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Preface

Hello, and thank you for taking the time to read this quick introduction to the book! | would like
begin with an apology and a warning:

This book is still under development!

That is to say, there are some sections that are incomplete, as well as other sections whic
currently much more terse than | would like them to be.

The most recent version is freely available for download from the following website:
https://infinitedescent.xyz

As the book is undergoing constant changes, | advise that you do not print it in its entirety—if
must print anything, then | suggest that you do it a few pages at a time, as required.

This book was designed witimquiry and communicatiorin mind, as they are central to a good
mathematical education. One of the upshots of this is that there are many exercises throughc
book, requiring a more active approach to learning, rather than passive reading. These exercise
fundamental part of the book, and should be completed even if not required by the course instr
Another upshot of these design principles is that solutions to exercises are not provided—a st
seeking feedback on their solutions should speak to someone to get such feedback, be it a
student, a teaching assistant or a course instructor.

Navigating the book

This book need not, and emphaticatiyould not be read from front to back. The order of materia
is chosen so that material appearing later depends only on material appearing earlier (with a c
of exceptions, which are pointed out in the text).

The majority of introductory pure mathematics courses cover, at a minimum, symbolic logic, ¢
functions and relations. This material is the content of Part |. Such courses usually cover addit
topics from pure mathematics, with exactichtopics depending on what the course is preparin
students for. With this in mind, Part Il serves as an introduction to a range of areas of pure mat
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viii Preface

atics, including number theory, combinatorics, set theory, real analysis, probability theory and c
theory.

It is not necessary to cover all of Part | before proceeding to topics in Part Il. In fact, intersper
material from Part Il can be a useful way of motivating many of the abstract concepts that ari:
Part I.

The following table shows dependencies between sections. Previous sections within the
chapter as a section should be considered “essential’ prerequisites unless indicated otherwise

Section| Essential Recommended Useful
1.1 0
2.1 1.3
3.1 1.3 2.2 2.3
4.1 2.1 2.2 2.3,3.2
5.1 1.3 2.1,3.3 2.2
5.3 4.2
6.1 2.3,3.3 4.2
8.1 6.1 7.3
8.3 6.2
7.1 3.1,2.1 4.2
7.2 2.2 7.1
7.3 2.2 7.1 5.3,8.1
9.1 6.2 8.1,7.3
10.1 4.2
10.2 3.3,2.3 8.1 10.1

Prerequisites are cumulative. For example, in order to cover Section 8.3, you should rst c
Chapters 0, 2 and 3 and Sections 6.1, 6.2, 8.1 and 8.2.

What the numbers, colours and symbols mean

Broadly speaking, the material in the book is broken down into enumerated items that fall into
of ve categories: de nitions, results, remarks, examples and exercises. In Appendix A, we
have proof extracts. To improve navigability, these categories are distinguished by name, colou
symbol, as indicated in the following table.

Category  Symbol Colour Category Symbol  Colour
De nitions F Red Examples 0 Teal
Results C Blue Exercises . Gold
Remarks % Purple Proof extracts } Teal

These items are enumerated according to their section—for example, Theorem 7.2.41 is in
tion 7.2. De nitions and theorems (important results) appea.box

You will also encounter the symbols andC whose meanings are as follows:

viii



Preface iX

End of proof. It is standard in mathematical documents to identify when a proof has endec
drawing a small square or by writin@Q.E.D! (The latter stands foguod erat demonstrandym
which is Latin forwhich was to be shown

C End of item. This isnot a standard usage, and is included only to help you to identify when
item has nished and the main content of the book continues.

Some subsections are labelled with the synthadlhis indicates that the material in that subsectiol
can be skipped without dire consequences.

Licence

This book is licensed under the Creative Commons Attribution-ShareAlikecEB§-sA 4.0) li-

cence. This means you're welcome to share this book, provided that you give credit to the al
and that any copies or derivatives of this book are released under the same licence. The con
the licence can be read in its full glory at the end of the book, and by following the following UR

http://creativecommons.org/licenses/by-sa/4.0/

Comments and corrections

Any feedback, be it from students, teaching assistants, instructors or any other readers, wol
very much appreciated. Particularly useful are corrections of typographical errors, suggestior
alternative ways to describe concepts or prove theorems, and requests for new content (e.qg.
know of a nice example that illustrates a concept, or if there is a relevant concept you wish \
included in the book).

Such feedback can be sent to the author by ernlilg@infinitedescent.xyz ).
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Chapter 0

Getting started

Before we can start proving things, we need to eliminate certain kinds of statements that we r
try to prove. Consider the following statement:

This sentence is false.

Is it true or false? If you think about this for a couple of seconds then you'll get into a bit of a pick

Now consider the following statement:
The happiest donkey in the world.

Is it true or false? Well it's not even a sentence; it doesn't make sense t@aekdiit's true or false!

Clearly we'll be wasting our time trying to write proofs of statements like the two listed above—
need to narrow our scope to statements that we might actually have a chance of proving (or pe
refuting)! This motivates the following (informal) de nition.

De nition 0.1

A proposition is a statement to which it is possible to assigmuh value (true' or “false'). If

a proposition is true, @roof of the proposition is a logically valid argument demonstrating th:
it is true, which is pitched at such a level that a member of the intended audience can veri
correctness.

Thus the statements given above are not propositions because there is no possible way of as¢
them a truth value. Note that, in De nition 0.1, all that matters is thatakes sens® say that it is
true or false, regardless of whether it actuddlyrue or false—the truth value of many proposition:s
is unknown, even very simple ones.

Exercise 0.2
Think of an example of a true proposition, a false proposition, a proposition whose truth value
don't know, and a statement that is not a proposition. C



2 Chapter 0. Getting started

Results in mathematical papers and textbooks may be referregto@ssitions but they may also
be referred to atheoremslemmasor corollariesdepending on their intended usage.

A proposition is an umbrella term which can be used for any result.
A theoremis a key result which is particularly important.
A lemmais a result which is proved for the purposes of being used in the proof of a theorem.

A corollary is a result which follows from a theorem without much additional effort.

These are not precise de nitions, and they are not meant to be—you could call every nesalt a
positionif you wanted to—but using these words appropriately helps readers work out how to
a paper. For example, if you just want to skim a paper and nd its key results, you'd look for res
labelled agheorems

It is not much good trying to prove results if we don't have anything to prove results about. With 1
in mind, we will now introduce th@umber setand prove some results about them in the conte;
of four topics, namely: division of integers, number bases, rational and irrational numbers,
polynomials. These topics will provide context for the material in Part |, and serve as an introduc
to the topics covered in Part Il.

We will not go into very much depth in this chapter. Rather, think of this as a warm-up exercise
quick, light introduction, with more proofs to be provided in the rest of the book.

Number sets

Later in this chapter, and then in much more detail in Section 2.1, we will encounter the no
of aset a set can be thought of as being a collection of objects. This seemingly simple notic
fundamental to mathematics, and is so involved that we will not treat sets formally in this book.
now, the following de nition will suf ce.

De nition 0.3 (to be revised in De nition 2.1.1)

A setis a collection of objects. The objects in the set are catlethentsof the set. IfX is a set
andx is an object, then we write 2 X (IATpX code: x \in X ) to denote the assertion thats an
element oiX.

The sets of concern to us rst and foremost are tinenber sets-that is, sets whose elements are
particular types ohumber At this introductory level, many details will be temporarily swept unde
the rug; we will work at a level of precision which is appropriate for our current stage, but still allo
us to develop a reasonable amount of intuition.

In order to de ne the number sets, we will need three things: an in nite line, a xed point on tf
line, and a xed unit of length.

So here we go. Here is an in nite line:
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The arrows indicate that it is supposed to extend in both directions without end. The points ol
line will represent numbers (speci callyeal numbersa misleading term that will be de ned in
De nition 0.25). Now let's x a point on this line, and label it "0":

0

-« 1 >

This point can be thought of as representing the number zero; it is the point against which all ¢
numbers will be measured. Finally, let's x a unit of length:

—

This unit of length will be used, amongst other things, to compare the extent to which the o
numbers differ from zero.

De nition 0.4
The above in nite line, together with its xed zero point and xed unit length, constitute tealf
number line.

We will use the number line to construct ve sets of numbers of interest to us:

The setN of natural numbers-De nition 0.5;
The setZ of integers—De nition 0.11;

The setQ of rational numbers—De nition 0.24;
The setR of real numbers—De nition 0.25; and

The setC of complex numbers-De nition 0.31.

Each of these sets has a different character and is used for different purposes, as we will se
later in this chapter and throughout this book.

Natural numbers (N)

The natural numbersare the numbers used for counting—they are the answers to questions of
form ~how many'—for example, | havihreeuncles,onedog andzerocats.

Counting is a skill humans have had for a very long time; we know this because there is eviden
people using tally marks tens of thousands of years ago. Tally marks provide one method of cou
small numbers: starting with nothing, proceed through the objects you want to count one by
and make a mark for every object. When you are nished, there will be as many marks as ther
objects. We are taught from a young age to count with our ngers; this is another instance of ma
tally marks, where now instead of making a mark we raise a nger.

Making a tally mark represents amcrementin quantity—that is, adding one. On our number line
we can represent an increment in quantity by moving to the right by the unit length. Then
distance from zero we have moved, which is equal to the number of times we moved right by
unit length, is therefore equal to the number of objects being counted.

3



4 Chapter 0. Getting started

F De nition 0.5
The natural numbers are represented by the points on the number line which can be obtainec
starting at 0 and moving right by the unit length any number of times:

0 1 2 3 4 5

< 1

Y

In more familiar terms, they are theon-negative whole numbersWe write N (IATEX code:
\mathbb{N} ) for the set of all natural numbers; thus, the notatioi2 'N' means thatn is a nat-
ural number.

The natural numbers have very important and interesting mathematical structure, and are cen
the material in Chapter 6. A more precise characterisation of the natural numbers will be prov
in Section 3.1, and a mathematical construction of the set of natural numbers can be found in
tion B.1 (see Construction B.2.5). Central to these more precise characterisations will be the nc
of “zero' and of “adding one'—just like making tally marks.

v Aside
Some authors de ne the natural numbers to begbsitivewhole numbers, thus excluding zero.
We take 0 to be a natural number since our main use of the natural numbers will be for cour
nite sets, and a set with nothing in it is certainly nite! That said, as with any mathematic
de nition, the choice about whetherN or 062N is a matter of taste or convenience, and is merel
a convention—it is not something that can be proved or refuted. C

Number bases

Writing numbers down is something that may seem easy to you now, but it likely took you sev
years as a child to truly understand what was going on. Historically, there have been many diffi
systems for representing numbers symbolically, caflecheral systemd-irst came the most prim-
itive of all, tally marks, appearing in the Stone Age and still being used for some purposes to
Thousands of years and hundreds of numeral systems later, there is one dominant numeral s
understood throughout the world: thindu—Arabic numeral system. This numeral system con-
sists of ten symbols, calledigits. It is a positionalnumeral system, meaning that the position of
symbol in a string determines its numerical value.

In English, theArabic numeralsare used as the ten digits:
0 1 23 456 7 89

The right-most digitin a string is in the units place, and the value of each digit increases by a fact
ten moving to the left. For example, when we write 2812, the left-most "2' represents the nun
two thousand, whereas the last “2' represents the number two.

The fact that there are ten digits, and that the numeral system is based on powers of ten, is a
gical accident corresponding with the fact that most humans have ten ngers. For many purp
this is inconvenient. For example, ten does not have many positive divisors (only four)—this
implications for the ease of performing arithmetic; a system based on the number twelve, whicl
six positive divisors, might be more convenient. Another example is in computing and digital e
tronics, where it is more convenient to work iimary system, with just two digits, which represent

4



Chapter 0. Getting started 5

“off' and “on' (or “low voltage' and “high voltage"), respectively; arithmetic can then be perform
directly using sequences lafgic gatesin an electrical circuit.

It is therefore worthwhile to have some understanding of positional numeral systems based on
bers other than ten. The mathematical abstraction we make leads to the de nibasesb expan-
sion

De nition 0.6
Letb> 1. Thebaseb expansionof a natural numben is the* stringd,d; 1:::dg such that

n=d b'+d 1 b1+ +dy b
06 di < bforeachi; and

If n> 0 thend, 6 0—the basds expansion of zero is 0 in all basks

Certain number bases have names; for instance, the base-2, 3, 8, 10 and 16 expansions are |
ively calledbinary, ternary, octal, decimalandhexadecimal

3The use of the word “the' is troublesome here, since it assumes that every natural number has only brex@ssion.
This fact actually requires proof—see Theorem 5.3.51.

Example 0.7
Consider the number 1023. Its decimal (base-10) expansion is 1023, since

1023= 1 10°+ 0 10°+ 2 10'+ 3 1P
Its binary (base-2) expansion is 1111111111, since
1023=1 2%+1 2841 27+1 2641 2%+1 2%+ 1 22+1 2241 28+1 20

We can express numbers in base-36 by using the ten usual digits 0 through 9 and the twen
letters A through Z; for instance, A represents 10, M represents 22 and Z represents 35. The bz
expansion of 1023 is SF, since

1023= 28 36'+ 15 36°= S 36"+ F 36°
C

Exercise 0.8

Find the binary, ternary, octal, decimal, hexadecimal and base-36 expansions of the number 2
using the letters A—F as additional digits for the hexadecimal expansion and the letters A—
additional digits for the base-36 expansion. C

We sometimes wish to specify a natural number in terms of its basgsansion; we have some
notation for this.

Notation 0.9
write
dedy 1:iidoyy = o b+ d g b T+ +d O
for the natural number whose basexpansion igd; 1:::dp. If there is no subscriptb) and a

base is not speci ed explicitly, the expansion will be assumed to be in base-10.

5



6 Chapter 0. Getting started

0 Example 0.10
Using our new notation, we have

1023= 111111111, = 1101225 = 1777g) = 102310 = 3FFag = SFag

Integers (Z)

The integerscan be used for measuring the difference between two instances of counting.
example, suppose | have ve apples and ve bananas. Another person, also holding apple:
bananas, wishes to trade. After our exchange, | have seven apples and only one banana. Thus
two more apples and four fewer bananas.

Since an increment in quantity can be represented by moving to the right on the number line b
unit length, adecrementn quantity can therefore be represented by moving tddficdoy the unit
length. Doing so gives rise to the integers.

F De nition 0.11
Theintegersare represented by the points on the number line which can be obtained by startil
0 and moving in either direction by the unit length any number of times:

We write Z (IATEX code: \mathbb{Z} ) for the set of all integers; thus, the notation2 Z' means
thatnis an integer.

The integers have such a fascinating structure that a whole chapter of this book is devoted to th
see Chapter 5. This is to do with the fact that, although you can add, subtract and multiply
integers and obtain another integer, the same is not true of division. This “bad behaviour' of divi
is what makes the integers interesting. We will now see some basic results about division.

Division of integers

The motivation we will soon give for the de nition of the rational numbers (De nition 0.24) is the
the result of dividing one integer by another integer is not necessarily another integer. Howeve
result issometimesinother integer; for example, | can divide six apples between three people,
each person will receive an integral number of apples. This makes division interesting: how ca
measure the failure of one integer's divisibility by another? How can we deduce when one int
is divisible by another? What is the structure of the set of integers when viewed through the lel
division? This motivates De nition 0.12.

F De nition 0.12 (to be repeated in De nition 5.1.4)
Leta;b2 Z. We sayb dividesa if a= gbfor some integeq. Other ways of saying th&tdividesa
are:bis adivisor of a, b is afactor of a, orais amultiple of b.

6



Chapter 0. Getting started 7

Example 0.13

The integer 12 is divisible by 1, 2, 3, 4, 6 and 12, since
12=121=62=43=34=26=1 12

It is also divisible by the negatives of all of those numbers; for example, 12 is divisibleStsince

12=( 4) ( 3). C
Exercise 0.14
Prove that 1 divides every integer, and that every integer divides 0. C

Using De nition 0.12, we can prove some general basic facts about divisibility.

Proposition 0.15
Leta;b;c2 Z. If cdividesb andb dividesa, thenc dividesa.

Proof
Suppose that dividesb andb dividesa. By De nition 0.12, it follows that

b=qgc and a=rb

for some integerg andr. Using the rst equation, we may substitugefor bin the second equation,
to obtain

a=r(qo
Butr(qc) = ( rg)c, andrq is an integer, so it follows from De nition 0.12 thatdividesa.
Exercise 0.16

Leta;b;d 2 Z. Suppose that dividesa andd dividesb. Given integersl andv, prove thad divides
au+ bwv. C

Some familiar concepts, such as evenness and oddness, can be characterised in terms of divi

De nition 0.17
An integern is evenif it is divisible by 2; otherwisen is odd.

It is not just interesting to know when one integkresdivide another; however, proving that one
integerdoesn'tdivide another is much harder. Indeed, to prove that an intedees not divide an
integera, we must prove thaa 6 gbfor anyintegerq at all. We will look at methods for doing this
in Chapter 1; these methods use the following extremely important result, which will underlie a
Chapter 5.

Theorem 0.18 (Division theorem, to be repeated in Theorem 5.1.1)
Leta;b2 Z with b6 0. There is exactly one way to write

a=qgb+r
such thag andr are integers, and® r < b (if b> 0)or06 r< b (if b< 0).

The numbeng in Theorem 0.18 is called thguotient of a when divided byb, and the number is
called theremainder.
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0 Example 0.19
The number 12 leaves a remainder of 2 when divided by 5, sineced5+ 2. C

Here's a slightly more involved example.

C Proposition 0.20
Suppose an integerleaves a remainder ofwhen divided by an integdy, and that > 0. Then a
leaves a remainder &f r when divided byb.

Proof
Suppose leaves a remainder ofwhen divided byb. Then

a=gb+r
for some integeq. A bit of algebra yields
a= gb r= gb r+(b b)= (gq+ 1b+(b r)

Since < r< b, we have 6 b r < b. Hence (g+ 1) is the quotient of a when divided byb,
andb r is the remainder.

Exercise 0.21
Prove that if an integea leaves a remainder of when divided by an integds, thena leaves a
remainder of when divided by b. C

We will nish this part on division of integers by connecting it with the material on number bases
we can use the division theorem (Theorem 0.18) to nd the lasgpansion of a given natural
number. It is based on the following observation: the natural numivdrose basd-expansion is
drdr 1 didg is equal to

do+ b(dy+ b(dz2+  +b(dr 1+ bd) ))
Moreover, 06 d; < bfor alli. In particulam leaves a remainder o) when divided byb. Hence

ndo

5 = it dbt b’

The basé expansion o% is therefore
drdr 1 dl

In other words, the remainder pfvhen divided bybis the last basé-digit of n, and then subtracting
this number frorm and dividing the result bl truncates the nal digit. Repeating this process give
usds, and therdy, and so on, until we end up with O.

This suggests the following algorithm for computing the basspansion of a number.

Step 1. Let dg be the remainder whemis divided byb, and letng = - bdo be the quotient. Fix

i=0.

Step 2.Supposea; andd; have been de ned. Ifiy = 0, then proceed to Step 3. Otherwise, de ne
di+ 1 to be the remainder whem is divided byb, and de nen;;1 = Lg“. Incrementi, and
repeat Step 2.
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Step 3.The basds expansion of, is
didi 1 do

Example 0.22
We compute the base-17 expansion of 15213, using the letters A—G to represent the numbe
through 16.

15213= 894 17+ 15, sodp = 15= F andng = 894.
894= 52 17+ 10, sod; = 10= Aandn; = 52.
52=3 17+ 1, sod, = 1 andn, = 3.
3=0 17+ 3, sod3 = 3 andnz= 0.
The base-17 expansion of 15213 is therefore 31AF.
A quick veri cation gives
31AR;7 = 3 172+ 1 177+ 10 17+ 15= 15213

as desired. C

Exercise 0.23
Find the base-17 expansion of 408735787 and the base-36 expansion of 1442151747. C

Rational numbers Q)

Bored of eating apples and bananas, | buy a pizza which is divided into eight slices. A friend
| decide to share the pizza. | don't have much of an appetite, so | eat three slices and my fi
eats ve. Unfortunately, we cannot represent the proportion of the pizza each of us has eaten
natural numbers or integers. However, we're not far off: we can count the number of equal y
the pizza was split into, and of those parts, we can count how many we had. On the number
this could be represented by splitting the unit line segment from 0 to 1 into eight equal pieces,
proceeding from there. This kind of procedure gives rise tadtienal numbers

De nition 0.24
The rational numbers are represented by the points at the number line which can be obtainec
dividing any of the unit line segments between integers into an equal number of parts.

The rational numbers are those of the fofmwherea;b2 Z andb 6 0. We writeQ (IATEX code:
\mathbb{Q}) for the set of all rational numbers; thus, the notatig Q' means thag is a rational
number.

The rational numbers are a very important example of a type of algebraic structure known
eld —they are particularly central to algebraic number theory and algebraic geometry.
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Real numbers R)

Quantity and change can be measured in the abstract esihgumbers

De nition 0.25
Thereal numbersare the points on the number line. We wiR€IATEX code:\mathbb{R} ) for the
set of all real numbers; thus, the notati@® R' means that is a real number.

The real numbers are central to real analysis, a branch of mathematics introduced in Chap
They turn the rationals into@ntinuunmby " lling in the gaps'—speci cally, they have the property
of completenesaneaning that if a quantity can be approximated with arbitrary precision by r
numbers, then that quantity is itself a real number.

We can de ne the basic arithmetic operations (addition, subtraction, multiplication and division]
the real numbers, and a notion of ordering of the real numbers, in terms of the in nite number li

Ordering. A real numbera is less than a real numbbr writtena < b, if a lies to the left ofb
on the number line. The usual conventions for the symBo(&TEX code:\le ), > and> (IATEX
code:\ge) apply, for instanced 6 b' means that eithea< bora= b.

Addition. Suppose we want to add a real numbeo a real numbeb. To do this, wetranslate

a by b units to the right—ifb < 0 then this amounts to translatiagoy an equivalent number of
units to the left. Concretely, take two copies of the number line, one above the other, with
same choice of unit length; move the 0 of the lower number line beneath thegpafithhe upper
number line. Them+ bis the point on the upper number line lying above the pbiot the lower
number line.

Here is an illustration of the fact that 3)+ 5= 2:

oOT---®
a+—r N

Multiplication. This one is fun. Suppose we want to multiply a real numébbky a real number
b. To do this, wescalethe number line, and perhapsect it. Concretely, take two copies of the
number line, one above the other; align the 0 points on both number lines, and stretch the |
number line evenly until the point 1 on the lower number line is below the oot the upper
number line—note that & < 0 then the number line must be re ected in order for this to happe
Thena b is the point on the upper number line lying abdven the lower number line.

Here is an illustration of the fact that 8 = 20.

I I I I I I I Py Il Il Il |
T T T T T T T T A T T T T

!

2 -1 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
J J J J J 1 i i i i Il Il L
T T T T T T T T T T T T

PT---ea

ot+---to

and here is an illustration of the fact tHat5) 4= 20:

10
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-22-21-20-19-18 -17 -16 -15-14-13-12-11-10 -9 -8 -7 -6
—t—t

T A
T
T
T =
-+
- N
+ w
-+

RT---®h

o+t---—+o

Exercise 0.26
Interpret the operations of subtraction and division as geometric transformations of the real nu
line. C

We will take for granted the arithmetic properties of the real numbers in this chapter, waiting
til Section 7.1 to sink our teeth into the details. For example, we will take for granted the b:s
properties of rational numbers, for instance

ac

ad+ bc and ac
bd b d bd

a ¢C
— 4 — =
b d

Rational and irrational numbers

Before we can talk about irrational numbers, we should say what they are.

De nition 0.27
An irrational number is a real number that is not rational.

Unlike N; Z; Q; R; C, there is no standard single letter expressing the irrational numbers. Howe
by the end of Section 2.1, we will be able to write the set of irrational numbeRn&3.

Note in particular that “irrational’ does not simply mean “not rational'—that would imply that
complex numbers which are not real are irrational—rather, the term “irrational' means “real an
rational'.

Proving that a real number igational is not particularly easy. We will get our foot in the door by
allowing ourselves to assume the following result, which is restated and proved in Proposition 3.

Proposition 0.28,
The real number 2 is irrational. O

P-. . . : . :
We can use the fact that2 is irrational to prove some facts about the relationship between ratiol
numbers and irrational numbers.

Proposition 0.29
Letaandb be irrational numbers. It is possible thadibe rational.

Proof
Leta= b= 2. Thenaandb are irrational, an@gb= 2 = % which is rational.

Exercise 0.30
Let r be a rational number and latbe an irrational number. Prove that it is possible tlaabe
rational, and it is possible thea be irrational. C

11
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Complex numbers C)

We have seen that multiplication by real numbers corresponds with scaling and re ection of
number line—scaling alone when the multiplicand is positive, and scaling with re ection whel
is negative. We could alternatively interpret this re ection amtation by half a turn, since the
effect on the number line is the same. You might then wonder what happens if we rotate by arbi
angles, rather than only half turns.

What we end up with is planeof numbers, not merely a line—see Figure 1. Moreover, it happe
that the rules that we expect arithmetic operations to satisfy still hold—addition corresponds
translation, and multiplication corresponds with scaling and rotation. This resulting number s
that of thecomplex numbers

De nition 0.31

The complex numbersare those obtained by the non-negative real numbers upon rotation by
angle about the point 0. We writ@ (IATeX code:\mathbb{C} ) for the set of all complex numbers;
thus, the notationz2 C' means that is a complex humber.

There is a particularly important complex numbeuwyhich is the point in the complex plane exactly
one unit above 0—this is illustrated in Figure 1. Multiplication iblyas the effect of rotating the
plane by a quarter turn anticlockwise. In particular, we hidve i i = 1; the complex numbers
have the astonishing property that square roo@llofomplex humbers exist (including all the real
numbers).

In fact, every complex number can be written in the fabi, wherea; b 2 R; this number corres-
ponds with the point on the complex plane obtained by mowingits to the right andb units up,
reversing directions as usualdfor b is negative. Arithmetic on the complex numbers works just
with the real numbers; in particular, using the fact ila 1, we obtain

(a+ bi)+(c+di)=(a+c)+(b+d)i and (a+bi) (c+di)=(ac bd)+(ad+ boi

We will discuss complex numbers further in the portion of this chapter on polynomials below.

Polynomials

The integers, rational numbers, real numbers and complex numbers are all examipigs ofhich
means that they come equipped with nicely behaving notions of addition, subtraction and multi
ation.

De nition 0.32
Let A be oneZ, Q, R or C. A (univariate) polynomial over A in the indeterminate x is an
expression of the form

ag+ ayx+  + apx"

wheren2 N and eaclag 2 A. The numbersy are called theoef cients of the polynomial. If not all
coef cients are zero, the largest valuelofor which ax 6 0 is called thedegreeof the polynomial.
By convention, the degree of the polynomial O i¥ .

12
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13

Figure 1: lllustration of the complex plane, with some points labelled.

13
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Polynomials of degree 1, 2, 3, 4 and 5 are respectively céiltedr, quadratic cubic quartic and
quintic polynomials.

Example 0.33
The following expressions are all polynomials:

3 X 1  (3+)x% x

Their degrees are 0, 1 and 2, respectively. The rst two are polynomialsZgvand the third is a

polynomial overC. C
Exercise 0.34
Write down a polynomial of degree 4 ovRrwhich is not a polynomial oveD. C

Notation 0.35

Instead of writing out the coef cients of a polynomial each time, we may write somethingp(ike
or q(X). The (x)' indicates thatx is the indeterminate of the polynomial. df is a numbef! and
p(x) is a polynomial in indeterminate we write p(a) for the result ofsubstituting a for x in the
expressiorp(x).

Note that, ifAis any of the setdl, Z, Q, R or C, andp(X) is a polynomial oveA, thenp(a) 2 Afor
alla 2 A

Example 0.36
Letp(x)= x> 3x%+ 3x 1. Thenp(x) is a polynomial oveZ with indeterminatex. For any integer
a, the valuep(a) will also be an integer. For example

p(0)=0® 302+30 1= 1 and p3)=3 332+33 1=8

De nition 0.37
Let p(x) be a polynomial. Aoot of p(x) is a complex numbex such thatp(a) = 0.

Thequadratic formula(Theorem 1.1.31) tells us that the roots of the polynomial ax+ b, where
a;b 2 C, are precisely the complex humbers

a+pa2 4b and a a2 4b
2 2

Note our avoidance of the symbol ", which is commonly found in discussions of quadratic poly-
nomials. The symbol ™' is dangerous because it may suppress the word “and' or the word ¢
depending on context—this kind of ambiguity is not something that we will want to deal with wt
discussing the logical structure of a proposition in Chapter 1!

Example 0.38

Letp(x) = x> 2x+ 5. The quadratic formula tells us that the rootgaire
20+Pa a5 p_ 2 Paas__ b
f:1+ 4=1+2 and Tzl 4=1 2i

[@lwhen dealing with polynomials, we will typically reserve the lettefior the indeterminate variable, and use the Greel
lettersa; b; g (IATeX code:\alpha, \beta, \gamma ) for numbers to be substituted into a polynomial.

14
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The numbers * 2i and 1 2i are related in that their real parts are equal and their imaginary pe
differ only by a sign. Exercise 0.39 generalises this observation. C

Exercise 0.39
Let a = a+ bi be a complex number, whegeb 2 R. Prove thata is the root of a quadratic
polynomial overR, and nd the other root of this polynomial. C

The following exercise proves the well-known result which classi es the number of real roots ¢
polynomial overR in terms of its coef cients.

Exercise 0.40

Leta;b2 C and letp(x) = x?+ ax+ b. The valueD= a? 4bis called thediscriminant of p. Prove
that p has two roots iD6& 0 and one root iD= 0. Moreover, ifa;b 2 R, prove thatp has no real
roots ifD< 0, one real root iD= 0, and two real roots iD> 0. C

Example 0.41

Consider the polynomiat?> 2x+ 5. Its discriminant is equal t¢ 2)° 4 5= 16, which is
negative. Exercise 0.40 tells us that it has two roots, neither of which are real. This was veri e
Example 0.38, where we found that the rootsof 2x+ 5are 1+ 2iand 1 2i.

Now consider the polynomiaf 2x 3. Its discriminant is equal to 2)2 4 ( 3)= 16, which
is positive. Exercise 0.40 tells us that it has two roots, both of which are real; and indeed

X2 2x 3=(x+1)(x 3)

sotheroots ok 2x 3are 1and3. C

15
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Section 0.E
Chapter O exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

0.1. The video-sharing websitéouTubeassigns to each video a unique identi er, which is a strin
of 11 characters from the set

fAB:::;Zab;:::;2;0,1,2;3;4,5;6;7,8;9;-; ¢
This string is actually a natural number expressed in base-64, where the characters in the
set represent the numbers 0 through 63, in the same order—-&hepresents 2¢ represents
28, 3 represents 55, and represents 63. According to this schema, nd the natural numb

whose base-64 expansiond®w4w9WgXcahd nd the base-64 expansion of the natural numbe
7159047702620056 984.

0.2. Leta;b;c;d 2 Z. Under what conditions iéa+ bp 2)(c+ dp 2) an integer?

0.3. Suppose an integen leaves a remainder ofwhen divided by 3, and an integer leaves a
remainder ofj when divided by 3, where 6 i;j < 3. Prove tham+ n andi+ j leave the same
remainder when divided by 3.

0.4. What are the possible integersrfwhen divided by 3, whera2 Z?

De nition 0.E.1
A set X is closedunder an operation if, whenevera andb are elements oK, a b is also an
element ofX.

In Questions 0.5 to 0.11, determine which of the numberNe®, Q andR are closed under the
operation de ned in the question.

_ _a
05.a b=a+hb 09.a b= 02+ 1
06.a b=a b 010 o a
10.a b= p———
0.7.a b=(a b)(a+h) b?+ 1
08.a b=(a 1)(b 1)+ 2(a+b) 011 a b= a |.fb>0
0 ifb6x

De nition 0.E.2
A complex numben is algebraicif p(a)= 0 for some nonzero polynomiglx) overQ.

0.12. Letx be a rational number. Prove thais an algebraic number.
0.13. Prove thap 2 is an algebraic number.
0.14. Prove thap 2+ P 3 is an algebraic number.

0.15. Prove tha+ yi is an algebraic number, whexeandy are any two rational numbers.

16
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Chapter 1

Logical structure

The goal of this chapter is to develop a methodical way of breaking up a proposition into sm:
components and seeing how these components t together—this is callémbtbal structureof a
proposition. The logical structure of a proposition is very informative: it tells us what we need tc
in order to prove it, what we need to write in order to communicate our proof, and how to exp!
the consequences of the proposition after it has been proved.

logical structure of a

proposition
strategies for proving structure and wording of consequences of
the proposition the proof the proposition

Sections 1.1 and 1.2 are dedicated to developing a systesynatfolic logicfor reasoning about
propositions. We will be able to represent a proposition using a string of variables and syml
and this expression will guide how we can prove the proposition and explore its consequence
Section 1.3 we will develop techniques for manipulating these logical expressions algebraica
this, in turn, will yield new proof technigues (some have fancy names like “proof by contrapositi
but some do not).

Exploring how the logical structure of a proposition informs the structure and wording of its pr
is the content of Appendix A.2.

19



20 Chapter 1. Logical structure

Section 1.1
Propositional logic

Every mathematical proof is written in the context of certagsumptiondeing made, and certain
goalsto be achieved.

Assumptionsare the propositions which are known to be true, or which we are assuming tc
true for the purposes of proving something. They include theorems that have already been pr
prior knowledge which is assumed of the reader, and assumptions which are explicitly made
words like “suppose’ or “assume'.

Goals are the propositions we are trying to prove in order to complete the proof of a result
perhaps just a step in the proof.

With every phrase we write, our assumptions and goals change. This is perhaps best illustrat
example. In Example 1.1.1 below, we will examine the proof of Proposition 0.15 in detail, so
we can see how the words we wrote affected the assumptions and goals at each stage in the
We will indicate our assumptions and goals at any given stage using tables—the assumptions
will only be those assumptions which are made explicitly; prior knowledge and previously pro
theorems will be left implicit.

Example 1.1.1
The statement of Proposition 0.15 was as follows:

Leta;b;c2 Z. If cdividesb andb dividesa, thenc dividesa.

The set-up of the proposition instantly gives us our initial assumptions and goals:

Assumptions | Goals
L If ¢ dividesb andb dividesa, thenc
abc2z .
dividesa

We will now proceed through the proof, line by line, to see what effect the words we wrote hac
the assumptions and goals.

Since our goal was an expression of the form "if...then...", it made sense to start by assumin
“if statement, and using that assumption to prove the “then' statement. As such, the rst thing
wrote in our proof was:

Suppose that dividesb andb dividesa.

Our updated assumptions and goals are re ected in the following table.

Assumptions | Goals
a,b;c2 R cdividesa
cdividesb
b dividesa

20
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Our next step in the proof was to unpack the de nitionsoflividesb' and "b dividesa', giving us
more to work with.
Suppose that dividesb andb dividesa. By De nition 0.12, it follows that
b=gc and a=rb
for some integerg andr.

This introduces two new variablesr and allows us to replace the assumptiondividesb' and b
dividesa' with their de nitions.

Assumptions | Goals
ab;c;q;r2z cdividesa
b=qc
a=rb

At this point we have pretty much exhausted all of the assumptions we can make, and so our atte
turns towards the goal—that is, we must prove thalividesa. At this point, it helps to “work
backwards' by unpacking the goal: what does it mearctordividea? Well, by De nition 0.12, we
need to prove that is equal to some integer multiplied loy—this will be re ected in the following
table of assumptions and goals.

Since we are now trying to expreasn terms ofc, it makes sense to use the equations we ha
relatinga with b, andb with c, to relatea with c.
Suppose that dividesb andb dividesa. By De nition 0.12, it follows that
b=qc and a=rb

for some integers) andr. Using the rst equation, we may substitugie for b in the
second equation, to obtain

a=r(qo

We are now very close, as indicated in the following table.

Assumptions | Goals
ab;c;q;r2z a=[some integdrc
b= qc
a=rb
a=r(qc

Our nal step was to observe that the goal has at last been achieved:

Suppose that dividesb andb dividesa. By De nition 0.12, it follows that

b=qc and a=rb

21



22 Chapter 1. Logical structure

for some integers| andr. Using the rst equation, we may substituge for b in the
second equation, to obtain

a=r(qo
Butr(qgc) = ( rg)c, andrq is an integer,

Assumptions Goals
a;b;c;q;r2 2z
b= qc
a=rb
a=r(qe
a=(rqg)c
rq2 2z

Now that there is nothing left to prove, it is helpful to reiterate that point so that the reader has s
closure on the matter.
Suppose that dividesb andb dividesa. By De nition 0.12, it follows that
b=qc and a=rb

for some integers) andr. Using the rst equation, we may substitutie for b in the
second equation, to obtain

a=r(qo
Butr(gc) = ( rg)c, andrg is an integer, so it follows from De nition 0.12 thatdivides
a
C
Symbolic logic

Consider again the proposition that we proved in Proposition 0.15 (for given int&decs:
If ¢ dividesb andb dividesa, thenc dividesa.

The three statements dividesb', “b dividesa' and “c dividesa' are all propositions in their own
right, despite the fact that they all appear inside a more complex proposition. We can examin
logical structure of the proposition by replacing these simpler propositions with symbols, ca
propositional variables Writing P to representc dividesb', Q to representb dividesa and Rto
representc dividesa', we obtain:

If PandQ, thenR.

22
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Breaking down the proposition in this way makes it clear that a feaagdame RindQ, and then
derive Rfrom these assumptions—this is exactly what we did in the proof, which we examit
in great detail in Example 1.1.1. But importantly, it suggests that the same proof strategy
work for other propositions which are also of the formPifandQ, thenR', such as the following
proposition (for a given integen):

If n> 2 andnis prime, them is odd.

Observe that the simpler propositions are joined together to form a more complex proposition t
language, namely the word “and' and the construction ‘if... then...'—we will represent th
constructions symbolically usidggical operators which will be introduced in De nition 1.1.3.

Zooming in even more closely, we can use De nition 0.12 to observe tdividesb' really means
"b= gc for someq 2 Z'. The expression ‘for somg 2 Z' introduces a new variablg, which
we must deal with appropriately in our proof. Words which we attach to variables in our proof
such as "any', “exists', "all', 'some’, "unique' and “only'—will be represented symbolically usir
quanti ers, which we will study in Section 1.2.

By breaking down a complex proposition into simpler statements which are connected together
logical operators and quanti ers, we can more precisely identify what assumptions we can ma
any given stage in a proof of the proposition, and what steps are needed in order to nish the pi

Propositional formulae

We begin our development of symbolic logic with some de nitions to x our terminology.

De nition 1.1.2
A propositional variable is a symbol that represents a proposition. Propositional variables may
assignedruth values (‘true' or “false’).

We will typically use the lower-case lettepsq, r ands as our propositional variables.

We will be able to form more complex expressions representing propositions by connecting tog
simpler ones usingpgical operatorssuch ag* (which represents “and’), (which represents “or'),
) (which represents “if...then...") and(which represents “not’).

The de nition of the notions ofogical operatorandpropositional formulagiven below is a little bit
dif cult to digest, so it is best understood by considering examples of propositional formulae
instances of logical operators. Fortunately we will see plenty of these, since they are the ce
objects of study for the rest of this section.

De nition 1.1.3

A propositional formula is an expression that is either a propositional variable, or is built up fro
simpler propositional formulae ("subformulae’) usintpgical operator. In the latter case, the truth
value of the propositional formula is determined by the truth values of the subformulae accordir
the rules of the logical operator.

23



24 Chapter 1. Logical structure

On rst sight, De nition 1.1.3 seems circular—it de nes the term “propositional formula’ in term
of propositional formulae! But in fact it is not circular; it is an example akaursivede nition
(we avoid circularity with the word “simpler’). To illustrate, consider the following example of
propositional formula:

(phag)) r

This expression represents a proposition of the forrp ahdg, thenr', where p; g;r are themselves
propositions. It is built from the subformulge® q andr using the logical operatgr , andp” qis
itself built up from the subformulap andq using the logical operatdy.

The truth value of p~ q) ) r is then determined by the truth values of the constituent propositior
variables f, g andr) according to the rules for the logical operatérand) .

If this all seems a bit abstract, that is becausedbstract, and you are forgiven if it makes no sens
to you yet. From this point onwards, we will only study particular instances of logical operatc
which will make it all much easier to understand.

Conjunction (Cand’, )

Conjunction is the logical operator which makes precise what we mean when we say "and'.

De nition 1.1.4
The conjunction operator is the logical operator (IATeX code:\wedge), de ned according to the
following rules:

(™1) If pistrue andyis true, themp” qiis true;
("Ep) If p~ qistrue, thempiis true;
("E2) If p~ qis true, theryis true.
The expressiop” qrepresentsp andd'.
It is not always obvious when conjunction is being used; sometimes it sneaks in without the v

“and' ever being mentioned! Be on the look-out for occasions like this, such as in the follow
exercise.

Example 1.1.5
We can express the proposition "7 is a prime factor of 28' in the fprhy, by letting p represent
the proposition "7 is prime' and lettingrepresent the proposition "7 divides 28'. C

Exercise 1.1.6
Express the proposition “John is a mathematician who lives in Pittsburgh' in the géray for
propositionsp andgq. C

The rules in De nition 1.1.4 are examples ailes of inference-they tell us how to deduce (or
“infer’) the truth of one propositional formula from the truth of other propositional formulae.
particular, rules of inference never directly tell us when a propositidalse—in order to prove

something is false, we will prove itgegationis true (see De nition 1.1.37).

24



Section 1.1. Propositional logic 25

Rules of inference tell us how to use the logical structure of propositions in proofs:

The rule (*1) is anintroduction rule meaning that it tells us how tprove a goalof the form
p” g—indeed, if we want to prove tha” qis true, (1) tells us that it suf ces to prove thatis
true and prove thaj is true.

The rules £ E1) and (* E2) areelimination rules meaning that they tell us how tese an assump-
tion of the formp” g—indeed, if we are assuming that* g is true, we are then free to use the
fact thatp is true and the fact thatis true.

Each logical operator will come equipped with some introduction and/or elimination rules, wk
tell us how to prove goals or use assumptions which include the logical operator in question. It
this way that the logical structure of a proposition inforpneof strategieslike the following:

Strategy 1.1.7 (Proving conjunctions)
A proof of the propositiorp”™ g can be obtained by tying together two proofs, one being a proof tr
p is true and one being a proof thats true.

Example 1.1.8

Suppose we are required to prove that 7 is a prime factor of 28. In Example 1.1.5 we express
is a prime factor of 28" as the conjunction of the propositions "7 is prime' and "7 divides 28', anc
Strategy 1.1.7 breaks down the proof into two steps: rst prove that 7 is prime, and then prove
7 divides 28. C

Much like Strategy 1.1.7 was informed by the introduction rule”fothe elimination rules inform
how we may make use of an assumption involving a conjunction.

Strategy 1.1.9 (Assuming conjunctions)
If an assumption in a proof has the foprt g, then we may assunmgand assumg in the proof.

Example 1.1.10

Suppose that, somewhere in the process of proving a proposition, we arrive at the fact that
prime factor of 28. Strategy 1.1.9 then allows us to use the separate facts that 7 is prime and
divides 28. C

Strategies 1.1.7 and 1.1.9 seem alnuwstious To an extent they are obvious, and that is why wi
are stating them rst. But the real reason we are going through the process of precisely de
logical operators, their introduction and elimination rules, and the corresponding proof strategie
that when you are in the middle of the proof of a complicated result, it is all too easy to lose trac
what you have already proved and what remains to be proved. Keeping track of the assumptior
goals in a proof, and understanding what must be done in order to complete the proof, is a dif
task.

To avoid drawing this process out too long, we need a compact way of expressing rules of infer
that allows us to simply read off corresponding proof strategiesctiid use tables of assumptions
and goals like in Example 1.1.1, but this quickly becomes clunky—indeed, even the very sir
conjunction introduction rule(1) doesn't look very nice in this format:
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26 Chapter 1. Logical structure

Assumptions | Goals Assumptions | Goals
p"q p
q

Instead, we will represent rules of inference in the stylenafural deduction In this style, we

P1 P2 Pk

For instance, the introduction and elimination rules for conjunction can be expressed concisel;
lows:

(“E1)

(“E2)

p q p"q P"q
p q

In addition to its clean and compact nature, this way of writing rules of inference is useful bec:
we can combine them infaroof treesin order to see how to prove more complicated proposition
For example, consider the following proof tree, which combines two instances of the conjunc
introduction rule.

p q
p™q r
(pr o)~ r

From this proof tree, we obtain a strategy for proving a proposition of the prtng) ~ r. Namely,
rst prove p and provey, to concludep” g; and then prove, to concludg p” g)~ r. This illustrates
that the logical structure of a proposition informs how we may structure a proof of the propositit

Exercise 1.1.11

Write a proof tree whose conclusion is the propositional fornjptag) » (r * s), wherep; qg;r; sare
propositional variables. Express "2 is an even prime number and 3 is an odd prime number' i
form (p~ )" (r* s), for appropriate propositiong, g, r ands, and describe how your proof tree
suggests what a proof might look like. C
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Disjunction (Cor', )

De nition 1.1.12
The disjunction operator is the logical operator (IATpX code: \vee ), de ned according to the
following rules:

(_17) If pistrue, thenp_ qis true;
(L) If gis true, thermp__qis true;

(_E) If p_qistrue, and ifr can be derived fronp and fromq, thenr is true.

The expressiop__ qrepresentsp or g
The introduction and elimination rules for disjunction are represented diagramatically as follow

(Pl [d

P g
5 g " 5 g ? P-4 T " (o

We will discuss what the notatigp] r and[q] r means momentarily. First, we zoom in on
how the disjunction introduction rules inform proofs of propositions of the fqurarq'.

Strategy 1.1.13 (Proving disjunctions)
In order to prove a proposition of the form_q, it suf ces to prove just one op or g.

Example 1.1.14

Suppose we want prove that 8192 is not divisible by 3. We know by the division theorem (T
orem 0.18) that an integer is not divisible by 3 if and only if it leaves a remainder of 1 or 2 wi
divided by 3, and so it suf ces to prove the following:

8192 leaves a remainder of 1 8192 leaves a remainder of 2
when divided by 3 - when divided by 3

A quick computation reveals that 81822730 3+ 2, so that 8192 leaves a remainder of 2 whe|
divided by 3. By Strategy 1.1.13, the proof is now complete, since the full disjunction follows

C12)- C

Example 1.1.15
Let p;q;r; s be propositional variables. The propositional form(a q)» (r _ s) representsp or
g, andr or s. What follows are two examples of truth trees for this propositional formula.

p r q S
P_q Cn) r s (&:)1) p_q (12) r_s
(p_g™(r_9 (p_a”(r_s)

C12)
*1)
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28 Chapter 1. Logical structure

The proof tree on the left suggests the following proof strategy(forq) ~ (r _s). First provep,
and deduce__ q; then prove, and deduce _s; and nally deduce(p_ g) " (r _s). The proof tree
on the right suggests a different strategy, whereq is deduced by proving instead ofp, andr _s
is deduced by provinginstead ofr.

Selecting which (if any) of these to use in a proof might depend on what we are trying to pr
For example, for a xed natural number let p representn is even', letq representn is odd', let

r representn > 2' and lets representn is a perfect square'. Provingp_ g)” (r_s) whenn= 2
would be most easily done using the left-hand proof tree above, girmselr are evidently true
whenn= 2. However, the second proof tree would be more appropriate for préping) * (r _s)
whenn= 1. C

Aside
If you haven't already mixed up and_, you probably will soon, so here's a way of rememberin
which is which:

sh n chips
If you forget whether it's* or _ that means “and’, just write it in place of the 'n'in *~ sh n chips"
sh ~ chips sh_ chips

Clearly the rst looks more correct, Sb means “and'. If you don't eat sh (or chips), then worry
not, as this mnemonic can be modi ed to accommodate a wide variety of dietary restrictions;
instance ‘mac n cheese' or “quinoa n kale' or, for the meat lovers, “ribs n brisket'. C

Recall the diagrammatic statement of the disjunction elimination rule:

[p] [

r r
P_4d r LB

The curious notatiofip] r indicates thaip is atemporary assumptionin the part of the proof
corresponding tgp]  r, we would assume that is true and derive from that assumption, and
remove the assumption thais true from that point onwards. Likewise ffa] .

The proof strategy obtained from the disjunction elimination rule is catedf by cases

Strategy 1.1.16 (Assuming disjunctions—proof by cases)

If an assumption in a proof has the forn_ g, then we may derive a propositiorby splitting into
two cases: rst, derive from the temporary assumption thats true, and then derive from the
assumption tha is true.

The following example illustrates how Strategies 1.1.13 and 1.1.16 can be used together in a p

Example 1.1.17
Let n be a positive proper factor of 4, and suppose we want to prove ikadither even or a perfect
square.
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Our assumption thatis a positive proper factor of 4 can be expressed as the disjuncttioh
n= 2.

Our goal is to prove the disjunction is even_nis a perfect square'.

According to Strategy 1.1.9, we split into two cases, one in whighl and one in whiclm= 2. In
each case, we must deriveis even_n s a perfect square', for which it suf ces by Strategy 1.1.1:
to derive either tham is even or thah is a perfect square. Thus a proof might look something lik
this:

Sincen is a positive proper factor of 4, eitha= 1 orn= 2.

Case 1. Supposen= 1. Then since 4= 1 we haven= 12, so thatn is a perfect
square.

Case 2.Supposen= 2. Thensince Z 2 1, we have thah is even.
Hencen is either even or a perfect square. C

Notice that in both Case 1 and Case 2, we did not explicitly mention that we had proved
‘nis even_nis a perfect square’, leaving that deducgion to the reader—we only mentioned it &
the proofs in each case were complete. C

The proof of Proposition 1.1.18 below splits irttoreecases, rather than just two.

Proposition 1.1.18
Letn2 Z. Thenn? leaves a remainder of 0 or 1 when divided by 3.

Proof
Letn2 Z. By the division theorem (Theorem 0.18), one of the following must be true for sol
k2 2Z:

n=3k or n=3k+1 or n=3k+2

Supposen= 3k. Then
n®=(3k)%2= 9k’ = 3 (3k?)

Son? leaves a remainder of 0 when divided by 3.
Supposen= 3k+ 1. Then
n?=(3k+ 1)2= 9k?+ 6k+ 1= 3(3k*+ 2k)+ 1
Son? leaves a remainder of 1 when divided by 3.
Supposen = 3k+ 2. Then
n?=(3k+ 2)2= 9k?+ 12k+ 4= 3(3k>+ 4k+ 1)+ 1
Son? leaves a remainder of 1 when divided by 3.

In all casesp? leaves a remainder of 0 or 1 when divided by 3.

Note that in the proof of Proposition 1.1.18, unlike in Example 1.1.17, we did not explictly t
the word “case’, even though we were using proof by cases. Whether or not to make your |
strategies explicit is up to you—discussion of this kind of matter can be found in Appendix A.2.
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30 Chapter 1. Logical structure

When completing the following exercises, try to keep track of exactly where you use the introduc
and elimination rules that we have seen so far.

Exercise 1.1.19
Let n be an integer. Prove that leaves a remainder of 0, 1 or 4 when divided by 5. C

Exercise 1.1.20
Let a;b2 R and suppos@® 4b6 0. Leta andb be the (distinct) roots of the polyonomial
x?+ ax+ b. Prove that there is a real numhesuch that eithea b = cora b = ci. C

Implication (if...then...", ) )

De nition 1.1.21
Theimplication operator is the logical operatpr (IATeX code:\Rightarrow ), de ned according
to the following rules:

() 1) If g can be derived from the assumption tipas true, therp) qis true;

() e)If p) gistrue andpis true, thermy s true.

The expressiop) qrepresents "ip, thend'.
(p]

4p)q7q() ) f() E)

Strategy 1.1.22 (Proving implications)
In order to prove a proposition of the forp) q, it suf ces to assume that is true, and then derive
g from that assumption.

The following proposition illustrates how Strategy 1.1.22 can be used in a proof.

Proposition 1.1.23
Let x andy be real numbers. i andx+ y are rational, thew is rational.

Proof
Suppose& andx+ y are rational. Then there exist integer®; c; d with b;d 6 0 such that

x—il and x+ =c
b Y= 3

It then follows that
S (x+y) x= ¢ a_bc ad
=0 X249 b7 T hd

Sincebc adandhbd are integers, andd 6 O, it follows thaty is rational.
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The key phrase in the above proof was "Supposad x+ y are rational. This introduced the
assumptiong 2 Q andx+ y2 Q, and reduced our goal to that of deriving a proof thatrational—
this was the content of the rest of the proof.

Exercise 1.1.24
Let p(x) be a polynomial ove€. Prove that ifa is a root ofp(x), anda 2 C, thena is a root of

(x a)p(x). C

The elimination rule for implication)( E) is more commonly known by the Latin nanmeodus
ponens

Strategy 1.1.25 (Assuming implications—modus ponens)
If an assumption in a proof has the forp) ¢, and p is also assumed to be true, then we ma
deduce thaty is true.

Strategy 1.1.16 is frequently used to reduce a more complicated goal to a simpler one. Indeed,
know thatp) qistrue, and ifpis easy to verify, then it allows us to progey provingp instead.

Example 1.1.26
Let f(x) = x>+ ax+ b be a polynomial withe;b 2 R, and letD= a® 4b be its discriminant. Part
of Exercise 0.40 was to prove that:

(i) If D> 0, thenf has two real roots;
(ii) If D= 0, thenf has one real root;

(i) If D< 0, thenf has no real roots.

Given the polynomiaf (x) = x> 68+ 1156, it would be a pain to go through the process of solvin
the equationf(x) = O in order to determine how many real rodtshas. However, each of the
propositions (i), (ii) and (iii) take the forrp) q, so Strategy 1.1.25 reduces the problem of nding
how many real root$ has to that of evaluating and comparing it with 0. And indeed, 68)2

4 1156= 0, so the implication (ii) together with (E) tell us thatf has one real root. C

A common task faced by mathematicians is to prove that two conditions are equivalent. For exal
given a polynomialf (x) = x2+ ax+ b with a;b 2 R, we know thatf a> 4b> 0then fhas two
real roots, but is it also true that ffhas two real roots thea? 4b> 0? (The answer is “yes'.) The
relationship between these two implications is that each isgéhegerseof the other.

De nition 1.1.27
The converseof a proposition of the fornp) qis the propositiorg) p.

A quick remark on terminology is pertinent. The following table summarises some common W
of referring to the propositiong) g and'q) p'.

