivial way)—this leads to the notion ofirreducible(De�nition 5.2.6).

Conveniently, as we will show in Theorem 5.2.11, these two notions coincide. But the fact that they
coincide is not obvious, and uses essential properties of the integers that do not hold in more general
structures.

The de�nition ofprimethat we are about to give comes from abstract algebra (speci�cally, from ring
theory). It might seem strange, but we will soon be able to show that the more familiar de�nition—
that is, having exactly two positive divisors—is equivalent to this one.

F De�nition 5.2.1
An integerp is (ring theoretically) prime if p is a nonzero nonunit and, for alla;b 2 Z, if p j ab
thenp j a or p j b.

0 Example 5.2.2
2 is prime. To see this, suppose it isn't. Then there exista;b2 Z such that 2j abbut 2 divides neither
a nor b. Thusa andb are both odd, meaning thatab is odd. . . but this contradicts the assumption
that 2j ab.

However, 18 is not prime. Indeed, 18j 12� 15 but 18 divides neither 12 nor 15. C

. Exercise 5.2.3
Using De�nition 5.2.1, prove that 3 and 5 are prime, and that 4 is not prime. C
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0 Example 5.2.4
Let k 2 Z with 0 < k < 5. We'll show that 5j

� 5
k

�
.

Well, by Theorem 3.2.17 we know that

5! =
�

5
k

�
k!(5� k)!

By De�nition 3.1.14, we have

5� 4!| {z }
= 5!

=
�

5
k

�
� 1� � � � � k| {z }

= k!

� 1� � � � � (5� k)
| {z }

=( 5� k)!

Since 5 is prime, it must divide one of the factors on the right-hand side of this equation. Thus,
either 5 divides

� 5
k

�
, or it divides` for some 16 ` 6 k or 16 ` 6 5� k. But k < 5 and 5� k < 5, so

it cannot divide any of these values of`—if it did, it would imply 5 6 ` 6 k or 56 ` 6 5� k, which
is nonsense. Hence 5 must divide

� 5
k

�
. C

. Exercise 5.2.5
Let p 2 Z be a positive prime and let 0< k < p. Show thatp j

� p
k

�
. C

We now arrive at our second notion ofatomic, capturing the idea that it should not be possible to
break an atomic integer into smaller parts.

F De�nition 5.2.6
An integera is irreducible if a is a nonzero nonunit and, for allm;n 2 Z, if a = mn, then eitherm
or n is a unit. Otherwise,a is reducible.

The notion ofirreducible captures more closely the more familiar notion of `prime', as the next
result shows.

C Proposition 5.2.7
Let p 2 Z be a nonzero nonunit. Thenp is irreducible if and only if the only divisors ofp arep, � p,
1 and� 1.

Proof
Supposep is irreducible and thata j p. Thenp = ab for someb 2 Z. Sincep is irreducible, eithera
or b is a unit. Ifa is a unit thenb = � p, and ifb is a unit thena = � p. So the only divisors ofp are
� 1 and� p.

Conversely, suppose that the only divisors ofp are� 1 and� p, and leta;b 2 Z with p = ab. We
want to prove thata or b is a unit. Sincea j p, we havea 2 f 1; � 1; p; � pg. If a = � 1, thena is a
unit; if a = � p, thenb = � 1, so thatb is a unit. In any case, eithera or b is a unit, and hencep is
irreducible. �

0 Example 5.2.8
A couple of examples of reducible and irreducible numbers are:

� 2 is irreducible: if 2= mnthen eithermor n is even, otherwise we'd be expressing an even number
as the product of two odd numbers. We may assumemis even, saym= 2k; then 2= 2kn, sokn= 1
and hencen is a unit.
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� 20 is reducible since 20= 4� 5 and neither 4 nor 5 is a unit.

C

. Exercise 5.2.9
Let p 2 Z. Prove that ifp is ring theoretically prime, thenp is irreducible. C

C Lemma 5.2.10
Let a 2 Z be a nonzero nonunit. Then there are irreduciblesp1; : : : ; pn such thata = p1 � � � � � pn.

Proof
We may assumea > 0, since ifa < 0 we can just multiply by� 1.

We proceed by strong induction ona > 2. The base case hasa = 2 since we consider only nonunits.

� (Base case) We have shown that 2 is irreducible, so settingp1 = 2 yields a product of primes.

� (Induction step) Let a > 2 and suppose that each integerk with 2 6 k 6 a has an expression as a
product of irreducibles. Ifa+ 1 is irreducible then we're done; otherwise we can writea+ 1 = st,
wheres;t 2 Z are nonzero nonunits. We may assume further thats andt are positive. Moreover,
s< a+ 1 andt < a+ 1 sinces;t > 2.

By the induction hypothesis,sandt have expressions as products of irreducibles. Write

s= p1 � � � � � pm and t = q1 � � � � � qn

This gives rise to an expression ofa as a product of irreducibles:

a = st = p1 � � � � � pm| {z }
= s

� q1 � � � � � qn| {z }
= t

The result follows by induction. �

C Theorem 5.2.11
Let p 2 Z. Thenp is ring theoretically prime if and only ifp is irreducible.

Proof
We prove the two directions separately.

� Prime ) irreducible. This was Exercise 5.2.9.

� Irreducible ) prime. Supposep is irreducible. Leta;b 2 Z and supposep j ab. We need to
show thatp j a or p j b. It suf�ces to show that ifp - a thenp j b.

So supposep - a. Let d = gcd(p;a). Sinced j p andp is irreducible, we must haved = 1 ord = p
by Proposition 5.2.7. Sincep - a andd j a, we must therefore haved = 1.

By Bézout's lemma (Theorem 5.1.23), there existu;v 2 Z such thatau+ pv= 1. Multiplying by
b givesabu+ pbv= b. Sincep j ab, there existsk 2 Z such thatpk= ab. De�ne q = ku+ bv; then

b = abu+ pbv= pku+ pbv= p(ku+ bv) = qp

so p j b, as required.

So we're done. �

Since primes and irreducibles are the same thing inZ, we will refer to them as `primes', unless we
need to emphasise a particular aspect of them.
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Prime factorisation

Having described prime numbers in two ways, each of which emphasises their nature of being `un-
breakable' by multiplication, we will extend Lemma 5.2.10 to prove that every integer can be ex-
pressed as a product of primes in an essentially unique way.

C Theorem 5.2.12 (Fundamental theorem of arithmetic)
Let a 2 Z be a nonzero nonunit. There exist primesp1; : : : ; pk 2 Z such that

a = p1 � � � � � pk

Moreover, this expression is essentially unique: ifa = q1 � � � � � q` is another expression ofa as a
product of primes, thenk = ` and, re-ordering theqi if necessary, for eachi there is a unitui such
thatqi = ui pi .

Proof
We showed that such a factorisation exists in Lemma 5.2.10, with the word `prime' replaced by the
word `irreducible'. It remains to prove (essential) uniqueness.

Let k be least such that there is an expression ofa as a product ofk primes, namelya = p1 � � � � � pk.
Let a = q1 � � � � � q` be any other such expression. We prove by induction onk that` = k and, after
re-ordering if necessary, for eachi there is a unitui such thatqi = ui pi .

� (Base case) If k = 1 thena = p1 is itself prime. Then we havep1 = q1 � � � � � q` . Sincep1 is
prime, p1 j q j for somej; by relabellingq1 andq j we may assume thatj = 1, so thatp1 j q1. By
irreducibility of q1 we haveq1 = u1p1 for some unitu1.

� (Induction step) Let k > 1 and suppose that any integer which can be expressed as a product of
k primes is (essentially) uniquely expressible in such a way. Supposea has an expression as a
product ofk+ 1 primes, and thatk+ 1 is the least such number. Suppose also that

a = p1 � � � � � pk � pk+ 1 = q1 � � � � � q`

Note that̀ > k+ 1. Sincepk+ 1 is prime we must havepk+ 1 j q j for somej; by relabellingq j and
q` if necessary, we may assume thatj = `, so thatpk+ 1 j q` . As before,q` = uk+ 1pk+ 1 for some
unit uk+ 1. Dividing through bypk+ 1 gives

p1 � � � � � pk = q1 � � � � � q`� 1 � uk+ 1

Replacingq`� 1 by q`� 1uk+ 1, which is still prime, we can apply the induction hypothesis to obtain
k = ` � 1, sok+ 1 = `, and, after reordering if necessaryqi = ui pi for all i 6 k. Since this also
holds fori = k+ 1, the induction step is complete.

The result follows by induction. �

0 Example 5.2.13
Here are some examples of numbers written as products of primes:

� 12= 2� 2� 3. We could also write this as 2� 3� 2 or (� 2) � (� 3) � 2, and so on.

� 53= 53 is an expression of 53 as a product of primes.
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� � 1000= 2� 5� (� 2) � 5� 2� 5.

� We can view any unit as a product ofno primes. (Don't dwell on this point for too long as it will
not arise very often!)

C

. Exercise 5.2.14
Express the following numbers as products of primes:

16 � 240 5050 111111 � 123456789

C

To make things slightly more concise, we introduce a standard way of expressing a number as a
product of primes:

F De�nition 5.2.15
Thecanonical prime factorisationof a nonzero integera is the expression in the form

a = upj1
1 � � � p jr

r

wherer > 0 and:

� u = 1 if a > 0, andu = � 1 if a < 0;

� The numberspi are all positive primes;

� p1 < p2 < � � � < pr ;

� j i > 1 for all i.

We call j i themultiplicity of pi in a, and we callu thesignof a.

Typically we omitu if u = 1 (unlessa = 1), and just write a minus sign (� ) if u = � 1.

0 Example 5.2.16
The canonical prime factorisations of the integers given in Example 5.2.13 are:

� 12= 22 � 3.

� 53= 53.

� � 1000= � 23 � 53.

� 1 = 1.

C

. Exercise 5.2.17
Write out the canonical prime factorisations of the numbers from Exercise 5.2.14, which were:

16 � 240 5050 111111 � 123456789

C
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The following exercise provides another tool for computing greatest common divisors of pairs of
integers by looking at their prime factorisations.

. Exercise 5.2.18
Let p1; p2; : : : ; pr be distinct primes, and letki ; ` i 2 N for all 1 6 i 6 r. De�ne

m= pk1
1 � pk2

2 � � � � � pkr
r and n = p`1

1 � p`2
2 � � � � � p` r

r

Prove that
gcd(m;n) = pu1

1 � pu2
2 � � � � � pur

r

whereui = minf ki ; ` ig for all 1 6 i 6 r. C

0 Example 5.2.19
We use Exercise 5.2.18 to compute the greatest common divisor of 17640 and 6468.

First we compute the prime factorisations of 17640 and 6468:

17640= 23 � 32 � 5� 72 and 6468= 22 � 3� 72 � 11

It now follows from Exercise 5.2.18 that

gcd(17640;6468) = 22 � 31 � 50 � 72 � 110

= 4� 3� 1� 49� 1

= 588

C

Exercise 5.2.18 allows us to provide a concise proof of the following result.

C Corollary 5.2.20
Let p 2 Z be prime, leta 2 Z be nonzero, and letk > 1. Thena ? pk if and only if p - a.

Proof
By the fundamental theorem of arithmetic, we can write

a = p j � p j1
1 � � � � � p jr

r

wherep1; : : : ; pr are the primes other thanp appearing in the prime factorisation ofa, and j; j i 2 N
for all 1 6 i 6 r. Note thatp j a if and only if j > 1.

Furthermore we have
pk = pk � p0

1 � � � � � p0
r

By Exercise 5.2.18 it follows that

gcd(a; pk) = pminf j;kg � p0
1 � � � � � p0

r = pminf j;kg

Now:

� If minf j;kg = 0 then j = 0, in which casep - a, and gcd(a; pk) = p0 = 1;

� If minf j;kg > 0 then j > 1, in which casep j a, andp j gcd(a; pk), so gcd(a; pk) 6= 1.

In particular,p - a if and only if a ? pk. �
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Distribution of primes

So far we have seen several examples of prime numbers; to name a few, we've seen 2, 3, 5 and 53.
It might seem like the prime numbers go on forever, but proving this is less than obvious.

. Exercise 5.2.21
Let P be an inhabited �nite set of positive prime numbers and letmbe the product of all the elements
of P. That is, for somen > 1 let

P = f p1; : : : ; png and m= p1 � � � � � pn

where eachpk 2 P is a positive prime. Using the fundamental theorem of arithmetic, show thatm+ 1
has a positive prime divisor which is not an element ofP. C

C Theorem 5.2.22
There are in�nitely many primes.

Proof
We prove that there are in�nitely manypositiveprime numbers—the result then follows immediately.
Let P be the set of all positive prime numbers. ThenP is inhabited, since 22 P, for example. If
P were �nite, then by Exercise 5.2.21, there would be a positive prime which is not an element of
P—butP contains all positive primes, so that is impossible. Hence there are in�nitely many positive
primes. �

This is one proof of many and is attributed to Euclid, who lived around 2300 years ago. We might
hope that a proof of the in�nitude of primes gives some insight into how the primes aredistributed.
That is, we might ask questions like: how frequently do primes occur? How fast does the sequence
of primes grow? How likely is there to be a prime number in a given set of integers?

As a starting point, Euclid's proof gives an algorithm for writing an in�nite list of primes:

� Let p1 = 2; we know that 2 is prime;

� Given p1; : : : ; pn, let pn+ 1 be the smallest positive prime factor ofp1 � � � � � pn + 1.

The �rst few terms produced would be:

� p1 = 2 by de�nition;

� 2+ 1 = 3, which is prime, sop2 = 3;

� 2� 3+ 1 = 7, which is prime, sop3 = 7;

� 2� 3� 7+ 1 = 43, which is prime, sop4 = 43;

� 2� 3� 7� 43+ 1 = 1807= 13� 139, sop5 = 13;

� 2� 3� 7� 43� 13+ 1 = 23479= 53� 443, sop6 = 53;

� . . . and so on.
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The sequence obtained, called theEuclid–Mullin sequence, is a bit bizarre:

2;3;7;43;13;53;5;6221671;38709183810571;139;2801;11;17;5471; : : :

Big primes like 38709183810571 often appear before small primes like 11. It remains unknown
whether or not every positive prime number appears in this list!

The chaotic nature of this sequence makes it dif�cult to extract information about how the primes
are distributed: the numbersp1 � � � � � pn + 1 grow very quickly—indeed, it must be the case that
p1 � � � � � pn + 1 > 2n for all n—so the upper bounds for the sequence grow at least exponentially.

Another proof of the in�nitude of primes that gives a (slightly) tighter bound can be obtained using
the following exercise.

. Exercise 5.2.23
Let n 2 Z with n > 2. Prove that the setf k 2 Z j n < k < n!g contains a prime number. C
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Section 5.3

Modular arithmetic

Recall the de�nition ofcongruencemodulo an integer from Section 4.2.

F De�nition 4.2.6
Fix n 2 Z. Given integersa;b 2 Z, we saya is congruent to b modulo n, and write

a � b modn (LATEX code:a \equiv b \bmod{n} )

if n dividesa� b. If a is not congruent tob modulon, write

a 6� b modn (LATEX code:\not\equiv )

The numbern is called themodulus of the congruence.

In Section 4.2, we proved that congruence is an equivalence relation:

C Theorem 4.2.11
Let n 2 Z. Then congruence modulon is an equivalence relation onZ. That is:

(a) a � a modn for all a 2 Z;

(b) For alla;b 2 Z, if a � b modn, thenb � a modn;

(c) For alla;b;c 2 Z, if a � b modn andb � c modn, thena � c modn.

In this section, we turn our attention to addition, subtraction, multiplication and division: our goal is
to �nd out how much arithmetic can be done withequalityreplaced bycongruence. For example:

(i) Can we add a number to both sides of a congruence? That is, givena;b;c;n 2 Z, is it the case
thata � b modn impliesa+ c � b+ c modn?

(ii) Can we multiply both sides of a congruence by a number? That is, givena;b;c;n 2 Z, is it the
case thata � b modn impliesac� bc modn?

(iii) Can we divide both sides of a congruence by a nonzero common factor? That is, given
a;b;c;n 2 Z with c 6� 0 modn, is it the case that ifac � bc modn impliesa � b modn?

The answers to (i) and (ii) are `yes', as we will prove; but surprisingly, the answer to (iii) is `no'
(except under certain circumstances). For example, 2� 3 � 4 � 3 mod 6, but 26� 4 mod 6, even
though 36� 0 mod 6.

In light of this, it is important from the outset to point out that, although congruence is written with
a symbol that looks like that of equality (`� ' vs. `= '), and although it is an equivalence relation, we
can only treat congruence like equality inasmuch as we prove that we can. Speci�cally:
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� In Theorem 4.2.11 we proved that congruence is an equivalence relation. This allows us to make
some basic inferences about congruences—for example, transitivity means that the following im-
plication is valid:

� 5 � 18� 41� 64 mod 23 ) � 5 � 64 mod 23

� Theorem 5.3.3, which we will prove soon, tells us that we can treat congruence like equality for
the purposes of addition, multiplication and subtraction. Thus it will be valid to write things like

x � 7 mod 12 ) 2x+ 5 � 19 mod 12

and we'll be able to replace values by congruent values in congruences, provided they're only
being added, subtracted or multiplied. For example, from the knowledge that 260 � 1 mod 61 and
60! � � 1 mod 61, we will be able to deduce

260 � 3 � 60!� x mod 61 ) 3 � � x mod 61

After we have worked out what arithmetic properties carry over to congruence, we will be able to
prove some interesting theorems involving congruences and discuss their applications.

The �rst result we prove gives us a few equivalent ways of talking about congruence.

C Proposition 5.3.1
Fix a modulusn and leta;b 2 Z. The following are equivalent:

(i) a andb leave the same remainder when divided byn;

(ii) a = b+ kn for somek 2 Z;

(iii) a � b modn.

Proof
We prove (i), (iii) and (ii) , (iii).

� (i) ) (iii). Supposea andb leave the same remainder when divided byn, and letq1;q2; r 2 Z be
such that

a = q1n+ r; b = q2n+ r and 06 r < n

Thena� b = ( q1 � q2)n, which proves thatn j a� b, and soa � b modn.

� (iii) ) (i). Suppose thata � b modn, so thatb� a = qn for someq 2 Z. Write

a = q1n+ r1; b = q2n+ r2 and 06 r1; r2 < n

We may further assume thatr1 6 r2. (If not, swap the roles ofa andb—this is �ne, sincen j b� a
if and only if n j a� b.) Now we have

b� a = qn) (q2n+ r2) � (q1n+ r1) = qn

) (q2 � q1 � q)n+ ( r2 � r1) = 0 rearranging

since 06 r1 6 r2 < n we have 06 r2 � r1 < n, so thatr2 � r1 is the remainder of 0 when divided
by n. That is,r2 � r1 = 0, sor1 = r2. Hencea andb have the same remainder when divided byn.
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� (ii) , (iii). We unpack the de�nitions of (ii) and (iii) to see that they are equivalent. Indeed

(ii) , a = b+ kn for somek 2 Z

, a� b = kn for somek 2 Z rearranging

, n j a� b by de�nition of divisibility

, a � b modn by de�nition of congruence

, (iii)

�

. Discussion 5.3.2
Where in the proof of Proposition 5.3.1 did we rely on the convention that the modulusn is positive?
Is the result still true ifn is negative? C

We now prove that we can treat congruence like equality for the purposes of adding, subtracting and
multiplying (but not dividing!) integers.

C Theorem 5.3.3 (Modular arithmetic)
Fix a modulusn, and leta1;a2;b1;b2 2 Z be such that

a1 � b1 modn and a2 � b2 modn

Then the following congruences hold:

(a) a1 + a2 � b1 + b2 modn;

(b) a1a2 � b1b2 modn;

(c) a1 � a2 � b1 � b2 modn.

Proof
By De�nition 4.2.6 thatn j a1 � b1 andn j a2 � b2, so there existq1;q2 2 Z such that

a1 � b1 = q1n and a2 � b2 = q2n

This implies that

(a1 + a2) � (b1 + b2) = ( a1 � b1) + ( a2 � b2) = q1n+ q2n = ( q1 + q2)n

son j (a1 + a2) � (b1 + b2). This proves (a).

The algebra for (b) is slightly more involved:

a1a2 � b1b2 = ( q1n+ b1)(q2n+ b2) � b1b2

= q1q2n2 + b1q2n+ b2q1n+ b1b2 � b1b2

= q1q2n2 + b1q2n+ b2q1n

= ( q1q2n+ b1q2 + b2q1)n

This shows thatn j a1a2 � b1b2, thus proving (b).

