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Preface

Hello, and thank you for taking the time to read this quick introduction to the book! I
would like to begin with an apology and a warning:

This book is still under development!

That is to say, there are some sections that are incomplete, as well as other sections which
are currently much more terse than I would like them to be.

The most recent version is freely available for download from the following website:

https://infinitedescent.xyz

As the book is undergoing constant changes, I advise that you do not print it in its
entirety—if you must print anything, then I suggest that you do it a few pages at a time,
as required.

This book was designed with inquiry and communication in mind, as they are central
to a good mathematical education. One of the upshots of this is that there are many
exercises throughout the book, requiring a more active approach to learning, rather than
passive reading. These exercises are a fundamental part of the book, and should be
completed even if not required by the course instructor. Another upshot of these design
principles is that solutions to exercises are not provided—a student seeking feedback on
their solutions should speak to someone to get such feedback, be it another student, a
teaching assistant or a course instructor.

Navigating the book

This book need not, and emphatically should not, be read from front to back. The order
of material is chosen so that material appearing later depends only on material appearing
earlier (with a couple of exceptions, which are pointed out in the text).

The majority of introductory pure mathematics courses cover, at a minimum, symbolic
logic, sets, functions and relations. This material is the content of Part I. Such courses

vii
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viii Preface

usually cover additional topics from pure mathematics, with exactly which topics de-
pending on what the course is preparing students for. With this in mind, Part II serves
as an introduction to a range of areas of pure mathematics, including number theory,
combinatorics, set theory, real analysis, probability theory and order theory.

It is not necessary to cover all of Part I before proceeding to topics in Part II. In fact,
interspersing material from Part II can be a useful way of motivating many of the abstract
concepts that arise in Part I.

The following table shows dependencies between sections. Previous sections within the
same chapter as a section should be considered ‘essential’ prerequisites unless indicated
otherwise.

Section Essential Recommended Useful
1.1 0
2.1 1.3
3.1 1.3 2.2 2.3
4.1 2.1 2.2 2.3, 3.2
5.1 1.3 2.1, 3.3 2.2
5.3 4.2
6.1 2.3, 3.3 4.2
8.1 6.1 7.3
8.3 6.2
7.1 3.1, 2.1 4.2
7.2 2.2 7.1
7.3 2.2 7.1 5.3, 8.1
9.1 6.2 8.1, 7.3
10.1 4.2
10.2 3.3, 2.3 8.1 10.1

Prerequisites are cumulative. For example, in order to cover Section 8.3, you should first
cover Chapters 0, 2 and 3 and Sections 6.1, 6.2, 8.1 and 8.2.

What the numbers, colours and symbols mean

Broadly speaking, the material in the book is broken down into enumerated items that
fall into one of five categories: definitions, results, remarks, examples and exercises. In
Appendix A, we also have proof extracts. To improve navigability, these categories are
distinguished by name, colour and symbol, as indicated in the following table.

Category Symbol Colour
Definitions F Red
Results C Blue
Remarks v Purple

Category Symbol Colour
Examples 0 Teal
Exercises . Gold
Proof extracts } Teal

viii



Preface ix

These items are enumerated according to their section—for example, Theorem 7.2.41 is
in Section 7.2. Definitions and theorems (important results) appear in a box .

You will also encounter the symbols � and C whose meanings are as follows:

� End of proof. It is standard in mathematical documents to identify when a proof has
ended by drawing a small square or by writing ‘Q.E.D.’ (The latter stands for quod
erat demonstrandum, which is Latin for which was to be shown.)

C End of item. This is not a standard usage, and is included only to help you to identify
when an item has finished and the main content of the book continues.

Some subsections are labelled with the symbol ?. This indicates that the material in that
subsection can be skipped without dire consequences.

Licence

This book is licensed under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-
SA 4.0) licence. This means you’re welcome to share this book, provided that you give
credit to the author and that any copies or derivatives of this book are released under the
same licence. The content of the licence can be read in its full glory at the end of the
book, and by following the following URL:

http://creativecommons.org/licenses/by-sa/4.0/

Comments and corrections

Any feedback, be it from students, teaching assistants, instructors or any other readers,
would be very much appreciated. Particularly useful are corrections of typographical
errors, suggestions for alternative ways to describe concepts or prove theorems, and re-
quests for new content (e.g. if you know of a nice example that illustrates a concept, or
if there is a relevant concept you wish were included in the book).

Such feedback can be sent to the author by email (clive@infinitedescent.xyz).
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Chapter 0

Getting started

Before we can start proving things, we need to eliminate certain kinds of statements that
we might try to prove. Consider the following statement:

This sentence is false.

Is it true or false? If you think about this for a couple of seconds then you’ll get into a bit
of a pickle.

Now consider the following statement:

The happiest donkey in the world.

Is it true or false? Well it’s not even a sentence; it doesn’t make sense to even ask if it’s
true or false!

Clearly we’ll be wasting our time trying to write proofs of statements like the two listed
above—we need to narrow our scope to statements that we might actually have a chance
of proving (or perhaps refuting)! This motivates the following (informal) definition.

F Definition 0.1
A proposition is a statement to which it is possible to assign a truth value (‘true’ or
‘false’). If a proposition is true, a proof of the proposition is a logically valid argument
demonstrating that it is true, which is pitched at such a level that a member of the intended
audience can verify its correctness.

Thus the statements given above are not propositions because there is no possible way of
assigning them a truth value. Note that, in Definition 0.1, all that matters is that it makes
sense to say that it is true or false, regardless of whether it actually is true or false—the
truth value of many propositions is unknown, even very simple ones.

1



2 Chapter 0. Getting started

. Exercise 0.2
Think of an example of a true proposition, a false proposition, a proposition whose truth
value you don’t know, and a statement that is not a proposition. C

Results in mathematical papers and textbooks may be referred to as propositions, but they
may also be referred to as theorems, lemmas or corollaries depending on their intended
usage.

• A proposition is an umbrella term which can be used for any result.

• A theorem is a key result which is particularly important.

• A lemma is a result which is proved for the purposes of being used in the proof of a
theorem.

• A corollary is a result which follows from a theorem without much additional effort.

These are not precise definitions, and they are not meant to be—you could call every
result a proposition if you wanted to—but using these words appropriately helps readers
work out how to read a paper. For example, if you just want to skim a paper and find its
key results, you’d look for results labelled as theorems.

It is not much good trying to prove results if we don’t have anything to prove results
about. With this in mind, we will now introduce the number sets and prove some results
about them in the context of four topics, namely: division of integers, number bases,
rational and irrational numbers, and polynomials. These topics will provide context for
the material in Part I, and serve as an introduction to the topics covered in Part II.

We will not go into very much depth in this chapter. Rather, think of this as a warm-up
exercise—a quick, light introduction, with more proofs to be provided in the rest of the
book.

Number sets

Later in this chapter, and then in much more detail in Section 2.1, we will encounter the
notion of a set; a set can be thought of as being a collection of objects. This seemingly
simple notion is fundamental to mathematics, and is so involved that we will not treat
sets formally in this book. For now, the following definition will suffice.

F Definition 0.3 (to be revised in Definition 2.1.1)
A set is a collection of objects. The objects in the set are called elements of the set. If
X is a set and x is an object, then we write x ∈ X (LATEX code: x \in X) to denote the
assertion that x is an element of X .

The sets of concern to us first and foremost are the number sets—that is, sets whose
elements are particular types of number. At this introductory level, many details will be
temporarily swept under the rug; we will work at a level of precision which is appropriate
for our current stage, but still allows us to develop a reasonable amount of intuition.

2



Chapter 0. Getting started 3

In order to define the number sets, we will need three things: an infinite line, a fixed point
on this line, and a fixed unit of length.

So here we go. Here is an infinite line:

The arrows indicate that it is supposed to extend in both directions without end. The
points on the line will represent numbers (specifically, real numbers, a misleading term
that will be defined in Definition 0.25). Now let’s fix a point on this line, and label it ‘0’:

0

This point can be thought of as representing the number zero; it is the point against which
all other numbers will be measured. Finally, let’s fix a unit of length:

This unit of length will be used, amongst other things, to compare the extent to which the
other numbers differ from zero.

F Definition 0.4
The above infinite line, together with its fixed zero point and fixed unit length, constitute
the (real) number line.

We will use the number line to construct five sets of numbers of interest to us:

• The set N of natural numbers—Definition 0.5;

• The set Z of integers—Definition 0.11;

• The set Q of rational numbers—Definition 0.24;

• The set R of real numbers—Definition 0.25; and

• The set C of complex numbers—Definition 0.31.

Each of these sets has a different character and is used for different purposes, as we will
see both later in this chapter and throughout this book.

Natural numbers (N)

The natural numbers are the numbers used for counting—they are the answers to ques-
tions of the form ‘how many’—for example, I have three uncles, one dog and zero cats.

3



4 Chapter 0. Getting started

Counting is a skill humans have had for a very long time; we know this because there
is evidence of people using tally marks tens of thousands of years ago. Tally marks
provide one method of counting small numbers: starting with nothing, proceed through
the objects you want to count one by one, and make a mark for every object. When you
are finished, there will be as many marks as there are objects. We are taught from a young
age to count with our fingers; this is another instance of making tally marks, where now
instead of making a mark we raise a finger.

Making a tally mark represents an increment in quantity—that is, adding one. On our
number line, we can represent an increment in quantity by moving to the right by the
unit length. Then the distance from zero we have moved, which is equal to the number
of times we moved right by the unit length, is therefore equal to the number of objects
being counted.

F Definition 0.5
The natural numbers are represented by the points on the number line which can be
obtained by starting at 0 and moving right by the unit length any number of times:

0 1 2 3 4 5

In more familiar terms, they are the non-negative whole numbers. We write N (LATEX
code: \mathbb{N}) for the set of all natural numbers; thus, the notation ‘n ∈ N’ means
that n is a natural number.

The natural numbers have very important and interesting mathematical structure, and
are central to the material in Chapter 6. A more precise characterisation of the natural
numbers will be provided in Section 3.1, and a mathematical construction of the set of
natural numbers can be found in Section B.1 (see Construction B.2.5). Central to these
more precise characterisations will be the notions of ‘zero’ and of ‘adding one’—just like
making tally marks.

v Aside
Some authors define the natural numbers to be the positive whole numbers, thus exclud-
ing zero. We take 0 to be a natural number since our main use of the natural numbers
will be for counting finite sets, and a set with nothing in it is certainly finite! That said, as
with any mathematical definition, the choice about whether 0 ∈N or 0 6∈N is a matter of
taste or convenience, and is merely a convention—it is not something that can be proved
or refuted. C

Number bases

Writing numbers down is something that may seem easy to you now, but it likely took
you several years as a child to truly understand what was going on. Historically, there
have been many different systems for representing numbers symbolically, called numeral
systems. First came the most primitive of all, tally marks, appearing in the Stone Age

4



Chapter 0. Getting started 5

and still being used for some purposes today. Thousands of years and hundreds of nu-
meral systems later, there is one dominant numeral system, understood throughout the
world: the Hindu–Arabic numeral system. This numeral system consists of ten sym-
bols, called digits. It is a positional numeral system, meaning that the position of a
symbol in a string determines its numerical value.

In English, the Arabic numerals are used as the ten digits:

0 1 2 3 4 5 6 7 8 9

The right-most digit in a string is in the units place, and the value of each digit increases
by a factor of ten moving to the left. For example, when we write ‘2812’, the left-most
‘2’ represents the number two thousand, whereas the last ‘2’ represents the number two.

The fact that there are ten digits, and that the numeral system is based on powers of ten, is
a biological accident corresponding with the fact that most humans have ten fingers. For
many purposes, this is inconvenient. For example, ten does not have many positive di-
visors (only four)—this has implications for the ease of performing arithmetic; a system
based on the number twelve, which has six positive divisors, might be more convenient.
Another example is in computing and digital electronics, where it is more convenient to
work in a binary system, with just two digits, which represent ‘off’ and ‘on’ (or ‘low
voltage’ and ‘high voltage’), respectively; arithmetic can then be performed directly us-
ing sequences of logic gates in an electrical circuit.

It is therefore worthwhile to have some understanding of positional numeral systems
based on numbers other than ten. The mathematical abstraction we make leads to the
definition of base-b expansion.

F Definition 0.6
Let b > 1. The base-b expansion of a natural number n is thea string drdr−1 . . .d0 such
that

• n = dr ·br +dr−1 ·br−1 + · · ·+d0 ·b0;

• 06 di < b for each i; and

• If n > 0 then dr 6= 0—the base-b expansion of zero is 0 in all bases b.

Certain number bases have names; for instance, the base-2, 3, 8, 10 and 16 expansions
are respectively called binary, ternary, octal, decimal and hexadecimal.
aThe use of the word ‘the’ is troublesome here, since it assumes that every natural number has only one base-b
expansion. This fact actually requires proof—see Theorem 5.3.51.

0 Example 0.7
Consider the number 1023. Its decimal (base-10) expansion is 1023, since

1023 = 1 ·103 +0 ·102 +2 ·101 +3 ·100

Its binary (base-2) expansion is 1111111111, since

1023 = 1 ·29 +1 ·28 +1 ·27 +1 ·26 +1 ·25 +1 ·24 +1 ·23 +1 ·22 +1 ·21 +1 ·20

5



6 Chapter 0. Getting started

We can express numbers in base-36 by using the ten usual digits 0 through 9 and the
twenty-six letters A through Z; for instance, A represents 10, M represents 22 and Z
represents 35. The base-36 expansion of 1023 is SF, since

1023 = 28 ·361 +15 ·360 = S ·361 +F ·360

C

. Exercise 0.8
Find the binary, ternary, octal, decimal, hexadecimal and base-36 expansions of the num-
ber 21127, using the letters A–F as additional digits for the hexadecimal expansion and
the letters A–Z as additional digits for the base-36 expansion. C

We sometimes wish to specify a natural number in terms of its base-b expansion; we
have some notation for this.

F Notation 0.9
Let b > 1. If the numbers d0,d1, . . . ,dr are base-b digits (in the sense of Definition 0.6),
then we write

drdr−1 . . .d0(b) = dr ·br +dr−1 ·br−1 + · · ·+d0 ·b0

for the natural number whose base-b expansion is drdr−1 . . .d0. If there is no subscript
(b) and a base is not specified explicitly, the expansion will be assumed to be in base-10.

0 Example 0.10
Using our new notation, we have

1023 = 1111111111(2) = 1101220(3) = 1777(8) = 1023(10) = 3FF(16) = SF(36)

C

Integers (Z)

The integers can be used for measuring the difference between two instances of counting.
For example, suppose I have five apples and five bananas. Another person, also holding
apples and bananas, wishes to trade. After our exchange, I have seven apples and only
one banana. Thus I have two more apples and four fewer bananas.

Since an increment in quantity can be represented by moving to the right on the number
line by the unit length, a decrement in quantity can therefore be represented by moving
to the left by the unit length. Doing so gives rise to the integers.

F Definition 0.11
The integers are represented by the points on the number line which can be obtained by
starting at 0 and moving in either direction by the unit length any number of times:

−5 −4 −3 −2 −1 0 1 2 3 4 5

We write Z (LATEX code: \mathbb{Z}) for the set of all integers; thus, the notation
‘n ∈ Z’ means that n is an integer.

6



Chapter 0. Getting started 7

The integers have such a fascinating structure that a whole chapter of this book is devoted
to them—see Chapter 5. This is to do with the fact that, although you can add, subtract
and multiply two integers and obtain another integer, the same is not true of division.
This ‘bad behaviour’ of division is what makes the integers interesting. We will now see
some basic results about division.

Division of integers

The motivation we will soon give for the definition of the rational numbers (Defini-
tion 0.24) is that the result of dividing one integer by another integer is not necessarily
another integer. However, the result is sometimes another integer; for example, I can di-
vide six apples between three people, and each person will receive an integral number of
apples. This makes division interesting: how can we measure the failure of one integer’s
divisibility by another? How can we deduce when one integer is divisible by another?
What is the structure of the set of integers when viewed through the lens of division?
This motivates Definition 0.12.

F Definition 0.12 (to be repeated in Definition 5.1.4)
Let a,b ∈ Z. We say b divides a if a = qb for some integer q. Other ways of saying that
b divides a are: b is a divisor of a, b is a factor of a, or a is a multiple of b.

0 Example 0.13
The integer 12 is divisible by 1, 2, 3, 4, 6 and 12, since

12 = 12 ·1 = 6 ·2 = 4 ·3 = 3 ·4 = 2 ·6 = 1 ·12

It is also divisible by the negatives of all of those numbers; for example, 12 is divisible
by −3 since 12 = (−4) · (−3). C

. Exercise 0.14
Prove that 1 divides every integer, and that every integer divides 0. C

Using Definition 0.12, we can prove some general basic facts about divisibility.

C Proposition 0.15
Let a,b,c ∈ Z. If c divides b and b divides a, then c divides a.

Proof
Suppose that c divides b and b divides a. By Definition 0.12, it follows that

b = qc and a = rb

for some integers q and r. Using the first equation, we may substitute qc for b in the
second equation, to obtain

a = r(qc)

But r(qc) = (rq)c, and rq is an integer, so it follows from Definition 0.12 that c divides
a. �

7



8 Chapter 0. Getting started

. Exercise 0.16
Let a,b,d ∈ Z. Suppose that d divides a and d divides b. Given integers u and v, prove
that d divides au+bv. C

Some familiar concepts, such as evenness and oddness, can be characterised in terms of
divisibility.

F Definition 0.17
An integer n is even if it is divisible by 2; otherwise, n is odd.

It is not just interesting to know when one integer does divide another; however, proving
that one integer doesn’t divide another is much harder. Indeed, to prove that an integer b
does not divide an integer a, we must prove that a 6= qb for any integer q at all. We will
look at methods for doing this in Chapter 1; these methods use the following extremely
important result, which will underlie all of Chapter 5.