P) g | q) p
if p, theng if g, thenp
ponly if q pif g

pis sufcientforqg | pis necessary foq
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32 Chapter 1. Logical structure

We so often encounter the problem of proving both an implication and its converse that we intro
a new logical operator that represents the conjunction of both.

De nition 1.1.28
Thebiconditional operator is the logical operator (IATEX code:\Leftrightarrow ), de ned by
declaringp, gtomean(p) g~ (q) p). The expressiop, qrepresentspifand onlyif(.

Many examples of biconditional statements come from solving equations; indeed, to say tha

X is a solution X= ai 0rx= asor orx= ap

Example 1.1.29
We nd all real solutionsx to the equation

P 3+ P xvd=7

Let's rearrange the equation to nd out what the possible solutions may be.

P X 3+ P x+4=7
) (x 3+ 2p (X 3)(x+ 4)+(x+4)= 49 squaring
) 2p (x 3)(x+4)= 48 2x rearranging
) 4(x 3)(x+4)=(48 2x)? squaring
) 4x%+ 4x  48= 2304 19X+ 4%? expanding
) 196x= 2352 rearranging
) x=12 dividing by 196

You might be inclined to&toipherﬁ. Unfortunately, all we have proved is that, given a real nun
X, if X solves the equationx 3+ x+ 4= 7,then x= 12. This narrows down the set of possible
solutions to just one candidate—but we still need to check the converse, naméfyxtkal 2, then

X is a solution to the equation.

As such, to nish off the proof, note that

p p

12 3+ 12+ 4= p§+pTes: 3+4=7

and so the valug = 12 is indeed a solution to the equation. C

The last step in Example 1.1.29 may have seemed a little bit silly; but Example 1.1.30 demonst
that proving the converse when solving equations truly is necessary.

Example 1.1.30
We nd all real solutionsx to the equation

x+p§<: 0
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We proceed as before, rearranging the equation to nd all possible solutions.

X+ p),(: 0
) x= p),( rearranging
) X=X squaring
) x(x 1)=10 rearranging
) x=0o0rx=1

Now certainly O is a solution to the equation, since
p_
0+ 0=0+0=0

However, 1 isnota solution, since p_

1+ 1=1+1=2

Hence it is actually the case that, given a real numbpere have
X+ p)?z 0o , x=0

Checking the converse here was vital to our success in solving the equation! C

A slightly more involved example of a biconditional statement arising from the solution to
equation—in fact, a class of equations—is the proof of the quadratic formula.

Theorem 1.1.31 (Quadratic formula)
Leta;b2 C. A complex numbea is a root of the polynomial’ + ax+ b if and only if

o= a+pa2 4b or a= a2 4b
- 2 - 2
Proof
First we prove thaif a is a rootthena is one of the values given in the statement of the propositio
So supposea be a root of the polynomia® + ax+ b. Then

al+aa+b=0

The algebraic technigue of ‘completing the square' tells us that

al+aa= a+2’ &
2 4
and hence Q2
a+ > Z+ b=20

Rearranging yields

g+ d 2 a* b= a 4b

2 4 4
Taking square roots gives
gt s a2 4b or a+d= pa2 4b
2 2 2 2

and, nally, subtractingg from both sides gives the desired result.

The proof of the converse is Exercise 1.1.32.

33



34 Chapter 1. Logical structure

Exercise 1.1.32
Complete the proof of the quadratic formula. That is, for »adh 2 C, prove that if

o= a+pa2 4b or a= 2 a2 4b
- 2 - 2

thena is a root of the polynomiat? + ax+ b. C

Another class of examples of biconditional propositions arise in nding necessary and suf ci
criteria for an integen to be divisible by some number—for example, that an integer is divisible |
10 if and only if its base-10 expansion ends with the digit 0.

Example 1.1.33
Letn2 N. We will prove thatn is divisible by 8 if and only if the number formed of the last three
digits of the base-10 expansionmfs divisible by 8.

First, we will do some “scratch work'. Lekd, 1:::d;dg be the base-10 expansionrofThen
n=d 10+d ; 10 '+ +d; 10+ do

De ne
n’= dodidy and n°=n n°=d,d; 1:::dsd3000

Nown nP= 1000 d,d; 1:::dsd3 and 1000= 8 125, so it follows that 8 divider®®
Our goal is now to prove that 8 dividesf and only if 8 dividesn®

() ) Suppose 8 divides. Since 8 dividesi®it follows from Exercise 0.16 that 8 dividesi+ bn®
foralla;b2 Z. But
N=n (n M=n n"’&1n+( 1) n®

so indeed 8 divideg?, as required.

(( ) Suppose 8 divides®. Since 8 divides®?it follows from Exercise 0.16 that 8 divides™+ bn®
foralla;b2 Z. But
n=n’+(n n%=n% n°%& 1 n% 1 n%

so indeed 8 dividen, as required.

C

Exercise 1.1.34
Prove that a natural numbaiis divisible by 3 if and only if the sum of its base-10 digits is divisible
by 3. C

Negation ("not', : )

So far we only of cially know how to prove that true propositions &nge. The negation operator
makes precise what we mean by “not', which allows us to prove that false propositidatsare

De nition 1.1.35
A contradiction is a proposition that is known or assumed to be false. We will use the symbo
(IATEX code:\bot ) to represent an arbitrary contradiction.
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Example 1.1.36 p_
Some examples of contradictions include the assertion that Oor that 2 is rational, or that the
equatiorx’ = 1 has a solutiox 2 R. C

De nition 1.1.37
The negation operator is the logical operator (IATeX code: \neg), de ned according to the fol-
lowing rules:

(: 1) If a contradiction can be derived from the assumption thiattrue, then pis true;

(: e) If : pandp are both true, then a contradiction may be derived.

The expression p represents ‘ngp' (or ~ pis false’).

[p]

L (¥

Aside

The rules (1) and { E) closely resemble)( 1) and | E)—indeed, we could simply de ne p to
mean p) ? ', where? represents an arbitrary contradiction, but it will be easier later on to hav
primitive notion of negation. C

The introduction rule for negation () gives rise to a proof strategy call@doof by contradiction
which turns out to be extremely useful.

Strategy 1.1.38 (Proving negations—proof by contradiction)
In order to prove a propositiop s false (that is, that p is true), it suf ces to assume thatis true
and derive a contradiction.

The following proposition has a classic proof by contradiction.

Proposition 1.1.39
Letr be a rational number and latbe an irrational number. Ther+ a s irrational.

Proof
By De nition 0.27, we need to prove that+ ais real and not rational. It is certainly real, since
anda are real, so it remains to prove thiat a is not rational.

Suppose + ais rational. Since is rational, it follows from Proposition 1.1.23 thatis rational,
since
a=(r+a) r

This contradicts the assumption tlaas irrational. It follows that + ais not rational, and is therefore
irrational.

Now you can try proving some elementary facts by contradiction.
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36 Chapter 1. Logical structure

Exercise 1.1.40
Letx2 R. Prove by contradiction that ¥is irrational then x and)—l( are irrational. C

Exercise 1.1.41
Prove by contradiction that there is no least positive real number. That is, prove that there is
positive real numbea such that 6 b for all positive real numbers. C

A proof need not be a “proof by contradiction' in its entirety—indeed, it may be that only a sn
portion of the proof uses contradiction. This is exhibited in the proof of the following propositior

Proposition 1.1.42
Letabe an integer. Theais odd if and only ifa= 2b+ 1 for some integeb.

Proof

Suppose is odd. By the division theorem (Theorem 0.18), either 2b ora= 2b+ 1, for some
b2 Z. If a= 2b, then 2 divides, contradicting the assumption theats odd; so it must be the case
thata= 2b+ 1.

Conversely, suppose= 2b+ 1. Thena leaves a remainder of 1 when divided by 2. However, b
the division theorem, the even numbers are precisely those that leave a remainder of 0 when d
by 2. It follows thata is not even, so is odd.

The elimination rule for the negation operatorE] simply says that a proposition can't be true anc
false at the same time.

Strategy 1.1.43 (Assuming negations)
If an assumption in a proof has the fornp, then any derivation op leads to a contradiction.

The main use of Strategy 1.1.43 is for obtaining the contradiction in a proof by contradiction-
fact, we have already used it in our examples of proof by contradiction! As such, we will not dv
on it further.

Logical axioms

We wrap up this section by introducing a couple of additional logical rdg®ng that we will use
in our proofs.

The rst is the so-calledaw of excluded middlevhich appears so obvious that it is not even wort
stating (let alone naming)—what it says is that every proposition is either true or false. But bew
as looks can be deceiving; the law of excluded middle is a non-constructive axiom, meaning
it should not be accepted in settings it is important to keep track of how a proposition is prove
simply knowing that a proposition is either true or false tells us nothing about how it might be pro
or refuted. In most mathematical contexts, though, it is accepted without a second's thought.

Axiom 1.1.44 (Law of excluded middle)
Let p be a propositional formula. Them_(: p) is true.
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The law of excluded middle can be represented diagramatically as follows; there are no prer
above the line, since we are simply asserting that it is true.

p_(p =

v |Strategy 1.1.45 (Using the law of excluded middle)
In order to prove a propositiogis true, it suf ces to split into cases based on whether some oth
propositionp is true or false, and prove thats true in each case.

The proof of Proposition 1.1.46 below makes use of the law of excluded middle—note that
de ned “odd' to mean “not even' (De nition 0.17).

C Proposition 1.1.46
Leta;b2 Z. If abis even, then eithaais even ob is even (or both).

Proof
Suppose; b 2 Z with abeven.

Supposea is even—then we're done.

Supposea is odd. Ifbis also odd, then by Proposition 1.1.42 can write
a=2k+1 and b=2"+1
for some integerk; ". This implies that

ab=(2k+ 1)(2°+ 1)= 4k + 2k+ 2+ 1= Z(Fﬁ*{'}ij)+ 1
2Z

so thatabis odd. This contradicts the assumption thais even, and sb must in fact be even.

In both cases, eithexror b is even.

Exercise 1.1.47

Re ect on the proof of Proposition 1.1.46. Where in the proof did we use the law of excluc
middle? Where in the proof did we use proof by contradiction? What was the contradictiot
this case? Prove Proposition 1.1.46 twice more, once using contradiction and not using the I
excluded middle, and once using the law of excluded middle and not using contradiction. C

Exercise 1.1.48 p_
Letaandb be irrational numbers. By considering the num%ér 2, prove that it is possible thaP
be rational. C

Another logical rule that we will use is thinciple of explosionwhich is also known by its Latin
name,ex falso sequitur quodlibetvhich approximately translates tfsom falsity follows whatever
you like.

C Axiom 1.1.49 (Principle of explosion)
If a contradiction is assumed, any consequence may be derived.
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p

Expl

The principle of explosion is a bit confusing on rst sight. To shed a tiny bit of intuition on it, thin
of it as saying that both true and false propositions are consequences of a contradictory assun
For instance, suppose thatl = 1. From this we can obtain consequences that are false, suck
0= 2 by adding 1 to both sides of the equation, and consequences that are true, such &y 1
squaring both sides of the equation.

We will rarely use the principle of explosion directly in our mathematical proofs, but we will use
in Section 1.3 for proving logical formulae are equivalent.
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Section 1.2
Variables and quanti ers

Free and bound variables

Everything we did in Section 1.1 concernpdbpositionsand the logical rules concerning their
proofs. Unfortunately if all we have to work with is propositions then our ability to do mathel
atical reasoning will be halted pretty quickly. For example, consider the following statement:

xis divisible by 7

This statement seems like the kind of thing we should probably be able to work with if we're do
mathematics. It makes senseiis a integer, such as 28 or 41; but it doesn't make sense aball i
is a parrot called Ale¥¥ In any case, even when it does make sense, its truth value depemds ¢
indeed, “28 is divisible by 7' is a true proposition, but “41 is divisible by 7' is a false proposition.

This means that the statemenxts divisible by 7' isn't a proposition-guel horreut But it almostis
a proposition: if we know that refers somehow to an integer, then it becomes a proposition as s
as a particular numerical value »fs speci ed. The symbak is called afree variable

De nition 1.2.1

Letx be a variable that is understood to refer to an element of ¥.deta statement involving, we
sayx is free if it makes sense to substitute particular elementX of the statement; otherwise, we
sayx is bound.

To represent statements that have free variables in them abstractly, we generalise the notio
propositional variable (De nition 1.1.2) to that offaedicate

De nition 1.2.2

The statements represented by predicates are those that become propositions when speci ¢
are substituted for their free variables from their respective domains of discourse. For exarsple
divisible by 7' is not a proposition, but it becomes a proposition when speci ¢ integers (such a:
or 41) are substituted fot.

This is a lot to take in, so let's look at some examples.

[l Alex tEe par'rot. is the only non-human animal to have ever been observed to ask an existential question; he died in Sep

2007 so we may never know if he was divisible by 7, but it is unlikely. Accordinginee his last words were “you be
good, see you tomorrow, | love you'. The reader is advised to nish crying before they continue reading about vari
and quanti ers.
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(i) We can represent the statemenis divisible by 7' discussed above by a predicp(®) whose
only free variablex hasZ as its domain of discourse. Th@(28) is the true proposition 28 is
divisible by 7' andp(41) is the false proposition “41 is divisible by 7".

(ii) A predicate with no free variables is precisely a propositional variable. This means that
notion of a predicate generalises that of a propositional variable.

(iii) The expression 2 1is prime' can be represented by a prediga(e) with one free variable
n, whose domain of discourse is the Bedf natural numbers. Thep(3) is the true proposition
28 1is prime' andp(4) is the false proposition 2 1 is prime".

(iv) The expressionX yis rational' can be represented by a prediagte y) with free variables
x andy, whose domain of discourse is the Bedf real numbers.

(v) The expression “there exist integersindb such thatx = a2+ b? has free variablex and
bound variables; b. It can be represented by a predicate with one free variablg, whose
domain of discourse ig.

(vi) The expression “every even natural numher 2 is divisible byk' has free variabl& and
bound variablen. It can be represented by a predicatl) with one free variabl&, whose
domain of discourse il.

Quanti ers

Look again at the statements in parts (v) and (vi) of Example 1.2.3. Both contained bound varia
which were so because we used words like “there exists' and “every'—had we not used these v
those variables would be free, as = a2+ b? and "nis divisible byk'.

Expressions that refer toow manyelements of a set make a statement true, such as “there exi
and “every', turn free variables into bound variables. We represent such expressions using sy
calledquanti ers, which are the central objects of study of this section.

The two main quanti ers used throughout mathematics areittieersalquanti er 8 and theexist-
ential quanti er 9. We will de ne these quanti ers formally later in this section, but for now, the
following informal de nitions suf ce:

The expression8x 2 X; :::' denotes “for allx2 X, ..." and will be de ned formally in De ni-
tion 1.2.9;

The expressiorfx 2 X; :::' denotes "there exists2 X such that..." and will be de ned formally
in De nition 1.2.17.

Note that we always place the quanti beforethe statement, so even though we might write or sa
things like n= 2k for some integek’ or *x? > 0 for all x2 R', we would express these statements
symbolically as9k 2 Z; n= 2k and 8x2 R; x* > 0', respectively.

We will de ne a third quanti er9! in terms of8 and9 to say that there isxactly oneelement of a set
making a statement true. There are plenty of other quanti ers out there, but they tend to be sp
to particular elds—examples include “almost everywhere' in measure theory, “almost surely
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probability theory, “for all but nitely many' in set theory and related disciplines, and “for fresh' |
the theory of nominal sets.

Using predicates, logical formulae and quanti ers, we are able to build up more complicated ex
sions, calledogical formulae Logical formulae generalise propositional formulae (De nition 1.1.3
in by allowing (free and bound) variables and quanti cation to occur.

F De nition 1.2.4
A logical formula is an expression that is built from predicates using logical operators and quarn
ers; it may have both free and bound variables. The truth value of a logical formula depends «
free variables according to the rules for logical operators and quanti ers.

Translating between plain English statements and purely symbolic logical formulae is an impo
skill to obtain:

The plain English statements are easier to understand and are the kinds of things you would
aloud or write down when discussing the mathematical ideas involved.

The symbolic logical formulae are what provide the precision needed to guide a proof of
statement being discussed—we will see strategies for proving statements involving quant
soon.

The following examples and exercise concern translating between plain English statement:
purely symbolic logical formulae.

0 Example 1.2.5
Recall that an integaris even if and only if it is divisible by 2. According to De nition 0.12, that
is to say thatn is even' meansn = 2k for some integek’. Using quanti ers, we can express is
even'as9k2 Z;n= 2K

The (false) proposition “every integer is even' can then be written symbolically as follows. F
introduce a variabla to refer to an integer; to say “every integer is even'is to 8a2 Z; nis even',
and so using the symbolic representationrofs even', we can express “every integer is even' a
8n2Z;9k2 Z;n= 2K. C

Exercise 1.2.6
Find logical formulae that represent each of the following English statements.

(a) There is an integer that is divisible by every integer.
(b) There is no greatest odd integer.
(c) Between any two distinct rational numbers is a third distinct rational number.

(d) If an integer has a rational square root, then that root is an integer.

0 Example 1.2.7
Consider the following logical formula.

8a2 R;(a>0)9 b2R;a= b
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42 Chapter 1. Logical structure

If we translate this expression symbol-for-symbol, what it says is:

For every real numbag, if ais non-negative,
then there exists a real numbesuch that = b2

Read in this way, it is not a particularly enlightening statement. However, we can distill the rob
nature of the symbol-for-symbol reading by thinking more carefully about what the statezatynt
means.

Indeed, to saya= b? for some real numbey is exactly to say thaa has a real square root—after
all, what is a square root & if not a real number whose square is equah® This translation
eliminates explicit reference to the bound varighlso that the statement now reads:

For every real numbeg, if ais non-negative, thea has a real square root.

We're getting closer. Next note that instead of the clunky expression “for every real nanifb&is
non-negative, then ..., we could just say “for every non-negative real number.

For every non-negative real numksra has a real square root.
Finally, we can eliminate the bound varialaléy simply saying:
Every non-negative real number has a real square root.

This is now a meaningful expression that is much easier to understand than the logical formul
started with. C

Exercise 1.2.8

Find statements in plain English, involving as few variables as possible, that are represented by
of the following logical formulae. (The domains of discourse of the free variables are indicate
each case.)

(@) 992 Z; a= gb— free variableg;b2 Z
(b) 9a2 7;9b2 Z; (b6 0" bx= a) — free variablex2 R
(c) 8d2 N;[(992 Z;n=qd)) (d= 1_d= n)] —free variablen2 N
(d) 8a2 R;[a>0)9 b2 R;(b> 0" a< b)] —no free variables

C
Now that we have a better understanding of how to translate between plain English statement
logical formulae, we are ready to give a precise mathematical treatment of quanti ers. Just like
logical operators in Section 1.1, quanti ers will be de ned accordingnteoduction ruleswhich tell

us how to prove a quanti ed formula, amdimination rules which tell us how to use an assumption
that involves a quanti er.
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Universal quanti cation (‘for all’, 8)

The universal quanti er makes precise what we mean when we say “for alfy(gy is always true
no matter what valug takes'.

De nition 1.2.9

The universal quanti er is the quanti er8 (IATeX code: \forall ); if p(x) is a logical formula
with free variablex with rangeX, then8x 2 X; p(X) is the logical formula de ned according to the
following rules:

(81) If p(x) can be derived from the assumption tlés an arbitrary element oX, then8x 2
X; p(x);

(8E) If a2 X and8x 2 X; p(X) is true, therp(a) is true.

The expressioBx 2 X; p(x) represents “for ak 2 X, p(x)'.

[x2 X]
p(x) 8x2 X; p(x) a2 X
8x 2 X; p(x) p(a)

Strategy 1.2.10 (Proving universally quanti ed statements)

To prove a proposition of the for®x 2 X; p(x), it suf ces to provep(x) for an arbitrary element
x 2 X—in other words, prove(x) whilst assuming nothing about the variaklether than that it is
an element oK.

Useful phrases for introducing an arbitrary variable of @@t a proof include ~ xx 2 X' or “let
x2 X'or ‘takex2 X'—more on this is discussed in Appendix A.2.

The proofs of the following propositions illustrate how a proof of a universally quanti ed statems
might look.

Proposition 1.2.11
The square of every odd integer is odd.

Proof
Letn be an odd integer. Tham= 2k+ 1 for somek 2 Z by the division theorem (Theorem 0.18),
and so

n?=(2k+ 1)2= 4k’ + 4k+ 1= 2(2k*+ 2k)+ 1

Since X%+ 2k 2 Z, we have that? is odd, as required.

Note that in the proof of Proposition 1.2.11, we did not assume anything almihéer than that it is
an odd integer.

Proposition 1.2.12
The base-10 expansion of the square of every natural number ends in one of the digits 0, 1, 4, *
9.
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44 Chapter 1. Logical structure

Proof
Fixn2 N, and let
n=dd 1:::do
be its base-10 expansion. Write
n= 10m+ dp

wherem2 N—that is,mis the natural number obtained by removing the nal digit framThen
n?= 100m%+ 20mcy+ d2 = 10m(10m+ 2do) + d2
Hence the nal digit ofn? is equal to the nal digit ofd2. But the possible values of are
0 1 4 9 16 25 36 49 64 81
all of which end in one of the digits 0, 1, 4, 5, 6 or 9.
Exercise 1.2.13

Prove that every integer is rational. C
Exercise 1.2.14
Prove that every linear polynomial ov€rhas a rational root. C

Exercise 1.2.15
Prove that, for all real numbessandy, if x is irrational, therx+ y andx y are not both rational.
C

Before advancing too much further, beware of the following common error that arises when de:
with universal quanti ers.

Common error
Consider the following (non-)proof of the propositiBn 2 Z; n?> 0.

Letn be an arbitrary integer, say= 17. Then 17 = 289> 0, so the statement is true.

The error made here is that theiter has picked an arbitrary value of not thereader. (In fact, the
above argument actually prov@a 2 Z; n’>> 0.)

The proof should make no assumptions about the valmeottier than that it is an integer. Here is a
correct proof:

Let n be an arbitrary integer. Either> 0 orn< 0. If n> 0 thenn?> 0, since the
product of two nonnegative numbers is nonnegative) € 0 thenn? > 0, since the
product of two negative numbers is positive.

C

The strategy suggested by the elimination rule for the universal quanti er is one that we use all
without thinking about it.

Strategy 1.2.16 (Assuming universally quanti ed statements)
If an assumption in a proof has the foBr2 X; p(x), then we may assume tha(a) is true whenever
ais an element oK.
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Existential quanti cation ("there exists', 9)

De nition 1.2.17

The existential quanti er is the quanti er9 (IATeX code: \exists )(IATEX code: \exists )9; if
p(x) is a logical formula with free variabbewith rangeX, then9x 2 X; p(x) is the logical formula
de ned according to the following rules:

(91 If a2 X andp(a) is true, therBx 2 X; p(X);

(9€e) If 9x 2 X; p(X) is true, andy can be derived from the assumption tipéd) is true for some
xed a2 X, thenqgis true.

The expressiofx 2 X; p(X) represents “there exist? X such thatp(x)'.

[a2 X];[p(a)]

a2 X p(a) ©) 9x 2 X; p(X) LI
9x 2 X; p(x) q

Strategy 1.2.18 (Proving existentially quanti ed statements)
To prove a proposition of the for®x 2 X; p(x), it suf ces to provep(a) for some speci c element
a2 X, which should be explicitly de ned.

Example 1.2.19
We prove that there is a natural number that is a perfect square and is one more than a perfec
That is, we prove

92 N; ([9k2 Z;n= K" [9° 2 Z;n= "3+ 1))

Sodenen= 9. Thenn= 3% andn= 23+ 1, so tham is a perfect square and is one more than
perfect cube, as required. C

The following proposition involves an existentially quanti ed statement—indeed, to say that a pt
nomial f(x) has areal root is to s&@x 2 R; f(x) = 0.

Proposition 1.2.20
Fix a2 R. The cubic polynomiak®+ (1 a?)x ahas a real root.

Proof
Let f(x)= x*+(1 a%)x a. Denex= a;then

3

f(x)= f(a@)= a®+(1 a’)a a=a’+a a® a=0

Hencea s a root off(X). Sincea s real, f(X) has a real root.

The following exercises require you to prove existentially quanti ed statements.
Exercise 1.2.21

Prove that there is a real number which is irrational but whose square is rational. C
Exercise 1.2.22
Prove that there is an integer which is divisible by zero. C
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46 Chapter 1. Logical structure

Example 1.2.23
Prove that, for alk;y 2 Q, if x< ythen there is some2 Q with x< z<'y. C

The elimination rule for the existential quanti er gives rise to the following proof strategy.

Strategy 1.2.24 (Assuming existentially quanti ed statements)
If an assumption in the proof has the foBx2 X; p(x), then we may introduce a new varialal@ X
and assume that(a) is true.

It ought to be said that when using existential elimination in a proof, the varéalded to denote a
particular element oX for which p(a) is true should not already be in use earlier in the proof.

Strategy 1.2.24 is very useful in proofs of divisibility, since the expressalividesb' is an exist-
entially quanti ed statement—this was Exercise 1.2.8(a).

Proposition 1.2.25
Letn2 Z. If n®is divisible by 3, ther(n+ 1)° 1 is divisible by 3.

Proof
Supposa?® is divisible by 3. Takey 2 Z such than® = 3qg. Then

(n+ 1% 1

=(n®+3?+3n+1) 1 expanding
= n®+ 3n?+ 3n simplifying
= 3g+ 3n’+ 3n sincen® = 3q
= 3(q+ n?+ n) factorising

Sinceg+ N+ n2 Z, we have proved thgn+ 1)° 1 is divisible by 3, as required.

Uniqueness

The concept of uniqueness arises whenever we want to use the word “the'. For example, in L
ition 0.6 we de ned the basb-expansion of a natural numbearto bethe string did; 1:::d:dp
satisfying some properties. The issue with the word "the' here is that we don't know ahead of !
whether a natural numbarmay have basb-expansions other thashd, ;:::didp—this fact actu-
ally requires proof. To prove this fact, we would need to assumeetleat; :::e;ey were another
baseb expansion of, and prove that the stringlsd, 1:::d1dg andeses 1:::e1ey are the same—this
is done in Theorem 5.3.51.

Uniqueness is typically coupled wigxistencesince we usually want to know if there éxactly
oneobject satisfying a property. This motivates the de nition of th@que existentiafjuanti er,
which encodes what we mean when we say “there is exactlx 8n¢ such thatp(x) is true'. The
“existence' part ensures that at least ar2eX makesp(x) true; the “uniqueness' part ensures that
is the only element oK making p(x) true.
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De nition 1.2.26
Theunique existential quanti er is the quanti er9! ((LATeX code: \exists! )) de ned such that
9!x 2 X; p(x) is shorthand for

(92 X P0)) ~ (Ba2 X;8b2 X: [j(a)~ p(t)) a= )

existence uniqueness

Example 1.2.27
Every positive real number has a unique positive square root. We can write this symbolically as

8a2R;(a>0)9 b2 R;(b> 0" b?= a))
Reading this from left to right, this says: for every real numdéf a is positive, then there exists a
unique real numbds, which is positive and whose squareais C

Discussion 1.2.28
Explain why De nition 1.2.26 captures the notion of there being “exactly one' elerizit making
p(x) true. Can you think of any other ways tfd& 2 X; p(x) could be de ned? C

Strategy 1.2.29 (Proving unique-existentially quanti ed statements)
A proof of a statement of the for®ix 2 X; p(x), consists of two parts:

Existence— prove thatdx 2 X; p(X) is true (e.g. using Strategy 1.2.18);

Uniqueness— leta;b 2 X, assume thap(a) and p(b) are true, and deriva= b.

Alternatively, prove existence to obtain a xed2 X such thatp(a) is true, and then prov8x 2
X;[p(x)) x= al.

Example 1.2.30
We prove Example 1.2.27, namely that for each egal0 there is a uniqub > 0 such thab? = a.
So rst x a> 0.

(Existence The real numbeP ais positive and satis e$p a)2 = a by de nition. Its existence
will be deferred to a later time, but an informal argument for its existence could be provided u:
‘number line' arguments as in Chapter 0.

(Uniquenes3 Lety; z> 0 be real numbers such thgt= aandz’ = a. Theny? = 2. Rearranging
and factorising yields

(y 2(y+2=0
so eithery z= 0ory+z= 0. Ify+ z= O0thenz= vy, and sincey> 0, this means that< 0.
But this contradicts the assumption tlzat 0. As such, it must be the case tlyat z= 0, and
hencey = z, as required.
C

Exercise 1.2.31
For each of the propositions, write it out as a logical formula involving@hquanti er and then
prove it, using the structure of the logical formula as a guide.

(a) For each real number the equation®+ 2ax+ a2 = 0 has exactly one real solution
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48 Chapter 1. Logical structure

(b) There is a unique real numbefor which the equation®+ a2 = 0 has a real solutior

(c) There is a unigue natural number with exactly one positive divisor.

C

The unique existential quanti er will play a large role when we study functions in Section 2.2.

Quanti er alternation

Compare the following two statements:

(i) For every door, there is a key that can unlock it.

(i) There is a key that can unlock every door.

Letting the variableg andy refer to doors and keys, respectively, and letiig y) be the statement
“doorx can be unlocked by key, we can formulate these statements as:

(i) 8x; 9y, p(x;y)
(ii) 9y, 8x; p(x;y)

This is a typical ‘real-world' example of what is known gsanti er alternation—the two state-
ments differ only by the order of the front-loaded quanti ers, and yet they say very different thin
Statement (i) requires every door to be unlockable, but the keys might be different for different dc
statement (ii), however, implies the existence of some kind of “master key' that can unlock all
doors.

Here's another example with a more mathematical nature:

Exercise 1.2.32
Let p(x;y) be the statemenk+ yis even'.

Prove thaBx?2 Z; 9y 2 Z; p(x;y) is true.
Prove thaBy 2 Z; 8x2 Z; p(x;y) is false.

C

In both of the foregoing examples, you might have noticed that8Bestatement says something
weakerthan the 98' statement—in some sense, it is easier to mak8 atatement true than it is to
make arP8 statement true.

This idea is formalised in Theorem 1.2.33 below, which despite its abstract nature, has an extre
simple proof.
Theorem 1.2.33
Let p(x;y) be a logical formula with free variable2 X andy 2 Y. Then
92V, 8x2 X; p(xy))8 x2X;9y2Y; p(xy)

48



Section 1.2. Variables and quanti ers 49

Proof
Suppos®y 2 Y; 8x 2 X; p(x;y) is true. We need to prow@x 2 X; 9y 2 Y; p(x;y), SO X a2 X—our
goal is now to prové®y 2 Y; p(a;y).

Using our assumptiofly 2 Y; 8x 2 X; p(x;y), we may choosb 2 Y such thaBx; p(x;b) is true. But
thenp(a;b) is true, so we have provedy 2 Y; p(a;y), as required.

Statements of the forfy 2 Y; 8x 2 X; p(X;y) imply some kind ofuniformity. a value ofy making
8x2 X; p(x;y) true can be thought of as a “one size ts all' solution to the problem of prog(mgy)

for a givenx 2 X. Later in your studies, it is likely that you will encounter the word “uniform' man
times—it is precisely this notion of quanti er alternation that the word “uniform' refers to.
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50 Chapter 1. Logical structure

Section 1.3
Logical equivalence

We motivate the content of this section with an example.

Example 1.3.1
Consider the following two logical formulae, whePedenotes the set of all prime numbers.

(1) 8n2 P, (n>2) [9k2 Z;n= 2k+ 1]);
(2) 9n2P (n>2"[9k2 Z;n= 2K]).

The logical formula (1) translates to “every prime number greater than two is odd’, and the
gical formula (2) translates to "there does not exist an even prime number greater than two'. T
statements are evidentgquivalent—they mean the same thing—but they suggest different pro
strategies:

(1) Fix a prime numben, assume that > 2, and then prove that= 2k+ 1 for somek 2 Z.

(2) Assume that there is some prime numbeuch thah> 2 andn= 2k for somek 2 Z, and derive
a contradiction.

While statement (1) more directly translates the plain English statement “every prime number gr
than two is odd', it is the proof strategy suggested by (2) that is easier to use. Indeédaiprime
number such that > 2 andn= 2k for somek 2 Z, then 2 is a divisor of other than 1 and (since
1< 2< n), contradicting the assumption thais prime. C

The notion oflogical equivalencgcaptures precisely the sense in which the logical formulae in (
and (2) in Example 1.3.1 "'mean the same thing'. Being able to transform a logical formula in
different (but equivalent) form allows us to identify a wider range of feasible proof strategies.

De nition 1.3.2
Let p andq be logical formulae. We say tha@t and q arelogically equivalent, and writep
(IATEX code:\equiv ), if q can be derived fronp andp can be derived from.

Logical equivalence of propositional formulae

While De nition 1.3.2 de nes logical equivalence between arbitrary logical formulae, we will sté
by focusing our attention on logical equivalence betwepositionalformulae, like those we saw
in Section 1.1.

First, let's look at a couple of examples of what proofs of logical equivalence might look like.
warned—they're not very nice to read! But there is light at the end of the tunnel. After struggl
through Examples 1.3.3 and 1.3.4 and Exercise 1.3.5, we will introduce a very quick and eas)
for proving propositional formulae are logically equivalent.

Example 1.3.3
We demonstrate tha”™ (g_r) (p” 9)_ (p”r), wherep, gandr are propositional variables.
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First assume thagd” (q_r) is true. Thenp is true andy_ r is true by de nition of conjunction.
By de nition of disjunction, eithelq is true orr is true.

If gis true, therp” qis true by de nition of conjunction.

If ris true, thermp” r is true by de nition of conjunction.
In both cases we have thg” ) _ (p” r) is true by de nition of disjunction.
Now assume thdtp” g) _ (p” r) is true. Then eithep” qis true orp” r is true, by de nition of
disjunction.

If p~ qistrue, thempis true andy is true by de nition of conjunction.

If p~ ristrue, therpis true and is true by de nition of conjunction.

In both cases we have thatis true, and that]_r is true by de nition of disjunction. Hence
p” (q_r) is true by de nition of conjunction.

Since we can derivép” q) _ (p” r) from p” (q_r) and vice versa, it follows that

pr(a_r) (pha_(p"r)
as required. C

0 Example 1.3.4
We prove thap) q (: p)_ g, wherep, gandr are propositional variables.

First assume thgt) qis true. By the law of exluded middle (Axiom 1.1.44), eitheis true or
. pis true—we derive: p) _qin each case.

If pis true, then sinc@) qis true, it follows from § E) thatqis true, and s@: p) _ qis true
by (12);
If : pistrue, ther(: p)_qistrue by (I1).

In both cases, we see tHatp) _ qis true.

Now assume thgt p) _ qis true. To prove thap) qis true, it suf ces by | 1) to assume that

p is true and derivg. So assume is true. Since: p) _ qis true, we have that eitherp is true
orqis true.

If : pis true, then we obtain a contradiction from the assumptiongl&true, and sqj is true
by the principle of explosion (Axiom 1.1.49).

If qis true... well, thery is true—there is nothing more to prove!
In both cases we have thats true. Henceg) qis true.

We have derived: p) _qfromp) gand vice versa, and so the two formulae are logically equiva
ent. C

Exercise 1.3.5
Let p, gandr be propositional variables. Prove that the propositional forrfyulag) ) r is logically
equivalenttap) r”~(q) r). C

Working through the derivations each time we want to prove logical equivalence can become
bersome even for small examples like Examples 1.3.3 and 1.3.4 and Exercise 1.3.5.

The following theorem reduces the problem of proving logical equivalence betgrepositional
formulae to the purely algorithmic task of checking when the formulae are true and when they
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false in a (relatively) small list of cases. We will streamline this process even further tusthg
tables(De nition 1.3.7).

Theorem 1.3.6
Two propositional formulae are logically equivalent if and only if their truth values are the sa
under any assignment of truth values to their constituent propositional variables.

Idea of proof
A formal proof of this fact is slightly beyond our reach at this point, although we will be able
prove it formally bystructural induction introduced in Section 10.2.

The idea of the proof is that, since propositional formulae are built up from simpler propositic
formulae using logical operators, the truth value of a more complex propositional formula is det¢
ined by the truth values of its simpler subformulae. If we keep “chasing' these subformulae, we
up with just propositional variables.

For example, the truth value p) r)~ (q) r) is determined by the truth valuespj randq) r
according to the rules for the conjunction operdtoin turn, the truth value op) r is determined
by the truth values op andr according to the implication operatpr, and the truth value af) r

is determined by the truth values g@fandr according to the implication operator again. It follows
that the truth value of the whole propositional form(g) r)” (q) r) is determined by the truth
values ofp; g; r according to the rules fdr and) .

If some assignment of truth values to propositional variables makes one propositional formula
but another false, then it must be impossible to derive one from the other—otherwise we'd obt:
contradiction. Hence both propositional formulae must have the same truth values no matter
assignment of truth values is given to their constituent propositional variables.

We now develop a systematic way of checking the truth values of a propositional formula under
assignment of truth values to its constituent propositional variables.

De nition 1.3.7

Thetruth table of a propositional formula is the table with one row for each possible assignmen
truth values to its constituent propositional variables, and one column for each subformula (inclu
the propositional variables and the propositional formula itself). The entries of the truth table art
truth values of the subformulae.

Example 1.3.8
The following are the truth tables forp, p* g, p_qgandp) a.

pl:p p da|prq P a|p_q P alp)q

X X X | X X X | X X X | X
X X X X X

X X X X X

X
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In Example 1.3.8 we have used the symBolIATEX code: \checkmark) to mean “true' and
(IATEX code: \times ) to mean “false'. Some authors adopt other conventions, su€hraer > ;?
(IATEX code:\top,\bot ) or 1;0 or G 1—the possibilites are endless!

Exercise 1.3.9
Use the de nitions of*, _ and) to justify the truth tables in Example 1.3.8. C

The next example shows how the truth tables for the individual logical operators (as in
ample 1.3.8) may be combined to form a truth table for a more complicated propositional forr
that involves three propositional variables.

Example 1.3.10
The following is the truth table fofp” q) _ (p”" r).

P a r|ptg pir|(phg_(p"N)
X X X X X X
X

X X

X

X

e} |t} | ——f—)
propositional intermediate .
variables subformulae main formula

Some comments about the construction of this truth table are pertinent:

The propositional variables appear rst. Since there are three of them, theré=ar@ bws. The
column for p contains fouiX s followed by four s; the column fog contains twax s, two s,
and then repeats; and the columnfaontains oneX, one , and then repeats.

The next group of columns are the next-most complicated subformulae. Each is constructe
looking at the relevant columns further to the left and comparing with the truth table for conju
tion.

The nal column is the main formula itself, which again is constructed by looking at the relev:
columns further to the left and comparing with the truth table for disjunction.

Our choices of where to put the vertical bars and what order to put the rows in were not the
choices that could have been made, but when constructing truth tables for more complex Ic
formulae, it is useful to develop a system and stick to it. C

Returning to Theorem 1.3.6, we obtain the following strategy for proving that two propositio
formulae are logically equivalent.

Strategy 1.3.11 (Logical equivalence using truth tables)
In order to prove that propositional formulae are logically equivalent, it suf ces to show that tt
have identical columns in a truth table.
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Example 1.3.12
In Example 1.3.3 we proved that™ (g_r) (p” q)_(p”"r). We prove this again using truth
tables. First we construct the truth table fo¥ (g_r):

P 9 rjqg_r|pr(a_n
X X X X X
X X X X
X X | X X
X

X X X

X X

X | X

Note that the column fop” (g__r) is identical to that of p” q) _ (p” r) in Example 1.3.10. Hence
the two formulae are logically equivalent. C

To avoid having to write out two truth tables, it can be helpful to combine them into one. |
example, the following truth table exhibits that (q_ r) is logically equivalent tgp”™ q) _ (p”~ r):

P g rjag_r|pr(a_n | pPrqg prr| (P a)_(p"r)
X X X X X X X X
X X X X X X
X X || X X X X
X

X X X

X X

X || X

In the following exercises, we use truth tables to repeat the proofs of logical equivalence from
ample 1.3.4 and Exercise 1.3.5.

Exercise 1.3.13
Use a truth table to prove that) q (: p)_ 0. C

Exercise 1.3.14
Let p, g andr be propositional variables. Use a truth table to prove that the propositional form

(p_q)) rislogically equivalenttqp) r)~(q) r). C

Some proof strategies

We are now in good shape to use logical equivalence to derive some more sophisticated
strategies.

Theorem 1.3.15 (Law of double negation)
Let p be a propositional variable. Thegn :: p.
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Proof
The proof is almost trivialised using truth tables. Indeed, consider the following truth table.

pl:p|[= P
X X
X
The columns fop and:: pareidentical, andsp :: p.

The law of double negation is important because it suggests a second way that we can prove
ments by contradiction. Indeed, it says that proving a proposfiiequivalent to proving: p,
which amounts to assumingp and deriving a contradiction.

Strategy 1.3.16 (Proof by contradiction (indirect version))
In order to prove a propositiomis true, it suf ces to assume thatis false and derive a contradiction.

At rst sight, Strategy 1.3.16 looks very similar to Strategy 1.1.38, but there is an important diff
ence:

Strategy 1.1.38 says that to prove that a propositidal$g it suf ces to assume that it isue and
derive a contradiction;
Strategy 1.3.16 says that to prove that a proposititrnuis it suf ces to assume that it ialseand
derive a contradiction.

The former is adirect proof technique, since it arises directly from the de nition of the negatio
operator; the latter is amdirect proof technique, since it arises from a logical equivalence, name
the law of double negation.

Example 1.3.17
We prove that ifa, b andc are non-negative real numbers satisfyatg b? = ¢, thena+ b> c.

Indeed, lel; b;c2 R with a;b;c> 0, and assume that + b2 = c2. Towards a contradiction, assume
that it is not the case that+ b> c. Then we must hava+ b < c. But then

(a+b)?>=(a+b)(at b)< (a+ b)c<c c=¢?

and so
c?> (a+ b)?= a’+ 2ab+ b?>= ¢+ 2ab> ¢?

This implies that? > ¢2, which is a contradiction. So it must be the case theb > c, as required.
C

The next proof strategy we derive concerns proving implications.

De nition 1.3.18
Thecontrapositive of a proposition of the fornp) qis the proposition q): p.

Theorem 1.3.19 (Law of contraposition)
Let p andq be propositional variables. Thgn) q (: q)) (: p).
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56 Chapter 1. Logical structure

Proof
We build the truth tables fop) qand(: q)) (: p).

P gp)al:qg :p|lCa) Cp
X X X X
X X
X || x X X
X X X X

The columns fop) qand(: q)) (: p) are identical, so they are logically equivalent.

Theorem 1.3.19 suggests the following proof strategy.

Strategy 1.3.20 (Proof by contraposition)
In order to prove a proposition of the form) q, it suf ces to assume that is false and derive that
pis false.

Example 1.3.21
Fix two natural numberm andn. We will prove that ifmn> 64, then eithem> 8 orn> 8.

By contraposition, it suf ces to assume that itriet the case than> 8 orn> 8, and derive that it
is not the case than> 64.

So assume that neither> 8 norn> 8. Thenm6 8 andn 6 8, so thamn6 64, as required. C

Exercise 1.3.22

Use the law of contraposition to provethat g (p) 9~ ((: p)) (: g)), and use the proof
technique that this equivalence suggests to prove that an integer is even if and only if its squ
even. C

It feels good to invoke impressive-sounding results pkeof by contrapositionbut in practice, the
logical equivalence betweeamy two different propositional formulae suggests a new proof tecl
nigue, and not all of these techniques have names. And indeed, the proof strategy in the follc
exercise, while useful, has no slick-sounding name—at least, not one that would be widely ul
stood.

Exercise 1.3.23

Prove thatp_q (: p)) g. Use this logical equivalence to suggest a new strategy for provi
propositions of the fornp__ g, and use this strategy to prove that if two integers sum to an ev
number, then either both integers are even or both are odd. C

Negation

In pure mathematics it is common to ask whether or not a certain property holds of a mathem:
object. For example, in Section 7.2, we will look at convergence of sequences of real number
say that a sequenag; X1; Xz;::: of real numbergonvergegDe nition 7.2.15) is to say

9a2 R;8e2R;(e>0)9 N2N;8n2N;[n>N)j x, a<e]
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This is already a relatively complicated logical formula. But what if we wanted to prove that a
guencedoes notonverge? Simply assuming the logical formula above and deriving a contradic
might work sometimes, but it is not particularly enlightening.

Our next goal is to develop a systematic method for negating complicated logical formulae. With
done, we will be able to negate the logical formula expressing "the sequeRge;::: converges'
as follows

8a2 R;92R;(e>0"8N2N;9n2 N;[n> N"*jx, &> €]

Granted, this is still a complicated expression, but when broken down element by element, it pro
useful information about how it may be proved.

The rules for negating conjunctions and disjunctions are instanads Bforgan's lawswhich ex-

hibit a kind of duality betweert and__.

Theorem 1.3.24 (de Morgan's laws for logical operators)
Let p andq be logical formulae. Then:

@:(p"a) (p_(:0q);and

(b) :(p_a) Cp"(Ca.

Proof of (a)
Consider the following truth table.

p alpral:(ra|:p talCP_(Oq
X X || X
X X X X
X X X X
X X X X

The columns for (p” g) and(: p)_ (: g) are identical, so they are logically equivalent.

Exercise 1.3.25

Prove Theorem 1.3.24(b) thrice: once using the de nition of logical equivalence directly (like
did in Examples 1.3.3 and 1.3.4 and Exercise 1.3.5), once using a truth table, and once using p
together with the law of double negation. C

Example 1.3.26
We often use de Morgan's laws for logical operators without thinking about it. For example to
that "neither 3 nor 7 is even' is equivalent to saying "3 is odd and 7 is odd'. The former staten
translates to

: [(3iseven_ (7 iseven)

while the second statement translates to
[ (3iseven]™[: (7 iseven)
C

Exercise 1.3.27
Prove that (p) q) p” (: g) twice, once using a truth table, and once using Exercise 1.3.
together with de Morgan's laws and the law of double negation. C
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58 Chapter 1. Logical structure

De Morgan's laws for logical operators generalise to statements about quanti ers, expressing a
ilar duality betweer8 and9 as we have betweenand_.

Theorem 1.3.28 (de Morgan's laws for quanti ers)
let p(X) be a logical formula with free variabberanging over a seX. Then:

(@) 8 x2X;p(x) 9 x2X;: p(x);and
(b) 9 x2X;p(x) 8 x2 X;: p(x).
Proof

Unfortunately, since these logical formulae involve quanti ers, we do not have truth tables at
disposal, so we must assume each formula and derive the other.

We start by proving the equivalence in part (b), and then we derive (a) as a consequence.

Assume9 x2 X; p(x). To prove8x2 X;: p(x), xsomex2 X. If p(x) were true, then we'd have
9x 2 X; p(x), which contradicts our main assumption; so we hapéx). But then8x 2 X;: p(X)
is true.

AssumeB8x 2 X;: p(x). For the sake of contradiction, assue2 X; p(x) were true. Then we
obtain some 2 X for which p(a) is true. But p(a) is true by the assumption thax 2 X; : p(a),
S0 we obtain a contradiction. Heni®x 2 X; p(x) is true.

This proves that9 x2 X; p(x) 8 x2 X;: p(X).

Now (a) follows from (b) using the law of double negation (Theorem 1.3.15):

X2 X;: p(x) 9 x2X;:p(X¥ (b?8 X2 X;:m p(¥) 8 x2X;p(X

as required.

The proof strategy suggested by the logical equivalence in Theorem 1.3.28(b) is so important t
has its own name.

Strategy 1.3.29 (Proof by counterexample)
To prove that a proposition of the for@x 2 X; p(x) is false, it suf ces to nd a single elemet2 X
such thatp(a) is false. The elemertis called acounterexampleto the propositior8x 2 X; p(x).

Example 1.3.30

We prove by counterexample that not every integer is divisible by a prime number. Indeed,let
The only integral factors of 1 are 1 andL, neither of which are prime, so that 1 is not divisible by
any primes. C

Exercise 1.3.31

. a .
Prove by counterexample that not every rational number can be expresgmzlmeaz Zis even
andb 2 Z is odd. C

We have now seen how to negate the logical operators, _ and) , as well as the quanti er8
ando9.
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De nition 1.3.32
A logical formula ismaximally negatedif the only instances of the negation operatoappear
immediately before a predicate (or other proposition not involving logical operators or quanti er

Example 1.3.33
The following propositional formula is maximally negated:

(P (@) ¢l (" (1)
Indeed, all instances of appear immediately before propositional variables.

However the following propositional formula i®t mmaximally negated:
(- d) g

Here the subformula g contains a negation operator immediately before another negation oper
(:: qg). However by the law of double negation, this is equivalengijo g, which is maximally
negated trivially since there are no negation operators to speak of. C

Exercise 1.3.34
Determine which of the following logical formulae are maximally negated.
(@) 8x2 X; (: p(x) )8 y2 X;: (r(xy) " s(xy));
(b) 8x2 X; (: p(x)) )8 y2 X;(: r(x;y)) _ (- s(x;));
(c) 8x2 R;[x> 1) (92 R;[x<y™: (6 y)l;
(d) 9 x2 R;[x> 17 (8y2 R;[x< y) x26 Vy])].
C

The following theorem allows us to replace logical formulae by maximally negated ones, whic
turn suggests proof strategies that we can use for proving that complicated-looking proposition
false

Theorem 1.3.35
Every logical formula (built using only the logical operators and quanti ers we have seen so fa
logically equivalent to a maximally negated logical formula.

Idea of proof
Much like Theorem 1.3.6, a precise proof of Theorem 1.3.35 requires some form of induction a
ment, so instead we will give an idea of the proof.

Every logical formula we have seen so far is built from predicates using the logical opératoys
and: and the quanti er8 and9—indeed, the logical operator was de ned in terms of and) ,
and the quanti e© was de ned in terms of the quanti er® and9 and the logical operators and

) -

But the results in this section allow us to push negations “inside' each of these logical operator
guanti ers, as summarised in the following table.
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60 Chapter 1. Logical structure

Negation outside Negation inside  Proof
(ph 0 GCp_Ga Theorem 1.3.24(a)
S (p_0q) GCprGa Theorem 1.3.24(b)
S(p) 9 p” (: q) Exercise 1.3.27
(¢ p p Theorem 1.3.15
:8 x2 X; p(X) 9 x2 X;: p(x) Theorem 1.3.28(a)

9 x2 X; p(X) 8 x2 X;: p(xX) Theorem 1.3.28(b)

Repeatedly applying these rules to a logical formula eventually yields a logically equivalent, n
imally negated logical formula.

0 Example 1.3.36
Recall the logical formula from page 56 expressing the assertion that a sequeace;::: of real
numbers converges:

9a2 R;8e2R;(e>0)9 N2N;8n2N;[n>N)j x, a<e]

We will maximally negate this to obtain a logical formula expressing the assertion that the sequ
does not converge.

Let's start at the beginning. The negation of the formula we started with is:
9 a2R;82R;(e>0)9 N2N;8n2N;[n>N)j x, a<e]

The key to maximally negating a logical formula is to ignore information that is not immediat
relevant. Here, the expression that we are negating takes the:%oan?2 R; (stuff). It doesn't
matter what the “stuff' is just yet; all that matters is that we are negating an existentially quanti
statement, and so de Morgan's laws for quanti ers tells us that this is logically equival&atZo
R; : (stuff). We apply this rule and just re-write the “stuff', to obtain:

8a2R;:8e2R;(e>0)9 N2N;8n2N;[n>N)j X a<e)

Now we are negating a universally quanti ed statemedte 2 R; (stuff) which, by de Morgan's
laws for quanti ers, is equivalent tBe 2 R; (stuff):

8a2R;92R;: (e>0)9 N2N;8n2N;[n>N)j x, a<e)
At this point, the statement being negated is of the féstuff) ) (junk), which by Exercise 1.3.27
negates tqstuff) ~: (junk). Here, “stuff' ise > 0 and “junk' isON 2 N;8n2 N;[n> N)j X
aj < e]. So performing this negation yields:

8a2 R;9e2R;(e> 079 N2N;8n2N;[n>N)j x, a<e]

Now we are negating an existentially quanti ed formula again, so using de Morgan's laws for qu
ti ers gives:

8a2R;9%2R;(e>0"8N2N;:8n2N;[n>N)j x, a<e]

The formula being negated here is univerally quanti ed, so using de Morgan's laws for quanti
againgives:

8a2 R;9e2 R;(e>0"8N2N;9n2N;: [n>N)j X a<e]
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We're almost there! The statement being negated here is an implication, so applying théxle
q p”" (: g) again yields:

8a2 R;9e2 R;(e>0"8N2N;9n2 N;[n> N”: (jxn aj<e)])
At this point, strictly speaking, the formula is maximally negated, since the statement being |

ated does not involve any other logical opreators or quanti ers. However, si(jgg aj < €) is
equivalenttgx, aj> e, we can go one step further to obtain:

8a2 R;9%e2 R;(e>0"8N2N;9n2 N;[n> N*jx, aj> €]

This is as negated as we could ever dream of, and so we stop here. C

Exercise 1.3.37
Find a maximally negated propositional formula that is logically equivalen{f, ). C

Exercise 1.3.38
Maximally negate the following logical formula, then prove that it is true or prove that it is false.

9x2 R;[x> 1" (By2 R; [x< y) X*6 y])]

Tautologies

The nal concept that we introduce in this chapter is that ¢dwatology which can be thought of as
the opposite of a contradiction. The word “tautology' has other implications when used colloqui
but in the context of symbolic logic it has a precise de nition.

De nition 1.3.39
A tautology is a proposition or logical formula that is true, no matter how truth values are assig
to its component propositional variables and predicates.

The reason we are interested in tautologies is that tautologies can be used as assumptions
point in a proof, for any reason.

Strategy 1.3.40 (Assuming tautologies)
Let p be a proposition. Any tautology may be assumed in any progf of

Example 1.3.41

The law of excluded middle (Axiom 1.1.44) says precisely fhat(: p) is a tautology. This means
that when proving any result, we may split into cases based on whether a proposition is true or
just as we did in Proposition 1.1.46. C

Example 1.3.42
The formulap) (q) p) is a tautology.