Now (a) and (b) together imply (c). Indeed, we know that� 1 � � 1 modn andb1 � b2 modn, so by
(b) we have� b1 � � b2 modn. We also know thata1 � a2 modn, and hencea1 � b1 � a2 � b2 mod
n by (a). �
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Theorem 5.3.3 allows us to perform algebraic manipulations with congruences as if they were equa-
tions, provided all we're doing is adding, multiplying and subtracting.

0 Example 5.3.4
We will solve the congruence 3x� 5 � 2x+ 3 mod 7 forx:

3x� 5 � 2x+ 3 mod 7

, x� 5 � 3 mod 7 () ) subtract 2x (( ) add 2x

, x � 8 mod 7 () ) add 5 (( ) subtract 5

, x � 1 mod 7 since 8� 1 mod 7

So the integersx for which 3x � 5 and 2x+ 3 leave the same remainder when divided by 7, are
precisely the integersx which leave a remainder of 1 when divided by 7:

3x� 5 � 2x+ 3 mod 7 , x = 7q+ 1 for someq 2 Z

C

. Exercise 5.3.5
For which integersx does the congruence 5x+ 1 � x+ 8 mod 3 hold? Characterise such integersx
in terms of their remainder when divided by 3. C

So far this all feels like we haven't done very much: we've just introduced a new symbol� which
behaves just like equality. . . but does it really? The following exercises should expose some more
ways in which congruencedoesbehave like equality, and some in which itdoesn't.

. Exercise 5.3.6
Fix a modulusn. Is it true that

a � b modn ) ak � bk modn

for all a;b 2 Z andk 2 N? If so, prove it; if not, provide a counterexample. C

. Exercise 5.3.7
Fix a modulusn. Is it true that

k � ` modn ) ak � a` modn

for all k; ` 2 N anda 2 Z? If so, prove it; if not, provide a counterexample. C

. Exercise 5.3.8
Fix a modulusn. Is it true that

qa� qb modn ) a � b modn

for all a;b;q 2 Z with q 6� 0 modn? If so, prove it; if not, provide a counterexample. C

0 Example 5.3.9
Now that we have seen several things that wecan do with modular arithmetic, let's look at some
things that wecannotdo:

� We cannot talk about fractions in modular arithmetic; for instance, it is invalid to say 2x � 1 mod 5
impliesx � 1

2 mod 5.
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� We cannot take square roots in modular arithmetic; for instance, it is invalid to sayx2 � 3 mod 4
impliesx � �

p
3 mod 4. In fact, it is invalid to sayx2 � 1 mod 8 impliesx � � 1 mod 8, since

for example 32 � 1 mod 8 but 36� � 1 mod 8.

� We cannot replace numbers in exponents by other numbers they are congruent to; for instance, it
is invalid to sayx3 � 23 mod 4 impliesx � 2 mod 4.

C

Multiplicative inverses

We made a big deal about the fact that fractions don't make sense in modular arithmetic. That is, it
is invalid to say

2x � 1 mod 5 ) x �
1
2

mod 5

Despite this, we can still make sense of `division', provided we change what we mean when we say
`division'. Indeed, the congruence 2x � 1 mod 5 has a solution:

2x � 1 mod 5

, 6x � 3 mod 5 () ) multiply by 3 (( ) subtract 3

, x � 3 mod 5 since 6� 1 mod 5

Here we didn't divide by 2, but we still managed to cancel the 2 by instead multiplying through by
3. For the purposes of solving the equation this had the same effect as division by 2 would have had
if we were allowed to divide. The key here was that 2� 3 � 1 mod 5.

F De�nition 5.3.10
Fix a modulusn. Givena 2 Z, a multiplicative inverse for a modulon is an integeru such that
au� 1 modn.

0 Example 5.3.11
Some examples of multiplicative inverses are as follows:

� 2 is a multiplicative inverse of itself modulo 3, since 2� 2 � 4 � 1 mod 3.

� 2 is a multiplicative inverse of 3 modulo 5, since 2� 3 � 6 � 1 mod 5.

� 7 is also a multiplicative inverse of 3 modulo 5, since 3� 7 � 21� 1 mod 5.

� 3 has no multiplicative inverse modulo 6. Indeed, supposeu 2 Z with 3u � 1 mod 6. Then
6 j 3u� 1, so 3u� 1 = 6q for someq 2 Z. But then

1 = 3u� 6q = 3(u� 2q)

which implies that 3j 1, which is nonsense.

C

Knowing when multiplicative inverses exist is very important for solving congruences: ifu is a mul-
tiplicative inverse fora modulon, then we can solve equations of the formax� b modn extremely
easily:

ax � b modn ) x � ub modn
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. Exercise 5.3.12
For n = 7;8;9;10;11;12, either �nd a multiplicative inverse for 6 modulon, or show that no multi-
plicative inverse exists. Can you spot a pattern? C

Some authors writea� 1 to denote multiplicative inverses. We refrain from this, since it suggests that
multiplicative inverses are unique—but they're not, as you'll see in the following exercise.

. Exercise 5.3.13
Let n be a modulus and leta 2 Z. Suppose thatu is a multiplicative inverse fora modulon. Prove
that, for allk 2 Z, u+ kn is a multiplicative inverse fora modulon. C

C Proposition 5.3.14
Let a 2 Z and letn be a modulus. Thena has a multiplicative inverse modulon if and only if a ? n.

Proof
Note thata has a multiplicative inverseu modulon if and only if there is a solution(u;v) to the
equationau+ nv = 1. Indeed,au � 1 modn if and only if n j au� 1, which occurs if and only
if there is someq 2 Z such thatau� 1 = nq. Settingq = � v and rearranging yields the desired
equivalence.

By Bézout's lemma (Theorem 5.1.23), such a solution(u;v) exists if and only if gcd(a;n) j 1. This
occurs if and only if gcd(a;n) = 1, i.e. if and only ifa ? n. �

v Proof tip
To solve a congruence of the formax� b modn whena ? n, �rst �nd a multiplicative inverseu for
a modulon, and then simply multiply through byu to obtainx � ub modn. C

C Corollary 5.3.15
Let a; p 2 Z, wherep is a positive prime. Ifp - a thena has a multiplicative inverse modulop.

Proof
Supposep - a, and letd = gcd(a; p). Sinced j p andp is prime we haved = 1 or d = p. Sinced j a
andp - a we can't haved = p; therefored = 1. By Proposition 5.3.14,a has a multiplicative inverse
modulop. �

0 Example 5.3.16
11 is prime, so each of the integersa with 1 6 a 6 10 should have a multiplicative inverse modulo
11. And indeed, the following are all congruent to 1 modulo 11:

1� 1 = 1 2� 6 = 12 3� 4 = 12 4� 3 = 12 5� 9 = 45
6� 2 = 12 7� 8 = 56 8� 7 = 56 9� 5 = 45 10� 10= 100

C

. Exercise 5.3.17
Find all integersx such that 25x� 4 � 4x+ 3 mod 13. C

Orders and totients

For any modulusn, there are only �nitely many possible remainders modulon. A nice consequence
of this �niteness is that, whena ? n, we can choose some power ofa to be its multiplicative inverse,
as proved in the following exercise.
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. Exercise 5.3.18
Let n be a modulus and leta 2 Z with a ? n. Prove that there existsk > 1 such thatak � 1 modn.

C

Exercise 5.3.18, together with the well-ordering principle, justify the following de�nition.

F De�nition 5.3.19
Let n be a modulus and leta 2 Z with a ? n. Theorder of a modulon is the leastk > 1 such that
ak � 1 modn.

Note that this de�nition makes sense by Exercise 5.3.18 and the well-ordering principle.

0 Example 5.3.20
The powers of 7 modulo 100 are:

� 71 = 7, so 71 � 7 mod 100;

� 72 = 49, so 72 � 49 mod 100;

� 73 = 343, so 73 � 43 mod 100;

� 74 = 2401, so 74 � 1 mod 100.

Hence the order of 7 modulo 100 is 4, and 73 and 43 are multiplicative inverses of 7 modulo 100.C

Our focus turns to computing speci�c values ofk such thatak � 1 modn, whenevera2 Z anda? n.
We �rst focus on the case whenn is prime; then we develop the machinery oftotientsto study the
case whenn is not prime.

C Lemma 5.3.21
Let a;b 2 Z and letp 2 Z be a positive prime. Then(a+ b)p � ap + bp mod p.

Proof
By the binomial theorem (Theorem 3.2.20), we have

(a+ b)p =
p

å
k= 0

�
p
k

�
akbp� k

By Exercise 5.2.5,p j
� p

k

�
for all 0 < k < p, and hence

� p
k

�
akbp� k � 0 modp for all 0 < k < p. Thus

(a+ b)p �
�

p
0

�
a0bp� 0 +

�
p
p

�
apbp� p � ap + bp mod p

as desired. �

C Theorem 5.3.22 (Fermat's little theorem)
Let a; p 2 Z with p a positive prime. Thenap � a mod p.

Proof
We may assume thata > 0, otherwise replacea by its remainder modulop.

We will prove thatap � a mod p by induction ona.
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� (BC) Sincep > 0 we have 0p = 0, hence 0p � 0 modp.

� (IS) Fix a > 0 and supposeap � a mod p. Then(a+ 1)p � ap + 1p mod p by Lemma 5.3.21.
Now ap � a mod p by the induction hypothesis, and 1p = 1, so we have(a+ 1)p � a+ 1 modp.

By induction, we're done. �

The following consequence of Theorem 5.3.22 is often also referred to as `Fermat's little theorem',
but is slightly less general since it requires an additional hypothesis. In keeping with the wider
mathematical community, we will refer to both Theorem 5.3.22 and Corollary 5.3.23 as `Fermat's
little theorem'.

C Corollary 5.3.23 (Fermat's little theorem — alternative version)
Let a; p 2 Z with p a positive prime andp - a. Thenap� 1 � 1 modp.

Proof
Sincep - a, it follows thata ? p. Theorem 5.3.22 tells us thatap � a mod p. By Proposition 5.3.14,
a has a multiplicative inverseb modulop. Hence

apb � ab mod p

But apb � ap� 1ab mod p, andab� 1 modp, so we get

ap� 1 � 1 modp

as required. �

Corollary 5.3.23 can be useful for computing remainders of humongous numbers when divided by
smaller primes.

0 Example 5.3.24
We compute the remainder of 21000 when divided by 7. Since 7- 2, it follows from Fermat's little
theorem (Corollary 5.3.23) that 26 � 1 mod 7. Now 1000= 166� 6+ 4, so

21000 � 2166� 6+ 4 � (26)166� 24 � 24 � 16 � 2 mod 7

so the remainder of 21000 when divided by 7 is 2. C

. Exercise 5.3.25
Find the remainder of 3244886when divided by 13. C

Unfortunately, the hypothesis thatp is prime in Fermat's little theorem cannot be disposed of. For
example, 6 is not prime, and 56� 1 = 55 = 3125= 520� 6+ 5, so 55 � 5 mod 6. Our next order of
business is to generalise Corollary 5.3.23 by removing the requirement that the modulusp be prime,
and replacingp� 1 by thetotientof the modulus.

F De�nition 5.3.26
Let n 2 Z. Thetotient of n is the natural numberj (n) (LATEX code:\varphi(n) ) de�ned by

j (n) = jf k 2 [jnj] j k ? ngj

That is, j (n) is the number of integers from 1 up tojnj which are coprime ton. The function
j : Z ! N is calledEuler's totient function .
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0 Example 5.3.27
Here are some examples of totients:

� The elements of[6] which are coprime to 6 are 1 and 5, soj (6) = 2.

� If p is a positive prime, then by Corollary 5.2.20, every element of[p] is coprime top except for
p itself. Hence ifp is a positive prime thenj (p) = p� 1. More generally, ifp is prime then
j (p) = jpj � 1.

C

. Exercise 5.3.28
Let n 2 Z and letp > 0 be prime. Prove that ifp j n, thenj (pn) = p� j (n). Deduce thatj (pk) =
pk � pk� 1 for all prime p > 0 and allk > 1. C

. Exercise 5.3.29
Let n 2 Z and letp > 0 be prime. Prove that ifp - n, thenj (pn) = ( p� 1)j (n). C

Together, Exercises 5.3.28 and 5.3.29 allow us to compute the totient of any integer with up to two
primes in its prime factorisation.

0 Example 5.3.30
We computej (100). The prime factorisation of 100 is 22 � 52. Applying Exercise 5.3.28 twice

j (22 � 52) = 2� 5� j (2� 5) = 10j (10)

Finally, Exercise 5.3.29 tells us that

j (10) = j (2� 5) = 1� j (5) = 1� 4 = 4

Hencej (100) = 40. C

. Exercise 5.3.31
Prove thatj (100) = 40, this time using the inclusion–exclusion principle. C

Euler's theorem uses totients to generalise Fermat's little theorem (Theorem 5.3.22) to arbitrary
moduli, not just prime ones.

C Theorem 5.3.32 (Euler's theorem)
Let n be a modulus and leta 2 Z with a ? n. Then

aj (n) � 1 modn

Proof
By de�nition of totient, the setX de�ned by

X = f k 2 [n] j k ? ng

hasj (n) elements. List the elements as

X = f x1;x2; : : : ;xj (n)g

Note thataxi ? n for all i, so letyi be the (unique) element ofX such thataxi � yi modn.
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Note that if i 6= j thenyi 6= y j . We prove this by contraposition; indeed, sincea ? n, by Proposi-
tion 5.3.14,a has a multiplicative inverse, sayb. Then

yi � y j modn ) axi � axj modn ) baxi � baxj modn ) xi � x j modn

andxi � x j modn if and only if i = j. Thus

X = f x1;x2; : : : ;xj (n)g = f y1;y2; : : : ;yj (n)g

This means that the product of the `xi 's is equal to the product of the `yi 's, and hence

x1 � : : : � xj (n)

� y1 � : : : � yj (n) modn sincef x1; : : :g = f y1; : : :g

� (ax1) � : : : � (axj (n)) modn sinceyi � axi modn

� aj (n) � x1 � : : : � xj (n) modn rearranging

Since eachxi is coprime ton, we can cancel thexi terms (by multiplying by their multiplicative
inverses) to obtain

aj (n) � 1 modn

as required. �

0 Example 5.3.33
Some examples of Euler's theorem in action are as follows:

� We have seen thatj (6) = 2, and we know that 5? 6. And, indeed,

5j (6) = 52 = 25= 4� 6+ 1

so 5j (6) � 1 mod 6.

� By Exercise 5.3.28, we have

j (121) = j (112) = 112 � 111 = 121� 11= 110

Moreover, givena 2 Z, a ? 121 if and only if 11- a by Corollary 5.2.20. Hencea110 � 1 mod 121
whenever 11- a.

C

. Exercise 5.3.34
Use Euler's theorem to prove that the last two digits of 379 are `67'. C

0 Example 5.3.35
Let n be a modulus and leta 2 Z with a ? n. Prove that the order ofa modulon dividesj (n). C

A formula for the totient of an arbitrary nonzero integer is proved in Theorem 5.3.59—its proof is an
application of the Chinese remainder theorem Theorem 5.3.46, and uses the techniques for counting
�nite sets discussed in Section 6.2.
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Wilson's theorem

We conclude this chapter on number theory withWilson's theorem, which is a nice result that com-
pletely characterises prime numbers in the sense that we can tell when a number is prime by com-
puting the remainder of(n� 1)! when divided byn.

Let's test a few numbers �rst:

n (n� 1)! remainder
2 1 1
3 2 2
4 6 2
5 24 4
6 120 0
7 720 6
8 5040 0

n (n� 1)! remainder
9 40320 0
10 362880 0
11 3628800 10
12 39916800 0
13 479001600 12
14 6227020800 0
15 87178291200 0

It's tempting to say that an integern > 1 is prime if and only ifn - (n� 1)!, but this isn't true since it
fails whenn = 4. But it's extremely close to being true.

C Theorem 5.3.36 (Wilson's theorem)
Let n > 1 be a modulus. Thenn is prime if and only if(n� 1)! � � 1 modn.

The following sequence of exercises will piece together into a proof of Wilson's theorem.

. Exercise 5.3.37
Let n 2 Z be composite. Prove that ifn > 4, thenn j (n� 1)!. C

. Exercise 5.3.38
Let p be a positive prime and leta2 Z. Prove that, ifa2 � 1 modp, thena� 1 modp or a � � 1 mod
p. C

Exercise 5.3.38 implies that the only elements of[p � 1] that are their own multiplicative inverses
are 1 andp� 1; this morsel of information allows us to deduce result in the following exercise.

. Exercise 5.3.39
Let p be a positive prime. Prove that(p� 1)! � � 1 modp. C

Proof of Wilson's theorem (Theorem 5.3.36)
Let n > 1 be a modulus.
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� If n is prime, then(n� 1)! � � 1 modn by Exercise 5.3.39.

� If n is composite, then eithern = 4 orn > 4. If n = 4 then

(n� 1)! = 3! = 6 � 2 mod 4

and so(n� 1)! 6� � 1 modn. If n > 4, then

(n� 1)! � 0 modn

by Exercise 5.3.37.

Hence(n� 1)! � � 1 modn if and only if n is prime, as desired. �

Since Wilson's theorem completely characterises the positive prime numbers, we could have de�ned
`n is prime', forn > 1, to mean that(n� 1)! � � 1 modn. We don't do this because, although this is
an interesting result, it is not particularly useful in applications. We might even hope that Wilson's
theorem gives us an easy way to test whether a number is prime, but unfortunately even this is a
bust: computing the remainder(n� 1)! on division byn is not particularly ef�cient.

However, there are some nice applications of Wilson's theorem, which we will explore now.

0 Example 5.3.40
We'll compute the remainder of 345 � 44! when divided by 47. Note that 345 � 44! is equal to a
monstrous number with 76 digits; I don't recommend doing the long division! Anyway. . .

� 47 is prime, so we can apply both Fermat's little theorem (Theorem 5.3.22) and Wilson's theorem
(Theorem 5.3.36).

� By Fermat's little theorem, we know that 346 � 1 mod 47. Since 3� 16= 48� 1 mod 47, we have

345 � 345 � (3� 16) � 346 � 16 � 16 mod 47

� By Wilson's theorem, we have 46!� � 1 mod 47. Now

� 46� � 1 mod 47, so 46 is its own multiplicative inverse modulo 47.

� The extended Euclidean algorithm yields 45� 23� 1 mod 47.

So we have

44! = 44!� (45� 23) � (46� 46) � 46!� 23� 46� (� 1) � 23� (� 1) � 23 mod 47

Putting this information together yields

345 � 44! � 16� 23= 368� 39 mod 47

So the remainder left when 345 � 44! is divided by 47 is 39. C

. Exercise 5.3.41
Let p be an odd positive prime. Prove that

��
p� 1

2

�
!
� 2

� (� 1)
p+ 1

2 mod p

C
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Chinese remainder theorem

We introduce the Chinese remainder theorem with an example.

0 Example 5.3.42
We �nd all integer solutionsx to the system of congruences

x � 2 mod 5 and x � 4 mod 8

Note thatx � 4 mod 8 if and only ifx = 4+ 8k for somek 2 Z. Now, for all k 2 Z we have

x � 2 mod 5

, 4+ 8k � 2 mod 5 sincex = 4+ 8k

, 8k � � 2 mod 5 subtracting 4

, 3k � 3 mod 5 since 8� � 2 � 3 mod 5

, k � 1 mod 5 multiplying by a multiplicative inverse for 3 modulo 5

So 4+ 8k � 2 mod 5 if and only ifk = 1+ 5` for somè 2 Z.

Combining this, we see thatx satis�es both congruences if and only if

x = 4+ 8(1+ 5`) = 12+ 40̀

for somè 2 Z.

Hence the integersx for which both congruences are satis�ed are precisely those integersx such that
x � 12 mod 40. C

. Exercise 5.3.43
Find all integer solutionsx to the system of congruences:

8
><

>:

x � � 1 mod 4
x � 1 mod 9
x � 5 mod 11

Express your solution in the formx � a modn for suitablen > 0 and 06 a < n. C

. Exercise 5.3.44
Let m;n be coprime moduli and leta;b 2 Z. Let u;v 2 Z be such that

mu� 1 modn and nv� 1 modm

In terms ofa;b;m;n;u;v, �nd an integerx such that

x � a modm and x � b modn

C

. Exercise 5.3.45
Let m;n be coprime moduli and letx;y 2 Z. Prove that ifx � y modm and x � y modn, then
x � y modmn. C
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C Theorem 5.3.46 (Chinese remainder theorem)
Let m;n be moduli and leta;b 2 Z. If mandn are coprime, then there exists an integer solutionx to
the simultaneous congruences

x � a modm and x � b modn

Moreover, ifx;y 2 Z are two such solutions, thenx � y modmn.

Proof
Existence of a solutionx is precisely the content of Exercise 5.3.44.