C Theorem 0.18 (Division theorem, to be repeated in Theorem 5.1.1)
Let a,b ∈ Z with b 6= 0. There is exactly one way to write

a = qb+ r

such that q and r are integers, and 06 r < b (if b > 0) or 06 r <−b (if b < 0).

The number q in Theorem 0.18 is called the quotient of a when divided by b, and the
number r is called the remainder.

0 Example 0.19
The number 12 leaves a remainder of 2 when divided by 5, since 12 = 2 ·5+2. C

Here’s a slightly more involved example.

C Proposition 0.20
Suppose an integer a leaves a remainder of r when divided by an integer b, and that r > 0.
Then −a leaves a remainder of b− r when divided by b.

Proof
Suppose a leaves a remainder of r when divided by b. Then

a = qb+ r

for some integer q. A bit of algebra yields

−a =−qb− r =−qb− r+(b−b) =−(q+1)b+(b− r)

Since 0 < r < b, we have 0 < b− r < b. Hence −(q+ 1) is the quotient of −a when
divided by b, and b− r is the remainder. �

. Exercise 0.21
Prove that if an integer a leaves a remainder of r when divided by an integer b, then a
leaves a remainder of r when divided by −b. C

8
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We will finish this part on division of integers by connecting it with the material on num-
ber bases—we can use the division theorem (Theorem 0.18) to find the base-b expansion
of a given natural number. It is based on the following observation: the natural number n
whose base-b expansion is drdr−1 · · ·d1d0 is equal to

d0 +b(d1 +b(d2 + · · ·+b(dr−1 +bdr) · · ·))
Moreover, 0 6 di < b for all i. In particular n leaves a remainder of d0 when divided by
b. Hence

n−d0

b
= d1 +d2b+ · · ·+drbr−1

The base-b expansion of n−d0
b is therefore

drdr−1 · · ·d1

In other words, the remainder of n when divided by b is the last base-b digit of n, and
then subtracting this number from n and dividing the result by b truncates the final digit.
Repeating this process gives us d1, and then d2, and so on, until we end up with 0.

This suggests the following algorithm for computing the base-b expansion of a number
n:

• Step 1. Let d0 be the remainder when n is divided by b, and let n0 = n−d0
b be the

quotient. Fix i = 0.

• Step 2. Suppose ni and di have been defined. If ni = 0, then proceed to Step 3.
Otherwise, define di+1 to be the remainder when ni is divided by b, and define ni+1 =
ni−di+1

b . Increment i, and repeat Step 2.

• Step 3. The base-b expansion of n, is

didi−1 · · ·d0

0 Example 0.22
We compute the base-17 expansion of 15213, using the letters A–G to represent the
numbers 10 through 16.

• 15213 = 894 ·17+15, so d0 = 15 = F and n0 = 894.

• 894 = 52 ·17+10, so d1 = 10 = A and n1 = 52.

• 52 = 3 ·17+1, so d2 = 1 and n2 = 3.

• 3 = 0 ·17+3, so d3 = 3 and n3 = 0.

• The base-17 expansion of 15213 is therefore 31AF.

A quick verification gives

31AF(17) = 3 ·173 +1 ·172 +10 ·17+15 = 15213

as desired. C

. Exercise 0.23
Find the base-17 expansion of 408735787 and the base-36 expansion of 1442151747.

C

9



10 Chapter 0. Getting started

Rational numbers (Q)

Bored of eating apples and bananas, I buy a pizza which is divided into eight slices. A
friend and I decide to share the pizza. I don’t have much of an appetite, so I eat three
slices and my friend eats five. Unfortunately, we cannot represent the proportion of the
pizza each of us has eaten using natural numbers or integers. However, we’re not far off:
we can count the number of equal parts the pizza was split into, and of those parts, we
can count how many we had. On the number line, this could be represented by splitting
the unit line segment from 0 to 1 into eight equal pieces, and proceeding from there. This
kind of procedure gives rise to the rational numbers.

F Definition 0.24
The rational numbers are represented by the points at the number line which can be
obtained by dividing any of the unit line segments between integers into an equal number
of parts.

−5 −4 −3 −2 −1 0 1 2 3 4 5

The rational numbers are those of the form a
b , where a,b ∈ Z and b 6= 0. We write Q

(LATEX code: \mathbb{Q}) for the set of all rational numbers; thus, the notation ‘q ∈Q’
means that q is a rational number.

The rational numbers are a very important example of a type of algebraic structure known
as a field—they are particularly central to algebraic number theory and algebraic geo-
metry.

Real numbers (R)

Quantity and change can be measured in the abstract using real numbers.

F Definition 0.25
The real numbers are the points on the number line. We write R (LATEX code:
\mathbb{R}) for the set of all real numbers; thus, the notation ‘a ∈ R’ means that a
is a real number.

The real numbers are central to real analysis, a branch of mathematics introduced in
Chapter 7. They turn the rationals into a continuum by ‘filling in the gaps’—specifically,
they have the property of completeness, meaning that if a quantity can be approximated
with arbitrary precision by real numbers, then that quantity is itself a real number.

We can define the basic arithmetic operations (addition, subtraction, multiplication and
division) on the real numbers, and a notion of ordering of the real numbers, in terms of
the infinite number line.

10
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• Ordering. A real number a is less than a real number b, written a < b, if a lies to the
left of b on the number line. The usual conventions for the symbols 6 (LATEX code:
\le), > and > (LATEX code: \ge) apply, for instance ‘a 6 b’ means that either a < b
or a = b.

• Addition. Suppose we want to add a real number a to a real number b. To do this,
we translate a by b units to the right—if b < 0 then this amounts to translating a by
an equivalent number of units to the left. Concretely, take two copies of the number
line, one above the other, with the same choice of unit length; move the 0 of the lower
number line beneath the point a of the upper number line. Then a+b is the point on
the upper number line lying above the point b of the lower number line.

Here is an illustration of the fact that (−3)+5 = 2:

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

• Multiplication. This one is fun. Suppose we want to multiply a real number a by a
real number b. To do this, we scale the number line, and perhaps reflect it. Concretely,
take two copies of the number line, one above the other; align the 0 points on both
number lines, and stretch the lower number line evenly until the point 1 on the lower
number line is below the point a on the upper number line—note that if a < 0 then the
number line must be reflected in order for this to happen. Then a ·b is the point on the
upper number line lying above b on the lower number line.

Here is an illustration of the fact that 5 ·4 = 20.

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4

and here is an illustration of the fact that (−5) ·4 =−20:

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

01234

. Exercise 0.26
Interpret the operations of subtraction and division as geometric transformations of the
real number line. C

We will take for granted the arithmetic properties of the real numbers in this chapter,
waiting until Section 7.1 to sink our teeth into the details. For example, we will take for
granted the basic properties of rational numbers, for instance

a
b
+

c
d
=

ad +bc
bd

and
a
b
· c

d
=

ac
bd

11
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Rational and irrational numbers

Before we can talk about irrational numbers, we should say what they are.

F Definition 0.27
An irrational number is a real number that is not rational.

Unlike N,Z,Q,R,C, there is no standard single letter expressing the irrational numbers.
However, by the end of Section 2.1, we will be able to write the set of irrational numbers
as R\Q.

Note in particular that ‘irrational’ does not simply mean ‘not rational’—that would imply
that all complex numbers which are not real are irrational—rather, the term ‘irrational’
means ‘real and not rational’.

Proving that a real number is irrational is not particularly easy. We will get our foot
in the door by allowing ourselves to assume the following result, which is restated and
proved in Proposition 3.3.12.

C Proposition 0.28
The real number

√
2 is irrational.

We can use the fact that
√

2 is irrational to prove some facts about the relationship
between rational numbers and irrational numbers.

C Proposition 0.29
Let a and b be irrational numbers. It is possible that ab be rational.

Proof
Let a = b =

√
2. Then a and b are irrational, and ab = 2 = 2

1 , which is rational. �

. Exercise 0.30
Let r be a rational number and let a be an irrational number. Prove that it is possible that
ra be rational, and it is possible that ra be irrational. C

Complex numbers (C)

We have seen that multiplication by real numbers corresponds with scaling and reflection
of the number line—scaling alone when the multiplicand is positive, and scaling with
reflection when it is negative. We could alternatively interpret this reflection as a rotation
by half a turn, since the effect on the number line is the same. You might then wonder
what happens if we rotate by arbitrary angles, rather than only half turns.

What we end up with is a plane of numbers, not merely a line—see Figure 1. Moreover, it
happens that the rules that we expect arithmetic operations to satisfy still hold—addition
corresponds with translation, and multiplication corresponds with scaling and rotation.
This resulting number set is that of the complex numbers.

12
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F Definition 0.31
The complex numbers are those obtained by the non-negative real numbers upon rota-
tion by any angle about the point 0. We write C (LATEX code: \mathbb{C}) for the set of
all complex numbers; thus, the notation ‘z ∈ C’ means that z is a complex number.

There is a particularly important complex number, i, which is the point in the complex
plane exactly one unit above 0—this is illustrated in Figure 1. Multiplication by i has
the effect of rotating the plane by a quarter turn anticlockwise. In particular, we have
i2 = i · i = −1; the complex numbers have the astonishing property that square roots of
all complex numbers exist (including all the real numbers).

In fact, every complex number can be written in the form a+ bi, where a,b ∈ R; this
number corresponds with the point on the complex plane obtained by moving a units to
the right and b units up, reversing directions as usual if a or b is negative. Arithmetic on
the complex numbers works just as with the real numbers; in particular, using the fact
that i2 =−1, we obtain

(a+bi)+(c+di) = (a+c)+(b+d)i and (a+bi) ·(c+di) = (ac−bd)+(ad+bc)i

We will discuss complex numbers further in the portion of this chapter on polynomials
below.

Polynomials

The integers, rational numbers, real numbers and complex numbers are all examples of
rings, which means that they come equipped with nicely behaving notions of addition,
subtraction and multiplication.

F Definition 0.32
Let A be one Z, Q, R or C. A (univariate) polynomial over A in the indeterminate x is
an expression of the form

a0 +a1x+ · · ·+anxn

where n ∈ N and each ak ∈ A. The numbers ak are called the coefficients of the polyno-
mial. If not all coefficients are zero, the largest value of k for which ak 6= 0 is called the
degree of the polynomial. By convention, the degree of the polynomial 0 is −∞.

Polynomials of degree 1, 2, 3, 4 and 5 are respectively called linear, quadratic, cubic,
quartic and quintic polynomials.

0 Example 0.33
The following expressions are all polynomials:

3 2x−1 (3+ i)x2− x

Their degrees are 0, 1 and 2, respectively. The first two are polynomials over Z, and the
third is a polynomial over C. C

13
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-5 -4 -3 -2 -1 0 1 2 3 4 5

i

2i

3i

4i

5i

-2i

-3i

-4i

-5i

-i

Figure 1: Illustration of the complex plane, with some points labelled.
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. Exercise 0.34
Write down a polynomial of degree 4 over R which is not a polynomial over Q. C

F Notation 0.35
Instead of writing out the coefficients of a polynomial each time, we may write something
like p(x) or q(x). The ‘(x)’ indicates that x is the indeterminate of the polynomial. If α

is a number[a] and p(x) is a polynomial in indeterminate x, we write p(α) for the result
of substituting α for x in the expression p(x).

Note that, if A is any of the sets N, Z, Q, R or C, and p(x) is a polynomial over A, then
p(α) ∈ A for all α ∈ A.

0 Example 0.36
Let p(x) = x3− 3x2 + 3x− 1. Then p(x) is a polynomial over Z with indeterminate x.
For any integer α , the value p(α) will also be an integer. For example

p(0) = 03−3 ·02 +3 ·0−1 =−1 and p(3) = 33−3 ·32 +3 ·3−1 = 8

C

F Definition 0.37
Let p(x) be a polynomial. A root of p(x) is a complex number α such that p(α) = 0.

The quadratic formula (Theorem 1.1.31) tells us that the roots of the polynomial x2 +
ax+b, where a,b ∈ C, are precisely the complex numbers

−a+
√

a2−4b
2

and
−a−

√
a2−4b

2

Note our avoidance of the symbol ‘±’, which is commonly found in discussions of quad-
ratic polynomials. The symbol ‘±’ is dangerous because it may suppress the word ‘and’
or the word ‘or’, depending on context—this kind of ambiguity is not something that we
will want to deal with when discussing the logical structure of a proposition in Chapter 1!

0 Example 0.38
Let p(x) = x2−2x+5. The quadratic formula tells us that the roots of p are

2+
√

4−4 ·5
2

= 1+
√
−4 = 1+2i and

2−
√

4−4 ·5
2

= 1−
√
−4 = 1−2i

The numbers 1 + 2i and 1− 2i are related in that their real parts are equal and their
imaginary parts differ only by a sign. Exercise 0.39 generalises this observation. C

. Exercise 0.39
Let α = a+ bi be a complex number, where a,b ∈ R. Prove that α is the root of a
quadratic polynomial over R, and find the other root of this polynomial. C

[a]When dealing with polynomials, we will typically reserve the letter x for the indeterminate variable, and
use the Greek letters α,β ,γ (LATEX code: \alpha, \beta, \gamma) for numbers to be substituted into a
polynomial.

15
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The following exercise proves the well-known result which classifies the number of real
roots of a polynomial over R in terms of its coefficients.

. Exercise 0.40
Let a,b ∈C and let p(x) = x2+ax+b. The value ∆ = a2−4b is called the discriminant
of p. Prove that p has two roots if ∆ 6= 0 and one root if ∆ = 0. Moreover, if a,b ∈ R,
prove that p has no real roots if ∆ < 0, one real root if ∆ = 0, and two real roots if
∆ > 0. C

0 Example 0.41
Consider the polynomial x2− 2x+ 5. Its discriminant is equal to (−2)2− 4 · 5 = −16,
which is negative. Exercise 0.40 tells us that it has two roots, neither of which are real.
This was verified by Example 0.38, where we found that the roots of x2−2x+5 are 1+2i
and 1−2i.

Now consider the polynomial x2−2x−3. Its discriminant is equal to (−2)2−4 · (−3) =
16, which is positive. Exercise 0.40 tells us that it has two roots, both of which are real;
and indeed

x2−2x−3 = (x+1)(x−3)

so the roots of x2−2x−3 are −1 and 3. C

16
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Section 0.E

Chapter 0 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

0.1. The video-sharing website YouTube assigns to each video a unique identifier, which
is a string of 11 characters from the set

{A,B, . . . ,Z,a,b, . . . ,z,0,1,2,3,4,5,6,7,8,9,-,_}

This string is actually a natural number expressed in base-64, where the characters in
the above set represent the numbers 0 through 63, in the same order—thus C represents
2, c represents 28, 3 represents 55, and _ represents 63. According to this schema,
find the natural number whose base-64 expansion is dQw4w9WgXcQ, and find the base-64
expansion of the natural number 7159047702620056984.

0.2. Let a,b,c,d ∈ Z. Under what conditions is (a+b
√

2)(c+d
√

2) an integer?

0.3. Suppose an integer m leaves a remainder of i when divided by 3, and an integer m
leaves a remainder of j when divided by 3, where 06 i, j < 3. Prove that m+n and i+ j
leave the same remainder when divided by 3.

0.4. What are the possible integers of n2 when divided by 3, where n ∈ Z?

F Definition 0.E.1
A set X is closed under an operation � if, whenever a and b are elements of X , a�b is
also an element of X .

In Questions 0.5 to 0.11, determine which of the number sets N, Z, Q and R are closed
under the operation � defined in the question.

0.5. a�b = a+b

0.6. a�b = a−b

0.7. a�b = (a−b)(a+b)

0.8. a�b = (a−1)(b−1)+2(a+b)

0.9. a�b =
a

b2 +1

0.10. a�b =
a√

b2 +1

0.11. a�b =

{
ab if b > 0
0 if b 6∈Q

F Definition 0.E.2
A complex number α is algebraic if p(α) = 0 for some nonzero polynomial p(x) over
Q.

0.12. Let x be a rational number. Prove that x is an algebraic number.

0.13. Prove that
√

2 is an algebraic number.

17
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0.14. Prove that
√

2+
√

3 is an algebraic number.

0.15. Prove that x+ yi is an algebraic number, where x and y are any two rational num-
bers.

18
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Core concepts
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Chapter 1

Logical structure

The goal of this chapter is to develop a methodical way of breaking up a proposition
into smaller components and seeing how these components fit together—this is called
the logical structure of a proposition. The logical structure of a proposition is very in-
formative: it tells us what we need to do in order to prove it, what we need to write in
order to communicate our proof, and how to explore the consequences of the proposition
after it has been proved.

logical structure of a
proposition

strategies for proving
the proposition

structure and wording of
the proof

consequences of
the proposition

Sections 1.1 and 1.2 are dedicated to developing a system of symbolic logic for reasoning
about propositions. We will be able to represent a proposition using a string of variables
and symbols, and this expression will guide how we can prove the proposition and ex-
plore its consequences. In Section 1.3 we will develop techniques for manipulating these
logical expressions algebraically—this, in turn, will yield new proof techniques (some
have fancy names like ‘proof by contraposition’, but some do not).

Exploring how the logical structure of a proposition informs the structure and wording
of its proof is the content of Appendix A.2.

21



22 Chapter 1. Logical structure

Section 1.1

Propositional logic

Every mathematical proof is written in the context of certain assumptions being made,
and certain goals to be achieved.

• Assumptions are the propositions which are known to be true, or which we are assum-
ing to be true for the purposes of proving something. They include theorems that have
already been proved, prior knowledge which is assumed of the reader, and assumptions
which are explicitly made using words like ‘suppose’ or ‘assume’.

• Goals are the propositions we are trying to prove in order to complete the proof of a
result, or perhaps just a step in the proof.