A direct proof of this fact is as follows. In order to propd (q) p) istrue, it suf ces to assump
and deriveg) p. So assum@. Now in order to provey) p, it suf ces to assume and derivep.
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62 Chapter 1. Logical structure
So assume. But we're already assuming thptis true! Soq) pis true, and hence) (q) p)
is true.
A proof using truth tables is as follows:
qla) p|pP) (@ P
X X

X

X X|lo

X

X X X X

X

We seethap) (q) p) is true regardless of the truth valuespéndq. C
Exercise 1.3.43
Prove that each of the following is a tautology:

@ [(p) 97 (a) nNl) (p) n);

(b) [p) (a) nl) [(p) @) (p) Nl
(c) 9y2Y;8x2 X; p(xy))8 x2 X;9y2Y; p(xy);

@C®eral. [P_Cal
() (:8 x2X;p(x) , (9x2X;: p(x)).

For each, try to interpret what it means, and how it might be useful in a proof. C

You may have noticed parallels between de Morgan's laws for logical operators and quanti ers,
parts (d) and (e) of Exercise 1.3.43, respectively. They almost seem to say the same thing, €
that in Exercise 1.3.43 we used 'and in Theorems 1.3.24 and 1.3.28 we used There is an
important difference, though: {f andq are logical formulae, thep) qis itself a logical formula,
which we may study as a mathematical object in its own right. Howeqwer,q is not a logical
formula: it is an assertioaboutlogical formulae, namely that the logical formulgeandq are
equivalent.

There is, nonetheless, a close relationship betweemd —this relationship is summarised in the
following theorem.

Theorem 1.3.44
Let p andq be logical formulae.

(a) gcan be derived fronp if and only if p) qis a tautology;
(b) p qifandonlyifp, qis atautology.

Proof

For (a), note that a derivation gffrom p is suf cient to establish the truth gb) q by the intro-

duction rule for conjunction)( 1), and so ifg can be derived fronp, thenp) g is a tautology.
Conversely, ifp) qis a tautology, themy can be derived fronp using the elimination rule for
conjunction | E) together with the (tautological) assumption tpgt qis true.
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Section 1.3. Logical equivalence 63

Now (b) follows from (a), since logical equivalence is de ned in terms of derivation in each directi
and, is simply the conjunction of two implications.

Aaand breathelAll this new notation can be overwhelming at rst, but it will be worth it in the end
This chapter was all about teaching you a new language—new symbols, new terminology—be
without it, our future pursuits will be impossible. If you're stuck now, then don't worry: you'll soo
get the hang of it, especially when we start using this new language in context. You can, of co
refer back to the results in this chapter for reference at any point in the future.
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64 Chapter 1. Logical structure

Section 1.E
Chapter 1 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

1.1. For xed n2 N, let p represent the proposition is even', letq represent the proposition is
prime' and letr represent the proposition = 2'. For each of the following propositional formulae,
translate it into plain English and determine whether it is true fon @lIN, true for some values of
n and false for some values of or false for alin 2 N.

@ (pra)) r

b)yar(r) ¢p

@ @Cp_Ca)_Cn

d) (P )™ (1)

1.2. For each of the following plain English statements, translate it into a symbolic propositio
formula. The propositional variables in your formulae should represent the simplest proposit
that they can.

(a) Guinea pigs are quiet, but they're loud when they're hungry.
(b) It doesn't matter that 2 is even, it's still a prime number.

P . . .
(c) 2 can'tbe an integer because it is a rational number.

1.3. Let pandqbe propositions, and assume that (: q) istrue andthaf: g)) pisfalse. Which
of the following are true, and which are false?

(a) gbeing false is necessary fprto be true.
(b) gbeing false is suf cient foip to be true.
(c) pbeing true is necessary fqrto be false.
(d) pbeing true is suf cient forp to be false.

1.4. Find a statement in plain English, involving no variables at all, that is equivalent to the log
formula8a2 Q;8b2 Q;(a< b)9 c2R;[a<c< b ”: (c2Q)]). Then prove this statement,
using the structure of the logical formula as a guide.

1.5. Find a purely symbolic logical formula that is equivalent to the following statement, and tt
prove it: “No matter which integer you may choose, there will be an integer greater than it.

1.6. Prove that
p, 4 (p) 9" p) Ca)

How might this logical equivalence help you to prove statements of the fpiifrahd only if g'?

1.7. Prove using truth tables thpf) q6 q) p. Give an example of propositionmsandq such that
p) gqistrue butq) pisfalse.
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1.8. A new logical operatot is de ned by the following rules:

(i) If a contradiction can be derived from the assumption thisttrue, therp " qis true;
(ii) If a contradiction can be derived from the assumption thittrue, thenp " qis true;

(iii) If r is any proposition, and ip" g, p andq are all true, them is true.
This question explores this curious new logical operator.

(a) Provethap" p : p,anddeducethd{p”" p)" (p" p) p.

(b) Provethap_q (p" p)"(q" g andp™q (p"a)" (p" q).

(c) Find a propositional formula using only the logical operdttimat is equivalentt@) q.

1.9. Let X beZ or Q, and de ne a logical formula by:
8x2 X;9y2 X; (x< y*[8z2 X;: (x< zMz< V)]

Write out: p as a maximally negated logical formula. Prove thas true whenX = Z, andp is
false whenX = Q.

1.10. Use De nition 1.2.26 to write out a maximally negated logical formula that is equivalent
:9 Ix2 X; p(x). Describe the strategy that this equivalence suggests for proving that there is r
uniquex 2 X such thatp(x) is true, and use this strategy to prove that, foedll R, if a6 1 then
there is not a unique2 R such tha®* 2ax’+a®> 1= 0.

1.11. Let X be a set and lgp(x) be a predicate. Find a logical formula representing the statems
“there are exactly two element2 X such thaip(x) is true'. Use the structure of this logical formula
to describe how a proof should be structured, and use this structure to prove that there are e
two real numbers such thai? = 1.
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Chapter 2

Sets and functions
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68 Chapter 2. Sets and functions

Section 2.1
Sets and set operations

We begin by rede ning the notion ofsetwith a notch more precision than we provided in Chapter (
At their core, sets seem extremely simple—sets are just collections of objects—except that if not
in check, this characterisation of a set leads to logical inconsistencies, such as the irRasselts
paradox

These logical paradoxes can be overcome by restricting ourselves to working insideeseU ,
which we consider to be a set which is so big that it contains all of the mathematical objects
we want to talk about. This is a subtle issue, which is well beyond the scope of this section, b
discussed further in Section B.1.

De nition 2.1.1
A setis a collection oklementsfrom a speci eduniverse of discourse The collection of everything
in the universe of discourse is called tigiversal set denoted byJ (IATEX code:\mathcal{U} ).

The expression 2 X (IATeX code: \in ) denotes the statement thais an element oK; we write
x 62X (IATeX code:\not\in - ) to mean: (x2 X), that is thaix is not an element oX.

Example 2.1.2
In Chapter 0, we introduced ve sets: the $&0f natural numbers, the sgtof integers, the sep
of rational numbers, the s of real numbers and the s&tof complex numbers. C

Exercise 2.1.3
Which of the following propositions are true, and which are false?

1 1 1
-27Z =2 Z2 Z2U -2U
2 2 Q Q 2

C

We will avoid referring explicitly to the universal skt whenever possible, but it will always be
there in the background. This is convenient because we no longer need to worry about the dom
discourse of free variables (as we did in De nition 1.2.2), so that we can abbre8i2eU ; p(x)'

by "8x; p(x)', and 9x2 U ; p(x)' by "9x; p(x)".

Note that under this convention:
8 x2 X; p(x) is logically equivalent t@x; (x2 X) p(x)); and
9x2 X; p(x) is logically equivalent t®x; (x 2 X p(x)).

Specifying a set

One way of de ning a set is simply to describe it in words, like we have done up to now. There
other, more concise ways of specifying sets, which also remove such ambiguity from the proce
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Lists. One way is simply to provide kst of the elements of the set. To specify that the list denote
a set, we enclose the list wiftcurly bracketg (IATeX code:\{,\} ). For example, the following is
a speci cation of a seX, whose elements are the natural numbers between 0 and 5 (inclusive):

X =10;1;2;3;4;59

Implied lists. Sometimes a list might be too long to write out—maybe even in nite—or the leng
of the list might depend on a variable. In these cases it will be convenient to usgpked list, in
which some elements of the list are written, and the rest are left implicit by writing an ellipsis
(IATEX code:\dots ). For example, the statement

X =11;4,9;:::;n%g

means thakX is the set whose elements are all the square numbers fronm?, wheren is some
number. Implied lists can be ambiguous, since they rely on the reader's ability to infer the pal
being followed, so use with caution!

Set-builder notation. In general, implied lists can be ambiguous, so in practice they are avoic
unless the implied list is very simple, such as a set of consecutive numbef8;like: :;9g. In fact,
many sets can't even be listed in this way.

To get around this, we can uset-builder notationwhich is a means of specifying a set in terms o
the properties its elements satisfy. Given aXgthe set of elements of satisfying some property
p(x) is denoted

fx2 Xjp(x)g

The bar |' (LATEX code:\mid ) separates the variable name from the formula that they make true
some authors use a colon instead (aB&{2 X : p(X)g).

The seff x2 X j p(x)gis read aloud as “the set»® X such thatp(x)', but beware—neither the bar
“|' nor the colon ™:' mean “such that' in other contexts.

Example 2.1.4
The set of all even integers can be written in set-builder notation as

fn2 Zjnisevery
For comparison, the set of all even natural numbers can be written as
fn2 Njnisevey=f0;2;4;6;:::0

Note that 6 is an element of the former set but not of the latter set, sir®és an integer but is not
a natural number.

Note moreover that the expression
fn2 Qjnisevey

is meaningless, since we have not de ned a notion of “evenness' for rational numbers. C

Strategy 2.1.5
Let X be a set and lgb(x) be a logical formula with free variabbe2 X. In order to provea2 f x 2
Xj p(X)g, it suf ces to provea 2 X and thatp(a) is true.
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Exercise 2.1.6
A dyadic rational is a rational number that can be expressed as an integer divided by a power
Express the set of all dyadic rationals using set-builder notation. C

An alternate form of set-builder notation uses an expression involving one or more variables t
left of the vertical bar, and the range of the variable(s) to the right. The elements of the set are
the values of the expression as the variable(s) vary as indicated—that is:

fexpr(x) j x2 Xgis de ned to mearfyj9x 2 X;y= exp(x)g

whereexpi(x) is the expression in question.

Example 2.1.7

The expressiofi3k+ 2 k2 Zg denotes the set of all integers of the fork+32, wherek 2 Z. It

is shorthand fofn2 Z j9k 2 Z; n= 3k+ 2g. In implied list notation, we could write this set as
fiin; 4, 1,2,5;8;:::0. C

Exercise 2.1.8
Express the set of dyadic rationals (de ned in Exercise 2.1.6) in this alternate form of set-bui
notation. C

Set-builder notation is useful for de ning sets based on the properties they satisfy, as in De
tions 2.1.9 and 2.1.11 below.

De nition 2.1.9
Letn2 N. The sefn] is de ned by[n]= fk2 Nj16 k6 ng.

Example 2.1.10

In implied list notation,[n] = f1;2;:::;ng. For example[4] = f1;2;3;4g. Note that[0] has no
elements (it isempty—see De nition 2.1.26), since there are no natural numixesatisfying the
inequality 16 k6 O. C

While not particularly interesting yet, sets of the fomhwill be fundamental throughout Chapter 6,
as they are used to de ne the notion ohite set, as well as thaizeof a nite set.

Intervals are particular subsetsRfthat are ubiquitous in mathematics, particularly in analysis ar
topology.

De nition 2.1.11  (Intervals of the real line)
Leta;b2 R. Theopen interval (a;b), theclosed interval[a; b], and thehalf-open intervals [a; b)
and(a; b] from ato b are de ned by

(a;b)= fx2 Rja< x< bg (a;b]=fx2 Rja< x6 bg
[a;b)= fx2 Rja6 x< bg [a;b]= fx2 Rja6 x6 bg

We further de ne theunbounded intervals ( ¥;a), ( ¥;a], [&;¥) and (& ¥) (IATEX code:
\infty ) by

( ¥;9)=fx2Rjx< ag (;¥)=fx2Rjx> ag
( ¥;a=fx2Rjx6 ag [a;¥)= fx2 Rjx> ag

70



Section 2.1. Sets and set operations 71

Example 2.1.12
The following illustration depicts the open intenfal 2;5).

2 5

The hollow circles indicate that the endpoints are not included in the interval. C

Be warned that the use of the symBols misleading, since it suggests that the sym¥oin its own
has a speci ¢ meaning (or, worse, that it refers to a real number). It doesn't—it is just a sy
that suggests unboundedness of the interval in question. A less misleading way of jar¥ingor
instance, might bfg;! ) or R”2; however|[a;¥) is standard, so it is what we will write.

Exercise 2.1.13

For each of the following illustrations, nd the interval that it depicts. A lled circléndicates that
an end-point is included in the interval, whereas a hollow cirdiedicates that an end-point is not
included in the interval.

2 5
(@ < ® >

2 5
(b) < ° o .

5

(c) <=

2
(d) < L >

C

Subsets

It is often the case that everything that is also an element of one set is an element of another s¢
example, every integer is a rational number; that is

8n227;n2Q
We can say this more concisely by saying thas asubsef Q.
De nition 2.1.14
Let X be a set. Asubsetof X is a setJ such that
8a;(a2U) a2X)
We writeU X (IATEX code:\subseteq ) for the assertion thdd is a subset oX.

Additionally, the notatiord * X (IATeX code:\nsubseteq ) means thal) is not a subset oX, and
the notationd $ X (IATeX code: \subsetneqq ) means thaU is aproper subsetof X, that is a
subset oiX that is not equal teX.
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72 Chapter 2. Sets and functions

Strategy 2.1.15 (Proving a subset containment)
In order to prove that a sél is a subset of a s&, it suf ces to take an arbitrary elemeat2 U and
prove thata 2 X.

Example 2.1.16
Every setis a subset of itself—that}6, X for all setsX. The proof of this is extremely simple: we
must proveBx 2 X; x 2 X. But then this is trivial: lek 2 X, thenx 2 X by assumption. Done! C

Example 2.1.17
Leta;b;c;d2 Rwitha< c< d< b. Then[c;d] (a;b). Indeed, lek2 [c;d]. Thenc6 x6 d. But
then

a<cb6x6d<b ) a< x<b

so thafc;d] (a;b), as required. C

Exercise 2.1.18
Leta;b;c;d 2 Rwith a< bandc< d. Prove thafa;b) (c;d]ifand onlyifa> candb6 d. C

Example 2.1.19
The number sets from Chapter O are related by the following chain of subset inclusions.

N Z Q R C

C

The following proposition proves a property of subsethood knowtnaasitivity—we'll revisit this
property in Section 4.1.

Proposition 2.1.20
LetX;Y;Zbesets. X Y andY Z,thenX Z.

Proof
Suppose thaX Y andY Z. We needto provX Z.

So leta2 X. SinceX Y, it follows from De nition 2.1.14 thata 2 Y; and sincel  Z, it follows
again from De nition 2.1.14 thaa 2 Z.

HenceX Z, asrequired.

Set equality

This section is all about de ning sets, comparing sets, and building new sets from old, and ¢
make much more progress, we rst need to establish what we mean when we say that two se
equal

Discussion 2.1.21
Let X andY be sets. What should it mean to say thkaandY are equal? Try to provide a precise
de nition of equality of sets before reading on. C

There are different possible notions of “'sameness' for sets: we might want to say that t¥@selts
Y are equal when they have quite literally the same de nition; or we might want to sa)taad
Y are equal when they contain the same objects as elements. For instance, 3Updke set of
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all odd natural numbers' and is “the set of all integers that are differences of consecutive perf
squares'—in this case, the rst of these characterisations of equality might lead us ¥6&ag)
whereas the second would lead usto Xay Y.

Clearly, we have to state our terms at some point. And that point is now.

Axiom 2.1.22 (Set extensionality)
Let X andY be sets. TheX = Y if and only if 8a; (a2 X, a2Y), or equivalently, ifX Y and
Y X

This characterisation of set equality suggests the following strategy for proving that two sets
equal.

Strategy 2.1.23 (Proof by double containment)
In order to prove that a set is equal to a seY, it suf ces to:

ProveX Y, i.e.leta2 X be an arbitrary element, and der@@ Y; and then

ProveX Y, i.e.leta2Y be an arbitrary element, and der@@ X.

We often write *( )" and *( )’ to indicate the direction of the containment being proved.

Example 2.1.24
We prove thatx2 Rjx?6 1g=[ 1;1] by double containment.

( YLeta2fx2 Rjx?6 1g. Thena2 Randa?6 1, sothat(l a)(l+a)=1 a®> 0. It
follows that either:

1 a>0and+ a> 0,inwhichcase&6 1anda> 1,sothata2[ 1;1].
1 a6 Oand + a6 0, inwhichcasa> 1anda6 1, whichisa contradiction sincel< 1.
Sowe must hava?2 [ 1;1], as required.

( )Leta2[ 1;1]. Then 16 a6 1, sojaj6 1, and henca?= jaj?6 1,sothat2fx2 Rj
X2 6 1g, as required.

Exercise 2.1.25
Prove thafx2 Rjx? < xg=(0;1). C

Inhabitation and emptiness

Another fundamental example of a set is #rapty setwhich is the set with no elements. But we
have to be slightly careful about how we use the word “the', since it impligguenessand we
don't know (yet) that two sets with no elements are necessarily equal. So rst we will de ne whe
means for a set to be empty, and then we'll show that there is exactly one empty set.

De nition 2.1.26
A setX isinhabited (or nonempty) if it has at least one element; otherwise, ierapty.
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74 Chapter 2. Sets and functions

The assertion tha{ is inhabited is equivalent to the logical form#a; a2 X, and the assertion that
X is empty is equivalent to the logical formul@ a; a2 X. This suggests the following strategy for
proving that a set is inhabited, or that it is empty.

Strategy 2.1.27 (Proving that a set is inhabited or empty)

In order to prove a seX is inhabited, it suf ces to exhibit an element. In order to prove a s
X is empty, assume that is inhabited—that is, that there is some elemat X—and derive a
contradiction.

In other texts, the termonemptyis more common thamhabited but there are reasons to prefer
latter. Indeed, the statemerX is non-empty' translates more directly tq:9 a; a2 X), which
has an unnecessary double-negative and suggests a proof of inhabitation by contradiction. F
reason, we use the terimhabitedin this book.

Emptiness may seem like a trivial condition—and it is—but owing to its canonicity, it arises all 0
the place.

Example 2.1.28

The setfx2 R j x2 = 2g is inhabited since, for exampﬁai 2R andIO ?2 = 2. However, the set
fx2 Qjx?= 2gis empty since, if it were inhabited, then there would be a rational numbech
thatx? = 2, contrary to Proposition 0.28. C

Example 2.1.29

We observed in Example 2.1.10 that the [§&tis empty; here's a more formal proof. Towards &
contradiction, suppod@] is inhabited. Then there is sork€ N such that 6 k6 0. It follows that
16 0, which contradicts the fact that01. HencdO0] is empty, after all. C

Exercise 2.1.30
Leta;b2 R. Prove thafa;b] is empty if and only ifa> b, and that(a; b) is empty if and only if
a>h. C

The next exercise is a logical technicality, which is counterintuitive for the same reason that m
the principle of explosion (Axiom 1.1.49) dif cult to grasp. However, it is extremely useful fc
proving facts about the empty set, as we will see soon in Theorem 2.1.32.

Exercise 2.1.31

Let E be an empty set and l@(x) be a predicate with one free varialXevith domain of discourse
E. Show that the propositiofix 2 E; p(x) is true, and that the propositiddx 2 E; p(x) is false.
What does the propositiddx 2 E; x 6 x mean in English? Is it true? C

Thanks to the axiom of extensionality (Axiom 2.1.22), any two empty sets must be equal since
both contain the same elements—namely, no elements at all! This is made formal in the folloy
theorem.

Theorem 2.1.32
Let E andE®be sets. IE andE%are empty, thelt = EC

Proof. Suppose thaE andECare empty. The assertion tHat ECis equivalent to

8a2 E;a2 E9” (8a2 E%a2 E
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But8a2 E;a2 E%and8a2 E® a2 E are both true by Exercise 2.1.31 sifeandE%are empty.
SoE = EY as claimed. O

Knowing that there is one and only one empty set means that we may now make the follo\
de nition, without worrying about whether the word “the' is problematic.

De nition 2.1.33
Theempty set(also known as thaull set) is the set with no elements, and is denoteb@iATEX
code:\varnothing ).

Some authors writeg instead of? , sincefg is simply the empty set expressed in list notation.

Exercise 2.1.34
Let X be a set. Prove th& X. C

Set operations

In Example 2.1.24 we noted thi& ¥) is the set of all non-negative real numbers. What if we wante
to talk about the set of all non-negative rational numbers instead? It would be nice if there was ¢
expression in terms ¢0;¥) andQ to denote this set.

This is whereset operationgome in—they allow us to use previously de ned sets to introduce ne
sets.

Intersection (\ )

Theintersectionof two sets is the set of things which are elements of both sets.

De nition 2.1.35
Let X andY be sets. Thepairwise) intersection of X andY, denotedX\ Y (IATeX code:\cap), is
de ned by

X\Y=faja2 X*a2Yg

Example 2.1.36
By de nition of intersection, we have 2 [0;¥)\ Q if and only if x 2 [0;¥) andx 2 Q. Since
x2 [0;¥) ifand only ifxis a non-negative real number (see Example 2.1.24), it follow$@héj\ Q

is the set of all non-negative rational numbers. C
Exercise 2.1.37
Prove tha{0;¥)\ Z= N. C

Exercise 2.1.38
Write down the elements of the set

f0;1;4,7g\f 1;2;3;4;5g
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76 Chapter 2. Sets and functions

Exercise 2.1.39
Expresy 2;5)\ [4;7) as a single interval. C

Proposition 2.1.40
Let X andY be sets. Prove tha Y if and only if X\ Y = X.

Proof
Suppose thaX Y. We proveX\ Y = X by double containment.

() Supposea2 X\ Y. Thena?2 X anda 2 Y by de nition of intersection, so in particular we
havea?2 X.

() Supposea2 X. Thena2 Y sinceX Y, sothata2 X\ Y by de nition of intersection.

Conversely, suppose thdd Y = X. To prove thaX Y, leta2 X. Thena2 X\ Y sinceX= X\'Y,
so thata 2 Y by de nition of intersection, as required.

Exercise 2.1.41
Let X be a set. Prove thad\ ? = ?. C

De nition 2.1.42
Let X andY be sets. We sa) andY aredisjoint if X\ Y is empty.

Example 2.1.43
The setd 0; 2; 4g andf 1; 3; 59 are disjoint, since they have no elements in common. C

Exercise 2.1.44
Leta;b;c;d 2 R with a< bandc < d. Prove that the open intervalg; b) and(c; d) are disjoint if
andonlyifbo< cord< a. C

Union ([ )

Theunionof two sets is the set of things which are elements of at least one of the sets.

De nition 2.1.45
Let X andY be sets. Thepairwise) union of X andY, denotedX[ Y (IATpX code:\cup ), is de ned
by

X[Y=faja2X_a2Yg

Example 2.1.46

Let E be the set of even integers a@dbe the set of odd integers. Since every integer is eith
even or oddE[ O= Z. Note thatE\ O= ?, thusfE;Og is an example of aartition of Z—see
De nition 4.2.21. C

Exercise 2.1.47
Write down the elements of the set

f0;1;4,7g[f 1,2;3;4;5g
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Exercise 2.1.48
Expresy 2;5)[ [4;7) as a single interval. C

The union operation allows us to de ne the following class of sets that will be particularly useful
us when studying counting principles in Section 6.2.

Exercise 2.1.49
Let X andY be sets. Provethat Yifandonly if X[ Y =Y. C

Example 2.1.50
Let X;Y;Z be sets. We prove that\ (Y[ 2)=( X\ Y)[ (X\ 2).

( )Letx2 X\ (Y[ Z2). Thenx2 X, and eitheix2 Y orx2 Z. If x2 Y thenx2 X\ Y, and if
x2 Zthenx2 X\ Z. In either case, we have2 (X\ Y)[ (X\ 2).

( )Letx2 (X\Y)[ (X\ 2). Then eithexx2 X\ Y orx2 X\ Z. In both cases we have2 X
by de nition of intersection In the rst case we haxe Y, and in the second case we ha2 Z;
in either case, we have2 Y[ Z, sothatx2 X\ (Y[ 2).

Exercise 2.1.51
Let X;Y;Z be sets. Prove that[ (Y\ Z2)=( X[ Y)\ (X[ 2). C

Indexed families of sets

We will often have occasion to take the intersection or union not of just two sets, but of an arbit
collection of sets (even of in nitely many sets). For example, we might want to know which r
numbers are elements [tf, 1+ %) for eachn > 1, and which real numbers are elements of at lea
one of such sets.

Our task now is therefore to generalise our pairwise notions of intersection and union to arbi
collections of sets, calleididexed familie®f sets.

De nition 2.1.52
An (indexed) family of setsis a speci cation of a seX; for each elemeritof someindexing setl.
We writef X; j i 2 Igfor the indexed family of sets.

Example 2.1.53
The setd0; 1+ %) mentioned above assemble into an indexed family of sets, whose indexing s
fn2 Njn> 1g. We can abbreviate this family of sets by

f[0;1+ 1) jn>1g

Observe that we have left implicit the fact that the variabieranging over the natural numbers anc
justwritten n> 1' on the right of the vertical bar, rather than separately de fdirgfn2 Njn> 1g
and writingf [0;1+ 1) jn2 Ig. C
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De nition 2.1.54
The (ndexed) intersection of an indexed familf X; j i 2 1g is de ned by

\
Xi=faj8i21;a2 Xg (ATpX code:\bigcap_{i \in I} )
i21
The (ndexed) union of f X; ji 2 Igis de ned by

[ Xi=faj9i2l;a2 Xg (IATpX code:\bigcup_{i \in I} )
i21

Example 2.1.55

We prove that the intersection o\f the half-open interj@)& + %) forn> 1is[0; 1]. We will use the

notation  as shorthand for
n>1 n2f x2N j x>1g

\ 1
( )Letx2 [0;1+ H).

n>1
Thenx2 [0;1+ %) foralln> 1. In particularx> 0.

To see thatx 6 1, assume that > 1—we will derive a contradiction. Since> 1, we have
X 1> 0. LetN > 1 be some natural number greater or equq{l@, SO that% 6 x 1. Then

x> 1+ &, and henc& 670; 1+ ), contradicting the assumption the2 [0;1+ 1) for alln> 1.
So we must havg 6 1 after all, and hence?2 [0; 1].

() Letx2]0;1].

\ 1

To prove thatx2  [0;1+ ﬁ)’ we need to show that2 [0;1+ %) foralln> 1. So x n> 1.
n>1

Sincex 2 [0;1], we havex> 0 andx 6 1< 1+ %, sothatx2 [0;1+ 1), as required.

\ 1

Hence [0;1+ —)=][0;1] by double containment. C
n>1 n

Exercise 2.1.56

Express [0;1+ =) as an interval. C

n>1 n
Exercise 3.1.57
Provethat [n]=7? and [n]=fk2 Njk> 1g. C
n2N n2N

Indexed intersections and unions generalise their pairwise counterparts, as the following exe
proves.

Exercise 2.1.58
Let X; andX; be sets. Prove that

\
X1\ Xo= X and X]_[XZZ[ Xy

k2[2] k2[2]
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Exercise 2.1.59
Find a family of setd X, j n2 Ng such that:

(i) [ Xn=N;

n2N
\

(i) Xh= ?;and
n2N

(i) %\ X; & 2 foralli;j2 N.

Relative complement ()

F De nition 2.1.60
Let X andY be sets. Theelative complementof Y in X, denotedX nY (IATeX code:\setminus ),
is de ned by
XnY = fx2 Xjx62/g

0 Example 2.1.61
Let E be the set of all even integers. The@ Z nE if and only if nis an integer and is not an even
integer; that is, if and only if is odd. ThusZ nE is the set of all odd integers.

Moreover,n2 NnE if and only if nis a natural number amtlis not an even integer. Since the ever
integers which are natural numbers are precisely the even natural nuMipétss precisely the set
of all odd natural numbers. C

Exercise 2.1.62
Write down the elements of the set

f0;1;4;7gnf1;2;3;4; 59

Exercise 2.1.63
Expresy 2;5)n[4;7) and[4;7)n[ 2;5) as intervals. C

Exercise 2.1.64
Let X andY be sets. Prove thdtn(YnX) = X\ Y, and deduce that Y ifand onlyifYn(Yn
X)= X. C

Comparison with logical operators and quanti ers

The astute reader will have noticed some similarities between set operations and the logical ope
and quanti ers that we saw in Chapter 1.

Indeed, this can be summarised in the following table. In each row, the expressions in both coll
are equivalent, wherp denotesa 2 X', gdenotesa?2 Y', andr(i) denotesa?2 X;'.
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sets logic
a62x p
a2 xX\y p” q
azX[Y pP_q
a2 X | 8i2l;r()
d
a2 X | 9i2l1;r()
21
a2 Xny p” (: Q)

This translation between logic and set theory does not stop there; in fact, as the following
orem shows, De Morgan's laws for the logical operators (Theorem 1.3.24) and for quanti ers (1
orem 1.3.28) also carry over to the set operations of union and intersection.

Theorem 2.1.65 (De Morgan's laws for sets)
Given set; X;Y and a familyf X j i 2 Ig, we have
@ An(X[ Y)=(AnX)\ (AnY);
(b) An(X\ Y)=(AnX)[ (AnY);
[ \
(c) An X;=  (AnX);
i21 i21
\ [
(d) An X =" (AnX).
i21 2l
Proof of (a)

Letabe arbitrary. By de nition of union and relative complement, the assertioretBan (X[ Y)
is equivalent to the logical formula

a2 A™: (a2X_az2y)
By de Morgan's laws for logical operators, this is equivalent to

a2 A" (ab6X”" abz)
which, in turn, is equivalent to

a2 Aha6XxX)™ (a2 A ab2r
But then by de nition of intersection and relative complement, this is equivalent to
a2 (AnX)\ (AnY)

HenceAn(X[ Y)=(AnX)\ (AnY), as required.

Exercise 2.1.66
Complete the proof of de Morgan's laws for sets. C

Power sets

De nition 2.1.67

Let X be a set. Th@ower setof X, written P (X) (IATeX code: \mathcal{P} ), is the set of all
subsets oK.
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Example 2.1.68
There are four subsets bi; 2g, namely

?; flg, f2g; fl,2g

soP (X)= f?;f1g;f2g;f1;290. C
Exercise 2.1.69
Write out the elements d? (f 1;2;3g). C
Exercise 2.1.70
Let X be a set. Show th& 2 P (X) andX 2 P (X). C
Exercise 2.1.71
Write out the elements & (?),P (P (?)) andP (P (P (?))). C

Power sets are often a point of confusion because they bring the property of tmibgeiof one
set to that of being aalemenbf another, in the sense that for all setandX we have

U X , U2P(X)

This distinction looks easy to grasp, but when the BeasidX look alike, it's easy to fall into various
traps. Here's a simple example.

Example 2.1.72
Itis true that? ?, but false tha? 2 ?. Indeed,

? ? means8x2 ?;x2 ?; but propositions of the forn8x 2 ?; p(x) are always true, as
discussed in Exercise 2.1.31.

The empty set has no elements?if2 ? were true, it would mean th& had an element (that
element bein@ ). So it must be the case that62? .

C

The following exercise is intended to help you overcome similar potential kinds of confusion
means of practice. Try to think precisely about what the de nitions involved are.

Exercise 2.1.73
Determine, with proof, whether or not each of the following statements is true.

@P(()2P (P (?));

(b) ? 2ff ?2gg,

(c) f?g2ff ?29g;

d) P (P (?) 2f?;f?;f?9g0

Repeat the exercise with all instancesfreplaced by ™ . C
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Product ( )

De nition 2.1.74
Let X andY be sets. Thepairwise) cartesian product of X andY is the setX Y (IATeX code:
\times ) de ned by

X Y=f(ab)jx2 X*"y2Yg
The elementga;b) 2 X Y are calledbrdered pairs, whose de ning property is that, for adt x 2 X
and allb;y 2 Y, we have(a;b) = ( x;y) ifand only ifa= xandb=y.

Example 2.1.75
If you have ever taken calculus, you will probably be familiar with theRsetR.

R R=f(xy)jxy2Rg

Formally, this is the set of ordered pairs of real numbers. Geometrically, if we intdRpastan
in nite line, the setR R is the (real) plane: an elemef;y) 2 R R describes the point in the
plane with coordinate§x;y).

We can investigate this further. For example, the following set:
R f Og=f(x0)jx2Rg

is precisely the-axis. We can describe graphs as subse® ofR. Indeed, the graph of= x? is
given by
G=f(xy)2R Rjy=xg=f(xx®)jx2Rg R R
C

Exercise 2.1.76
Write down the elements of the det; 2g f 3;4;5g. C

Exercise 2.1.77
Let X be a set. Provethat ? = ?. C

Exercise 2.1.78
Let X, Y andZ be sets. Under what conditions is ittrue tilat Y = Y X? Under what conditions
isittruethat(X Y) zZ=X (Y 2)? C

We might have occasion to take cartesian products of more than two sets. For example, whatev
setR R Ris, its elementshouldbe ordered triple$a; b; c) consisting of elements;b;c 2 R.
This is where the following de nition comes in handy.
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De nition 2.1.79

Cn) Xi (IATpX code:\prod_{k=1} {n} ) de ned by
k=1

forall16 k6 n.

Jy
Given a sek, write X" to denote the sgf) X. We might on occasion also write
k=1

X1 X Xa= O X

Example 2.1.80

In Exercise 2.1.78 you might have noticed that the §6tsY) ZandX (Y Z) are not always
equal—De nition 2.1.79 introduces third potentially non-equal cartesian productXfY andZ.
For example, consider wheti=Y = Z= R. Then

The elements ofR R) R are ordered pair§{a;b);c), where(a;b) is itself an ordered pair of
real numbers andis a real number.

The elements o0R (R R) are ordered pairéa; (b;c)), wherea is a real number an¢b;c) is
an ordered pair of real numbers.

TheelementsdR R R (= R®) are ordered triplega; b; c), wherea, b andc are real numbers.

So, although these three sefgpearto be the same, zooming in closely on the de nitions revea
that there are subtle differences between them. A sense in which they are the same is that the
bijectionsbetween them—the notion of a bijection will be introduced in Section 2.3. C
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84 Chapter 2. Sets and functions

Section 2.2
Functions

One way of studying interactions between sets is by studftingtionsbetween them, which we
will de ne informally in De nition 2.2.1. Functions are mathematical objects which assign to ea
element of one set exactly one element of another. Almost every branch of mathematics st
functions, be it directly or indirectly, and almost every application of mathematics arises froi
translation of the abstract notion of a function to the real world. Just one example of this is the th
of computation—functions provide precisely the language necessary to describe the determi
input-output behaviour of algorithms.

You might have come across the notion of a function before now. In schools, functions are «
introduced as being likmachines-they have inputs and outputs, and on a given input they alwa
return the same output. For instance, there is a function which takes integers as inputs and
integers as outputs, which on the inpueturns the integex+ 3.

This characterisation of functions, however, is clearly not precise enough for the purposes of r
ematical proof. A next approximation to a precise de nition of a function might look something li
this:

De nition 2.2.1
A function f from a setX to a setY is a speci cation of element§(x) 2 Y for x 2 X, such that

8x2 X;9ly2VY;y= f(X
Givenx 2 X, the (unique!) elementi(x) 2 Y is called thevalue of f atx.

The setX is called thedomain (or sourcé of f, andY is called thecodomain (or target) of f. We
write f : X1 Y (IATpX code:f : X \to Y )to denote the assertion thits a function with domain
X and codomairy.

This is better—we're now talking about sets (and not mysterious “‘machines'), which we have
plored in Section 2.1.

Moreover, this de nition establishes a close relationship between functions artill theanti er:
indeed, to say that assigns to each elementXfa unique element of is to say precisely that

8x2 X;9ly2Y;y= f(X)

Conversely, any true proposition of the foBr2 X; 9ly 2 Y; p(x;y) de nes a functionf : X! Y:
the functionf assigns to eack 2 X the uniquey 2 Y such thatp(x;y) is true. In other words,
8x2 X; p(x; f(x)) is true!

We can use this to generate some examples of functions.

Example 2.2.2
Example 1.2.27 said that every positive real number has a unique positive square root; we p
this in Example 1.2.30. What this means is that there is a function

r:R>%1 R whereR”%= fx2 Rjx> Og

84



Section 2.2. Functions 85

de ned by lettingr(x) be the Bquue) positive square roobgfor eachx 2 R”%. That is, we have
a functionr de ned byr(x) = C

Exercise 2.2.3

Recall Exercise 1.2.31. Which of the statements (a), (b) or (c) is of the8aanX; 9y 2 Y; p(x;y)?
For each statement of this form, determine the domain and codomain of the corresponding fun
and write an expression de ning this function. C

Specifying a function

Just like with sets, there are many ways to specify a fundtiod! Y, but when we do so, we must
be careful that what we write realjoesde ne a function!

This correctness of speci cation is known a®ll-de nednessand ultimately amounts to verify-
ing that the conditior8x 2 X;9ly 2 Y; f(x) = y holds for the speci cation off. Namelytotality,
existencenduniqueness

Totality. A value f(X) should be speci ed for eack 2 X—this corresponds to the8x 2 X'
quanti er in the de nition of functions.

Existence. For eachx 2 X, the speci ed valuef(x) should actually exist, and should be ar
element off—this corresponds to thexistencepart of the 9!y 2 Y' quanti er in the de nition of
functions.

Uniqueness.For eachx 2 X, the speci ed valuef (x) should refer to only one elementéf—this
corresponds to theniquenesgart of the 9!y 2 Y' quanti er in the de nition of functions.

When specifying a function, you should justify each of these components of well-de nedness ur
they are extremely obvious. You will probably nd that, in most cases, the only component in n
of justi cation is uniqueness, but keep all three in mind.

Lists. If X is nite, then we can specify a functioh: X! Y by simply listing the values of at all
possible elements2 X. For example, we can de ne a function

f:f1;,2,3g!f red yellow greenblue purpley
by declaring
f(1)=red f(2)= purple f(3)= green

Note that the function is at this point completely speci ed: we know its values at all elements of
domainf 1;2;3g. It doesn't matter that some of the elements of the codomgiovandblue) are
unaccounted for—all that matters is that each element of the domain is associated with exact!
element of the codomain.

Unfortunately, most of the sets that we work with will be in nite, or of an unspeci ed nite size; il
these cases, simply writing a list of values isn't suf cient. Fortunately for us, there are other w
of specifying functions.

Formulae. In many cases, particularly when the domXirand codomairy are number sets, we
can de ne a function by giving a formula for the value fafx) for eachx 2 X. For example, we can
de ne a functionf : R! R by letting

f(x)= x>+ 3forallx2 R
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86 Chapter 2. Sets and functions

By caseslt will at times be convenient to de ne a function using different speci cations for differer
elements of the domain. A very simple example isdbeolute value functionj :R! R, de ned
forx2 R

L x ifx>0

¥ = .

x ifx60

Here we have split into two cases based on the condition® andx 6 0.
When specifying a functioffi : X! Y by cases, it is important that the conditions be:

exhaustive givenx 2 X, at least one of the conditions ohmust hold; and

compatible: if any x 2 X satis es more than one condition, the speci ed value must be the sai
no matter which condition is picked.

For the absolute value function de ned above, these conditions are satis ed. Indeed® fy it

is certainly the case that> 0 orx6 0, so the conditions are exhaustive. Moreover, givénR,

if both x> 0 andx 6 0, thenx = 0—so0 we need to check that the speci cation yields the san
value whenx = 0 regardless of which condition we pick. The> 0 condition yields the value 0,
and thex6 0 condition yields the value 0, which is equal to 0—so the conditions are compatible
We could have user < 0 instead ofx 6 0; in this case the conditions aneutually exclusiveso
certainly compatible because they do not overlap.

Algorithms. You might, on rst exposure to functions, have been taught to think of a function a
machinewhich, when given amput, produces aoutput This ‘'machine’ is de ned by saying what
the possible inputs and outputs are, and then providing a list of instructior@gauithm) for the
machine to follow, which on any input produces an output—and, moreover, if fed the same in
the machine always produces the same output.

For example, we might instruct a machine to take rational numbers as inputs and give rational
bers as outputs, and to follow the following sequence of steps on a given input

multiply by 2! add 5! square the result divide by 6

This 'machine' de nes a functioM : Q! Q which, in equation form, is speci ed by

(2x+ 5)

2
M(x) = forallx2 Q

In our more formal set-up, therefore, we can de ne a functibnl ! O by specifying:

a setl of all inputs;
a setO of potentialoutputs; and

a deterministié! algorithm which describes how an inpx | is transformed into an output
M(x) 2 O.

That is, the domain is the sétof all possible “inputs', the codomain is a g@tcontaining all
the possible “outputs', and the functidfis a rule specifying how an input is associated with th
corresponding output.

[aThe word “deterministic' just means that the algorithm always produces the same output on a single input.
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Section 2.2. Functions 87

For now, we will use algorithmic speci cations of functions only sparingly—this is because it
much harder to make formal what is meant by an “algorithm’, and it is important to check th
given algorithm is deterministic.

Function equality

In Section 2.1 we discussed how there may be many different possible ways of characterising €
ity of sets. This matter was resolved by declaring that two sets are equal if and only if they havi
same elements (this was Axiom 2.1.22).

A similar matter arises for functions. For example, consider the fundtioR! R de ned by
f(x) = 2xforall x2 R, and the functiog: R! R, de ned by lettingg(x) be the result of taking,
multiplying it by three, dividing the result by four, dividing the result by six, and then multiplyin
the result by sixteen. It so happens thgét) = 2x for all x 2 R as well, but that is not how is
de ned; moreover, iff andg were implemented as algorithms, then it would take longer to compt
the values ofj than it would take to compute the valuesfof

Should we considef andg to beequaP If we are only interested in wheth&randg have the same
values on each argument, then the answer should be “yes'; if we are interested in the algori
behaviour off andg, then the answer should be "no'.

We resolve this dilemma with the following axiom. By adopting this axiom, we are stating that
functionsf andg discussed above are equal.

Axiom 2.2.4 (Function extensionality)
Letf: X! Yandg:A! Bbe functions. Theri = gif and only if the following conditions hold:

(i) X= AandY = B; and
(i) f(x)= g(x) forall x2 X.

Strategy 2.2.5 (Proving two functions are equal)
Given functionsf;g: X! Y with the same domain and codomain, in order to prove fhatg, it
suf ces to prove thaff (x) = g(x) for all x2 X.

A consequence of Axiom 2.2.4 is that, for xed setsandY, a functionX ! Y is uniquely de-
termined by its input-output pairs. This set is called gnaph of the function; the proof of the
equivalence between functions and their graphs is the content of Theorem 2.2.9.

De nition 2.2.6
Letf: X! Y beafunction. Thgraph of f isthe subset Grf) X Y (IATpX code:\mathrm{Gr} )
de ned by

Gr(f)= f(x (X)) jx2 Xg=f(xy)2X Yjy= f(xg

Example 2.2.7
Given a (suf ciently well-behaved) functioh: R! R, we canrepresentGf) R R by plotting
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88 Chapter 2. Sets and functions
it on a pair of axes using Cartesian coordinates in the usual way. For examples dfe ned by
f(x)= 3 forall x2 R, then its graph

Gr(f) = x;g X2 R

can be represented by graph plot in Figure 2.1.

Figure 2.1: Graph of the functioh: R! R de ned by f(x)= 5 forallx2 R

Exercise 2.2.8
Find a functionf : Z! Z whose graph is equal to the set

fonC 2 90 L 2):(0,1):(14):(27):(3,10;:::9

C

Theorem 2.2.9 below provides a way of verifying that a function is well-de ned by characteris
their graphs.

C Theorem 2.2.9
Let X andY be sets. Asubs& X Y is the graph of a function if and only if

8x2 X:9ly2Y:(xy)2 G

Proof

(O ). Supposes X Y is the graph of a function, sag = Gr(f) for somef : X! Y. Then for
eachx 2 X, it follows from well-de nedness off that f(x) is the unique element2 Y for which
(xy) 2 G. Thatis,(x; f(X)) 2 G, and ify 2 Y with (x;y) 2 G, theny = f(X).
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(( ). Supposec X Y satises8x2 X;9ly2Y;(x;y) 2 G. Dene a functionf : X! Y by,
for eachx 2 X, de ning the valuef(x) to be the unique elememt2 Y for which (x;y) 2 G. Well-
de nedness off is then immediate from our assumption of the existence and uniqueness of su
value ofy for eachx 2 X.

Example 2.2.10
The setG de ned by
G= f(1;red);(2;red);(3;greeng

is the graph of a functiori : f1;2;3g ! f red, greenblueg. The functionf is de ned by
f(1)=red f(2)=red f(3)= green

However, G is not the graph of a functiorf 1;2;3;4g ! f red greenblueg, sinceG contains no
elements of the forni4;y) for y 2 f red greenblueg. Moreover, the seB°de ned by

GP= f(1;red);(2;red); (2;blue); (3;greeng
does not de ne the graph of a functidri;2;3g ! f red greenblueg, since there is not anique
element of the forn{2;y) in G2—rather, there are two of them! C

Exercise 2.2.11
For each of the following speci cations of sexXs Y, G, determine whether or n& is the graph of
a function fromX to Y.

(@ X=R,Y=R,G=f(aa?ja2Rg;
(b) X=R,Y=R,G=f(a%a)ja2 Rg:;
() X=R>%Y=R>% G= f(a%;a)ja2 R>%, whereR>?= fx2 Rj x> 0g;
d)X=QY=Q,G=f(xy)2Q Qjxy=1g.
() X=Q,Y=Q,G=f(aa)ja2 Zg;
C

Aside

In light of Theorem 2.2.9, some people choose to de ne functdns Y as particular subsets of
X Y—that is, they identify functions with their graphs. This is particularly useful when studyi
the logical foundations of mathematics. We avoid this practice here, because it is not concept
necessary, and it would preclude other possible ways of encoding functions. C

We will now look at some more examples (and non-examples) of functions.

Example 2.2.12

Example 1.2.27 gives a prime example of a function: it says that for every positive real namb
there is a ynique positive real numbesuch that? = a. This uniqueb is precisely the positive
square roolé)né of a. Writing R>© for the set of positive real numbers, we have thus established t
taking the positive square root de nes a functRn®! R0, C

There is a class of functions call@tgntity functionghat, despite being very simple, are so importar
that we will give them a numbered de nition!
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De nition 2.2.13
Let X be a set. Thedentity function on X is the function igk : X ! X (I&TpX code:
\mathrm{id} X ) de ned by idx(x) = x for all x2 X.

You should convince yourself that the speci cation of igiven in De nition 2.2.13 is well-de ned.

Another interesting example of a function is taepty functionwhich is useful in coming up with
counterexamples and proving combinatorial identities (see Section 6.2).

De nition 2.2.14
Let X be a set. Thempty function with codomainX is the (unique!) functior? ! X. It has no
values, since there are no elements of its domain.

Again, you should convince yourself that this speci cation is well-de ned. Conceptually, convinci
yourself of this is not easy; but writing down the proof of well-de nedness is extremely easy—}
will nd that there is simply nothing to prove!

Example 2.2.15

Dene f:R! R by the equatiorf(x)2 = xfor all x2 R. This is not well-de ned for a few reasons.
First, if x< O then there is no real numbgrsuch thaty? = x, so forx < 0 there are no possible
values off (x) in the codomain of , soexistencdails. Secorbd, ik> O then there are in famvoPeal
numbersy such thaty? = x, namely the positive square rooi and the negative square root x.
The speci cation off does not indicate which of these values to takeysiguenessails.

Notice that the function: R>%! R>? from Example 2.2.2s (well-)de ned by the equation(x)2 =
x for all x2 R>9. This illustrates why it is very important to specify the domain and codomain wh
de ning a function. C

Exercise 2.2.16
Which of the following speci cations of functions are well-de ned?

(@) g: Q! Qde ned by the equatiofix+ 1)g(x) = 1forallx2 Q;
(b) h:N! Qdenedby(x+ 1)h(x)= 1forallx2 N;
(c) k:N! Ndenedby(x+ 1)k(x)= 1 forallx2 N;
(d) ":N! Ndenedby (x)= "(x) forallx2 N.
C

Exercise 2.2.17
Find a condition on set& andY such that the speci cation of a functioan X[ Y !'f 0;1g given by

«
i(2) = 0 ffZZX
1 ifz2yY

to be well-de ned. C
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Composition of functions

In our section on sets, we talked about various operations that can be performed on sets—
intersection, and so on. There are also operations on functions, by far the most important of wh
composition To understand how composition works, let's revisit the algorithmically de ned fun
tionM: Q! Q from page 86:

multiply by 2! add 5! square the result divide by 6

The functionM is, in some sense, sequencef functions, performed one-by-one until the desire
result is reached. This is precisagmposition of functions

F De nition 2.2.18
Given functionsf : X! Y andg:Y! Z, theircompositeg f (IATeX code:g \circ f ) (read g
composed withf' or g after f' or even just g f') is the functiong f: X! Zde ned by

(g H)(X) = g(f(x) forallx2 X

Intuitively, g f is the function resulting from rst applyindg, and then applying, to the given
input.

v Common error
Function composition is in some sense written “backwards': in the expregsidnthe function
which is appliedrst is writtenlast—there is a good reason for this: the argument to the function
written after the function! However, this mis-match often trips students up on their rst exposur:
function composition, so be careful! C

0 Example 2.2.19
The functionM from page 86 can be de ned as the composite

M=(k h) g f
where
f:Q! Qisdenedbyf(x)= 2xforallx2 Q;
g:Q! Qisdenedbyg(x)= x+ 5forallx2 Q;
h:Q! Qisdenedbyh(x)= x?forallx2 Q;
k:Q! Qisdenedbyk(x)= g forallx2 Q.
C

Exercise 2.2.20
Let f;g;hk: Q! Q be asin Example 2.2.19. Compute equations de ning the following compc

ites:

@f g
(b) g f;
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© ((f g9 h k
(d f (g (h K);
(e) (g 9 (g 9.

C
Example 2.2.21
Let f : X! Y be any function. Then
idy f=f=1f idx
To see this, lex2 X. Then
(idy F)(X) = idy(f(X)) by de nition of composition
= f(x) by de nition of idy
= f(idx (X)) by de nition of idx
=(f idx)(x) by de nition of composition
Equality of the three functions in question follows. C

Exercise 2.2.22
Prove that composition of functionsassociativethat is, iff : X! Y,g:Y! Zandh:zZ! W are
functions, then

h (g f)=(h g) f: X! W
As a consequence of associativity, when we want to compose more than two functions, it do
matter what order we compose the functions in. As such, we can justiwrge f. C

Exercise 2.2.23

Let f: X! Yandg:Z! W be functions, and suppose that Z. Note that there is a function
h: X! Wde nedbyh(x) = g(f(x)) forall x2 X. Write h as a composite of functions involving
andg. C

Characteristic functions

A class of functions that are particularly useful for proving results about setsharacteristic
functions

De nition 2.2.24
LetX beasetandldéd X. Thecharacteristic function of U in X is the functioncy : X !'f 0;1g
(IATeX code:\chi_{U} ) de ned by

1 ifa2u

W@ ifasal
Example 2.2.25
Consider the subsét = f1;3;5g [6]. Then the values of the characteristic functmn: [6] !
f0;1g are given by
cu(M=1 cy(=0 cu(¥d=1
cu(@=0 cu(3=1 cy(6)=0
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C Theorem 2.2.26
LetX beasetandldt;vV X. ThenU =V ifand onlyifcy = cy.

Proof
( ) AssumeU = V and leta2 X. Then

cu(@=1, a2U by de nition of cy
, az2v sinceU =V
, cv(@=1 by de nition of cy

Likewisecy(a) = Oifand only ifcy(a) = 1, so thatty = cy by function extensionality.

( )Assumecy = cy and leta2 X. Then

a2Uu, cy(@=1 by de nition of cy
, cv(@=1 sincecy = Cy
, a2V by de nition of cy

soU = V by set extensionality.

v |Strategy 2.2.27 (Proving set identities using characteristic functions)
In order to prove that two subsdtfisandV of a setX are equal, it suf ces to prove that, = cy.

C Theorem 2.2.28
LetX beasetandldi;V X. Then

(@) cu\v(a@) = cy(a)cy(a) foralla2 X;
(b) curv(a)= cu(a@)+ cy(a) cu(a)cy(a)foralla2 X;

(©) cxu(@=1 cy(a) foralla2 X.

Proof of (a)
Leta2 X. Since the only values that, (a) andcy (a) can take are 0 and 1, we have

1 ifcy(@)=landcy(a@)=1

cu(@ev(@) = 0 otherwise

Butcy(a)= lifandonlyifa2 U andcy(a) = 1ifand only ifa2 V, so that

(
1 ifa2u\V

Cu@ev@ = i aea v

This is exactly to say thaty (a)cy(a) = cy\v(a), as required.
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Exercise 2.2.29
Prove parts (b) and (c) of Theorem 2.2.28. C

Theorem 2.2.28 can be used in conjunction with Strategy 2.2.27 to prove set theoretic iden
using their characteristic functions.

Example 2.2.30
In Example 2.1.50 we proved th&dth (Y[ Z)=( X\ Y)[ (X\ Z) for all setsX,Y andZ. We prove
this again using characteristic functions, consideMnY andZ as subsets of a universal &t

Soleta2 U. Then

Cx\ (v[ 2(@)

= cx(a)cvp z(a) by Theorem 2.2.28(a)

= cx(a)(cy(a)+ cz(a) cy(a)cz(a) by Theorem 2.2.28(b)

= cx(a)cy(a)+ cx(a)cz(a) cx(a)cy(a)cz(a) rearranging

= cx(a)cv(a)+ cx(a)cz(a)  cx(a)’cy(a)cz(a) sincecx(8)’ = cx(a)

=cxiv(@)+ cxyz(d) cxiv(a)ex z(a) by Theorem 2.2.28(a)

= Ccxv x\ 2)(3d) by Theorem 2.2.28(b)
Using Strategy 2.2.27, it follows that\ (Y[ Z2)=( X\ Y)[ (X\ 2). C

Exercise 2.2.31
Use characteristic functions to prove de Morgan's laws for pairwise unions and intersections (
orem 2.1.65). C

Images and preimages

De nition 2.2.32
Let f: X! Y beafunctionandldd X. Theimage ofU under f is the subsef[U] Y (also
written f (U) (IATeX code:f_* ) or even justf(U)) is de ned by

flUl=ff(x)jx2Ug=fy2YjIx2U;y= f(X)g
That is, f[U] is the set of values that the functidrtakes when given inputs froiu.