Now let x;y 2 Z be two solutions to the two congruences. Then
(

x � a modm
y � a modm ) x � y modm

(
x � b modn
y � b modn ) x � y modn

so by Exercise 5.3.45, we havex � y modmn, as required. �

We now generalise the Chinese remainder theorem to the case when the modulim;n are not assumed
to be coprime. There are two ways we could make this generalisation: either we could reduce the
more general version of the theorem to the version we proved in Theorem 5.3.46, or we could prove
the more general version from scratch. We opt for the latter approach, but you might want to consider
what a `reductive' proof would look like.

C Theorem 5.3.47
Let m;n be moduli and leta;b 2 Z. There exists an integer solutionx to the system of congruences

x � a modm and x � b modn

if and only if a � b mod gcd(m;n).

Moreover, ifx;y 2 Z are two such solutions, thenx � y mod lcm(m;n)

Proof
Let d = gcd(m;n), and writem= m0d andn = n0d for somem0;n02 Z.

We prove that an integer solutionx to the system of congruences exists if and only ifa � b modd.

� () ) Suppose an integer solutionx to the system of congruences exists. Then there exist integers
k; ` such that

x = a+ mk= b+ n`

But m= m0d andn = n0d, so we havea+ m0dk= b+ n0d`, and so

a� b = ( n0̀ � m0k)d

so thata � b modd, as required.
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� (( ) Supposea � b modd, and lett 2 Z be such thata � b = td. Let u;v 2 Z be such that
mu+ nv = d—these exist by Bézout's lemma (Theorem 5.1.23). Note also that, sincem = m0d
andn = n0d, dividing through byd yieldsm0u+ n0v = 1.

De�ne
x = an0v+ bm0u

Now we have

x = an0v+ bm0u by de�nition of x

= an0v+ ( a� td)m0u sincea� b = td

= a(m0u+ n0v) � tdm0u rearranging

= a� tdm0u sincem0u+ n0v = 1

= a� tum sincem= m0d

sox � a modm. Likewise

x = an0v+ bm0u by de�nition of x

= ( b+ td)n0v+ bm0u sincea� b = td

= b(m0u+ n0v)+ tdn0v rearranging

= b+ tdn0v sincem0u+ n0v = 1

= b+ tvn sincen = n0d

sox � b modn.

Hencex = an0v+ bm0u is a solution to the system of congruences.

We now prove that ifx;y are two integer solutions to the system of congruences, then they are
congruent modulo lcm(a;b). First note that we must have

x � y modm and x � y modn

so thatx = y+ kmandx = y+ `n for somek;` 2 Z. But then

x� y = km= `n

Writing m= m0d andn = n0d, we see thatkm0d = `n0d, so thatkm0= `n0. But m0;n0are coprime by
Exercise 5.1.30, and hencem0 j ` by Proposition 5.1.32. Writè = `0m0 for some`02 Z. Then we
have

x� y = `n = `0m0n

and hencex � y modm0n. But m0n = lcm(m;n) by Exercise 5.1.41. �

This theorem is in factconstructive, in that it provides an algorithm for �nding all integer solutions
x to a system of congruences

x � a modm and x � b modn

as follows:

� Use the Euclidean algorithm to computed = gcd(m;n).
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� If d - a� b then there are no solutions, so stop. Ifd j a� b, then proceed to the next step.

� Use the extended Euclidean algorithm to computeu;v 2 Z such thatmu+ nv= d.

� The integer solutionsx to the system of congruences are precisely those of the form

x =
anv+ bmu+ kmn

d
for somek 2 Z

. Exercise 5.3.48
Verify that the algorithm outlined above is correct. Use it to compute the solutions to the system of
congruences

x � 3 mod 12 and x � 15 mod 20

C

. ? Exercise 5.3.49
Generalise the Chinese remainder theorem to systems of arbitrarily (�nitely) many congruences.
That is, givenr 2 N, �nd precisely the conditions on modulin1;n2; : : : ;nr and integersa1;a2; : : : ;ar
such that an integer solution exists to the congruences

x � a1 modn1; x � a2 modn2; � � � xr � ar modnr

Find an explicit formula for such a value ofx, and �nd a suitable modulusn in terms ofn1;n2; : : : ;nr
such that any two solutions to the system of congruences are congruent modulon. C

. Exercise 5.3.50
Prove that gaps between consecutive primes can be made arbitrarily large. That is, prove that for all
n 2 N, there exists an integera such that the numbers

a; a+ 1; a+ 2; : : : ; a+ n

are all composite. C

Application: tests for divisibility

The language of modular arithmetic provides a practical setting for proving tests for divisibility using
number bases. Number bases were introduced in Chapter 0, and we gave a preliminary de�nition
in De�nition 0.6 of what a number base is. Our �rst job will be to justify why this de�nition
makes sense at all—that is, we need to prove that every natural numberhasa base-b expansion,
and moreover, that it only has one of them. Theorem 5.3.51 says exactly this.

C Theorem 5.3.51
Let n2 N and letb2 N with b> 2. Then there exist uniquer 2 N andd0;d1; : : : ;dr 2 f 0;1; : : : ;b� 1g
such that

n =
r

å
i= 0

dibi

and such thatdr 6= 0, exceptn = 0, in which caser = 0 andd0 = 0.

Proof
We proceed by strong induction onn.
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� (BC) We imposed the requirement that ifn = 0 thenr = 0 andd0 = 0; and this evidently satis�es

the requirement thatn =
r

å
i= 0

dibi .

� (IS) Fix n > 0 and suppose that the requirements of the theorem are satis�ed for all the natural
numbers up to and includingn.

By the division theorem (Theorem 5.1.1), there exist uniqueu;v 2 N such that

n+ 1 = ub+ v and v 2 f 0;1; : : : ;b� 1g

Sinceb > 2, we haveu < n+ 1, and sou 6 n. It follows from the induction hypothesis that there
exist uniquer 2 N andd1; : : : ;dr 2 f 0;1; : : : ;b� 1g such that

u =
r

å
i= 0

di+ 1bi

anddr 6= 0. Writing d0 = v yields

n = ub+ v =
r

å
i= 0

di+ 1bi+ 1 + d0 =
r

å
i= 0

dibi

Sincedr 6= 0, this proves existence.

For uniqueness, suppose that there existss2 N ande0; : : : ;es 2 f 0;1; : : : ;b� 1g such that

n+ 1 =
s

å
j= 0

ejb j

andes 6= 0. Then

n+ 1 =

 
s

å
j= 1

ejb j � 1

!

b+ e0

so by the division theorem we havee0 = d0 = v. Hence

u =
n+ 1� v

b
=

s

å
j= 1

ejb j � 1 =
r

å
i= 1

dib j � 1

so by the induction hypothesis, it follows thatr = s anddi = ei for all 1 6 i 6 r. This proves
uniqueness.

By induction, we're done. �

We now re-state the de�nition of base-b expansion, con�dent in the knowledge that this de�nition
makes sense.

F De�nition 5.3.52
Let n 2 N. Thebase-b expansionof n is the unique stringdrdr� 1 : : :d0 such that the conditions in
Theorem 5.3.51 are satis�ed. The base-2 expansion is also known as thebinary expansion, and the
base-10 expansion is called thedecimal expansion.
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0 Example 5.3.53
Let n 2 N. Thenn is divisible by 3 if and only if the sum of the digits in the decimal expansion of
n is divisible by 3. Likewise,n is divisible by 9 if and only if the sum of the digits in the decimal
expansionn is divisible by 9.

We prove this for divisibility by 3. Let

n = drdr� 1 � � � d1d0

be the decimal expansion ofn, and lets=
r

å
i= 0

di be the sum of the digits ofn.

Then we have

n �
r

å
i= 0

di10i mod 3 sincen = å
i

di10i

�
r

å
i= 0

di1i mod 3 since 10� 1 mod 3

�
r

å
i= 0

di since 1i = 1 for all i

� s by de�nition of s

Sincen � s mod 3, it follows thatn is divisible by 3 if and only ifs is divisible by 3. C

. Exercise 5.3.54
Let n 2 N. Prove thatn is divisible by 5 if and only if the �nal digit in the decimal expansion ofn is
5 or 0.

More generally, �xk > 1 and letm be the number whose decimal expansion is given by the lastk
digits of that ofn. Prove thatn is divisible by 5k if and only if m is divisible by 5k. For example, we
have

125j 9 550 828 230 495 875 , 125j 875

C

. Exercise 5.3.55
Let n 2 N. Prove thatn is divisible by 11 if and only if thealternating sumof the digits ofn is
divisible by 11. That is, prove that if the decimal expansion ofn is drdr� 2 � � � d0, then

11j n , 11 j d0 � d1 + d2 � � � � + ( � 1)rdr

C

. Exercise 5.3.56
Let n 2 N. Find a method for testing ifn is divisible by 7 based on the decimal expansion ofn. C

Application: public-key cryptography

Public-key cryptography is a method of encryption and decryption that works according to the fol-
lowing principles:
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� Encryption is done using apublic keythat is available to anyone.

� Decryption is done using aprivate keythat is only known to the recipient.

� Knowledge of the private key should be extremely dif�cult to derive from knowledge of the public
key.

Speci�cally, suppose that Alice wants to securely send Bob a message. As the recipient of the
message, Bob has a public key and a private key. So:

� Bob sends thepublic keyto Alice.

� Alice uses the public key to encrypt the message.

� Alice sends the encrypted message, which is visible (but encrypted) to anyone who intercepts it.

� Bob keeps the private key secret, and uses it upon receipt of the message to decrypt the message.

Notice that, since the public key can only be used toencryptmessages, a hacker has no useful
information upon intercepting the message or the public key.

RSA encryption is an algorithm which provides one means of doing public-key cryptography using
the theory of modular arithmetic. It works as follows.

Step 1. Let p andq be distinct positive prime numbers, and letn= pq. Thenj (n) = ( p� 1)(q� 1).

Step 2. Choosee2 Z such that 1< e< j (n) ande? j (n). The pair(n;e) is called thepublic key.

Step 3. Choosed 2 Z such thatde� 1 modj (n). The pair(n;d) is called theprivate key.

Step 4. To encrypt a messageM (which is encoded as an integer), computeK 2 [n] such that
K � Me modn. ThenK is the encrypted message.

Step 5. The original messageM can be recovered sinceM � Kd modn.

Computing the private key(n;d) from the knowledge of(n;e) would allow a hacker to decrypt an
encrypted message. However, doing so is typically very dif�cult when the prime factors ofn are
large. So if we choosep andq to be very large primes—which we can do without much hassle at
all—then it becomes computationally infeasible for a hacker to compute the private key.

Example. Suppose I want to encrypt the messageM, which I have encoded as the integer 32.
Let p = 13 andq = 17. Thenn = 221 andj (n) = 192. Lete = 7, and note that 7? 192. Now
7� 55� 1 mod 192, so we can de�ned = 55.

� The public key is(221;7), which Bob sends to Alice. Now Alice can encrypt the message:

327 � 59 mod 221

Alice then sends Bob the encrypted message 59.

� The private key is(221;55), so Bob can decrypt the message:

5955 � 32 mod 221

so Bob has received Alice's message 32.
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. Exercise 5.3.57
Prove that the RSA algorithm is correct. Speci�cally, prove:

(a) If n = pq, for distinct positive primesp andq, thenj (n) = ( p� 1)(q� 1);

(b) Given 1< e< j (n) with e? j (n), there existsd 2 Z with de� 1 modj (n).

(c) GivenM;K 2 Z with K � Me modn, it is indeed the case thatKd � M modn.

C

Application: Euler's totient function

We now derive a formula for computing the totient of an arbitrary integer using the tools from
Section 6.2—in particular, if you chose to read this sectionbeforelearning about the multiplication
principle, you should skip over this material.

C Theorem 5.3.58 (Multiplicativity of Euler's totient function)
Let m;n 2 Z and letj : Z ! N be Euler's totient function (see De�nition 5.3.26). Ifm andn are
coprime, thenj (mn) = j (m)j (n).

Proof
Sincej (� k) = j (k) for all k 2 Z, we may assume thatm > 0 andn > 0. Moreover, ifm = 0 or
n = 0, thenj (m)j (n) = 0 andj (mn) = 0, so the result is immediate. Hence we may assume that
m> 0 andn > 0.

Givenk 2 Z, de�ne
Ck = f a 2 [k] j a ? kg

By de�nition of Euler's totient function, we thus havejCkj = j (k) for all k 2 Z. We will de�ne a
bijection

f : Cm � Cn ! Cmn

using the Chinese remainder theorem (Theorem 5.3.46).

Givena 2 Cm andb 2 Cn, let f (a;b) be the elementx 2 [mn] such that
(

x � a modm
x � b modn

� f is well-de�ned. We check the properties of totality, existence and uniqueness.

� Totality. We have accounted for all the elements ofCm � Cn in our speci�cation off .

� Existence. By the Chinese remainder theorem, there existsx 2 Z such thatx � a modm and
x � b modn. By adding an appropriate integer multiple ofmnto x, we may additionally require
x 2 [mn]. It remains to check thatx ? mn.
So letd = gcd(x;mn). If d > 1, then there is a positive primep such thatp j x and p j mn.
But thenp j m or p j n, meaning that eitherp j gcd(x;m) or p j gcd(x;n). But x � a modm, so
gcd(x;m) = gcd(a;m); and likewise gcd(x;n) = gcd(b;n). So this contradicts the assumption
thata ? mandb ? n. Hencex ? mnafter all.
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� Uniqueness.Supposex;y 2 Cmn both satisfy the two congruences in question. By the Chinese
remainder theorem, we havex � y modmn, and hencex = y+ kmn for somek 2 Z. Since
x;y 2 [mn], we have

jkjmn= jkmnj = jx� yj 6 mn� 1 < mn

This impliesjkj < 1, so thatk = 0 andx = y.

so f is well-de�ned.

� f is injective. Let a;a02 Cm andb;b02 Cn, and suppose thatf (a;b) = f (a0;b0). Then there is an
elementx 2 Cmn such that 8

>>><

>>>:

x � a modm
x � a0modm
x � b modn
x � b0modn

Hencea � a0modm andb � b0modn. Sincea;a02 [m] andb;b02 [n], we must havea = a0and
b = b0.

� f is surjective. Let x 2 Cmn. Let a 2 [m] andb 2 [n] be the (unique) elements such thatx � a mod
mandx � b modn, respectively. Ifa2 Cm andb2 Cn, then we'll havef (a;b) = x by construction,
so it remains to check thata ? m andb ? n.

Supposed 2 Z with d j a andd j m. We prove thatd = 1. Sincex � a modm, we haved j x
by Theorem 5.1.17. Sincemj mn, we haved j mn. By de�nition of greatest common divisors, it
follows thatd j gcd(x;mn). But gcd(x;mn) = 1, so thatd is a unit, and soa ? m as required.

The proof thatb ? n is similar.

It was a lot of work to check that it worked, but we have de�ned a bijectionf : Cm � Cn ! Cmn. By
the multiplication principle, we have

j (m)j (n) = jCmj � jCnj = jCm � Cnj = jCmnj = j (mn)

as required. �

It turns out that Theorem 5.3.58 and Exercise 5.3.28 are precisely the ingredients we need to �nd a
general formula for the totient of a nonzero integer.

C Theorem 5.3.59 (Formula for Euler's totient function)
Let n be a nonzero integer. Then

j (n) = jnj � Õ
pjn

�
1�

1
p

�

where the product is indexed over positive primesp dividing n

Proof
Sincej (n) = j (� n) for all n 2 Z, we may assume thatn > 0. Moreover

j (1) = 1 = 1�Õ
pj1

�
1�

1
p

�
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Note that the product here is empty, and hence equal to 1, since there are no positive primesp which
divide 1. So now supposen > 1.

Using the fundamental theorem of arithmetic (Theorem 5.2.12), we can write

n = pk1
1 pk2

2 � � � pkr
r

for primes 0< p1 < p2 < � � � < pr and natural numbersk1;k2; : : : ;kr > 1.

By repeated application of Theorem 5.3.58, we have

j (n) =
r

Õ
i= 1

j ( pki
i )

By Exercise 5.3.28, we have

j (pki
i ) = pki

i � pki � 1
i = pki

i

�
1�

1
pi

�

Combining these two results, it follows that

j (n) =
r

Õ
i= 1

pki
i

�
1�

1
pi

�
=

 
r

Õ
i= 1

pki
i

!  
r

Õ
i= 1

�
1�

1
pi

� !

= n�
r

Õ
i= 1

�
1�

1
pi

�

which is as required. �

208



Section 5.E. Chapter 5 exercises 209

Section 5.E

Chapter 5 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

5.1. Let n 2 N. Prove that the number of trailing 0s in the decimal expansion ofn! is equal to

d

å
k= 1

j n
5k

k

whered 2 N is least such that 5d+ 1 > n, and wherebxc (LATEX code: \lfloor,\rfloor ) denotes
the greatest integer less than or equal tox 2 R (called the�oor of x).

5.2. Let b 2 N with b > 2. Find an expression in terms ofn 2 N for the number of trailing 0s in the
base-b expansion ofn!.
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Section 6.1

Finite sets

As its title suggests, this section is all about exploring the properties of �nite sets, and to do this we
must �rst de�ne what we mean by `�nite'. We certainly know a �nite set when we see one—for
example:

� The setf red;orange;yellow;green;blue;purpleg is �nite.

� The set[0;1] is in�nite, but it has �nite length.

� The set[0;¥ ) is in�nite and has in�nite length.

� The setP (N) is in�nite, but has no notion of `length' to speak of.

� The empty set? is �nite.

If we are to make a de�nition of `�nite set', we must �rst �gure out what the �nite sets above have
in common but the in�nite sets do not.

It is dif�cult to de�ne `�nite' without being imprecise. A �rst attempt at a de�nition might be
something like the following:

A set X is �nite if the elements of X don't go on forever.

This is good intuition, but isn't good enough as a mathematical de�nition, because `go on' and
`forever' are not precise terms (unless they themselves are de�ned). So let's try to make this more
precise:

A set X is �nite if the elements of X can be listed one by one
in such a way that the list has both a start and an end.

This is better but is still not entirely precise—it is not entirely clear what is meant by `listed one
by one'. But we can make this precise: to list the elements ofX one-by-one means that we are
specifying a `�rst element', a `second element', a `third element', and so on. To say that this list has
an end means that we eventually reach the `nth element', for somen 2 N, and there is no `(n+ 1)st

element'. In other words, for some natural numbern, we are pairing up the elements ofX with the
natural numbers from 1 ton.

Recall that, for eachn 2 N, the set of natural numbers from 1 up ton has its own notation:

F De�nition 2.1.9
Let n 2 N. The set[n] is de�ned by[n] = f k 2 N j 1 6 k 6 ng.

Since `pairing up' really means `�nding a bijection', we are now ready to de�ne what it means for a
set to be �nite.
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F De�nition 6.1.1
A setX is �nite if there exists a bijectionf : [n] ! X for somen 2 N. The functionf is called an
enumerationof X. If X is not �nite we say it isin�nite .

This de�nition suggests the following strategy for proving that a set is �nite.

v Strategy 6.1.2 (Proving that a set is �nite)
In order to prove that a setX is �nite, it suf�ces to �nd a bijection [n] ! X for somen 2 N.

0 Example 6.1.3
Let X = f red;orange;yellow;green;blue;purpleg. We said above thatX is �nite; now we can prove
it. De�ne f : [6] ! X by

f (1) = red f (2) = orange f (3) = yellow
f (4) = green f (5) = blue f (6) = purple

The functionf is evidently a bijection, since each element ofX can be expressed uniquely asf (k)
for somek 2 [6]. SoX is �nite. C

. Exercise 6.1.4
Prove that[n] is �nite for eachn 2 N. C

Note that Exercise 6.1.4 implies, in particular, that? is �nite, since? = [ 0].

The size of a �nite set

Whilst it might sometimes be useful just to knowthat set is �nite, it will be even more useful to
know how many elements it has. This quantity is called thesizeof the set. Intuitively, the size of
the set should be the length of the list of its elements, but for this to be well-de�ned, we �rst need to
know that the number of elements in the list is independent of the order in which we list them.

The `list of elements' of a �nite setX is the bijection[n] ! X given by De�nition 6.1.1, andn is the
length of the list, this means that we need to prove that if[m] ! X and[n] ! X are bijections, then
m= n. This will be Theorem 6.1.8.

To be able to prove this, we must �rst prove some technical results that we will use in the proof.

C Lemma 6.1.5
Let X be an inhabited set. There is a bijectionX n f ag ! X n f bg for all a;b 2 X.

Proof
Let a;b 2 X. First note that ifa = b thenX n f ag = X n f bg, and so the identity function idXnf ag is
the desired bijection.