With every phrase we write, our assumptions and goals change. This is perhaps best
illustrated by example. In Example 1.1.1 below, we will examine the proof of Proposi-
tion 0.15 in detail, so that we can see how the words we wrote affected the assumptions
and goals at each stage in the proof. We will indicate our assumptions and goals at any
given stage using tables—the assumptions listed will only be those assumptions which
are made explicitly; prior knowledge and previously proved theorems will be left impli-
cit.

0 Example 1.1.1
The statement of Proposition 0.15 was as follows:

Let a,b,c ∈ Z. If c divides b and b divides a, then c divides a.

The set-up of the proposition instantly gives us our initial assumptions and goals:

Assumptions Goals

a,b,c ∈ Z If c divides b and b divides a, then c
divides a

We will now proceed through the proof, line by line, to see what effect the words we
wrote had on the assumptions and goals.

Since our goal was an expression of the form ‘if. . . then. . . ’, it made sense to start by
assuming the ‘if’ statement, and using that assumption to prove the ‘then’ statement. As
such, the first thing we wrote in our proof was:

Suppose that c divides b and b divides a.

Our updated assumptions and goals are reflected in the following table.

22
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Assumptions Goals
a,b,c ∈ R c divides a
c divides b
b divides a

Our next step in the proof was to unpack the definitions of ‘c divides b’ and ‘b divides
a’, giving us more to work with.

Suppose that c divides b and b divides a. By Definition 0.12, it follows that

b = qc and a = rb

for some integers q and r.

This introduces two new variables q,r and allows us to replace the assumptions ‘c divides
b’ and ‘b divides a’ with their definitions.

Assumptions Goals
a,b,c,q,r ∈ Z c divides a

b = qc
a = rb

At this point we have pretty much exhausted all of the assumptions we can make, and
so our attention turns towards the goal—that is, we must prove that c divides a. At this
point, it helps to ‘work backwards’ by unpacking the goal: what does it mean for c to
divide a? Well, by Definition 0.12, we need to prove that a is equal to some integer
multiplied by c—this will be reflected in the following table of assumptions and goals.

Since we are now trying to express a in terms of c, it makes sense to use the equations
we have relating a with b, and b with c, to relate a with c.

Suppose that c divides b and b divides a. By Definition 0.12, it follows that

b = qc and a = rb

for some integers q and r. Using the first equation, we may substitute qc for b in
the second equation, to obtain

a = r(qc)

We are now very close, as indicated in the following table.

Assumptions Goals
a,b,c,q,r ∈ Z a = [some integer] · c

b = qc
a = rb

a = r(qc)

23
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Our final step was to observe that the goal has at last been achieved:

Suppose that c divides b and b divides a. By Definition 0.12, it follows that

b = qc and a = rb

for some integers q and r. Using the first equation, we may substitute qc for b in
the second equation, to obtain

a = r(qc)

But r(qc) = (rq)c, and rq is an integer,

Assumptions Goals
a,b,c,q,r ∈ Z

b = qc
a = rb

a = r(qc)
a = (rq)c

rq ∈ Z

Now that there is nothing left to prove, it is helpful to reiterate that point so that the reader
has some closure on the matter.

Suppose that c divides b and b divides a. By Definition 0.12, it follows that

b = qc and a = rb

for some integers q and r. Using the first equation, we may substitute qc for b in
the second equation, to obtain

a = r(qc)

But r(qc) = (rq)c, and rq is an integer, so it follows from Definition 0.12 that c
divides a.

C

Symbolic logic

Consider again the proposition that we proved in Proposition 0.15 (for given integers
a,b,c):

If c divides b and b divides a, then c divides a.

The three statements ‘c divides b’, ‘b divides a’ and ‘c divides a’ are all propositions in
their own right, despite the fact that they all appear inside a more complex proposition.
We can examine the logical structure of the proposition by replacing these simpler pro-
positions with symbols, called propositional variables. Writing P to represent ‘c divides
b’, Q to represent ‘b divides a’ and R to represent ‘c divides a’, we obtain:

24



Section 1.1. Propositional logic 25

If P and Q, then R.

Breaking down the proposition in this way makes it clear that a feasible assume P and
Q, and then derive R from these assumptions—this is exactly what we did in the proof,
which we examined in great detail in Example 1.1.1. But importantly, it suggests that the
same proof strategy might work for other propositions which are also of the form ‘if P
and Q, then R’, such as the following proposition (for a given integer n):

If n > 2 and n is prime, then n is odd.

Observe that the simpler propositions are joined together to form a more complex pro-
position using language, namely the word ‘and’ and the construction ‘if. . . then. . . ’—we
will represent these constructions symbolically using logical operators, which will be
introduced in Definition 1.1.3.

Zooming in even more closely, we can use Definition 0.12 to observe that ‘c divides b’
really means ‘b = qc for some q ∈ Z’. The expression ‘for some q ∈ Z’ introduces a new
variable q, which we must deal with appropriately in our proof. Words which we attach to
variables in our proofs—such as ‘any’, ‘exists’, ‘all’, ‘some’, ‘unique’ and ‘only’—will
be represented symbolically using quantifiers, which we will study in Section 1.2.

By breaking down a complex proposition into simpler statements which are connected
together using logical operators and quantifiers, we can more precisely identify what
assumptions we can make at any given stage in a proof of the proposition, and what steps
are needed in order to finish the proof.

Propositional formulae

We begin our development of symbolic logic with some definitions to fix our termino-
logy.

F Definition 1.1.2
A propositional variable is a symbol that represents a proposition. Propositional vari-
ables may be assigned truth values (‘true’ or ‘false’).

We will typically use the lower-case letters p, q, r and s as our propositional variables.

We will be able to form more complex expressions representing propositions by connect-
ing together simpler ones using logical operators such as ∧ (which represents ‘and’), ∨
(which represents ‘or’), ⇒ (which represents ‘if. . . then. . . ’) and ¬ (which represents
‘not’).

The definition of the notions of logical operator and propositional formula given below
is a little bit difficult to digest, so it is best understood by considering examples of pro-
positional formulae and instances of logical operators. Fortunately we will see plenty of
these, since they are the central objects of study for the rest of this section.
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26 Chapter 1. Logical structure

F Definition 1.1.3
A propositional formula is an expression that is either a propositional variable, or is
built up from simpler propositional formulae (‘subformulae’) using a logical operator.
In the latter case, the truth value of the propositional formula is determined by the truth
values of the subformulae according to the rules of the logical operator.

On first sight, Definition 1.1.3 seems circular—it defines the term ‘propositional formula’
in terms of propositional formulae! But in fact it is not circular; it is an example of a
recursive definition (we avoid circularity with the word ‘simpler’). To illustrate, consider
the following example of a propositional formula:

(p∧q)⇒ r

This expression represents a proposition of the form ‘if p and q, then r’, where p,q,r are
themselves propositions. It is built from the subformulae p∧ q and r using the logical
operator ⇒, and p∧ q is itself built up from the subformulae p and q using the logical
operator ∧.

The truth value of (p∧ q)⇒ r is then determined by the truth values of the constituent
propositional variables (p, q and r) according to the rules for the logical operators ∧ and
⇒.

If this all seems a bit abstract, that is because it is abstract, and you are forgiven if it makes
no sense to you yet. From this point onwards, we will only study particular instances of
logical operators, which will make it all much easier to understand.

Conjunction (‘and’, ∧)

Conjunction is the logical operator which makes precise what we mean when we say
‘and’.

F Definition 1.1.4
The conjunction operator is the logical operator ∧ (LATEX code: \wedge), defined ac-
cording to the following rules:

• (∧I) If p is true and q is true, then p∧q is true;

• (∧E1) If p∧q is true, then p is true;

• (∧E2) If p∧q is true, then q is true.

The expression p∧q represents ‘p and q’.

It is not always obvious when conjunction is being used; sometimes it sneaks in without
the word ‘and’ ever being mentioned! Be on the look-out for occasions like this, such as
in the following exercise.
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0 Example 1.1.5
We can express the proposition ‘7 is a prime factor of 28’ in the form p∧q, by letting p
represent the proposition ‘7 is prime’ and letting q represent the proposition ‘7 divides
28’. C

. Exercise 1.1.6
Express the proposition ‘John is a mathematician who lives in Pittsburgh’ in the form
p∧q, for propositions p and q. C

The rules in Definition 1.1.4 are examples of rules of inference—they tell us how to
deduce (or ‘infer’) the truth of one propositional formula from the truth of other proposi-
tional formulae. In particular, rules of inference never directly tell us when a proposition
is false—in order to prove something is false, we will prove its negation is true (see
Definition 1.1.37).

Rules of inference tell us how to use the logical structure of propositions in proofs:

• The rule (∧I) is an introduction rule, meaning that it tells us how to prove a goal of the
form p∧q—indeed, if we want to prove that p∧q is true, (∧I) tells us that it suffices
to prove that p is true and prove that q is true.

• The rules (∧E1) and (∧E2) are elimination rules, meaning that they tell us how to use
an assumption of the form p∧q—indeed, if we are assuming that p∧q is true, we are
then free to use the fact that p is true and the fact that q is true.

Each logical operator will come equipped with some introduction and/or elimination
rules, which tell us how to prove goals or use assumptions which include the logical
operator in question. It is in this way that the logical structure of a proposition informs
proof strategies, like the following:

v Strategy 1.1.7 (Proving conjunctions)
A proof of the proposition p∧q can be obtained by tying together two proofs, one being
a proof that p is true and one being a proof that q is true.

0 Example 1.1.8
Suppose we are required to prove that 7 is a prime factor of 28. In Example 1.1.5 we
expressed ‘7 is a prime factor of 28’ as the conjunction of the propositions ‘7 is prime’
and ‘7 divides 28’, and so Strategy 1.1.7 breaks down the proof into two steps: first prove
that 7 is prime, and then prove that 7 divides 28. C

Much like Strategy 1.1.7 was informed by the introduction rule for ∧, the elimination
rules inform how we may make use of an assumption involving a conjunction.

v Strategy 1.1.9 (Assuming conjunctions)
If an assumption in a proof has the form p∧ q, then we may assume p and assume q in
the proof.

0 Example 1.1.10
Suppose that, somewhere in the process of proving a proposition, we arrive at the fact
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28 Chapter 1. Logical structure

that 7 is a prime factor of 28. Strategy 1.1.9 then allows us to use the separate facts that
7 is prime and that 7 divides 28. C

Strategies 1.1.7 and 1.1.9 seem almost obvious. To an extent they are obvious, and that
is why we are stating them first. But the real reason we are going through the process
of precisely defining logical operators, their introduction and elimination rules, and the
corresponding proof strategies, is that when you are in the middle of the proof of a com-
plicated result, it is all too easy to lose track of what you have already proved and what
remains to be proved. Keeping track of the assumptions and goals in a proof, and under-
standing what must be done in order to complete the proof, is a difficult task.

To avoid drawing this process out too long, we need a compact way of expressing rules of
inference that allows us to simply read off corresponding proof strategies. We could use
tables of assumptions and goals like in Example 1.1.1, but this quickly becomes clunky—
indeed, even the very simple conjunction introduction rule (∧I) doesn’t look very nice in
this format:

Assumptions Goals
... p∧q
...

 

Assumptions Goals
... p
... q

Instead, we will represent rules of inference in the style of natural deduction. In this
style, we write the premises p1, p2, . . . , pk of a rule above a line, with a single conclusion
q below the line, representing the assertion that the truth of a proposition q follows from
the truth of (all of) the premises p1, p2, . . . , pk.

p1 p2 · · · pk
q

For instance, the introduction and elimination rules for conjunction can be expressed
concisely follows:

p q
(∧I)p∧q

p∧q
(∧E1)p

p∧q
(∧E2)q

In addition to its clean and compact nature, this way of writing rules of inference is useful
because we can combine them into proof trees in order to see how to prove more com-
plicated propositions. For example, consider the following proof tree, which combines
two instances of the conjunction introduction rule.

p q
p∧q r
(p∧q)∧ r
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From this proof tree, we obtain a strategy for proving a proposition of the form (p∧q)∧r.
Namely, first prove p and prove q, to conclude p∧ q; and then prove r, to conclude
(p∧ q)∧ r. This illustrates that the logical structure of a proposition informs how we
may structure a proof of the proposition.

. Exercise 1.1.11
Write a proof tree whose conclusion is the propositional formula (p∧q)∧ (r∧ s), where
p,q,r,s are propositional variables. Express ‘2 is an even prime number and 3 is an odd
prime number’ in the form (p∧ q)∧ (r∧ s), for appropriate propositions p, q, r and s,
and describe how your proof tree suggests what a proof might look like. C

Disjunction (‘or’, ∨)

F Definition 1.1.12
The disjunction operator is the logical operator ∨ (LATEX code: \vee), defined according
to the following rules:

• (∨I1) If p is true, then p∨q is true;

• (∨I2) If q is true, then p∨q is true;

• (∨E) If p∨q is true, and if r can be derived from p and from q, then r is true.

The expression p∨q represents ‘p or q’.

The introduction and elimination rules for disjunction are represented diagramatically as
follows.

p
(∨I1)p∨q

q
(∨I2)p∨q

p∨q

[p]

 

r

[q]

 

r
(∨E)r

We will discuss what the notation [p] r and [q] r means momentarily. First, we
zoom in on how the disjunction introduction rules inform proofs of propositions of the
form ‘p or q’.

v Strategy 1.1.13 (Proving disjunctions)
In order to prove a proposition of the form p∨q, it suffices to prove just one of p or q.

0 Example 1.1.14
Suppose we want prove that 8192 is not divisible by 3. We know by the division theorem
(Theorem 0.18) that an integer is not divisible by 3 if and only if it leaves a remainder of
1 or 2 when divided by 3, and so it suffices to prove the following:

8192 leaves a remainder of 1
when divided by 3 ∨ 8192 leaves a remainder of 2

when divided by 3
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A quick computation reveals that 8192 = 2730×3+2, so that 8192 leaves a remainder
of 2 when divided by 3. By Strategy 1.1.13, the proof is now complete, since the full
disjunction follows by (∨I2). C

0 Example 1.1.15
Let p,q,r,s be propositional variables. The propositional formula (p∨ q)∧ (r∨ s) rep-
resents ‘p or q, and r or s’. What follows are two examples of truth trees for this propos-
itional formula.

p
(∨I1)p∨q

r (∨I1)r∨ s
(∧I)

(p∨q)∧ (r∨ s)

q
(∨I2)p∨q

s (∨I2)r∨ s
(∧I)

(p∨q)∧ (r∨ s)

The proof tree on the left suggests the following proof strategy for (p∨ q)∧ (r ∨ s).
First prove p, and deduce p∨ q; then prove r, and deduce r ∨ s; and finally deduce
(p∨q)∧ (r∨ s). The proof tree on the right suggests a different strategy, where p∨q is
deduced by proving q instead of p, and r∨ s is deduced by proving s instead of r.

Selecting which (if any) of these to use in a proof might depend on what we are trying
to prove. For example, for a fixed natural number n, let p represent ‘n is even’, let q
represent ‘n is odd’, let r represent ‘n > 2’ and let s represent ‘n is a perfect square’.
Proving (p∨q)∧ (r∨ s) when n = 2 would be most easily done using the left-hand proof
tree above, since p and r are evidently true when n = 2. However, the second proof tree
would be more appropriate for proving (p∨q)∧ (r∨ s) when n = 1. C

v Aside
If you haven’t already mixed up ∧ and ∨, you probably will soon, so here’s a way of
remembering which is which:

fish n chips
If you forget whether it’s ∧ or ∨ that means ‘and’, just write it in place of the ‘n’ in ‘fish
n chips’:

fish ∧ chips fish ∨ chips

Clearly the first looks more correct, so ∧ means ‘and’. If you don’t eat fish (or chips),
then worry not, as this mnemonic can be modified to accommodate a wide variety of
dietary restrictions; for instance ‘mac n cheese’ or ‘quinoa n kale’ or, for the meat lovers,
‘ribs n brisket’. C

Recall the diagrammatic statement of the disjunction elimination rule:

p∨q

[p]

 

r

[q]

 

r
(∨E)r

The curious notation [p] r indicates that p is a temporary assumption. In the part of
the proof corresponding to [p] r, we would assume that p is true and derive r from that
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assumption, and remove the assumption that p is true from that point onwards. Likewise
for [q] r.

The proof strategy obtained from the disjunction elimination rule is called proof by cases.

v Strategy 1.1.16 (Assuming disjunctions—proof by cases)
If an assumption in a proof has the form p∨ q, then we may derive a proposition r by
splitting into two cases: first, derive r from the temporary assumption that p is true, and
then derive r from the assumption that q is true.

The following example illustrates how Strategies 1.1.13 and 1.1.16 can be used together
in a proof.

0 Example 1.1.17
Let n be a positive proper factor of 4, and suppose we want to prove that n is either even
or a perfect square.

• Our assumption that n is a positive proper factor of 4 can be expressed as the disjunc-
tion n = 1∨n = 2.

• Our goal is to prove the disjunction ‘n is even∨n is a perfect square’.

According to Strategy 1.1.9, we split into two cases, one in which n = 1 and one in
which n = 2. In each case, we must derive ‘n is even∨ n is a perfect square’, for which
it suffices by Strategy 1.1.13 to derive either that n is even or that n is a perfect square.
Thus a proof might look something like this:

Since n is a positive proper factor of 4, either n = 1 or n = 2.

• Case 1. Suppose n = 1. Then since 12 = 1 we have n = 12, so that n is a perfect
square.

• Case 2. Suppose n = 2. Then since 2 = 2×1, we have that n is even.

Hence n is either even or a perfect square. C

Notice that in both Case 1 and Case 2, we did not explicitly mention that we had proved
that ‘n is even∨ n is a perfect square’, leaving that deducgion to the reader—we only
mentioned it after the proofs in each case were complete. C

The proof of Proposition 1.1.18 below splits into three cases, rather than just two.