Theimage of f is the image of the entire domain, i.e. the $pX].

Example 2.2.33
Let f :R! R be dened byf(x) = x?. The image off is the setR”° of all nonnegative real
numbers. Let's prove this:

(f[R] R>9). Lety2 f[R]. Theny= x? for somex 2 R. Butx?> 0, so we must havg2 R>°,
as required.

(R>°  f[R]). Lety2 R>°. ThenP y2 R, andy= (" )2= (P y). Hencey 2 f[R], as required.

We have shown by double containment tfifR] = R>©. C

Exercise 2.2.34
For each of the following functiont and subsets of their domain, describe the imadgJ].
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(@) f:Z! Zdenedbyf(n)= 3n, withU = N;
(b) f: X! X X (whereXis any set) de ned byf(x) = ( x;x) withU = X;
(c) f:fajb;cg!f 1;2;3gde nedbyf(a)= 1, f(b)= 3andf(c)= 1, withU = fa;b;cg.
C

Exercise 2.2.35
Prove thatf[? ] = ? for all functionsf. C

0 Example 2.2.36
Let f : X! Y be a function and let);vV  X. Thenf[U\ V] f[U]\ f[V]. To see this, let
y2 flU\ V]. Theny= f(x) for somex2 U\ V. By de nition of intersectionx2 U andx 2 V.
Sincex 2 U andy = f(x), we havey 2 f[U]; likewise, sincex2 V, we havey 2 f[V]. But then by
de nition of intersection, we havg2 f[U]\ f[V]. C

Exercise 2.2.37
Letf: X! Ybeafunctionandldd;V X.WesawinExample 2.2.36 th&fu\ V] f[U]\ f[V].
Determine which of the following is true, and for each, provide a proof of its truth or falsity:

(@) flUI\ fIVI fUN VI
(b) flUL V] fUIL fIV];
() flUIl fIvI fU[ VI

F | De nition 2.2.38
Let f: X! Y beafunctionandléf Y. Thepreimage ofV under f is the subsef [V] (IATEX

code:f{-1} ) (also writtenf (V) (IATEX code:f* ), orjustf 1(V))is de ned by
f 1V]=fx2Xjf(x)2Vg=fx2Xjoy2V; f(X) = yg

Thatis,f 1[V]is the set of all the elements of its domadrthat the functionf sends to elements of
V.

0 Example 2.2.39
Letf:Z! Z be the function de ned byf(x) = x2 for all x2 X. Then

f UfL,499=f 3 2 1,1,23g;

f 1f1,2,3,4,5,6,7;8,99]=f 3; 2 1;1,2;3gtoo0, since the other elements[6f are not per-
fect squares, and hence not of the fof(w) for x2 Z;

f 1[N]= Z, since for any 2 Z we havef(x) > 0, so thatf(x) 2 N.
C

0 Example 2.2.40
Let f : X! Y beafunction,lett Xandletv Y. Thenf[U] Vifandonlyifu f 1[V].

The proof is as follows.
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() ). Supposef[U] V: we'll proveU f 1[V]. So x x2 U. Thenf(x) 2 f[U] by de nition
of image. But therf(x) 2 V by our assumption that[U] V, and sox2 f 1[V] by de nition of
preimage. Sinc& was arbitrarily chosen frod, it follows thatU ~ f 1[V].

(( ). Suppos&J f 1V]; we'll prove flU] V. So x y2 f[U]. Theny= f(x) for somex 2 U
by de nition of image. But therx2 f 1[V] by our assumption thal  f 1[V], and sof(x) 2 V
by de nition of preimage. Buy = f(X), soy2 V, and sincey was arbitrarily chosen, it follows that
flU] V. C

The following exercise demonstrates that preimages interact very nicely with the basic set oper:

(intersection, union and relative complement):

Exercise 2.2.41
Let f : X! Y beafunctionandldt;V Y. Prove that:

(@ f Hu\vi=f U f VY
(b) f U V]=f YU][ f [V];and
@© f YYynul= Xnf YuI.
C

Exercise 2.2.42
Let f : X! Y be afunction. Prove thét 1[?]= ? andf 1[Y]= X. C

Exercise 2.2.43
Letf: X! Y beafunction. Provide a proof of the truth or falsity of each of the following statemen

@@ U f Yfujforallu X;
(b) f Yf[U]] Uforallu X;
@©V f[f YVv]forallv Y;
d) f[f Yv]] Vforallv V.

C

Exercise 2.2.44
Let X be a set. Prove that every functién X ! f 0;1g is the characteristic function of the subse!
f f1g X. C
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Section 2.3
Injections and surjections

To motivate some of the de nitions to come, look at the dodsand stars?) below. Are there more
dots or more stars?

Pause for a second and think about how you knew the answer to this question.
Indeed, there are more dots than stars. There are a couple of ways to arrive at this conclusion:

(i) You could count the number of dots, count the number of stars, and then compare the
numbers; or

(i) You could notice that the dots and the stars are evenly spaced, but that the line of dots is Ic
than the line of stars.

It is likely that you chose method (ii). In fact, it is likely that you haven't even counted the numt
of dots or the number of stars yet—and you don't need to! We can conclude that there are more
than stars by simply pairing up dots with stars—we eventually run out of stars, and there are
dots left over, so there must have been more dots than stars.

Injectivity

One way of formalising this act of pairing up stars with dots mathematically is to de ne a funct
f:S! D from the seSof stars to the sdD of dots, where the value df at each star is the dot that
it is paired with. We of course must do this in such a way that each dot is paired with at most
star:

EERERRERENRNRn

? 0?2 2?2 2?2 2 2?2 °? 2?2 2?2 2 2?2 2?2 2?2 2?2 72

Itis a property of this function—calleidhjectivity—that allows us to deduce that there are more do
than stars.

Intuitively, a functionf : X! Y is injective if it puts the elements &f in one-to-one correspondence
with the elements of a subset¥f—just like how the stars are in one-to-one correspondence witt
subset of the dots in the example above.
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De nition 2.3.1
A function f : X! Y isinjective (or one-to-ong if

8a;b2 X; f(a)= f(b)) a=b

An injective function is said to be dnjection.

Strategy 2.3.2 (Proving a function is injective)
In order to prove that a functiofi : X ! Y is injective, it sufces to x a;b 2 X, assume that
f(a)= f(b), and then deriva= b.

By contrapositionf : X I Y being injective is equivalent to saying, for allb 2 X, if a6 b, then
f(a) 6 f(b). Thisis usually less useful farovingthat a function is injective, but it does provide a
good intuition—it says that sends distinct inputs to distinct outputs.

The following is a very simple example from elementary arithmetic:

Example 2.3.3

Dene f:Z! Zbylettingf(x)= 2n+ 1foralln2 Z. We'll prove thatf is injective. Fixm;n2 Z,
and assume thdt(m) = f(n). By de nition of f, we have th+ 1= 2n+ 1. Subtracting 1 yields
2m= 2n, and dividing by 2 yieldsn= n. Hencef is injective. C

The following example is slightly more sophisticated.

Proposition 2.3.4
Letf: X! Yandg:Y! Zbe functions. Iff andg are injective, thery f is injective.

Proof
Suppose that andg are injective and led;b 2 X. We need to prove that

(g H@=(g f)b) ) a=b

Soassumég f)(a)=(g f)(b). By de nition of function composition, this implies that f(a)) =
o(f(b)). By injectivity of g, we havef(a) = f(b); and by injectivity off, we havea= b.

Exercise 2.3.5
Letf: X! Yandg:Y! Zbe functions. Prove thatd f is injective, thenf is injective. C

Exercise 2.3.6

Write out what it means to say a functidnn X! Y is notinjective, and say how you would prove
that a given function is not injective. Give an example of a function which is not injective, and
your proof technique to write a proof that it is not injective. C

Exercise 2.3.7
For each of the following functions, determine whether it is injective or not injective.

f:N! Z,denedbyf(n)= n?foralln2 N.
g:Z! N,denedbyg(n)= nforalln2 Z.
h:N N N! N,denedbyh(xy,z2)= 2 3 5*forall x;y;z2 N.
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Exercise 2.3.8
Leta;b2 Rwith b6 0, and denef:R! R by f(t)= a+ bt for all t 2 R. Prove thatf is
injective. C

Surjectivity

Let's revisit the rows of dots and stars that we saw earlier. Beforehand, we made our idea that
are more dots than stars formal by proving the existence of an injetti®@ D from the setS of
stars to the sdb of dots.

However, we could have drawn the same conclusion instead from de ning a furiztior§, which
in some senseoversthe stars with dots—that is, every star is paired up with at least one dot.

This property is calledurjectivity—a functionf : X ! Y is surjective if every element of is a
value off. This is made precise in De nition 2.3.9.

De nition 2.3.9
A function f : X! Y is surjective (or onto) if

8y2Y,9x2X; f(X)=vy

A surjective function is said to besrjection.

Strategy 2.3.10
To prove that a functiorf : X! Y is surjective, it suf ces to take an arbitrary elemeri Y and, in
terms ofy, nd an elementx 2 X such thatf(x) = v.

In order to nd x, it is often useful to start from the equatidifx) = y and derive some possible
values ofx. But be careful—in order to complete the proof, it is necessary to verify that the equa
f(X) = yis true for the chosen value gf

Example 2.3.11

Fixn2 Nwithn> 0,andde neafunction:Z!f 0;1;:::;n 1gby lettingr(a) be the remainder of
awhen divided byn (see Theorem 0.18). This function is surjective, since for &&h0;1;:::;n

1g we haver(k) = k. C
Exercise 2.3.12

For each of the following pairs of sefX;Y), determine whether the functidn: X! Y de ned by
f(X) = 2x+ 1is surjective.

(@) X=ZandY = fx2 Zjxis oddy;
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100 Chapter 2. Sets and functions

(b) X=Z andY = Z;
(c) X=QandY = Q;
(d) X=RandY =R.
C

Exercise 2.3.13
Let f: X! Y be afunction. Find a subset Y and a surjectiog: X! V agreeing withf (that

is, such thag(x) = f(x) for all x2 X). C
Exercise 2.3.14
Let f: X! Y be afunction. Prove thdtis surjective if and only ify = f[X] C

Exercise 2.3.15
Let f : X! Y be afunction. Prove that there is a Zsind functions

p:X! Z and i:Z2! Y
such thatp is surjectivej is injective, andf = i p. C

Exercise 2.3.16
Letf: X! P (X) be afunction. By considering the #8t fx2 X j x 62f (X)g, prove thatf is not
surjective. C

Bijectivity

Bijective functions formalise the idea of putting sets into one-to-one correspondence—each ele
of one set is paired with exactly one element of another.

De nition 2.3.17
A function f : X! Y is bijective if it is injective and surjective. A bijective function is said to be &
bijection.

Proof tip
To prove that a functiorf is bijective, prove that it is injective and surjective. C
Example 2.3.18
LetD Q be the set oflyadic rational numberghat is
a
D= x2Q x= on forsomea2 Z andn2 N

Letk2 N,anddenef:D! Dby f(x)= % We will prove thatf is a bijection.

(Injectivity ) Fix x;y 2 D and suppose thdt(x) = f(y). ThenT 7, so thatx = y, as required.

(Surjectivity ) Fix y2 D. We need to ndx 2 D such thatf (x) = y. Well certainly if Xy 2 D then
we have ‘
2
@y= 5=y

so it suf ces to prove that'® 2 D. Sincey 2 D, we must haveg = 4 for somen2 N.
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If k6 nthenn k2 NandsoB8y= -2;2D.

If k> nthenk n>0and2y=2“"a2Z;butZ D sinceifa2 Z thena= %. So again
we have 8y 2 D.

In both cases we havéy®2 D; and f(2Ky) = v, so thatf is surjective.

Sincef is both injective and surjective, it is bijective. C
Exercise 2.3.19
Let X be a set. Prove that the identity functior idX ! X is a bijection. C

Exercise 2.3.20
Letn2 Nand letiXj 16 k6 ngbe a family of sets. Prove by induction arthat there is a bijection

ntl ]

OX! OX X C
k=1 k=1

Exercise 2.3.21

Letf: X! Yandg:Y! Zbe bijections. Prove tha f is a bijection. C
Inverses

Our next goal is to characterise injections, surjections and bijections in terms of other functi
calledinverses

Recall De nition 2.3.1, which says that a functidh: X ! Y is injective if, for alla;b 2 X, if
f(a)= f(b) thena= b.

Exercise 2.3.22
Let f : X! Y be afunction. Prove thdtis injective if and only if

8y2 f[X];9!'x2 X;y= f(X)

C

Thinking back to Section 2.2, you might notice that this means that the logical formala (x)'

de nes afunctionf[X]! X—speci cally, if f isinjective then there is a functian f[X]! X which

is (well-)de ned by specifyingk = g(f(x)) for all x2 X. Thinking of f as anencodingfunction,
we then have tha is the correspondindecodingfunction—decoding is possible by injectivity of
f. (If f were not injective then distinct elementsXimight have the same encoding, in which cas
we're stuck if we try to decode them!)

Exercise 2.3.23

De ne a functione: N N! N by em;n)= 2™ 3". Prove that is injective. We can think of
e as encodingairs of natural numbers as single natural numbers—for example, th&€4dair is
encoded as® 3! = 48. For each of the following natural numbécs nd the pairs of natural
numbers encoded lyask:

1 24 7776 59049 396718580736
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In Exercise 2.3.23, we were able to decode any natural number of the foréi for m;n2 N. This
process of decoding yields a function

d:fk2Njk=2" 3"forsomem;n2 Ng! N N

What would happen if we tried to decode a natural number not of the f8yr82for m;n2 N, say
5 o0r 100? Well... it doesn't really matter! All we need to be true is th@m; n)) = ( m;n) for all
(m;n) 2 N N; the value ofd on other natural numbers is irrelevant.

De nition 2.3.24
Let f: X! Y be afunction. Aeft inverse (or post-inversg for f is a functiong:Y ! X such that
g f=idx.

Example 2.3.25
Lete:N N! NbeasinExercise 2.3.23. De neafunctidnN! N N by

(m;n) if k= 2™ 3" for somem;n2 N

d(k) = .
(0;0) otherwise
Note thatd is well-de ned by the fundamental theorem of arithmetic (Theorem 5.2.12). Moreov
givenm;n2 N, we have
d(e(m;n) = d(2™ 3") =(m;n)

and sad is a left inverse foe. C
Exercise 2.3.26
Let f: X! Y be afunction. Prove that if has a left inverse, thehis injective. C

Exercise 2.3.26 gives us a new strategy for proving that a function is injective.

Strategy 2.3.27 (Proving a function is injective by nding a left inverse)
In order to prove that a functiof: X! Y is injective, it sufces to nd a functiong:Y! X such
thatg(f(x)) = xforall x2 X.

It would be convenient if the converse to Exercise 2.3.26 were true—and it is, provided that
impose the condition that the domain of the function be inhabited.

Proposition 2.3.28
Let f : X! Y be afunction. Iff is injective andX is inhabited, therf has a left inverse.

Proof
Suppose thaf is injective andX is inhabited. Fixxg 2 X—note that this element exists sinkes
inhabited—and de ng:Y ! X as follows.

x if y= f(x) for somex2 X

9 = Xg oOtherwise

The only part of the speci cation af that might cause it to fail to be well-de ned is the case whel
y = f(x) for somex 2 X. The reason why is well-de ned is precisely injectivity off: if y= f(X)
for somex 2 X, then the value ok 2 X for whichy = f(x) is unique. (Indeed, i& 2 X satis ed
y= f(a), then we'd havea = x by injectivity of f.)
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Sogis indeed well-de ned. To see thgtis a left inverse forf, letx 2 X. Lettingy = f(x), we see
thaty falls into the rst case in the speci cation df, so thatg(f(x)) = g(y) = a for the value of
a2 X for whichy = f(a)—but as noted above, we haae x by injectivity of f.

Exercise 2.3.29
Let f : X! Y be afunction with left inversg:Y ! X. Prove thagis a surjection. C

We established a relationship between injections and left inverses in Exercise 2.3.26 and prc
tion 2.3.28, so it might come as no surprise that there is a relationship between surjectiagbtand
inverses.

De nition 2.3.30
Let f: X! Y be afunction. Aightinverse (or pre-inverse) for f is a functiong:Y ! X such that
f g=idy.

Example 2.3.31
Dene f:R! R>%Dby f(x)= x°. Note thatf is surjective, since for eagh2 R”° we have” y2 R
andf(" y) = y. Howeverf is not injective; for instance

f( 1)=1= f(2)
Here are three right inverses féor

The positive square root functian R*%! R de ned byg(y) = P yforally2 R0, Indeed, for
eachy 2 R>? we have

tay) = 1"y =("y2=y

The negative square root function R>°! R de ned by h(y) = P yforally2 R>9. Indeed,
for eachy 2 R”% we have

ity = f( Py=( Py?=y
The functionk: R>%! R de ned by

if2n6 y< 2n+ 1 forsomen2 N
y otherwise

Note thatk is well-de ned, and agairf(k(y)) = yfor ally 2 R>? since no matter what valugy)
takes, it is equal to eithé)ry or V.

There are many more right inverses forin fact, there are in nitely many more! C
Exercise 2.3.32
Let f : X! Y be afunction. Prove that if has a right inverse, thehis surjective. C

Strategy 2.3.33 (Proving a function is surjective by nding a right inverse)
In order to prove that a functioh: X! Y is surjective, it suf cesto nd a functiorg:Y! X such
thatf(g(y)) = yforally2Y.
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Interlude: the axiom of choice

It would be convenient if the converse to Exercise 2.3.32 were true—thafisXit Y is surjective,
then it has a right inverse. Let's examine what a proof of this fact would entail. The fact t
f: X! Yissurjective can be expressed as

8y2Y;9x2 X; f(x)=y

A right inverse would be a functiog: Y ! X, so by De nition 2.2.1, it must satisfy the following
condition
8y2Y;9!x2 X;g(y) = x

The temptation is therefore to constrgety ! X as follows. Lety2 Y. By de nition of surjectivity,
there exists somg 2 X such thatf(x) = y—de ne g(y) to be such an elememt Then we have

f(g(y)) = f(x) =y, as required.
There is an extremely subtle—but important—issue with this construction.

By choosingg(y) to be a xed element oK such thatf(x) = y, we are assuming ahead of time tha
there is a mechanism for choosing, for egchY, a unique element of 1[f yg] to be the value of
o(y). In other words we are assuming that some statefgqy) satis es the property

8y2Y;91x2 X;[x2 f Yfyg]” R(x;y)]

But by De nition 2.2.1, this assumption is saying exactly that there exists a funttionX that
associates to eagt? Y an elemenk 2 X such thatf(x) = v.

To state this in plainer terms: we tried to prove that there exists a right inverdebiprassuming
that there exists a right inverse for Evidently, this is not a valid proof strategy.

Surprisingly, it turns out that neither the assumption that every surjection has a right inverse, nc
assumption that there exists a surjection with no right inverse, leads to a contradiction. As sucl
assertion that every surjection has a right invergaasably unprovablealthough the proof that it
is unprovable is far beyond the scope of this textbook.

Nonetheless, the construction of a right inverse that we gave above flidHike we were abusing
the fabric of mathematics and logic.

The essence of the proof is that if a statement of the 8ar@ A; 9b 2 B; p(a;b) is true, then we
should be able to de ne a functidn: A! B such thatp(a; h(a)) is true for alla2 A: the functionh
“chooses' for each 2 A a particular elemerti = h(a) 2 B such thatp(a; b) is true.

What makes this possible is &xiom of choicestated precisely below.

Axiom 2.3.34 (Axiom of choice) [

LetfXji2 Igbe afamily of inhabited sets. Then there is a functiomh! X such thah(i) 2 X
i21

for eachi 2 1.

There are reasons to keep track of the axiom of choice:
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The axiom of choice is perhaps thgangestassumption that we make—most of the other axiomr
that we have stated have been “evidently true’, but this is not the case for the axiom of choice

There are elds of mathematics which require the translation of results about sets into re:
about other kinds of objects—knowing whether the axiom of choice is necessary to prove ar
tells us whether this is possible;

The axiom of choice is highly non-constructive: if a proof of a result that does not use the ax
of choice is available, it usually provides more information than a proof of the same result
does use the axiom of choice.

With this in mind, when we need to invoke the axiom of choice to prove a result, we will mark |
result with the letter&C. This can be freely ignored on rst reading, but readers may nd it usefi
when using this book as a reference at a later date.

Proposition ™+~ 2.3.35

Let X andY be sets and lep(x;y) be a logical formula with free variables2 X andy 2 Y. If
8x2 X;8y2Y; p(xy) is true, then there exists a functibn X! 'Y such thaBx 2 X; p(x;h(x)) is
true.

Proof

For eacha2 X, dene Y= fb2 Y p(a;b)g. Note thatY, is inhabited for eacta 2 X by the
assumption tha@x 2 X; 9y 2 Y; p(x;y) is true. Sincery Y for eacha2 X, by the axiom of choice
there exists a functioh: X ! 'Y such thath(a) 2 Y, for all a2 X. But thenp(a;h(a)) is true for
eacha 2 X by de nition of the setsy;.

In light of Proposition 2.3.35, the axiom of choice manifests itself in proofs as the following pre
strategy.

Strategy”~ 2.3.36 (Making choices)
If an assumption in a proof has the fo8® 2 X; 9y 2 Y; p(x;y), then we may make a choice, for
eacha2 A, of a particular elemeri= b, 2 B for which p(a; b) is true.

Back to inverses

We now return to the converse of Exercise 2.3.32.

Proposition ™+~ 2.3.37
Every surjection has a right inverse.

Proof

Let f : X! Y be a surjection, and deng:Y! X as follows. Givery2 Y, de ne g(y) to be a
particular choice ok 2 X such thatf (x) = y—note that there exists such an elemegtX since f
is surjective, sa@ exists by Strategy 2.3.36. But then by de nition@fve havef(g(y)) = y for all
y2 Y, so thatgis a surjection.

It seems logical that we might be able to classify bijections as being those functions which he
left inverse and a right inverse. We can actually say something stronger—the left and right in
can be taken to be the same function! (In fact, Proposition 2.3.43 establishes that they are nece
the same function.)
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De nition 2.3.38
Let f: X! Y beafunction. Afwo-sided) inversefor f is a functiong:Y ! X which is both a left
inverse and a right inverse fdr

It is customary to simply say “inverse' rather than “two-sided inverse'.

Example 2.3.39

Let D be the set of dyadic rational numbers, as de ned in Example 2.3.18. There, we de ne
functionf : D! D de ned by f(x) = 2—>§( for all x2 D, wherek is some xed natural number. We
nd an inverse forf.

Deneg:D! Dbyg(x)= 2. Then
gis a left inverse forf. To see this, note that for all2 D we have
X X
o(f09) = a(5)= 2 5 =x

gis aright inverse foif. To see this, note that for all2 D we have

2k
fa = f(2y)= 57 =
Sinceg is a left inverse forf and a right inverse fof, it is a two-sided inverse fof. C

Exercise 2.3.40
The following functions have two-sided inverses. For each, nd its inverse and prove thatitis ind
an inverse.

(@ f:R! Rdenedbyf(x)= 2L,
(b) g:P (N)! P (N)denedbyg(X)= NnX.
() h:N N! Ndenedbyh(mn)=2"(2n+ 1) 1forallmn2 N.

C

In light of the correspondences between injections and left inverses, and surjections and rig|
verses, it may be unsurprising that there is a correspondence bdpj@stionsandtwo-sided in-
verses

Exercise 2.3.41
Let f : X! Y be afunction. Therf is bijective if and only iff has an inverse. C

Strategy 2.3.42 (Proving a function is bijective by nding an inverse)
In order to prove that a functioh: X! Y is bijective, it suf ces to nd a functiong:Y ! X such
thatg(f(x)) = xforallx2 X andf(g(y)) = yforally2 Y.

When proving a functiorf : X! Y is bijective by nding an inversg:Y ! X, itisimportant to
check thag is botha left inverseand a right inverse forf. If you only prove thag is a left inverse
for f, for example, then you have only proved tHas injective!

It turns out that if a function has both a left and a right inverse, then they must be equal. This i
content of the following proposition.
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Proposition 2.3.43
Let f : X! Y be a function and suppose Y ! X is a left inverse forf andr :Y! X is a right
inverse forf. Then = r.

Proof
The proof is deceptively simple:

T= 7 idy by de nition of identity functions
=" (fr) sincer is a right inverse foif
=(" f) r by Exercise 2.2.22
=idy r since’ is a left inverse forf
=r by de nition of identity functions

There is some intuition behind why the left and right inverses of a fundtioX ! Y should be
equal if they both exist.

Aleftinverse™ : Y ! X exists only iff is injective. It looks at each elemep® Y and, ifitis in
the image off, returns the (unique) value2 X for which f(x) = y.

Arightinverser : Y ! X exists only if f is surjective. It looks at each elemen® Y and picks
out one of the (possibly many) value2 X for which f(x) = y.

When f is a bijection, every element df is in the image off (by surjectivity), and is a value of
at a unique element of (by injectivity), and so the left and right inverses are forced to return tt
same value on each input—hence they are equal.

It follows from Proposition 2.3.43 that, for any functidn: X ! Y, any two inverses foif are
equal—that is, every bijective function hasiaiqueinverse!

Notation 2.3.44
Let f : X! Y be afunction. Writef 1:Y! X to denote the (unique) inverse forif it exists.

Proposition 2.3.45
Let f : X! Y be a bijection. A functiorg:Y! X is a left inverse forf if and only if it is a right
inverse forf.

Proof
We will prove the two directions separately.

() ) Supposey:Y! Xis a left inverse forf—that is,g(f(x)) = x for all x2 X. We prove that
f(g(y)) = yforally2 Y, thus establishing thatis a right inverse forf. So lety2 Y. Sincef is
a bijection, it is in particular a surjection, so there exissX such thaty = f(x). But then

f(a(y)) = f(a(f(x)) sincey = f(x)
= f(x) sinceg(f(x)) = x
=y sincey = f(X)

So indeedj is a right inverse forf.

(( ) Supposgg:Y! X is a right inverse forf—that is, f(g(y)) = yfor all y2 Y. We prove
that g(f(x)) = x for all x 2 X, thus establishing thaj is a left inverse forf. So letx 2 X.
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Lettingy = f(x), we havef(g(y)) = y sinceg is a right inverse forf. This says precisely that
f(g(f(x)) = f(x), sincey= f(x). By injectivity of f, we haveg(f(x)) = x, as required.

Exercise 2.3.46
Let f : X! Y be a bijection. Prove thet 1:Y! X is a bijection. C

Exercise 2.3.47
Letf: X! Yandg:Y! Zbe bijections. Prove thag f: X! Zis a bijection, and write an
expression for its inverse in terms df* andg 1. C

Exercise 2.3.48
Letf:X! Aandg:Y! Bbe bijections. Prove thatthere is a bijectdn Y! A B, and describe
its inverse. C

At the beginning of this section we motivated the de nitions of injections, surjections and bijectic
by using them to compare two quantities (of dots and stars)—however, as you might have not
we have not yet actually proved that thais intuition aligns with reality. For example, how do
know that if there is an injectiofi : X ! Y thenY has at least as many elements&s

Answering this seemingly simple question is surprisingly dif cult and has different answers depe
ing on whether the sets involved are nite or in nite. In fact, the words " nite', “in nite' and “size'
are themselves de ned in terms of injections, surjections and bijections! We therefore leave this
to future sections.

In Section 6.1, we de ne what it means for a set to be nite and what the size of a nite set
(De nition 6.1.1), and then prove that the sizes of nite sets can be compared by nding an injecti
surjection or bijection between them Theorem 6.1.6.

Comparing the sizes of in nite sets, and even de ning what “size' means for in nite sets, is anot
can of worms entirely and leads to some fascinating mathematics. For example, we can prove
counterintuitive results, such as the Bedf natural numbers and the g@tof rational numbers have
the same size. The journey down this rabbit hole begins in Chapter 8.
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Section 2.E
Chapter 2 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Set notation

2.1. Express the following sets in the indicated form of notation.
(@) fn2 Zjn?< 20gin list notation;
(b) f4k+ 3j k2 Nginimplied list notation;

(c) The set of all odd multiples of six in set-builder notation;

Set operations

2.2. For each of the following statements, determine whether it is true for alXs&tsfalse for all
setsX;Y, or true for some choices of andY and false for others.

@ P (X[Y)=P X)[P(Y) © P (X Y)=P(X) P(Y)
(b) P (X\ Y)= P (X)\ P (Y) (d) P (XnY)= P (X)nP (Y)

Questions 2.3 to 2.7 concern thgmmetric differencef sets, de ned below.

De nition 2.E.1
Thesymmetric difference of setsX andY is the seX4 Y (IATeX code:\triangle ) de ned by

X4 Y=faja2 Xora2Y buta62X\ Yg

2.3. Prove thaiX4 Y = (XnY)[ (YnX)=(X[ Y)n(X\Y) for all setsX andY.
2.4. LetX be a set. Prove that4 X = ? andX4 ? = X.

2.5. Let X andY be sets. Prove that¢ = Y ifand only if X4 Y = 2.

2.6. Prove that setX andY are disjointif and only iX4 Y = X[ Y.

2.7. Prove thalX4 (Y4 Z)=(X4 Y)4 Zforall setsX,Y andZ.
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Functions

2.8. Show that there is only one function whose codomain is empty. What is its domain?

De nition 2.E.2
Afunction f :R! Risevenif f( x)= f(x) forallx2 R, and itisoddif f( x)= f(x) for all
X2 R.

2.9. Letn2 N. Prove that the functiofi : R! R de ned by f(x) = x" for all x2 R is even if and
only if nis even, and odd if and only if is odd.

2.10. Prove that there is a unique functibn R! R that is both even and odd.

2.11. Prove that for every functiori : R! R, there is a unique even functign: R! R and a
unique odd functiom: R! R such thatf (x) = g(x)+ h(x) for all x2 R.

2.12. Letfgn:[n]! [n]jn2 Ngbe afamily of functions such thdt qm= q, fforall f:[m]! [n].
Prove thagp = id|; foralln2 N.

2.13. Let X be a set and let);vV  X. Describe the indicator functiony,y of the symmetric
difference ofU andV (De nition 2.E.1) in terms ofcy andcy.

Images and preimages

2.14. Let f : X! Y be a function. For each of the following statements, either prove it is true
nd a counterexample.

(@uU f Yf[U]jforallu X; (c) v f[f YV]forallV Y;
(b) f f[U]] UforallU X; (d) f[f [v]] VforalVv V.

Injections, surjections and bijections

2.15. (a) Prove that, for all functions : X! Y andg:Y! Z if g f is bijective, thenf is
injective andg is surjective.

(b) Find an example of a functioh: X! Y and afunctiog:Y! Zsuchthag f is bijective, f
is not surjective and is not injective.

2.16. For each of the following pairéJ;V) of subsets oR, determine whether the speci cation
“f(x)= x> 4x+ 7forallx2 U' de nes afunctionf :U! V and, if it does, determine whethér
is injective and whethef is surjective.

(@ U=RandV = R; (d) U=(3;4]andV =[4;7);
(b) U =(1;4) andV =[3;7); (e) U=[2¥)andV =[3;¥);
(c) U=[3;4) andV =[4;7); H U=[2¥)andV =R.

2.17. For each of the following pairs of se¥sandY, nd (with proof) a bijectionf : X I Y.
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(@) X=ZandY = N;
(b) X=RandY =( 1;1);
(c) X=[0;1] andY =(0;1);

(d) X=[a;b] andY =(c;d), wherea;b;c;d 2 R with a< bandc< d.

. +b+1
2.18. Prove that the functiofi : N N! N de ned by f(a;b) = a 2 + b for all (a;b) 2

N Nis a bijection.
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Section 3.1
Peano's axioms

The purpose of this section is to forget everything we think we know about the natural numbers
reconstruct our former knowledge (and more!) using the following fundamental property:

Every natural number can be obtained in a unique way by
starting from zero and adding one some nite number of times.

This is slightly imprecise—it is not clear what is meant by “adding one some nite number of time
for example. Worse still, we are going to de ne what ™ nite' means in terms of natural numbers
Section 6.1, so we'd better not refer to niteness in our de nition of natural numbers!

The following de nition captures precisely the properties that we need in order to characterise
idea ofN that we have in our minds. To begin witN, should be a set. Whatever the elements c
this setN actuallyare, we will think about them as being natural numbers. One of the elements
particular, should play the role of the natural number 0—this will bezéére element 2 N; and
there should be a notion of “adding one'—this will be tuecessor function:aN! N. Thus given
an elemenn 2 N, though of as a natural number, we think about the elers@ntas the natural
number h+ 1'. Note that this is strictly for the purposes of intuition: we will de ne "and "1' in
terms ofzands, not vice versa.

De nition 3.1.1
A notion of natural numbers is a setN, together with an element? N, called azero element and
a functions: N! N called asuccessor functionsatisfying the following properties:

(i) z6X[N]; that is,z6 s(n) for anyn2 N.

(ii) sisinjective; thatis, for alm;n2 N, if s(m) = s(n), thenm= n.

(i) Nis generated bgands; that is, for all set¥, if z2 X ands(n) 2 X foralln2 N, thenN  X.

The properties (i), (i) and (iii) are callddeano's axioms

Note that De nition 3.1.1 does not specify whdf zands actually are; it just speci es the properties
that they must satisfy. It turns out that it doesn't really matter what notion of natural numbers
use, since any two notions are essentially the same. We will not worry about the speci cs here—
task is left to Section B.2: a particular notion of natural numbers is de ned in Construction B.:
and the fact that all notions of natural numbers are “essentially the same' is made precise and
in Theorem B.2.8.

We can de ne all the concepts involving natural numbers that we are familiar with, and prove all
properties that we take for granted, just from the elerm@nltl and the successor functisnN! N.

For instance, we de ne “0' to mean de ne “1'to means(2), de ne “2' to means(s(2)), and so on.
For instance, "12' is de ned to mean

S(S(S(S(S(S(S(S(S(S(S((2))NM)))
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Section 3.1. Peano's axioms 115

From now on, then, let's write 0 instead ofor the zero element dfl. It would be nice if we could
write ‘'n+ 1'instead ofs(n), but we must rst de ne what+' means. In order to do this, we need a
way of de ning expressions involving natural numbers; this is whatéoeirsion theorenallows us
to do.

Theorem 3.1.2 (Recursion theorem)
LetX be aset. Forath2 X and allh: N X! X, there is a unique functioh: N! X such that
f(0) = aandf(s(n)) = h(n; f(n)) foralln2 N.

Proof
Leta2 Xandh:N X! X.We prove existence and uniquenesg geparately.

Dene f:N! X by specifyingf(0) = aandf(s(n)) = h(n; f(n)). Sincehis a function angis
injective, existence and uniquenesx@ X such thatf (n) = x is guaranteed, provided th&{n)
is de ned, so we need only verify totality.

SoletD=fn2 Nj f(n) is de nedg. Then:
02 D, sincef(0) is de ned to be equal ta.

Letn2 N and supposa2 D. Thenf(n) is de ned andf(s(n)) = h(n; f(n)), so thatf(s(n)) is
de ned, and hencs(n) 2 D.

By condition (iii) of De nition 3.1.1, we haveN D, so thatf(n) is de ned for alln2 N, as
required.

To see thaf is unique, supposg: N! X were another function such thgf0) = aandg(s(n)) =
h(n;g(n)) foralln2 N.
To see thaf = g, letE=fn2 Nj f(n)= g(n)g. Then

02 E, sincef(0) = a= g(0).

Letn2 N and suppose that2 E. Thenf(n) = g(n), and so

f(s(m) = h(n; f(n) = h(n;g(n) = g(s(n))

and sos(n) 2 E.

Again, condition (iii) of De nition 3.1.1 is satis ed, sothal E. It follows thatf(n) = g(n) for
alln2 N, and sof = g.

Thus we have established the existence and uniqueness of a fufctidh X such thatf(0) = a
andf(s(n)) = h(n; f(n)) foralln2 N.

The recursion theorem allows us to de ne expressions involving natural nurbpeesursion this
is Strategy 3.1.3.

Strategy 3.1.3 (De nition by recursion)
In order to specify a functioffi : N! X, it suf ces to de ne f(0) and, for givem 2 N, assume that
f(n) has been de ned, and de n&(s(n)) in terms ofn and f(n).

Example 3.1.4
We can use recursion to de ne addition on the natural numbers as follows.
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For xed m2 N, we can de ne a function agig N! N by recursion by:
addn(0)= m and adg(s(n)) = s(addy(n)) foralln2 N

In more familiar notation, fom;n 2 N, de ne the expressionm+ n' to mean adg,(n). Another
way of expressing the recursive de nition of aglah) is to say that, for eacin2 N, we are de ning
m+ n by recursion om as follows:

m+ 0=m and m+ g(n)= g(m+ n) foralln2 N

C

We can use the recursive de nition of addition to prove familiar equations between numbers.
following proposition is a proof that2 2= 4. This may seem silly, but notice that the expressio
"2+ 2= 4'is actually shorthand for the following:

addysg) (S(s(0))) = S(s(s(s(0))))

We must therefore be careful to apply the de nitions in its proof.

Proposition 3.1.5
2+2=4

Proof
We use the recursive de nition of addition.

2+2=2+91) since 2= (1)
=52+ 1) by de nition of +
= 8(2+ 5(0)) since 1= §(0)
= 5(s(2+ 0)) by de nition of +
= 5(5(2) by de nition of +
= (3 since 3= 5(2)
=4 since 4= §(3)

as required.

The following result allows us to drop the notatia(n)' and just write h+ 1' instead.

Proposition 3.1.6
For alln2 N, we haves(n) = n+ 1.

Proof
Letn 2 N. Then by the recursive de nition of addition we have

n+ 1= n+ g(0)= s(n+ 0)= g(n)

as required.

In light of Proposition 3.1.6, we will now abandon the notatsfn), and writen+ 1 instead.

We can de ne the arithmetic operations of multiplication and exponentiation by recursion, too.
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Example 3.1.7
Fixm2 N. De ne m nforalln2 N by recursion om as follows:

mO0=0 and m (n+1)=(m n)+ mforalln2 N

Formally, what we have done is de ne a function muitN ! N recursively by mul(2) = zand
multm(s(n)) = addyyg,my (M) for all N2 N. But the de nition we provided is easier to understand
C

Proposition 3.1.8
22=4

Proof
We use the recursive de nitions of addition and recursion.

22=2(1+1) since2= 1+1
=(21+2 by de nition of
=(2 (0+ D)+ 2 since 1= 0+ 1
=(20+2+2 by de nition of
=(0+2)+2 by de nition of
=(0+(1+ 1)+ 2 since2= 1+ 1
=(0+ 1)+ 1+ 2 by de nition of +
=(1+ 1+ 2 since 1= 0+ 1
=2+2 since2= 1+ 1
=4 by Proposition 3.1.5

as required.

Exercise 3.1.9
Givenm2 N, de ne m" for all n2 N by recursion om, and prove that2= 4 using the recursive
de nitions of exponentiation, multiplication and addition. C

We could spend the rest of our lives doing long computations involving recursively de ned arithm
operations, so at this point we will stop, and return to taking for granted the facts that we know a
arithmetic operations.

There are, however, a few more notions that we need to de ne by recursion so that we can use
in our proofs later.

De nition 3.1.10

k=1
|

9 1 r

aa=0 and g &= Q& taniforalln2N

k=1 k=1 k=0
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De nition 3.1.11

k=1
9 ntl iy
Oa=1 and Qa= Qa awiforalln2N
k=1 k=1 k=0

Example 3.1.12
Letx; = i2 for eachi 2 N. Then

5
d % = 1+ 4+ 9+ 16+ 25= 55
i=1

and

2
Oxi=14 9 16 25= 14400
i=1
C
Exercise 3.1.13
Letxs; %2 2 R. Working strictly from the de nitions of indexed sum and indexed product, prove th

2 2
z 2
ax=x+x and Ox=x X
i=1 i=1

Binomials and factorials

De nition 3.1.14 (to be rede ned in De nition 6.2.10)
Letn2 N. Thefactorial of n, writtenn!, is de ned recursively by

0'=1 and (n+1)!=(n+1) nlforalln>0

Put another way, we have
n
n=Qi
i=1
for all n2 N—recall De nition 3.1.11 to see why these de nitions are really just two ways of worc
ing the same thing.

De nition 3.1.15 (to be rede ned in De nition 6.2.4)
Let n;k 2 N. The binomial coef cient E (IATEX code: \binom{nKk} ) (read h choosek’) is
de ned by recursion om andonk by

n 0 n+1 n n
:1; :0; = +
0 k+ 1 k+ 1 k k+ 1
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This de nition gives rise to an algorithm for computing binomial coef cients: they tinto a diagrar
known asPascal's triangle with each binomial coef cient computed as the sum of the two lyin
above it (with zeroes omitted):

N
N
NN
1
=
N
-

s 2 3 3 1 3 3 1
4 4444 1 4 6 4 1
s 5 5 5 5 5 1 5 10 10 5 1

Exercise 3.1.16
Write down the next two rows of Pascal's triangle. C
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Section 3.2
Weak induction

Just as recursion exploited the structure of the natural numbeesrte expressionsvolving natural
numbers, induction exploits the very same structungréwe resultsabout natural numbers.

Theorem 3.2.1 (Weak induction principle)
Let p(n) be logical formula with free variable2 N, and letng 2 N. If

() p(ng) is true; and

(i) Forall n> ng, if p(n) is true, themp(n+ 1) is true;
thenp(n) is true for alln > ng.

Proof
Dene X=fn2 Nj p(ng+ n) is trugy; that is, given a natural numbeywe haven 2 X if and only
if p(no+ n) is true. Then

02 X, sinceng+ 0= ng andp(ng) is true by (i).

Letn2 N and assuma 2 X. Thenp(ng+ n) is true. Sinceng+ n> ng andp(ng+ n) is true, we
havep(ng+ n+ 1) is true by (ii). Butthemg+ n+ 12 X.

So by De nition 3.1.1(iii) we haveN  X. Hencep(ng+ n) is true for alin2 N. But this is equivalent
to saying thap(n) is true for alln > ny.

Strategy 3.2.2 (Proof by (weak) induction)
In order to prove a proposition of the foren 2 N; p(n), it suf ces to prove thatp(0) is true and
that, for alln2 N, if p(n) is true, thenp(n+ 1) is true.

Some terminology has evolved for proofs by induction, which we mention now:

The proof ofp(np) is called thebase casp
The proof of8n> ng; (p(n) ) p(n+ 1)) is called thanduction step;
In the induction step, the assumptip(n) is called thenduction hypothesis

In the induction step, the propositigafn+ 1) is called thenduction goal.

The following diagram illustrates the weak induction principle.

/ \
@ — n+ 1]
\ /
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To interpret this diagram:

The shaded diamond represents the base s,
The square represents the induction hypothp@i};
The dashed circle represents the induction ggak 1);

The arrow represents the implication we must prove in the induction step.

We will use analogous diagrams to illustrate the other induction principles in this section.
C Proposition 3.2.3

n
Letn2 N. Thend k=
k=1

n(n+ 1)
2

Proof
We proceed by induction om> 0.

2 +1
(Base casgWe need to proveg k= 0(072)
k=1
. _0(0+ 1) J iy
This is true, smceT = 0,andgq k= 0 by De nition 3.1.10.
k=1
. 5 nn+1 . . . . .
(Induction step) Letn> 0 and suppose th@_ k= 5 ; this is the induction hypothesis.

k=1

n+1
We need to prove tha§ k= w;

k=1
We proceed by calculation:

this is the induction goal.

k +(n+1) by De nition 3.1.10

T Qo?
x~
1
il Qo5

_ n(n; 1 +(n+ 1) by induction hypothesis

=(n+1) g+ 1 factorising

_ (n+ 1)(n+ 2

rearrangin
2 ging

The result follows by induction.

Before moving on, let's re ect on the proof of Proposition 3.2.3 to highlight some effective ways
writing a proof by induction.

We began the proof by indicating that it was a proof by induction. While it is clear in this sect
that most proofs will be by induction, that will not always be the case, so it is good practice
indicate the proof strategy at hand.

The base case and induction step are clearly labelled in the proof. This is not steicdgsary
from a mathematical perspective, but it helps the reader to navigate the proof and to identify
the goal is at each step.
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We began the induction step by writing, "Let> ng and suppose that [.induction hypothesis
goes here..]'. This is typically how your induction step should begin, since the propositic
being proved in the induction step is of the fo8Bm> ng; (p(n) ) ).

Before proving anything in the base case or induction step, we wrote out what it was that we
trying to prove in that part of the proof. This is helpful because it helps to remind us (and
person reading the proof) what we are aiming to achieve.

Look out for these features in the proof of the next proposition, which is also by inductioe dh

C Proposition 3.2.4
The natural number® nis divisible by 3 for alln2 N.

Proof
We proceed by induction am> 0.

(Base caspWe need to prove thaf0 0 is divisible by 3. Well
0 0=0=3 0
so® O0is divisible by 3.

(Induction step) Letn2 N and suppose thaf nis divisible by 3. Them® n= 3k for some
k2 Z.

We need to prove thgn+ 1)3 (n+ 1) is divisible by 3; in other words, we need to nd some
natural numbet such that
(n+1)° (n+1)=3

We proceed by computation.

(n+1)° (n+1)

=(n*+3n°+3n+1) n 1 expand brackets

=n® n+3n+3n+1 1 rearrange terms

=n® n+3n’+3n sincel 1=0

= 3k+ 3n°+ 3n by induction hypothesis
= 3(k+ n’+ n) factorise

Thus we have expresséd+ 1) (n+ 1) in the form 3 for some™ 2 Z; speci cally, > = k+
n’+n.
The result follows by induction.
Exercise 3.2.5 N
Prove by induction thaf 2= 2™ 1foralln2 N. C
k=0
The following proposition has a proof by induction in which the base case is not zero.

C Proposition 3.2.6
For alln> 4, we have 8< 2".

Proof
We proceed by induction am> 4.
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(Base caspp(4) is the statement 3t < 24. This is true, since 12 16.

(Induction step) Suppose > 4 and that 8 < 2". We want to prove h+ 1) < 2™ Well,

3(n+1)=3n+3 expanding
<2"+3 by induction hypothesis
<2+ 24 since 3< 16= 2*
6 2"+ 2" sincen> 4
=2 2" simplifying
=2ml simplifying

So we have proved(8+ 1) < 2", as required.

The result follows by induction.

Note that the proof in Proposition 3.2.6 says nothing about the truth or falgignpfor n= 0; 1;2; 3.
In order to assert that these cases are false, you need to show them individually; indeed:

3
3
3
3

0= 0and 2 = 1, hencep(0) is true;
1= 3and 2 = 2, hencep(1) is false;
2= 6and Z= 4, hencep(2) is false;
3=9and 2 = 8, hencep(3) is false.

So we deduce thai(n) is true whem= 0 orn> 4, and false when 2 f 1;2; 3g.

Exercise 3.2.7

Find all natural numbens such than® < 5". C
Exercise 3.2.8
Prove tha(1+ x)12345678% 11 123 456 78X for all realx> 1. C

Sometimes a “proof' by induction might appear to be complete nonsense. The following is a cl:

example of a “fail by induction':

Example 3.2.9
The following argument supposedly proves that every horse is the same colour.

(Base casgSuppose there is just one horse. This horse is the same colour as itself, so the

case is immediate.

(Induction step) Suppose that every collection nthorses is the same colour. Détbe a set of

n+ 1 horses. Removing the rst horse froXy we see that the lasthorses are the same colour

by the induction hypothesis. Removing the last horse fKgwe see that the rsh horses are the
same colour. Hence all the horsesdrare the same colour.

By induction, we're done. C

Exercise 3.2.10
Write down the statemern(n) that Example 3.2.9 attempted to prove for mf> 1. Convince

yourself that the proof of the base case is correct, then write down—with quanti ers—exactly
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proposition that the induction step is meant to prove. Explain why the argument in the induction
failed to prove this proposition. C

There are several ways to avoid situations like that of Example 3.2.9 by simply putting more tho
into writing the proof. Some tips are:

Statep(n) explicitly. In the statement “all horses are the same colour' it is not clear exactly w
the induction variable is. However, we could have said:

Let p(n) be the statement “every setrohorses has the same colour'.

Refer explicitly to the base casg in the induction step. In Example 3.2.9, our induction hypo
thesis simply stated “assume every seat bbrses has the same colour'. Had we instead said:

Letn> 1 and assume every setmhorses has the same colour.
We may have spotted the error in what was to come.

What follows are a couple more examples of proofs by weak induction.

Proposition 3.2.11 |
2

n n )
Foralln2 N, we haved k¥*= & k

k=0 k=0
Proof
. . g n(n+ 1) )
We proved in Proposition 3.2.6 thg@ k= for alln2 N, thus it suf ces to prove that
k=0
én. k3: n2(n+ 1)2
k=0 4
foralln2 N.
We proceed by induction om> 0.
0?0+ 1)% _ . . . . .
(Base caspWe need to prove that’G= — This is true since both sides of the equatior
are equal to 0.
n n2(n+ 1)2 n+1
(Induction step) Fix n2 N and suppose thag k® = ~—4 - We need to prove thad k=
k=0 k=0
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n+ 1)2(n+ 2)2 _ . .
u. This is true since:

4
n;l on
ak=3aK+(n+ 13 by de nition of sum
i=0 i=0
2 2
= % +(n+ 1)3 by induction hypothesis
2 2 3
_n (n+1) Z 4(n+ 1) (algebrg
2(n2
_ (n+ 1)%(n 4+ 4(n+ 1)) (algebra
2 2
= w (a'gebra)

By induction, the result follows.

In the next proposition, we prove the correctness of a well-known formula for the sumaoitlan
metic progressiowof real numbers.

C Proposition 3.2.12
Leta;d 2 R. Then

5 (a+ kd) = (n+ 1)(2a+ nd)
k=0 2

foralln2 N.

Proof
We proceed by induction am> 0.

(0+ 1)(2a+ 0d)

0
(Base casgWe need to prove thﬁ (a+ kd) = 5

k=0

. This is true, since

0
8 (a+kd= a+ 0d= a= 2= 1 (29 _ (0* D(2a+ Od)
bt 2 2 2

(n+ 1)(2a+ nd)

n
(Induction step) Fix n2 N and suppose thé (a+ kd) = . We need to prove:

k=0 2
n 1
o (n+ 2)(2a+(n+ 1)d)
a+ kd) =
B9 T
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This is true, since

n+1

é (a+ kd)
k=0
= én_ (a+ kd)+(a+(n+ 1)d) by de nition of sum
k=0
= w +(a+(n+ 1)d) by induction hypothesis
_ (n+ 1)(2a+ nd)2+ 2a+ 2(n+ 1)d (algebra
_ (n+1) 2a+(n+ l)znd+ 2a+ 2(n+ 1)d (algebra)
_ 2a(n+ 1+ 1)+(2n+ 1)(nd+ 2d) (algebrg
_ 2a(n+ 2)+( r21+ 1)(n+ 2)d (algebra)
_ (n+ 2)(2a;( n+ 1)d) (algebrg

By induction, the result follows.

The following exercises generalises Exercise 3.2.5 to prove the correctness of a formula for the
of ageometric progressioaf real numbers.

Exercise 3.2.13
Leta;r 2 Rwithr 6 1. Then
a(l r™d

énarn_
1

k=0
foralln2 N. C

When attempting the following exercise, you might nd that your induction step requires an auxili
result, which itself has a proof by induction.

Exercise 3.2.14
Prove by induction that7 2 4"+ 1 is divisible by 18 for aln2 N. C

Binomials and factorials

Proof by induction turns out to be a very useful way of proving facts about binomial coef ci@nts
and factorials!.

Example 3.2.15
n

We prove thaﬁ n = 2" by induction om.
i=0

(Base casgWe need to proveg = 1and 2 = 1. These are both true by the de nitions of
binomial coef cients and exponents.

126



Section 3.2. Weak induction

(Induction step) Fix n> 0 and suppose that

d n
a
i=0
We need to prove
nlon+1
a
i=0
This is true, since
Ml on+1
a
i=0
~on+1 Wl op+a
0 o1 [
7 n+1
=1+ 3 .
j=0 j+1
3 n n
:1+é + .
=0} jt1

n

Now § = 2" by the induction hypothesis.
j=0
yields
o 1Tl 21k

By the induction hypothesis, we have

5 n _ 60’{ n
k1 K igo K
n g N n
and ., =0,s0 that_a_0 v 2" 1
J:
Putting this together, we have
1+ & n N g N
a a j+1

so the induction step is nished.

By induction, we're done.

127
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splitting the sum

lettingj=1 1

by De nition 3.1.15

separating the sums

Moreover, reindexing the sum ukingj + 1

1+2"+(2" 1)

=22"
= 2n+1
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Exercise 3.2.16
Prove by induction om > 1 that

acy " o=o
i=0 I
C
C Theorem 3.2.17
Letn;k2 N. Then 8
<" ke

"= KN K
kg if k> n

Proof
We proceed by induction om

(Base casgWhenn = 0, we need to prove thaE =
k> 0.

If k6 0thenk= 0, sincek2 N. Hence we need to prove

k,( k), forallk6 O, and thatk = Ofor all

0 _ o
0 00!

But this is true since] = 1and % = 137 = 1.
If k> 0then = 0 by De nition 3.1.15.

(Induction step) Fix n2 N and suppose thaE forallk6 nand ” = Oforallk> n.

- kl(n K!
We need to prove that, for &tl6 n+ 1, we have
n+1 _  (n+1)!
k  Kk(n+1 K!

andthat ;! = Oforallk> n+ 1,

So x k2 N. There are four possible cases: eithek@) O, or (i) 0< k6 n, or (iii) k= n+ 1, or
(iv) k> n+ 1. In cases (i), (ii) and (iii), we need to prove the factorial formula ngl ; in case
(iv), we need to prove thaf";* = 0.