So assumea 6= b, and de�nef : X n f ag ! X n f bg by

f (x) =

(
a if x = b
x otherwise

Note thatf is well-de�ned since it ensures thatf (x) 6= b for anyx 2 X n f ag.
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We prove thatf is a bijection by �nding an inverse.

So de�neg : X n f bg ! X n f ag by

g(x) =

(
b if x = a
x otherwise

Again,g is well-de�ned since we have ensured thatg(x) 6= a for anyx 2 X n f bg.

Givenx 2 X, if x 6= a andx 6= b, then f (x) 6= a andg(x) 6= b, so that

g( f (x)) = g(x) = x and f (g(x)) = f (x) = x

Moreoverg( f (b)) = g(a) = b and f (g(a)) = f (b) = a.

This proves thatg� f = idXnf ag and f � g = idXnf bg, so thatg is an inverse forf , as required. �

C Theorem 6.1.6
Let m;n 2 N.

(a) If there exists an injectionf : [m] ! [n], thenm6 n.

(b) If there exists a surjectiong : [m] ! [n], thenm> n.

(c) If there exists a bijectionh : [m] ! [n], thenm= n.

Proof of (a)
For �xed m2 N, let p(m) be the assertion that, for alln 2 N, if there exists an injection[m] ! [n],
thenm6 n. We prove thatp(m) is true for allm2 N by induction.

� (Base case) We need to prove that, for alln 2 N if there exists an injection[0] ! [n], then 06 n.
This is automatically true, since 06 n for all n 2 N.

� (Induction step) Fix m2 N and suppose that, for alln 2 N, if there exists an injection[m] ! [n],
thenm6 n.

Now let n 2 N and suppose that there is an injectionf : [m+ 1] ! [n]. We need to prove that
m+ 1 6 n.

First note thatn > 1. Indeed, sincem+ 1 > 1, we have 12 [m+ 1], and sof (1) 2 [n]. This means
that[n] is inhabited, and son > 1. In particular,n� 1 2 N and so the set[n� 1] is well-de�ned. It
suf�ces to prove thatm6 n� 1.

Let a = f (m+ 1) 2 [n] and de�ne f � : [m] ! [n] n f ag by f � (k) = f (k) for all k 2 [m]. Note that
f � is well-de�ned; indeed,f (k) 6= a for all k 2 [m] sincea = f (m+ 1) and f is injective.

The functionf � is injective. To see this, letk; ` 2 [m] and supposef � (k) = f � (`). Then f (k) =
f (`) by de�nition of f � , and sok = ` by injectivity of f .

Since[n� 1] = [ n] n f ng, there is a bijections: [n] n f ag ! [n� 1] by Lemma 6.1.5. In particular,
s is injective, and sos� f � is an injection[m] ! [n� 1] by Proposition 2.3.4.

By the induction hypothesis, we havem6 n� 1, and som+ 1 6 n as required.

The result now follows by induction. �
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. Exercise 6.1.7
Prove parts (b) and (c) of Theorem 6.1.6. C

Phew! That was fun. With these technical results proved, we can now prove the theorem we needed
for the size of a �nite set to be well-de�ned.

C Theorem 6.1.8 (Uniqueness of size)
Let X be a �nite set and letf : [m] ! X andg : [n] ! X be enumerations ofX, wherem;n 2 N. Then
m= n.

Proof
Since f : [m] ! X andg : [n] ! X are bijections, the functiong� 1 � f : [m] ! [n] is a bijection by
Exercises 2.3.21 and 2.3.46. Hencem= n by Theorem 6.1.6(c). �

As we mentioned above, Theorem 6.1.8 tells us that any two ways of listing (enumerating) the ele-
ments of a �nite set yield the same number of elements. We may now make the following de�nition.

F De�nition 6.1.9
Let X be a �nite set. Thesizeof X, writtenjXj, is the unique natural numbern for which there exists
a bijection[n] ! X.

0 Example 6.1.10
Example 6.1.3 showed thatjf red;orange;yellow;green;blue;purplegj = 6, and provided the proof
was correct, Exercise 6.1.4 showed thatj[n]j = n for all n 2 N; in particular,j? j = 0. C

0 Example 6.1.11
Fix n 2 N and letX = f a 2 Z j � n 6 a 6 ng. There is a bijectionf : [2n+ 1] ! X de�ned by
f (k) = k� n� 1. Indeed:

� f is well-de�ned. We need to provef (k) 2 X for all k 2 [2n+ 1]. Well givenk 2 [2n+ 1], we
have 16 k 6 2n+ 1, and so

� n = 1� (n+ 1) 6 k� (n+ 1)
| {z }

= f (k)

6 (2n+ 1) � (n+ 1) = n

so thatf (k) 2 X as claimed.

� f is injective. Let k; ` 2 [2n+ 1] and assumef (k) = f (`). Thenk � n � 1 = ` � n � 1, and so
k = `.

� f is surjective. Let a 2 X and de�nek = a+ n+ 1. Then

1 = ( � n)+ n+ 1 6 a+ n+ 1| {z }
= k

6 n+ n+ 1 = 2n+ 1

and sok 2 [2n+ 1], and moreoverf (k) = ( a+ n+ 1) � n� 1 = a.

Since f is a bijection, we havejXj = 2n+ 1 by De�nition 6.1.9. C

. Exercise 6.1.12
Let X be a �nite set withjXj = n > 1. Leta 2 X and letb 62X. Prove that
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(a) X n f ag is �nite and jX n f agj = n� 1; and

(b) X [ f bg is �nite and jX [ f bgj = n+ 1.

Identify where in your proofs you make use the hypotheses thata 2 X andb 62X. C

Comparing the sizes of �nite sets

When we used dots and stars to motivate the de�nitions of injective and surjective functions at the
beginning of Section 2.3, we suggested the following intuition:

� If there is an injectionf : X ! Y, thenX has `at most as many elements asY'; and

� If there is a surjectiong : X ! Y, thenX has `at least as many elements asY'.

We are now in a position to prove this, at least whenX andY are �nite. The following theorem is a
generalisation of Theorem 6.1.6.

C Theorem 6.1.13
Let X andY be sets.

(a) If Y is �nite and there is an injectionf : X ! Y, thenX is �nite and jXj 6 jYj.

(b) If X is �nite and there is a surjectionf : X ! Y, thenY is �nite and jXj > jYj.

(c) If one of X or Y is �nite and there is a bijectionf : X ! Y, thenX andY are both �nite and
jXj = jYj.

Proof of (a)

We prove by induction that, for alln 2 N, if Y is a �nite set of sizen and there is an injection
f : X ! Y, thenX is �nite and jXj 6 n.

� (Base case) Let Y be a �nite set of size 0—that is,Y is empty. Suppose there is an injection
f : X ! Y. If X is inhabited, then there exists an elementa 2 X, so thatf (a) 2 Y. This contradicts
emptiness ofY, so thatX must be empty. HencejXj = 0 6 0, as required.

� (Induction step) Fix n 2 N and assume that, ifY is a �nite set of sizen and there is an injection
f : X ! Y, thenX is �nite and jXj 6 n.

Fix a �nite setY of sizen+ 1 and an injectionf : X ! Y. We need to prove thatX is �nite and
jXj 6 n+ 1.

If X is empty, thenjXj = 0 6 n+ 1 as required. So assume thatX is inhabited, and �x an element
a 2 X.

De�ne f _ : X nf ag ! Ynf f (a)g by f _ (x) = f (x) for all x 2 X nf ag. Note thatf _ is well-de�ned
since f (x) 6= f (a) for any x 2 X n f ag by injectivity of f . Moreover f _ is injective; indeed, let
x;y 2 X n f ag and assumef _ (x) = f _ (y). Then

f (x) = f _ (x) = f _ (y) = f (y) ) x = y
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by injectivity of f . So f _ is an injection.

By Exercise 6.1.12,Y n f f (a)g is �nite and jY n f f (a)gj = ( n+ 1) � 1 = n.

By the induction hypothesis,X n f ag is �nite and jX n f agj 6 (n+ 1) � 1. But jX n f agj = jXj � 1
by Exercise 6.1.12, and sojXj 6 n+ 1, as required.

The result now follows by induction. �

. Exercise 6.1.14
Prove parts (b) and (c) of Theorem 6.1.13. C

Theorem 6.1.13 suggests the following strategies for comparing the sizes of �nite sets:

v Strategy 6.1.15 (Comparing the sizes of �nite sets)
Let X andY be �nite sets.

(a) In order to prove thatjXj 6 jYj, it suf�ces to �nd an injectionX ! Y.

(b) In order to prove thatjXj > jYj, it suf�ces to �nd a surjectionX ! Y.

(c) In order to prove thatjXj = jYj, it suf�ces to �nd a bijectionX ! Y.

Strategy (c) is commonly known asbijective proof.

Closure properties of �nite sets

We now use Strategy 6.1.15 to prove someclosure propertiesof �nite sets—that is, operations we
can perform on �nite sets to ensure that the result remains �nite.

. Exercise 6.1.16
Let X be a �nite set. Prove that every subsetU � X is �nite and jUj 6 jXj. C

. Exercise 6.1.17
Let X andY be �nite sets. Prove thatX \ Y is �nite. C

C Proposition 6.1.18
Let X andY be �nite sets. ThenX [ Y is �nite, and moreover

jX [ Yj = jXj + jYj � j X \ Yj

Proof
We will prove this in the case whenX andY are disjoint. The general case, whenX andY are not
assumed to be disjoint, will be Exercise 6.1.19.

Let m= jXj andn = jYj, and letf : [m] ! X andg : [n] ! Y be bijections.

SinceX andY are disjoint, we haveX \ Y = ? . De�ne h : [m+ n] ! X [ Y as follows; given
k 2 [m+ n], let

h(k) =

(
f (k) if k 6 m
g(k� m) if k > m
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Note thath is well-de�ned: the casesk 6 mandk > mare mutually exclusive, they cover all possible
cases, andk� m2 [n] for all m+ 1 6 k 6 n so thatg(k� m) is de�ned. It is then straightforward to
check thath has an inverseh� 1 : X [ Y ! [m+ n] de�ned by

h� 1(z) =

(
f � 1(z) if z2 X
g� 1(z)+ m if z2 Y

Well-de�nedness ofh� 1 relies fundamentally on the assumption thatX \ Y = ? , as this is what
ensures that the casesx 2 X andx 2 Y are mutually exclusive.

HencejX [ Yj = m+ n = jXj + jYj, which is as required sincejX \ Yj = 0. �

. Exercise 6.1.19
The following steps complete the proof of Proposition 6.1.18:

(a) Given setsA andB, prove that the setsA� f 0g andB� f 1g are disjoint, and �nd bijections
A ! A� f 0g andB ! B� f 1g. Write At B (LATEX code:\sqcup ) to denote the set(A� f 0g) [
(B� f 1g). The setAt B is called thedisjoint union of A andB.

(b) Prove that, ifA andB are �nite thenAt B is �nite and

jAt Bj = jAj + jBj

(c) LetX andY be sets. Find a bijection

(X [ Y) t (X \ Y) ! X t Y

(d) Complete the proof of Proposition 6.1.18—that is, prove that ifX andY are �nite sets, not
necessarily disjoint, thenX [ Y is �nite and

jX [ Yj = jXj + jYj � j X \ Yj

C

. Exercise 6.1.20
Let X be a �nite set and letU � X. Prove thatX nU is �nite, and moreoverjX nUj = jXj � j Uj. C

. Exercise 6.1.21
Let m;n 2 N. Prove thatj[m] � [n]j = mn. C

C Proposition 6.1.22
Let X andY be �nite sets. ThenX � Y is �nite, and moreover

jX � Yj = jXj � jYj

Proof
Let X andY be �nite sets, letm= jXj andn = jYj, and letf : [m] ! X andg : [n] ! Y be bijections.
De�ne a functionh : [m] � [n] ! X � Y by

h(k; `) = ( f (k);g(`))

for eachk 2 [m] and` 2 [n]. It is easy to see that this is a bijection, with inverse de�ned by

h� 1(x;y) = ( f � 1(x);g� 1(y))

for all x 2 X andy 2 Y. By Exercise 6.1.21 there is a bijectionp : [mn] ! [m] � [n], and by Exer-
cise 2.3.21 the compositeh� p : [mn] ! X � Y is a bijection. HencejX � Yj = mn. �
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In summary, we have proved that the property of �niteness is preserved by taking subsets, pairwise
unions, pairwise intersections, pairwise cartesian products, and relative complements.

In�nite sets

We conclude this section by proving that not all sets are �nite—speci�cally, we'll prove thatN is
in�nite. Intuitively this seems extremely easy: ofcourseN is in�nite! But in mathematical practice,
this isn't good enough: we need to use our de�nition of `in�nite' to prove thatN is in�nite. Namely,
we need to prove that there is no bijection[n] ! N for anyn 2 N. We will use Lemma 6.1.23 below
in our proof.

C Lemma 6.1.23
Every inhabited �nite set of natural numbers has a greatest element.

Proof
We'll prove by induction onn > 1 that every subsetU � N of sizen has a greatest element.

� (Base case) TakeU � N with jUj = 1. thenU = f mg for somem2 N. Sincemis the only element
of U, it is certainly the greatest element ofU!

� (Induction step) Fix n > 1 and suppose that every set of natural numbers of sizen has a greatest
element (IH ).

Let U � N with jUj = n+ 1. We wish to show thatU has a greatest element.

SincejUj = n+ 1, we may writeU = f m1;m2; : : : ;mn;mn+ 1g for distinct natural numbersmk. But
thenjU n f mn+ 1gj = n by Exercise 6.1.12, and so by the induction hypothesis,U n f mn+ 1g has a
greatest element, saymk. Now:

� If mk < mn+ 1, thenmn+ 1 is the greatest element ofU.

� If mk > mn+ 1, thenmk is the greatest element ofU.

In any case,U has a greatest element. This completes the induction step.

�

C Theorem 6.1.24
The setN is in�nite.

Proof
We proceed by contradiction. SupposeN is �nite. Then jNj = n for somen 2 N, and henceN is
either empty (nonsense, since 02 N) or, by Lemma 6.1.23, it has a greatest elementg. But g+ 1 2 N
since every natural number has a successor, andg+ 1> g, so this contradicts maximality ofg. Hence
N is in�nite. �
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Section 6.2

Counting principles

In Section 6.1 we were interested in establishing conditions under which a set is �nite, and proving
that we may perform certain operations on �nite sets—such as unions and cartesian products—
without losing the property of �niteness.

In this section, our attention turns to the task of �nding the size of a set that is known to be �nite.
This process is calledcountingand is at the core of the mathematical �eld of combinatorics.

Binomials and factorials revisited

We de�ned binomial coef�cients
� n

k

�
and factorialsn! recursivelyin Chapter 3, and proved element-

ary facts about them by induction. We will now re-de�ne themcombinatorially—that is, we give
them meaning in terms of sizes of particular �nite sets. We will prove that the combinatorial and
recursive de�nitions are equivalent, and prove facts about them using combinatorial arguments.

The reasons for doing so are manifold. The combinatorial de�nitions allow us to reason about
binomials and factorials with direct reference to descriptions of �nite sets, which will be particularly
useful when we prove identities about them usingdouble counting. Moreover, the combinatorial
de�nitions remove the seemingly arbitrary nature of the recursive de�nitions—for example, they
provide a reason why it makes sense to de�ne 0!= 1 and

� 0
0

�
= 1.

F De�nition 6.2.1
Let X be a set and letk 2 N. A k-element subsetof X is a subsetU � X such thatjUj = k. The set
of all k-element subsets ofX is denoted

� X
k

�
(read: X̀ choosek') (LATEX code:\binom{X}{k} ).

Intuitively,
� X

k

�
is the set of ways of pickingk elements fromX, without repetitions, in such a way

that order doesn't matter. (If order mattered, the elements would besequencesinstead ofsubsets.)

0 Example 6.2.2
We �nd

� [4]
k

�
for all k 2 N.

�
� [4]

0

�
= f ? g since the only set with 0 elements is? ;

�
� [4]

1

�
= ff 1g; f 2g; f 3g; f 4gg;

�
� [4]

2

�
= ff 1;2g; f 1;3g; f 1;4g; f 2;3g; f 2;4g; f 3;4gg;

�
� [4]

3

�
= ff 1;2;3g; f 1;2;4g; f 1;3;4g; f 2;3;4gg;

�
� [4]

4

�
= ff 1;2;3;4gg;

� If k > 5 then
� [4]

k

�
= ? , since by Exercise 6.1.16, no subset of[4] can have more than 4 elements.

C
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C Proposition 6.2.3

If X is a �nite set, thenP (X) =
[

k6 jXj

�
X
k

�
.

Proof

LetU � X. By Exercise 6.1.16,U is �nite and jUj 6 jXj. ThusU 2
� X

jUj

�
, and henceU 2

[

k6 jXj

�
X
k

�
.

This proves thatP (X) �
[

k6 jXj

�
X
k

�
.

The fact that
[

k6 jXj

�
X
k

�
� P (X) is immediate, since elements of

� X
k

�
are de�ned to be subsets ofX,

and hence elements ofP (X). �

F De�nition 6.2.4
Let n;k 2 N. Denote by

� n
k

�
(read: ǹ choosek') (LATEX code: \binom{n}{k} ) the number of

k-element subsets of[n]. That is, we de�ne
� n

k

�
=

�
�
�
� [n]

k

� �
�
� . The numbers

� n
k

�
are calledbinomial

coef�cients.

Some authors use the notationnCk or nCk instead of
� n

k

�
. We avoid this, as it is unnecessarily clunky.

Intuitively,
� n

k

�
is the number of ways of selectingk things fromn, without repetitions, in such a way

that order doesn't matter.

The value behind this notation is that it allows us to express huge numbers in a concise and mean-
ingful way. For example,

�
4000
11

�
= 103 640 000 280 154 258 645 590 429 564 000

Although these two numbers are equal, theirexpressionsare very different; the expression on the
left is meaningful, but the expression on the right is completely meaningless out of context.

v Writing tip
When expressing the sizes of �nite sets described combinatorially, it is best toavoidevaluating the
expression; that is, leave in the powers, products, sums, binomial coef�cients and factorials! The
reason for this is that performing the calculations takes the meaning away from the expressions.C

0 Example 6.2.5
In Example 6.2.2 we proved that:

�
4
0

�
= 1;

�
4
1

�
= 4;

�
4
2

�
= 6;

�
4
3

�
= 4;

�
4
4

�
= 1

and that
� 4

k

�
= 0 for all k > 5. C

. Exercise 6.2.6
Fix n 2 N. Prove that

� n
0

�
= 1,

� n
1

�
= n and

� n
n

�
= 1. C
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F De�nition 6.2.7
Let X be a set. Apermutation of X is a bijectionX ! X. Denote the set of all permutations ofX
by Sym(X) (LATEX code:\mathrm{Sym}) and writeSn = Sym([n]) for n 2 N.

0 Example 6.2.8
There are six permutations of the set[3]. Representing eachf 2 S3 by the ordered triple
( f (1); f (2); f (3)) , these permutations are thus given by

(1;2;3); (1;3;2); (2;1;3); (2;3;1); (3;1;2); (3;2;1)

For example,(2;3;1) represents the permutationf : [3] ! [3] de�ned by f (1) = 2, f (2) = 3 and
f (3) = 1. C

. Exercise 6.2.9
List all the permutations of the set[4]. C

F De�nition 6.2.10
Let n 2 N. Denote byn! (read: ǹ factorial') the number of permutations of a set of sizen. That is,
n! = jSnj. The numbersn! are calledfactorials.

0 Example 6.2.11
Example 6.2.8 shows that 3!= 6. C

Products and procedures

We saw in Proposition 6.1.22 that, given two �nite setsX andY, the productX � Y is �nite. We also
found a formula for its size, namelyjX � Yj = jXj � jYj. Themultiplication principle(Strategy 6.2.21)
generalises this formula to products that may contain any �nite number of sets, not just two.

C Lemma 6.2.12

Let f X1; : : : ;Xng be a family of �nite sets, withn > 1. Then
n

Õ
i= 1

Xi is �nite, and

�
�
�
�
�

n

Õ
i= 1

Xi

�
�
�
�
�
= jX1j � j X2j � � � � � j Xnj

Proof
We proceed by induction onn.

� (Base case) Whenn = 1, an element of
1

Õ
i= 1

Xi is `of�cially' a sequence(x1) with x1 2 X1. This is

the same as an element ofX1, in the sense that the assignments(x1) 7! x1 andx1 7! (x1) de�ne

mutually inverse (hence bijective) functions between
1

Õ
i= 1

Xi andX1, and so

�
�
�
�
�

1

Õ
i= 1

Xi

�
�
�
�
�
= jX1j
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� (Induction step) Fix n 2 N, and suppose that
�
�
�
�
�

n

Õ
i= 1

Xi

�
�
�
�
�
= jX1j � j X2j � � � � � j Xnj

for all setsXi for i 2 [n]. This is our induction hypothesis.