C Proposition 1.1.18
Let n ∈ Z. Then n2 leaves a remainder of 0 or 1 when divided by 3.

Proof
Let n ∈ Z. By the division theorem (Theorem 0.18), one of the following must be true
for some k ∈ Z:

n = 3k or n = 3k+1 or n = 3k+2
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32 Chapter 1. Logical structure

• Suppose n = 3k. Then
n2 = (3k)2 = 9k2 = 3 · (3k2)

So n2 leaves a remainder of 0 when divided by 3.

• Suppose n = 3k+1. Then

n2 = (3k+1)2 = 9k2 +6k+1 = 3(3k2 +2k)+1

So n2 leaves a remainder of 1 when divided by 3.

• Suppose n = 3k+2. Then

n2 = (3k+2)2 = 9k2 +12k+4 = 3(3k2 +4k+1)+1

So n2 leaves a remainder of 1 when divided by 3.

In all cases, n2 leaves a remainder of 0 or 1 when divided by 3. �

Note that in the proof of Proposition 1.1.18, unlike in Example 1.1.17, we did not ex-
plictly use the word ‘case’, even though we were using proof by cases. Whether or not
to make your proof strategies explicit is up to you—discussion of this kind of matter can
be found in Appendix A.2.

When completing the following exercises, try to keep track of exactly where you use the
introduction and elimination rules that we have seen so far.

. Exercise 1.1.19
Let n be an integer. Prove that n2 leaves a remainder of 0, 1 or 4 when divided by 5. C

. Exercise 1.1.20
Let a,b ∈ R and suppose a2− 4b 6= 0. Let α and β be the (distinct) roots of the poly-
onomial x2 + ax+ b. Prove that there is a real number c such that either α −β = c or
α−β = ci. C

Implication (‘if. . . then. . . ’,⇒)

F Definition 1.1.21
The implication operator is the logical operator⇒ (LATEX code: \Rightarrow), defined
according to the following rules:

• (⇒I) If q can be derived from the assumption that p is true, then p⇒ q is true;

• (⇒E) If p⇒ q is true and p is true, then q is true.

The expression p⇒ q represents ‘if p, then q’.

[p]

 

q
(⇒I)p⇒ q

p⇒ q p
(⇒E)q
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v Strategy 1.1.22 (Proving implications)
In order to prove a proposition of the form p⇒ q, it suffices to assume that p is true, and
then derive q from that assumption.

The following proposition illustrates how Strategy 1.1.22 can be used in a proof.

C Proposition 1.1.23
Let x and y be real numbers. If x and x+ y are rational, then y is rational.

Proof
Suppose x and x+ y are rational. Then there exist integers a,b,c,d with b,d 6= 0 such
that

x =
a
b

and x+ y =
c
d

It then follows that
y = (x+ y)− x =

c
d
− a

b
=

bc−ad
bd

Since bc−ad and bd are integers, and bd 6= 0, it follows that y is rational. �

The key phrase in the above proof was ‘Suppose x and x+y are rational.’ This introduced
the assumptions x ∈ Q and x+ y ∈ Q, and reduced our goal to that of deriving a proof
that y is rational—this was the content of the rest of the proof.

. Exercise 1.1.24
Let p(x) be a polynomial over C. Prove that if α is a root of p(x), and a ∈C, then α is a
root of (x−a)p(x). C

The elimination rule for implication (⇒E) is more commonly known by the Latin name
modus ponens.

v Strategy 1.1.25 (Assuming implications—modus ponens)
If an assumption in a proof has the form p⇒ q, and p is also assumed to be true, then
we may deduce that q is true.

Strategy 1.1.16 is frequently used to reduce a more complicated goal to a simpler one.
Indeed, if we know that p⇒ q is true, and if p is easy to verify, then it allows us to prove
q by proving p instead.

0 Example 1.1.26
Let f (x) = x2 +ax+b be a polynomial with a,b ∈R, and let ∆ = a2−4b be its discrim-
inant. Part of Exercise 0.40 was to prove that:

(i) If ∆ > 0, then f has two real roots;

(ii) If ∆ = 0, then f has one real root;

(iii) If ∆ < 0, then f has no real roots.
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34 Chapter 1. Logical structure

Given the polynomial f (x) = x2−68+1156, it would be a pain to go through the process
of solving the equation f (x) = 0 in order to determine how many real roots f has. How-
ever, each of the propositions (i), (ii) and (iii) take the form p⇒ q, so Strategy 1.1.25
reduces the problem of finding how many real roots f has to that of evaluating ∆ and
comparing it with 0. And indeed, (−68)2−4×1156 = 0, so the implication (ii) together
with (⇒E) tell us that f has one real root. C

A common task faced by mathematicians is to prove that two conditions are equivalent.
For example, given a polynomial f (x) = x2 + ax + b with a,b ∈ R, we know that if
a2−4b > 0 then f has two real roots, but is it also true that if f has two real roots then
a2−4b > 0? (The answer is ‘yes’.) The relationship between these two implications is
that each is the converse of the other.

F Definition 1.1.27
The converse of a proposition of the form p⇒ q is the proposition q⇒ p.

A quick remark on terminology is pertinent. The following table summarises some com-
mon ways of referring to the propositions ‘p⇒ q’ and ‘q⇒ p’.

p⇒ q q⇒ p
if p, then q if q, then p
p only if q p if q

p is sufficient for q p is necessary for q

We so often encounter the problem of proving both an implication and its converse that
we introduce a new logical operator that represents the conjunction of both.

F Definition 1.1.28
The biconditional operator is the logical operator⇔ (LATEX code: \Leftrightarrow),
defined by declaring p⇔ q to mean (p⇒ q)∧(q⇒ p). The expression p⇔ q represents
‘p if and only if q’.

Many examples of biconditional statements come from solving equations; indeed, to say
that the values α1, . . . ,αn are the solutions to a particular equation is precisely to say that

x is a solution ⇔ x = α1 or x = α2 or · · · or x = αn

0 Example 1.1.29
We find all real solutions x to the equation

√
x−3+

√
x+4 = 7
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Let’s rearrange the equation to find out what the possible solutions may be.
√

x−3+
√

x+4 = 7

⇒ (x−3)+2
√
(x−3)(x+4)+(x+4) = 49 squaring

⇒ 2
√

(x−3)(x+4) = 48−2x rearranging

⇒ 4(x−3)(x+4) = (48−2x)2 squaring

⇒ 4x2 +4x−48 = 2304−192x+4x2 expanding
⇒ 196x = 2352 rearranging
⇒ x = 12 dividing by 196

You might be inclined to stop here. Unfortunately, all we have proved is that, given a
real number x, if x solves the equation

√
x−3+

√
x+4 = 7, then x = 12. This narrows

down the set of possible solutions to just one candidate—but we still need to check the
converse, namely that if x = 12, then x is a solution to the equation.

As such, to finish off the proof, note that
√

12−3+
√

12+4 =
√

9+
√

16 = 3+4 = 7

and so the value x = 12 is indeed a solution to the equation. C

The last step in Example 1.1.29 may have seemed a little bit silly; but Example 1.1.30
demonstrates that proving the converse when solving equations truly is necessary.

0 Example 1.1.30
We find all real solutions x to the equation

x+
√

x = 0

We proceed as before, rearranging the equation to find all possible solutions.

x+
√

x = 0

⇒ x =−√x rearranging

⇒ x2 = x squaring
⇒ x(x−1) = 0 rearranging
⇒ x = 0 or x = 1

Now certainly 0 is a solution to the equation, since

0+
√

0 = 0+0 = 0

However, 1 is not a solution, since

1+
√

1 = 1+1 = 2

Hence it is actually the case that, given a real number x, we have

x+
√

x = 0 ⇔ x = 0

Checking the converse here was vital to our success in solving the equation! C
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A slightly more involved example of a biconditional statement arising from the solution
to an equation—in fact, a class of equations—is the proof of the quadratic formula.

C Theorem 1.1.31 (Quadratic formula)
Let a,b ∈ C. A complex number α is a root of the polynomial x2 +ax+b if and only if

α =
−a+

√
a2−4b

2
or α =

−a−
√

a2−4b
2

Proof
First we prove that if α is a root, then α is one of the values given in the statement of the
proposition. So suppose α be a root of the polynomial x2 +ax+b. Then

α
2 +aα +b = 0

The algebraic technique of ‘completing the square’ tells us that

α
2 +aα =

(
α +

a
2

)2
− a2

4

and hence (
α +

a
2

)2
− a2

4
+b = 0

Rearranging yields (
α +

a
2

)2
=

a2

4
−b =

a2−4b
4

Taking square roots gives

α +
a
2
=

√
a2−4b

2
or α +

a
2
=
−
√

a2−4b
2

and, finally, subtracting a
2 from both sides gives the desired result.

The proof of the converse is Exercise 1.1.32. �

. Exercise 1.1.32
Complete the proof of the quadratic formula. That is, for fixed a,b ∈ C, prove that if

α =
−a+

√
a2−4b

2
or α =

−a−
√

a2−4b
2

then α is a root of the polynomial x2 +ax+b. C

Another class of examples of biconditional propositions arise in finding necessary and
sufficient criteria for an integer n to be divisible by some number—for example, that an
integer is divisible by 10 if and only if its base-10 expansion ends with the digit 0.

0 Example 1.1.33
Let n ∈ N. We will prove that n is divisible by 8 if and only if the number formed of the
last three digits of the base-10 expansion of n is divisible by 8.
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First, we will do some ‘scratch work’. Let drdr−1 . . .d1d0 be the base-10 expansion of n.
Then

n = dr ·10r +dr−1 ·10r−1 + · · ·+d1 ·10+d0

Define
n′ = d2d1d0 and n′′ = n−n′ = drdr−1 . . .d4d3000

Now n−n′ = 1000 ·drdr−1 . . .d4d3 and 1000 = 8 ·125, so it follows that 8 divides n′′.

Our goal is now to prove that 8 divides n if and only if 8 divides n′.

• (⇒) Suppose 8 divides n. Since 8 divides n′′, it follows from Exercise 0.16 that 8
divides an+bn′′ for all a,b ∈ Z. But

n′ = n− (n−n′) = n−n′′ = 1 ·n+(−1) ·n′′

so indeed 8 divides n′, as required.

• (⇐) Suppose 8 divides n′. Since 8 divides n′′, it follows from Exercise 0.16 that 8
divides an′+bn′′ for all a,b ∈ Z. But

n = n′+(n−n′) = n′+n′′ = 1 ·n′+1 ·n′′

so indeed 8 divides n, as required.

C

. Exercise 1.1.34
Prove that a natural number n is divisible by 3 if and only if the sum of its base-10 digits
is divisible by 3. C

Negation (‘not’, ¬)

So far we only officially know how to prove that true propositions are true. The nega-
tion operator makes precise what we mean by ‘not’, which allows us to prove that false
propositions are false.

F Definition 1.1.35
A contradiction is a proposition that is known or assumed to be false. We will use the
symbol ⊥ (LATEX code: \bot) to represent an arbitrary contradiction.

0 Example 1.1.36
Some examples of contradictions include the assertion that 0 = 1, or that

√
2 is rational,

or that the equation x2 =−1 has a solution x ∈ R. C
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F Definition 1.1.37
The negation operator is the logical operator ¬ (LATEX code: \neg), defined according
to the following rules:

• (¬I) If a contradiction can be derived from the assumption that p is true, then ¬p is
true;

• (¬E) If ¬p and p are both true, then a contradiction may be derived.

The expression ¬p represents ‘not p’ (or ‘p is false’).

[p]

 

⊥ (¬I)¬p
¬p p

(¬E)⊥

v Aside
The rules (¬I) and (¬E) closely resemble (⇒I) and (⇒E)—indeed, we could simply
define ¬p to mean ‘p⇒⊥’, where ⊥ represents an arbitrary contradiction, but it will be
easier later on to have a primitive notion of negation. C

The introduction rule for negation (¬I) gives rise to a proof strategy called proof by
contradiction, which turns out to be extremely useful.

v Strategy 1.1.38 (Proving negations—proof by contradiction)
In order to prove a proposition p is false (that is, that ¬p is true), it suffices to assume
that p is true and derive a contradiction.

The following proposition has a classic proof by contradiction.

C Proposition 1.1.39
Let r be a rational number and let a be an irrational number. Then r+a is irrational.

Proof
By Definition 0.27, we need to prove that r+a is real and not rational. It is certainly real,
since r and a are real, so it remains to prove that r+a is not rational.

Suppose r+a is rational. Since r is rational, it follows from Proposition 1.1.23 that a is
rational, since

a = (r+a)− r

This contradicts the assumption that a is irrational. It follows that r+ a is not rational,
and is therefore irrational. �

Now you can try proving some elementary facts by contradiction.

. Exercise 1.1.40
Let x ∈ R. Prove by contradiction that if x is irrational then −x and 1

x are irrational. C
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. Exercise 1.1.41
Prove by contradiction that there is no least positive real number. That is, prove that there
is not a positive real number a such that a6 b for all positive real numbers b. C

A proof need not be a ‘proof by contradiction’ in its entirety—indeed, it may be that
only a small portion of the proof uses contradiction. This is exhibited in the proof of the
following proposition.

C Proposition 1.1.42
Let a be an integer. Then a is odd if and only if a = 2b+1 for some integer b.

Proof
Suppose a is odd. By the division theorem (Theorem 0.18), either a = 2b or a = 2b+1,
for some b ∈ Z. If a = 2b, then 2 divides a, contradicting the assumption that a is odd;
so it must be the case that a = 2b+1.

Conversely, suppose a = 2b+ 1. Then a leaves a remainder of 1 when divided by 2.
However, by the division theorem, the even numbers are precisely those that leave a
remainder of 0 when divided by 2. It follows that a is not even, so is odd. �

The elimination rule for the negation operator (¬E) simply says that a proposition can’t
be true and false at the same time.

v Strategy 1.1.43 (Assuming negations)
If an assumption in a proof has the form ¬p, then any derivation of p leads to a contra-
diction.

The main use of Strategy 1.1.43 is for obtaining the contradiction in a proof by
contradiction—in fact, we have already used it in our examples of proof by contradiction!
As such, we will not dwell on it further.

Logical axioms

We wrap up this section by introducing a couple of additional logical rules (axioms) that
we will use in our proofs.

The first is the so-called law of excluded middle, which appears so obvious that it is not
even worth stating (let alone naming)—what it says is that every proposition is either
true or false. But beware, as looks can be deceiving; the law of excluded middle is a
non-constructive axiom, meaning that it should not be accepted in settings it is import-
ant to keep track of how a proposition is proved—simply knowing that a proposition is
either true or false tells us nothing about how it might be proved or refuted. In most
mathematical contexts, though, it is accepted without a second’s thought.

C Axiom 1.1.44 (Law of excluded middle)
Let p be a propositional formula. Then p∨ (¬p) is true.
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The law of excluded middle can be represented diagramatically as follows; there are no
premises above the line, since we are simply asserting that it is true.

LEM
p∨ (¬p)

v Strategy 1.1.45 (Using the law of excluded middle)
In order to prove a proposition q is true, it suffices to split into cases based on whether
some other proposition p is true or false, and prove that q is true in each case.

The proof of Proposition 1.1.46 below makes use of the law of excluded middle—note
that we defined ‘odd’ to mean ‘not even’ (Definition 0.17).

C Proposition 1.1.46
Let a,b ∈ Z. If ab is even, then either a is even or b is even (or both).

Proof
Suppose a,b ∈ Z with ab even.

• Suppose a is even—then we’re done.

• Suppose a is odd. If b is also odd, then by Proposition 1.1.42 can write

a = 2k+1 and b = 2`+1

for some integers k, `. This implies that

ab = (2k+1)(2`+1) = 4k`+2k+2`+1 = 2(2k`+ k+ `︸ ︷︷ ︸
∈Z

)+1

so that ab is odd. This contradicts the assumption that ab is even, and so b must in fact
be even.

In both cases, either a or b is even. �

. Exercise 1.1.47
Reflect on the proof of Proposition 1.1.46. Where in the proof did we use the law of
excluded middle? Where in the proof did we use proof by contradiction? What was the
contradiction in this case? Prove Proposition 1.1.46 twice more, once using contradiction
and not using the law of excluded middle, and once using the law of excluded middle and
not using contradiction. C

. Exercise 1.1.48
Let a and b be irrational numbers. By considering the number

√
2
√

2
, prove that it is

possible that ab be rational. C

Another logical rule that we will use is the principle of explosion, which is also known
by its Latin name, ex falso sequitur quodlibet, which approximately translates to ‘from
falsity follows whatever you like’.

40



Section 1.1. Propositional logic 41

C Axiom 1.1.49 (Principle of explosion)
If a contradiction is assumed, any consequence may be derived.

⊥ Explp

The principle of explosion is a bit confusing on first sight. To shed a tiny bit of intuition
on it, think of it as saying that both true and false propositions are consequences of a
contradictory assumption. For instance, suppose that −1 = 1. From this we can obtain
consequences that are false, such as 0 = 2 by adding 1 to both sides of the equation, and
consequences that are true, such as 1 = 1 by squaring both sides of the equation.

We will rarely use the principle of explosion directly in our mathematical proofs, but we
will use it in Section 1.3 for proving logical formulae are equivalent.
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Section 1.2

Variables and quantifiers

Free and bound variables

Everything we did in Section 1.1 concerned propositions and the logical rules concerning
their proofs. Unfortunately if all we have to work with is propositions then our ability
to do mathematical reasoning will be halted pretty quickly. For example, consider the
following statement:

x is divisible by 7

This statement seems like the kind of thing we should probably be able to work with if
we’re doing mathematics. It makes sense if x is a integer, such as 28 or 41; but it doesn’t
make sense at all if x is a parrot called Alex.[a] In any case, even when it does make
sense, its truth value depends on x; indeed, ‘28 is divisible by 7’ is a true proposition, but
‘41 is divisible by 7’ is a false proposition.