(i) Suppose= 0. Then "' = 1 by De nition 3.1.15, and

(n+! _ (n+D1! _
Ki(n+1 k!  0l(n+ 1)1

_ 1 _ + 1)!
since 0= 1. So ! = %

(i) fO<k6n thenk— + 1 for some natural numbérx n. Then™ + 16 n, so we can use
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the induction hypothesis to apply factorial formula to bothand \fl . Hence

n+1
k
n+1 . .
= i1 sincek="+1
= n + ‘fl by De nition 3.1.15
n! n!

by induction hypothesis

IR CER]

Now note that

n! N n! +1 n! .
In )Y I(n ) T+ 10 C+1i(n ) C+1)
and
n! _ n! n - _ n! .
C+D!(n - DI C+D(n ~ D'n > (C+Di(n ) ()

Piecing this together, we have

n! n!
I L C+Din ~ D!

n! N .
= W [C+D+(n )]
_ nl(n+ 1)

T C+D(n )
_ (n+ )
T C+D(n D)

sothat ™1 = DL Now we're done; indeed,

= +Din O

(n+ 1! _ (n+ D!
C+Di(n ) K((+1 k!

sincek= "+ 1.
(i) If k= n+ 1, then

nT(l = 2:1 sincek=n+ 1
- 2 + n: . by De nition 3.1.15
= n%' + by induction hypothesis
=1
and% = 1, so again the two quantities are equal.
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(iv) If k> n+ 1, thenk= "+ 1 for some > n, and so by De nition 3.1.15 and the induction
hypothesis we have

ntl  n+l p n

n
= + =0+0=
k “+1 “+1 0+0=0

On rst reading, this proof is long and confusing, especially in the induction step where we
required to split into four cases. We will give a much simpler proof in Section 6.2 (see T
orem 6.2.42), where we prove the statememibinatoriallyby putting the elements of two sets
in one-to-one correspondence.

We can use Theorem 3.2.17 to prove useful identities involving binomial coef cients.

0 Example 3.2.18
Letn;k;” 2 Nwith " 6 k6 nthen

n k _n n
k =~ k °

Indeed:

n k

Koo

n! k!

TR INICERD) by Theorem 3.2.17

_ n'k! bine fracti

ERICRICEN] combine fractions

n!

= |

n KiK. )] cancelk!

_ ni(n °)! . (n !

T S Wik )N ! muiltiply by 7—;

= n (n ) separate fractions

T Sn D) Kk )i(n K P

= n (n )t rearranging

In ) (ke H)H(n ) (k!

= n E . by Theorem 3.2.17

C

Exercise 3.2.19
Provethat, = ", foralln;k2 Nwithk6 n. C

A very useful application of binomial coef cients in elementary algebra is to the binomial theore

C Theorem 3.2.20 (Binomial theorem)
Letn2 N andx;y2 R. Then

Xkyn k

Qo5
=~ S

(x+y)" =

=~
1]
o
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Proof

131

In the case wheg= 0 we havey” kK= 0 for allk< n, and so the equation reduces to

XM= Xy N

which is true, sincg® = 1. So for the rest of the proof, we will assume tia&k 0.

We will now reduce to the case whgr 1; and extend to arbitrary6 0 afterwards.

n
We prove(1+ X)"= § E X by induction om.
=0

=~

(Base casp(1+x)°= 1and § xX°= 1 1= 1, so the statement is true wher 0.

(Induction step) Fix n2 N and suppose that

d n
1+x"= 3 X
o K
n+1
n+1
We need to show thgfl+ X)™1= § ‘ x€. Well,
k=0
(1+X)n+l
=(1+ x)(1+x)"
g n
=(1+x) & X<
o K
:én N e x én N
ko K ko K
g n k g n k+1
=a X+ a X
o K o K
g K, Bt k
=a X+ a X
o K k1 K1
T L
= X+ + X+ X
0T kT k1
N o, 8 N+l 4 N o
= X0+ + X
0 21 k n
— n+1x0+é” n+1 ., N+l o
0 w1 K n+1
wln+1l
a
o K

The step labelled ) holds because

n n+ 1 n

=1= and

0 0 n

131

by laws of indices

by induction hypothesis

by expandingdx+ 1)

distributingx

k! k 1insecondsum

splitting the sums

by De nition 3.1.15

see( ) below

n+1
n+1

1
[
1
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N foralln2 N.

n
By induction, we've shown thatl+ x)" = é K X

i=0
Wheny 6 0 is not necessarily equal to 1, we have that

x " S n x X 2 on
X+ V)" = 1+ — = — = Xk k
(x+y)" =y y y' a oy T2y y'
The middle equation follows by what we just proved; the leftmost and rightmost equations are sit
algebraic rearrangements.

Example 3.2.21

In Example 3.2.15 we saw that

g n
a , =2
k=0 k

This follows quickly from the binomial theorem, since

Qo>

n
1k 1I"I k -
k ki

Qo

n
n_— n_
2"=(1+ "= K

0

=~
1)

0

Likewise, in Exercise 3.2.16 you proved that the alternating sum of binomial coef cients is ze
that is, forn2 N, we have

n
(D<) =0
k=0 k
The proof is greatly simpli ed by applying the binomial theorem. Indeed, by the binomial theore

we have

n n g kqn k g L
0=0"=( 1+1)"= Q3 (D1 "=a()
o K k=0 k
Both of these identities can be proved much more elegantly, quickly and easilyamingerative
combinatorics This will be the topic covered in Section 6.2. C
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Section 3.3. Strong induction 133

Section 3.3
Strong induction

Consider the following example, which we will attempt to prove by induction.

Example 3.3.1
De ne a sequence recursively by

n
bo=1 and bn1=1+ § beforalln2 N
k=0

We will attempt to prove by induction thaf, = 2" for alln2 N.

(Base caspBY de nition of the sequence we hali = 1= 2°. So far so good.

(Induction step) Fix n2 N, and suppose that = 2". We need to show thdi,. ; = 2™ 1.

n
Well, by 1= 1+ § b= ::: uhoh.
k=0

Here's what went wrong. If we could replace editby 2 in the sum, then we'd be able to complete
the proof. However we cannot justify this substitution: our induction hypothesis only gives
information abouby, not about a general terby for k< n. C

The strong induction principle looks much like the weak induction principle, except that its il
duction hypothesis is more powerful. Despite its name, strong induction is no stronger than \
induction; the two principles are equivalent. In fact, we'll prove the strong induction prinbiple
weak inductioh

Theorem 3.3.2 (Strong induction principle)
Let p(x) be a statement about natural numbers andg@t N. If

() p(ng) is true; and
(i) Foralln2 N, if p(k) is true for allng 6 k6 n, thenp(n+ 1) is true;
thenp(n) is true for alln > ng.

Proof
For eacm > ng, letq(n) be the assertion tha@(k) is true for allng 6 k6 n.

Notice thatq(n) implies p(n) for all n> ng, since givem > ny, if p(k) is true for aling 6 k6 n,
then in particulap(k) is true wherk = n.

So it suf ces to proveg(n) is true for alln > ng. We do so by weak induction.

(Base casgq(no) is equivalent top(ng), since the only natural numb&mwith ng 6 k6 ng is ng
itself; henceg(np) is true by condition (i).

(Induction step) Letn> ng and supposg(n) is true. Thermp(k) is true for allng 6 k6 n.
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134 Chapter 3. Mathematical induction

We need to prove thaj(n+ 1) is true—that is, thap(k) is true for allng 6 k6 n+ 1. But we
know p(K) is true for allng 6 k6 n—this is the induction hypothesis—and thpfn+ 1) is true
by condition (ii). So we have that(k) is true for allng 6 k6 n+ 1 after all.

By induction,q(n) is true for alln> ng. Hencep(n) is true for alln > ng.

Strategy 3.3.3 (Proof by strong induction)
In order to prove a proposition of the for8m > ng; p(n), it suf ces to prove thatp(np) is true and
that, for alln> no, if p(k) is true for allng 6 k6 n, thenp(n+ 1) is true.

Like with weak induction, we can illustrate how strong induction works diagrammatically. T
induction hypothesis, represented by the large square, now encompéksésr all np 6 k6 n,
wherep(ng) is the base case.

/ \
& ) O
\ 7

Observe that the only difference from weak induction is the induction hypothesis.

Weak induction step: Fix n> ng, ‘ assumep(n) is true‘ , derivep(n+ 1);

Strong induction step: Fix n> n, ‘ assumep(k) is true for allng 6 k6 n ‘ , derivep(n+ 1).

We now use strong induction to complete the proof of Example 3.3.1.

Example 3.3.4 (Example 3.3.1 revisited)
De ne a sequence recursively by

n
bo=1 and bn1= 1+ & beforalln2 N
k=0

We will prove by strong induction thdtt, = 2" foralln2 N.

(Base caspBY de nition of the sequence we halg = 1= 20,

(Induction step) Fix n2 N, and suppose théf, = 2K for all k6 n. We need to show thét,, 1 =
21 This is true, since

n

bh1= 1+ é by by the recursive formula fdv,. 1
k=0
A
=1+ q 2 by the induction hypothesis
k=0
= 1+(2™t 1) by Exercise 3.2.5
- 2n+1
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Section 3.3. Strong induction 135

By induction, it follows thab, = 2" foralln2 N. C

The following theorem adapts the strong induction principle to proofs where we need to refer
xed number of previous steps in our induction step.

Theorem 3.3.5 (Strong induction principle (multiple base cases))
Let p(n) be a logical formula with free variable2 N and letnp < n; 2 N. If

(i) Forall n> nq, if p(K) is true for allng 6 k6 n, thenp(n+ 1) is true;

thenp(n) is true for alln > ng.

Proof
The fact thatp(n) is true for alln > ng follows from strong induction. Indeed:

(Base caskp(np) is true by (i);

(Induction step) Fix n> ng and assum@(k) is true for allng 6 k6 n. Then:
If n< ng, thenn+ 16 ng, so thatp(n) is true by (i);
If n> nyg, thenp(n+ 1) is true by (ii).

In both cases we see thain+ 1) is true, as required.

Thus by strong induction, we have than) is true for alln > ng.

Strategy 3.3.6 (Proof by strong induction with multiple base cases)
In order to prove a statement of the foBn> np; p(n), it suf ces to provep(k) for all k2 f ng; ng +

p(n+ 1) is true.

This kind of strong induction differs from the usual kind in two main ways:

The induction step refers to both the least base ngs@d the greatest base cagethe variable
n in the induction step is taken to be greater than or equg] tevhile the induction hypothesis
assumeg(k) forallng 6 k6 n.

The following diagram illustrates how strong induction with multiple base cases works.

/ \
\ 7
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136 Chapter 3. Mathematical induction
Note the difference in quanti cation of variables in the induction step between regular strong inc
tion and strong induction with multiple base cases:

One base caseFix n> and assume(K) is true for aII6 k6 n.

Multiple base casesFix n> and assum@(K) is true for aII 6 k6 n.

Getting the quanti cation of the variablesandk in the strong induction step is crucial, since the
guanti cation affects what may be assumed alboanhdk.

The need for multiple base cases often arises when proving results about recursively de ne
guences, where the de nition of a general term depends on the values of a xed number of pre\
terms.

Example 3.3.7
De ne the sequence

=0 a=1 a,=3a,1 2a, pforalln>2

We nd and prove a general formula f@p in terms ofn. Writing out the rst few terms in the
sequence establishes a pattern that we might attempt to prove:

4 5 6 7 8
15 31 63 127 255

n|o
an | 0

1 2 3
1 3 7
It appears thaa, = 2" 1 for alln> 0. We prove this by strong induction, taking the cases0
andn= 1 as our base cases.

(Base casedsBy de nition of the sequence, we have:
ag=0=2° 1:;and
ay=1=2 1:
so the claim is true when= 0 andn= 1.
(Induction step) Fix n> 1 and assume thak = 2¢ 1 for all06 k6 n. We need to prove that
am1= 2" 1.
Well sincen> 1, we haven+ 1> 2, so we can apply the recursive formulaat@ 1. Thus

an+1=3ay 2a5 1 by de nition of an+ 1
=32" 1) 22" 1 by induction hypothesis
=32" 3 22"1+2 expanding
=32" 3 2"+2 using laws of indices
=22" 1 simplifying
=2ml 1 using laws of indices

So the result follows by induction. C

The following exercises have proofs by strong induction with multiple base cases.
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Exercise 3.3.8
De ne a sequence recursively lag = 4,a; = 9 anda, = 5a, 1 6a, 2 for all n> 2. Prove that
a,=3 2"+ 3"foralln2 N. C

Exercise 3.3.9
TheTribonacci sequencis the sequencg;ty;ty;::: de ned by

t0=0;, t1=0;, tb=1, ty=th, 1+ty 2+ty 3foralln>3

Prove that, 6 2" 3foralln> 3. C

Exercise 3.3.10

The Frobenius coin problenasks when a given amount of money can be obtained from coins
given denominations. For example, a value of 7 dubloons cannot be obtained using only 3 dul
and 5 dubloon coins, but for atl> 8, a value ofh dubloonscanbe obtained using only 3 dubloon
and 5 dubloon coins. Prove this. C

Well-ordering principle

The underlying reason why we can perform induction and recursion on the natural numbers i
cause of the way they are ordered. Speci cally, the natural numbers satisfyetherdering prin-
ciple: if a set of natural numbers has at least one element, then it has a least element. This s
natural numbers apart from the other number sets; for exadiplas no least element, sincaif Z
thena 12 Zanda 1< a

Theorem 3.3.11 (Well-ordering principle)
Let X be a set of natural numbers.Xfis inhabited, therX has a least element.

Idea of proof
Under the assumption thtis a set of natural numbers, the proposition we want to prove has
formp) g. Namely

Xis inhabited ) X has a least element

AssumingX is inhabited doesn't really give us much to work with, so let's try the contrapositive:
X has no least element) X is empty

The assumption that has no least elemenbesgive us something to work with. Under this as-
sumption we need to deduce thats empty.

We will do this by “forcingX up' by strong induction. Certainly 62X, otherwise it would be the
least element. If none of the numberd0::;n are elements oX then neither can+ 1 be, since if
it were thenit would be the least element ®f Let's make this argument formal.

Proof
Let X be a set of natural numbers containing no least element. We prove by strong induction
n62x foralln2 N.

(Base casp0 62X since if 02 X then 0 must be the least elementfas it is the least natural
number.
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138 Chapter 3. Mathematical induction

(Induction step) Suppos&k 62X forall06 k6 n. If n+ 12 X thenn+ 1 is the least element of
X;indeed, if < n+ 1then 06 ~ 6 n, so” 62X by the induction hypothesis. This contradicts the
assumption thaX has no least element, sa- 1 62X.

By strong inductionn 62X for eachn 2 N. SinceX is a set of natural numbers, and it contains n
natural numbers, it follows tha¢ is empty.

The following proof thaP 2 is irrational is a classic application of the well-ordering principle.

Proposition 3.3.12
The number 2 is irrational.

To prove Proposition 3.3.12 we will use the following lemma, which uses the well-ordering princi
to prove that fractions can be “cancelled to lowest terms'.

Lemma 3.3.13
Let g be a positive rational number. There is a pair of nonzero natural nuraffessich thag = 3
and such that the only natural number which divides lacdindb is 1.

Proof

First note that we can expregsas the ratio of two nonzero natural numbers, siqdg a positive
rational number. By the well-ordering principle, there igastnatural numbea such thag = & for
some positivé 2 N.

Suppose that some natural numbdeother than 1 divides both andb. Note thatd 6 0, since if
d = 0 then that would impla = 0. Sinced 6 1, it follows thatd > 2.

Sinced dividesa andb, there exist natural numbea8 b°such thata= atd andb = bY. Moreover,
a%hP> 0 sincea;b;d > 0. It follows that

_a_ad_a

" b bW KO
Butd > 2, and hence

- &g 2_
a d62 a

contradicting minimality of. Hence our assumption that some natural nurdlzgher than 1 divides
botha andb was false—it follows that the only natural number dividing bathndb is 1.

p_. . .
We are now ready to prove that? is irrational.

Proof of Proposition 3.3.12 ,
Suppose 2 is rational. Since 2> 0, this means that we can write

pé:

ol

wherea andb are both positive natural numbers. By Lemma 3.3.13, we may assume that the
natural number dividing andb is 1.

Multiplying the equationp 2= 8 and squaring yields

a?= 2p?
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Hencea? is even. By Proposition 1.1.48,is even, so we can write= 2c for somec> 0. Then
a? =(2c)? = 4c¢?, and hence
4c? = 27

Dividing by 2 yields
2¢2 = b?

and hencd? is even. By Proposition 1.1.46 agamis even.

But if a andb are both even, the natural number 2 divides etndb. This coBtLadicts the fact
that the only patural number dividing botrandb is 1. Hence our assumption tha® is rational is
incorrect, and 2 is irrational.

Writing tip

In the proof of Proposition 3.3.12 we could have separately provedathhaeing even implies

is even, and that? being even implied is even. This would have required us to repeat the sar
proof twice, which is somewhat tedious! Proving auxiliary results separately (as in Lemma 3.3
and then quoting them in later theorems can improve the readability of the main proof, particu
when the auxiliary results are particularly technical. Doing so also helps emphasise the impc
steps. C

Exercise 3.3.14 p_
What goes wrong in the proof of Proposition 3.3.12 if we try instead to prove thas irrational?
C

Exercise 3.15
Prove that 3 is irrational. C
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Section 3.E
Chapter 3 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Recursive de nitions

In Questions 3.1 to 3.5, use the recursive de nitions of addition, multiplication and exponentia
directly to prove the desired equation.

31.1+3=4
3.2.045=5
33.23=6
34.05=0
35.28=8

3.6. Give arecursive de nition of new quanti er8=" for n2 N, where given a set and a predicate
p(x), the logical formuled="x 2 X; p(x) means “there are exactyelements 2 X such thatp(x)
is true'. That is, de ne9™°, and then de ne®="* 1 in terms of9=".

3.7. Use the recursive de nition of binomial coef cients (De nition 3.1.15) to prove directly tha
4
= 6.
2

3.8. (&) Find the number of trailing Os in the decimal expansion of 41!.
(b) Find the number of trailing Os in the binary expansion of 41!.

3.9. LetNbe aset, let2 Nandlets: N! N. Prove tha{N;zs) is a notion of natural numbers (in
the sense of De nition 3.1.1) if and only if, for every ¢t every elemen& 2 X and every function
f: X1 X, thereis aunique functiom: N! X such thah(z)= aandh f=s h.

Proofs by induction

3.10. Leta2 N and assume that the last digit in the decimal expansi@i®b. Prove that the last
digit in the decimal expansion af' is 6 for alln> 1.

3.11. Letf :R! R be afunction such th&t(0) > 0 andf(x+y)= f(x)f(y) forallx;y2 R. Prove
that there is some positive real numlaesuch thatf (x) = a* for all rational numbersx..
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Section 4.1
Relations

Many interesting results or concepts in mathematics arise from observing how the elements ¢
set interact with the elements of another set, or how elements of a single set interact with each
We can make this idea of “interaction’ precise using the notionrefaion.

De nition 4.1.1
Let X andY be sets. Aljinary) relation from X to Y is a logical formulaR(x;y) with two free
variablesx 2 X andy 2 Y. We callX thedomain of RandY thecodomainof R

A relationR is homogeneousf it has the same domain and codominin which case we say that
Ris a relationon X.

Givenx 2 X andy 2 Y, if R(x;y) is true then we sayx'is related to y by R, and writex R y(IATeX
code:x \mathre{R} y ).

Example 4.1.2
We have already seen many examples of relations.

Divisibility (" x dividesy') is a relation onZ.
The inequality relatio® is a relation orR.
For any sek, equality= is a relation orX.
Logical equivalence is a relation on the set of all logical formulae.

For any sek, the subset relation is a relation orP (X).
These relations were all homogeneous, but not all relations are:

For any sekK, the elementhood relatidhis a relation fronX to P (X).

Every functionf : X! Y induces a relatiol®; from X to Y, de ned by takingx R y to mean
fx)="y.

C

Exercise 4.1.3
Give three more examples of relations, not all of which are homogeneous. C

Like with sets and functions, we must determine when to declare that two relations are equal
example, consider the relati®onR de ned fora;b 2 R by lettinga R bmean9x 2 R; a+ x° = b.

It so happens thaR bif and only ifa6 b—we'll prove this in Example 4.1.5. So shouRbe equal
to 6 ? On the one hand you might say "yes', siBcandR relate the same pairs of real numbers. Ol
the other hand you might say "no', since the fact handR relate the same pairs of real number:
was not immediate and required proof. In fact, if we were to repiabg Q, it then6 andR would
notrelate the same pairs of elements, since for instar&& ®ut there is no rational numbrisuch
that O+ x? = 2.
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But as with sets and functions, we settle for ehéensionahotion of equality: just as two sets are
equal when they have the same elements (Axiom 2.1.22), and two functions are equal wher
have the same values (Axiom 2.2.4), we consider two relations to be equal when they relat
same pairs of elements (Axiom 4.1.4).

Axiom 4.1.4 (Relation extensionality)
Let RandShbe relations. TheR= Sif and only if RandShave the same domakand codomain
Y, and

8x2 X;8y2Y;(xRy, xSy

That is, two relations with the same domain and codomain are equal precisely when they rela
same pairs of elements.

Example 4.1.5

Recall the relatioiR on R that we de ned above faa;b 2 R by lettinga R bif and only ifa+ x2= b
for somex 2 R. To see thaR= 6, note thata+(b a)= b, and thatb ais the square of a real
number if and only itb a> 0, which occurs if and only i&6 b. C

Exercise 4.1.6
Let RandSbe relations oiR de ned fora;b 2 R by letting

aRb, b a2Q and aSb,9 n2Z;(n60)*nlb a2z
Prove thaR= S. C

The true reason why Axiom 4.1.4 is powerful is that it allows us to reason about relations enti
set theoretically by working with thegraphs—the sets of pairs of elements that they relate—rath
than with the particular formulae de ning the relation.

De nition 4.1.7
Let R be a relation from a seX to a setY. The graph of R is the set G{R) (IATeX code:
\mathrm{Gr}{R} ) of pairs(x;y) 2 X Y for whichx Ry That is

GrR=f(xy)2X YjxRyg X Y

Example 4.1.8
The graph of the relatiof on[3] is

f(1;1);(1,2);(1;3);(2,2);(2;3);(3;3)g
Likewise, the graph of the relatidh viewed as a relation frorf2] to [4] is
f(1;,1);(1,2);(1;3);(1;,4);(2,2);(2;3); (2,49

This demonstrates that the graph of a relation is sensitive to the domain (and codomain) ©
relation. C

Example 4.1.9
Consider the relatiof from R to R de ned byxCy, x2+y?= 1. Then

GriC)= f(xy)2R Rjx*+y’=1g

Plotting G(C) on a standard pair of axes yields a circle with radius 1 centred at the ({@D)t
shown below with a unit grid.
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Note that G¢C) is notthe graph of a functioffi : [0; 1]! R, since for example botf0; 1) and(0; 1)
are elements of GE€), the valuef (0) would not be uniquely de ned. C

Exercise 4.1.10
Let R be the relation oiZ de ned for x;y 2 Z by lettingx R yif and only if X2 = y2. Describe its
graphG(R) zZ Z. C

Exercise 4.1.11
Let f : X! Y be a function, and de ne the relatid® from X toY as in Example 4.1.2. Prove that
Gr(R¢) = Gr(f)—that s, the graph of theelation Ry is equal to the graph of tHenction f. C

De nition 4.1.12
Thediscrete relationfrom a setX to a setY is the relatiorDx.y de ned by lettingx Dx.y y be true
forall x;y2 X.

Theempty relation from a seiX to a sety is the relatior? x.v (IATeX code:\varnothing ) de ned
by lettingx ? x.v y be false for all;y 2 X.

Exercise 4.1.13
Let X andY be sets. Describe the graphqBx.v) and G(? x.v). C

It turns out that, for xed setX andY, relations fromX toY correspond with subsets ¥f Y—see
Theorem 4.1.14 below. This fact is so convenient that many (if not most) authors actually de
“relation fromX to Y' to mean “subset ok Y'.

Theorem 4.1.14
Let X andY be sets. Every subsé& X Y is the graph of a unique relatidgdfrom X to'Y.

Proof
FixG X Y. De nearelationr by

8x2 X;8y2 Y;xRy, (xy)2G
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Then certainlyG = Gr(R), since for allx2 X andy 2 Y we have

(xy)2G , xRy , (xy)2GKHR

Moreover, ifSis a relation fromX to 'Y such thatG = Gr(S), then, for allx2 X andy 2 Y
XSy, (xy)26r(9, (xy)2G, xRy
soS= R

Hence there is exactly one relation frofrto Y whose graph i&.

Theorem 4.1.14 suggests that, for the purposes of de ning relations and proving that relation
equal, we may work entirely set theoretically with the graphs of the relations.

Strategy 4.1.15 (Relations as graphs)

In order to specify a relatioR, it suf ces to specify its domairX, its codomainyY, and its graph
Gr(R) X Y. Furthermore, in order to prove that two relatidRend S are equal, it suf ces to
prove that they have the same domain and codomain, and that their graphs are equal.

Example 4.1.16

Consider the seb= f(2m+i;2n+i)jmn2 Z; i 2f 0;1gg. SinceG Z Z, itisthe graph of a
(unique) relatiorRon Z, which is necessarily de ned fa;b 2 Z by lettinga R bif and only if there
are integersnandn, andi 2 f 0; 1g, such thab = 2m+ i andb= 2n+ i. But this says precisely that
a andb both leave the same remainder (namghrhen divided by 2, so thd& can be described by
saying that, for alh;b 2 Z, we havea R bif and only if a andb are both even or both odd. C

De nition 4.1.17
Let X be a set. Theliagonal subsetof X X is the setDx (IATEX code: \Delta_X ) de ned by
Dx = f(X;X) j x2 Xg.

To see whyDy is called the “diagonal' subset, try plottildy R R on a standard pair of axes
(like in Example 4.1.9).

Exercise 4.1.18
Let X be a set. Prove th&lk = Gr(=) . C

Properties of homogeneous relations

Most of the relations of interest to us in this book are homogeneous—that is, relatianset. In
fact, they broadly fall into one of two categoriesquivalence relationswhich are relations that
“behave like="; and order relations which are relations that “behave liBe. We will study equi-
valence relations in Section 4.2 and order relations in Section 10.1, but examples of such rele
pop up throughout the book. (In fact, we have already seen several!)

Our task for the rest of this section is to isolate the properties that a relation must satisfy in ord
be classi ed as an equivalence relation or an order relation.
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To aid with intuition, we will illustrate these properties with diagrams: given a reld®aie fact
thata R bwill be represented diagramatically as follows:

OO

A re exiverelation is one that relates every element of its domain to itself.

De nition 4.1.19
A relationRon a seX isre exive if aR aforalla2 X.

Example 4.1.20
Given any seK, the equality relatiors on X is re exive, sincea= aforalla2 X. C

Example 4.1.21
Let Rbe the relation ok de ned fora;b2 R byaR bifand only ifb a2 Q. ThenRis re exive,

since foralla2 R,we havea a= 02 Q,sothaaRa C
Exercise 4.1.22
Let X be a set. Prove that is a re exive relation orP (X), but$ is not. C
Exercise 4.1.23
Prove that the relationxdividesy' on Z is re exive. C

The next exercise demonstrates that when determining if a relation is re exive, we must be ca
to specify its domain.

Exercise 4.1.24
LetG=f(1,1);(2;2);(3;3)g. LetRbe the relation ofi3] whose graph i&5, and letSbe the relation
on [4] whose graph i€. Prove thaRis re exive, butSis not. C

Symmetric relations are those for which ttlieection of the relation doesn't matter: two elements
are either each related to the other, or not related at all.

De nition 4.1.25
A relationR on a seX is symmetricif, for all a;b2 X, if aRh thenb R a

Example 4.1.26
Given any selX, the equality relatior= on X is symmetric, since for all;b 2 X, if a= b, then
b= a C
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Example 4.1.27
LetRbe the relation ok de ned fora;b2 R byaR bifand onlyifb a2 Q. ThenRis symmetric.

To see this, lea;b 2 R and assume thatR h Thenb a2 Q,sothath a= g for somep;q2 Z
with g6 0. But then

p
a b= (b a= —
q
sothata b2 Q. Henceb R g as required. C
Exercise 4.1.28
Find all subsets)  Z such that the relatiorx'dividesy' on U is symmetric. C

We showed in Exercise 4.1.24 that re exivity of a relation is sensitive to its domain. The n
exercise demonstrates that symmetnyassensitive to the domain—that is, it is amrinsic property
of the relation.

Exercise 4.1.29
Let RandSbe relations such that @) = Gr(S). Note that the domain d® might be different from
the domain ofS. Prove thaR is symmetric if and only iSis symmetric. C

A condition related to symmetry, but in a sense opposite to #&ntssymmetry |t says that the only
way that two elements of a set can each be related to the other is if they are equal.

De nition 4.1.30
Let X be a set. A relatioR on X is antisymmetric if, for all a;b2 X, if aR bandb R g thena= b.

A word of warning here is that “antisymmetric' does not mean the same thing as “not symmetri
indeed, we we will see, equality is both symmetric and antisymmetric, and many relations are ne
symmetric nor antisymmetric. [Even more confusingly, there is a notiomsgimmetric relation
which also does not mean “not symmetric'.]

Example 4.1.31
Given any seK, the equality relatior on X is antisymmetric, since for all;b 2 X, if a= b and
b= a thena= b. C

Example 4.1.32
The order relatio® onR is antisymmetric, since fora#,b2 R, if a6 bandb6 a, thena=b. C

Exercise 4.1.33

Prove that the relationxdividesy' on N is antisymmetric, but not oA. C
Exercise 4.1.34
Let X be a set. Prove that is an antisymmetric relation dp (X). C

Exercise 4.1.35
Let X be a set and IR be a relation orX. Prove thaR is both symmetric and antisymmetric if and
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only if Gr(R) Dy, whereDx is the diagonal subset &f X (see De nition 4.1.17). Deduce that
the only re exive, symmetric and antisymmetric relation on &t the equality relation oX. C

The last property we will study in some detaiktiansitivity. Transitive relations are those for which
we can skip over intermediate related elements—for example, we can dedu8drOm the facts
thatO0< 1 and 1< 2 and 2< 3.

De nition 4.1.36
A relationR on a seiX is transitive if, for all a;b;c2 X, if aR bandb R ¢ thenaR ¢

Example 4.1.37
Given any seK, the equality relatior on X is transitive since, for ali;b;c2 X, if a= bandb= c,
thena= c. C

Example 4.1.38
Let Rbe the relation ofR de ned fora;b2 R byaR bifand only ifb a2 Q. ThenRis transitive.

To see this, lef;b;c 2 R and assume th@R bandb Rc Thenb a2 Qandc b2 Q, so there
existp;q;r;s2 Z with g;s6 0 such that

P

b a= and c b:£
S

It follows that

r s+ qr
¢ a=(c b)+(b a= D+ l=PA
qa s as
sothatt a2 Q. HenceaR ¢ as required. C
Exercise 4.1.39
Let X be a set. Prove that is a transitive relation oR (X). C
Exercise 4.1.40
Prove that the relation<dividesy' on Z is transitive. C

Like symmetry, transitive is an intrinsic property of relations—that is, transitivity is not sensitive
the domain of the relation—as the next exercise demonstrates.

Exercise 4.1.41
Let RandSbe relations such that @) = Gr(S). Note that the domain d® might be different from
the domain ofS. Prove thaRis transitive if and only ifSis transitive. C

A fundamental property of transitive relations is that we can prove two elera@mdb are related
by nding a chain of related elements startingaatind nishing atb. This is the content of the
following proposition.

Proposition 4.1.42
of elements oK such that; 1 R % for alli 2 [n], we havexy R X,.
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Proof
For the sake of abbreviation, lgi{n) be the assertion that, for any> 1 and any sequence

We prove the two directions of the proposition separately.
() ) SupposeRis transitive. Fon> 1. We provep(n) is true for alln> 1 by induction.

(Base casgWhenn = 1 this is immediate, since we assume thaR x.

xi 1 Rx foralli2 [n+ 1]. We need to prove thab R X+ 1.
By the induction hypothesis we know th&i R %,. By de nition of the sequence we have
*n R %+ 1. By transitivity, we haveg R %+ 1.

So by induction, we have proved the direction.

(( ) Supposep(n) is true for alln> 1. Then in particulap(2) is true, which is precisely the
assertion thaR is transitive.

So we're done.

XRxR Rxx ) XRx

where X Rx R R X, abbreviates the assertion thaiR % 1 for eachi < n.
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Section 4.2
Equivalence relations and partitions

An equivalence relation on a s¥tis a relation orX that, to a certain extenbehaves like equality
That is, equivalence relations give us a way of saying that two elements of a set are “similar’, wit
having to be equal. As an example, we might be interested in when the base-10 expansions (
natural numbers end in tleamedigit, or when two nite sets have theamenumber of elements.

De nition 4.2.1
A relationR on a seiX is anequivalence relationif it is re exive, symmetric and transitive.

To denote a relation that we know (or suspect) is an equivalence relation, we will usually u
symbol like ~ ' (LATEX code: \sim ) or © ' (LATEX code: \equiv ) or = ' (LATEX code: \approx )
instead of a letter likeR or " S.

Example 4.2.2
Given any sek, it follows from Examples 4.1.20, 4.1.26 and 4.1.37 that the equality relaticn
an equivalence relation ak. This is a relief, since we motivated equivalence relations by sayi

that they are those that behave like equality! C
Example 4.2.3

Let R be the relation ok de ned fora;b2 R by a R bif and only ifb a2 Q. Piecing together
Examples 4.1.21, 4.1.27 and 4.1.38, we seeRiatan equivalence relation dd C

Exercise 4.2.4
Given a functionf : X! Y, de ne arelation  onX by

a tb f(a)= f(b)
for all a;b2 X. Prove that ¢ is an equivalence relation ot C

The equivalence relation in the next exercise comes back with a vengeance in Section 8.2, whe
will use it to compare the sizes of ( nite and) in nite sets.

Exercise 4.2.5

LetS be some set whose elements are all sets. (For example, we could take (X) for some
xed set X.) De ne a relation= (IATpX code:\cong) onS by lettingU = V if and only if there
exists a bijectionf : U! V,forallU;V 2 S . Prove that is an equivalence relation & . C

A rst look at modular arithmetic

A particularly useful family of equivalence relations is givendmngruencef integers, which allows
us to domodular arithmetie—this is the topic of Section 5.3. For a xed integey this relation
identi es two integers when they have the same remainder upon divisior(dyin Theorem 0.18).
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De nition 4.2.6
Fix n2 Z. Given integers; b2 Z, we saya is congruentto b modulo n, and write

a bmodn (IATpX code:a \equiv b \bmod{n} )
if ndividesa b. If ais not congruent td modulon, write
a6 b modn (IATeX code:\not\equiv )

The numben is called themodulus of the congruence.

Before we prove that congruence is moduls an equivalence relation for all? Z, it is worthwhile
to get a feel for how it works.

Example 4.2.7
Leta;b2 Z. Thena b mod 2 if and only ifaandb are both even or both odd—that is, if and only
if they have the samgarity.

Indeed, by the division theorem, we can wrie= 2k+ i andb= 2" + j for somek;” 2 Z and
i;j2f0;1g. Then

b a=(2k+i) (2+j)= 2k )+(i )
Notethati j2f 1;0;1g,and sca b mod 2 if and only ifi = j. But this occurs if and only if
i = j= 0, inwhich casa andb are both even, dr= j = 1, in which casa andb are both odd. C

Example 4.2.8

Leta;b2 N. Thena b mod 10 if and only if 10 divide® a, which occurs if and only if the last
digit in the decimal expansion &f ais 0. But this implies that the decimal expansiongi@indb
have the same last digit. So the relation of congruence modulo Nisthe same as the relation of
“having the same last (decimal) digit'. C

Exercise 4.2.9
Letn2 Z. Prove that ifn& 0, thena b modn if and only if a andb have the same remainder

when divided byn. C
Exercise 4.2.10
Leta;b2 Z. When s ittrue thahh b mod 0? C

Having got a better feel for how congruence works, we now prove that, forreach, congruence
modulon is an equivalence relation ah

Theorem 4.2.11
Letn2 Z. Then congruence modufois an equivalence relation ah That is:

(a) a amodnforalla? zZ;
(b) Foralla;b2 z,ifa bmodn,thenb amodn;
(c) Forallg;b;c2 zZ,ifa bmodnandb cmodn,thena c¢modn.

Proof

(a) Leta2 Z. Note thata a= 0, which is divisible byn since 0= 0 n, and hencea amodn.
So congruence modulois re exive.
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(b) Leta;b2 Z and supposa b modn. Thenndividesa b, sothata b= knfor somek2 Z.
Henceb a= kn, and son dividesb a, sothatb amodn as required. So congruence
modulon is symmetric.

(c) Leta;b;c2 Z and suppose tha bmodnandb c¢modn. Thenn divides botha b and
b c, sothere exisk;” 2 Z such that

a b=kn and b c="n

Hencea c=(a b)+(b c¢)=(k+ )n, so thatn dividesa c. Hencea cmodn, as
required. So congruence moduids transitive.

Since congruence modulois re exive, symmetric and transitive, it is an equivalence relation.

Equivalence classes

What makes equivalence relations so useful is they give us a way of ignoring information th.
irrelevant to the task at hand.

For example, supposeandb are two very large natural numbers, each with several trillion (decime
digits. We want to know what the last digit abis. To nd this out, it would be silly to computab
and then look at its last digit. Instead, we can observe that the last digit of a product of two inte
depends only on the last digit of each integer—for example, 152502 has the same last digit as
7 2= 14. By using the equivalence relation “has the same last digit as', we are able to ignor
irrelevant information abowa andb—that is, all but one of their trillions of digits—and simplify the
problem considerably.

To make this precise, we introduce the notion ofegpivalence clasd-or a seX with an equival-
ence relation, the equivalence class of an eleraghiX will be the set of elements of thata is
equivalent to. By working with thequivalence classeaxf elements oiX, rather than the elements
of X themselves, we are able to regard two equivalent elements as being "the same'.

De nition 4.2.12
Let X be a set and let be an equivalence relation 06 The -equivalence clas®f an element
a2 Xisthe sefa] (IATpX code:[x]_{\sim} )de ned by

[a] =fx2Xja xg

The quotient of X by is the setX=(IATEX code: X/{\sim} ) of all -equivalence classes of
elements oK; that is
X= =f[a ja2 Xg

IATEX tip
Putting{ curly bracket} around the command for a symbol like(\sim ) tells KTEX to consider the
symbolas a symbaglrather than as a connective. Compare the following:

TeX code Output
XN\sim = Y X= =Y
XMf\sim} =Y X= =Y
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This is because, without brace&IgX thinks you're saying X-forward-slash is related to is equal to
Y', which clearly makes no sense; putting braces arosimd signi es to IKTpX that the  symbol
is being considered as an object in its own right, rather than as a connective. C

Example 4.2.13

Let be the relation of congruence modulo 2 An We showed in Example 4.2.7 that, for all
a;b2 Zwe havea b mod 2 if and only ifa andb have the same parity. But this means that, for a
[a] isthe set of all integers with the same parityaasthat is:

If ais even, therfia] is the set of all even integers; and

If ais odd, thera] is the set of all odd integers.

It follows thatZz= = f[0] ;[1] g= fE;Og, whereE is the set of all even integers a@is the set
of all odd integers. C

Exercise 4.2.14
Let be the relation of congruence modulo 10MnDescribe the equivalence classes, and give
explicit expression of the quotiei= in list notation. C

Example 4.2.15
Let f : X! Y be a function, and let  be the equivalence relation ¢tithat we de ned in Exer-
cise 4.2.4. Givera 2 X, we have

[a] ,=fx2Xja fxg=fx2Xjf(a= f(x)g

Thus we havéa] , = f [f f(a)g]. C

Exercise 4.2.16
Let f: X! Y be afunction. Prove thdtis injective if and only if each ;-equivalence class has a
unique element, where; is the equivalence relation de ned in Exercise 4.2.4. C

The next result demonstrates that an equivalence relation a setX “descends' to the equality
relation= on the quotienX= . This means that if we would rather deal with equality than with th
equivalence relation itself, then we may do so by working inside the quotentrather than in the
setX.

Theorem 4.2.17
Let be an equivalence relation on a 3et Then for alla;b 2 X, we havea b if and only if

[a] =[b] .

Proof
The proof is an exercise in piecing together the properties of equivalence relations.

Fixa;b2 X.

() ) Suppose b. We provela] =[b] by double containment.

( )Letx2 [a] —thena x. We are assuming that b, sothato aby symmetry, and so
b xby transitivity. Sox 2 [b] .

() Letx2 [b] —thenb x. We are assuming that b, and soa x by transitivity. So
x2 [a] .

We have shown by double containment tfgt =[b] .
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(( )Assumea] =[b] . We haveh b by re exivity,and sob 2 [b] . Butthenb 2 [a] , so that
a b, asrequired.

Soa bifandonlyiffa] =[b] .

For congruence, special terminology and notation exists for equivalence classes and quotients
De nition 4.2.18
Letn?2 Z. Thecongruence clas®f an integera modulon is de ned by
[@n = [a] modn = fX2Zja xmodng
The set of all congruence classes module denoted by
Z=nZ = Z= modn = f[apja2 Zg

Example 4.2.19

Using the terminology of congruence classes, Example 4.2.13 can be rephrased by sayin
Z=2Z = f[0];[1]20. Moreover, Theorem 4.2.17 gives us a more succinct proof: foa allZ,
we havea 0 mod 2 if and only ifais even, an&d 1 mod 2 if and only ifais odd. Therefore for
alla2 z, we havdal, =[ 0], or [a], = [ 1]», and so

Z=27 = fla,ja2 Zg = f[0]»;[1].9

Additionally, [0], is the set of all even integers afid; is the set of all odd integers. C

The next exercise generalises the previous one, proving that congruence classes correspor
remainders.

Exercise 4.2.20
Letn2 Z with n6 0. Prove that the function

i:f0; 1; :::;jnj 1g! Z=nz

de ned byi(r) =[r]n forall 06 r < jnj is a bijection. C

Partitions

A partition of a seiX is a way of breakingX up into mutually disjoint subsets. They will be an im-
mensely useful tool for counting how many elements a nite set has in Chapter 6, and will reap,
in Section 8.3 for de ning arithmetic operations with cardinal numbers.
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F De nition 4.2.21
A partition of a setX is a collectionU = fU; i 2 Ig of subsets ofX such that the following
conditions hold:

(a) Foreach 2 I, the subsel; is inhabited;

(b) The setdJ; fori 2 | arepairwise disjoint—that is,U;\ U; is empty for alli; j 2 | withi 6 j;
[

(c) U=X

i21

Note that, by contraposition, condition (b) in Exercise 4.2.26 is equivalent to saying that for
i;j21,if Ui\ Ujis inhabited, them= j—this is useful for verifying pairwise disjointness in proofs.

v Strategy 4.2.22 (Proving a family of subsets forms a partition)
Let X be a set. In order to prove a collectiogn P (X) is a partition ofX, it suf ces to prove:

(a) EachJ 2 U is inhabited;
(b) Forallu;V 2 U ,if U\ Visinhabited, thetd = V;
(c) Foralla2 X, thereis som& 2 U suchthaa2 U.

0 Example 4.2.23
We can partitiorZ asg[ O, whereE is the set of all even integers afds the set of all odd integers:

(a) E andO are inhabited, since® E and 12 O.

(b) The familyf E; Og is pairwise disjoint if and only iE\ O is empty; and it is, since no integer
can be both even and odd.

(c) E[ O= Z since every integer is either even or odd.

0 Example 4.2.24
The setd 2n;2n+ 1gfor n2 N form a partition ofN:

(&) 2n2f 2n;2n+ 1gfor eachn 2 N, so the sets are all inhabited.

(b) Suppose that;n2 N and thaf 2m;2m+ 1g\f 2n;2n+ 1gisinhabited. Note that86 2n+ 1
and 56 2m+ 1 by the division theorem (Theorem 5.1.1), so eithe=22n or 2m+ 1= 2n+ 1.
But in both cases we see that= n. Hence the sef2n; 2n+ 1g for n2 N are pairwise disjoint.

(c) Givena2 N, we havea= 2n+ i, wheren 2 N is the quotient ofa when divided by 2, and
herei 2 f 0;1g is the remainder o& when divided by 2. But thea 2 f 2n;2n+ 1g. Thus
f2n;2n+ 1g= N.
n2N

Exercise 4.2.25
Let f : X! Y be a surjection, and de ne a collectién of subsets oK by

F =ff Yfbg]jb2 Yg
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That is,F is the set of subsets &f given by the preimages of individual elementsYotinder f.
Prove thaf is a partition ofX. Where in your proof do you use surjectivity 6 C

Exercise 4.2.26
Let X be asetand e = fU;ji2 Igbe a family of inhabited subsets #f Prove thatU is a
partition of X if and only if for reacha 2 X, there is a unique sét 2 U with a2 U;. C

Exercise 4.2.27
If  be an equivalence relation ofy thenX= is a partitionX. Deduce that, for alg;b 2 X, we
havea bifandonlyiffa] =[b] . C

In fact, the converse of Exercise 4.2.27 is also true, as we prove next.

Proposition 4.2.28
LetX be asetand ldl be a partition oiX. ThenU = X= for exactly one equivalence relation
onX.

Proof
De ne arelation by
Xy , 9U2U;x2Uandy2U

forall x;y2 X. Thatis,x yif and only if x andy are elements of the same set of the partition. W
check that is an equivalence relation.

[
Re exivity. Letx2 X. Thenx2 U for someU 2 U since U = X. Hencex x.
u2u

Symmetry. Let x;y 2 X and suppos& Y. Then there is somd 2 U with x2 U andy2 U.
But then it is immediate that  x.

Transitivity. Let x;y;z2 X and suppose that yandy z Then there exist);V 2 U with
x;y2 U andy;z2 V. Thusy2 U\ V. SinceU is a partition ofX, its elements are pairwise
disjoint; thus ifU 6 V thenU\ V = ?. HenceU = V. Thusx2 U andz2 U, sox z

The de nition of makes it immediate that= = U .

To prove that is the only such relation, supposeis another equivalence relation &nfor which
X= = U. Then, giverx;y 2 X, we have:

X y,9 U2U;x2U"y2U by de nition of
,9 22 X;x2[27 "y2[Z sinceU = X=
,9 z2X;x zZMy z by de nition of [Z]
, Xy by symmetry and transitivity

So =

Exercise 4.2.27 and Proposition 4.2.28 prove that equivalence relations and quotients are esse
the same thing: the quotient of a set by an equivalence relation is a partition of the set, and «
partition of a set is the quotient by a unique equivalence relation!

The following lemma can be skipped over without grave consequences—it is a technical result
an extremely ddly proof, but we will use it at a couple of points later in the book. It says that, giv
two partitioned sets, if we can pair up the sets in the partition, and pair up the elements in eacl
of paired-up partitions, then we can pair up the elements of each set.
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C Lemma 4.2.29
Let X andY be sets, letU; ji 2 Ig be a partition oiX and letf Vj j j 2 Jg be a partition o¥. If there
exists:

A bijectionf: 1! J;and
For each 2 I, a bijectiong; : Ui ! Vi;

then there exists a bijectidn: X ! Y.

Proof
Givena 2 X, leti(a) be the unique element dfsuch thata 2 X,. Note that this is valid since
fX ji2 Igis a partition ofX. Likewise, givenb 2 Y, let j(b) be the unique element dfsuch that
b2 Yiy.

i(b)

Dene h: X! Ybyh(a)= gjy(a) foralla2 X. This is well-de ned since

h(@) = i@ (@) 2 Yii@) Y
This also shows thgt(h(a)) = f(i(a)).

Now de nek:Y! Xbyk(b)= 9 11(J.(b))(b) forallb2Y. Thenkis well-de ned: indeedg; 1
is a function fromU; 1) toVj(), and so

- 1
k(b) - gf 1(](b)) (b) 2 Uf 1(](b)) X
This also shows thatk(b)) = f 1(j(b)).

Thenk is an inverse foh. To see this, lead 2 X; then

k(h(a)) = g, 11(j(h(a))) (h(a)) by de nition of k
= gfll(f(i(a)))(h(a)) sincej(h(a)) = f(i(a))
= g3 (@) sincef 1 f=id,
= gi(;)(gi(a)(a)) by de nition of h
= a sincegi(é{) Giga = idx,

A similarly tedious computation reveals thgk(b)) = bforallb2 Y:

h(k(b)) = iy (K(0)) by de nition of h
= 0r 1(j(m) (K(D)) sincei(k(b)) = f *(j(b))
= 9t 1o (95 ‘1) (O)) by de nition of k
=b sincegs 1jy 9y ll(j(b)) = idv;q,

Sok s an inverse foh, as required.

Exercise 4.2.30

Let X andY be sets, let be an equivalence relation ohand let be an equivalence relation on
Y. Assume that there is a bijectignx X="! Y= , and for each equivalence clds® X= there
is a bijectionhg : E! p(E). Use Lemma 4.2.29 to prove that there is a bijectioiX ! Y. C
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The quotient function

We will now show that equivalence relations on aXetre essentially the same thingsagjections
from X to another set.

De nition 4.2.31

Let X be a set and let be an equivalence relation of. The quotient function for is the
functionq : X! X= denedbyqg(a)=[a] foreacha2 X. Thatis, the quotient function sends
each element X to its -equivalence class.

Example 4.2.32
Recall that, givem 2 Z, we haveal, =[ 0]z if ais even, andia], =[ 1]z isais odd. Thus the quotient
functiongp : Z! Z=27 can be viewed as telling us the parity of an integer. C

Exercise 4.2.33
Letn2 Z with n6 0. Describe the quotient functiap : Z! Z=nZ in terms of remainders. C

Exercise 4.2.34
Let be an equivalence relation on a sét Prove that the quotient functiop : X! X= is
surjective. C

The theorem we prove next can be viewed as the converse to Exercise 4.2.34. It proves that
surjection “is' a quotient function, in the sense that given any surjegtioh! A, we can viewA as

a quotient ofX by a suitably-de ned equivalence relation, and thelis' the corresponding quotient
function.

Theorem 4.2.35
Let X be a set. Then for every s&tand every surjectiop: X! A, there exist a unique equivalence
relation onX and bijectionf : X="!  Asuch thatf([X]) = p(x) for all x2 X.

Proof
LetAbe asetang: X! Abe asurjection.

(Existencg De ne arelation onXbyx yifandonlyif p(x)= p(y). Then isanequivalence
relation by Exercise 4.2.4.

Moreover, giverx 2 X, we have

M =fy2Xjp()= py)g=p [f p(9d]
Sodenef:X=1! Abylettingf([x] )= p(X). Thenf is well-de ned, since iflx] =[y] then
Xy, so thatp(x) = p(y).
Furthermoref is a bijection:

(Injectivity ) Let [X] ;[y] 2 X= and assumé([x] )= f([y] ). Thenp(x) = p(y), so that
X y,and hencéq] =[y] .

(Surjectivity) Leta2 A. Sincepis a surjection, there is somxe2 X such thatp(x) = a. But
thenf([x] )= p(X)= a

So we have established that there exist an equivalence relatboarX and a bijectionf : X=1 A
such thatf([x] )= p(x) forall x2 X.
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(Uniquenes$ Suppose is another equivalence relation ¥rand thaty: X="! Ais a bijection
such thag([x] )= p(x) forallx2 X. We prove that = ,andthenthag= f,sothat andf
are unique.

Soletx;y 2 X. Then

Xy, p(xX)= p(y) by de nition of
v 9(¥ )= 9yl ) by de nition of g
. X =1yl sinceg is bijective
, Xy by Exercise 4.2.27
Itfollows that = , andthen for alk2 X we have

f(d )= p()= 0o )= a9« )

so thatf = g, as required.

In light of Theorem 4.2.35, we have now established the equivalence of three notions for a give
X:

equivalence relations
onX

partitions surjections with

of X N domainX
Exercise 4.2.36

Give an explicit description of the dashed arrow in the above diagram. That is, describe the cc
pondence between partitions of a ¥eand surjections whose domainXs C
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Section 4.E
Chapter 4 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Properties of relations

4.1. For each of the eight subsets
P f re exive;symmetrigtransitivey

nd a relation satisfying (only) the properties i

4.2. Prove that ifR is a symmetric, antisymmetric relation on a Xethen it is a subrelation of the
equality relation—that is, GR)  Gr(=) .

4.3. ArelationRon a seK isleft-total if for all x2 X, there exists somg2 X such thak Ry. Prove
that every left-total, symmetric, transitive relation is re exive.

Equivalence relations

De nition 4.E.1

Let R be a relation on a seX and letf : X! Y be a function. Thdransport of R along f is
the relationSonY de ned forc;d 2 Y by lettingc S dif and only if there exist;b 2 X such that
f(a)= ¢, f(b)= dandaR h Thatis

Gr(§ = f(f(a); f(b)) jab2 X; aR g

4.4. LetX andY be setsand let : X! Y. Prove thatif is an equivalence relation ofy then the
transport of alongf is an equivalence relation oh

De nition 4.E.2
Let R be any relation on a s&. Theequivalence relation generated byR is the relation g on
X de ned as follows. Giverx;y 2 X, sayx RrY if and only if for somek 2 N there is a sequence

ai+1Ra.

4.5. Fixn2 Z and letR be the relation o de ned byxRyif and only ify = x+ n. Prove that g
is the relation of congruence moduio
4.6. Let X be a set and ldR be the subset relation dh (X). Prove that) rV forallU;V — X.

4.7. Let X be a set, xtwo distinct elementgb 2 X, and de ne arelatiofR on X by declaringaR b
only—that is, for allx;y 2 X, we havex Ryif and only if x= aandy = b. Prove that the relationg
is de ned byx Rryifand only if eitherx= yorfx;yg= fa;bg.
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In Questions 4.8 to 4.11, |4 be a relation on a seX, and let r be the equivalence relation
generated by (as in De nition 4.E.2). In these questions, you will prove that is the “smallest’
equivalence relation extendirfigy

4.8. Prove that g is an equivalence relation ofa
4.9. Prove thakRy) x Rgryforallx;y2 X.

4.10. Prove that if is any equivalence relation od andxRy) x vy for all x;y 2 X, then
X RrYy) x yforallxy2X.

4.11. Prove that ifRis an equivalence relation, therr = R.
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Section 5.1

Division

This section introduces the notiondilisibility. As we have already mentioned, it is not always th
case that one integer can divide another. As you read through this section, note that we nev
fractions; everything we do imternal to Z, and does not require that we “spill over @at any

point. This will help you when you study ring theory in the future, and is a good practice to mir
in your own work.

The following theorem, called the division theorem, is the crux of everything that is to follow.
Theorem 5.1.1 (Division theorem)
Leta;b2 Z with b6 0. There exist uniqug;r 2 Z such that

a=qgb+r and 06 r<jbj

Strategy
Let's look at the simple case whar» 0 andb> 0. We can always ndj;r such that= gb+ r, for
exampleq= 0 andr = a. Moreover, by increasing we can reduce, since

gb+r=(q+ Db+(r b)

We will keep doing this until the “remainder’ is as small as it can be without being negative. As
example, consider the case wreen 14 andb = 5. This procedure gives

14

5+ 14

5+9

5+ 4 least nonnegative remainder
5+( 1)

1
w N kO

This procedure shows that in this case we should tpke2 andr = 4, since 14 2 5+ 4 and
06 4< j5.