Now letX1; : : : ;Xn;Xn+ 1 be sets. We de�ne a function

F :
n+ 1

Õ
i= 1

Xi !

 
n

Õ
i= 1

Xi

!

� Xn+ 1

by lettingF((x1; : : : ;xn;xn+ 1)) = (( x1; : : : ;xn);xn+ 1). It is again easy to check thatF is a bijection,
and hence �

�
�
�
�

n+ 1

Õ
i= 1

Xi

�
�
�
�
�
=

�
�
�
�
�

n

Õ
i= 1

Xi

�
�
�
�
�
� jXn+ 1j

by Proposition 6.1.22. Applying the induction hypothesis, we obtain the desired result, namely
�
�
�
�
�

n+ 1

Õ
i= 1

Xi

�
�
�
�
�
= jX1j � j X2j � � � � � j Xnj � j Xn+ 1j

By induction, we're done. �

Lemma 6.2.12 gives rise to a useful strategy for computing the size of a �nite setX—see
Strategy 6.2.13. Intuitively, by devising a step-by-step procedure for specifying an element ofX,

we are constructing a cartesian product
n

Õ
k= 1

Xk, whereXk is the set of choices to be made in thekth

step. This establishes a bijection
n

Õ
k= 1

Xk ! X, which by bijective proof (Strategy 6.1.15(c)) lets us

computejXj as the product of the numbers of choices that can be made in each step.

v Strategy 6.2.13 (Multiplication principle (independent version))
LetX be a �nite set. In order to computejXj, it suf�ces to �nd a step-by-step procedure for specifying
elements ofX, such that:

� Each element is speci�ed by a unique sequence of choices;

� Each step in the procedure is independent of the previous step;

� There are �nitely many choices to be made at each step.

If there aren 2 N steps andmk 2 N possible choices in thekth step, thenjXj =
n

Õ
k= 1

mk.

0 Example 6.2.14
You go to an ice cream stand selling the following �avours:

vanilla, strawberry, chocolate, rum and raisin, mint choc chip, toffee crunch
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224 Chapter 6. Enumerative combinatorics

You can have your ice cream in a tub, a regular cone or achoco-cone. You can have one, two or
three scoops. We will compute how many options you have.

To select an ice cream, you follow the following procedure:

� Step 1.Choose a �avour. There are 6 ways to do this.

� Step 2.Choose whether you'd like it in a tub, regular cone or choco-cone. There are 3 ways to do
this.

� Step 3.Choose how many scoops you'd like. There are 3 ways to do this.

Hence there are 6� 3� 3 = 54 options in total. C

This may feel informal, but really what we are doing is establishing a bijection. LettingX be the set
of options, the above procedure de�nes a bijection

F � C� S! X

whereF is the set of �avours,C = f tub; regular cone;choco-coneg andS= [ 3] is the set of possible
numbers of scoops.

0 Example 6.2.15
We will prove thatjP (X)j = 2jXj for all �nite setsX.

Let X be a �nite set and letn = jXj. Write

X = f xk j k 2 [n]g = f x1;x2; : : : ;xng

Intuitively, specifying an element ofP (X)—that is, a subsetU � X—is equivalent to deciding, for
eachk 2 [n], whetherxk 2 U or xk 62U (`in or out'), which in turn is equivalent to specifying an
element off in;outgn.

For example, takingX = [ 7], the subsetU = f 1;2;6g corresponds with the choices

1 in; 2 in; 3 out; 4 out; 5 out; 6 in; 7 out

and hence the element(in; in;out;out;out; in;out) 2 f in;outg7.

This de�nes a functioni : P (X) ! f in;outgn. This function is injective, since different subsets
determine different sequences; and it is surjective, since each sequence determines a subset.

The above argument is suf�cient for most purposes, but since this is the �rst bijective proof we have
come across, we now give a more formal presentation of the details.

De�ne a function
i : P (X) ! f in;outgn

by letting thekth component ofi(U) be `in' if xk 2 U or `out' if xk 62U, for eachk 2 [n].

We prove thati is a bijection.
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Section 6.2. Counting principles 225

� i is injective. To see this, takeU;V � X and supposei(U) = i(V). We prove thatU = V. So �x
x 2 X and letk 2 [n] be such thatx = xk. Then

x 2 U , thekth component ofi(U) is `in' by de�nition of i

, thekth component ofi(V) is `in' sincei(U) = i(V)

, x 2 V by de�nition of i

so indeed we haveU = V, as required.

� i is surjective. To see this, letv 2 f in;outgn, and let

U = f xk j thekth component ofv is `in'g

Theni(U) = v, since for eachk 2 [n] we havexk 2 U if and only if thekth component ofv is `in',
which is precisely the de�nition ofi(U).

Hence
jP (X)j = jf in;outgjn = 2n

as required. C

Some authors actually write 2X to refer to the power set of a setX. This is justi�ed by Ex-
ample 6.2.15.

. Exercise 6.2.16
Let X andY be �nite sets, and recall thatYX denotes the set of functions fromX to Y. Prove that
jYX j = jYj jXj . C

0 Example 6.2.17
We count the number of ways we can shuf�e a standard deck of cards in such a way that the colour
of the cards alternate between red and black.

A procedure for choosing the order of the cards is as follows:

(i) Choose the colour of the �rst card. There are 2 such choices. This then determines the colours
of the remaining cards, since they have to alternate.

(ii) Choose the order of the red cards. There are 26! such choices.

(iii) Choose the order of the black cards. There are 26! such choices.

By the multiplication principle, there are 2� (26!)2 such rearrangements. This number is huge, and
in general there is no reason to write it out. Just for fun, though:

325 288 005 235 264 929 014 077 766 819 257 214 042 112 000 000 000 000

C

. Exercise 6.2.18
Since September 2001, car number plates on the island of Great Britain have taken the form
XX NN XXX, where eachX can be any letter of the alphabet except for `I', `Q' or `Z', andNNis
the last two digits of the year. [This is a slight simpli�cation of what is really the case, but let's not
concern ourselves withtoo many details!] How many possible number plates are there? Number
plates of vehicles registered in the region of Yorkshire begin with the letter `Y'. How many Yorkshire
number plates can be issued in a given year? C
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226 Chapter 6. Enumerative combinatorics

The multiplication principle in the form of Strategy 6.2.13 does not allow for steps later in a pro-
cedure to depend on those earlier in the procedure. To see why this is a problem, suppose we want
to count the size of the setX = f (a;b) 2 [n] � [n] j a 6= bg. A step-by-step procedure for specifying
such an element is as follows:

� Step 1.Select an elementa 2 [n]. There aren choices.

� Step 2.Select an elementb 2 [n] with b 6= a. There aren� 1 choices.

We would like to use Strategy 6.2.13 to deduce thatjXj = n(n � 1). Unfortunately, this is not
valid because the possible choices available to us in Step 2 depend on the choice made in Step 1.
Elements of cartesian products do not depend on one another, and so the set of sequences of choices
made cannot necessarily be expressed as a cartesian product of two sets. Thus we cannot apply
Lemma 6.2.12. Oh no!

However, provided that thenumberof choices in each step remains constant, in spite of the choices
themselves changing, it turns out that we can still compute the size of the set in question by mul-
tiplying together the numbers of choices.

This is what we prove next. We begin with a pairwise version (analogous to Exercise 6.1.21) and
then prove the general version by induction (like in Lemma 6.2.12).

C Lemma 6.2.19
Fix m;n2 N. LetX be a �nite set withjXj = m, and for eacha2 X, letYa be a �nite set withjYaj = n.
Then the set

P = f (a;b) j a 2 X andb 2 Yag

is �nite and jPj = mn.

Proof
Fix bijections f : [m] ! X andga : [n] ! Ya for eacha 2 X. De�ne h : [m] � [n] ! P by letting
h(i; j) = ( f (i);gf (i)( j)) for each(i; j) 2 [m] � [n]. Then:

� h is well-de�ned, since for alli 2 [m] and j 2 [n] we havef (i) 2 X andgf (i)( j) 2 Yf (i) .

� h is injective. To see this, �x(i; j); (k; `) 2 [m] � [n] and assume thath(i; j) = h(k; `). Then
( f (i);gf (i)( j)) = ( f (k);gf (k)(`)) , so thatf (i) = f (k) andgf (i)( j) = gf (k)(`). Sincef is injective,
we havei = k—thereforegf (i)( j) = gf (i)(`), and then sincegf (i) is injective, we havej = `. Thus
(i; j) = ( k; `), as required.

� h is surjective. To see this, let(a;b) 2 P. Since f is surjective anda 2 X, we havea = f (i) for
somei 2 [m]. Sincega is surjective andb 2 Ya, we haveb = ga( j) for somej 2 [n]. But then

(a;b) = ( f (i);ga( j)) = ( f (i);gf (i)( j)) = h(i; j)

so thath is surjective.

Sinceh is a bijection, we havejPj = j[m] � [n]j by Theorem 6.1.13(iii), which is equal tomn by
Proposition 6.1.22. �

We are now ready to state and prove the theorem giving rise to the multiplication principle in its full
generality.
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C Theorem 6.2.20 (Multiplication principle)
Let n > 1 andm1;m2; : : : ;mn 2 N. Suppose for eachi 2 [n] that we are given �nite setsX(i)

a1;:::;ai� 1

with jX(i)
a1;:::;ai� 1j = mi , wherea j 2 X(i)

a1;:::;a j � 1 for eachj < i. De�ne

P = f (a1;a2; : : : ;an) j a1 2 X(1) ; a2 2 X(2)
a1 ; : : : ; an 2 X(n)

a1;:::;an� 1g

ThenP is �nite and jPj = m1 � m2 � � � � � mn.

Proof
We proceed by induction onn > 1.

� (Base case) Whenn = 1, the statement says that givenm1 2 N and a �nite setX(1) with jX(1) j =
m1, thenP = f (a1) j a1 2 X(1)g is �nite and jPj = m1. This is true, since the functionX(1) ! P
de�ned bya 7! (a) is evidently a bijection.

� (Induction step) Fix n > 1 and assume that the statement is true for this value ofn.

Let m1;m2; : : : ;mn;mn+ 1 2 N and suppose that we are given �nite setsX(i)
a1;:::;ai� 1 for eachi 2 [n+ 1]

just as in the statement of the theorem, and let

P = f (a1;a2; : : : ;an+ 1) j a1 2 X(1) ; a2 2 X(2)
a1 ; : : : ; an+ 1 2 X(n+ 1)

a1;:::;an� 1;ang

We need to prove thatjPj = m1 � m2 � � � � � mn � mn+ 1.

So de�ne
Q = f (a1;a2; : : : ;an) j a1 2 X(1) ; a2 2 X(2)

a1 ; : : : ; an 2 X(n)
a1;:::;an� 1g

and, givenq = ( a1; : : : ;an) 2 Q, de�ne Yq = X(n+ 1)
a1;:::;an. Observe that there is an evident bijection

f (q;an+ 1) j q 2 Q; an+ 1 2 Yqg ! P

de�ned by((a1;a2; : : : ;an);an+ 1) 7! (a1;a2; : : : ;an;an+ 1).

Now jQj = m1 � m2 � � � � � mn, andjYqj = mn+ 1 for eachq 2 Q, so it follows from Lemma 6.2.19
that

jPj = ( m1 � m2 � � � � � mn) � mn+ 1 = m1 � m2 � � � � � mn � mn+ 1

as required.

�

Strategy 6.2.21 summarises how Theorem 6.2.20 is useful in our proofs.
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v Strategy 6.2.21 (Counting using the multiplication principle)
LetX be a �nite set. In order to computejXj, it suf�ces to �nd a step-by-step procedure for specifying
elements ofX, such that:

� Each element is speci�ed by a unique sequence of choices;

� The choices available in each step depend only on choices made in previous steps;

� There are �nitely many choices available in each step;

� Thenumberof choices available in each step does not depend on choices made in previous steps;

If there aren 2 N steps andmk 2 N possible choices in thekth step, thenjXj =
n

Õ
k= 1

mk.

0 Example 6.2.22
We prove that there are six bijections[3] ! [3]. We can specify a bijectionf : [3] ! [3] according to
the following procedure.

� Step 1.Choose the value off (1). There are 3 choices.

� Step 2.Choose the value off (2). The valuesf (2) can take depend on the chosen value off (1).

� If f (1) = 1, thenf (2) can be equal to 2 or 3.

� If f (1) = 2, thenf (2) can be equal to 1 or 3.

� If f (1) = 3, thenf (2) can be equal to 1 or 2.

In each case, there are 2 choices for the value off (2).

� Step 3. Choose the value off (3). The valuesf (3) can take depend on the values off (1) and
f (2). We could split into the (six!) cases based on the values off (1) and f (2) chosen in Steps
1 and 2; but we won't. Instead, note thatf f (1); f (2)g has two elements, and by injectivityf (3)
must have a distinct value, so that[3] n f f (1); f (2)g has one element. This element must be the
value of f (3). Hence there is only possible choice off (3).

By the multiplication principle, there are 3� 2� 1 = 6 bijections[3] ! [3]. C

. Exercise 6.2.23
Count the number of injections[3] ! [4]. C

Sums and partitions

We saw in Proposition 6.1.18 that, given two �nite setsX andY, the unionX [ Y is �nite. We
also found formulae for their size, namelyjX [ Yj = jXj + jYj � j X \ Yj. The addition principle
(Strategy 6.2.26) generalises this formula to any �nite number of sets, provided the sets have no ele-
ments in common with one another—that is they arepairwise disjoint. [The hypothesis of pairwise
disjointness is removed in theinclusion–exclusion principle, which is studied in Section 6.3.]

If you have not covered Section 4.2 yet, you are encouraged to take a brief detour to read from
De�nition 4.2.21 to Exercise 4.2.26; the de�nition of apartition of a set is recalled below.
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F De�nition 4.2.21
A partition of a setX is a collectionU = f Ui j i 2 Ig of subsets ofX such that the following
conditions hold:

(a) For eachi 2 I , the subsetUi is inhabited;

(b) The setsUi for i 2 I arepairwise disjoint—that is,Ui \ U j is empty for alli; j 2 I with i 6= j;

(c)
[

i2 I

Ui = X.

In this section, we will simplify matters in two ways:

� When we say `partition' in this section (and Section 6.3), we will allow the sets in the partition to
be empty—that is, we will just need conditions (b) and (c) of De�nition 4.2.21 to hold.

� Since our sets are �nite, so will the index setI be; so we will only ever partition our sets into
�nitely many pieces. That is, all of our partitions will take formf U1;U2; : : : ;Ung for somen 2 N.

With all of this said, let's get right to it.

C Theorem 6.2.24 (Addition principle)
Let X be a set and letf U1; : : : ;Ung be a partition ofX for somen 2 N, such that each setUi is �nite.
ThenX is �nite, and

jXj = jU1j + jU2j + � � � + jUnj

. Exercise 6.2.25
Prove Theorem 6.2.24. The proof follows the same pattern as that of Lemma 6.2.12. Be careful to
make sure you identify where you use the hypothesis that the setsUi are pairwise disjoint! C

v Strategy 6.2.26 (Counting using the addition principle)
Let X be a �nite set. In order to computejXj, it suf�ces to �nd a partitionU1;U2; : : : ;Un of X; it then

follows thatjXj =
n

å
k= 1

jXi j.

0 Example 6.2.27
We will count the number of inhabited subsets of[7] which either contain only even numbers, or
contain only odd numbers.

Let O denote the set of inhabited subsets of[7] containing only odd numbers, and letE denote the
set of inhabited subsets of[7] containing only even numbers. Note thatf O;Eg forms a partition of
the set we are counting, and so our set hasjOj + jEj elements.

� An element ofO must be a subset off 1;3;5;7g. By Example 6.2.15 there are 24 = 16 such
subsets. Thus the number ofinhabitedsubsets of[7] containing only odd numbers is 15, since we
must exclude the empty set. That is,jOj = 15.

� A subset containing only even numbers must be a subset off 2;4;6g. Again by Example 6.2.15
there are 23 = 8 such subsets. Hence there are 7 inhabited subsets of[7] containing only even
numbers. That is,jEj = 7.
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Hence there are 15+ 7 = 22 inhabited subsets of[7] containing only even or only odd numbers. And
here they are:

f 1g f 3g f 5g f 7g f 1;3g f 2g f 4g f 6g
f 1;5g f 1;7g f 3;5g f 3;7g f 5;7g f 2;4g f 2;6g f 4;6g

f 1;3;5g f 1;3;7g f 1;5;7g f 3;5;7g f 1;3;5;7g f 2;4;6g

C

. Exercise 6.2.28
Pick your favourite integern > 1000. For this value ofn, how many inhabited subsets of[n] contain
either only even or only odd numbers? (You need not evaluate exponents.) C

We now consider some examples of �nite sets which use both the multiplication principle and the
addition principle.

0 Example 6.2.29
A city has 6n inhabitants. The favourite colour ofn of the inhabitants is orange, the favourite colour
of 2n of the inhabitants is pink, and the favourite colour of 3n of the inhabitants is turquoise. The city
government wishes to form a committee with equal representation from the three colour preference
groups to decide how the new city hall should be painted. We count the number of ways this can be
done.

Let X be the set of possible committees. First note that

X =
n[

k= 0

Xk

whereXk is the set of committees with exactlyk people from each colour preference group. Indeed,
we must havek 6 n, since it is impossible to have a committee with more thann people from the
orange preference group.

Moreover, if k 6= ` thenXk \ X` = ? , since ifk 6= ` then a committee cannot simultaneously have
exactlyk people and exactlỳ people from each preference group.

By the addition principle, we have

jXj =
n

å
k= 0

jXkj

We countXk for �xed k using the following procedure:

� Step 1.Choosek people from the orange preference group to be on the committee. There are
� n

k

�

choices.

� Step 2. Choosek people from the pink preference group to be on the committee. There are
� 2n

k

�

choices.

� Step 3.Choosek people from the turquoise preference group to be on the committee. There are� 3n
k

�
choices.

By the multiplication principle, it follows thatjXkj =
� n

k

�� 2n
k

�� 3n
k

�
. Hence

jXj =
n

å
k= 0

�
n
k

��
2n
k

��
3n
k

�
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C

. Exercise 6.2.30
In Example 6.2.29, how many ways could a committee be formed with arepresentativenumber of
people from each colour preference group? That is, the proportion of people on the committee which
prefer any of the three colours should be equal to the corresponding proportion of the population of
the city. C

Pigeonhole principle

A nice application of the addition principle is to prove thepigeonhole principle, which is used
heavily in combinatorics.

Informally, the pigeonhole principle says that if you assign pigeons to pigeonholes, and there are
more pigeons than pigeonholes, then some pigeonhole must have more than one pigeon in it. We
can (and do) generalise this slightly: it says that givenq 2 N, if you have more thanq times as many
pigeons than pigeonholes, then some pigeonhole must have more thanq pigeons in it.

The proof is deceptively simple.

C Theorem 6.2.31 (Pigeonhole principle)
Let q 2 N, and letX andY be �nite sets withjXj = m2 N andjYj = n 2 N. Then:

(a) If m> qn, then for every functionf : X ! Y, there is somea 2 Y such thatj f � 1[f ag]j > q.

(b) If m6 qn, then there is a functionf : X ! Y such thatj f � 1[f ag]j 6 q for all a 2 Y.

Proof of (a)
Supposem > qn. It follows from Exercise 4.2.25 that the setsf � 1[f ag] partition X. Towards a
contradiction, assumej f � 1[f ag]j 6 q for all a 2 Y. Then by the addition principle

m = jXj =

�
�
�
�
�

[

a2Y

f � 1[f ag]

�
�
�
�
�

= å
a2Y

j f � 1[f ag]j 6 å
a2Y

q = jYj � q = qn

This contradicts the assumption thatm> qn. �

. Exercise 6.2.32
Prove part (b) of Theorem 6.2.31. C

0 Example 6.2.33
Let n;k 2 N. Assume that you haven pairs of socks in a drawer, and each sock is one ofk colours.
We wish to know how many socks you must take out of the drawer before you can guarantee that
you have a matching pair.

Let C be set of colours of the socks, so thatjCj = k, and letX be the set of socks that you have
selected. We obtain a functionf : X ! C that assigns to each sockx its colour f (x) 2 C. Given a
colourc 2 C, the preimagef � 1[f cg] is the set of socks of colourc that we have selected.