This means that the statement ‘x is divisible by 7’ isn’t a proposition—quel horreur! But
it almost is a proposition: if we know that x refers somehow to an integer, then it becomes
a proposition as soon as a particular numerical value of x is specified. The symbol x is
called a free variable.

F Definition 1.2.1
Let x be a variable that is understood to refer to an element of a set X . In a statement
involving x, we say x is free if it makes sense to substitute particular elements of X in the
statement; otherwise, we say x is bound.

To represent statements that have free variables in them abstractly, we generalise the
notion of a propositional variable (Definition 1.1.2) to that of a predicate.

F Definition 1.2.2
A predicate is a symbol p together with a specified list of free variables x1,x2, . . . ,xn
(where n ∈N) and, for each free variable xi, a specification of a set Xi called the domain
of discourse (or range) of xi. We will typically write p(x1,x2, . . . ,xn) in order to make
the variables explicit.

The statements represented by predicates are those that become propositions when spe-
cific values are substituted for their free variables from their respective domains of dis-
course. For example, ‘x is divisible by 7’ is not a proposition, but it becomes a proposition
when specific integers (such as 28 or 41) are substituted for x.
[a]Alex the parrot is the only non-human animal to have ever been observed to ask an existential question; he

died in September 2007 so we may never know if he was divisible by 7, but it is unlikely. According to
Time, his last words were ‘you be good, see you tomorrow, I love you’. The reader is advised to finish crying
before they continue reading about variables and quantifiers.
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This is a lot to take in, so let’s look at some examples.

0 Example 1.2.3
(i) We can represent the statement ‘x is divisible by 7’ discussed above by a predicate

p(x) whose only free variable x has Z as its domain of discourse. Then p(28) is
the true proposition ‘28 is divisible by 7’ and p(41) is the false proposition ‘41 is
divisible by 7’.

(ii) A predicate with no free variables is precisely a propositional variable. This means
that the notion of a predicate generalises that of a propositional variable.

(iii) The expression ‘2n− 1 is prime’ can be represented by a predicate p(n) with one
free variable n, whose domain of discourse is the set N of natural numbers. Then
p(3) is the true proposition ‘23 − 1 is prime’ and p(4) is the false proposition
‘24−1 is prime’.

(iv) The expression ‘x−y is rational’ can be represented by a predicate q(x,y) with free
variables x and y, whose domain of discourse is the set R of real numbers.

(v) The expression ‘there exist integers a and b such that x = a2+b2’ has free variable
x and bound variables a,b. It can be represented by a predicate r(x) with one free
variable x, whose domain of discourse is Z.

(vi) The expression ‘every even natural number n> 2 is divisible by k’ has free variable
k and bound variable n. It can be represented by a predicate s(k) with one free
variable k, whose domain of discourse is N.

C

Quantifiers

Look again at the statements in parts (v) and (vi) of Example 1.2.3. Both contained bound
variables, which were so because we used words like ‘there exists’ and ‘every’—had we
not used these words, those variables would be free, as in ‘x = a2+b2’ and ‘n is divisible
by k’.

Expressions that refer to how many elements of a set make a statement true, such as
‘there exists’ and ‘every’, turn free variables into bound variables. We represent such
expressions using symbols called quantifiers, which are the central objects of study of
this section.

The two main quantifiers used throughout mathematics are the universal quantifier ∀ and
the existential quantifier ∃. We will define these quantifiers formally later in this section,
but for now, the following informal definitions suffice:

• The expression ‘∀x ∈ X , . . . ’ denotes ‘for all x ∈ X , . . . ’ and will be defined formally
in Definition 1.2.9;

• The expression ‘∃x ∈ X , . . . ’ denotes ‘there exists x ∈ X such that . . . ’ and will be
defined formally in Definition 1.2.17.

43
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Note that we always place the quantifier before the statement, so even though we might
write or say things like ‘n = 2k for some integer k’ or ‘x2 > 0 for all x ∈ R’, we would
express these statements symbolically as ‘∃k ∈ Z, n = 2k’ and ‘∀x ∈ R, x2 > 0’, respect-
ively.

We will define a third quantifier ∃! in terms of ∀ and ∃ to say that there is exactly one
element of a set making a statement true. There are plenty of other quantifiers out there,
but they tend to be specific to particular fields—examples include ‘almost everywhere’
in measure theory, ‘almost surely’ in probability theory, ‘for all but finitely many’ in set
theory and related disciplines, and ‘for fresh’ in the theory of nominal sets.

Using predicates, logical formulae and quantifiers, we are able to build up more com-
plicated expressions, called logical formulae. Logical formulae generalise propositional
formulae (Definition 1.1.3) in by allowing (free and bound) variables and quantification
to occur.

F Definition 1.2.4
A logical formula is an expression that is built from predicates using logical operators
and quantifiers; it may have both free and bound variables. The truth value of a logical
formula depends on its free variables according to the rules for logical operators and
quantifiers.

Translating between plain English statements and purely symbolic logical formulae is an
important skill to obtain:

• The plain English statements are easier to understand and are the kinds of things you
would speak aloud or write down when discussing the mathematical ideas involved.

• The symbolic logical formulae are what provide the precision needed to guide a proof
of the statement being discussed—we will see strategies for proving statements in-
volving quantifiers soon.

The following examples and exercise concern translating between plain English state-
ments and purely symbolic logical formulae.

0 Example 1.2.5
Recall that an integer n is even if and only if it is divisible by 2. According to Defin-
ition 0.12, that is to say that ‘n is even’ means ‘n = 2k for some integer k’. Using
quantifiers, we can express ‘n is even’ as ‘∃k ∈ Z, n = 2k’.

The (false) proposition ‘every integer is even’ can then be written symbolically as fol-
lows. First introduce a variable n to refer to an integer; to say ‘every integer is even’ is to
say ‘∀n ∈ Z, n is even’, and so using the symbolic representation of ‘n is even’, we can
express ‘every integer is even’ as ∀n ∈ Z, ∃k ∈ Z, n = 2k’. C

. Exercise 1.2.6
Find logical formulae that represent each of the following English statements.

(a) There is an integer that is divisible by every integer.

(b) There is no greatest odd integer.
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(c) Between any two distinct rational numbers is a third distinct rational number.

(d) If an integer has a rational square root, then that root is an integer.

C

0 Example 1.2.7
Consider the following logical formula.

∀a ∈ R, (a> 0⇒∃b ∈ R, a = b2)

If we translate this expression symbol-for-symbol, what it says is:

For every real number a, if a is non-negative,
then there exists a real number b such that a = b2.

Read in this way, it is not a particularly enlightening statement. However, we can distill
the robotic nature of the symbol-for-symbol reading by thinking more carefully about
what the statement really means.

Indeed, to say ‘a = b2 for some real number b’ is exactly to say that a has a real square
root—after all, what is a square root of a if not a real number whose square is equal
to a? This translation eliminates explicit reference to the bound variable b, so that the
statement now reads:

For every real number a, if a is non-negative, then a has a real square root.

We’re getting closer. Next note that instead of the clunky expression ‘for every real
number a, if a is non-negative, then . . . ’, we could just say ‘for every non-negative real
number a, . . . ’.

For every non-negative real number a, a has a real square root.

Finally, we can eliminate the bound variable a by simply saying:

Every non-negative real number has a real square root.

This is now a meaningful expression that is much easier to understand than the logical
formula we started with. C

. Exercise 1.2.8
Find statements in plain English, involving as few variables as possible, that are repres-
ented by each of the following logical formulae. (The domains of discourse of the free
variables are indicated in each case.)
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(a) ∃q ∈ Z, a = qb — free variables a,b ∈ Z

(b) ∃a ∈ Z, ∃b ∈ Z, (b 6= 0∧bx = a) — free variable x ∈ R

(c) ∀d ∈ N, [(∃q ∈ Z, n = qd)⇒ (d = 1∨d = n)] — free variable n ∈ N

(d) ∀a ∈ R, [a > 0⇒∃b ∈ R, (b > 0∧a < b)] — no free variables

C

Now that we have a better understanding of how to translate between plain English state-
ments and logical formulae, we are ready to give a precise mathematical treatment of
quantifiers. Just like with logical operators in Section 1.1, quantifiers will be defined
according to introduction rules, which tell us how to prove a quantified formula, and
elimination rules, which tell us how to use an assumption that involves a quantifier.

Universal quantification (‘for all’, ∀)

The universal quantifier makes precise what we mean when we say ‘for all’, or ‘p(x) is
always true no matter what value x takes’.

F Definition 1.2.9
The universal quantifier is the quantifier ∀ (LATEX code: \forall); if p(x) is a logical
formula with free variable x with range X , then ∀x∈X , p(x) is the logical formula defined
according to the following rules:

• (∀I) If p(x) can be derived from the assumption that x is an arbitrary element of X ,
then ∀x ∈ X , p(x);

• (∀E) If a ∈ X and ∀x ∈ X , p(x) is true, then p(a) is true.

The expression ∀x ∈ X , p(x) represents ‘for all x ∈ X , p(x)’.

[x ∈ X ]

 

p(x)
∀x ∈ X , p(x)

∀x ∈ X , p(x) a ∈ X
p(a)

v Strategy 1.2.10 (Proving universally quantified statements)
To prove a proposition of the form ∀x ∈ X , p(x), it suffices to prove p(x) for an arbitrary
element x ∈ X—in other words, prove p(x) whilst assuming nothing about the variable x
other than that it is an element of X .

Useful phrases for introducing an arbitrary variable of a set X in a proof include ‘fix
x ∈ X’ or ‘let x ∈ X’ or ‘take x ∈ X’—more on this is discussed in Appendix A.2.

46



Section 1.2. Variables and quantifiers 47

The proofs of the following propositions illustrate how a proof of a universally quantified
statement might look.

C Proposition 1.2.11
The square of every odd integer is odd.

Proof
Let n be an odd integer. Then n = 2k+1 for some k ∈ Z by the division theorem (The-
orem 0.18), and so

n2 = (2k+1)2 = 4k2 +4k+1 = 2(2k2 +2k)+1

Since 2k2 +2k ∈ Z, we have that n2 is odd, as required. �

Note that in the proof of Proposition 1.2.11, we did not assume anything about n other
than that it is an odd integer.

C Proposition 1.2.12
The base-10 expansion of the square of every natural number ends in one of the digits 0,
1, 4, 5, 6 or 9.

Proof
Fix n ∈ N, and let

n = drdr−1 . . .d0

be its base-10 expansion. Write
n = 10m+d0

where m ∈N—that is, m is the natural number obtained by removing the final digit from
n. Then

n2 = 100m2 +20md0 +d2
0 = 10m(10m+2d0)+d2

0

Hence the final digit of n2 is equal to the final digit of d2
0 . But the possible values of d2

0
are

0 1 4 9 16 25 36 49 64 81

all of which end in one of the digits 0, 1, 4, 5, 6 or 9. �

. Exercise 1.2.13
Prove that every integer is rational. C

. Exercise 1.2.14
Prove that every linear polynomial over Q has a rational root. C

. Exercise 1.2.15
Prove that, for all real numbers x and y, if x is irrational, then x+y and x−y are not both
rational. C

Before advancing too much further, beware of the following common error that arises
when dealing with universal quantifiers.

v Common error
Consider the following (non-)proof of the proposition ∀n ∈ Z, n2 > 0.
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Let n be an arbitrary integer, say n = 17. Then 172 = 289> 0, so the statement is
true.

The error made here is that the writer has picked an arbitrary value of n, not the reader.
(In fact, the above argument actually proves ∃n ∈ Z, n2 > 0.)

The proof should make no assumptions about the value of n other than that it is an integer.
Here is a correct proof:

Let n be an arbitrary integer. Either n> 0 or n < 0. If n> 0 then n2 > 0, since the
product of two nonnegative numbers is nonnegative; if n < 0 then n2 > 0, since
the product of two negative numbers is positive.

C

The strategy suggested by the elimination rule for the universal quantifier is one that we
use almost without thinking about it.

v Strategy 1.2.16 (Assuming universally quantified statements)
If an assumption in a proof has the form ∀x ∈ X , p(x), then we may assume that p(a) is
true whenever a is an element of X .

Existential quantification (‘there exists’, ∃)

F Definition 1.2.17
The existential quantifier is the quantifier ∃ (LATEX code: \exists)(LATEX code:
\exists)∃; if p(x) is a logical formula with free variable x with range X , then
∃x ∈ X , p(x) is the logical formula defined according to the following rules:

• (∃I) If a ∈ X and p(a) is true, then ∃x ∈ X , p(x);

• (∃E) If ∃x ∈ X , p(x) is true, and q can be derived from the assumption that p(a) is true
for some fixed a ∈ X , then q is true.

The expression ∃x ∈ X , p(x) represents ‘there exists x ∈ X such that p(x)’.

a ∈ X p(a)
(∃I)

∃x ∈ X , p(x)
∃x ∈ X , p(x)

[a ∈ X ], [p(a)]

 

q
(∃E)q

v Strategy 1.2.18 (Proving existentially quantified statements)
To prove a proposition of the form ∃x∈X , p(x), it suffices to prove p(a) for some specific
element a ∈ X , which should be explicitly defined.
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0 Example 1.2.19
We prove that there is a natural number that is a perfect square and is one more than a
perfect cube. That is, we prove

∃n ∈ N, ([∃k ∈ Z, n = k2]∧ [∃` ∈ Z, n = `3 +1])

So define n = 9. Then n = 32 and n = 23+1, so that n is a perfect square and is one more
than a perfect cube, as required. C

The following proposition involves an existentially quantified statement—indeed, to say
that a polynomial f (x) has a real root is to say ∃x ∈ R, f (x) = 0.

C Proposition 1.2.20
Fix a ∈ R. The cubic polynomial x3 +(1−a2)x−a has a real root.

Proof
Let f (x) = x3 +(1−a2)x−a. Define x = a; then

f (x) = f (a) = a3 +(1−a2)a−a = a3 +a−a3−a = 0

Hence a is a root of f (x). Since a is real, f (x) has a real root. �

The following exercises require you to prove existentially quantified statements.

. Exercise 1.2.21
Prove that there is a real number which is irrational but whose square is rational. C

. Exercise 1.2.22
Prove that there is an integer which is divisible by zero. C

0 Example 1.2.23
Prove that, for all x,y ∈Q, if x < y then there is some z ∈Q with x < z < y. C

The elimination rule for the existential quantifier gives rise to the following proof
strategy.

v Strategy 1.2.24 (Assuming existentially quantified statements)
If an assumption in the proof has the form ∃x ∈ X , p(x), then we may introduce a new
variable a ∈ X and assume that p(a) is true.

It ought to be said that when using existential elimination in a proof, the variable a used
to denote a particular element of X for which p(a) is true should not already be in use
earlier in the proof.

Strategy 1.2.24 is very useful in proofs of divisibility, since the expression ‘a divides b’
is an existentially quantified statement—this was Exercise 1.2.8(a).

C Proposition 1.2.25
Let n ∈ Z. If n3 is divisible by 3, then (n+1)3−1 is divisible by 3.
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Proof
Suppose n3 is divisible by 3. Take q ∈ Z such that n3 = 3q. Then

(n+1)3−1

= (n3 +3n2 +3n+1)−1 expanding

= n3 +3n2 +3n simplifying

= 3q+3n2 +3n since n3 = 3q

= 3(q+n2 +n) factorising

Since q+n2 +n ∈ Z, we have proved that (n+1)3−1 is divisible by 3, as required. �

Uniqueness

The concept of uniqueness arises whenever we want to use the word ‘the’. For example,
in Definition 0.6 we defined the base-b expansion of a natural number n to be the string
drdr−1 . . .d1d0 satisfying some properties. The issue with the word ‘the’ here is that we
don’t know ahead of time whether a natural number n may have base-b expansions other
than drdr−1 . . .d1d0—this fact actually requires proof. To prove this fact, we would need
to assume that eses−1 . . .e1e0 were another base-b expansion of n, and prove that the
strings drdr−1 . . .d1d0 and eses−1 . . .e1e0 are the same—this is done in Theorem 5.3.51.

Uniqueness is typically coupled with existence, since we usually want to know if there
is exactly one object satisfying a property. This motivates the definition of the unique
existential quantifier, which encodes what we mean when we say ‘there is exactly one
x ∈ X such that p(x) is true’. The ‘existence’ part ensures that at least one x ∈ X makes
p(x) true; the ‘uniqueness’ part ensures that x is the only element of X making p(x) true.

F Definition 1.2.26
The unique existential quantifier is the quantifier ∃! ((LATEX code: \exists!)) defined
such that ∃!x ∈ X , p(x) is shorthand for

(∃x ∈ X , p(x)︸ ︷︷ ︸
existence

) ∧ (∀a ∈ X , ∀b ∈ X , [p(a)∧ p(b)⇒ a = b]︸ ︷︷ ︸
uniqueness

)

0 Example 1.2.27
Every positive real number has a unique positive square root. We can write this symbol-
ically as

∀a ∈ R, (a > 0⇒∃!b ∈ R, (b > 0∧b2 = a))

Reading this from left to right, this says: for every real number a, if a is positive, then
there exists a unique real number b, which is positive and whose square is a. C

. Discussion 1.2.28
Explain why Definition 1.2.26 captures the notion of there being ‘exactly one’ element
x ∈ X making p(x) true. Can you think of any other ways that ∃!x ∈ X , p(x) could be
defined? C
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v Strategy 1.2.29 (Proving unique-existentially quantified statements)
A proof of a statement of the form ∃!x ∈ X , p(x), consists of two parts:

• Existence — prove that ∃x ∈ X , p(x) is true (e.g. using Strategy 1.2.18);

• Uniqueness — let a,b ∈ X , assume that p(a) and p(b) are true, and derive a = b.