We can show that such a descending sequence of remainders terminates using the well-or
principle, and then we must argue that the quotient and remainder that we obtain are unigGe.

Proof
We may assume that> 0: if not, replacebo by bandgby g We may also assume that 0.
Otherwise, replacaby a,qby (gq+ 1) andrbyb r.

Thus, what follows assumes theat 0 andb > 0.

Existence. We prove that such integergr exist by the well-ordering principle. Namely, we
de ne a sequencérp)non such thata= nb+ ryandrg> r1 > rp > | and use this sequence to
nd the values ofg;r.

Letro= a. Thena= Ob+ rg, as required.
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Supposeé, has been de ned, and let+1 = rn,  b. Then

(n+ Db+ rpe1=(n+ Db+r, b
=nb+b+ry, b
=nb+r=a

Sinceb > 0, we must haven: 1 < rp for all n.

LetR= N\f r,jn2 Ng. Thatis,Ris the set of terms of the sequence which are non-negati
Sincerg = a> 0, we have thaty 2 Rand henc& is inhabited. By the well-ordering principl&
has a least element for somek 2 N.

De ne q= kandr = r¢. By construction we hava= gb+ r andr > 0, so it remains to show that
r<b. Well,ifr> bthenr b> 0, butr b= ry 1, so this would implyrg+ 1 2 R, contradicting
minimality of r. Hencer < b, soq;r are as required.

Uniqueness. Supposa® rPalso satisfya= gb+ r®and 06 r°< b. If we can show that®= r
then this proves thaj= g% indeed, ifgb+ r = g%+ r then we can subtractand then divide by
b, sinceb> 0.

First note that®> 0. If g°< 0 theng®6 1, so
a=gb+r’ b+r°

and hence®> a+ b> bsincea> 0. This contradicts the assumption that b. Soq®> 0.

Sinceq®> 0, we also know thaa = qb+ rqo, and hence®= rp2 R By minimality of r we have
r 6 r It remains to show that= rC If not thenr < r° Thus

gb+r=gb+r’>gb+r ) ab>db ) g>d
and hence = %+ t for somet > 1. But then
agb+ r°= a= gb+ r=(q+ t)b+ r= gb+(tb+r)
sor®= tb+ r > b, contradicting®< b. Sor = r%as desired, and henge= q°
At long last, we are done.
F De nition 5.1.2
Leta;b2 Z with b6 0, and letg; r be the unique integers such that
a=gb+r and 06 r<jbj
We sayq is thequotient andr is theremainder of a divided byb.

0 Example 5.1.3
Some examples of division include:

14=2 5+ 4 14= 3 5+1, 15=3 5+0
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De nition 5.1.4

Leta;b2 Z. We sayb divides a, or thatb is adivisor (or factor) of a, if there existsq2 Z such
thata = gb. To denote the fact thdt dividesa we writebj a (IATeX code:\mid ). For the negation
. (bj a) write b - a (IATEX code:\nmid ).

Thus, wherb 6 0, sayingbj ais equivalent to saying that the remaindemadfivided byb is 0.

Example 5.1.5

5 divides 15 since 15 3 5. However, 5 does not divide 14: we know that the remainder of :
divided by 5 is 4, not 0—and it can't be both since we proved in the division theorem that remain
are unique! C

Exercise 5.1.6
Show thatifa2 Z then 1ja, 1jaandaj0. For which integera doesaj 1? For which integera
does § a? C

We now introduce the very basic notion ofiait. This notion is introduced to rule out trivialities.
Units become interesting when talking about general rings, bt the units are very familiar.

De nition 5.1.7
Letu2 Z. We sayuis aunit if uj 1; thatis,uis a unit if there existy 2 Z such thauv= 1.

Proposition 5.1.8
The only units inZ are 1 and 1.

Proof

First note that 1 and 1 are units, since L= 1 and( 1) ( 1) = 1. Now suppose that2 Z is a
unit, and letv 2 Z be such thatv= 1. Certainlyu6 0, since =06 1. Ifu> 1oru< 1then
v=162Z. Sowe musthava2f 1;1g.

Exercise 5.1.6 shows thatl, 0 and 1 are, from the point of view of divisibility, fairly trivial. For
this reason, most of the results we discuss regarding divisibility will contenzero nonunits i.e.
all integers except 1, 0 or 1.

Greatest common divisors

De nition 5.1.9
Leta;b2 Z. Anintegerd is agreatest common divisorof a andb if;

(@) djaanddjb;
(b) If gqis another integer such thaf a andqj b, thenqj d.

Example 5.1.10
2 is a greatest common divisor of 4 and 6; indeed:

(@ 4=2 2,and6=3 2,s024and?Z 6;

(b) Supposej4 andgj 6. The divisors of 4 are 1, 2; 4 andthe divisors of 6 arel, 2, 3,
6. Sinceq divides both, it must be the case tlgg2 f  2; 1;1;2g; in any caseqj 2.
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Likewise, 2 is a greatest common divisor of 4 and 6. C
Exercise 5.1.11
There are two greatest common divisors of 6 and 15; nd both. C

We will now prove that greatest common divis@sist—that is, any two integers have a greates
common divisor—and that they av@ique up to sign

Theorem 5.1.12
Every pair of integers; b has a greatest common divisor.

Proof

First note that ila= b= 0, then 0 is a greatest common divisor foandb. Moreover, we may take
a;b to be non-negative, since divisibility is insensitive to sign. So supposeathat 0 and that; b
are not both zero.

DeneasetX Zby
X = fau+ bvju;v2 Z; au+ bv> Og

That is,X is the set of positive integers of the folam+ bv.

X is inhabited. To see this, note thagt> 0 orb?> 0 sincea6 0 orb6 0, so lettingu= aandv= b
in the expressioau+ by, we see that

au+t bv=a?+b?>>0 ) a’+b?2X

By the well-ordering principleX has a least elemendt and by de nition ofX there existu;v2 Z
such thad = au+ bv.

We will prove thatd is a greatest common divisor farandb.
dja If a= 0, then this is immediate, so suppose that 0. Letq;r 2 Z be such that
a=qd+r and 06r<d
Nowa= a 1+ b 0,soa2 X, and hencel 6 a. Moreover
r=a qd=a qg(autbvy)=a(l qu+ b( qv)

If r > 0 then this implies that2 X; but this would contradict minimality ad, sincer < d. So we
must have = 0 after all.

dj b. The proof of this is identical to the proof thaj a.

Supposeis an integer dividing both andb. Thengj au+ bvby Exercise 0.16. Sinaeu+ bv= d,
we havegj d.
Sod is a greatest common divisor afandb after all.

Exercise 5.1.13
Leta;b2 Z. If d andd®are two greatest common divisorsaéndb, then eithed = d®ord=  d°
C
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v Aside
A consequence of Theorem 5.1.12 and Exercise 5.1.13 is that every pair of integers has a u
non-negative greatest common divisor! Written symbolically, we can say

d> 0 andd is a greatest

8(ab)2z Z;9'd2 Z; common divisor foa andb

As discussed in Section 2.2, since this is a formula of the form “for all . .. there exists a unique
this de nes a functiongcdZ Z! Z. We won't explicitly refer to the fact that gcd is a function;
rather, we'll just concern ourselves with its values, as in Notation 5.1.14. C

Exercise 5.1.13 justi es our use of the following notation to refer to greatest common divisors.

F Notation 5.1.14
Leta;b2 Z. Denote by gcth; b) (IATEX code:\mathrm{gcd} ) the (unique!) non-negative greatest
common divisor o andb.

0 Example 5.1.15
In Example 5.1.10, we saw that both 2 an@ are greatest common divisors of 4 and 6. Usin:
Notation 5.1.14, we can now write gei6) = 2. C

Exercise 5.1.16
Foreacm?2 Z, letD,  Z be the set of divisors of. Prove thaDa\ Dp = Dycqay) forallab2 Z.
C

Our goal for the rest of this subsection is to investigate the behaviour of greatest common divi
nd out how to compute them, and look into the implications they have for solutions to certain ki
of equations.

C Theorem 5.1.17
Leta;b;q;r 2 Z, and suppose that= gb+ r. Then

gcda;b) = gedlb;r)

Proof
Letd = gcd(a; b). We check thatl satis es the conditions required to be a greatest common divis
of b andr.

Note thatd j aanddj b, so lets;t 2 Z be such thaa = sdandb = td.
dj b by de nition, andd j r since
r=a qgb=sd qtd=(s qt)d
Supposel®j b andd?j r; sayb = ud®andr = vd®with u;v2 Z. Thend®j a, since
a= gb+ r = qud’+ vd®= ( qu+ v)d°
sod?j d sinced = gcda;b).

Sod is a greatest common divisor bfandr. Sinced > 0, the result is shown.
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Combined with the division theorem (Theorem 5.1.1), Theorem 5.1.17 gives a relatively fas
gorithm for computing the greatest common divisor of two integers, known aEubkdean al-
gorithm.

Strategy 5.1.18 (Euclidean algorithm)
Leta;b2 Z. To compute gcgh; b), proceed as follows.

Setrp = jaj andry = jbj.
Givenr, 2 andr, 1, de nerp to be the remainder of, » divided byr, ;.
Stop wherr, = 0; thenr, 1= gcda;b).

Example 5.1.19
We will nd the greatest common divisor of 148 and 28.

148=5 28+ 8
28=3 8+14
g8=2 [4]+0 Stop!
Hence gc@148 28) = 4. Here the sequence of remainders is given by:
ro=148 r1=28 12=8; r3=4;, r=0
C

Example 5.1.20
The Euclidean algorithm works surprisingly quickly, even for relatively large numbers. Consider
problem of computing gdd.311,5757% for example:

5757= 4 1311+ 513

1311= 2 513+ 285
513=1 285+ 228
285=1 228+57

228=4 |57]+0 Stop!
Hence gc@1311,5757 = 57. Here the sequence of remainders is given by:
ro=5757% ry=1311 rp,=513 r3=285 r4=228 r5=57, rg=0

C

Example 5.1.21
Here's an example where one of the numbers is negative: we compute the valu¢ o48ad6):

420=( 6) 76+ 36

76=2 36+4
36=9 [4]+0 Stop!
Hence gcd 420,76) = 4. C
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Example 5.1.22
Use the Euclidean algorithm to compute the greatest common divisors of the following pair
integers

(129); (10035); (71251300; (101Q101010; ( 419

C

The following theorem will be useful when we study modular arithmetic in Section 5.3; it is call
a ‘lemma’ for historical reasons, and is really an important result in its own right.

Theorem 5.1.23 (Bézout's lemma)
Leta;b;c2 Z, and letd = gcda; b). The equation

ax+ by=c
has a solutiorfx;y) 2 Z Z ifand only ifdj c.

Proof
() ) Writea= aldl andb= b, for a®b®2 Z. If there existx;y 2 Z such thatx+ by= ¢, then

c= ax+ by= aldx+ bYy=(a%+ b%)d
andsadjc.
(( ) Supposel j ¢, and letc = kd for somek 2 Z.

If c= 0, then a solution ix= y= 0. If c< 0O, thenax+ by= cifandonly ifa( x)+ b( y)= ¢
S0 we may assume that 0.

We proved in Theorem 5.1.12 that a greatest common divisaaoflb is a least element of the set
X = fau+ bvju;v2 Z; au+ bv> Og
So letu;v2 Z be such thatu+ bv= d. Then
a(ku)+ b(kv) = k(au+ bv) = kd= ¢
and so lettingc= kuandy = kv, we see that the equatian+ by= chas a solutioffx;y)2 Z Z.
Bézout's lemma completely characterises when the equatienby = c has a solution. An easy

generalisation of Bézout's lemma provides a complete characterisation of when solutimesio
Diophantine equationsexist, that is equations of the form

ax+ by=c
wherea; b;c2 Z. We will soon develop an algorithm for computiafj solutions to these equations.

Example 5.1.24
Here are some examples of applications of Bézout's lemma.

Consider the equation 13t%* 575% = 12963. We computed in Example 5.1.20 tha
gcd(1311,5757 = 57. But 57- 12963 since 12963 227 57+ 24. By Bézout's lemma,
the equation 132+ 5754 = 12963 has no integer solutions.
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For xed z the equation 4+ 6v= zhas solutions exactly whexzis even, since gdd; 6) = 2.

For xed a;b, the equatiorau+ bv= 0 always has solution. Indeed, setting b andv= a
gives a solution; but we knew one had to exist since by Exercise 5.1.6 we knod/jtBor all
d2 2z

Exercise 5.1.25
Which of the following equations have solutions?

(a) 1+ 9v= 18

(b) 12u+ 9v=1

(c) 10Qu+ 35v= 125

(d) 71251+ 1300/= 0

(e) 101w+ 10101 = 1010101010101010
() 14u 4v= 12

Coprimality

De nition 5.1.26
Leta;b2 Z. We saya andb arecoprime (or relatively prime), and writea? b (IATpX code:\perp )
(read ais coprime tdb"), if gcd(a;b) = 1.

Example 5.1.27
472 9. To see this, note that il j 4 thend 2 f 4; 2, 1,1;2;4g, and if d j 9 then
d2f 9; 3; 1;1;3;99. Hence ifdj4 andd |9, thend=1ord= 1. It follows that

gcd 4;9) = 1. C
Exercise 5.1.28
Which integers in the s¢15] are coprime to 15? C

Proposition 5.1.29
Leta;b2 Z. The following are equivalent:

(1) aandb are coprime;
(2) Ifd2 Z withdjaanddj b, thend is a unit.

Proof
We prove that condition (1) implies condition (2), and vice versa.

(1)) (2). Suppos@ andb are coprime, and xd2 Z withdjaanddjb. Thendjgcda;b)= 1,
sod is a unit.

(2)) (1). Suppose condition (2) above holds. We prove that 1 satis es the conditions require
be a greatest common divisor@fndb. The fact that  aand 1j bis automatic; and the fact that
if djaanddjbimpliesdj 1 is precisely the condition (2) that we are assuming.
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Hence the two conditions are equivalent.

Exercise 5.1.30
Leta andb be integers, not both zero, and tet gcda; b). The integers; andg are coprime. C

The following corollary is a specialisation of Bézout's lemma to the case \atzmb are coprime.

Corollary 5.1.31
Leta;b2 Z. The equatiorau+ bv= 1 has a solution if and only & andb are coprime. Moreover,
if aandb are coprime, then the equatian+ bv= zhas a solution for alt2 Z.

Proof

By Bézout's lemma (Theorem 5.1.23), the equaten+ bv= 1 has a solution if and only if
gcda;b) j 1. But the only positive divisor of 1 is 1, so a solution exists if and only if(ggl) = 1,
which is precisely the assertion thandb are coprime.

If aandb are coprime, then £ gcda;b) j zfor all z2 Z. So by Bézout's lemma again, the equatior
au+ bv= zhas a solution foralt2 Z.

A useful consequence of Bézout's lemma is the following result:

Proposition 5.1.32
Leta;b;c2 Z. If aandb are coprime andj bc, thenaj c.

Proof
By Bézout's lemma (Theorem 5.1.23) there exist integeandv such thatwu+ bv= 1. Multiplying
by ¢ givesacu+ bcv= c. Sinceaj bc, we can writebc= kafor somek 2 Z, and soacu+ kav= c.
But then

(cu+ kvy)a= ¢

which proves thai | c.

Linear Diophantine equations

We have now seen two important results:

TheEuclidean algorithm, which was a procedure for computing the greatest common divisor
two integers.

Bézout's lemma which provides a necessary and suf cient condition for equations of the fol
ax+ by= cto have an integer solution.

We will now develop thaeverse Euclidean algorithm which provides a method for computing
a solutions to (bivariate) linear Diophantine equations, when such a solution exists. Then we
prove a theorem that characterigdisinteger solutions in terms of a given solution.

Example 5.1.33
Suppose we want to nd integepsandy such that 32X+ 114y = 18. Running the Euclidean
algorithm yields that go27,114) = 3 — see below. For reasons soon to become apparent,
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rearrange each equation to express the remainder on its own.

327=2 114+ 99 ) 99= 327 2 114 Q)

114=1 99+ 15 ) 15= 114 1 99 2
99=6 15+9 ) 9=99 6 15 3)
15=1 9+6 ) 6=15 1 9 4)
9=1 6+ 3 ) 3=9 1 6 (5)
6=2 3+0

We can then express 3 in the form 327 114v by successively substituting the equations into eac
other:

Equation (5) expresses 3 as a linear combination of 6 and 9. Substituting equation (4) yields

3=9 1 (15 1 9 ) 3=2 9 1 15

This now expresses 3 as a linear combination of 9 and 15. Substituting equation (3) yields:

3=2 (99 6 15 1 15 ) 3=( 13 15+2 99

This now expresses 3 as a linear combination of 15 and 99. Substituting equation (2) yields:

3=( 13 (114 1 99+2 99 ) 3=15 99 13 114

This now expresses 3 as a linear combination of 99 and 114. Substituting equation (1) yields

3=15 (327 2 114 13 114 ) 3=( 43 114+15 327

Now that we've expressed 3 as a linear combination of 114 and 327, we're nearly done: we k
that 18= 6 3, so multiplying through by 6 gives

18=( 258 114+90 327

Hence(x;y) =(90; 258) is a solution to the equation 32% 114y = 18. C

Proof tip
Leta;b2 Z and letd = gcda;b). To nd integersx;y such thabx+ by= d:

(i) Run the Euclidean algorithm on the pé#; b), keeping track of all quotients and remainders
(i) Rearrange each equation of the form, = gnrn 1+ rpto isolatery,.

(i) Substitute for the remainderg in reverse order until gd¢a; b) is expressed in the forax+ by
for somex;y2 Z.
This process is called threverse Euclidean algorithm C

Exercise 5.1.34
Find a solutionx;y) 2 Z Z to the equation 630+ 385y = 4340. C

Now that we have a procedure for computimge solution to the equatioax+ by= c, we need to
come up with a procedure for computiayj solutions. This can be done by proving the following
theorem.
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Theorem 5.1.35
Let a;b;c 2 Z, wherea andb are not both zero. Suppose thatandyg are integers such that
axo+ byp= c. Then,(x;y) 2 Z Z is another solution to the equatiax+ by= cif and only if

a

and  y=Y K Gedab)

X= +k7b
=0T gedab)

for somek 2 Z.

Thus, as soon as we've found one solut{@ny) = ( xo; Yo) to the equatiorax+ by = c, this theorem
tells us what all other solutions must look like.

Proof of Theorem 5.1.35
We prove the two directions separately.

() ). First suppose thdko; Yo) is an integer solution to the equatiar+ by= c. Letk2 Z and let

a

X=X+ k rda; b and y=Vvo Kk 79“(3: b
Then
ax+ by
= a + Kk L b k a by de nition of x and
— 807 gedab) Yo % gedab) y Y
b a .
=(ax+ byp) + ak m kb m rearranging
kab kab - .

=(ax+ by)+ m combining the fractions
= axp+ by sincekab kab= 0
=c since(Xg; Yo) is a solution

so(x;y) is indeed a solution to the equation.

(( ). First suppose tha ? b. Fix a solution(Xp; yo) to the equatiorax+ by = c, and let(x;y) be
another solution. Then

a(x xp)+ by yo)=(axo+by) (ax+by)=c c=0
so that
a(x xo)= b(yo V)

Now a andb are coprime, so by Proposition 5.1.32, we haygy yandbjx xq. Letk;” 2 Z be
suchthaik Xxp= kbandyy y= "a Then substituting into the above equation yields

a kb=Db "a
and hencék “)ab= 0. Sinceab6 0, we havek= ", so that
X=X+kb and y=y, ka

Now we drop the assumption that? b. Let gcda;b) = d > 1. We know thad j ¢, by Bézout's
lemma (Theorem 5.1.23), and so

a4
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is another linear Diophantine equations, and more@v’erg by Exercise 5.1.30. By what we proved
above, we have

b a
x-x0+ka and y=yp ka

for somek 2 Z. But this is exactly what we sought to prove!

Example 5.1.36
We know that(x;y) = ( 90; 258) is a solution to the equation 32% 114y = 18, and

327 327 114 114

godazz11g . 3 109 ad  eimriig 3 oo

so this theorem tells us thét;y) 2 Z  Z is a solution to the equation 32¥ 114y = 18 if and only
if

x= 90+ 38k and y= 258 10%
for somek 2 Z. C

Exercise 5.1.37
Find all integers¢;y such that
630x+ 385y = 4340

Least common multiples

You would be forgiven for wondering why so much of the foregoing section was devoted to grez
common divisors, with no mention of least common multiples. We will now give the latter so
attention.

De nition 5.1.38
Leta;b2 Z. Anintegermis aleast common multipleof a andb if:

(@) ajmandbj m;

(b) If cis another integer such thaf candbj c, thenmj c.

The de nition of least common multiple dualto that of greatest common divisor (De nition 5.1.9).
This means that many properties of greatest common divisors have corresponding “dual’ prope
which hold of least common multiples. As such, we will not say much here about least comt
multiples, and that which wdo say is in the form of exercises.

Exercise 5.1.39

Leta;b2 Z. Prove that andb have a least common multiple. Furthermore, prove that least comn
multiples are unique up to sign, in the sense that iiCare two least common multiples afandb,
thenm= mPorm=m° C

As with greatest common divisors, Exercise 5.1.39 justi es the following de nition.
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F De nition 5.1.40
Givena;b 2 Z, denote by Icr(a; b) (IATeX code: \mathrm{lcm} ) the non-negative least common
multiple ofa andb.

Exercise 5.1.41
Leta;b2 Z. Prove that gcfh;b) Icm(a;b) = jabj. C
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Section 5.2
Prime numbers

Thinking of divisibility as a way obreaking dowran integer, for example 1222 2 3, our goal
now is to show that there are particular integers thabtoenic—they are the building blocks of the
integers, in the sense that:

Every integer can be broken into a product of these atomic integers. ..
...and these atomic integers cannot themselves be broken down any further. ..

...andthere is an essentially unique way to write an integer as a product of these atomic inte

There are a couple of fairly vague terms used here: “atomic' and “essentially unique'. But as alv
we will make these terms precise when we need to.

Primes and irreducibles

There are two ways that we might want to characterise the so-catitedic integer that we just
mentioned.

One way that an integer might be atomic is if it allows us to break down products of integers—
leads to the notion gfrime (De nition 5.2.1).

Another way is that an integer might be atomic is if it cannot be split up as a product of more t
one integer (in a nontrivial way)—this leads to the notiorirefducible (De nition 5.2.6).

Conveniently, as we will show in Theorem 5.2.11, these two notions coincide. But the fact that
coincide is not obvious, and uses essential properties of the integers that do not hold in more g
structures.

The de nition of primethat we are about to give comes from abstract algebra (speci cally, from ri
theory). It might seem strange, but we will soon be able to show that the more familiar de nitior
that is, having exactly two positive divisors—is equivalent to this one.

De nition 5.2.1
An integerp is (ring theoretically) prime if p is a nonzero nonunit and, for alb2 Z, if pjab
thenpjaorpjb.

Example 5.2.2

2 is prime. To see this, suppose itisn't. Then there exis2 Z such that 3 abbut 2 divides neither
anorb. Thusa andb are both odd, meaning thabis odd... but this contradicts the assumptior
that 2j ab.

However, 18 is not prime. Indeed, 182 15 but 18 divides neither 12 nor 15. C
Exercise 5.2.3
Using De nition 5.2.1, prove that 3 and 5 are prime, and that 4 is not prime. C
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Example 5.2.4
Letk2 Z with 0< k< 5. We'll show that§ ; .
Well, by Theorem 3.2.17 we know that
5
| = | |
5! K kKI(5 K)!

By De nition 3.1.14, we have

R W S

=(5 K)!

Since 5 is prime, it must divide one of the factors on the right-hand side of this equation. T
either 5 dividesﬁ ,oritdivides” forsome 16 "6 kor16 "6 5 k Butk<5and5 k< 5,s0
it cannot divide any of these values'efif it did, it would imply 56 6 kor56 “ 6 5 k, which
is nonsense. Hence 5 must divicﬁe. C

Exercise 5.2.5
Let p2 Z be a positive prime and let® k< p. Show thatpj P . C

We now arrive at our second notion afomic capturing the idea that it should not be possible t
break an atomic integer into smaller parts.

De nition 5.2.6
An integera is irreducible if ais a nonzero nonunit and, for at,n 2 Z, if a= mn, then eithem
ornis a unit. Otherwisea is reducible.

The notion ofirreducible captures more closely the more familiar notion of “prime’, as the ne
result shows.

Proposition 5.2.7
Let p2 Z be a nonzero nonunit. Thanis irreducible if and only if the only divisors gf arep, p,
land 1.

Proof

Supposep is irreducible and that j p. Thenp = abfor someb 2 Z. Sincep is irreducible, eithea

orbisaunit. Ifaisaunittherb= p, andifbis a unitthera= p. So the only divisors op are
land p.

Conversely, suppose that the only divisorspadire 1 and p, and leta;b 2 Z with p= ab. We
want to prove thatd or b is a unit. Sinceaj p, we havea2f1; 1;p; pg. Ifa= 1,thenaisa
unit; ifa= p,thenb= 1, so thatb is a unit. In any case, eitharor b is a unit, and hence is
irreducible.

Example 5.2.8
A couple of examples of reducible and irreducible numbers are:

2 isirreducible: if 2= mnthen eithemor nis even, otherwise we'd be expressing an even numb
as the product of two odd numbers. We may assoriseeven, sayn= 2k; then 2= 2kn, sokn= 1
and hence is a unit.
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Section 5.2. Prime numbers 181

20 is reducible since 286 4 5 and neither 4 nor 5 is a unit.

C
Exercise 5.2.9
Let p2 Z. Prove that ifpis ring theoretically prime, thep is irreducible. C
C Lemma 5.2.10
Leta2 Z be a nonzero nonunit. Then there are irreducilpies: :; p, such that= p; Pn.
Proof

We may assuma> 0, since ifa< 0 we can just multiply by 1.
We proceed by strong induction @ 2. The base case has 2 since we consider only nonunits.

(Base casgWe have shown that 2 is irreducible, so settjyg= 2 yields a product of primes.

(Induction step) Leta> 2 and suppose that each integavith 26 k6 a has an expression as a
product of irreducibles. &+ 1 is irreducible then we're done; otherwise we can waitel = st,
wheres;t 2 Z are nonzero nonunits. We may assume furtherglzaidt are positive. Moreover,
s< a+ landt< a+ 1sincest > 2.

By the induction hypothesis,andt have expressions as products of irreducibles. Write

S= P pm and t= 0 Ohn
This gives rise to an expressionaés a product of irreducibles:
a=st=
1 {z pr}] l_{_zt_qf

=S

The result follows by induction.

C Theorem 5.2.11
Let p2 Z. Thenpis ring theoretically prime if and only ip is irreducible.

Proof
We prove the two directions separately.

Prime) irreducible. This was Exercise 5.2.9.

Irreducible ) prime. Supposep is irreducible. Leta;b 2 Z and suppose j ab. We need to
show thatpjaor pjb. It suf ces to show that ifp-athenpj b.

So suppos@-a. Letd = gcd p;a). Sincedj pandpis irreducible, we must hawe= 1 ord= p
by Proposition 5.2.7. Since-aandd j a, we must therefore hawvé= 1.

By Bézout's lemma (Theorem 5.1.23), there exist2 Z such thaau+ pv= 1. Multiplying by
b givesabu+ pbv= b. Sincepj ab, there exist& 2 Z such thatpk= ab. De ne q= ku+ by, then

b= abu+ pbv= pku+ pbv= p(ku+ bv) = gp

sopj b, as required.

So we're done.

Since primes and irreducibles are the same thing,iwe will refer to them as “primes', unless we
need to emphasise a particular aspect of them.
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Prime factorisation

Having described prime numbers in two ways, each of which emphasises their nature of being
breakable' by multiplication, we will extend Lemma 5.2.10 to prove that every integer can be
pressed as a product of primes in an essentially unique way.

C Theorem 5.2.12 (Fundamental theorem of arithmetic)
Leta?2 Z be a nonzero nonunit. There exist prinms:::; px 2 Z such that

a= Pk

Moreover, this expression is essentially uniquea # q; g is another expression afas a
product of primes, thek= " and, re-ordering the; if necessary, for eachthere is a unit; such
thatqg = up;.

Proof
We showed that such a factorisation exists in Lemma 5.2.10, with the word “prime' replaced by
word “irreducible’. It remains to prove (essential) uniqueness.

Letk be least such that there is an expressioaad a product ok primes, namela= p; Px-
Leta=qp g be any other such expression. We prove by inductiok tivat™ = k and, after
re-ordering if necessary, for eacthere is a unit; such thaty = u;p;.

(Base casglf k= 1 thena= p; is itself prime. Then we havp; = g1 g . Sinceps is
prime, py j q; for somej; by relabellingg: andg; we may assume that= 1, so thatp; j ;. By
irreducibility of q; we haveq; = up p1 for some unitu;.

(Induction step) Letk > 1 and suppose that any integer which can be expressed as a produ
k primes is (essentially) uniquely expressible in such a way. Suppbses an expression as a
product ofk+ 1 primes, and that+ 1 is the least such number. Suppose also that

a=m Pk Pk+1= a1 a

Note that > k+ 1. Sincep+ 1 is prime we must havey. 1 j g; for somej; by relabellingg; and
g if necessary, we may assume that °, so thatpy+ 1 j 0. As before,g- = Uy+1pk+1 for some
unit ug+ 1. Dividing through bypy.: 1 gives

P1 Pk= 01 O 1 U1

Replacingy 1 by g 1Uk+1, which is still prime, we can apply the induction hypothesis to obtai
k=" 1, sok+ 1= ", and, after reordering if necessagy= u;p; for all i 6 k. Since this also
holds fori = k+ 1, the induction step is complete.

The result follows by induction.

0 Example 5.2.13
Here are some examples of numbers written as products of primes:

12=2 2 3. Wecould also writethisas23 2or( 2) ( 3) 2,andsoon.

53= 53 is an expression of 53 as a product of primes.
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1000=2 5 (2 5 2 5.

We can view any unit as a productd primes. (Don't dwell on this point for too long as it will
not arise very often!)

Exercise 5.2.14
Express the following numbers as products of primes:

16 240 5050 111111 123456789
C

To make things slightly more concise, we introduce a standard way of expressing a humber
product of primes:

F De nition 5.2.15
Thecanonical prime factorisation of a nonzero integeat is the expression in the form
a=up! pl

wherer > 0 and:

u=1ifa> 0,andu= 1lifa<O0;
The numberg; are all positive primes;

p1< p2< < pr;

ji > 1foralli.
We call j; themultiplicity of p; in a, and we callu thesign of a.

Typically we omituif u= 1 (unlessa= 1), and just write a minus sign { if u= 1.

0 Example 5.2.16
The canonical prime factorisations of the integers given in Example 5.2.13 are:

12= 22 3.
53= 53.
1000= 2% 5%,
1= 1.
C

Exercise 5.2.17
Write out the canonical prime factorisations of the numbers from Exercise 5.2.14, which were:

16 240 5050 111111 123456789
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The following exercise provides another tool for computing greatest common divisors of pair
integers by looking at their prime factorisations.

Exercise 5.2.18

" " . . .
m= p  py p¥ and n=p} p7? P
Prove that
gedmn) = py*  py’ 3
whereu; = minfk;; jgforall16 i 6 r. C

Example 5.2.19
We use Exercise 5.2.18 to compute the greatest common divisor of 17640 and 6468.

First we compute the prime factorisations of 17640 and 6468:
17640= 23 3> 5 77 and 6468 22 3 72 11
It now follows from Exercise 5.2.18 that

gcd(176406469 = 22 3t 52 72 11°
=431491
= 588

Exercise 5.2.18 allows us to provide a concise proof of the following result.

Corollary 5.2.20
Let p2 Z be prime, le@ 2 Z be nonzero, and lé¢> 1. Thena? pXif and only if p-a.

Proof
By the fundamental theorem of arithmetic, we can write

a=p pl pir

forall16 i6 r. Note thatpj aif and only if j > 1.

Furthermore we have

p=p< P Py
By Exercise 5.2.18 it follows that
gcc(a; pk) - pminfj;kg pg p9: pminfj;kg

Now:
If minf j;kg= 0thenj = 0, in which case - a, and gcda; p¥) = p° = 1;
If minf j;kg> 0 thenj > 1, in which casej a, andpj gcda; p*), so gcda; p¥) 6 1.

In particular,p - aif and only ifa? p*.
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Distribution of primes

So far we have seen several examples of prime numbers; to name a few, we've seen 2, 3,5 a
It might seem like the prime numbers go on forever, but proving this is less than obvious.

Exercise 5.2.21
Let P be an inhabited nite set of positive prime numbers andidte the product of all the elements
of P. That is, for somen> 1 let

P=fp1;:::;png and m= p; Pn

where eaclpy 2 Pis a positive prime. Using the fundamental theorem of arithmetic, shovrthat
has a positive prime divisor which is not an elemenPof C

Theorem 5.2.22
There are in nitely many primes.

Proof

We prove that there are in nitely marpositiveprime numbers—the result then follows immediately
Let P be the set of all positive prime numbers. THers inhabited, since 2 P, for example. If

P were nite, then by Exercise 5.2.21, there would be a positive prime which is not an elemer
P—but P contains all positive primes, so that is impossible. Hence there are in nitely many posi
primes.

This is one proof of many and is attributed to Euclid, who lived around 2300 years ago. We m
hope that a proof of the in nitude of primes gives some insight into how the primedistréduted
That is, we might ask questions like: how frequently do primes occur? How fast does the sequ
of primes grow? How likely is there to be a prime number in a given set of integers?

As a starting point, Euclid's proof gives an algorithm for writing an in nite list of primes:
Let p1 = 2; we know that 2 is prime;
Givenps;:::; pn, let pns 1 be the smallest positive prime factor jof pn+ 1.
The rst few terms produced would be:
p1 = 2 by de nition;
2+ 1= 3, which is prime, sqp = 3;
2 3+ 1= 7,whichis prime, s@s = 7;
2 3 7+ 1= 43, whichis prime, s@4 = 43;
2 3 7 43+ 1=1807= 13 139, sops= 13;
2 3 7 43 13+ 1= 23479= 53 443, sops = 53;

...and so on.
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The sequence obtained, called theclid—Mullin sequencas a bit bizarre:
2;3;7;43,13,53,5;62216713870918381057139,2801 11; 17,5471 :::

Big primes like 38709183810571 often appear before small primes like 11. It remains unkn
whether or not every positive prime number appears in this list!

The chaotic nature of this sequence makes it dif cult to extract information about how the prir
are distributed: the numbeps pn+ 1 grow very quickly—indeed, it must be the case tha
p1 pn+ 1> 2" for all n—so the upper bounds for the sequence grow at least exponential

Another proof of the in nitude of primes that gives a (slightly) tighter bound can be obtained us
the following exercise.

Exercise 5.2.23
Letn2 Z withn> 2. Prove that the sék 2 Z j n< k< nlg contains a prime number. C
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Section 5.3
Modular arithmetic

Recall the de nition ofcongruencenodulo an integer from Section 4.2.

De nition 4.2.6
Fix n2 Z. Given integers; b 2 Z, we saya is congruentto b modulo n, and write

a bmodn (IATpX code:a \equiv b \bmod{n} )
if ndividesa b. If ais not congruent td modulon, write
a6 b modn (IATgX code:\not\equiv )

The numben is called themodulus of the congruence.
In Section 4.2, we proved that congruence is an equivalence relation:

Theorem 4.2.11
Letn2 Z. Then congruence modufois an equivalence relation ah That is:

(@) a amodnforalla2 Z;
(b) Foralla;b2 Z,ifa bmodn,thenb amodn;

(c) Foralla;b;c2 Z,ifa bmodnandb c¢modn,thena c¢modn.

In this section, we turn our attention to addition, subtraction, multiplication and division: our goz
to nd out how much arithmetic can be done witlqualityreplaced bycongruenceFor example:

(i) Can we add a number to both sides of a congruence? That is,a@iker)n 2 Z, is it the case
thata bmodnimpliesa+ c b+ cmodn?

(i) Can we multiply both sides of a congruence by a number? That is, gigr;n2 Z, is it the
casethah b modnimpliesac bcmodn?

(i) Can we divide both sides of a congruence by a nonzero common factor? That is, g
a;b;c;n2 Z with c6 0 modn, is it the case thatiic  bcmodnimpliesa b modn?

The answers to (i) and (ii) are “yes', as we will prove; but surprisingly, the answer to (iii) is 'r
(except under certain circumstances). For example32 4 3 mod 6, but 2 4 mod 6, even
though 36 0 mod 6.

In light of this, it is important from the outset to point out that, although congruence is written w

a symbol that looks like that of equality (" vs. "="), and although it is an equivalence relation, we
can only treat congruence like equality inasmuch as we prove that we can. Speci cally:
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In Theorem 4.2.11 we proved that congruence is an equivalence relation. This allows us to |
some basic inferences about congruences—for example, transitivity means that the followin
plication is valid:

5 18 41 64mod?23 ) 5 64 mod 23

Theorem 5.3.3, which we will prove soon, tells us that we can treat congruence like equality
the purposes of addition, multiplication and subtraction. Thus it will be valid to write things lik

X 7mod12 ) 2x+5 19mod 12

and we'll be able to replace values by congruent values in congruences, provided they're
being added, subtracted or multiplied. For example, from the knowledge®hat2mod 61 and
60! 1 mod 61, we will be able to deduce

2503 60! xmod61 ) 3  xmod 61

After we have worked out what arithmetic properties carry over to congruence, we will be abl
prove some interesting theorems involving congruences and discuss their applications.

The rst result we prove gives us a few equivalent ways of talking about congruence.

C Proposition 5.3.1
Fix a modulus and leta;b 2 Z. The following are equivalent:

(i) aandb leave the same remainder when dividedby
(i) a= b+ knfor somek2 Z;
(i) a bmodn.

Proof
We prove (i), (i) and (i), (iii).

(i)) (iii). Supposea andb leave the same remainder when dividedbgnd letqs; gp;r 2 Z be
such that
a=qn+r, b=qgn+r and 06 r<n

Thena b=(qr qp)n, which provesthahja b,andsca b modn.

(i) ) (i). Suppose that b modn, sothath a= gnfor someq2 Z. Write
a=qn+ry; b=gn+ry and 06 ry;rp<n

We may further assume thiat6 ro. (If not, swap the roles ai andb—this is ne, sincenjb a
ifand only ifnja b.) Now we have

b a=qn) (gn+rz) (qun+r1)=an
) (@ qu ogn+(rz r)=0 rearranging

since 06 r1 6 ro< nwehave B r, rqy<n,sothatr, ryisthe remainder of 0 when divided
byn. Thatis,r, rp= 0, sor; = rp. Hencea andb have the same remainder when dividedhby
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(i) , (iii). We unpack the de nitions of (ii) and (iii) to see that they are equivalent. Indeed

(i), a= b+ knfor somek?2 Z

, & b= knforsomek2 Z rearranging

, hja b by de nition of divisibility

, a bmodn by de nition of congruence
. (iii)

Discussion 5.3.2
Where in the proof of Proposition 5.3.1 did we rely on the convention that the mowlidymositive?
Is the result still true if is negative? C

We now prove that we can treat congruence like equality for the purposes of adding, subtractin
multiplying (but not dividing!) integers.

Theorem 5.3.3 (Modular arithmetic)
Fix a modulus, and letay; ap; by; by 2 Z be such that

a; by modn and a by, modn

Then the following congruences hold:

(@) a;+a; by+ b, modn;
(b) azaz biby, modn;
(c)ays a by bymodn.

Proof
By De nition 4.2.6 thatnja; by andnja, by, so there existiy; gz 2 Z such that

as bi=aqin and a by=qn
This implies that
(arta) (bit+by)=(ar by)+(az bz)= qun+ gn=(aqu+ g2)n
sonj(ar+ ap) (byp+ by). This proves (a).
The algebra for (b) is slightly more involved:
ad bbby =(qin+ by)(gen+ by)  biby

= (0N’ + byn+ bocun+ biby  byby,

= (u02n’ + byan+ bpgun

= (aGen+ bige + baga)n
This shows thahj aja, biby, thus proving (b).

Now (a) and (b) together imply (c). Indeed, we know thdt 1 modnandb; by modn, so by
(b) we have by b, modn. We also know thad; a, modn, and hence; b; ap by mod

n by (a).
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Theorem 5.3.3 allows us to perform algebraic manipulations with congruences as if they were ¢
tions, provided all we're doing is adding, multiplying and subtracting.

Example 5.3.4
We will solve the congruencex3 5 2x+ 3 mod 7 forx:

3X 5 2x+3mod?7

, X 5 3mod7 () ) subtract & (( ) add X
, X 8mod7 § Yadd 5 ( ) subtract 5
, X 1mod7 since8 1 mod7

So the integerx for which 3x 5 and X+ 3 leave the same remainder when divided by 7, al
precisely the integerswhich leave a remainder of 1 when divided by 7:

3x 5 2x+3mod7 , x= 7q+ 1 forsomeq2 Z

C

Exercise 5.3.5
For which integerx does the congruencex® 1 x+ 8 mod 3 hold? Characterise such integers
in terms of their remainder when divided by 3. C

So far this all feels like we haven't done very much: we've just introduced a new symhadiich
behaves just like equality. .. but does it really? The following exercises should expose some
ways in which congruencgoesbehave like equality, and some in whiclditesn't

Exercise 5.3.6
Fix a modulus. Is it true that

a bmodn ) & b“modn

foralla;b2 Z andk 2 N? If so, prove it; if not, provide a counterexample. C

Exercise 5.3.7
Fix a modulus. Is it true that

k “modn ) & a modn

forallk;” 2 Nanda2 Z? If so, prove it; if not, provide a counterexample. C

Exercise 5.3.8
Fix a modulus. Is it true that

ga gbmodn ) a bmodn

forall a;b;q2 Z with g6 0 modn? If so, prove it; if not, provide a counterexample. C

Example 5.3.9
Now that we have seen several things thatasa do with modular arithmetic, let's look at some
things that wecannotdo:

We cannot talk about fractions in modular arithmetic; for instance, it is invalid toxsayl2mod 5
impliesx 3 mod 5.
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We cannot tabgsquare roots in modular arithmetic; for instance, it is invalid t?say mod 4
implies x 3 mod 4. In fact, it is invalid to say’ 1 mod 8 impliesx 1 mod 8, since
forexample 3 1mod8but3 1 mod 8.

We cannot replace numbers in exponents by other numbers they are congruent to; for instal
is invalid to sayx® 22 mod 4 impliesx 2 mod 4.

Multiplicative inverses

We made a big deal about the fact that fractions don't make sense in modular arithmetic. That
is invalid to say

2x 1mod5 ) X %modS

Despite this, we can still make sense of "division’, provided we change what we mean when wk
“division'. Indeed, the congruence2 1 mod 5 has a solution:

2x 1mod5
, 6x 3mod5 { ) multiply by 3 (( ) subtract 3
, X 3mod5 since6 1 mod5

Here we didn't divide by 2, but we still managed to cancel the 2 by instead multiplying through
3. For the purposes of solving the equation this had the same effect as division by 2 would hav
if we were allowed to divide. The key here was that2 1 mod 5.

F De nition 5.3.10
Fix a modulusn. Givena 2 Z, a multiplicative inverse for a modulon is an integemu such that
au 1 modn.

0 Example 5.3.11
Some examples of multiplicative inverses are as follows:

2 is a multiplicative inverse of itself modulo 3, since2 4 1 mod 3.
2 is a multiplicative inverse of 3 modulo 5, since 3 6 1 mod 5.
7 is also a multiplicative inverse of 3 modulo 5, since3 21 1 mod 5.

3 has no multiplicative inverse modulo 6. Indeed, suppogeZ with 3u 1 mod 6. Then
6j3u 1,s031 1= 6qforsomeq?2 Z. Butthen

1=3u 6g=3(u 29
which implies that 3 1, which is nonsense.

C

Knowing when multiplicative inverses exist is very important for solving congruencass i mul-
tiplicative inverse fora modulon, then we can solve equations of the foama b mod n extremely
easily:

ax bmodn ) X ubmodn
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Exercise 5.3.12
Forn= 7;8;9;10;11;12, either nd a multiplicative inverse for 6 modulg or show that no multi-
plicative inverse exists. Can you spot a pattern? C

Some authors writa 1 to denote multiplicative inverses. We refrain from this, since it suggests tt
multiplicative inverses are unique—but they're not, as you'll see in the following exercise.

Exercise 5.3.13
Letn be a modulus and let2 Z. Suppose that is a multiplicative inverse foa modulon. Prove
that, for allk 2 Z, u+ knis a multiplicative inverse foa modulon. C

Proposition 5.3.14
Leta2 Z and letn be a modulus. Thea has a multiplicative inverse moduitoif and only ifa? n.

Proof

Note thata has a multiplicative inversa modulon if and only if there is a solutiorfu;v) to the
equationau+ nv= 1. Indeed,au 1 modn if and only if njau 1, which occurs if and only
if there is someq 2 Z such thatau 1= ng Settingg= Vv and rearranging yields the desired
equivalence.

By Bézout's lemma (Theorem 5.1.23), such a solufioyv) exists if and only if gc€ia;n) j 1. This
occurs if and only if gcth;n) = 1, i.e. ifand only ifa? n.

Proof tip
To solve a congruence of the forax b modnwhena? n, rst nd a multiplicative inverseu for
a modulon, and then simply multiply through hyto obtainx ubmodn. C

Corollary 5.3.15
Leta;p2 Z, wherep is a positive prime. I - a thena has a multiplicative inverse modufo

Proof

Suppose - a, and letd = gcda; p). Sinced j pandpis prime we havel = 1 ord = p. Sinced j a
andp-awe can't haved = p; therefored = 1. By Proposition 5.3.14 has a multiplicative inverse
modulop.

Example 5.3.16
11 is prime, so each of the integexrsvith 16 a6 10 should have a multiplicative inverse modulc
11. And indeed, the following are all congruent to 1 modulo 11.:

1 1=1 2 6=12 3 4=12 4 3=12 5 9=45
6 2=12 7 8=56 8 7=56 9 5=45 10 10= 100
C
Exercise 5.3.17
Find all integers<such that 2% 4 4x+ 3 mod 13. C

Orders and totients

For any modulus, there are only nitely many possible remainders modul@ nice consequence
of this niteness is that, whea? n, we can choose some poweranto be its multiplicative inverse,
as proved in the following exercise.
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Exercise 5.3.18
Let n be a modulus and let2 Z with a? n. Prove that there exists> 1 such thag 1 modn.
C

Exercise 5.3.18, together with the well-ordering principle, justify the following de nition.

De nition 5.3.19

Let n be a modulus and let2 Z with a? n. Theorder of a modulon is the leask > 1 such that
K

a* 1 modn.

Note that this de nition makes sense by Exercise 5.3.18 and the well-ordering principle.

Example 5.3.20
The powers of 7 modulo 100 are:

7'=7,s0%* 7 mod 100;
7°=49,s07 49 mod 100;
7°= 343,07 43 mod 100;
74=2401,s07 1 mod 100.

Hence the order of 7 modulo 100 is 4, aritind 43 are multiplicative inverses of 7 modulo 10@

Our focus turns to computing speci ¢ valuesto$uch thae® 1 modn, whenevea2 Z anda? n.
We rst focus on the case whemis prime; then we develop the machinerytofientsto study the
case whem is not prime.

Lemma 5.3.21
Leta;b2 Z and letp2 Z be a positive prime. Thefa+ b)P  aP+ bP mod p.

Proof
By the binomial theorem (Theorem 3.2.20), we have

p
(@a+b)P=g P abek
k=0 k

By Exercise 5.2.5pj E forall0< k< p, and henceE aP K 0modpforall0< k< p. Thus
(a+ b)P 8 a%bP 0+ S aPbP P aP+ bP modp
as desired.

Theorem 5.3.22 (Fermat's little theorem)
Leta; p2 Z with p a positive prime. Thea® amodp.

Proof
We may assume that> 0, otherwise replace by its remainder modulg.

We will prove thata® a mod p by induction ona.
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(BC) Sincep> O0we have 8= 0, hence ® 0 modp.

(IS) Fix a> 0 and supposa®P amodp. Then(a+ 1)P aP+ 1P modp by Lemma 5.3.21.
NowaP amod p by the induction hypothesis, and £ 1, so we havga+ 1)P a+ 1 modp.

By induction, we're done.

The following consequence of Theorem 5.3.22 is often also referred to as "Fermat's little theor
but is slightly less general since it requires an additional hypothesis. In keeping with the w
mathematical community, we will refer to both Theorem 5.3.22 and Corollary 5.3.23 as "Fern
little theorem'.

Corollary 5.3.23 (Fermat's little theorem — alternative version)
Leta; p2 Z with p a positive prime angh-a. Thena? * 1 modp.

Proof
Sincep-a, it follows thata? p. Theorem 5.3.22 tells us thaf a mod p. By Proposition 5.3.14,
a has a multiplicative inversie modulop. Hence

aPb abmodp

ButaPb aP labmodp, andab 1 modp, so we get

1

aP 1 modp

as required.

Corollary 5.3.23 can be useful for computing remainders of humongous numbers when divide
smaller primes.

Example 5.3.24
We compute the remainder ot%° when divided by 7. Since 72, it follows from Fermat's little
theorem (Corollary 5.3.23) thaf2 1 mod 7. Now 100G 166 6+ 4, so

21000 2166 6+4 (26)166 24 24 16 2mod 7

so the remainder of9°°when divided by 7 is 2. C
Exercise 5.3.25
Find the remainder 0f%4886when divided by 13. C

Unfortunately, the hypothesis thptis prime in Fermat's little theorem cannot be disposed of. Fc
example, 6 is not prime, and5' = 5° = 3125= 520 6+ 5,s05 5 mod 6. Our next order of
business is to generalise Corollary 5.3.23 by removing the requirement that the mpdelpsime,
and replacingp 1 by thetotientof the modulus.

De nition 5.3.26
Letn2 Z. Thetotient of nis the natural numbgr(n) (IATeX code:\varphi(n) ) de ned by
j ()= jfk2[in]jk? ngj

That is,j (n) is the number of integers from 1 up {oj which are coprime to. The function
j :Z!' Nis calledEuler's totient function .
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Example 5.3.27
Here are some examples of totients:

The elements df6] which are coprime to 6 are 1 and 5,js¢6) = 2.

If pis a positive prime, then by Corollary 5.2.20, every elemerippfs coprime top except for
p itself. Hence ifp is a positive prime thenp (p) = p 1. More generally, ifp is prime then
j(p=ip 1.

C

Exercise 5.3.28
Letn2 Z and letp> 0 be prime. Prove thatifj n, thenj (pn)= p j (n). Deduce that (p*) =

p¢ p¢ Lforall primep> 0andallk> 1. C
Exercise 5.3.29
Letn2 Z and letp> 0 be prime. Prove that ip-n, thenj (pn)=(p 1)j (n). C

Together, Exercises 5.3.28 and 5.3.29 allow us to compute the totient of any integer with up tc
primes in its prime factorisation.

Example 5.3.30
We computg (100). The prime factorisation of 100 i$2 52. Applying Exercise 5.3.28 twice

j(2@ 5)=2 5 j(2 5=10 (10
Finally, Exercise 5.3.29 tells us that

j(10=j(2 5=1 j(5=1 4=4

Hencej (100) = 40. C
Exercise 5.3.31
Prove thaj (100 = 40, this time using the inclusion—exclusion principle. C

Euler's theorem uses totients to generalise Fermat's little theorem (Theorem 5.3.22) to arbi
moduli, not just prime ones.

Theorem 5.3.32 (Euler's theorem)
Letn be a modulus and let2 Z with a? n. Then
a® 1modn

Proof
By de nition of totient, the seiX de ned by

X=fk2[n]jk? ng

hasj (n) elements. List the elements as

Note thatax ? nfor all i, so lety; be the (unique) element &f such thabx y; modn.

195



196 Chapter 5. Number theory

Note that ifi 6 j theny; 6 yj. We prove this by contraposition; indeed, sirec@ n, by Proposi-
tion 5.3.14,a has a multiplicative inverse, séy Then
yi yjmodn) ax axjmodn) bax bax modn) x Xx;modn

andx;  xj modnifandonlyifi = j. Thus

This means that the product of theg's is equal to the product of thg;'s, and hence

XL 1% (n)
Yi 1Y m modn sincef xg;:::9= fyg;:::g
(axg) i (a% (ny) modn sincey; ax modn
d ™ x % modn rearranging

Since each is coprime ton, we can cancel thg terms (by multiplying by their multiplicative
inverses) to obtain _
a ™ 1 modn

as required.

Example 5.3.33
Some examples of Euler's theorem in action are as follows:

We have seen that(6) = 2, and we know that 3 6. And, indeed,
50 =52=25=4 6+1
s08® 1 mod 6.
By Exercise 5.3.28, we have
j(12)=j (11%) = 17> 11'=121 11=110

Moreover, givera2 Z,a? 121 if and only if 11-a by Corollary 5.2.20. Henca''® 1 mod 121
whenever 1% a.

C

Exercise 5.3.34
Use Euler's theorem to prove that the last two digits 6¥&e "67". C

Example 5.3.35
Letn be a modulus and let2 Z with a? n. Prove that the order @ modulon dividesj (n). C

A formula for the totient of an arbitrary nonzero integer is proved in Theorem 5.3.59—its proof is
application of the Chinese remainder theorem Theorem 5.3.46, and uses the techniques for co
nite sets discussed in Section 6.2.
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Wilson's theorem

We conclude this chapter on number theory Witison's theoremwhich is a nice result that com-
pletely characterises prime numbers in the sense that we can tell when a number is prime by
puting the remainder din  1)! when divided byn.

Let's test a few numbers rst:

n|(n 1! | remainder

2 1 1

3 2 2

4 6 2

5 24 4

6 120 0

7 720 6

8 | 5040 0
n (n 1! remainder
9 40320 0
10 362880 0
11 3628800 10
12 39916800 0

13| 479001600 12
14 | 6227020800 0
15 | 87178291200 0

It's tempting to say that an integar> 1 is prime if and only ifn- (n  1)!, but this isn't true since it
fails whenn = 4. But it's extremely close to being true.

Theorem 5.3.36 (Wilson's theorem)
Letn> 1 be a modulus. Themis prime if and only if(n  1)! 1 modn.

The following sequence of exercises will piece together into a proof of Wilson's theorem.