Thus the question becomes: what size mustX be in order to havej f � 1[f cg]j > 2 for somec 2 C?
[The English translation of this question is: how many socks must we have picked in order for two
of the socks to have the same colour?]
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Well, by the pigeonhole principle, we can guaranteej f � 1[f cg]j > 2 (or equivalently> 1) if and only
if jXj > 2jCj. That is, we need to select at least 2k+ 1 socks to guarantee a matching pair. C

. Exercise 6.2.34
Six people throw eggs at each other, each throwing as many eggs as they like (possibly none). Prove
that there is some set of three people such that either (i) each person in the set threw an egg at each
other person in the set; or (ii) no person in the set threw an egg at anyone else in the set. C

Double counting

Double counting(also known ascounting in two ways) is a proof technique that allows us to prove
that two natural numbers are equal by establishing they are two expressions for the size of the same
set. (More generally, by Theorem 6.1.13(iii), we can relate them to the sizes of two sets which are
in bijection.)

The proof of Proposition 6.2.35 illustrates this proof very nicely. We proved it already by induction
in Example 3.2.15; the combinatorial proof we now provide is much shorter and cleaner.

C Proposition 6.2.35

Let n 2 N. Then 2n =
n

å
k= 0

�
n
k

�
.

Proof

We know thatjP ([n])j = 2n by Example 6.2.15 and thatP ([n]) =
n[

k= 0

�
[n]
k

�
by Proposition 6.2.3.

Moreover, the sets
� [n]

k

�
are pairwise disjoint, so by the addition principle it follows that

2n = jP ([n])j =

�
�
�
�
�

n[

k= 0

�
[n]
k

� �
�
�
�
�
=

n

å
k= 0

�
�
�
�

�
[n]
k

� �
�
�
� =

n

å
k= 0

�
n
k

�

�

v Strategy 6.2.36 (Double counting)
In order to prove that two expressions involving natural numbers are equal, it suf�ces to de�ne a set
X and devise two counting arguments to show thatjXj is equal to both expressions.

The next example counts elements ofdifferentsets and puts them in bijection to establish an identity.

C Proposition 6.2.37
Let n;k 2 N with n > k. Then �

n
k

�
=

�
n

n� k

�

Proof

First note that
� n

k

�
=

�
�
�
� [n]

k

� �
�
� and

� n
n� k

�
=

�
�
�
� [n]

n� k

� �
�
� , so in order to prove

� n
k

�
=

� n
n� k

�
, it suf�ces by

Strategy 6.1.15 to �nd a bijectionf :
� [n]

k

�
!

� [n]
n� k

�
. Intuitively, this bijection arises because choosing

k elements from[n] to put intoa subset is equivalent to choosingn� k elements from[n] to leave out
of the subset. Speci�cally, we de�ne

f (U) = [ n]nU for all U 2
�

[n]
k

�
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Note �rst that f is well-de�ned, since ifU � [n] with jUj = k, then[n]nU � [n] andj[n]nUj = j[n]j �
jUj = n� k by Exercise 6.1.20. We now provef is a bijection:

� f is injective. Let U;V � [n] and suppose[n]nU = [ n]nV. Then for allk 2 [n], we have

k 2 U , k 62[n]nU by de�nition of set difference

, k 62[n]nV since[n]nU = [ n]nV

, k 2 V by de�nition of set difference

soU = V, as required.

� f is surjective. Let V 2
� [n]

n� k

�
. Then j[n] nVj = n � (n � k) = k by Exercise 6.1.20, so that

[n] nV 2
� [n]

k

�
. But then

f ([n] nV) = [ n]n([n] nV) = V

by Exercise 2.1.64.

Since f is a bijection, we have
�

n
k

�
=

�
�
�
�

�
[n]
k

� �
�
�
� =

�
�
�
�

�
[n]

n� k

� �
�
�
� =

�
n

n� k

�

as required. �

We put a lot of detail into this proof. A slightly less formal proof might simply say that
� n

k

�
=

� n
n� k

�

since choosingk elements from[n] to put into a subset is equivalent to choosingn� k elements from
[n] to leave out of the subset. This would be �ne as long as the members of the intended audience of
your proof could reasonably be expected to construct the bijection by themselves.

The proof of Proposition 6.2.38 follows this more informal format.

C Proposition 6.2.38
Let n;k; ` 2 N with n > k > `. Then

�
n
k

��
k
`

�
=

�
n
`

��
n� `
k� `

�

Proof
Let's home in on the left-hand side of the equation. By the multiplication principle,

� n
k

�� k
`

�
is the

number of ways of selecting ak-element subset of[n] and aǹ -element subset of[k]. Equivalently,
it's the number of ways of selecting ak-element subset of[n] and then aǹ -element subsetof the
k-element subset that we just selected. To make this slightly more concrete, let's put it this way:

� n
k

�� k
`

�
is the number of ways of paintingk balls red from a bag ofn balls, and painting

` of the red balls blue. This leaves us with` blue balls andk� ` red balls.

Now we need to �nd an equivalent interpretation of
� n

`

�� n� `
k� `

�
. Well, suppose we pick thèelements

to be coloured blue �rst. To make up the rest of thek-element subset, we now have to selectk � `
elements, and there are nown� ` to choose from. Thus

� n
`

�� n� `
k� `

�
is the number of ways of painting̀ balls from a bag ofn balls blue, and

paintingk� ` of the remaining balls red.
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Thus, both numbers represent the number of ways of painting` balls blue andk� ` balls red from a
bag ofn balls. Hence they are equal. �

. Exercise 6.2.39
Make the proof of Proposition 6.2.38 more formal by de�ning a bijection between sets of the appro-
priate sizes. C

. Exercise 6.2.40
Provide a combinatorial proof that ifn;k 2 N with n > k, then

�
n+ 1
k+ 1

�
=

�
n
k

�
+

�
n

k+ 1

�

Deduce that the combinatorial de�nition of binomial coef�cients (De�nition 6.2.4) is equivalent to
the recursive de�nition (De�nition 3.1.15). C

The following proposition demonstrates that the combinatorial de�nition of factorials (De�ni-
tion 6.2.10) is equivalent to the recursive de�nition (De�nition 3.1.14).

C Theorem 6.2.41
0! = 1 and ifn 2 N then(n+ 1)! = ( n+ 1) � n!.

Proof
The only permutation of? is the empty functione: ? ! ? . HenceS0 = f eg and 0!= jS0j = 1.

Let n 2 N. A permutation of[n+ 1] is a bijectionf : [n+ 1] ! [n+ 1]. Specifying such a bijection is
equivalent to carrying out the following procedure:

� Choose the (unique!) elementk 2 [n+ 1] such thatf (k) = n+ 1. There aren+ 1 choices fork.

� Choose the values off at each̀ 2 [n+ 1] with ` 6= k. This is equivalent to �nding a bijection
[n+ 1]n f kg ! [n]. Sincej[n+ 1]n f kgj = j[n]j = n, there aren! such choices.

By the multiplication principle, we have

(n+ 1)! = jSn+ 1j = ( n+ 1) � n!

so we're done. �

We now revisit Theorem 3.2.17; this time, our proof will be combinatorial, rather than inductive.

C Theorem 6.2.42
Let n;k 2 N. Then

�
n
k

�
=

8
<

:

n!
k!(n� k)!

if k 6 n

0 if k > n

Proof
Supposek > n. By Exercise 6.1.16, ifU � [n] thenjUj 6 n. Hence ifk > n, then

� [n]
k

�
= ? , and so� n

k

�
= 0, as required.
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Now supposek 6 n. We will prove thatn! =
� n

k

�
� k! � (n � k)!; the result then follows by dividing

through byk!(n� k)!. We prove this equation by counting the number of elements ofSn.

A procedure for de�ning an element ofSn is as follows:

(i) Choose which elements will appear in the �rstk positions of the list. There are
� n

k

�
such

choices.

(ii) Choose the order of thesek elements. There arek! such choices.

(iii) Choose the order of the remainingn� k elements. There are(n� k)! such choices.

By the multiplication principle,n! =
� n

k

�
� k! � (n� k)!. �

Note that the proof of Theorem 6.2.42 relied only on the combinatorial de�nitions of binomial coef-
�cients and factorials; we didn't need to know how to compute them at all! The proof wasmuch
shorter, cleaner and, in some sense, more meaningful, than the inductive proof we gave in The-
orem 3.2.17.

We conclude this section with some more examples and exercises in which double counting can be
used.

. Exercise 6.2.43
Let n;k 2 N with k 6 n+ 1. Prove that

k
�

n
k

�
= ( n� k+ 1)

�
n

k� 1

�

C

0 Example 6.2.44
Let m;n;k 2 N. We prove that

k

å̀
= 0

�
m
`

��
n

k� `

�
=

�
m+ n

k

�

by �nding a procedure for counting the number ofk-element subsets of an appropriate(m+ n)-
element set. Speci�cally, letX be a set containingmcats andn dogs. Then

�
�� m+ n

k

� �
� is the number of

k-element subsetsU � X. We can specify such a subset according to the following procedure.

� Step 1. Split into cases based on the number` of cats inU. Note that we must have 06 ` 6 k,
since the number of cats must be a natural number and cannot exceedk asjUj = k. Moreover,
these cases are mutually exclusive. Hence by the addition principle we have

�
m+ n

k

�
=

k

å̀
= 0

a`

wherea` is the number of subsets ofX containing̀ cats andk� ` dogs.

� Step 2.Choosè cats from themcats inX to be elements ofU. There are
� [m]

`

�
such choices.

� Step 3.Choosek� ` dogs from then dogs inX to be elements ofU. There are
� [n]

k� `

�
such choices.
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The multiplication principle shows thata` =
� m

`

�� n
k� `

�
. Hence

�
m+ n

k

�
=

k

å̀
= 0

�
m
`

��
n

k� `

�

as required. C

. Exercise 6.2.45

Given natural numbersn;a;b;c with a+ b+ c = n, de�ne the trinomial coef�cient
�

n
a;b;c

�
to

be the number of ways of partitioning[n] into three sets of sizesa, b andc, respectively. That is,�
n

a;b;c

�
is the size of the set

8
<

:
(A;B;C)

�
�
�
�
�
�

A � [n]; B � [n]; C � [n];
jAj = a; jBj = b; jCj = c;

andA[ B[ C = [ n]

9
=

;

By considering trinomial coef�cients, prove that ifa;b;c 2 N, then(a+ b+ c)! is divisible bya! �
b! � c!. C
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Section 6.3

Alternating sums

Using the addition principle, together with double counting, turned out to be very useful for proving
combinatorial identities involving sums in Section 6.2. In this section, we turn our attention to
alternating sums, which are sums whose terms alternate between positive and negative. As we will
see later, sums of this kind can be used to computing sizes of unions of not-necessarily-disjoint
sets—this has all manner of uses and applications.

An example of such a sum is the following.
�

6
0

�
�

�
6
1

�
+

�
6
2

�
�

�
6
3

�
+

�
6
4

�
�

�
6
5

�
+

�
6
6

�

We can express such sums more succinctly by observing that, givenk 2 N, we have

(� 1)k =

(
1 if k is even
� 1 if k is odd

For example, the sum above could be expressed as
6

å
k= 0

(� 1)k
�

6
k

�
. It so happens that this sum

evaluates to zero:
1� 6+ 15� 20+ 15� 6+ 1 = 0

The goal of the following exercise is to demonstrate how. . .annoying. . . it is to prove identities
involving alternating sums using induction.

. Exercise 6.3.1

Prove by induction that
n

å
k= 0

(� 1)k
�

n
k

�
= 0 for all n 2 N. C

Evidently we need a better approach.

If you stare at the equation in Exercise 6.3.1 for long enough, you should be able to convince yourself
that

n

å
k= 0

(� 1)k
�

n
k

�
= å

evenk

�
n
k

�
� å

oddk

�
n
k

�

and it suf�ces to prove thatå
evenk

�
n
k

�
= å

oddk

�
n
k

�
. This will be our strategy in the proof of Proposi-

tion 6.3.2, which serves as our prototype for the abstract material to come.

For the sake of readability, we left implicit thatk is varying over (the even or odd elements of) the
setf 0;1; : : : ;ng in each sum—we shall adopt this practice throughout this section.

C Proposition 6.3.2

Let n 2 N. Then
n

å
k= 0

(� 1)k
�

n
k

�
= 0.
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Proof
As we observed, it suf�cies to prove

å
evenk

�
n
k

�
= å

oddk

�
n
k

�

So de�ne
E = f U � [n] j jUj is eveng and O = f U � [n] j jUj is oddg

That is,E is the set of all even-sized subsets of[n], andO is the set of all odd-sized subsets of[n].

Note that the sets
�

[n]
k

�
for evenk 6 n partitionE, and the sets

�
[n]
k

�
for oddk 6 n partitionO. So

by the addition principle, we have

jEj =

�
�
�
�
�

[

evenk

�
[n]
k

� �
�
�
�
�
= å

evenk

�
n
k

�
and jOj =

�
�
�
�
�

[

oddk

�
[n]
k

� �
�
�
�
�
= å

oddk

�
n
k

�

It suf�ces to show thatjEj = jOj. To do this, de�ne a functionf : E ! O for U 2 E by

f (U) =

(
U [ f ng if n 62U
U n f ng if n 2 U

That is, f putsn into a subset if it wasn't already there, and removes it if it was. Then:

� f is well-de�ned. GivenU 2 E, note thatj f (U)j = jUj � 1; sincejUj is even, we have thatj f (U)j
is odd, so thatf (U) 2 O.

� f is bijective. De�ne g : O ! E by letting

g(V) =

(
V [ f ng if n 62V
V n f ng if n 2 V

for all V 2 O. The proof thatg is well-de�ned is identical to that off . Moreover, givenU 2 E,
we have:

� If n 2 U, then f (U) = U n f ng, so thatg( f (U)) = ( U n f ng) [ f ng = U.

� If n 62U, then f (U) = U [ f ng, so thatg( f (U)) = ( U [ f ng) n f ng = U.

Henceg( f (U)) = U for all U 2 E. An identical computation reveals thatf (g(V)) = V for all
V 2 O, and sog is an inverse forf .

Putting all of this together, it follows form the fact thatf : E ! O is a bijection thatjEj = jOj, and
so

n

å
k= 0

(� 1)k
�

n
k

�
= å

evenk

�
n
k

�
� å

oddk

�
n
k

�
= jEj � j Oj = 0

as required. �

Wait a minute—didn't I say this would be abetterapproach than induction? That proof felt like a
lot of work. The reason for working through this proof is that it highlights the ideas that we will
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use throughout this section. These ideas will allow us to derive a general proof strategy, called
theinvolution principle(Strategy 6.3.24), which greatly simpli�es proofs of results of this nature—
indeed, we will prove Proposition 6.3.2 again using the involution principle in Example 6.3.25.

With that said, Proposition 6.3.2 highlights the following general strategy for proving that an altern-
ating sum evaluates to zero.

v Strategy 6.3.3 (Proving that an alternating sum evaluates to zero)

Let a0;a1; : : : ;an 2 N. In order to prove that
n

å
k= 0

(� 1)kak = 0, it suf�ces to �nd:

(i) A partition U0;U2; : : : of a setE, with jUkj = ak for all evenk;

(ii) A partition U1;U3; : : : of a setO, with jUkj = ak for all oddk; and

(iii) A bijection E ! O.

. Exercise 6.3.4
Use Strategy 6.3.3 to prove that

n

å
k= 0

(� 1)k � k �
�

n
k

�
= 0

for all n > 2. C

Unfortunately Strategy 6.3.3 is still somewhat limited. For a start, it tells us nothing about how to
evaluate an alternating sum thatdoesn'tend up being equal to zero. Also, it ignores a key clue from
the proof of Proposition 6.3.2: namely, the functionf : E ! O and its inverseg : O ! E were
de�ned identically. They are both restrictions of a functionh : P ([n]) ! P ([n]) de�ned in the same
way:

h(U) =

(
U [ f ng if n 62U
U n f ng if n 2 U

This function has the property thath(h(U)) = U for all U � [n] (that is,h is aninvolution), andh
restricts to a bijection between the set of even-sized subsets of[n] and the set of odd-sized subsets of
[n] (that is,h swaps parity).

This property of being a parity-swapping involution will be the key to deriving the involution prin-
ciple.

Involutions

An involution is a function that is its own inverse.

F De�nition 6.3.5
Let X be a set. Aninvolution of X is a functionh : X ! X such thath� h = idX.

0 Example 6.3.6
Consider the functionh : R ! R de�ned by h(x) = 1� x for eachx 2 R. Thenh is an involution,
since for allx 2 R we haveh(h(x)) = 1� (1� x) = x. C
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. Exercise 6.3.7
Given a setX, prove that the relative complement functionr : P (X) ! P (X), de�ned byr(U) =
X nU for all U � X, is an involution. C

. Exercise 6.3.8
Prove that every involution is a bijection. C

. Exercise 6.3.9
Let h : X ! X be an involution and leta2 X. Prove thath either �xesa—that is,h(a) = a—or swaps
it with another elementb 2 X—that is,h(a) = b andh(b) = a. C

The involution that we used in the proof of Proposition 6.3.2 was an instance oftogglingan element
in a subset—that is, removing it if it is there, and putting it in if it is not.

Toggling is so useful that we assign special notation.

F De�nition 6.3.10
Let X be a set. Thetoggleoperation� (LATEX code:\oplus ) is de�ned by letting

U � a =

(
U [ f ag if a 62U
U n f ag if a 2 U

for eachU � X and eacha 2 X.

0 Example 6.3.11
TakingX = [ 3] anda = 3, we have:

? � 3 = f 3g f 1g � 3 = f 1;3g f 2g � 3 = f 2;3g f 1;2g � 3 = f 1;2;3g

f 3g � 3 = ? f 1;3g � 3 = f 1g f 2;3g � 3 = f 2g f 1;2;3g � 3 = f 1;2g

C

The next two exercises are generalisations of facts that we showed in the proof of Proposition 6.3.2.

. Exercise 6.3.12
Let X be a set and leta 2 X. Prove that the functionTa : P (X) ! P (X) de�ned byTa(U) = U � a
for all U � X is an involution. C

. Exercise 6.3.13
Let X be a �nite set and leta 2 X. Prove that, for allU � X, if jUj is even thenjU � aj is odd, and if
jUj is odd thenjU � aj is even. C

The property of the toggle operation that you proved in Exercise 6.3.13 is an instance ofparity-
swapping. While toggling swaps the parity of the size of a subset, we can generalise the notion of
parity more generally, provided we have a notion of what it means for an element of a set to be `even'
or `odd'.

A �rst attempt to de�ne `even' and `odd' might be to simply partition a setX asX = E [ O, for
disjoint subsetsE;O � X—the elements ofE will be deemed to be `even' and the elements ofO
will be deemed to be `odd'. But it will be helpful later on to go one step further than this: we
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will partition X into �nitely many pieces, indexed by natural numbers, and the natural number will
determine the parities of the elements ofX.

F De�nition 6.3.14
Let X be a set and letU = f U0;U1; : : : ;Ung be a partition ofX for somen 2 N. Theparity of an
elementa 2 X (relative toU ) is the parity—evenor odd—of the uniquek 2 f 0;1; : : : ;ng such that
a 2 Uk.

Write X+ = f a 2 X j a has even parityg (LATEX code: X�+) andX� = f a 2 X j a has odd parityg
(LATEX code:X�- ).

Note that, with notation as in De�nition 6.3.14, we have partitions ofX+ andX� as

X+ =
[

evenk

Uk and X� =
[

oddk

Uk

0 Example 6.3.15

Let X be a �nite set, and consider the partition ofP (X) given byUk =
�

X
k

�
for all 0 6 k 6 n. With

respect to this partition, an elementU 2 P (X) has even parity if and only ifjUj is even, and odd
parity if and only if jUj is odd.

For example, we have

P ([2])+ = f ? ; f 1;2gg and P ([2])� = ff 1g; f 2gg

C

0 Example 6.3.16
Let m;n 2 N and letX be the set of all functions[n] ! [n]. For eachk 6 n, de�ne

Xk = f f : [n] ! [n] j jf a 2 [n] j f (a) = agj = kg

That is, for eachk 6 n, the setXk is the set of all functionsf : [n] ! [n] that �x exactly k elements of
[n].

A function f : [n] ! [n] has even parity with respect to this partition if it �xes an even number of
elements, and odd parity if it �xes an odd number of elements. C

F De�nition 6.3.17
Let X be a set and letf U0;U1; : : :Ung be a partition ofX for somen 2 N. A function f : X ! X
swaps parity (or isparity-swapping) if, for all a 2 X, if a has even parity thenf (a) has odd parity,
and if a has odd parity thenf (a) has even parity.