Alternatively, prove existence to obtain a fixed a ∈ X such that p(a) is true, and then
prove ∀x ∈ X , [p(x)⇒ x = a].

0 Example 1.2.30
We prove Example 1.2.27, namely that for each real a > 0 there is a unique b > 0 such
that b2 = a. So first fix a > 0.

• (Existence) The real number
√

a is positive and satisfies (
√

a)2 = a by definition. Its
existence will be deferred to a later time, but an informal argument for its existence
could be provided using ‘number line’ arguments as in Chapter 0.

• (Uniqueness) Let y,z > 0 be real numbers such that y2 = a and z2 = a. Then y2 = z2.
Rearranging and factorising yields

(y− z)(y+ z) = 0

so either y− z = 0 or y+ z = 0. If y+ z = 0 then z = −y, and since y > 0, this means
that z < 0. But this contradicts the assumption that z > 0. As such, it must be the case
that y− z = 0, and hence y = z, as required.

C

. Exercise 1.2.31
For each of the propositions, write it out as a logical formula involving the ∃! quantifier
and then prove it, using the structure of the logical formula as a guide.

(a) For each real number a, the equation x2 +2ax+a2 = 0 has exactly one real solution
x.

(b) There is a unique real number a for which the equation x2+a2 = 0 has a real solution
x.

(c) There is a unique natural number with exactly one positive divisor.

C

The unique existential quantifier will play a large role when we study functions in Sec-
tion 2.2.

Quantifier alternation

Compare the following two statements:
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(i) For every door, there is a key that can unlock it.

(ii) There is a key that can unlock every door.

Letting the variables x and y refer to doors and keys, respectively, and letting p(x,y) be
the statement ‘door x can be unlocked by key y’, we can formulate these statements as:

(i) ∀x, ∃y, p(x,y)

(ii) ∃y, ∀x, p(x,y)

This is a typical ‘real-world’ example of what is known as quantifier alternation—the
two statements differ only by the order of the front-loaded quantifiers, and yet they say
very different things. Statement (i) requires every door to be unlockable, but the keys
might be different for different doors; statement (ii), however, implies the existence of
some kind of ‘master key’ that can unlock all the doors.

Here’s another example with a more mathematical nature:

. Exercise 1.2.32
Let p(x,y) be the statement ‘x+ y is even’.

• Prove that ∀x ∈ Z, ∃y ∈ Z, p(x,y) is true.

• Prove that ∃y ∈ Z, ∀x ∈ Z, p(x,y) is false.

C

In both of the foregoing examples, you might have noticed that the ‘∀∃’ statement says
something weaker than the ‘∃∀’ statement—in some sense, it is easier to make a ∀∃
statement true than it is to make an ∃∀ statement true.

This idea is formalised in Theorem 1.2.33 below, which despite its abstract nature, has
an extremely simple proof.

C Theorem 1.2.33
Let p(x,y) be a logical formula with free variables x ∈ X and y ∈ Y . Then

∃y ∈ Y, ∀x ∈ X , p(x,y)⇒∀x ∈ X , ∃y ∈ Y, p(x,y)

Proof
Suppose ∃y ∈ Y, ∀x ∈ X , p(x,y) is true. We need to prove ∀x ∈ X , ∃y ∈ Y, p(x,y), so fix
a ∈ X—our goal is now to prove ∃y ∈ Y, p(a,y).

Using our assumption ∃y ∈Y, ∀x ∈ X , p(x,y), we may choose b ∈Y such that ∀x, p(x,b)
is true. But then p(a,b) is true, so we have proved ∃y ∈ Y, p(a,y), as required. �

Statements of the form ∃y ∈ Y, ∀x ∈ X , p(x,y) imply some kind of uniformity: a value
of y making ∀x ∈ X , p(x,y) true can be thought of as a ‘one size fits all’ solution to the
problem of proving p(x,y) for a given x ∈ X . Later in your studies, it is likely that you
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will encounter the word ‘uniform’ many times—it is precisely this notion of quantifier
alternation that the word ‘uniform’ refers to.
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Section 1.3

Logical equivalence

We motivate the content of this section with an example.

0 Example 1.3.1
Consider the following two logical formulae, where P denotes the set of all prime num-
bers.

(1) ∀n ∈ P, (n > 2⇒ [∃k ∈ Z, n = 2k+1]);

(2) ¬∃n ∈ P, (n > 2∧ [∃k ∈ Z, n = 2k]).

The logical formula (1) translates to ‘every prime number greater than two is odd’, and
the logical formula (2) translates to ‘there does not exist an even prime number greater
than two’. These statements are evidently equivalent—they mean the same thing—but
they suggest different proof strategies:

(1) Fix a prime number n, assume that n > 2, and then prove that n = 2k+ 1 for some
k ∈ Z.

(2) Assume that there is some prime number n such that n > 2 and n = 2k for some
k ∈ Z, and derive a contradiction.

While statement (1) more directly translates the plain English statement ‘every prime
number greater than two is odd’, it is the proof strategy suggested by (2) that is easier to
use. Indeed, if n is a prime number such that n > 2 and n = 2k for some k ∈ Z, then 2 is
a divisor of n other than 1 and n (since 1 < 2 < n), contradicting the assumption that n is
prime. C

The notion of logical equivalence, captures precisely the sense in which the logical for-
mulae in (1) and (2) in Example 1.3.1 ‘mean the same thing’. Being able to transform a
logical formula into a different (but equivalent) form allows us to identify a wider range
of feasible proof strategies.

F Definition 1.3.2
Let p and q be logical formulae. We say that p and q are logically equivalent, and write
p≡ q (LATEX code: \equiv), if q can be derived from p and p can be derived from q.

Logical equivalence of propositional formulae

While Definition 1.3.2 defines logical equivalence between arbitrary logical formulae,
we will start by focusing our attention on logical equivalence between propositional for-
mulae, like those we saw in Section 1.1.
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First, let’s look at a couple of examples of what proofs of logical equivalence might look
like. Be warned—they’re not very nice to read! But there is light at the end of the tunnel.
After struggling through Examples 1.3.3 and 1.3.4 and Exercise 1.3.5, we will introduce
a very quick and easy tool for proving propositional formulae are logically equivalent.

0 Example 1.3.3
We demonstrate that p∧ (q∨ r) ≡ (p∧ q)∨ (p∧ r), where p, q and r are propositional
variables.

• First assume that p∧ (q∨ r) is true. Then p is true and q∨ r is true by definition of
conjunction. By definition of disjunction, either q is true or r is true.

� If q is true, then p∧q is true by definition of conjunction.
� If r is true, then p∧ r is true by definition of conjunction.

In both cases we have that (p∧q)∨ (p∧ r) is true by definition of disjunction.

• Now assume that (p∧q)∨ (p∧ r) is true. Then either p∧q is true or p∧ r is true, by
definition of disjunction.

� If p∧q is true, then p is true and q is true by definition of conjunction.
� If p∧ r is true, then p is true and r is true by definition of conjunction.

In both cases we have that p is true, and that q∨ r is true by definition of disjunction.
Hence p∧ (q∨ r) is true by definition of conjunction.

Since we can derive (p∧q)∨ (p∧ r) from p∧ (q∨ r) and vice versa, it follows that

p∧ (q∨ r)≡ (p∧q)∨ (p∧ r)

as required. C

0 Example 1.3.4
We prove that p⇒ q≡ (¬p)∨q, where p, q and r are propositional variables.

• First assume that p⇒ q is true. By the law of exluded middle (Axiom 1.1.44), either
p is true or ¬p is true—we derive (¬p)∨q in each case.

� If p is true, then since p⇒ q is true, it follows from (⇒E) that q is true, and so
(¬p)∨q is true by (∨I2);

� If ¬p is true, then (¬p)∨q is true by (∨I1).

In both cases, we see that (¬p)∨q is true.

• Now assume that (¬p)∨ q is true. To prove that p⇒ q is true, it suffices by (⇒I) to
assume that p is true and derive q. So assume p is true. Since (¬p)∨q is true, we have
that either ¬p is true or q is true.

� If ¬p is true, then we obtain a contradiction from the assumption that p is true, and
so q is true by the principle of explosion (Axiom 1.1.49).

� If q is true. . . well, then q is true—there is nothing more to prove!

In both cases we have that q is true. Hence p⇒ q is true.

We have derived (¬p)∨ q from p ⇒ q and vice versa, and so the two formulae are
logically equivalent. C
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. Exercise 1.3.5
Let p, q and r be propositional variables. Prove that the propositional formula (p∨q)⇒ r
is logically equivalent to (p⇒ r)∧ (q⇒ r). C

Working through the derivations each time we want to prove logical equivalence can
become cumbersome even for small examples like Examples 1.3.3 and 1.3.4 and Exer-
cise 1.3.5.

The following theorem reduces the problem of proving logical equivalence between pro-
positional formulae to the purely algorithmic task of checking when the formulae are
true and when they are false in a (relatively) small list of cases. We will streamline this
process even further using truth tables (Definition 1.3.7).

C Theorem 1.3.6
Two propositional formulae are logically equivalent if and only if their truth values are
the same under any assignment of truth values to their constituent propositional variables.

Idea of proof
A formal proof of this fact is slightly beyond our reach at this point, although we will be
able to prove it formally by structural induction, introduced in Section 10.2.

The idea of the proof is that, since propositional formulae are built up from simpler
propositional formulae using logical operators, the truth value of a more complex pro-
positional formula is determined by the truth values of its simpler subformulae. If we
keep ‘chasing’ these subformulae, we end up with just propositional variables.

For example, the truth value of (p⇒ r)∧ (q⇒ r) is determined by the truth values
of p ⇒ r and q ⇒ r according to the rules for the conjunction operator ∧. In turn,
the truth value of p⇒ r is determined by the truth values of p and r according to the
implication operator ⇒, and the truth value of q⇒ r is determined by the truth values
of q and r according to the implication operator again. It follows that the truth value of
the whole propositional formula (p⇒ r)∧ (q⇒ r) is determined by the truth values of
p,q,r according to the rules for ∧ and⇒.

If some assignment of truth values to propositional variables makes one propositional
formula true but another false, then it must be impossible to derive one from the other—
otherwise we’d obtain a contradiction. Hence both propositional formulae must have the
same truth values no matter what assignment of truth values is given to their constituent
propositional variables.

We now develop a systematic way of checking the truth values of a propositional formula
under each assignment of truth values to its constituent propositional variables.

F Definition 1.3.7
The truth table of a propositional formula is the table with one row for each possible
assignment of truth values to its constituent propositional variables, and one column
for each subformula (including the propositional variables and the propositional formula
itself). The entries of the truth table are the truth values of the subformulae.
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0 Example 1.3.8
The following are the truth tables for ¬p, p∧q, p∨q and p⇒ q.

p ¬p
X ×
× X

p q p∧q
X X X
X × ×
× X ×
× × ×

p q p∨q
X X X
X × X
× X X
× × ×

p q p⇒ q
X X X
X × ×
× X X
× × X

C

In Example 1.3.8 we have used the symbolX (LATEX code: \checkmark) to mean ‘true’
and× (LATEX code: \times) to mean ‘false’. Some authors adopt other conventions, such
as T,F or >,⊥ (LATEX code: \top,\bot) or 1,0 or 0,1—the possibilites are endless!

. Exercise 1.3.9
Use the definitions of ∧, ∨ and⇒ to justify the truth tables in Example 1.3.8. C

The next example shows how the truth tables for the individual logical operators (as in
Example 1.3.8) may be combined to form a truth table for a more complicated proposi-
tional formula that involves three propositional variables.

0 Example 1.3.10
The following is the truth table for (p∧q)∨ (p∧ r).

p q r p∧q p∧ r (p∧q)∨ (p∧ r)
X X X X X X
X X × X × X
X × X × X X
X × × × × ×
× X X × × ×
× X × × × ×
× × X × × ×
× × × × × ×︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

propositional
variables

intermediate
subformulae main formula

Some comments about the construction of this truth table are pertinent:

• The propositional variables appear first. Since there are three of them, there are 23 = 8
rows. The column for p contains four Xs followed by four ×s; the column for q
contains two Xs, two ×s, and then repeats; and the column for r contains one X, one
×, and then repeats.

• The next group of columns are the next-most complicated subformulae. Each is con-
structed by looking at the relevant columns further to the left and comparing with the
truth table for conjunction.
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• The final column is the main formula itself, which again is constructed by looking at
the relevant columns further to the left and comparing with the truth table for disjunc-
tion.

Our choices of where to put the vertical bars and what order to put the rows in were not
the only choices that could have been made, but when constructing truth tables for more
complex logical formulae, it is useful to develop a system and stick to it. C

Returning to Theorem 1.3.6, we obtain the following strategy for proving that two pro-
positional formulae are logically equivalent.

v Strategy 1.3.11 (Logical equivalence using truth tables)
In order to prove that propositional formulae are logically equivalent, it suffices to show
that they have identical columns in a truth table.

0 Example 1.3.12
In Example 1.3.3 we proved that p∧(q∨r)≡ (p∧q)∨(p∧r). We prove this again using
truth tables. First we construct the truth table for p∧ (q∨ r):

p q r q∨ r p∧ (q∨ r)
X X X X X
X X × X X
X × X X X
X × × × ×
× X X X ×
× X × X ×
× × X X ×
× × × × ×

Note that the column for p ∧ (q ∨ r) is identical to that of (p ∧ q) ∨ (p ∧ r) in Ex-
ample 1.3.10. Hence the two formulae are logically equivalent. C

To avoid having to write out two truth tables, it can be helpful to combine them into one.
For example, the following truth table exhibits that p∧ (q∨ r) is logically equivalent to
(p∧q)∨ (p∧ r):

p q r q∨ r p∧ (q∨ r) p∧q p∧ r (p∧q)∨ (p∧ r)
X X X X X X X X
X X × X X X × X
X × X X X × X X
X × × × × × × ×
× X X X × × × ×
× X × X × × × ×
× × X X × × × ×
× × × × × × × ×
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In the following exercises, we use truth tables to repeat the proofs of logical equivalence
from Example 1.3.4 and Exercise 1.3.5.

. Exercise 1.3.13
Use a truth table to prove that p⇒ q≡ (¬p)∨q. C

. Exercise 1.3.14
Let p, q and r be propositional variables. Use a truth table to prove that the propositional
formula (p∨q)⇒ r is logically equivalent to (p⇒ r)∧ (q⇒ r). C

Some proof strategies

We are now in good shape to use logical equivalence to derive some more sophisticated
proof strategies.

C Theorem 1.3.15 (Law of double negation)
Let p be a propositional variable. Then p≡ ¬¬p.

Proof
The proof is almost trivialised using truth tables. Indeed, consider the following truth
table.

p ¬p ¬¬p
X × X
× X ×

The columns for p and ¬¬p are identical, and so p≡ ¬¬p. �

The law of double negation is important because it suggests a second way that we can
prove statements by contradiction. Indeed, it says that proving a proposition p is equi-
valent to proving ¬¬p, which amounts to assuming ¬p and deriving a contradiction.

v Strategy 1.3.16 (Proof by contradiction (indirect version))
In order to prove a proposition p is true, it suffices to assume that p is false and derive a
contradiction.

At first sight, Strategy 1.3.16 looks very similar to Strategy 1.1.38, but there is an im-
portant difference:

• Strategy 1.1.38 says that to prove that a proposition is false, it suffices to assume that
it is true and derive a contradiction;

• Strategy 1.3.16 says that to prove that a proposition is true, it suffices to assume that it
is false and derive a contradiction.
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The former is a direct proof technique, since it arises directly from the definition of the
negation operator; the latter is an indirect proof technique, since it arises from a logical
equivalence, namely the law of double negation.

0 Example 1.3.17
We prove that if a, b and c are non-negative real numbers satisfying a2 + b2 = c2, then
a+b> c.

Indeed, let a,b,c ∈ R with a,b,c > 0, and assume that a2 + b2 = c2. Towards a contra-
diction, assume that it is not the case that a+b > c. Then we must have a+b < c. But
then

(a+b)2 = (a+b)(a+b)< (a+b)c < c · c = c2

and so
c2 > (a+b)2 = a2 +2ab+b2 = c2 +2ab> c2

This implies that c2 > c2, which is a contradiction. So it must be the case that a+b> c,
as required. C

The next proof strategy we derive concerns proving implications.

F Definition 1.3.18
The contrapositive of a proposition of the form p⇒ q is the proposition ¬q⇒¬p.

C Theorem 1.3.19 (Law of contraposition)
Let p and q be propositional variables. Then p⇒ q≡ (¬q)⇒ (¬p).

Proof
We build the truth tables for p⇒ q and (¬q)⇒ (¬p).

p q p⇒ q ¬q ¬p (¬q)⇒ (¬p)
X X X × × X
X × × X × ×
× X X × X X
× × X X X X

The columns for p⇒ q and (¬q)⇒ (¬p) are identical, so they are logically equivalent.
�

Theorem 1.3.19 suggests the following proof strategy.

v Strategy 1.3.20 (Proof by contraposition)
In order to prove a proposition of the form p⇒ q, it suffices to assume that q is false and
derive that p is false.
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0 Example 1.3.21
Fix two natural numbers m and n. We will prove that if mn > 64, then either m > 8 or
n > 8.

By contraposition, it suffices to assume that it is not the case that m > 8 or n > 8, and
derive that it is not the case that mn > 64.