Exercise 5.3.37
Letn?2 Z be composite. Prove thatiif> 4, thennj (n 1)!. C

Exercise 5.3.38
Let pbe a positive prime and let2 Z. Prove that, i8> 1 modp, thena 1 modpora 1 mod
p. C

Exercise 5.3.38 implies that the only elementgf 1] that are their own multiplicative inverses
are 1 andp 1; this morsel of information allows us to deduce result in the following exercise.

Exercise 5.3.39
Let p be a positive prime. Prove thgp 1)! 1 modp. C

Proof of Wilson's theorem (Theorem 5.3.36)
Letn> 1 be a modulus.
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If nis prime, ther(n 1)! 1 modn by Exercise 5.3.39.
If nis composite, then either= 4 orn> 4. If n= 4 then
(n H)!'=3'=6 2mod4
andson 1)!6 1modn. If n> 4,then
(n 1)!' O0modn
by Exercise 5.3.37.

Hence(n 1)! 1 modnif and only if nis prime, as desired.

Since Wilson's theorem completely characterises the positive prime numbers, we could have de
‘nis prime', forn> 1, to mean thatn 1)! 1 modn. We don't do this because, although this is
an interesting result, it is not particularly useful in applications. We might even hope that Wilsc
theorem gives us an easy way to test whether a number is prime, but unfortunately even thi
bust: computing the remaindén  1)! on division byn is not particularly ef cient.

However, there are some nice applications of Wilson's theorem, which we will explore now.

0 Example 5.3.40
We'll compute the remainder of43 44! when divided by 47. Note that*3 44! is equal to a
monstrous number with 76 digits; | don't recommend doing the long division! Anyway. . .

47 is prime, so we can apply both Fermat's little theorem (Theorem 5.3.22) and Wilson's theo
(Theorem 5.3.36).

By Fermat's little theorem, we know that® 1 mod 47. Since 316= 48 1 mod 47, we have
35 3% (316 3% 16 16 mod 47
By Wilson's theorem, we have 46! 1 mod 47. Now
46 1 mod 47, so 46 is its own multiplicative inverse modulo 47.

The extended Euclidean algorithm yields 23 1 mod 47.
So we have

441= 44) (45 23) (46 46) 46! 23 46 ( 1) 23 ( 1) 23 mod 47

Putting this information together yields
3% 441 16 23= 368 39 mod 47

So the remainder left wherf3 44! is divided by 47 is 39. C

Exercise 5.3.41
Let p be an odd positive prime. Prove that

2
p71 ! ( 1)‘37l mod p

198



Section 5.3. Modular arithmetic 199

Chinese remainder theorem

We introduce the Chinese remainder theorem with an example.

Example 5.3.42
We nd all integer solutionscto the system of congruences

X 2mod5 and x 4 mod8

Note thatx 4 mod 8 if and only ifx= 4+ 8k for somek 2 Z. Now, for allk 2 Z we have

X 2mod5

, 4+8 2mod5 sincex= 4+ 8k

, 8k 2mod5 subtracting 4

, 3k 3mod>5 since8 2 3mod>5

, k 1mod5 multiplying by a multiplicative inverse for 3 modulo 5

So4+ 8 2mod5ifandonlyitk= 1+ 5 for some 2 Z.

Combining this, we see thatsatis es both congruences if and only if
X= 4+ 8(1+ 57) = 12+ 40

for some™ 2 Z.

Hence the integersfor which both congruences are satis ed are precisely those integerch that
X 12 mod 40. C

Exercise 5.3.43
Find all integer solutionz to the system of congruences:

8
2 X 1 mod 4
S X 1 mod9
"X 5mod11
Express your solution in the formn  a modn for suitablen> 0 and 06 a< n. C

Exercise 5.3.44
Let m;n be coprime moduli and let;b 2 Z. Letu;v2 Z be such that

mu 1modn and nv 1modm
In terms ofa; b;m; n;u;v, nd an integerx such that
Xx amodm and x bmodn

C

Exercise 5.3.45
Let m;n be coprime moduli and let;y 2 Z. Prove that ifx ymodmandx ymodn, then
X ymodmn C
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Theorem 5.3.46 (Chinese remainder theorem)
Let m;n be moduli and let;b 2 Z. If mandn are coprime, then there exists an integer solutitm
the simultaneous congruences

x amodm and x bmodn
Moreover, ifx;y 2 Z are two such solutions, then y modmn

Proof
Existence of a solutior is precisely the content of Exercise 5.3.44.

Now letx;y 2 Z be two solutions to the two congruences. Then

(

X amodm
y amodm ) X ymodm

X bmodn
y bmodn ) X ymodn

so by Exercise 5.3.45, we haxe y modmn, as required.

We now generalise the Chinese remainder theorem to the case when themmaodut not assumed
to be coprime. There are two ways we could make this generalisation: either we could reduc
more general version of the theorem to the version we proved in Theorem 5.3.46, or we could
the more general version from scratch. We opt for the latter approach, but you might want to con
what a ‘reductive' proof would look like.

Theorem 5.3.47

Let m;n be moduli and leg;b2 Z. There exists an integer solutiario the system of congruences
X amodm and x bmodn

ifand only ifa b mod gcqdm;n).

Moreover, ifx;y 2 Z are two such solutions, then y mod lcm(m; n)

Proof
Letd = gedm;n), and writem= m% andn= n% for somem®n°2 Z.

We prove that an integer solutiorto the system of congruences exists if and only if b modd.

() ) Suppose an integer solutiorto the system of congruences exists. Then there exist integ
k; " such that
x=a+ mk=b+n

Butm= mY andn= nd, so we hava+ mtk= b+ nd", and so
a b=(n® mkd

sothata b modd, as required.
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(( ) Supposea b modd, and lett 2 Z be such than b= td. Letu;v2 Z be such that
mu+ nv= d—these exist by Bézout's lemma (Theorem 5.1.23). Note also that, sircent
andn = nd, dividing through byd yieldsmUu+ n& = 1.

De ne
x= anV+ bnfu
Now we have
x= an¥+ bnfu by de nition of x
= anV+(a td)ymb sincea b=td
= a(mUu+n%) tdnfl rearranging
=a tdnfu sincemu+ nd =1
=a tum sincem= mH4
sox amodm. Likewise
x= and/+ bnfu by de nition of x
= (b+ td)n%+ bnflu sincea b=td
= b(mU+ n%)+ tdnd rearranging
= b+ tdnd sincemU+ n%= 1
= b+ tvn sincen= nd

sox b modn.
Hencex = anv+ brrfu is a solution to the system of congruences.

We now prove that ifx;y are two integer solutions to the system of congruences, then they
congruent modulo Icifa; b). First note that we must have

X ymodm and x ymodn
so thatx= y+ kmandx = y+ “nfor somek;" 2 Z. But then
X y=km="n

Writing m= m¥d andn= nd, we see thaknfd = “nd, so thatkn= "n®% But m®n®are coprime by
Exercise 5.1.30, and heno#j ~ by Proposition 5.1.32. Write= ~%°for some'°2 Z. Then we

have
x y="n="%h
and hence y modmh. Butmth = lcm(m;n) by Exercise 5.1.41.

This theorem is in factonstructivein that it provides an algorithm for nding all integer solutions
x to a system of congruences

Xx amodm and x bmodn
as follows:

Use the Euclidean algorithm to compuate gcd/m; n).
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If d-a bthen there are no solutions, so stopd ffa b, then proceed to the next step.
Use the extended Euclidean algorithm to compute2 Z such thamu+ nv= d.
The integer solutions to the system of congruences are precisely those of the form

+ +
X= w for somek 2 Z

Exercise 5.3.48
Verify that the algorithm outlined above is correct. Use it to compute the solutions to the systel
congruences

X 3mod12 and x 15 mod 20

C

? Exercise 5.3.49
Generalise the Chinese remainder theorem to systems of arbitrarily ( nitely) many congruer

such that an integer solution exists to the congruences

X a;modni; x a; modny; X a modn,

such that any two solutions to the system of congruences are congruent modulo C

Exercise 5.3.50
Prove that gaps between consecutive primes can be made arbitrarily large. That is, prove that
n2 N, there exists an integersuch that the numbers

aa+l a+2 :::;;a+n

are all composite. C

Application: tests for divisibility

The language of modular arithmetic provides a practical setting for proving tests for divisibility us
number bases. Number bases were introduced in Chapter 0, and we gave a preliminary de |
in De nition 0.6 of what a number base is. Our rst job will be to justify why this de nition
makes sense at all—that is, we need to prove that every natural nirakarbaseh expansion,
and moreover, that it only has one of them. Theorem 5.3.51 says exactly this.

Theorem 5.3.51
Letn2 Nandleth2 Nwithb> 2. Then there exist unique2 N anddp;ds;:::;d 2f 0;1;:::;b 1g
such that r
n= g db
i=0
and such thad, 6 0, excepin = 0, in which case = 0 anddp = 0.

Proof
We proceed by strong induction on
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(BC) We imposed the requirement thanif 0 thenr = 0 anddg = 0; and this evidently satis es
I

the requirement that= § d;b'.
i=0

(IS) Fix n> 0 and suppose that the requirements of the theorem are satis ed for all the nat
numbers up to and includiny

By the division theorem (Theorem 5.1.1), there exist uniggwe2 N such that
n+ 1=ub+v and v2f0;1;:::;b 1g

Sinceb> 2, we haveu< n+ 1, and sau 6 n. It follows from the induction hypothesis that there

r .
u= § di+1b
i=0

andd, 6 0. Writingdp = vyields

r ) r )
n=ub+v= Q di+1b" 1+ do= § dib
i=0 i=0

Sinced; 6 0, this proves existence.
For uniqueness, suppose that there exs&N andey;:::;es2f0;1;:::;b 1gsuch that

s .
n+1= 3 eb
j=0

andes 6 0. Then !
S .
nt+1= Jeb ! b+e
=1
so by the division theorem we haeg= dy = v. Hence

S N .
u= ———= g gb = Jdb !

n+1 v &
b =1 i=1

so by the induction hypothesis, it follows that sandd; = g for all 16 i 6 r. This proves
unigueness.

By induction, we're done.

We now re-state the de nition of badeexpansion, con dent in the knowledge that this de nition
makes sense.

F | De nition 5.3.52
Letn2 N. Thebaseb expansionof n is the unique stringl,d, 1:::dp such that the conditions in
Theorem 5.3.51 are satis ed. The base-2 expansion is also known bim#rg expansion, and the
base-10 expansion is called ttiecimal expansion
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Example 5.3.53

Letn2 N. Thenn is divisible by 3 if and only if the sum of the digits in the decimal expansion «
nis divisible by 3. Likewisen is divisible by 9 if and only if the sum of the digits in the decimal
expansiom is divisible by 9.

We prove this for divisibility by 3. Let

n=dd 1 didg
r
be the decimal expansion nfand lets= § d; be the sum of the digits of.
i=0

Then we have

r

n & d10 mod 3 sincen= § di10
i=0 i
oo
a dil' mod 3 since 10 1 mod 3
i=0
! _
adi since 1= 1 for alli
i=0
S by de nition of s

Sincen smod 3, it follows than is divisible by 3 if and only ifsis divisible by 3. C

Exercise 5.3.54
Letn2 N. Prove than s divisible by 5 if and only if the nal digit in the decimal expansion mofs
50r0.

More generally, xk> 1 and letm be the number whose decimal expansion is given by theklas
digits of that ofn. Prove than is divisible by 5 if and only if mis divisible by %. For example, we
have

125j 9 550 828 230 495 875 , 125j 875

C

Exercise 5.3.55
Letn2 N. Prove tham is divisible by 11 if and only if thealternating sumof the digits ofn is
divisible by 11. That is, prove that if the decimal expansiom&fd,d; » do, then

11jn , 11jdy di+do  +( 1’

C

Exercise 5.3.56
Letn2 N. Find a method for testing i is divisible by 7 based on the decimal expansion.of C

Application: public-key cryptography

Public-key cryptography is a method of encryption and decryption that works according to the
lowing principles:
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Encryption is done using jublic keythat is available to anyone.
Decryption is done using private keythat is only known to the recipient.

Knowledge of the private key should be extremely dif cult to derive from knowledge of the pub
key.

Speci cally, suppose that Alice wants to securely send Bob a message. As the recipient o
message, Bob has a public key and a private key. So:

Bob sends theublic keyto Alice.
Alice uses the public key to encrypt the message.
Alice sends the encrypted message, which is visible (but encrypted) to anyone who intercep

Bob keeps the private key secret, and uses it upon receipt of the message to decrypt the me

Notice that, since the public key can only be usecteryptmessages, a hacker has no useft
information upon intercepting the message or the public key.

RSA encryption is an algorithm which provides one means of doing public-key cryptography us
the theory of modular arithmetic. It works as follows.

Step 1. Let pandq be distinct positive prime numbers, andrtet pg. Thenj (n)=(p 1)(q 1).
Step 2. Choosee2 Z suchthat k e< j (n) ande? j (n). The pair(n;e) is called thepublic key.
Step 3. Choosed 2 Z such thade 1 modj (n). The pair(n;d) is called theprivate key.

Step 4. To encrypt a messagd (which is encoded as an integer), comp#te [n] such that
K M®modn. ThenK is the encrypted message.

Step 5. The original messagil can be recovered sindéé K9 modn.

Computing the private kegn;d) from the knowledge ofn;e) would allow a hacker to decrypt an
encrypted message. However, doing so is typically very dif cult when the prime factarsaoé
large. So if we choose andq to be very large primes—which we can do without much hassle
all—then it becomes computationally infeasible for a hacker to compute the private key.

Example. Suppose | want to encrypt the messade which | have encoded as the integer 32
Let p= 13 andg= 17. Thenn= 221 andj (n) = 192. Lete= 7, and note that 7 192. Now
7 55 1mod 192, sowe can de ng= 55.

The public key i9221; 7), which Bob sends to Alice. Now Alice can encrypt the message:
32" 59 mod 221

Alice then sends Bob the encrypted message 59.

The private key i§221;55), so Bob can decrypt the message:
59°° 32 mod 221

so Bob has received Alice's message 32.
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Exercise 5.3.57
Prove that the RSA algorithm is correct. Speci cally, prove:

(a) If n= pq, for distinct positive primep andqg, thenj (nN)=(p 1(q 1);
(b) Given 1< e< j (n) withe? j (n), there existsl 2 Z withde 1 modj (n).
(c) GivenM;K 2 Z with K M€ modn, it is indeed the case th&® M modn.

Application: Euler's totient function

We now derive a formula for computing the totient of an arbitrary integer using the tools fr
Section 6.2—in particular, if you chose to read this sechieforelearning about the multiplication
principle, you should skip over this material.

C Theorem 5.3.58 (Multiplicativity of Euler's totient function)
Letmn2 Z and letj : Z! N be Euler's totient function (see De nition 5.3.26). f andn are
coprime, then (mn) = j (m)j (n).

Proof
Sincej ( k)= j (k) for all k2 Z, we may assume that > 0 andn> 0. Moreover, ifm= 0 or

n= 0, thenj (m)j (n)= 0 andj (mn) = 0, so the result is immediate. Hence we may assume tf
m> 0 andn> O.

Givenk 2 Z, de ne
Ck=fa2[klja? kg
By de nition of Euler's totient function, we thus hay€j = j (k) for all k2 Z. We will de ne a
bijection
f:Cn Cy! Cun

using the Chinese remainder theorem (Theorem 5.3.46).

Givena 2 Cyandb 2 Gy, let f(a;b) be the element 2 [mr] such that

X amodm
X bmodn

f is well-de ned. We check the properties of totality, existence and unigueness.
Totality. We have accounted for all the elementgf C, in our speci cation off.

Existence. By the Chinese remainder theorem, there ex®2sZ such thax amodm and

X b modn. By adding an appropriate integer multiplerofto x, we may additionally require
X2 [mn. It remains to check that? mn

So letd = gedx;mn). If d > 1, then there is a positive primgsuch thatpj x andpj mn
But thenpj mor pj n, meaning that eithep j gcd(x;m) or pj gcdx;n). Butx amodm, so
ged x; m) = gcda;m); and likewise gcfik;n) = gcdb;n). So this contradicts the assumption
thata? mandb? n. Hencex? mnafter all.
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Uniqueness.Suppose;y 2 Cmn both satisfy the two congruences in question. By the Chine
remainder theorem, we haxe y modmn, and hencex= y+ kmnfor somek 2 Z. Since
x;y 2 [mnl, we have
jKimn=jkmrj=jx yj6 mn 1< mn
This impliesjkj < 1, so thak= 0 andx=y.
so f is well-de ned.

f is injective. Let a;a’2 Cp, andb; b2 C,,, and suppose thdi(a;b) = f(a%b%. Then there is an
elementx 2 Cyn such that

8

EX amodm
x a’modm

3 X b modn

" x b%modn

Hencea a’modmandb bPmodn. Sincea;a’2 [m] andb;b°2 [n], we must have= aland
b= 10

f is surjective. Letx 2 Cyn Leta2 [m] andb 2 [n] be the (unique) elements such tkat a mod
mandx b modn, respectively. B2 Cy,andb2 C,, then we'll havef (a; b) = x by construction,
so it remains to check that? mandb? n.

Supposead 2 Z with djaanddj m. We prove thad = 1. Sincex amodm, we haved j X
by Theorem 5.1.17. Sinaaj mn, we haved j mn By de nition of greatest common divisors, it
follows thatd j gcd(x; mn). But gcdx; mn) = 1, so thad is a unit, and s@? mas required.

The proof thab ? nis similar.

It was a lot of work to check that it worked, but we have de ned a bijecfioilC,, C,! Cqyn By
the multiplication principle, we have

J (M) ()= jCmi jChj=Cn GCnj = jCrnd =] (Mn)
as required.

It turns out that Theorem 5.3.58 and Exercise 5.3.28 are precisely the ingredients we need to
general formula for the totient of a nonzero integer.

Theorem 5.3.59 (Formula for Euler's totient function)
Letn be a nonzero integer. Then

. o 1
jm=ijn O 1 -
pin P
where the product is indexed over positive prinpadividing n

Proof
Sincej ()= j ( n)foralln2 Z, we may assume that> 0. Moreover

jm=1=10 1 _
pj1
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Note that the product here is empty, and hence equal to 1, since there are no positiveoprinies
divide 1. So now suppose> 1.
Using the fundamental theorem of arithmetic (Theorem 5.2.12), we can write
Ky -k
n=prpy  pe
forprimes O< p1< p2< < pr and natural numbelg; ko;::: k- > 1.

By repeated application of Theorem 5.3.58, we have

i m=0j ()

i=1

By Exercise 5.3.28, we have

j(p=pf pét=pfo1

Combining these two results, it follows that

_ Lo 1 L A 1 L
jm=0np' 1 H: Onp O1 - =n(Q 1

1
i=1 [ i=1 i=1 Pi i=1 Pi

which is as required.
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Section 5.E
Chapter 5 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

5.1. Letn2 N. Prove that the number of trailing Os in the decimal expansion @fequal to

I nk
5k

w Qoo

1

whered 2 N is least such that® 1 > n, and wherdoxc (IATEX code: \Ifloor,\rfloor ) denotes
the greatest integer less than or equal 2oR (called theoor of x).

5.2. Letb2 N with b> 2. Find an expression in terms o2 N for the number of trailing 0s in the
baseb expansion ofil.
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Section 6.1
Finite sets

As its title suggests, this section is all about exploring the properties of nite sets, and to do this
must rst de ne what we mean by " nite’. We certainly know a nite set when we see one—fc
example:

The seff red orangeyellow; greenblue purpleg is nite.

The sef0; 1] is in nite, but it has nite length.

The sef0;¥) is in nite and has in nite length.

The setP (N) is in nite, but has no notion of “length’ to speak of.
The empty se? is nite.

If we are to make a de nition of ~ nite set', we must rst gure out what the nite sets above have
in common but the in nite sets do not.

It is dif cult to de ne " nite' without being imprecise. A rst attempt at a de nition might be
something like the following:

A set X is nite if the elements of X don't go on forever.

This is good intuition, but isn't good enough as a mathematical de nition, because "go on'
“forever' are not precise terms (unless they themselves are de ned). So let's try to make this |
precise:

A set X is nite if the elements of X can be listed one by one
in such a way that the list has both a start and an end.

This is better but is still not entirely precise—it is not entirely clear what is meant by "listed c
by one'. But we can make this precise: to list the elementX @ine-by-one means that we are
specifying a * rst element’, a “second element’, a “third element’, and so on. To say that this list
an end means that we eventually reach tiféelement’, for soma 2 N, and there is no(h+ 1)t
element'. In other words, for some natural numhgwe are pairing up the elementsXfwith the
natural numbers from 1 to.

Recall that, for each 2 N, the set of natural numbers from 1 uprtas its own notation:

De nition 2.1.9
Letn2 N. The sefn] is de ned by[n]= fk2 Nj16 k6 ng.

Since “pairing up' really means " nding a bijection’, we are now ready to de ne what it means fo
setto be nite.
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De nition 6.1.1
A setX is nite if there exists a bijectiorf : [n]! X for somen 2 N. The functionf is called an
enumeration of X. If X is not nite we say it isin nite .

This de nition suggests the following strategy for proving that a set is nite.

Strategy 6.1.2 (Proving that a set is nite)
In order to prove that a setis nite, it suf ces to nd a bijection[n]! X for somen2 N.

Example 6.1.3
Let X = fred orangeyellow; greenblue purpleg. We said above thaf is nite; now we can prove
it Dene f:[6]! Xby

f(1))=red f(2)= orange f(3)= yellow
f(4)= green f(5)= blue f(6)= purple

The functionf is evidently a bijection, since each elemen¥o€tan be expressed uniquely &)

for somek 2 [6]. SoX is nite. C
Exercise 6.1.4
Prove thafn] is nite for eachn2 N. C

Note that Exercise 6.1.4 implies, in particular, tRats nite, since? =[0].

The size of a nite set

Whilst it might sometimes be useful just to kndhat set is nite, it will be even more useful to
know how many elements it has. This quantity is calledgizeof the set. Intuitively, the size of
the set should be the length of the list of its elements, but for this to be well-de ned, we rst nee
know that the number of elements in the list is independent of the order in which we list them.

The “list of elements’ of a nite seX is the bijectionn]! X given by De nition 6.1.1, andh is the
length of the list, this means that we need to prove thamjift X and[n]! X are bijections, then
m= n. This will be Theorem 6.1.8.

To be able to prove this, we must rst prove some technical results that we will use in the proof.

Lemma 6.1.5
Let X be an inhabited set. There is a bijectidmfag! Xnfbgforalla;b2 X.

Proof
Leta;b2 X. First note that ifa= b thenXnfag= Xnfbg, and so the identity function jg g is
the desired bijection.

Soassume6 b, and de nef : Xnfag! Xnfbg by

a ifx=Db

f(x) = .
X otherwise

Note thatf is well-de ned since it ensures th&{x) 6 b for anyx2 Xnfag.
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We prove thatf is a bijection by nding an inverse.
Sodeneg: Xnfbg! Xnfaghby

b ifx=a

X) =
9 X otherwise

Again, gis well-de ned since we have ensured tigk) 6 afor anyx2 X nfbg.
Givenx 2 X, if x6 aandx 6 b, thenf(x) 6 aandg(x) 6 b, so that

g(f(x)) = g(x)=x and f(g(x))= f(x)= x
Moreoverg(f(b)) = g(a)= bandf(g(a))= f(b)= a.

This proves tha) f = idynrag @andf g= idxurng, SO thatgis an inverse forf, as required.

Theorem 6.1.6
Letm;n2 N.

(a) If there exists an injectioh: [m]! [n], thenm6 n.
(b) If there exists a surjectiog: [m]! [n], thenm> n.

(c) If there exists a bijectioh: [m]! [n], thenm= n.

Proof of (a)
For xed m2 N, let p(m) be the assertion that, for all2 N, if there exists an injectiofm] ! [n],
thenm6 n. We prove thap(m) is true for allm2 N by induction.

(Base caspWe need to prove that, for atl2 N if there exists an injectiof0] ! [n], then 06 n.
This is automatically true, since@n for alln2 N.

(Induction step) Fix m2 N and suppose that, for all2 N, if there exists an injectiopm]! [n],
thenm6 n.

Now letn 2 N and suppose that there is an injectibn[m+ 1] ! [n]. We need to prove that
m+ 16 n.

First note thah > 1. Indeed, sincen+ 1> 1, we have 2 [m+ 1], and sof (1) 2 [n]. This means
that[n] is inhabited, and sn> 1. In particularn 12 N and so the sgh 1] is well-de ned. It
suf ces to prove tham6 n 1.

Leta= f(m+ 1) 2 [nNjand denef :[m]! [nlnfagby f (k)= f(k) forall k2 [m]. Note that
f iswell-de ned; indeedf (k) 6 aforall k2 [m] sincea= f(m+ 1) andf is injective.

The functionf is injective. To see this, lé&¢ " 2 [m] and supposé (k)= f (7). Thenf(k) =
f(*) by de nition of f , and s&k= " by injectivity of f.

Since[n 1] =[n]nfng, thereis a bijectios: [nnfag! [n 1] by Lemma 6.1.5. In particular,
sis injective, and s@ f s aninjectiofm]! [n 1] by Proposition 2.3.4.

By the induction hypothesis, we hawe6 n 1, and san+ 16 nas required.
The result now follows by induction.
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Exercise 6.1.7
Prove parts (b) and (c) of Theorem 6.1.6. C

Phew! That was fun. With these technical results proved, we can now prove the theorem we ne
for the size of a nite set to be well-de ned.

C Theorem 6.1.8 (Uniqueness of size)
LetX be a nite setand lef :[m]! X andg:[n]! X beenumerations of, wherem;n2 N. Then
m= n.

Proof
Sincef :[m]! Xandg:[n]! X are bijections, the functiog * f:[m]! [n]is a bijection by
Exercises 2.3.21 and 2.3.46. Hemae n by Theorem 6.1.6(c).

As we mentioned above, Theorem 6.1.8 tells us that any two ways of listing (enumerating) the
ments of a nite set yield the same number of elements. We may now make the following de niti

F De nition 6.1.9
Let X be a nite set. Thesizeof X, writtenjXj, is the unique natural numbarfor which there exists
a bijection[n]! X.

0 Example 6.1.10
Example 6.1.3 showed th#tred orangeyellow; greenblue purplegj = 6, and provided the proof
was correct, Exercise 6.1.4 showed tffialj = nfor alln2 N; in particular,j? j = 0. C

0 Example 6.1.11
Fixn2 NandletX=fa2Zj n6 a6 ng. There is a bijectionf : [2n+ 1] ! X de ned by
f(kk= k n 1.Indeed:

f is well-de ned. We need to provd (k) 2 X for all k2 [2n+ 1]. Well givenk 2 [2n+ 1], we
have 16 k6 2n+ 1, and so

n=1 (n+1)6 r ({n+],} 6 (2n+1) (n+1=n
—{z—
=f(K)
so thatf (k) 2 X as claimed.

f is injective. Letk;” 2 [2n+ 1] and assuméd (k)= f('). Thenk n 1=" n 1, and so
k=".

f is surjective. Leta2 X and de nek= a+ n+ 1. Then

1=( nN+n+16 F\+{Q+} 6ntn+tl=2n+1
=k
and sk 2 [2n+ 1], and moreovef(k)=(a+n+1) n 1= a
Sincef is a bijection, we havgXj = 2n+ 1 by De nition 6.1.9. C
Exercise 6.1.12
Let X be a nite set withjXj = n> 1. Leta2 X and letb 62X. Prove that
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(a) Xnfagis niteandjXnfagj=n 1;and
(b) X[f bgis nite andjX[f bgj= n+ 1.

Identify where in your proofs you make use the hypothesesatBaX andb 62X. C

Comparing the sizes of nite sets

When we used dots and stars to motivate the de nitions of injective and surjective functions a
beginning of Section 2.3, we suggested the following intuition:

If there is an injectiorf : X! Y, thenX has “at most as many elementsrgsand

If there is a surjectiog: X ! Y, thenX has "at least as many element¥as

We are now in a position to prove this, at least wikeandY are nite. The following theorem is a
generalisation of Theorem 6.1.6.

Theorem 6.1.13
Let X andY be sets.

(a) IfY is nite and there is an injectiori : X! Y, thenX is nite andjXj 6 jYj.

(b) If X'is nite and there is a surjectiof: X! Y, thenY is nite andjXj > jYj.

(c) If one of X or Y is nite and there is a bijectiorf : X! Y, thenX andY are both nite and
iXj = jYj.

Proof of (a)

We prove by induction that, for ath 2 N, if Y is a nite set of sizen and there is an injection
f: X! Y,thenXis nite andjXj6 n.

(Base casglLetY be a nite set of size 0—that isy is empty. Suppose there is an injection
f: X! Y. If Xisinhabited, then there exists an elem&8tX, so thatf(a) 2 Y. This contradicts
emptiness oY, so thatX must be empty. HengXj = 06 0, as required.

(Induction step) Fix n2 N and assume that, ¥ is a nite set of sizen and there is an injection
f: X! Y,thenXis niteandjXj6 n.

Fix a nite setY of sizen+ 1 and an injectiorf : X! Y. We need to prove thaf is nite and
iXj6 n+ 1.

If X is empty, thenXj= 06 n+ 1 as required. So assume thats inhabited, and x an element
a2 X.

Dene f-:Xnfag! Ynff(a)gby f-(x)= f(x) forallx2 Xnfag. Note thatf- is well-de ned
sincef(x) 6 f(a) for anyx 2 X nfag by injectivity of f. Moreoverf- is injective; indeed, let
x;y 2 Xnfagand assumé-(x) = f-(y). Then

f)=1-(=f-(y=1y ) x

y
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by injectivity of f. So f- is an injection.
By Exercise 6.1.12¢ nf f(a)gis nite andjYnff(a)gj=(n+1) 1=n.

By the induction hypothesi¥ nfagis nite andjXnfagj6 (n+ 1) 1. ButjXnfagj=jXj 1
by Exercise 6.1.12, and $%j 6 n+ 1, as required.

The result now follows by induction.

Exercise 6.1.14
Prove parts (b) and (c) of Theorem 6.1.13. C

Theorem 6.1.13 suggests the following strategies for comparing the sizes of nite sets:

Strategy 6.1.15 (Comparing the sizes of nite sets)
Let X andY be nite sets.

(a) In order to prove thgiXj 6 jYj, it suf cesto nd an injectionX! Y.
(b) In order to prove thgiXj > jYj, it suf ces to nd a surjectionX! Y.

(c) Inorder to prove thgiXj = jYj, it suf ces to nd a bijectionX! Y.

Strategy (c) is commonly known &gective proof.

Closure properties of nite sets

We now use Strategy 6.1.15 to prove soch@sure propertie®f nite sets—that is, operations we
can perform on nite sets to ensure that the result remains nite.

Exercise 6.1.16

Let X be a nite set. Prove that every sub&kt X is nite andjUj 6 jX]. C
Exercise 6.1.17
Let X andY be nite sets. Prove thax\ Y is nite. C

Proposition 6.1.18
Let X andY be nite sets. TherX[ Y is nite, and moreover

IXEY)= X+ jYj ) X\Y]

Proof
We will prove this in the case whex andY are disjoint. The general case, whérandY are not
assumed to be disjoint, will be Exercise 6.1.19.

Letm= jXjandn= jYj,andletf :[m]! Xandg:[n]! Y be bijections.

SinceX andY are disjoint, we havX\ Y = ?. Dene h:[m+ n]! X[ Y as follows; given

k2 [m+ n], let
h(K) = f(k) !f k6 m
gk m) ifk>m

217



218 Chapter 6. Enumerative combinatorics

Note thath is well-de ned: the casek6 mandk > mare mutually exclusive, they cover all possible
cases,and m2 [n]forallm+ 16 k6 nsothatg(k m)is de ned. Itis then straightforward to
check thath has aninversh 1: X[ Y! [m+ n]de ned by

f Y2 if z2 X

h X2 =
@= G 12+m ifz2y

Well-de nedness ot ! relies fundamentally on the assumption tiat Y = ?, as this is what
ensures that the case X andx 2 Y are mutually exclusive.

HenceglX[ Yj= m+ n= jXj+ jYj, which is as required singX\ Yj= 0.

Exercise 6.1.19
The following steps complete the proof of Proposition 6.1.18:

(a) Given set®# andB, prove that the setd f 0Og andB f 1g are disjoint, and nd bijections
A! Af OgandB! B f 1g. Write At B (IATpX code:\sqcup ) to denote the s f 0g)
(B f 1g). The setAt Bis called thedisjoint union of A andB.

(b) Prove that, ifA andB are nite thenAt Bis nite and
jAt Bj = A+ jB]

(c) LetX andY be sets. Find a bijection

X[t (X\Y)! XtY
(d) Complete the proof of Proposition 6.1.18—that is, prove that dndY are nite sets, not

necessarily disjoint, theX[ Y is nite and
IXTYi=jXj+jYj j X\ Yj
C

Exercise 6.1.20
LetX be a nitesetandley  X. Prove thaiXnU is nite, and moreovejXnUj= jXj j Uj. C

Exercise 6.1.21
Letm;n2 N. Prove thaj[m] [n]j= mn C

Proposition 6.1.22
Let X andY be nite sets. TherX Y is nite, and moreover

X Yj=jXj jYj
Proof

Let X andY be nite sets, lem= jXj andn= jYj, and letf :[m]! X andg:[n]! Y be bijections.
De ne afunctionh:[m] [n]! X Y by

h(k;") = ( £(K);9("))

for eachk 2 [m] and™ 2 [n]. It is easy to see that this is a bijection, with inverse de ned by
h Yey)=(f *(¥):9 ()

for all x2 X andy 2 Y. By Exercise 6.1.21 there is a bijectige [mr]! [m] [n], and by Exer-
cise 2.3.21 the composite p:[mn! X Y is a bijection. HencgX Yj= mn
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In summary, we have proved that the property of niteness is preserved by taking subsets, pai
unions, pairwise intersections, pairwise cartesian products, and relative complements.

In nite sets

We conclude this section by proving that not all sets are nite—speci cally, we'll prove thét
in nite. Intuitively this seems extremely easy: @jurseN is in nite! But in mathematical practice,
this isn't good enough: we need to use our de nition of “in nite' to prove thas in nite. Namely,
we need to prove that there is no bijectiph! N for anyn2 N. We will use Lemma 6.1.23 below
in our proof.

C Lemma 6.1.23
Every inhabited nite set of natural numbers has a greatest element.

Proof
We'll prove by induction om > 1 that every subsét N of sizen has a greatest element.

(Base caspTakeU NwithjUj= 1. thenU = f mgfor somem2 N. Sincemis the only element
of U, it is certainly the greatest elementldf

(Induction step) Fix n> 1 and suppose that every set of natural numbers ofrsizes a greatest
element(H).
LetU NwithjUj= n+ 1. We wish to show thdll has a greatest element.

thenju nfmn.1gj = n by Exercise 6.1.12, and so by the induction hypothésisf m,: 1g has a
greatest element, sam. Now:

If mq < My 1, thenmys 1 is the greatest element of.
If m¢> my 1, thenmy is the greatest element of.
In any casel has a greatest element. This completes the induction step.

C Theorem 6.1.24
The setN is in nite.

Proof

We proceed by contradiction. Suppdséds nite. ThenjNj = n for somen 2 N, and henceN is

either empty (nonsense, sinc€ M) or, by Lemma 6.1.23, it has a greatest elengefButg+ 12 N

since every natural number has a successorgant> g, so this contradicts maximality of Hence
N is in nite.
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220 Chapter 6. Enumerative combinatorics

Section 6.2
Counting principles

In Section 6.1 we were interested in establishing conditions under which a set is nite, and pro
that we may perform certain operations on nite sets—such as unions and cartesian produ
without losing the property of niteness.

In this section, our attention turns to the task of nding the size of a set that is known to be ni
This process is calledountingand is at the core of the mathematical eld of combinatorics.

Binomials and factorials revisited

We de ned binomial coef cientsE and factorialg! recursivelyin Chapter 3, and proved element-
ary facts about them by induction. We will now re-de ne themmbinatorially—that is, we give

them meaning in terms of sizes of particular nite sets. We will prove that the combinatorial ¢
recursive de nitions are equivalent, and prove facts about them using combinatorial arguments

The reasons for doing so are manifold. The combinatorial de nitions allow us to reason at
binomials and factorials with direct reference to descriptions of nite sets, which will be particula
useful when we prove identities about them usitayble counting Moreover, the combinatorial
de nitions remove the seemingly arbitrary nature of the recursive de nitions—for example, tt
provide a reason why it makes sense to de ne and 8 = 1.

De nition 6.2.1
Let X be asetand lét2 N. A k-element subsetf X is a subset) X such thajUj = k. The set
of all k-element subsets &f is denoted >|§ (read: X choose') (LATEX code:\binom{X}k} ).

Intuitively, ﬁ is the set of ways of picking elements fronX, without repetitions, in such a way

that order doesn't matter. (If order mattered, the elements wousgteencemstead ofsubsety

Example 6.2.2
We nd U forallk2 N.

[ = 2 gsince the only set with 0 elements?s

U =t 1g;f 2g;f 3g;f 4gg;

) = ff 1,29, 1;30; 1;49;f 2,30 2;40; 3,499,

B = ff 1,2,30;f 1,249, 1, 3,4g; f 2,3, 49g;

% = ff 1,2,3;49g
If k> 5then [ﬁ] = ?, since by Exercise 6.1.16, no subsef4jfcan have more than 4 elements.

C
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Section 6.2. Counting principles 221

Proposition 6.2.3

If X is a nite set, therP (X) = >|:
k6 X
Proof
: o L [ X
LetU X. By Exercise 6.1.18) is nite andjUj 6 jXj. ThusU 2 jij(j , and hencd) 2 K
K6 X
[ X

This proves thaP (X)
K6 jX|

[ X . . :
The fact that P (X) isimmediate, since elements (ﬁ are de ned to be subsets X,
k6 X
and hence elements Bf (X).

De nition 6.2.4

Let n;k 2 N. Denote by E (read: h choosek’) (LATEX code: \binom{n}k} ) the number of
k-element subsets ¢f]. That is, we de ne E = [E] . The numbersﬂ are calledbinomial
coef cients.

Some authors use the notatig®y or "Cy instead of E . We avoid this, as it is unnecessarily clunky.

Intuitively, E is the number of ways of selectikghings fromn, without repetitions, in such a way

that order doesn't matter.

The value behind this notation is that it allows us to express huge numbers in a concise and r
ingful way. For example,

4220 = 103 640 000 280 154 258 645 590 429 564 000

Although these two numbers are equal, theipressionsare very different; the expression on the
left is meaningful, but the expression on the right is completely meaningless out of context.

Writing tip

When expressing the sizes of nite sets described combinatorially, it is besbid evaluating the
expression; that is, leave in the powers, products, sums, binomial coef cients and factorials!
reason for this is that performing the calculations takes the meaning away from the expression:

Example 6.2.5
In Example 6.2.2 we proved that:
4 4 4 4 4
0—1, 1—4, 2—6, 3—4,4—1
andthat = Oforallk> 5. C
Exercise 6.2.6
Fixn2 N. Provethaty =1, 7 =nand | = 1. C
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222 Chapter 6. Enumerative combinatorics

De nition 6.2.7
Let X be a set. Apermutation of X is a bijectionX ! X. Denote the set of all permutations Xf
by Sym(X) (IATeX code:\mathrm{Symy}) and writeS, = Sym([n]) for n2 N.

Example 6.2.8
There are six permutations of the 98]. Representing eacli 2 S3 by the ordered triple
(f(1); £(2); f(3)), these permutations are thus given by

(1,2,3); (1,3;2); (21;3); (23,1); (3,1,2); (3,2,1)

For example(2;3;1) represents the permutatidn: [3]! [3] de ned by f(1) = 2, f(2) = 3 and

f(3)= 1. C
Exercise 6.2.9
List all the permutations of the sgf]. C

De nition 6.2.10
Letn2 N. Denote byn! (read: n factorial’) the number of permutations of a set of sizelThat is,
n! = jS,j. The numbers! are calledfactorials.

Example 6.2.11
Example 6.2.8 shows that 3! 6. C

Products and procedures

We saw in Proposition 6.1.22 that, given two nite s@tsndY, the producX Y is nite. We also
found a formula for its size, namejX  Yj = jXj jYj. Themultiplication principle(Strategy 6.2.21)
generalises this formula to products that may contain any nite number of sets, not just two.

Lemma 6.2.12
i=1
D . - - . . -
OX =X jXj  jXi
i=1

Proof
We proceed by induction om

1
(Base casgWhenn = 1, an element of) X; is “of cially' a sequence(x;) with x; 2 X;. This is
i=1
the same as an elementXf, in the sense that the assignmefxg 7! x; andx; 7! (x;) de ne
)
mutually inverse (hence bijective) functions betw€anX; andX;, and so
i=1

s
OX =jX4j
i=1
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Section 6.2. Counting principles
(Induction step) Fix n2 N, and suppose that
D - . . - . .
OX =X jXl  jXj
i=1
for all setsX; for i 2 [n]. This is our induction hypothesis.

gl .
F:OX! OX Xn+ 1
i=1 i=1

and hence
ntl n
Oxl = Oxl jXnt 1
i=1 i=1

by Proposition 6.1.22. Applying the induction hypothesis, we obtain the desired result, name

F

nt1

O

X=Xy X jXn) JXneal

1

By induction, we're done.

223

Lemma 6.2.12 gives rise to a useful strategy for computing the size of a niteXsetee
Strategy 6.2.13. Intuitively, by devising a step-by-step procedure for specifying an elemént c
i}

we are constructing a cartesian prod@9tX., whereX, is the set of choices to be made in #ie

k=1

2
step. This establishes a bijectiq) X! X, which by bijective proof (Strategy 6.1.15(c)) lets us

k=1
computgXj as the product of the numbers of choices that can be made in each step.

Strategy 6.2.13 (Multiplication principle (independent version))

LetX be a nite set. In order to compuij¥, it suf cesto nd a step-by-step procedure for specifying

elements oK, such that:

Each element is speci ed by a unique sequence of choices;
Each step in the procedure is independent of the previous step;

There are nitely many choices to be made at each step.

Ju}
If there aren 2 N steps anan, 2 N possible choices in thé" step, thenXj = O my.
k=1

Example 6.2.14
You go to an ice cream stand selling the following avours:

vanilla, strawberry, chocolate, rum and raisin, mint choc chip, toffee crunch
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224 Chapter 6. Enumerative combinatorics
You can have your ice cream in a tub, a regular cone cnaco-cone You can have one, two or
three scoops. We will compute how many options you have.

To select an ice cream, you follow the following procedure:

Step 1.Choose a avour. There are 6 ways to do this.

Step 2.Choose whether you'd like it in a tub, regular cone or choco-cone. There are 3 ways ti
this.

Step 3.Choose how many scoops you'd like. There are 3 ways to do this.

Hence there are 63 3= 54 options in total. C

This may feel informal, but really what we are doing is establishing a bijection. Lettipg the set
of options, the above procedure de nes a bijection

F C S X

whereF is the set of avoursC = f tub; regular congchoco-cong andS=[ 3] is the set of possible
numbers of scoops.

Example 6.2.15 N
We will prove thafP (X)j= 2 for all nite setsX.

Let X be a nite set and leh = jXj. Write

Intuitively, specifying an element ¢ (X)—that is, a subsdl  X—is equivalent to deciding, for
eachk 2 [n], whetherx, 2 U or x 62J ('in or out’), which in turn is equivalent to specifying an
element off in; outg".

For example, takingk =[ 7], the subselt) = f 1;2;6g corresponds with the choices
lin; 2in; 3out 4 out 5out 6in; 7 out
and hence the elemeih;in; out out out in;ouf) 2 f in; outy’.

This de nes a functioni : P (X) ! f in;outg". This function is injective, since different subsets
determine different sequences; and it is surjective, since each sequence determines a subset.

The above argument is suf cient for most purposes, but since this is the rst bijective proof we h
come across, we now give a more formal presentation of the details.

De ne a function
i:P (X)!f in;oug"

by letting thek!™ component of(U) be “in' if x 2 U or “out" if x, 62J, for eachk 2 [n].

We prove that is a bijection.
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Section 6.2. Counting principles 225

i is injective. To see this, tak&);V X and supposgU) = i(V). We prove that) = V. So X
x2 X and letk 2 [n] be such thax= x¢. Then

x2 U, thek™ component of(U) is ‘in’ by de nition of i
, thek™ component of(V) is in’ sincei(U) = i(V)
, X2V by de nition of i

so indeed we have = V, as required.
i is surjective. To see this, let 2 f in; outg", and let
U= fxgj the k™ component of/is 'in'g

Theni(U) = v, since for eack 2 [n] we havex, 2 U if and only if thek! component of/ is in’,
which is precisely the de nition of(U).

Hence
iP (X)j = jfin;outgj" = 2"
as required. C

Some authors actually writeX2to refer to the power set of a sé This is justi ed by Ex-
ample 6.2.15.

Exercise 6.2.16

Let X and_Y_ be nite sets, and recall that* denotes the set of functions fro¥ito Y. Prove that
JYXj = jypxi. C
Example 6.2.17

We count the number of ways we can shuf e a standard deck of cards in such a way that the ¢
of the cards alternate between red and black.

A procedure for choosing the order of the cards is as follows:

(i) Choose the colour of the rst card. There are 2 such choices. This then determines the co
of the remaining cards, since they have to alternate.

(ii) Choose the order of the red cards. There are 26! such choices.

(iii) Choose the order of the black cards. There are 26! such choices.

By the multiplication principle, there are 2261)2 such rearrangements. This number is huge, ar
in general there is no reason to write it out. Just for fun, though:

325288 005 235 264 929 014 077 766 819 257 214 042 112 000 000 000 000
C

Exercise 6.2.18

Since September 2001, car number plates on the island of Great Britain have taken the
XX NN XXXvhere eachX can be any letter of the alphabet except for °I', "Q' or “Z', aNtlis
the last two digits of the year. [This is a slight simpli cation of what is really the case, but let's r
concern ourselves wittbo many details!] How many possible number plates are there? Numl
plates of vehicles registered in the region of Yorkshire begin with the letter “Y'. How many Yorkst
number plates can be issued in a given year? C
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226 Chapter 6. Enumerative combinatorics

The multiplication principle in the form of Strategy 6.2.13 does not allow for steps later in a p
cedure to depend on those earlier in the procedure. To see why this is a problem, suppose wi
to count the size of the s&t= f(a;b) 2 [n] [n]j a6 bg. A step-by-step procedure for specifying
such an element is as follows:

Step 1.Select an element2 [n]. There aren choices.

Step 2.Select an elemertt2 [n] with b6 a. There aren 1 choices.

We would like to use Strategy 6.2.13 to deduce bgt= n(n 1). Unfortunately, this is not
valid because the possible choices available to us in Step 2 depend on the choice made in S
Elements of cartesian products do not depend on one another, and so the set of sequences of
made cannot necessarily be expressed as a cartesian product of two sets. Thus we canno
Lemma 6.2.12. Oh no!

However, provided that theumberof choices in each step remains constant, in spite of the choic
themselves changing, it turns out that we can still compute the size of the set in question by
tiplying together the numbers of choices.

This is what we prove next. We begin with a pairwise version (analogous to Exercise 6.1.21)
then prove the general version by induction (like in Lemma 6.2.12).

Lemma 6.2.19
Fixm;n2 N. LetX be a nite set withjXj = m, and for eacla 2 X, letY; be a nite set withjY;j = n.
Then the set
P=f(a;b)ja2 Xandb2 Yyg
is nite and jPj = mn
Proof
Fix bijectionsf :[m]! X andg,:[n]! Y, for eacha2 X. Dene h:[m] [n]! P by letting
h(i; j) = ( £(1);9¢q)())) for each(i; j) 2 [m]  [n]. Then:

his well-de ned, since for all 2 [m] andj 2 [n] we havef (i) 2 X andg(j) 2 Y-

h is injective. To see this, x(i;j);(k;") 2 [m [n] and assume thdi(i; j) = h(k;"). Then
(F(1);9¢6y (1)) = ( F(K); 99 (7)), so thatf (i) = f(k) andg¢y(j) = 9rk (). Sincef is injective,
we have = k—thereforegy;)(j) = 9s(;)("), and then sincgs ;) is injective, we havg = *. Thus
(i;))=(k; "), as required.

h is surjective. To see this, I€¢a;b) 2 P. Sincef is surjective anch 2 X, we havea= f(i) for
somei 2 [m]. Sincegs is surjective and 2 Y, we haveb = ga(j) for somej 2 [n]. But then

(a;b) = ( f(i);9a())) = ( f(1);9¢q) (1)) = h(i; )
so thath is surjective.

Sinceh is a bijection, we havgPj = jim] [n]j by Theorem 6.1.13(iii), which is equal t@n by
Proposition 6.1.22.

We are now ready to state and prove the theorem giving rise to the multiplication principle in its
generality.
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Section 6.2. Counting principles 227

C Theorem 6.2.20 (Multiplication principle)
0)

ThenPis niteandjPj=m nmy my.

Proof
We proceed by induction am> 1.

(Base caspWhenn = 1, the statement says that given 2 N and a nite setX(?) with jX(j =
my, thenP = f(a1) j a1 2 XPgis nite andjPj = my. This is true, since the functio® 1 P
de ned bya7! (a) is evidently a bijection.

(Induction step) Fix n> 1 and assume that the statement is true for this value of

We need to prove thgPj = m; mp My M1
So de ne

......

NowjQj=m np My, andjYgj = my: 1 for eachg 2 Q, so it follows from Lemma 6.2.19
that

iPi=(m m M) Me1=mM N My My
as required.

Strategy 6.2.21 summarises how Theorem 6.2.20 is useful in our proofs.
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228 Chapter 6. Enumerative combinatorics

Strategy 6.2.21 (Counting using the multiplication principle)
LetX be a nite set. In order to compuj¥j, it suf ces to nd a step-by-step procedure for specifying
elements ok, such that:

Each element is speci ed by a unique sequence of choices;
The choices available in each step depend only on choices made in previous steps;
There are nitely many choices available in each step;

Thenumberof choices available in each step does not depend on choices made in previous ¢

Jy
If there aren 2 N steps anan, 2 N possible choices in thé" step, thenXj = O my.
k=1

Example 6.2.22
We prove that there are six bijectiof8! [3]. We can specify a bijectiofi: [3]! [3] according to
the following procedure.

Step 1.Choose the value df(1). There are 3 choices.

Step 2.Choose the value df(2). The valuesf(2) can take depend on the chosen valud(d).

If f(1)= 1, thenf(2) can be equal to 2 or 3.

If f(1)= 2, thenf(2) can be equal to 1 or 3.

If f(1)= 3,thenf(2) can be equalto 1 or 2.
In each case, there are 2 choices for the valuf(2¥.
Step 3. Choose the value of(3). The valuesf(3) can take depend on the valuesfdgfl) and
f(2). We could split into the (six!) cases based on the value§ ®f and f(2) chosen in Steps
1 and 2; but we won't. Instead, note tHat(1); f(2)g has two elements, and by injectivify3)

must have a distinct value, so tHafnf f(1); f(2)g has one element. This element must be th
value of f(3). Hence there is only possible choicefdf).

By the multiplication principle, there are 32 1= 6 bijections[3]! [3]. C
Exercise 6.2.23
Count the number of injectior{8] !  [4]. C

Sums and partitions

We saw in Proposition 6.1.18 that, given two nite sésandY, the unionX[ Y is nite. We
also found formulae for their size, namg¢[ Yj = jXj+ jYj j X\ Yj. Theaddition principle
(Strategy 6.2.26) generalises this formula to any nite number of sets, provided the sets have n
ments in common with one another—that is they ga@wise disjoint [The hypothesis of pairwise
disjointness is removed in theclusion—exclusion principlevhich is studied in Section 6.3.]

If you have not covered Section 4.2 yet, you are encouraged to take a brief detour to read
De nition 4.2.21 to Exercise 4.2.26; the de nition ofgartition of a set is recalled below.
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De nition 4.2.21
A partition of a setX is a collectionU = fU; i 2 Ig of subsets ofX such that the following
conditions hold:

(a) Foreach 2 I, the subsel; is inhabited;

(b) The setdJ; fori 2 | arepairwise disjoint—that is,U;\ U; is empty for alli; j 2 | withi 6 j;
[

(c) U=X

i21

In this section, we will simplify matters in two ways:

When we say “partition’ in this section (and Section 6.3), we will allow the sets in the partitior
be empty—that is, we will just need conditions (b) and (c) of De nition 4.2.21 to hold.

Since our sets are nite, so will the index debe; so we will only ever partition our sets into

With all of this said, let's get right to it.

Theorem 6.2.24 (Addition principle)

ThenX is nite, and
JXj=jUgj+ jUgj+  + jUpj

Exercise 6.2.25
Prove Theorem 6.2.24. The proof follows the same pattern as that of Lemma 6.2.12. Be care
make sure you identify where you use the hypothesis that th&Jsate pairwise disjoint! C

Strategy 6.2.26 (Counting using the addition principle)

n
follows thatjXj = & jXii.
k=1

Example 6.2.27
We will count the number of inhabited subsets[¢ff which either contain only even numbers, or
contain only odd numbers.

Let O denote the set of inhabited subsetgffcontaining only odd numbers, and Etdenote the
set of inhabited subsets pf] containing only even numbers. Note thi&@; Eg forms a partition of
the set we are counting, and so our setjl@s jEj elements.

An element ofO must be a subset dfl;3;5;7g. By Example 6.2.15 there aré' 2 16 such
subsets. Thus the numberiohabitedsubsets of7] containing only odd numbers is 15, since we
must exclude the empty set. Thatji®j = 15.

A subset containing only even numbers must be a subde?;df6g. Again by Example 6.2.15
there are 2= 8 such subsets. Hence there are 7 inhabited subs¢f$ adntaining only even
numbers. That igEj = 7.
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230 Chapter 6. Enumerative combinatorics

Hence there are 157 = 22 inhabited subsets §f] containing only even or only odd numbers. And
here they are:

flg f3g f5g f7g f1;3g f2g f4g f6g
f1;5g f1,79 f3; 50 f3;79 f5;79 f2,49 2,69 f4;69
f1,3;59 f1;3;79 f1,5;79 f3;579 f1,3,5,79 f2;4,69

C

Exercise 6.2.28
Pick your favourite integem > 1000. For this value af, how many inhabited subsets[of contain
either only even or only odd numbers? (You need not evaluate exponents.) C

We now consider some examples of nite sets which use both the multiplication principle and
addition principle.