0 Example 6.3.18
With parity de�ned as in Example 6.3.15, the result of Exercise 6.3.12 says precisely that, for every
setX and elementa 2 X, the toggle functionTa : P (X) ! P (X) swaps parity, whereTa is de�ned
by Ta(U) = U � a for all U � X. C

. Exercise 6.3.19
Let X be a �nite set. Under what conditions does the involutionr : P (X) ! P (X) given byr(U) =
X nU for all U � X swap parity? C
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. Exercise 6.3.20
Let n 2 N and letX be the set of all functions[n] ! [n], partitioned as in Example 6.3.16, so that a
function f : [n] ! [n] has even parity if it �xes an even number of elements, and odd parity if it �xes
an odd number of elements. Find a parity-swapping functionX ! X. C

The next two following technical results will be used fundamentally in the proof of Theorem 6.3.23.

C Lemma 6.3.21
Let X be a �nite set, letf U0;U1; : : : ;Ung be a partition ofX for somen 2 N, and leth : X ! X be a
parity-swapping involution. Thenh induces a bijectionf : X+ ! X� de�ned by f (x) = h(x) for all
x 2 X+ .

Proof
First note that the de�nitionf : X+ ! X� by letting f (x) = h(x) for all x 2 X+ is well-de�ned since
h swaps parity. Indeed, ifx 2 X+ , thenx has even parity, so thatf (x) = h(x) has odd parity, meaning
that f (x) 2 X� .

To see thatf is a bijection, de�ne a functiong : X� ! X+ by g(x) = h(x) for all x 2 X� . Again,g
is well-de�ned sinceh swaps parity.

Finally note thatg is an inverse forf —givenx 2 X+ , we have

g( f (x)) = h(h(x)) = x

and likewisef (g(x)) = x for all x 2 X� .

Since f has an inverse, it is a bijection. �

C Lemma 6.3.22
Let X be a �nite set, letf U1;U2; : : : ;Ung be a partition ofX for somen 2 N, and leth : X ! X be a
parity-swapping involution. Then

n

å
k= 1

(� 1)kjUkj = 0

Proof
By Lemma 6.3.21 we know thath : X ! X restricts to a bijectionX+ ! X� , and so we havejX+ j =
jX� j. By the addition principle, we have

n

å
k= 0

(� 1)kjUkj = å
evenk

jUkj � å
oddk

jUkj = jX+ j � j X� j = 0

as required. �

Lemma 6.3.22 gets us well on our way to deriving the involution principle. In fact, it already makes
Strategy 6.3.3 obsolete: we can now prove that an alternating sum is equal to zero simply by �nding
a parity-swapping involution from a suitably partitioned set to itself!

But in practice, it might not be easy (or even possible) to de�ne a parity-swapping involutionh : X !
X on the whole setX. In such cases, we do the best that we can: de�neh on some subsetD � X,
and worry about what is left over afterwards.
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C Theorem 6.3.23
Let X be a �nite set, letf U1;U2; : : : ;Ung be a partition ofX for somen 2 N, let D � X, let h : D ! D
be a parity-swapping involution, and letFk = Uk nD for eachk 2 [n]. Then

n

å
k= 1

(� 1)kjUkj =
n

å
k= 1

(� 1)kjFkj

Proof
Note �rst that the setsUk \ D for k 2 [n] partitionD, with the elements ofD having the same parities
as they did when they were considered as elements ofX.

It follows from Lemma 6.3.22 that
n

å
k= 1

jUk \ Dj = 0

MoreoverjUkj = jUk \ Dj + jUk nDj for eachk 2 [n] by the addition principle. SinceFk = Uk nD for
eachk 2 [n], we have

n

å
k= 1

(� 1)kjUkj =
n

å
k= 1

(� 1)kjUk \ Dj

| {z }
= 0

+
n

å
k= 1

(� 1)kjUk nDj =
n

å
k= 1

(� 1)kjFkj

as required. �

We have suggestively used the letterD to refer to where the involution is de�ned, and the letterF to
refer to the elements where the involution fails.

v Strategy 6.3.24 (Involution principle)

Let a1;a2; : : : ;an 2 N. In order to evaluate an alternating sum
n

å
k= 1

(� 1)kak, it suf�ces to follow the

following steps:

(i) Find a setX with a partitionf U1;U2; : : : ;Ung, such thatjUkj = ak for all k 2 [n].

(ii) Find a parity-swapping involutionh : D ! D for some subsetD � X—often it is easiest to
specify the values ofh �rst, and takeD to be the set of elements ofX for which the speci�cation
makes sense.

(iii) Evaluate
n

å
k= 1

(� 1)kjFkj, whereFk = UknD for all k 2 [n]—that is, count the elements of eachUk

where the involutionfailed to be well-de�ned, and add them positively or negatively according
to their parity.

It will often be the case that many of the setsFk are empty, simplifying matters greatly.

This is rather abstract, so let's see some examples of the involution principle in action.

0 Example 6.3.25

Here is a succinct proof that
n

å
k= 0

(� 1)k
�

n
k

�
= 0 for all n 2 N using the involution principle.
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Let n 2 N and de�neUk =
�

[n]
k

�
for all 0 6 k 6 n—these sets form a partition ofP ([n]), and

jUkj =
�

n
k

�
for each 06 k 6 n.

By Exercise 6.3.12, the functionh : P ([n]) ! P ([n]) de�ned byh(U) = U � n is a parity-swapping
involution. By the involution principle (Strategy 6.3.24) withD = P ([n]), we haveUk nD = ? for
each 06 k 6 n, and hence

n

å
k= 0

(� 1)k
�

n
k

�
= 0

as required. C

. Exercise 6.3.26
Repeat Exercise 6.3.4 using the involution principle—that is, use the involution principle to prove
that

n

å
k= 0

(� 1)k � k �
�

n
k

�
= 0

for all n > 2. C

. Exercise 6.3.27
Use the involution principle to prove that

n

å
k= 0

(� 1)k
�

n
k

��
k
`

�
= 0

for all n; ` 2 N with ` < n. C

The next example is slightly more involved, because we �nd an involution that is not de�ned on the
whole set being counted. This generalises the result of Example 6.3.25.

C Proposition 6.3.28

Let n; r 2 N with r 6 n. Then
r

å
k= 0

(� 1)k
�

n
k

�
= ( � 1)r

�
n� 1

r

�
.

Proof

Let X be the set of subsets of[n] of size6 r, and for each 06 k 6 r, letUk =
�

[n]
k

�
. Note that the

setsUk partitionX for 0 6 k 6 r.

De�ne h(U) = U � n for all U 2 X. Sinceh is de�ned by togglingn, it is a parity-swapping involu-
tion.

The only way thath can fail to be well-de�ned is ifjh(U)j > r. SincejU � nj = jUj � 1 for allU 2 X,
the only way we can havejh(U)j > r is if jUj = r andn 62U, in which caseh(U) = U [ f ng has size
r + 1.

HenceFk = ? for all k < r, andFr = f U � [n] j jUj = r andn 62Ug. Specifying an element ofFr is

therefore equivalent to specifying a subset of[n� 1] of sizer, so thatjFr j =
�

n� 1
r

�
.
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Putting this all together, we obtain

r

å
k= 0

(� 1)k
�

n
k

�
=

r

å
k= 0

(� 1)kjFkj = ( � 1)r
�

n� 1
r

�

as required. �

The next example is slightly more colourful.

0 Example 6.3.29
Let a;b; r 2 N with a 6 r 6 b. We prove that

r

å
k= 0

(� 1)k
�

a
k

��
b

r � k

�
=

�
b� a

r

�

Consider a population ofb animals, of which exactlya are cats. A government of exactlyr animals
must be formed, and a Feline Affairs Committee—which is a branch of the government—must be
chosen from amongst the cats. The Feline Affairs Committee may have any size, but its size is
bounded by the size of the government.

Let X be the set of all pairs(G;C), whereG is a government andC � G is the Feline Affairs
Committee.

Fork 6 r, letUk be the set of all government–committee pairs(G;C) such thatjCj = k—that is, such
that exactlyk cats sit on the Feline Affairs Committee. Note that parity is determined by the number
of cats on the Feline Affairs Committee: indeed,(G;C) has even parity ifjCj is even, and odd parity
if jCj is odd.

Given a government–committee pair(G;C), let h(G;C) = ( G;C� x), wherex 2 G is the youngest
cat on the government. That is, if the youngest cat on the government is on the Feline Affairs
Committee, then that cat is removed from the committee; and if the youngest cat on the government
is not on the Feline Affairs Committee, then that cat is added to the committee.

Evidentlyh is an involution, and it swaps parity since it adds or removes one cat to or from the Feline
Affairs Committee.

The only way thath can fail to be well-de�ned is if there are no cats on the government, in which
casek = 0. Thus by the involution principle

r

å
k= 0

(� 1)k
�

a
k

��
b

r � k

�
= ( � 1)0 �

�
�
�
�

�
(G;? ) 2 X

�
�
� G contains no cats

� �
�
�
�

But there are exactlyb� a non-cats in the animal population, so that
�
�
�
�

�
(G;? ) 2 X

�
�
� G contains no cats

� �
�
�
� =

�
b� a

r

�

and hence we have
r

å
k= 0

(� 1)k
�

a
k

��
b

r � k

�
=

�
b� a

r

�
, as required. C

If you dislike reasoning about animals, Example 6.3.29 could be reformulated by taking:
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� X = f (A;B) j A � B\ [a]; B � [b]; jBj = rg;

� Uk = f (A;B) 2 X j jAj = kg for all k 6 r; and

� h(A;B) = h(A� x;B), wherex is the least element ofB\ [a].

You are encouraged to verify the details!

. Exercise 6.3.30
Let n 2 N and consider the set

X = f (k; i) j k 6 n; i 2 [k]g

For example, ifn = 3 thenX = f (1;1); (2;1); (2;2); (3;1); (3;2); (3;3)g.

(a) Prove thatjXj =
n

å
k= 0

k.

(b) Use the involution principle to prove that

n

å
k= 0

(� 1)kk =

8
<

:

n
2

if n is even

�
n� 1

2
if n is odd

C

Inclusion–exclusion principle

Our �nal application of the involution principle will be to prove theinclusion–exclusion principle,
which is used for computing the sizes of unions of sets that are not necessarily pairwise disjoint.

We saw in Proposition 6.1.18 how to compute the size of a union of two not-necessarily-disjoint
sets:

jX [ Yj = jXj + jYj � j X \ Yj

So far so good. But what if we have three or four sets instead of just two?

. Exercise 6.3.31
Let X;Y;Z be sets. Show that

jX [ Y [ Zj = jXj + jYj + jZj � j X \ Yj � j X \ Zj � j Y \ Zj + jX \ Y \ Zj

Let W be another set. Derive a similar formula forjW [ X [ Y [ Zj. C

The inclusion–exclusion principle is a generalisation of Exercise 6.3.31 to arbitary �nite collections
of �nite sets, but it is stated in a slightly different way in order to make the proof more convenient.

C Theorem 6.3.32 (Inclusion–exclusion principle)
Let n 2 N, let Xi be a �nite set for eachi 2 [n], and letX = X1 [ X2 [ � � � [ Xn. Then

å
I � [n]

(� 1) jI j jXI j = 0

whereXI = f a 2 X j a 2 Xi for all i 2 Ig.
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The statement of Theorem 6.3.32 looks fairly abstract, so before we prove it, let's examine its con-
tent. The sum is over all subsetsI � [n], and then the power(� 1) jI j is equal to 1 ifI has an even
number of elements, and� 1 if I has an odd number of elements. Moreover, ifI is inhabited thenXI
is the intersection of the setsXi for i 2 I—for exampleXf 2;3;5g = X2 \ X3 \ X5; on the other hand, a
careful examination of the de�nition ofXI reveals thatX? = X.

Thus whenn = 3, the sumå
I � [3]

(� 1) jI j jXI j can be evaluated as

jXj � j X1j � j X2j � j X3j + jX1 \ X2j + jX1 \ X3j + jX2 \ X3j � j X1 \ X2 \ X3j

The theorem says that this sum is equal to zero, and solving forjXj = jX1 [ X2 [ X3j yields an
equivalent equation to that in Exercise 6.3.31.

Proof of Theorem 6.3.32
We will prove the inclusion–exclusion principle using the involution principle.

First we introduce some notation:

� De�ne S= f (I ;a) j I � [n]; a 2 XI g. We can think of an element(I ;a) 2 S as being an element
a 2 X together with a labelI indicating thata 2 Xi for all i 2 I .

� For each 06 k 6 n, de�ne Sk = f (I ;a) 2 Sj j I j = kg.

� For eacha 2 X, let ia = minf k 2 [n] j a 2 Xkg.

Note that the setsS0;S1;S2; : : : ;Sn form a partition ofS, so we can consider the parity of an element
(I ;a) 2 S—namely, the parity of(I ;a) is even ifjI j is even, and odd ifjI j is odd.

De�ne a function f : S! Sby letting

f (I ;a) = ( I � ia;a)

for eachI � [n] and eacha 2 XI . Then:

� f is an involution since by Exercise 6.3.12 we have

f ( f (I ;a)) = f (I � ia;a) = (( I � ia) � ia;a) = ( I ;a)

� f is parity-swapping, sincejI � iaj andjI j have opposite parity for eacha 2 X.

By the involution principle, we have

n

å
k= 0

(� 1)kjSkj = 0

Now for �xed I � [n], let TI = f (I ;a) j a 2 Xg. Then for each 06 k 6 n, the setsTI for jI j = k
partitionSk, and moreover(� 1)k = ( � 1) jI j , so that by the addition principle we have

n

å
k= 0

(� 1)kjSkj =
n

å
k= 0

å
I2( [n]

k )
(� 1) jI j jTI j = å

I � [n]

(� 1) jI j jTI j = 0
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Finally note that, for eachI � [n], the functiongI : XI ! TI de�ned bygI (a) = ( I ;a) for all a 2 XI is
a bijection, with inverse given byg� 1

I (I ;a) = a for all (I ;a) 2 TI .

HencejXI j = jTI j, and the result is proved. �

It is more common to see the inclusion–exclusion principle stated in one two equivalent forms, stated
here as Corollaries 6.3.33 and 6.3.34.

C Corollary 6.3.33
Let X1;X2; : : : ;Xn be sets. Then

�
�
�
�
�

n[

i= 1

Xi

�
�
�
�
�

=
n

å
k= 1

 

å
16 i1< i2< ���< ik6 n

(� 1)k� 1jXi1 \ Xi2 \ � � � \ Xik j

!

Proof
Moving all terms to the left-hand side of the equation and observing that� (� 1)k� 1 = ( � 1)k, the
statement is equivalent to

�
�
�
�
�

n[

i= 1

Xi

�
�
�
�
�

�
n

å
k= 1

 

å
16 i1< i2< ���< ik6 n

(� 1)kjXi1 \ Xi2 \ � � � \ Xik j

!

= 0

But using the notation of Theorem 6.3.32, we have
�
�
�
�
�

n[

i= 1

Xi

�
�
�
�
�
= jXj = ( � 1) j? j jX? j

and for all 16 i1 < i2 < � � � < ik 6 n, we have

(� 1)kjXi1 \ Xi2 \ � � � \ Xik j = ( � 1) jf i1;i2;:::;ikgjjXf i1;i2;:::;ikgj

and so we see that this is just a restatement of Theorem 6.3.32. �

C Corollary 6.3.34
Let X be a set and letU1;U2; : : : ;Un � X. Then

�
�
�
�
�
X n

n[

i= 1

Ui

�
�
�
�
�
= jXj +

n

å
k= 1

 

å
16 i1< i2< ���< ik6 n

(� 1)kjUi1 \ Ui2 \ � � � \ Uik j

!

Proof

Since
n[

i= 1

Ui � X, we have
�
�
�
�
�
X n

n[

i= 1

Ui

�
�
�
�
�
= jXj �

�
�
�
�
�

n[

i= 1

Ui

�
�
�
�
�

The result then follows immediately from Corollary 6.3.33. �
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v Strategy 6.3.35 (Finding the size of a union by inclusion–exclusion)

In order to �nd the size of a union of
n[

i= 1

Xi , it suf�ces to:

� Add the sizes of the individual setsXi ;

� Subtract the sizes of the double-intersectionsXi \ Xj ;

� Add the sizes of the triple-intersectionsXi \ Xj \ Xk;

� Subtract the sizes of the quadruple-intersectionsXi \ Xj \ Xk \ X` ;

� . . . and so on . . .

Continue alternating until the intersection of all the sets is covered.

0 Example 6.3.36
We count how many subsets of[12] contain a multiple of 3. Precisely, we count the number of
elements of the set

X3 [ X6 [ X9 [ X12

whereXk = f S� [12] j k 2 Sg. We will apply the inclusion–exclusion principle:

(i) An elementS2 X3 is precisely a set of the formf 3g[ S0, whereS0� [12]nf 3g. Since[12]nf 3g
has 11 elements, there are 211 such subsets. SojX3j = 211, and likewisejX6j = jX9j = jX12j =
211.

(ii) An elementS2 X3 \ X6 is a set of the formf 3;6g [ S0, whereS0� [12]n f 3;6g. Thus there are
210 such subsets, sojX3 \ X6j = 210. And likewise

jX3 \ X9j = jX3 \ X12j = jX6 \ X9j = jX6 \ X12j = jX9 \ X12j = 210

(iii) Reasoning as in the last two cases, we see that

jX3 \ X6 \ X9j = jX3 \ X6 \ X12j = jX3 \ X9 \ X12j = jX6 \ X9 \ X12j = 29

(iv) . . . andjX3 \ X6 \ X9 \ X12j = 28.

Thus the number of subsets of[12] which contain a multiple of 3 is

4� 211
| {z }

by (i)

� 6� 210
| {z }

by (ii)

+ 4� 29
| {z }
by (iii)

� 28
|{z}
by (iv)

which is equal to 3840. C

. Exercise 6.3.37
How many natural numbers less than 1000 are multiples of 2, 3, 5 or 7? C
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Section 6.E

Chapter 6 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Finite sets

6.1. Let n2 N and letf : [n] ! [n] be a function. Prove thatf is injective if and only iff is surjective.

6.2. Prove thatjZ=nZj = n for all n > 1.

Counting

6.3. Let X andY be �nite sets withjXj = m2 N andjYj = n 2 N. Prove that there are 2mn relations
from X to Y.

6.4. Let X be a set and letR be a relation onX. Prove thatR is re�exive if and only if DX � Gr(R),
whereDX is the diagonal subset ofX � X (see De�nition 4.1.17). Deduce that ifX is �nite and
jXj = n 2 N, then there are 2n(n� 1) re�exive relations onX.

6.5. Let X be a �nite set withjXj = n 2 N. Prove that there are 2(n
2) � 2n symmetric relations onX.

6.6. Let X be a �nite set withjXj = n 2 N. Prove that there are 3(n
2) � 2n antisymmetric relations on

X.

6.7. Let X be a �nite set withjXj = n 2 N, let � be an equivalence relation onX, and suppose that
there is some natural numberk such thatj[a]� j = k for all a 2 X. Prove thatk dividesn, and that

jX=�j =
n
k

.

6.8. Let n;k 2 N with k 6 n. Prove that the number of functionsf : [n] ! [n] that �x exactly k

elements of[n] is equal to
�

n
k

�
(n� 1)n� k.

Double counting

6.9. Let a;b;m;n 2 N. Prove each of the following by double counting.

(a) a(m+ n) = am+ an

(b) am+ n = am � an

(c) (am)n = amn

(d) (ab)n = an � bn

6.10. Prove that
n

å
k= 0

�
n
k

� 2

=
�

2n
n

�
for all n 2 N
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6.11. Prove that
n

å
k= m

�
n
k

��
k
m

�
= 2n� m

�
n
m

�
for all m;n 2 N with m6 n.

6.12. Prove that
k

å
j= 0

�
n� j
k � j

�
=

�
n+ 1

k

�
for all n;k 2 N.

6.13. Prove that
n

å
k= 1

k

å̀
= 0

k
�

n
k

��
n� k

`

�
= n� 3n� 1 for all n 2 N.

6.14. Prove that
�

n
r + s+ 1

�
=

n� s

å
k= r+ 1

�
k � 1

r

��
n� k

s

�
for all n; r;s2 N.

6.15. Let a1;a2; : : : ;ar 2 N and letn = a1 + a2 + � � � + ar . Prove that

�
n

a1;a2; : : : ;ar

�
=

r� 1

Õ
k= 0

� n�
k

å
i= 1

ai

ak+ 1

�

where
�

n
a1;a2; : : : ;ar

�
is the number of orderedr-tuples(U1;U2; : : : ;Ur ) such thatU1;U2; : : : ;Ur is

a partition of[n] andjUkj = ak for all k 2 [r].