So assume that neither m > 8 nor n > 8. Then m 6 8 and n 6 8, so that mn 6 64, as
required. C

. Exercise 1.3.22
Use the law of contraposition to prove that p⇔ q ≡ (p⇒ q)∧ ((¬p)⇒ (¬q)), and use
the proof technique that this equivalence suggests to prove that an integer is even if and
only if its square is even. C

It feels good to invoke impressive-sounding results like proof by contraposition, but in
practice, the logical equivalence between any two different propositional formulae sug-
gests a new proof technique, and not all of these techniques have names. And indeed, the
proof strategy in the following exercise, while useful, has no slick-sounding name—at
least, not one that would be widely understood.

. Exercise 1.3.23
Prove that p∨q ≡ (¬p)⇒ q. Use this logical equivalence to suggest a new strategy for
proving propositions of the form p∨q, and use this strategy to prove that if two integers
sum to an even number, then either both integers are even or both are odd. C

Negation

In pure mathematics it is common to ask whether or not a certain property holds of
a mathematical object. For example, in Section 7.2, we will look at convergence of
sequences of real numbers: to say that a sequence x0,x1,x2, . . . of real numbers converges
(Definition 7.2.15) is to say

∃a ∈ R, ∀ε ∈ R, (ε > 0⇒∃N ∈ N, ∀n ∈ N, [n> N⇒ |xn−a|< ε])

This is already a relatively complicated logical formula. But what if we wanted to prove
that a sequence does not converge? Simply assuming the logical formula above and
deriving a contradiction might work sometimes, but it is not particularly enlightening.

Our next goal is to develop a systematic method for negating complicated logical for-
mulae. With this done, we will be able to negate the logical formula expressing ‘the
sequence x0,x1,x2, . . . converges’ as follows

∀a ∈ R, ∃ε ∈ R, (ε > 0∧∀N ∈ N, ∃n ∈ N, [n> N∧|xn−a|> ε])

Granted, this is still a complicated expression, but when broken down element by ele-
ment, it provides useful information about how it may be proved.

The rules for negating conjunctions and disjunctions are instances of de Morgan’s laws,
which exhibit a kind of duality between ∧ and ∨.
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C Theorem 1.3.24 (de Morgan’s laws for logical operators)
Let p and q be logical formulae. Then:

(a) ¬(p∧q)≡ (¬p)∨ (¬q); and

(b) ¬(p∨q)≡ (¬p)∧ (¬q).

Proof of (a)
Consider the following truth table.

p q p∧q ¬(p∧q) ¬p ¬q (¬p)∨ (¬q)
X X X × × × ×
X × × X × X X
× X × X X × X
× × × X X X X

The columns for ¬(p∧q) and (¬p)∨ (¬q) are identical, so they are logically equivalent.
�

. Exercise 1.3.25
Prove Theorem 1.3.24(b) thrice: once using the definition of logical equivalence directly
(like we did in Examples 1.3.3 and 1.3.4 and Exercise 1.3.5), once using a truth table,
and once using part (a) together with the law of double negation. C

0 Example 1.3.26
We often use de Morgan’s laws for logical operators without thinking about it. For ex-
ample to say that ‘neither 3 nor 7 is even’ is equivalent to saying ‘3 is odd and 7 is odd’.
The former statement translates to

¬[(3 is even)∨ (7 is even)]

while the second statement translates to

[¬(3 is even)]∧ [¬(7 is even)]

C

. Exercise 1.3.27
Prove that ¬(p⇒ q) ≡ p∧ (¬q) twice, once using a truth table, and once using Exer-
cise 1.3.13 together with de Morgan’s laws and the law of double negation. C

De Morgan’s laws for logical operators generalise to statements about quantifiers, ex-
pressing a similar duality between ∀ and ∃ as we have between ∧ and ∨.

C Theorem 1.3.28 (de Morgan’s laws for quantifiers)
let p(x) be a logical formula with free variable x ranging over a set X . Then:

(a) ¬∀x ∈ X , p(x)≡ ∃x ∈ X , ¬p(x); and

(b) ¬∃x ∈ X , p(x)≡ ∀x ∈ X , ¬p(x).
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Proof
Unfortunately, since these logical formulae involve quantifiers, we do not have truth
tables at our disposal, so we must assume each formula and derive the other.

We start by proving the equivalence in part (b), and then we derive (a) as a consequence.

• Assume ¬∃x ∈ X , p(x). To prove ∀x ∈ X , ¬p(x), fix some x ∈ X . If p(x) were true,
then we’d have ∃x ∈ X , p(x), which contradicts our main assumption; so we have
¬p(x). But then ∀x ∈ X , ¬p(x) is true.

• Assume ∀x ∈ X , ¬p(x). For the sake of contradiction, assume ∃x ∈ X , p(x) were true.
Then we obtain some a∈X for which p(a) is true. But ¬p(a) is true by the assumption
that ∀x ∈ X , ¬p(a), so we obtain a contradiction. Hence ¬∃x ∈ X , p(x) is true.

This proves that ¬∃x ∈ X , p(x)≡ ∀x ∈ X , ¬p(x).

Now (a) follows from (b) using the law of double negation (Theorem 1.3.15):

∃x ∈ X , ¬p(x)≡ ¬¬∃x ∈ X , ¬p(x)
(b)≡ ¬∀x ∈ X , ¬¬p(x)≡ ¬∀x ∈ X , p(x)

as required. �

The proof strategy suggested by the logical equivalence in Theorem 1.3.28(b) is so im-
portant that it has its own name.

v Strategy 1.3.29 (Proof by counterexample)
To prove that a proposition of the form ∀x ∈ X , p(x) is false, it suffices to find a single
element a ∈ X such that p(a) is false. The element a is called a counterexample to the
proposition ∀x ∈ X , p(x).

0 Example 1.3.30
We prove by counterexample that not every integer is divisible by a prime number. In-
deed, let x = 1. The only integral factors of 1 are 1 and −1, neither of which are prime,
so that 1 is not divisible by any primes. C

. Exercise 1.3.31
Prove by counterexample that not every rational number can be expressed as

a
b

where
a ∈ Z is even and b ∈ Z is odd. C

We have now seen how to negate the logical operators ¬, ∧, ∨ and ⇒, as well as the
quantifiers ∀ and ∃.

F Definition 1.3.32
A logical formula is maximally negated if the only instances of the negation operator ¬
appear immediately before a predicate (or other proposition not involving logical operat-
ors or quantifiers).
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0 Example 1.3.33
The following propositional formula is maximally negated:

[p∧ (q⇒ (¬r))]⇔ (s∧ (¬t))

Indeed, all instances of ¬ appear immediately before propositional variables.

However the following propositional formula is not mmaximally negated:

(¬¬q)⇒ q

Here the subformula ¬¬q contains a negation operator immediately before another neg-
ation operator (¬¬q). However by the law of double negation, this is equivalent to
q⇒ q, which is maximally negated trivially since there are no negation operators to
speak of. C

. Exercise 1.3.34
Determine which of the following logical formulae are maximally negated.

(a) ∀x ∈ X , (¬p(x))⇒∀y ∈ X ,¬(r(x,y)∧ s(x,y));

(b) ∀x ∈ X , (¬p(x))⇒∀y ∈ X ,(¬r(x,y))∨ (¬s(x,y));

(c) ∀x ∈ R, [x > 1⇒ (∃y ∈ R, [x < y∧¬(x2 6 y)])];

(d) ¬∃x ∈ R, [x > 1∧ (∀y ∈ R, [x < y⇒ x2 6 y])].

C

The following theorem allows us to replace logical formulae by maximally negated ones,
which in turn suggests proof strategies that we can use for proving that complicated-
looking propositions are false.

C Theorem 1.3.35
Every logical formula (built using only the logical operators and quantifiers we have seen
so far) is logically equivalent to a maximally negated logical formula.

Idea of proof
Much like Theorem 1.3.6, a precise proof of Theorem 1.3.35 requires some form of
induction argument, so instead we will give an idea of the proof.

Every logical formula we have seen so far is built from predicates using the logical op-
erators ∧,∨,⇒ and ¬ and the quantifiers ∀ and ∃—indeed, the logical operator⇔ was
defined in terms of ∧ and⇒, and the quantifier ∃ was defined in terms of the quantifiers
∀ and ∃ and the logical operators ∧ and⇒.

But the results in this section allow us to push negations ‘inside’ each of these logical
operators and quantifiers, as summarised in the following table.
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Negation outside Negation inside Proof
¬(p∧q) ≡ (¬p)∨ (¬q) Theorem 1.3.24(a)
¬(p∨q) ≡ (¬p)∧ (¬q) Theorem 1.3.24(b)
¬(p⇒ q) ≡ p∧ (¬q) Exercise 1.3.27
¬(¬p) ≡ p Theorem 1.3.15

¬∀x ∈ X , p(x) ≡ ∃x ∈ X , ¬p(x) Theorem 1.3.28(a)
¬∃x ∈ X , p(x) ≡ ∀x ∈ X , ¬p(x) Theorem 1.3.28(b)

Repeatedly applying these rules to a logical formula eventually yields a logically equi-
valent, maximally negated logical formula.

0 Example 1.3.36
Recall the logical formula from page 61 expressing the assertion that a sequence
x0,x1,x2, . . . of real numbers converges:

∃a ∈ R, ∀ε ∈ R, (ε > 0⇒∃N ∈ N, ∀n ∈ N, [n> N⇒ |xn−a|< ε])

We will maximally negate this to obtain a logical formula expressing the assertion that
the sequence does not converge.

Let’s start at the beginning. The negation of the formula we started with is:

¬∃a ∈ R, ∀ε ∈ R, (ε > 0⇒∃N ∈ N, ∀n ∈ N, [n> N⇒ |xn−a|< ε])

The key to maximally negating a logical formula is to ignore information that is not
immediately relevant. Here, the expression that we are negating takes the form ¬∃a ∈
R, (stuff). It doesn’t matter what the ‘stuff’ is just yet; all that matters is that we are
negating an existentially quantified statement, and so de Morgan’s laws for quantifiers
tells us that this is logically equivalent to ∀a ∈ R, ¬(stuff). We apply this rule and just
re-write the ‘stuff’, to obtain:

∀a ∈ R, ¬∀ε ∈ R, (ε > 0⇒∃N ∈ N, ∀n ∈ N, [n> N⇒ |xn−a|< ε])

Now we are negating a universally quantified statement, ¬∀ε ∈ R, (stuff) which, by de
Morgan’s laws for quantifiers, is equivalent to ∃ε ∈ R, (stuff):

∀a ∈ R, ∃ε ∈ R, ¬(ε > 0⇒∃N ∈ N, ∀n ∈ N, [n> N⇒ |xn−a|< ε])

At this point, the statement being negated is of the form (stuff)⇒ (junk), which by
Exercise 1.3.27 negates to (stuff)∧¬(junk). Here, ‘stuff’ is ε > 0 and ‘junk’ is ∃N ∈
N,∀n ∈ N, [n> N⇒ |xn−a|< ε]. So performing this negation yields:

∀a ∈ R, ∃ε ∈ R, (ε > 0∧¬∃N ∈ N, ∀n ∈ N, [n> N⇒ |xn−a|< ε])

Now we are negating an existentially quantified formula again, so using de Morgan’s
laws for quantifiers gives:

∀a ∈ R, ∃ε ∈ R, (ε > 0∧∀N ∈ N, ¬∀n ∈ N, [n> N⇒ |xn−a|< ε])

The formula being negated here is univerally quantified, so using de Morgan’s laws for
quantifiers again gives:

∀a ∈ R, ∃ε ∈ R, (ε > 0∧∀N ∈ N, ∃n ∈ N, ¬[n> N⇒ |xn−a|< ε])
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We’re almost there! The statement being negated here is an implication, so applying the
rule ¬(p⇒ q)≡ p∧ (¬q) again yields:

∀a ∈ R, ∃ε ∈ R, (ε > 0∧∀N ∈ N, ∃n ∈ N, [n> N∧¬(|xn−a|< ε)])

At this point, strictly speaking, the formula is maximally negated, since the statement
being negated does not involve any other logical opreators or quantifiers. However, since
¬(|xn−a|< ε) is equivalent to |xn−a|> ε , we can go one step further to obtain:

∀a ∈ R, ∃ε ∈ R, (ε > 0∧∀N ∈ N, ∃n ∈ N, [n> N∧|xn−a|> ε])

This is as negated as we could ever dream of, and so we stop here. C

. Exercise 1.3.37
Find a maximally negated propositional formula that is logically equivalent to ¬(p⇔ q).

C

. Exercise 1.3.38
Maximally negate the following logical formula, then prove that it is true or prove that it
is false.

∃x ∈ R, [x > 1∧ (∀y ∈ R, [x < y⇒ x2 6 y])]

C

Tautologies

The final concept that we introduce in this chapter is that of a tautology, which can be
thought of as the opposite of a contradiction. The word ‘tautology’ has other implications
when used colloquially, but in the context of symbolic logic it has a precise definition.

F Definition 1.3.39
A tautology is a proposition or logical formula that is true, no matter how truth values
are assigned to its component propositional variables and predicates.

The reason we are interested in tautologies is that tautologies can be used as assumptions
at any point in a proof, for any reason.

v Strategy 1.3.40 (Assuming tautologies)
Let p be a proposition. Any tautology may be assumed in any proof of p.

0 Example 1.3.41
The law of excluded middle (Axiom 1.1.44) says precisely that p∨ (¬p) is a tautology.
This means that when proving any result, we may split into cases based on whether a
proposition is true or false, just as we did in Proposition 1.1.46. C

0 Example 1.3.42
The formula p⇒ (q⇒ p) is a tautology.
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A direct proof of this fact is as follows. In order to prove p⇒ (q⇒ p) is true, it suffices
to assume p and derive q⇒ p. So assume p. Now in order to prove q⇒ p, it suffices
to assume q and derive p. So assume q. But we’re already assuming that p is true! So
q⇒ p is true, and hence p⇒ (q⇒ p) is true.

A proof using truth tables is as follows:

p q q⇒ p p⇒ (q⇒ p)
X X X X
X × X X
× X × X
× × X X

We see that p⇒ (q⇒ p) is true regardless of the truth values of p and q. C

. Exercise 1.3.43
Prove that each of the following is a tautology:

(a) [(p⇒ q)∧ (q⇒ r)]⇒ (p⇒ r);

(b) [p⇒ (q⇒ r)]⇒ [(p⇒ q)⇒ (p⇒ r)];

(c) ∃y ∈ Y, ∀x ∈ X , p(x,y)⇒∀x ∈ X , ∃y ∈ Y, p(x,y);

(d) [¬(p∧q)]⇔ [(¬p)∨ (¬q)];

(e) (¬∀x ∈ X , p(x))⇔ (∃x ∈ X , ¬p(x)).

For each, try to interpret what it means, and how it might be useful in a proof. C

You may have noticed parallels between de Morgan’s laws for logical operators and
quantifiers, and parts (d) and (e) of Exercise 1.3.43, respectively. They almost seem to
say the same thing, except that in Exercise 1.3.43 we used ‘⇔’ and in Theorems 1.3.24
and 1.3.28 we used ‘≡’. There is an important difference, though: if p and q are logical
formulae, then p⇒ q is itself a logical formula, which we may study as a mathematical
object in its own right. However, p ≡ q is not a logical formula: it is an assertion about
logical formulae, namely that the logical formulae p and q are equivalent.

There is, nonetheless, a close relationship between⇔ and ≡—this relationship is sum-
marised in the following theorem.

C Theorem 1.3.44
Let p and q be logical formulae.

(a) q can be derived from p if and only if p⇒ q is a tautology;

(b) p≡ q if and only if p⇔ q is a tautology.

Proof
For (a), note that a derivation of q from p is sufficient to establish the truth of p⇒ q by
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the introduction rule for conjunction (⇒I), and so if q can be derived from p, then p⇒ q
is a tautology. Conversely, if p⇒ q is a tautology, then q can be derived from p using the
elimination rule for conjunction (⇒E) together with the (tautological) assumption that
p⇒ q is true.

Now (b) follows from (a), since logical equivalence is defined in terms of derivation in
each direction, and⇔ is simply the conjunction of two implications. �

Aaand breathe! All this new notation can be overwhelming at first, but it will be worth it
in the end. This chapter was all about teaching you a new language—new symbols, new
terminology—because without it, our future pursuits will be impossible. If you’re stuck
now, then don’t worry: you’ll soon get the hang of it, especially when we start using this
new language in context. You can, of course, refer back to the results in this chapter for
reference at any point in the future.

68



Section 1.E. Chapter 1 exercises 69

Section 1.E

Chapter 1 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

1.1. For fixed n ∈ N, let p represent the proposition ‘n is even’, let q represent the pro-
position ‘n is prime’ and let r represent the proposition ‘n = 2’. For each of the following
propositional formulae, translate it into plain English and determine whether it is true for
all n ∈ N, true for some values of n and false for some values of n, or false for all n ∈ N.

(a) (p∧q)⇒ r

(b) q∧ (¬r)⇒ (¬p)

(c) ((¬p)∨ (¬q))∨ (¬r)

(d) (p∧q)∧ (¬r)

1.2. For each of the following plain English statements, translate it into a symbolic pro-
positional formula. The propositional variables in your formulae should represent the
simplest propositions that they can.

(a) Guinea pigs are quiet, but they’re loud when they’re hungry.

(b) It doesn’t matter that 2 is even, it’s still a prime number.

(c)
√

2 can’t be an integer because it is a rational number.

1.3. Let p and q be propositions, and assume that p⇒ (¬q) is true and that (¬q)⇒ p is
false. Which of the following are true, and which are false?

(a) q being false is necessary for p to be true.

(b) q being false is sufficient for p to be true.

(c) p being true is necessary for q to be false.

(d) p being true is sufficient for p to be false.

1.4. Find a statement in plain English, involving no variables at all, that is equivalent to
the logical formula ∀a ∈ Q, ∀b ∈ Q, (a < b⇒ ∃c ∈ R, [a < c < b ∧ ¬(c ∈ Q)]). Then
prove this statement, using the structure of the logical formula as a guide.