Example 6.2.29

A city has @ inhabitants. The favourite colour afof the inhabitants is orange, the favourite coloul
of 2n of the inhabitants is pink, and the favourite colour ofd the inhabitants is turquoise. The city
government wishes to form a committee with equal representation from the three colour prefel
groups to decide how the new city hall should be painted. We count the number of ways this c:
done.

Let X be the set of possible committees. First note that

[n
X= " X
k=0
whereX is the set of committees with exacthypeople from each colour preference group. Indee
we must havek 6 n, since it is impossible to have a committee with more thaeople from the
orange preference group.

Moreover, ifk 6 ~ thenX\ X = ?, since ifk 6 ~ then a committee cannot simultaneously hav
exactlyk people and exactly people from each preference group.

By the addition principle, we have
n
iXi= a4 ixd
k=0
We countX, for xed k using the following procedure:

Step 1.Choosek people from the orange preference group to be on the committee. Therﬂe are
choices.

Step 2. Choosek people from the pink preference group to be on the committee. Theré?are
choices.

Step 3. Choosek people from the turquoise preference group to be on the committee. There

& choices.

By the multiplication principle, it follows thap4j = § 2" 3" . Hence

2n  3n

o n
Xj = K k Kk

il Qo

0
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C

Exercise 6.2.30

In Example 6.2.29, how many ways could a committee be formed wigpresentativenumber of
people from each colour preference group? That is, the proportion of people on the committee v
prefer any of the three colours should be equal to the corresponding proportion of the populati
the city. C

Pigeonhole principle

A nice application of the addition principle is to prove th@eonhole principle which is used
heavily in combinatorics.

Informally, the pigeonhole principle says that if you assign pigeons to pigeonholes, and there
more pigeons than pigeonholes, then some pigeonhole must have more than one pigeon in |
can (and do) generalise this slightly: it says that gigénN, if you have more thagtimes as many
pigeons than pigeonholes, then some pigeonhole must have morg piigeeons in it.

The proof is deceptively simple.

Theorem 6.2.31 (Pigeonhole principle)
Letg2 N, and letX andY be nite sets withjXj= m2 N andjYj= n2 N. Then:

(@) Ifm> gn, then for every functiorf : X! Y, there is som@2 Y such thajf ![fag]j> q.
(b) If m6 gn, then there is a functiofi: X! Y suchthajf [fag)j6 qforalla2.

Proof of (a)
Supposem> qn. It follows from Exercise 4.2.25 that the sets![f ag] partition X. Towards a
contradiction, assumé [fag]j 6 qforalla2 Y. Then by the addition principle

. . [ o] . . [e] . .
m= jXj = f fagl = & if '[fagi6 & a=jYjqg=an
a2y a2y a2y

This contradicts the assumption tmat gn.

Exercise 6.2.32
Prove part (b) of Theorem 6.2.31. C

Example 6.2.33

Letn;k2 N. Assume that you have pairs of socks in a drawer, and each sock is oneadlours.
We wish to know how many socks you must take out of the drawer before you can guarantee
you have a matching pair.

Let C be set of colours of the socks, so thi@} = k, and letX be the set of socks that you have
selected. We obtain a functioh: X! C that assigns to each sogkts colour f(x) 2 C. Given a
colourc2 C, the preimagd ![f cg] is the set of socks of colourthat we have selected.

Thus the question becomes: what size n¥ste in order to havgf [f cg]j > 2 for somec 2 C?
[The English translation of this question is: how many socks must we have picked in order for
of the socks to have the same colour?]
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232 Chapter 6. Enumerative combinatorics

Well, by the pigeonhole principle, we can guararjtee'[f cgj > 2 (or equivalently> 1) if and only
if jXj > 2jCj. That is, we need to select at leakt#21 socks to guarantee a matching pair. C

Exercise 6.2.34

Six people throw eggs at each other, each throwing as many eggs as they like (possibly none).
that there is some set of three people such that either (i) each person in the set threw an egg ¢
other person in the set; or (ii) no person in the set threw an egg at anyone else in the set. C

Double counting

Double countingalso known agounting in two waysis a proof technique that allows us to prove
that two natural numbers are equal by establishing they are two expressions for the size of the
set. (More generally, by Theorem 6.1.13(iii), we can relate them to the sizes of two sets whicl
in bijection.)

The proof of Proposition 6.2.35 illustrates this proof very nicely. We proved it already by induct
in Example 3.2.15; the combinatorial proof we now provide is much shorter and cleaner.
Proposition 6.2.35

n
Letn2 N. Then2= §
k=0

n
K

Proof

" [n]

k=0 k

Moreover, the sets[ﬂ] are pairwise disjoint, so by the addition principle it follows that

. I L (1) 3 don
n— — _ —
2'= ]P ([n])J - k - S Kk - a k

We know thaijP ([n])j = 2" by Example 6.2.15 and th& ([n]) = by Proposition 6.2.3.

Strategy 6.2.36 (Double counting)
In order to prove that two expressions involving natural numbers are equal, it suf ces to de ne ¢
X and devise two counting arguments to show {Xatis equal to both expressions.

The next example counts elementsldferentsets and puts them in bijection to establish an identit

Proposition 6.2.37
Letn;k2 N withn> k. Then

n _ n
k ~ n k

Proof

First note that ; = [E] and ", = n[”]k , S0 in order to provey = ", , it sufces by

Strategy 6.1.15 to nd a bijectiofi : [E] ! n[”]k . Intuitively, this bijection arises because choosin

k elements fronjn] to put intoa subset is equivalent to choosimg k elements fronjn] to leave out
of the subset. Speci cally, we de ne

(n]

f(U)=[n]nU forallU 2 K
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Note rstthatf is well-de ned, since iU  [n] with jUj = k, then[n]nU  [n] andj[n]nUj = j[n]j
jUj=n kby Exercise 6.1.20. We now proveis a bijection:

f isinjective. LetU;V  [n] and supposf]nU =[n]nV. Then for allk 2 [n], we have

k22U, k6ZnnU by de nition of set difference
, kéqnlnVv since[n]nU =[n]nV
, k2V by de nition of set difference

soU =V, as required.

f is surjective. LetV 2 n[”]k . ThenjnlnVj=n (n k)= k by Exercise 6.1.20, so that

nnv 2 B Butthen
f([n]nV)=[n]n(n]nV) =V

by Exercise 2.1.64.

Sincef is a bijection, we have

n _ [ _

k k n k n k

as required.

n

We put a lot of detail into this proof. A slightly less formal proof might simply say t}ﬂal: n K
since choosing elements fronjn] to put into a subset is equivalent to choosingk elements from
[n] to leave out of the subset. This would be ne as long as the members of the intended audien
your proof could reasonably be expected to construct the bijection by themselves.

The proof of Proposition 6.2.38 follows this more informal format.

C Proposition 6.2.38
Letn;k;” 2 Nwithn> k> ". Then

Proof

Let's home in on the left-hand side of the equation. By the multiplication princi@le,‘f is the
number of ways of selectinglaelement subset df] and an -element subset dk]. Equivalently,
it's the number of ways of selectinglaelement subset dh] and then an-element subseidf the
k-element subset that we just select®al make this slightly more concrete, let's put it this way:

N K js the number of ways of paintirigballs red from a bag afi balls, and painting

* of the red balls blue. This leaves us withlue balls ank ° red balls.

Now we need to nd an equivalent interpretation df E . Well, suppose we pick theelements
to be coloured blue rst. To make up the rest of thelement subset, we now have to select”
elements, and there are now " to choose from. Thus

oo . is the number of ways of painting balls from a bag oh balls blue, and
paintingk  of the remaining balls red.
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234 Chapter 6. Enumerative combinatorics

Thus, both numbers represent the number of ways of paintiradis blue ank ° balls red from a
bag ofn balls. Hence they are equal.

Exercise 6.2.39
Make the proof of Proposition 6.2.38 more formal by de ning a bijection between sets of the apj
priate sizes. C

Exercise 6.2.40
Provide a combinatorial proof thatiifk 2 N with n> k, then

n+1 no, n
k+1 ~ k k+ 1

Deduce that the combinatorial de nition of binomial coef cients (De nition 6.2.4) is equivalent t
the recursive de nition (De nition 3.1.15). C

The following proposition demonstrates that the combinatorial de nition of factorials (De n
tion 6.2.10) is equivalent to the recursive de nition (De nition 3.1.14).

Theorem 6.2.41
0'=1landifn2 Nthen(n+ 1)!=(n+ 1) nl.

Proof
The only permutation o? is the empty functioe:? ! ?. HenceS = fegand 0!= jSj = 1.

Letn2 N. A permutation ofn+ 1] is a bijectionf : [n+ 1]! [n+ 1]. Specifying such a bijection is
equivalent to carrying out the following procedure:

Choose the (unique!) elemek® [n+ 1] such thatf(k) = n+ 1. There aren+ 1 choices fok.

Choose the values df at each” 2 [n+ 1] with ~ 6 k. This is equivalent to nding a bijection
[n+ 1]nfkg! [n]. Sincej[n+ 1 nfkgj= j[n]j = n, there are! such choices.

By the multiplication principle, we have
(n+ !'=jSw1j=(n+1) nl

so we're done.

We now revisit Theorem 3.2.17; this time, our proof will be combinatorial, rather than inductive.

Theorem 6.2.42
Letn;k2 N. Then 8
<_ ™ _ itkén
= ki(n K)!
"0 ifk>n

Proof
Suppose > n. By Exercise 6.1.16, ) [n] thenjUj 6 n. Hence itk > n, then ! = 2 and so

no_ .
« = 0, asrequired.
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Now suppos& 6 n. We will prove thatn! = E kI (n K)!; the result then follows by dividing

through byk!(n  Kk)!. We prove this equation by counting the number of elemen, of
A procedure for de ning an element & is as follows:

(i) Choose which elements will appear in the rtpositions of the list. There are{: such
choices.

(i) Choose the order of thedeelements. There aie such choices.

(iif) Choose the order of the remainimg k elements. There af@ k)! such choices.

n

By the multiplication principlen! = | k! (n K)!.

Note that the proof of Theorem 6.2.42 relied only on the combinatorial de nitions of binomial co
cients and factorials; we didn't need to know how to compute them at all! The proofraash
shorter, cleaner and, in some sense, more meaningful, than the inductive proof we gave in
orem 3.2.17.

We conclude this section with some more examples and exercises in which double counting ¢
used.

Exercise 6.2.43
Letn;k2 N with k6 n+ 1. Prove that

n n
k K =(n k+1) K1
C
Example 6.2.44
Letm;n;k2 N. We prove that
& m n _ m+n
a K © ok

0

by nding a procedure for counting the number lolement subsets of an appropridte+ n)-
element set. Speci cally, X be a set containinm cats andh dogs. Then m|: " is the number of

k-element subsetd  X. We can specify such a subset according to the following procedure.

Step 1. Split into cases based on the numberf cats inU. Note that we must have® ~ 6 k,
since the number of cats must be a natural number and cannot dxes¢dj = k. Moreover,
these cases are mutually exclusive. Hence by the addition principle we have

m+ n
k

wherea: is the number of subsets Bfcontaining” cats andk  dogs.
Step 2.Choose cats from tham cats inX to be elements dfi. There are M such choices.

n]

Step 3.Choose&k ~ dogs from then dogs inX to be elements dfi. There arek[ . such choices.
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The multiplication principle shows that= " | ". . Hence
m+n ék. m n
k Zo =k
as required. C
Exercise 6.2.45
Given natural numbers; a;b;c with a+ b+ ¢ = n, de ne thetrinomial coef cient " to

a;b;c
be the number of ways of partitionirfg] into three sets of sizes b andc, respectively. That is,
" is the size of the set
a;b;c

8
< A [n; B [n; C [n];
. (ABC) jAl=a [B=b; jCj=c;
' andA[ B[ C=[n] '

I ©

By considering trinomial coef cients, prove thatab;c 2 N, then(a+ b+ ¢)! is divisible by a!
b! cl. C
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Section 6.3. Alternating sums 237

Section 6.3
Alternating sums

Using the addition principle, together with double counting, turned out to be very useful for prov
combinatorial identities involving sums in Section 6.2. In this section, we turn our attentior
alternating sumswhich are sums whose terms alternate between positive and negative. As we
see later, sums of this kind can be used to computing sizes of unions of not-necessarily-di
sets—this has all manner of uses and applications.

An example of such a sum is the following.

6 6 6 6 6 6 6
+ + +
0 1 2 3 4 5 6

We can express such sums more succinctly by observing that, lgéf we have

(
( k= 1 ifkiseven

1 ifkisodd

6
6 .
For example, the sum above could be expresseé_a(s 1)k K It so happens that this sum
k=0
evaluates to zero:
1 6+15 20+15 6+1=0

The goal of the following exercise is to demonstrate howannoying.. it is to prove identities
involving alternating sums using induction.

Exercise 6.3.1

n
Prove by induction thag ( 1)% E = 0foralln2 N. C
k=0

Evidently we need a better approach.

If you stare at the equation in Exercise 6.3.1 for long enough, you should be able to convince yot
that

n

[o n o n o n
acyvc, = a a
k=0 k evenk k oddk k

, n n o . .
and it suf ces to prove thaté = é . This will be our strategy in the proof of Proposi-
. . evenk k oddk K .

tion 6.3.2, which serves as our prototype for the abstract material to come.

For the sake of readability, we left implicit thiatis varying over (the even or odd elements of) the
setf 0;1;:::;ngin each sum—we shall adopt this practice throughout this section.

Proposition 6.3.2

n
Letn2 N. Thend ( DX " =o.

k=0 k
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Proof
As we observed, it suf cies to prove

So de ne
E=fU [nljjUjisevey and O=fU [n]jjUjis oddy

That is,E is the set of all even-sized subsetqmjf andO is the set of all odd-sized subsetdof.

[n] [n]

Note that the sets K for evenk 6 n partitionE, and the sets K for oddk 6 npartitionO. So
by the addition principle, we have
- [ [n] o N L m o N
IEj= Kk - a . and joj= -
evenk evenk oddk oddk

It suf ces to show thajEj = jOj. To do this, de ne a functiorf : E! O forU 2 E by

(
U[f ng ifn6d)

f(U) = )
Unfng ifn2U

That is, f putsninto a subset if it wasn't already there, and removes it if it was. Then:

f is well-de ned. GivenU 2 E, note thajf(U)j= jUj 1;sincgUjis even, we have thaf (U)j
is odd, so thaf (U) 2 O.

f is bijective. Dene g: O! E by letting

(
V[f ng if n62/

V)=
ov) Vnfng ifn2V

for all V 2 O. The proof thag is well-de ned is identical to that of. Moreover, giverJ 2 E,
we have:

If n2 U, thenf(U)= Unfng, sothatg(f(U))=(Unfng)[f ng= U.
If n62J, thenf(U)= U[f ng, sothatg(f(U))=(U[f ngynfng= U.

Henceg(f(U)) = U for allU 2 E. An identical computation reveals théfg(V)) = V for all
V 2 O, and sag is an inverse forf .

Putting all of this together, it follows form the facttht E! O is a bijection thajEj = jOj, and

SO
n

n n n R .
a(n<, =a , a ,  =iEjoj=0
k=0 evenk oddk

as required.

Wait a minute—didn't | say this would belzetterapproach than induction? That proof felt like a
lot of work. The reason for working through this proof is that it highlights the ideas that we w
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Section 6.3. Alternating sums 239

use throughout this section. These ideas will allow us to derive a general proof strategy, c
theinvolution principle(Strategy 6.3.24), which greatly simpli es proofs of results of this nature-
indeed, we will prove Proposition 6.3.2 again using the involution principle in Example 6.3.25.

With that said, Proposition 6.3.2 highlights the following general strategy for proving that an alte
ating sum evaluates to zero.

Strategy 6.3.3 (Proving that an alternating sum evaluates to zero)

k=0
(i) A partitionUg;Uy;::: of a setE, with jUyj = a for all evenk;

(i) A partition U1;U3;::: of a setO, with jUyj = a for all oddk; and

(iii) A bijectionE! O.

Exercise 6.3.4
Use Strategy 6.3.3 to prove that

n
o

A(n<k "=o
k=0 k

foralln> 2. C

Unfortunately Strategy 6.3.3 is still somewhat limited. For a start, it tells us nothing about hov
evaluate an alternating sum ttigesn'tend up being equal to zero. Also, it ignores a key clue fror
the proof of Proposition 6.3.2: namely, the functibn E! O and its inverseg: O! E were
de ned identically. They are both restrictions of a functionP ([n])! P ([n]) de ned in the same
way: (
UI[f ng if n62J

h(U) = .
Unfng ifn2U

This function has the property thhth(U)) = U for allU  [n] (that is,h is aninvolution), andh
restricts to a bijection between the set of even-sized subspikanid the set of odd-sized subsets o
[n] (that is,h swaps parity.

This property of being a parity-swapping involution will be the key to deriving the involution pril

ciple.

Involutions
An involution is a function that is its own inverse.

De nition 6.3.5
Let X be a set. Annvolution of X is a functionh: X! X such thah h= idy.

Example 6.3.6
Consider the functiom: R! R dened byh(x) = 1 xfor eachx2 R. Thenh is an involution,
since for allx2 R we haveh(h(x))= 1 (1 X)= x. C
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Exercise 6.3.7
Given a selX, prove that the relative complement functionP (X)! P (X), de ned byr(U) =

XnU forallU X, is an involution. C
Exercise 6.3.8
Prove that every involution is a bijection. C

Exercise 6.3.9
Leth: X! Xbeaninvolution and lea2 X. Prove thah either xesa—that is,h(a) = a—or swaps
it with another elemenrth 2 X—that is,h(a) = bandh(b) = a. C

The involution that we used in the proof of Proposition 6.3.2 was an instartoggifngan element
in a subset—that is, removing it if it is there, and putting it in if it is not.

Toggling is so useful that we assign special notation.

De nition 6.3.10
Let X be a set. Théoggleoperation (IATEX code:\oplus ) is de ned by letting

(
U[f ag ifa6a)
Unfag ifa2U

U a=

foreachU X andeacla?2 X.

Example 6.3.11
TakingX =[ 3] anda= 3, we have:

? 3=1f3g flg 3=11,3g f2g 3=123g fl,2g 3=11;2;3g

f3g 3=? f1;3g 3=flg f23g 3=f29 f1,2,3g 3=1f12g
C

The next two exercises are generalisations of facts that we showed in the proof of Proposition |

Exercise 6.3.12
Let X be a set and let 2 X. Prove that the functiof; : P (X)! P (X)denedbyT,(U)=U a
forallU X s an involution. C

Exercise 6.3.13
Let X be a nite set and lea2 X. Prove that, foralU X, if jUj is even thegU g is odd, and if
jUj is odd therjU aj is even. C

The property of the toggle operation that you proved in Exercise 6.3.13 is an instapeetgf
swapping While toggling swaps the parity of the size of a subset, we can generalise the notio
parity more generally, provided we have a notion of what it means for an element of a set to be "¢
or “odd'.

A rst attempt to de ne “even' and “odd' might be to simply partition a sétasX = E[ O, for
disjoint subset&; 0  X—the elements oE will be deemed to be “even' and the elementgof
will be deemed to be “odd'. But it will be helpful later on to go one step further than this: \
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Section 6.3. Alternating sums 241

will partition X into nitely many pieces, indexed by natural numbers, and the natural number v
determine the parities of the elementsoof

De nition 6.3.14

elementa2 X (relative toU ) is the parity—evenor odd—of the uniquek 2 f 0;1;:::;ng such that
a2 Uyg.

Write X* = fa2 X j ahas even parity (IATEX code: X +) andX = fa2 X j ahas odd parity
(IATeX code: X - ).

Note that, with notation as in De nition 6.3.14, we have partitionXéfandX as

[ [
X" = U and X = Uy

evenk oddk
Example 6.3.15
Let X be a nite set, and consider the partition®f(X) given byUy = >|§ forall06 k6 n. With
respect to this partition, an elemeut2 P (X) has even parity if and only fUj is even, and odd
parity if and only ifjUj is odd.

For example, we have

P (2Dt =f?;f1,299 and P ([2]) = ff 1g;f2g9g

Example 6.3.16
Letm;n2 N and letX be the set of all functiong]! [n]. For eactk 6 n, de ne

X=ff:nt [n]jjfa2[n]j f(a)= agj= kg

That is, for eaclk 6 n, the sefX is the set of all functiong$ : [n]! [n] that x exactly k elements of

[n].

A function f : [n]! [n] has even parity with respect to this partition if it xes an even number ¢
elements, and odd parity if it xes an odd number of elements. C

De nition 6.3.17

Let X be a set and leftUg;U1;:::Ung be a partition ofX for somen2 N. A function f : X! X
swaps parity (or is parity-swapping) if, for all a2 X, if a has even parity thefi(a) has odd parity,
and ifa has odd parity theffi(a) has even parity.

Example 6.3.18

With parity de ned as in Example 6.3.15, the result of Exercise 6.3.12 says precisely that, for e
setX and elemena 2 X, the toggle functiod, : P (X)! P (X) swaps parity, wher&, is de ned
by T,(U)=U aforallU X. C

Exercise 6.3.19
Let X be a nite set. Under what conditions does the involutiad® (X)! P (X) given byr(U) =
XnU forallU X swap parity? C
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Exercise 6.3.20

Letn2 N and letX be the set of all functiong] ! [n], partitioned as in Example 6.3.16, so that
functionf : [n]! [n] has even parity if it xes an even number of elements, and odd parity if it xe
an odd number of elements. Find a parity-swapping functién X. C

The next two following technical results will be used fundamentally in the proof of Theorem 6.3.

Lemma 6.3.21

Let X be a nite set, letf Ug;Us;:::;Ung be a partition oiX for somen2 N, and leth: X! X be a
parity-swapping involution. Thehinduces a bijectiorf : X* ! X de ned by f(x) = h(x) for all
X2 X*.

Proof

First note that the de nitiorf : X* | X by letting f(x) = h(x) for all x2 X* is well-de ned since
h swaps parity. Indeed, ¥2 X*, thenx has even parity, so thd(x) = h(x) has odd parity, meaning
thatf(x) 2 X .

To see thaff is a bijection, de ne a functiogy: X ! X* by g(x) = h(x) forallx2 X . Again,g
is well-de ned sinceh swaps parity.

Finally note thag is an inverse fof —givenx2 X*, we have

9(f(x)) = h(h(x)) = x
and likewisef (g(x)) = xforallx2 X .

Sincef has an inverse, it is a bijection.

Lemma 6.3.22
Let X be a nite set, letf U1;Uy;:::;Ung be a partition oiX for somen2 N, and leth: X! X bea
parity-swapping involution. Then

n

a( 1ug=o0

k=1
Proof
By Lemma 6.3.21 we know that: X! X restricts to a bijectioxX* ! X , and so we havpX*j =
jX j. By the addition principle, we have

n
a( DU = 4 ijui aiui=ixjixj=o0
k=0 evenk oddk

as required.

Lemma 6.3.22 gets us well on our way to deriving the involution principle. In fact, it already ma
Strategy 6.3.3 obsolete: we can now prove that an alternating sum is equal to zero simply by n
a parity-swapping involution from a suitably partitioned set to itself!

But in practice, it might not be easy (or even possible) to de ne a parity-swapping invohutér
X on the whole seX. In such cases, we do the best that we can: déoe some subsdd X,
and worry about what is left over afterwards.
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C Theorem 6.3.23
Let X be a nite set, lef Uy;Uy;:::;Ung be a partition oiX for somen2 N, letD X, leth:D! D
be a parity-swapping involution, and Bt = Uy nD for eachk 2 [n]. Then

n n
a( Hui= & ( DR
k=1 k=1
Proof
Note rst that the sett)\ D for k 2 [n] partitionD, with the elements dD having the same parities
as they did when they were considered as elemenxs of

It follows from Lemma 6.3.22 that .
a ju\ Dj=0
k=1

MoreoverjUyj = jUc\ Dj+ jUxnDj for eachk 2 [n] by the addition principle. Sincg = UxnD for
eachk 2 [n], we have

=}

n n
o o

n

a( UG = & ( DNU\ Di+ & ( DNUnDj = & ( VYR
k=1 \(21 {Z } k=1 k=1

=0

as required.

We have suggestively used the leteto refer to where the involution isedned, and the letteF to
refer to the elements where the involutiail$.

v Strategy 6.3.24 (Involution principle)

(ii) Find a parity-swapping involutiomn: D! D for some subsed X—often it is easiest to
specify the values df rst, and takeD to be the set of elements Kffor which the speci cation
makes sense.

n
(i) Evaluated ( 1)%jRd, whereR, = UcnD for all k 2 [n]—that is, count the elements of eddj
k=1
where the involutiorailed to be well-de ned, and add them positively or negatively accordin
to their parity.

It will often be the case that many of the s&tsare empty, simplifying matters greatly.

This is rather abstract, so let's see some examples of the involution principle in action.
0 Example 6.3.25

n
Here is a succinct proof tha ( 1)%
k=0

n

K = 0 for alln2 N using the involution principle.
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[n]
k

jUki = : foreach 6 k6 n.

Letn2 N and de neUy = for all 06 k6 n—these sets form a partition & ([n]), and

By Exercise 6.3.12, the functidn: P ([n]) ! P ([n]) de ned byh(U)= U nis a parity-swapping
involution. By the involution principle (Strategy 6.3.24) with= P ([n]), we haveynD = ? for
each 06 k6 n, and hence

n

a( 0 =0
k=0 k
as required. C

Exercise 6.3.26
Repeat Exercise 6.3.4 using the involution principle—that is, use the involution principle to pr
that

3 n
a( Dk k =0
k=0 k
foralln> 2. C
Exercise 6.3.27
Use the involution principle to prove that
3 k
a(y =0
k=0 k
foralln;” 2 N with "< n. C

The next example is slightly more involved, because we nd an involution that is not de ned on
whole set being counted. This generalises the result of Example 6.3.25.

Proposition 6.3.28
1

r
Letn;r 2 Nwithr 6 n. Then§ ( 1)¥ E =( D nr .
k=0

Proof
Let X be the set of subsets pf] of size6 r, and foreach ® k6 r, letUy =
setsUy partitionX for06 k6 r.

[E] . Note that the

Dene h(U)=U nforallU 2 X. Sincehis de ned by togglingn, it is a parity-swapping involu-
tion.

The only way thah can fail to be well-de ned is ifh(U)j > r. SincejU nj=jUj 1forallU 2 X,
the only way we can hay@&(U)j > risif jJUj = r andn 62J, in which casén(U) = U [f ng has size
r+ 1.

HenceR = ? forallk< r,andR = fU [n]jjUj= r andn62Jg. Specifying an element &% is

therefore equivalent to specifying a subsefrof 1] of sizer, so thafFj = 1 .
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Putting this all together, we obtain

r
o

OV = ACVRI=C D "
k=0 k=0

1

as required.

The next example is slightly more colourful.

Example 6.3.29
Leta;b;r 2 Nwitha6 r 6 b. We prove that

r
9 K a b _ b a
at vy oy T

Consider a population df animals, of which exactlp are cats. A government of exactlyanimals
must be formed, and a Feline Affairs Committee—which is a branch of the government—mus
chosen from amongst the cats. The Feline Affairs Committee may have any size, but its si
bounded by the size of the government.

Let X be the set of all pair¢G;C), whereG is a government an@ G is the Feline Affairs
Committee.

Fork 6 r, letUy be the set of all government—committee p&EsC) such thajCj = k—that is, such
that exactlyk cats sit on the Feline Affairs Committee. Note that parity is determined by the num
of cats on the Feline Affairs Committee: inde€@,; C) has even parity ifCj is even, and odd parity
if jCj is odd.

Given a government—committee pé&é;C), leth(G;C) = ( G;C x), wherex 2 G is the youngest
cat on the government. That is, if the youngest cat on the government is on the Feline Af
Committee, then that cat is removed from the committee; and if the youngest cat on the governr
is not on the Feline Affairs Committee, then that cat is added to the committee.

Evidentlyhis an involution, and it swaps parity since it adds or removes one cat to or from the Fe
Affairs Committee.

The only way that can fail to be well-de ned is if there are no cats on the government, in whi
casek = 0. Thus by the involution principle

r
a( 1k i rbk =( 1° (G;?)2X Gcontains no cats

k=0

But there are exactlp anon-cats in the animal population, so that

(G;?)2 X Gcontains no cats = ; a
r
and hence we havg ( 1) E . bk - b . & asrequired. C

k=0
If you dislike reasoning about animals, Example 6.3.29 could be reformulated by taking:
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X=f(AB)jA B\[a;B [b];jBj=rg;
U= f(A;B)2 XjjAj = kgforallk6 r; and
h(A;B) = h(A x;B), wherex is the least element &\ [a].

You are encouraged to verify the details!

Exercise 6.3.30
Letn2 N and consider the set
X=1f(ki)jk6 n;i2][Kg

For example, ih= 3thenX = f(1;1);(2;1);(2;2);(3;1);(3;2);(3;3)g.

n

(a) Prove thajXj= § k.

k=0
(b) Use the involution principle to prove that
8
2 . < g if nis even
al Dk=_“np 1
k=0 ' if nis odd

2

Inclusion—exclusion principle

Our nal application of the involution principle will be to prove thieclusion—exclusion principle
which is used for computing the sizes of unions of sets that are not necessarily pairwise disjoir

We saw in Proposition 6.1.18 how to compute the size of a union of two not-necessarily-disj
sets:

IXTYj=jXj+jYjj X\ Y]
So far so good. But what if we have three or four sets instead of just two?

Exercise 6.3.31
Let X;Y;Z be sets. Show that

IXEYT Zj=jXj+jYji+jZ) j XVYjj X\ Zjj Y\ Zj+ X\ Y\ Zj
LetW be another set. Derive a similar formula fa¢[ X[ Y[ Zj. C

The inclusion—exclusion principle is a generalisation of Exercise 6.3.31 to arbitary nite collecti
of nite sets, butitis stated in a slightly different way in order to make the proof more convenier

Theorem 6.3.32 (Inclusion—exclusion principle)
Letn2 N, letX; be a nite setforeach2 [n], and letX = X3[ Xo[ [ Xn. Then

a ( Hjxj=o0
I [n]

whereX, = fa2 Xja2 X foralli2 lg.
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The statement of Theorem 6.3.32 looks fairly abstract, so before we prove it, let's examine its
tent. The sum is over all subsdts [n], and then the power 1)l is equal to 1 ifl has an even

number of elements, andl if | has an odd number of elements. Moreovet,iff inhabited therX|

is the intersection of the seX§ for i 2 |—for exampleX; 2355 = X2\ X3\ Xs; on the other hand, a
careful examination of the de nition of| reveals thaX, = X.

Thus whem = 3, the sumd ( 1)!'jXj can be evaluated as
e

IXj g X J Xo J Xaj+ jXe\ Xoj+ X\ Xgj+ X\ Xgj | Xa\ Xo\ X

The theorem says that this sum is equal to zero, and solvingXfor jXi[ Xzo[ Xsj yields an
equivalent equation to that in Exercise 6.3.31.

Proof of Theorem 6.3.32
We will prove the inclusion—exclusion principle using the involution principle.

First we introduce some notation:

Dene S=f(l;a)jl [n]; a2 X/ g. We can think of an elemeirft;a) 2 Sas being an element
a2 X together with a labdl indicating thata 2 X; foralli 2 I.

Foreach® k6 n,dene S = f(l;a) 2 Sjjlj = kg.
For eacha2 X, letia= minfk 2 [n]j a2 Xg.

(I;a) 2 S—namely, the parity ofl ;a) is even ifjlj is even, and odd iflj is odd.
De ne a functionf : S! Shy letting

f(ha)=(1 iaa)
foreachl [n]andeacta?2 X;. Then:

f is an involution since by Exercise 6.3.12 we have
f(f(a)= f(I ima=(1 ia iaa)=(l;a)
f is parity-swapping, sincg i,j andjlj have opposite parity for ea@ X.

By the involution principle, we have

a( vksi=0

k=0

Now for xed | [n], letT, = f(l;a)ja2 Xg. Then for each ® k6 n, the sets]; for jlj = k
partitionS,, and moreovef 1)kK=( 1), so that by the addition principle we have

n
o

N ili o .
a(nh§si=a a (vmi= a4 plmj=o0
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Finally note that, for each [n], the functiong, : X; ! T, de ned byg(a)=(1;a) foralla2 X is
a bijection, with inverse given bg; Y1:a)= aforall (I;a) 2 T,.

HencejXj = jTj, and the result is proved.

Itis more common to see the inclusion—exclusion principle stated in one two equivalent forms, s
here as Corollaries 6.3.33 and 6.3.34.

Corollary 6.3.33

!
n
X = a A  CDMIX X0 X
i=1 k=1 16i1<ip< <ixbn
Proof
Moving all terms to the left-hand side of the equation and observing thatl)k 1 =( 1)K, the
statement is equivalent to
!

n
X a a  (DNX\ X\ \ Xj =0

i=1 k=1 16i1<ip< <igbn
But using the notation of Theorem 6.3.32, we have

n
X = iXj=( )Xo
i=1

andforall 16 i1 < is< < ix6 n, we have

(D% X\ VX j= (0 DI
and so we see that this is just a restatement of Theorem 6.3.32.

Corollary 6.3.34
Let X be asetand lafi;;Uy;:::;Uq,  X. Then

|
I o '
Xn U =jXj+ & a ( DKUL\ Ui\ Ui

i=1 k=1 16i1<ip< <ix6n

Proof
n

Since U; X, we have

i=1
n n

[ s
Xn U =jX] Ui
i=1 i=1
The result then follows immediately from Corollary 6.3.33.
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v |Strategy 6.3.35 (Finding the size of a union by inclusion—exclusion)
n

In order to nd the size of a union of X;, it suf ces to:
i=1

Add the sizes of the individual sexs;

Subtract the sizes of the double-intersecti#ns Xj;

Add the sizes of the triple-intersectioXg\ Xj\ X;

Subtract the sizes of the quadruple-intersectignsX;\ X\ X;

...andsoon...

Continue alternating until the intersection of all the sets is covered.

0 Example 6.3.36
We count how many subsets [if2] contain a multiple of 3. Precisely, we count the number ¢
elements of the set

Xs[ Xe[ Xo[ X12
whereX = fS [12]j k2 Sg. We will apply the inclusion—exclusion principle:
(i) AnelementS2 Xz is precisely a set of the forfBg[ S, whereS® [12]nf3g. Since[12]nf3g
has 11 elements, there are* Buch subsets. 9Xj = 211, and likewisgXgj = jXoj = jX12j =
211,

(i) AnelementS2 X3\ Xg is a set of the fornfi 3;6g[ S, whereS® [12]nf3;6g. Thus there are
210 such subsets, §&3\ Xgj = 21°. And likewise

iXa\ Xoj = JXa\ X1l = X6\ Xoj = }X6\ X1l = [Xo\ Xazf = 2
(i) Reasoning as in the last two cases, we see that
X\ X6\ Xoj = Xa\ X6\ Xaz = [Xa\ Xo\ X2l = jX6\ Xo\ X2 = 2°
(iv) ...andjXz\ X\ Xg\ Xpoj = 28.

Thus the number of subsets[@®] which contain a multiple of 3 is

A S e SR 7 S

by (i) by (ii) by (iii) by (iv)
which is equal to 3840. C
Exercise 6.3.37
How many natural numbers less than 1000 are multiples of 2, 3, 5 or 7? C
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Section 6.E
Chapter 6 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Finite sets

6.1. Letn2 Nand letf :[n]! [n] be afunction. Prove thdtis injective if and only iff is surjective.

6.2. Prove thajZ=nZj = nforalln> 1.

Counting

6.3. Let X andY be nite sets withjXj = m2 N andjYj = n2 N. Prove that there aré™ relations
fromXtoY.

6.4. Let X be a set and |€R be a relation orX. Prove thaR s re exive if and only if Dy ~ Gr(R),
whereDy is the diagonal subset o€ X (see De nition 4.1.17). Deduce that X is nite and
iXj = n2 N, then there are™® 1 re exive relations onX.

6.5. Let X be a nite set withjXj = n2 N. Prove that there ardd o symmetric relations oiX.

6.6. Let X be a nite set withjXj = n2 N. Prove that there ardd 2n antisymmetric relations on
X.

6.7. Let X be a nite set withjXj = n2 N, let be an equivalence relation ¢ and suppose that
there is some natural numbleisuch thag[a] j = k for all a2 X. Prove thak dividesn, and that
n

X=j = K

6.8. Let n;k 2 N with k6 n. Prove that the number of functiorfs: [n] ! [n] that x exactly k

. n
elements ofn] is equal to K (n D"k

Double counting

6.9. Leta;b;m;n2 N. Prove each of the following by double counting.

(@) a(m+ n)= am+ an (c) (@Mn=am
(b) a™N=am a" (d) (ab)" = a" b"
n 2
6.10. Provethaty | = 2N foralin2 N
o K n
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X k
6.11. Prove thatg E m - 2nm :\ for allm;n2 N with m6 n.

k=m
k .
n n+1

6.12. Prove thaty - foralln;k 2 N.

i=0 kK j k

n k

n n

6.13. Prove thatd & k . =n3 foralln2 N.

ke1z0 K

n s
6.14. Prove that " = a k 1 nk forall n;r;s2 N.
r+s+1 Kere1 s

&
n Yl n oaa
= =1
aLaz A oo Ay
where n is the number of orderedtuples(U1;Uo;:::;U;) such thatJy;Uy;:::; U, is

ap;ag;iil;
a partition of[n] andjUyj = ax for all k 2 [r].

Involution principle

6.16. Let X be a nite set. Prove that ifX] is odd then there is no parity-swapping involution
X! X

Inclusion—exclusion principle

6.17. Find the number of subsets [@f0( that do not contain a multiple of 8.
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254 Chapter 7. Real numbers

Section 7.1
Inequalities and means

We rst encountered the real numbers in Chapter 0, when the real numbers were introduced us
vague (but intuitive) notion of am nite number line(De nition 0.25):

This section will scrutinise the set of real numbers in its capacity @maplete ordered eld De-
composing what this means:

A eld is a set with a notion of “zero' and “one', in which it makes sense to talk about additi
subtraction, multiplication, and division by everything except zero. Example3,&ReandZ=pZ
whenp s a prime number (but not whemis composite). Howeveg, is not a eld, since we can't
freely divide by nonzero elements—for exampl@, Z and 22 Z, but no integen satis es 2h= 1.

An ordered eldis a eld which is equipped with a well-behaved notion of order. B@tlandR
are ordered elds, buZ=pZ is not. We'll see why soon.

A complete ordered elds an ordered eld in which every set with an upper bound hiesast
upper bound. As we will se€ is not a complete ordered eld, b& is.

This is made (extremely) precise in Section B.2.

Magnitude and scalar product

In this part of the section, we home in on sets of the f&f) for n2 N. Elements ofR" are

0-dimensional space is a single point. TheR&has one element, namely the empty sequéhnce
so this makes sense.

1-dimensional space is a line. This matches our intuition®vatR?! forms a line.

2-dimensional space isglane The elements oR? are pairg(x;y), wherex andy are both real
numbers. We can interpret the pé&iry) ascoordinatesfor a point which is situate# units to the
right of (0; 0) andy units abov€0; 0) (where negative values &for y reverse this direction)—see
Figure 7.1.

With this intuition in mind, we set up the following notation.

Notation 7.1.1
Letn2 N. Elements oR" will be denoteds;y;z;::: (IATeX code:\vec ) and called f-dimensional
vectors Given a vectox 2 R", we writex; for thei componentofx, so that
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(2% .

Figure 7.1: Some points iR?

The elemen(0;0;:::;0) 2 R" is called theorigin or zero vectorof R", and is denoted b§.

Moreover, ifx;y 2 R" anda 2 R we write

Example 7.1.2
For allx2 R", we have
*x+0=% and =%

De nition 7.1.3
Letx 2 R". The magnitude of x is the real numbekxk (IATEX code: \IVert \vec x \rVert )
de ned by S

n L
kxk = éxizz X§+ X%+ +X%

i=1
Given vectorsgy 2 R", thedistancefromx toy is de ned to beky k. Thus the magnitude of a

vector can be thought of as the distance from that vector to the origin.

Example 7.1.4
In R?, De nition 7.1.3 says that

P
k(x;y)k= x2+y2

This matches the intuition obtained from the Pythagorean theorem on the sides of right-han
angles. For example, consider the triangle with vert{€e8), (4;0) and(4;3):
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(4,3)

(0,0 (4,0)

The hypotenuse of the triangle has magnitude
P—— _
k(4,3)k= 42+ 32= P 25=5

C

Exercise 7.1.5
Letxy2 R". Prove thakx vyk= ky «k. Thatis, the distance fromtoy is equal to the distance
fromy tox. C

Exercise 7.1.6
Prove that ifx 2 R then the magnitudk(x)k is equal to the absolute valixg. C

Exercise 7.1.7
Letx2 R". Prove thakxk = 0 if and only ifx= 0. C

The triangle inequality and the Cauchy—Schwarz inequality

The rst, and simplest, inequality that we investigate is the (one-dimensional version tfiimg)le
inequality(Theorem 7.1.9). It is so named because of a generalisation to higher dimensions (
orem 7.1.19), which can be interpreted geometrically as saying that the sum of two side length
triangle is greater than or equal to the third side length.

The triangle inequality is used very frequently in mathematical proofs—you will encounter it
peatedly in this chapter—yet its proof is surprisingly simple.

Before we can prove the triangle inequality, we need the following fact about square roots of
numbers.

Lemma 7.1.8

Letx;y2 R. If06 x6 v, thenp

x6 Py.

Proof
Suppose ® x6 y. Note that, by de nition of the square root symbol, we hgvk> 0 and” y> 0.

SupposeP x> P y. By two applications of Theorem B.2.30(d), we have

y= Py Py P Pyc Py Pxs

y y< X

p

so thaty < x. But this contradicts the assumption tia y. Hencep X6 "y, as required.
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C Theorem 7.1.9 (Triangle inequality in one dimension)
Letx;y2 R. Thenjx+ yj 6 jxj + jyj. Moreoverjx+ yj = jXj + jyj if and only if x andy have the same
sign.

Proof
Note rst thatxy6 jxyj; indeed,xy andjxyj are equal ifxy is non-negative, and otherwise we have
xy< 0< jxyj. Alsox? = jxj2 andy? = jyj2. Hence

O+ ¥)? = X0+ 2xy+ Y2 6 )%+ 2xyj + i = (% + jyi)?
Taking (nonnegative) square roots yields
X+ Y] 6 jixj+ jyij
by Lemma 7.1.8. Buixj + jyj > 0, sojjxj + jyij = jxj + jyj. This completes the rst part of the proof.

Equality holds in the above if and onlyXfy = jxyj, which occurs if and only iky> 0. But this is
true if and only ifx andy are both non-negative or both non-positive—that is, they have the sa
sign.
0 Example 7.1.10
Letx;y2 R. We prove that
Xty o B, 0
I+jx+y) 1+ 1+jy

First note that, if ® s6 t, then

S t
- 6 —
1+s 1+t
To see this, note that
s6t) 1+s6 1+t rearranging
1 1
—6 —— since +s1+t>0
) 1+t  1+s
1 1 .
1 —61 —— rearrangin
)l T T+t ging
) S 6 b rearrangin
1+s 1+t ging

Now lettings= jx+ yj andt = jxj + jyj, we haves6 t by the triangle inequality, and hence

b/ NP . N B L I |
1+jx+y  1+jx+jyi L+ pg+jyi 1+ 1+ jyj

as required. C

Exercise 7.1.11
Letn2 N and lets 2 R for eachi 2 [n]. Prove that

n
X 6 jxij
1 i=1

Qo5

with equality if and only if the numberg are either all non-positive or all non-negative. C
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Exercise 7.1.12
Letx;y2 R. Prove that
X Jyi6ix v
C

We will generalise the triangle inequality to arbitrary dimensions in Theorem 7.1.19. Our pr
will go via the Cauchy—Schwarz inequalify heorem 7.1.16). To motivate the Cauchy—Schwar
inequality, we introduce another geometric notion calledsitedar productof two vectors.

De nition 7.1.13
Letx;y 2 R". Thescalar product (or dot product) of x with  is the real numbex ¥ (IATeX code:
\cdot ) de ned by

n
XY= @ XY= Xxayi+ X2+ + Xo¥n
i=1

Example 7.1.14
Letx2 R". Thenx %= kxk?. Indeed

n
X X= § ¥ = kok?
i=1

Exercise 7.1.15
Letxy;Zzw2 R"and leta;b;c;d 2 R. Prove that

(ax+ by) (cz+ dw) = ac(x 2)+ ad(x w)+ by 2)+ bd(y w)

C

Intuitively, the scalar product of two vectorsandy measures the extent to whighandy fail to
be orthogonal In fact, if q is the acute angle formed between the lingand,, where™; passes
through0 andx and ", passes throudg@ andy, then a formula for the scalar productsofindy is
given by

% ¥ = kxkkyk cosq

kxk cosq
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Evidently, x andy are orthogonal if and only if cag= 0, in which casex ¥y = 0 as well. We
cannot prove this yet, though, as we have not yet de ned trigonometric functions or explored |
properties, but hopefully this provides some useful intuition.

The Cauchy—Schwarz inequality provides a useful comparison of the size of a scalar product o
vectors with the magnitudes of the vectors.
Theorem 7.1.16 (Cauchy—Schwarz inequality)
Letn2 N and letx;y; 2 R for eachi 2 [n]. Then
% ¥ 6 kxkkyk
with equality if and only ifax = by for somea;b 2 R which are not both zero.

Proof
If ¥y =0, then this is trivial: both sides of the equation are equal to zero! So assumestiiat In
particular, by Exercise 7.1.7, we hakyk > 0.

Xy

Dene k= k2’ Then
06 kx kyk? since squares are nonnegative
=(x ky) (x ky) by Example 7.1.14
=(x %) 2k ¥)+ Ky ¥) by Exercise 7.1.15
— 2 (x¥)? "
= kxk kK2 by de nition of k

Multiplying through bykyk?, which is non-negative and therefore doesn't change the sign of 1
inequality, yields
06 kxk’kyk?  (x ¥)?

which is equivalent to what was to be proved.

Evidently, equality holds if and only itx kyk = 0, which by Exercise 7.1.7 occurs if and only if
X ky= 0. Now:

If x ky= 0, then we have

x ky=0

Xy L
, X Wy— 0 by de nition of k
Lk ykZx = (% )y rearranging

If ¥ 6 O then leta= kyk? andb = % ¥; otherwise, lea= 0 andb = 1. In both cases, we have
ax = by anda; b are not both zero.

If ax= by for somea;b 2 R not both zero, then either:

a= 0andb 6 0, in which case/ = 0 and we have equality in the Cauchy—Schwarz inequalit
or
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a6 0, in which casg/= 2x. Writec= 2. Then

¥ = jx (9]
= je(x %) by Exercise 7.1.15
= jcjkxk® by Example 7.1.14
= kkkexk rearranging
= kkkyk

In either case, we have equality in the Cauchy—Schwarz inequality.

So equality holds if and only ifx = by for somea; b 2 R not both zero.

Example 7.1.17
Leta;b;c2 R. We'll prove that

ab+ bc+ ca6 a’+ b?+ ¢?
and examine when equality holds.
Lettingx = (a;b;c) andy = ( b;c;a) yields

% ¥ = ab+ bc+ ca

and

P P
kxk= a2+ b?+c2= b2+ c?+a?= kyk
Hencekxkkyk = a+ b?+ c2. By the Cauchy—Schwarz inequality, it follows that
x ¥y = ab+ bc+ cab a’+ b+ c® = kxkkyk

as required. Equality holds if and onlyk{a; b;c) = "(b;c;a) for somek;" 2 R not both zero. We

may assumé& 6 0—otherwise, swap the vectoxsandy in what follows. Then, letting = , we
have

k(a;b;c) = “(b;c;a)

, (& b;c)=(tb;tc;ta) by de nition of t

. (ab;c) = (t%c;t?a;t?h) substitutinga = tb etc.

, (abc) = (t3a:t3b;t3c) substitutinga = tb etc. again
. ox=t3x

This occurs if and only if eithefa; b;c) = ( 0;0;0), ort = 1, in which case
(a;b;c) = (th;tc;ta) = ( b;c;a)
So equality holds if and only ii= b= c. C

Exercise 7.1.18
Letr 2 N and letag; ap;:::;a 2 R be such that? + a3+ + a2= 6. Prove that

(a1+ 2a+ + na)?6 n(n+ 1)(2n+ 1)

and determine when equality holds. C
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We now use the Cauchy—Schwarz inequality to generalise the one-dimensional version of the tri
inequality (Theorem 7.1.9) to arbitrary ( nite) dimensions.

Theorem 7.1.19 (Triangle inequality)
Letxy 2 R". Then
kx+ yk 6 kxk+ kyk

with equality if and only ifax = by for some real numbers b > 0.

Proof
We proceed by calculation:

kx+ yk? = (x+y) (X+%) by Example 7.1.14
= (X %)+ 2X ¥)+ (YY) by Exercise 7.1.15
6 (X X+ 2x ¥+(¥ ) sincea6 jaj foralla2 R
6 kxk?+ 2kxkkyk + kyk? by Example 7.1.14 and Cauchy—Schwarz
= (ketk + kyk)? rearranging

Taking (nonnegative) square roots of both sides yields
kx+ yk 6 kxk + kyk
by Lemma 7.1.8, as required.
Equality holds if and only if the two6 ' symbols in the above derivation are in fast"symbols.
The rstinequality is equality if and only i y = jx +j, which holds if and only if ¥ > 0.

The second inequality is equality if and only if equality holds in the Cauchy—Schwarz inequa
In turn, this occurs if and only ifx = by for somea;b 2 R. We may, moreover, assume that
a> 0—if not, replacea andb by their negatives.

If a= 0thenwe cantakb= 0. If a> 0, then by Example 7.1.14 and Exercise 7.1.15, we have

x 2 = P
a a
which is non-negative if and only 5> 0, since we are assuming that O.

Thus, equality holds in the triangle inequality if and onlg¥= by for somea;b > 0.

This general version of the triangle inequality has a geometric interpretation in terms of—
guessed it—triangles. Any three poirtd;€ 2 R" form a (potentially at) triangle:
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€
w
%
a
u
o)
The side lengths; v, w are given by the following equations:
u=KkKb ak; v=ke Dk; w=ka <€k
The triangle inequality says tells us theé v+ w. Indeed:
u= Kb ak by de nition of u
=k(b €)+(e 8k rearranging
6 Kb €k+ ke ak by the triangle inequality
= ke Dk+ ka €k by Exercise 7.1.5
=v+w by de nition of v andw

That is, the triangle inequality says that the sum of two side lengths of a triangle is greater the
equal to the third side length. Moreover, it tellsws v+ w precisely wherk(a €)= “(e D) for
somek;” > 0. If k= 0 then

€ = b = 0a+(1 O
if k> 0, thenk+ ~> 0, so we have
k ) k k
€ - Fﬂ"’ F - Fa"' 1 F _b

Examining this a bit more closely yields that v+ wif and only if
e=ta+(1 t)b

forsome 6 t 6 1, which is to say precisely thaties on the line segment betwea@andb. In other
words, equality holds in the triangle inequality only if the three vertices of the triangleoineear,
which is to say that the triangle whose vertices are the peaifisnde, is at.

Inequalities of means

Our goal now is to explore different kinds of average—speci catheans—of nite sets of non-
negative real numbers. We will compare the relative sizes of these means with respect to
another, with emphasis on three particular kinds of meanatilemetic mear(De nition 7.1.20),
thegeometric meagDe nition 7.1.21) and théharmonic mear{De nition 7.1.29). These means in
fact assemble into a continuum of means, caflederalised mean®e nition 7.1.37), all of which
can be compared with one another.
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De nition 7.1.20
Letn> 1. The @rithmetic) meanof real numbersy;:::;x, is
}é” = X1+ Xot+  + X,

i=1 d

De nition 7.1.21

s
]

"Ox= Il?‘xl X2 Xn
i=1

The following theorem is commonly known as tA&-GM inequality .

Theorem 7.1. 22 (Inequality of arithmetic and geometric means)

X]_ Xn

9‘ X
| —{z— |—{'2
PR W (I arithmetic mean

with equality if and only ifx; = = Xp.

Proof whenn= 2
We need to show that, ¥y 2 R with x;y > 0, then

P Xty
xy6 —=
with equality if and only ifx = .

First note that the square roots»céndy exist since they are non-negative. Now

06 (p X P y)? since squares are nonnegative
:(pi)z P 3P y+(Py)? expanding
=X 2 Xy+y rearranging

Rearranging the inequality® x 2p Xy+ yyields the desired result.

If Py Xy = T, then we can rearrange the equation as follows:

Piy= XYy Psy=x+y multiplying by 2
) Axy= X2+ 2xy+ Y squaring both sides
) X 2xy+y?=0 rearranging
) (x y)°=0 factorising
) x y=0 sincea’?= 0) a=0Ofora2 R
) X=y rearranging

So we have proved both parts of the theorem.
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Example 7.1.23
We use the AM—GM inequality to prove that the area of a rectangle with xed perimeter is maximi
when the rectangle is a square.

Indeed, x a perimetep> 0, and letx;y > 0 be side lengths of a rectangle with perimgterthat
is, x andy satisfy the equationX2 2y = p. The areaa of the rectangle satis ea= xy. By the

AM-GM inequality, we have

2 2
- Xty “°_p°
a= xy6 5 16

Equality holds if and only ik = vy, in other words, if and only if the rectangle is a square. C
Exercise 7.1.24

a2+ b?
Leta;b> 0 be real numbers. Prove thatz— > ab. C

Example 7.1.25
Letx> 0. We nd the minimum possible value af+ )%. By the AM—GM inequality, we have

x+9>2 X
X

with equality if and only ifx = )%, which occurs if and only ik = 3. Hence the minimum value of

x+ J whenx> 0is 6. C

Exercise 7.1.26 .

Letx> 0 and letn 2 N. Find the minimum possible value 0§ x. C
k=n

Exercises 7.1.27 and 7.1.28 complete the proof of the AM—GM inequality (Theorem 7.1.22). Be
proceeding with the exercises, let's x some notation: for ea2hN, let pam—gm (n) be the assertion
that the AM—GM inequality holds for collections afnumbers; that ispam—gm (N) is the assertion:

s
Jy 10
"Ox6 -ax
i=1 Ni=y
with equality if and only ifx; = X, = = Xp.
Note that we already proveghu-cm(2).
Exercise 7.1.27
Letr 2 N and letxy; xo;:::; %Xor 2 R. Write
s
1g £
a= -ax and g= " Ox
i=1 i=1
for the arithmetic and geometric means, respectively, of the numpers; x.; write
v
u
1 2r 2
218 x and =t O x
i=r+1 i=r+1
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