Involution principle

6.16. Let X be a �nite set. Prove that ifjXj is odd then there is no parity-swapping involution
X ! X.

Inclusion–exclusion principle

6.17. Find the number of subsets of[100] that do not contain a multiple of 8.
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254 Chapter 7. Real numbers

Section 7.1

Inequalities and means

We �rst encountered the real numbers in Chapter 0, when the real numbers were introduced using a
vague (but intuitive) notion of anin�nite number line(De�nition 0.25):

� 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5

This section will scrutinise the set of real numbers in its capacity as acomplete ordered �eld. De-
composing what this means:

� A �eld is a set with a notion of `zero' and `one', in which it makes sense to talk about addition,
subtraction, multiplication, and division by everything except zero. Examples areQ, R, andZ=pZ
whenp is a prime number (but not whenp is composite). However,Z is not a �eld, since we can't
freely divide by nonzero elements—for example, 12 Z and 22 Z, but no integern satis�es 2n= 1.

� An ordered �eld is a �eld which is equipped with a well-behaved notion of order. BothQ andR
are ordered �elds, butZ=pZ is not. We'll see why soon.

� A complete ordered �eldis an ordered �eld in which every set with an upper bound has aleast
upper bound. As we will see,Q is not a complete ordered �eld, butR is.

This is made (extremely) precise in Section B.2.

Magnitude and scalar product

In this part of the section, we home in on sets of the formRn, for n 2 N. Elements ofRn are
sequences of the form(x1;x2; : : : ;xn), where eachxi 2 R. With our interpretation of the realsR as a
line, we can interpret a sequence(x1;x2; : : : ;xn) as a point inn-dimensional space:

� 0-dimensional space is a single point. The setR0 has one element, namely the empty sequence() ,
so this makes sense.

� 1-dimensional space is a line. This matches our intuition thatR = R1 forms a line.

� 2-dimensional space is aplane. The elements ofR2 are pairs(x;y), wherex andy are both real
numbers. We can interpret the pair(x;y) ascoordinatesfor a point which is situatedx units to the
right of (0;0) andy units above(0;0) (where negative values ofx or y reverse this direction)—see
Figure 7.1.

With this intuition in mind, we set up the following notation.

F Notation 7.1.1
Let n 2 N. Elements ofRn will be denoted~x;~y;~z; : : : (LATEX code:\vec ) and called (n-dimensional)
vectors. Given a vector~x 2 Rn, we writexi for theith componentof~x, so that

~x = ( x1;x2; : : : ;xn)
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x

y

(0;0)

(
p

2;
p

2)

(0; � 2)

(2;0)

(� 2; 3
2)

Figure 7.1: Some points inR2

The element(0;0; : : : ;0) 2 Rn is called theorigin or zero vectorof Rn, and is denoted by~0.

Moreover, if~x;~y 2 Rn anda 2 R we write

~x+ ~y = ( x1 + y1;x2 + y2; : : : ;xn + yn) and a~x = ( ax1;ax2; : : : ;axn)

0 Example 7.1.2
For all~x 2 Rn, we have

~x+ ~0 = ~x and 1~x = ~x

C

F De�nition 7.1.3
Let ~x 2 Rn. Themagnitude of ~x is the real numberk~xk (LATEX code: \lVert \vec x \rVert )
de�ned by

k~xk =

s
n

å
i= 1

x2
i =

q
x2

1 + x2
2 + � � � + x2

n

Given vectors~x;~y 2 Rn, thedistancefrom~x to~y is de�ned to bek~y� ~xk. Thus the magnitude of a
vector can be thought of as the distance from that vector to the origin.

0 Example 7.1.4
In R2, De�nition 7.1.3 says that

k(x;y)k =
p

x2 + y2

This matches the intuition obtained from the Pythagorean theorem on the sides of right-hand tri-
angles. For example, consider the triangle with vertices(0;0), (4;0) and(4;3):
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(0;0) (4;0)

(4;3)

The hypotenuse of the triangle has magnitude

k(4;3)k =
p

42 + 32 =
p

25= 5

C

. Exercise 7.1.5
Let~x;~y 2 Rn. Prove thatk~x� ~yk = k~y� ~xk. That is, the distance from~x to~y is equal to the distance
from~y to~x. C

. Exercise 7.1.6
Prove that ifx 2 R then the magnitudek(x)k is equal to the absolute valuejxj. C

. Exercise 7.1.7
Let~x 2 Rn. Prove thatk~xk = 0 if and only if~x = ~0. C

The triangle inequality and the Cauchy–Schwarz inequality

The �rst, and simplest, inequality that we investigate is the (one-dimensional version of the)triangle
inequality(Theorem 7.1.9). It is so named because of a generalisation to higher dimensions (The-
orem 7.1.19), which can be interpreted geometrically as saying that the sum of two side lengths of a
triangle is greater than or equal to the third side length.

The triangle inequality is used very frequently in mathematical proofs—you will encounter it re-
peatedly in this chapter—yet its proof is surprisingly simple.

Before we can prove the triangle inequality, we need the following fact about square roots of real
numbers.

C Lemma 7.1.8
Let x;y 2 R. If 0 6 x 6 y, then

p
x 6

p
y.

Proof
Suppose 06 x 6 y. Note that, by de�nition of the square root symbol, we have

p
x > 0 and

p
y > 0.

Suppose
p

x >
p

y. By two applications of Theorem B.2.30(d), we have

y =
p

y�
p

y <
p

x�
p

y <
p

x�
p

x = x

so thaty < x. But this contradicts the assumption thatx 6 y. Hence
p

x 6
p

y, as required. �
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C Theorem 7.1.9 (Triangle inequality in one dimension)
Let x;y 2 R. Thenjx+ yj 6 jxj + jyj. Moreover,jx+ yj = jxj + jyj if and only if x andy have the same
sign.

Proof
Note �rst that xy6 jxyj; indeed,xy andjxyj are equal ifxy is non-negative, and otherwise we have
xy< 0 < jxyj. Also x2 = jxj2 andy2 = jyj2. Hence

(x+ y)2 = x2 + 2xy+ y2 6 jxj2 + 2jxyj + jyj2 = ( jxj + jyj)2

Taking (nonnegative) square roots yields

jx+ yj 6 jjxj + jyjj

by Lemma 7.1.8. Butjxj + jyj > 0, sojjxj + jyjj = jxj + jyj. This completes the �rst part of the proof.

Equality holds in the above if and only ifxy= jxyj, which occurs if and only ifxy> 0. But this is
true if and only ifx andy are both non-negative or both non-positive—that is, they have the same
sign. �

0 Example 7.1.10
Let x;y 2 R. We prove that

jx+ yj
1+ jx+ yj

6
jxj

1+ jxj
+

jyj
1+ jyj

First note that, if 06 s6 t, then
s

1+ s
6

t
1+ t

To see this, note that

s6 t ) 1+ s6 1+ t rearranging

)
1

1+ t
6

1
1+ s

since 1+ s;1+ t > 0

) 1�
1

1+ s
6 1�

1
1+ t

rearranging

)
s

1+ s
6

t
1+ t

rearranging

Now lettings= jx+ yj andt = jxj + jyj, we haves6 t by the triangle inequality, and hence

jx+ yj
1+ jx+ yj

6
jxj

1+ jxj + jyj
+

jyj
1+ jxj + jyj

6
jxj

1+ jxj
+

jyj
1+ jyj

as required. C

. Exercise 7.1.11
Let n 2 N and letxi 2 R for eachi 2 [n]. Prove that

�
�
�
�
�

n

å
i= 1

xi

�
�
�
�
�
6

n

å
i= 1

jxi j

with equality if and only if the numbersxi are either all non-positive or all non-negative. C
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258 Chapter 7. Real numbers

. Exercise 7.1.12
Let x;y 2 R. Prove that

jjxj � j yjj 6 jx� yj

C

We will generalise the triangle inequality to arbitrary dimensions in Theorem 7.1.19. Our proof
will go via the Cauchy–Schwarz inequality(Theorem 7.1.16). To motivate the Cauchy–Schwarz
inequality, we introduce another geometric notion called thescalar productof two vectors.

F De�nition 7.1.13
Let~x;~y 2 Rn. Thescalar product (or dot product) of~x with~y is the real number~x�~y (LATEX code:
\cdot ) de�ned by

~x�~y =
n

å
i= 1

xiyi = x1y1 + x2y2 + � � � + xnyn

0 Example 7.1.14
Let~x 2 Rn. Then~x�~x = k~xk2. Indeed

~x�~x =
n

å
i= 1

x2
i = k~xk2

C

. Exercise 7.1.15
Let~x;~y;~z;~w 2 Rn and leta;b;c;d 2 R. Prove that

(a~x+ b~y) � (c~z+ d~w) = ac(~x�~z)+ ad(~x� ~w)+ bc(~y�~z)+ bd(~y� ~w)

C

Intuitively, the scalar product of two vectors~x and~y measures the extent to which~x and~y fail to
beorthogonal. In fact, if q is the acute angle formed between the lines`1 and`2, where`1 passes
through~0 and~x and`2 passes through~0 and~y, then a formula for the scalar product of~x and~y is
given by

~x�~y = k~xkk~ykcosq

~0

~x

~y

kxkcosq

q
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Evidently,~x and~y are orthogonal if and only if cosq = 0, in which case~x �~y = 0 as well. We
cannot prove this yet, though, as we have not yet de�ned trigonometric functions or explored their
properties, but hopefully this provides some useful intuition.

The Cauchy–Schwarz inequality provides a useful comparison of the size of a scalar product of two
vectors with the magnitudes of the vectors.

C Theorem 7.1.16 (Cauchy–Schwarz inequality)
Let n 2 N and letxi ;yi 2 R for eachi 2 [n]. Then

j~x�~yj 6 k~xkk~yk

with equality if and only ifa~x = b~y for somea;b 2 R which are not both zero.

Proof
If ~y = ~0, then this is trivial: both sides of the equation are equal to zero! So assume that~y 6= ~0. In
particular, by Exercise 7.1.7, we havek~yk > 0.

De�ne k =
~x�~y
k~yk2 . Then

0 6 k~x� k~yk2 since squares are nonnegative

= (~x� k~y) � (~x� k~y) by Example 7.1.14

= (~x�~x) � 2k(~x�~y)+ k2(~y�~y) by Exercise 7.1.15

= k~xk2 �
(~x�~y)2

kyk2 by de�nition of k

Multiplying through byk~yk2, which is non-negative and therefore doesn't change the sign of the
inequality, yields

0 6 k~xk2k~yk2 � (~x�~y)2

which is equivalent to what was to be proved.

Evidently, equality holds if and only ifk~x� k~yk = 0, which by Exercise 7.1.7 occurs if and only if
~x� k~y = 0. Now:

� If ~x� k~y = 0, then we have

~x� k~y = 0

, ~x�
~x�~y
k~yk2~y = 0 by de�nition of k

, k ~yk2~x = (~x�~y)~y rearranging

If ~y 6= ~0 then leta = k~yk2 andb = ~x�~y; otherwise, leta = 0 andb = 1. In both cases, we have
a~x = b~y anda;b are not both zero.

If a~x = b~y for somea;b 2 R not both zero, then either:

� a = 0 andb 6= 0, in which case~y = 0 and we have equality in the Cauchy–Schwarz inequality;
or
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260 Chapter 7. Real numbers

� a 6= 0, in which case~y = b
a~x. Write c = b

a. Then

j~x�~yj = j~x� (c~x)j

= jc(~x�~x)j by Exercise 7.1.15

= jcjk~xk2 by Example 7.1.14

= k~xkkc~xk rearranging

= k~xkk~yk

In either case, we have equality in the Cauchy–Schwarz inequality.

So equality holds if and only ifa~x = b~y for somea;b 2 R not both zero. �

0 Example 7.1.17
Let a;b;c 2 R. We'll prove that

ab+ bc+ ca6 a2 + b2 + c2

and examine when equality holds.

Letting~x = ( a;b;c) and~y = ( b;c;a) yields

~x�~y = ab+ bc+ ca

and
k~xk =

p
a2 + b2 + c2 =

p
b2 + c2 + a2 = k~yk

Hencek~xkk~yk = a2 + b2 + c2. By the Cauchy–Schwarz inequality, it follows that

~x�~y = ab+ bc+ ca6 a2 + b2 + c2 = k~xkk~yk

as required. Equality holds if and only ifk(a;b;c) = `(b;c;a) for somek;` 2 R not both zero. We
may assumek 6= 0—otherwise, swap the vectors~x and~y in what follows. Then, lettingt = `

k , we
have

k(a;b;c) = `(b;c;a)

, (a;b;c) = ( tb;tc;ta) by de�nition of t

, (a;b;c) = ( t2c;t2a;t2b) substitutinga = tb etc.

, (a;b;c) = ( t3a;t3b;t3c) substitutinga = tb etc. again

, ~x = t3~x

This occurs if and only if either(a;b;c) = ( 0;0;0), or t = 1, in which case

(a;b;c) = ( tb;tc;ta) = ( b;c;a)

So equality holds if and only ifa = b = c. C

. Exercise 7.1.18
Let r 2 N and leta1;a2; : : : ;ar 2 R be such thata2

1 + a2
2 + � � � + a2

n = 6. Prove that

(a1 + 2a2 + � � � + nan)2 6 n(n+ 1)(2n+ 1)

and determine when equality holds. C
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We now use the Cauchy–Schwarz inequality to generalise the one-dimensional version of the triangle
inequality (Theorem 7.1.9) to arbitrary (�nite) dimensions.

C Theorem 7.1.19 (Triangle inequality)
Let~x;~y 2 Rn. Then

k~x+ ~yk 6 k~xk+ k~yk

with equality if and only ifa~x = b~y for some real numbersa;b > 0.

Proof
We proceed by calculation:

k~x+ ~yk2 = (~x+ ~y) � (~x+ ~y) by Example 7.1.14

= (~x�~x)+ 2(~x�~y)+ ( ~y�~y) by Exercise 7.1.15

6 (~x�~x)+ 2j~x�~yj + (~y�~y) sincea 6 jaj for all a 2 R

6 k~xk2 + 2kxkkyk+ k~yk2 by Example 7.1.14 and Cauchy–Schwarz

= ( k~xk+ k~yk)2 rearranging

Taking (nonnegative) square roots of both sides yields

k~x+ ~yk 6 k~xk+ k~yk

by Lemma 7.1.8, as required.

Equality holds if and only if the two6̀ ' symbols in the above derivation are in fact `= ' symbols.

� The �rst inequality is equality if and only if~x�~y = j~x�~yj, which holds if and only if~x�~y > 0.

� The second inequality is equality if and only if equality holds in the Cauchy–Schwarz inequality.
In turn, this occurs if and only ifa~x = b~y for somea;b 2 R. We may, moreover, assume that
a > 0—if not, replacea andb by their negatives.

If a = 0 then we can takeb = 0. If a > 0, then by Example 7.1.14 and Exercise 7.1.15, we have

~x�
�

b
a
~x

�
=

b
a

k~xk2

which is non-negative if and only ifb > 0, since we are assuming thata > 0.

Thus, equality holds in the triangle inequality if and only ifa~x = b~y for somea;b > 0. �

This general version of the triangle inequality has a geometric interpretation in terms of—you
guessed it—triangles. Any three points~a;~b;~c 2 Rn form a (potentially �at) triangle:
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262 Chapter 7. Real numbers

~a

u

~b

v

~c

w

The side lengthsu;v;w are given by the following equations:

u = k~b� ~ak; v = k~c� ~bk; w = k~a� ~ck

The triangle inequality says tells us thatu 6 v+ w. Indeed:

u = k~b� ~ak by de�nition of u

= k(~b� ~c)+ ( ~c� ~a)k rearranging

6 k~b� ~ck+ k~c� ~ak by the triangle inequality

= k~c� ~bk+ k~a� ~ck by Exercise 7.1.5

= v+ w by de�nition of v andw

That is, the triangle inequality says that the sum of two side lengths of a triangle is greater than or
equal to the third side length. Moreover, it tells usu = v+ w precisely whenk(~a� ~c) = `(~c� ~b) for
somek;` > 0. If k = 0 then

~c = ~b = 0~a+ ( 1� 0)~b

if k > 0, thenk+ ` > 0, so we have

~c =
k

k+ `
~a+

`
k+ `

~b =
k

k+ `
~a+

�
1�

k
k+ `

�
~b

Examining this a bit more closely yields thatu = v+ w if and only if

~c = t~a+ ( 1� t)~b

for some 06 t 6 1, which is to say precisely that~c lies on the line segment between~a and~b. In other
words, equality holds in the triangle inequality only if the three vertices of the triangle arecollinear,
which is to say that the triangle whose vertices are the points~a,~b and~c, is �at.

Inequalities of means

Our goal now is to explore different kinds of average—speci�cally,means—of �nite sets of non-
negative real numbers. We will compare the relative sizes of these means with respect to one-
another, with emphasis on three particular kinds of mean: thearithmetic mean(De�nition 7.1.20),
thegeometric mean(De�nition 7.1.21) and theharmonic mean(De�nition 7.1.29). These means in
fact assemble into a continuum of means, calledgeneralised means(De�nition 7.1.37), all of which
can be compared with one another.
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Section 7.1. Inequalities and means 263

F De�nition 7.1.20
Let n > 1. The (arithmetic) meanof real numbersx1; : : : ;xn is

1
n

n

å
i= 1

xi =
x1 + x2 + � � � + xn

n

F De�nition 7.1.21
Let n > 1. Thegeometric meanof non-negative real numbersx1; : : : ;xn is

n

s
n

Õ
i= 1

xi = n
p

x1 � x2 � � � � � xn

The following theorem is commonly known as theAM–GM inequality .

C Theorem 7.1.22 (Inequality of arithmetic and geometric means)
Let n 2 N andx1;x2; : : : ;xn > 0. Then

n
p

x1 � � � xn| {z }
geometric mean

6
x1 + � � � + xn

n| {z }
arithmetic mean

with equality if and only ifx1 = � � � = xn.

Proof whenn = 2
We need to show that, ifx;y 2 R with x;y > 0, then

p
xy6

x+ y
2

with equality if and only ifx = y.

First note that the square roots ofx andy exist since they are non-negative. Now

0 6 (
p

x�
p

y)2 since squares are nonnegative

= (
p

x)2 � 2
p

x
p

y+ (
p

y)2 expanding

= x� 2
p

xy+ y rearranging

Rearranging the inequality 06 x� 2
p

xy+ y yields the desired result.

If
p

xy= x+ y
2 , then we can rearrange the equation as follows:

p
xy=

x+ y
2

) 2
p

xy= x+ y multiplying by 2

) 4xy= x2 + 2xy+ y2 squaring both sides

) x2 � 2xy+ y2 = 0 rearranging

) (x� y)2 = 0 factorising

) x� y = 0 sincea2 = 0 ) a = 0 for a 2 R

) x = y rearranging

So we have proved both parts of the theorem. �
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0 Example 7.1.23
We use the AM–GM inequality to prove that the area of a rectangle with �xed perimeter is maximised
when the rectangle is a square.

Indeed, �x a perimeterp > 0, and letx;y > 0 be side lengths of a rectangle with perimeterp—that
is, x andy satisfy the equation 2x+ 2y = p. The areaa of the rectangle satis�esa = xy. By the
AM–GM inequality, we have

a = xy6
�

x+ y
2

� 2

=
p2

16

Equality holds if and only ifx = y, in other words, if and only if the rectangle is a square. C

. Exercise 7.1.24

Let a;b > 0 be real numbers. Prove that
a2 + b2

2
> ab. C

0 Example 7.1.25
Let x > 0. We �nd the minimum possible value ofx+ 9

x . By the AM–GM inequality, we have

x+
9
x

> 2

r

x�
9
x

= 2
p

9 = 6

with equality if and only ifx = 9
x , which occurs if and only ifx = 3. Hence the minimum value of

x+ 9
x whenx > 0 is 6. C

. Exercise 7.1.26

Let x > 0 and letn 2 N. Find the minimum possible value of
n

å
k= � n

xk. C

Exercises 7.1.27 and 7.1.28 complete the proof of the AM–GM inequality (Theorem 7.1.22). Before
proceeding with the exercises, let's �x some notation: for eachn2 N, let pAM–GM(n) be the assertion
that the AM–GM inequality holds for collections ofn numbers; that is,pAM–GM(n) is the assertion:

For all x1;x2; : : : ;xn > 0, we have

n

s
n

Õ
i= 1

xi 6
1
n

n

å
i= 1

xi

with equality if and only ifx1 = x2 = � � � = xn.

Note that we already provedpAM–GM(2).

. Exercise 7.1.27
Let r 2 N and letx1;x2; : : : ;x2r 2 R. Write

a =
1
r

r

å
i= 1

xi and g = r

s
r

Õ
i= 1

xi

for the arithmetic and geometric means, respectively, of the numbersx1; : : : ;xr ; write

a0=
1
r

2r

å
i= r+ 1

xi and g0= r

vu
u
t

2r

Õ
i= r+ 1

xi
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