1.5. Find a purely symbolic logical formula that is equivalent to the following statement,
and then prove it: “No matter which integer you may choose, there will be an integer
greater than it.”

1.6. Prove that
p⇔ q≡ (p⇒ q)∧ ((¬p)⇒ (¬q))
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70 Chapter 1. Logical structure

How might this logical equivalence help you to prove statements of the form ‘p if and
only if q’?

1.7. Prove using truth tables that p⇒ q 6≡ q⇒ p. Give an example of propositions p and
q such that p⇒ q is true but q⇒ p is false.

1.8. A new logical operator ↑ is defined by the following rules:

(i) If a contradiction can be derived from the assumption that p is true, then p ↑ q is
true;

(ii) If a contradiction can be derived from the assumption that q is true, then p ↑ q is
true;

(iii) If r is any proposition, and if p ↑ q, p and q are all true, then r is true.

This question explores this curious new logical operator.

(a) Prove that p ↑ p≡ ¬p, and deduce that ((p ↑ p) ↑ (p ↑ p))≡ p.

(b) Prove that p∨q≡ (p ↑ p) ↑ (q ↑ q) and p∧q≡ (p ↑ q) ↑ (p ↑ q).

(c) Find a propositional formula using only the logical operator ↑ that is equivalent to
p⇒ q.

1.9. Let X be Z or Q, and define a logical formula p by:

∀x ∈ X , ∃y ∈ X , (x < y∧ [∀z ∈ X , ¬(x < z∧ z < y)])

Write out ¬p as a maximally negated logical formula. Prove that p is true when X = Z,
and p is false when X =Q.

1.10. Use Definition 1.2.26 to write out a maximally negated logical formula that is
equivalent to ¬∃!x ∈ X , p(x). Describe the strategy that this equivalence suggests for
proving that there is not a unique x ∈ X such that p(x) is true, and use this strategy to
prove that, for all a ∈R, if a 6=−1 then there is not a unique x ∈R such that x4−2ax2 +
a2−1 = 0.

1.11. Let X be a set and let p(x) be a predicate. Find a logical formula representing the
statement ‘there are exactly two elements x ∈ X such that p(x) is true’. Use the structure
of this logical formula to describe how a proof should be structured, and use this structure
to prove that there are exactly two real numbers x such that x2 = 1.
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Section 2.1

Sets and set operations

We begin by redefining the notion of a set with a notch more precision than we provided
in Chapter 0. At their core, sets seem extremely simple—sets are just collections of
objects—except that if not kept in check, this characterisation of a set leads to logical
inconsistencies, such as the infamous Russell’s paradox.

These logical paradoxes can be overcome by restricting ourselves to working inside a
universe U , which we consider to be a set which is so big that it contains all of the
mathematical objects that we want to talk about. This is a subtle issue, which is well
beyond the scope of this section, but is discussed further in Section B.1.

F Definition 2.1.1
A set is a collection of elements from a specified universe of discourse. The collection
of everything in the universe of discourse is called the universal set, denoted by U
(LATEX code: \mathcal{U}).

The expression x ∈ X (LATEX code: \in) denotes the statement that x is an element of X ;
we write x 6∈ X (LATEX code: \not\in) to mean ¬(x ∈ X), that is that x is not an element
of X .

0 Example 2.1.2
In Chapter 0, we introduced five sets: the set N of natural numbers, the set Z of in-
tegers, the set Q of rational numbers, the set R of real numbers and the set C of complex
numbers. C

. Exercise 2.1.3
Which of the following propositions are true, and which are false?

1
2
∈ Z 1

2
∈Q Z ∈Q Z ∈U

1
2
∈U

C

We will avoid referring explicitly to the universal set U whenever possible, but it will
always be there in the background. This is convenient because we no longer need to
worry about the domain of discourse of free variables (as we did in Definition 1.2.2), so
that we can abbreviate ‘∀x ∈U , p(x)’ by ‘∀x, p(x)’, and ‘∃x ∈U , p(x)’ by ‘∃x, p(x)’.

Note that under this convention:

• ∀x ∈ X , p(x) is logically equivalent to ∀x, (x ∈ X ⇒ p(x)); and

• ∃x ∈ X , p(x) is logically equivalent to ∃x, (x ∈ X ∧ p(x)).
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Specifying a set

One way of defining a set is simply to describe it in words, like we have done up to now.
There are other, more concise ways of specifying sets, which also remove such ambiguity
from the process.

Lists. One way is simply to provide a list of the elements of the set. To specify that
the list denotes a set, we enclose the list with {curly brackets} (LATEX code: \{,\}).
For example, the following is a specification of a set X , whose elements are the natural
numbers between 0 and 5 (inclusive):

X = {0,1,2,3,4,5}

Implied lists. Sometimes a list might be too long to write out—maybe even infinite—or
the length of the list might depend on a variable. In these cases it will be convenient to
use an implied list, in which some elements of the list are written, and the rest are left
implicit by writing an ellipsis ‘. . . ’ (LATEX code: \dots). For example, the statement

X = {1,4,9, . . . ,n2}

means that X is the set whose elements are all the square numbers from 1 to n2, where n
is some number. Implied lists can be ambiguous, since they rely on the reader’s ability
to infer the pattern being followed, so use with caution!

Set-builder notation. In general, implied lists can be ambiguous, so in practice they are
avoided unless the implied list is very simple, such as a set of consecutive numbers like
{3,4, . . . ,9}. In fact, many sets can’t even be listed in this way.

To get around this, we can use set-builder notation, which is a means of specifying a set
in terms of the properties its elements satisfy. Given a set X , the set of elements of X
satisfying some property p(x) is denoted

{x ∈ X | p(x)}

The bar ‘|’ (LATEX code: \mid) separates the variable name from the formula that they
make true—some authors use a colon instead (as in {x ∈ X : p(x)}).

The set {x ∈ X | p(x)} is read aloud as ‘the set of x ∈ X such that p(x)’, but beware—
neither the bar ‘|’ nor the colon ‘:’ mean ‘such that’ in other contexts.

0 Example 2.1.4
The set of all even integers can be written in set-builder notation as

{n ∈ Z | n is even}

For comparison, the set of all even natural numbers can be written as

{n ∈ N | n is even}= {0,2,4,6, . . .}

Note that−6 is an element of the former set but not of the latter set, since−6 is an integer
but is not a natural number.
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Note moreover that the expression

{n ∈Q | n is even}

is meaningless, since we have not defined a notion of ‘evenness’ for rational numbers.
C

v Strategy 2.1.5
Let X be a set and let p(x) be a logical formula with free variable x∈ X . In order to prove
a ∈ {x ∈ X | p(x)}, it suffices to prove a ∈ X and that p(a) is true.

. Exercise 2.1.6
A dyadic rational is a rational number that can be expressed as an integer divided by a
power of 2. Express the set of all dyadic rationals using set-builder notation. C

An alternate form of set-builder notation uses an expression involving one or more vari-
ables to the left of the vertical bar, and the range of the variable(s) to the right. The ele-
ments of the set are then the values of the expression as the variable(s) vary as indicated—
that is:

{expr(x) | x ∈ X} is defined to mean {y | ∃x ∈ X , y = expr(x)}
where expr(x) is the expression in question.

0 Example 2.1.7
The expression {3k+2 | k ∈ Z} denotes the set of all integers of the form 3k+2, where
k ∈ Z. It is shorthand for {n ∈ Z | ∃k ∈ Z, n = 3k+2}. In implied list notation, we could
write this set as {. . . ,−4,−1,2,5,8, . . .}. C

. Exercise 2.1.8
Express the set of dyadic rationals (defined in Exercise 2.1.6) in this alternate form of
set-builder notation. C

Set-builder notation is useful for defining sets based on the properties they satisfy, as in
Definitions 2.1.9 and 2.1.11 below.

F Definition 2.1.9
Let n ∈ N. The set [n] is defined by [n] = {k ∈ N | 16 k 6 n}.

0 Example 2.1.10
In implied list notation, [n] = {1,2, . . . ,n}. For example, [4] = {1,2,3,4}. Note that [0]
has no elements (it is empty—see Definition 2.1.26), since there are no natural numbers
k satisfying the inequality 16 k 6 0. C

While not particularly interesting yet, sets of the form [n] will be fundamental throughout
Chapter 6, as they are used to define the notion of a finite set, as well as the size of a finite
set.

Intervals are particular subsets of R that are ubiquitous in mathematics, particularly in
analysis and topology.
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F Definition 2.1.11 (Intervals of the real line)
Let a,b ∈ R. The open interval (a,b), the closed interval [a,b], and the half-open
intervals [a,b) and (a,b] from a to b are defined by

(a,b) = {x ∈ R | a < x < b} (a,b] = {x ∈ R | a < x6 b}
[a,b) = {x ∈ R | a6 x < b} [a,b] = {x ∈ R | a6 x6 b}

We further define the unbounded intervals (−∞,a), (−∞,a], [a,∞) and (a,∞) (LATEX
code: \infty) by

(−∞,a) = {x ∈ R | x < a} (a,∞) = {x ∈ R | x > a}
(−∞,a] = {x ∈ R | x6 a} [a,∞) = {x ∈ R | x> a}

0 Example 2.1.12
The following illustration depicts the open interval (−2,5).

−2 5

The hollow circles ◦ indicate that the endpoints are not included in the interval. C

Be warned that the use of the symbol ∞ is misleading, since it suggests that the sym-
bol ∞ on its own has a specific meaning (or, worse, that it refers to a real number). It
doesn’t—it is just a symbol that suggests unboundedness of the interval in question. A
less misleading way of writing [a,∞), for instance, might be [a,→) or R>a; however,
[a,∞) is standard, so it is what we will write.

. Exercise 2.1.13
For each of the following illustrations, find the interval that it depicts. A filled circle •
indicates that an end-point is included in the interval, whereas a hollow circle ◦ indicates
that an end-point is not included in the interval.

(a)
−2 5

(b)
−2 5

(c)
5

(d)
−2

C
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Subsets

It is often the case that everything that is also an element of one set is an element of
another set. For example, every integer is a rational number; that is

∀n ∈ Z, n ∈Q

We can say this more concisely by saying that Z is a subset of Q.

F Definition 2.1.14
Let X be a set. A subset of X is a set U such that

∀a, (a ∈U ⇒ a ∈ X)

We write U ⊆ X (LATEX code: \subseteq) for the assertion that U is a subset of X .

Additionally, the notation U * X (LATEX code: \nsubseteq) means that U is not a subset
of X , and the notation U $ X (LATEX code: \subsetneqq) means that U is a proper
subset of X , that is a subset of X that is not equal to X .

v Strategy 2.1.15 (Proving a subset containment)
In order to prove that a set U is a subset of a set X , it suffices to take an arbitrary element
a ∈U and prove that a ∈ X .

0 Example 2.1.16
Every set is a subset of itself—that is, X ⊆ X for all sets X . The proof of this is extremely
simple: we must prove ∀x ∈ X , x ∈ X . But then this is trivial: let x ∈ X , then x ∈ X by
assumption. Done! C

0 Example 2.1.17
Let a,b,c,d ∈ R with a < c < d < b. Then [c,d] ⊆ (a,b). Indeed, let x ∈ [c,d]. Then
c6 x6 d. But then

a < c6 x6 d < b ⇒ a < x < b

so that [c,d]⊆ (a,b), as required. C

. Exercise 2.1.18
Let a,b,c,d ∈ R with a < b and c < d. Prove that [a,b)⊆ (c,d] if and only if a> c and
b6 d. C

0 Example 2.1.19
The number sets from Chapter 0 are related by the following chain of subset inclusions.

N⊆ Z⊆Q⊆ R⊆ C

C

The following proposition proves a property of subsethood known as transitivity—we’ll
revisit this property in Section 4.1.
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C Proposition 2.1.20
Let X ,Y,Z be sets. If X ⊆ Y and Y ⊆ Z, then X ⊆ Z.

Proof
Suppose that X ⊆ Y and Y ⊆ Z. We need to prove X ⊆ Z.

So let a ∈ X . Since X ⊆Y , it follows from Definition 2.1.14 that a ∈Y ; and since Y ⊆ Z,
it follows again from Definition 2.1.14 that a ∈ Z.

Hence X ⊆ Z, as required. �

Set equality

This section is all about defining sets, comparing sets, and building new sets from old,
and so to make much more progress, we first need to establish what we mean when we
say that two sets are equal.

. Discussion 2.1.21
Let X and Y be sets. What should it mean to say that X and Y are equal? Try to provide
a precise definition of equality of sets before reading on. C

There are different possible notions of ‘sameness’ for sets: we might want to say that two
sets X and Y are equal when they have quite literally the same definition; or we might
want to say that X and Y are equal when they contain the same objects as elements.
For instance, suppose X is ‘the set of all odd natural numbers’ and Y is ‘the set of all
integers that are differences of consecutive perfect squares’—in this case, the first of
these characterisations of equality might lead us to say X 6=Y , whereas the second would
lead us to say X = Y .

Clearly, we have to state our terms at some point. And that point is now.

C Axiom 2.1.22 (Set extensionality)
Let X and Y be sets. Then X = Y if and only if ∀a, (a ∈ X ⇔ a ∈ Y ), or equivalently, if
X ⊆ Y and Y ⊆ X .

This characterisation of set equality suggests the following strategy for proving that two
sets are equal.

v Strategy 2.1.23 (Proof by double containment)
In order to prove that a set X is equal to a set Y , it suffices to:

• Prove X ⊆ Y , i.e. let a ∈ X be an arbitrary element, and derive a ∈ Y ; and then

• Prove X ⊇ Y , i.e. let a ∈ Y be an arbitrary element, and derive a ∈ X .

We often write ‘(⊆)’ and ‘(⊇)’ to indicate the direction of the containment being proved.
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0 Example 2.1.24
We prove that {x ∈ R | x2 6 1}= [−1,1] by double containment.

• (⊆) Let a∈{x∈R | x26 1}. Then a∈R and a26 1, so that (1−a)(1+a)= 1−a2> 0.
It follows that either:

� 1−a> 0 and 1+a> 0, in which case a6 1 and a>−1, so that a ∈ [−1,1].

� 1−a6 0 and 1+a6 0, in which case a> 1 and a6−1, which is a contradiction
since −1 < 1.

So we must have a ∈ [−1,1], as required.

• (⊇) Let a ∈ [−1,1]. Then −1 6 a 6 1, so |a| 6 1, and hence a2 = |a|2 6 1, so that
a ∈ {x ∈ R | x2 6 1}, as required.

C

. Exercise 2.1.25
Prove that {x ∈ R | x2 < x}= (0,1). C

Inhabitation and emptiness

Another fundamental example of a set is the empty set, which is the set with no elements.
But we have to be slightly careful about how we use the word ‘the’, since it implies
uniqueness, and we don’t know (yet) that two sets with no elements are necessarily equal.
So first we will define what it means for a set to be empty, and then we’ll show that there
is exactly one empty set.

F Definition 2.1.26
A set X is inhabited (or nonempty) if it has at least one element; otherwise, it is empty.

The assertion that X is inhabited is equivalent to the logical formula ∃a, a ∈ X , and the
assertion that X is empty is equivalent to the logical formula ¬∃a, a ∈ X . This suggests
the following strategy for proving that a set is inhabited, or that it is empty.

v Strategy 2.1.27 (Proving that a set is inhabited or empty)
In order to prove a set X is inhabited, it suffices to exhibit an element. In order to prove a
set X is empty, assume that X is inhabited—that is, that there is some element a∈X—and
derive a contradiction.

In other texts, the term nonempty is more common than inhabited, but there are reas-
ons to prefer latter. Indeed, the statement ‘X is non-empty’ translates more directly to
¬(¬∃a, a ∈ X), which has an unnecessary double-negative and suggests a proof of in-
habitation by contradiction. For this reason, we use the term inhabited in this book.

Emptiness may seem like a trivial condition—and it is—but owing to its canonicity, it
arises all over the place.
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0 Example 2.1.28
The set {x ∈R | x2 = 2} is inhabited since, for example

√
2 ∈R and

√
2

2
= 2. However,

the set {x∈Q | x2 = 2} is empty since, if it were inhabited, then there would be a rational
number x such that x2 = 2, contrary to Proposition 0.28. C

0 Example 2.1.29
We observed in Example 2.1.10 that the set [0] is empty; here’s a more formal proof.
Towards a contradiction, suppose [0] is inhabited. Then there is some k ∈ N such that
16 k6 0. It follows that 16 0, which contradicts the fact that 0 < 1. Hence [0] is empty,
after all. C

. Exercise 2.1.30
Let a,b ∈R. Prove that [a,b] is empty if and only if a > b, and that (a,b) is empty if and
only if a> b. C

The next exercise is a logical technicality, which is counterintuitive for the same reason
that makes the principle of explosion (Axiom 1.1.49) difficult to grasp. However, it
is extremely useful for proving facts about the empty set, as we will see soon in The-
orem 2.1.32.

. Exercise 2.1.31
Let E be an empty set and let p(x) be a predicate with one free variable x with domain
of discourse E. Show that the proposition ∀x ∈ E, p(x) is true, and that the proposition
∃x ∈ E, p(x) is false. What does the proposition ∀x ∈ E, x 6= x mean in English? Is it
true? C

Thanks to the axiom of extensionality (Axiom 2.1.22), any two empty sets must be equal
since they both contain the same elements—namely, no elements at all! This is made
formal in the following theorem.

C Theorem 2.1.32
Let E and E ′ be sets. If E and E ′ are empty, then E = E ′.

Proof. Suppose that E and E ′ are empty. The assertion that E = E ′ is equivalent to

∀a ∈ E, a ∈ E ′)∧ (∀a ∈ E ′, a ∈ E

But ∀a ∈ E, a ∈ E ′ and ∀a ∈ E ′, a ∈ E are both true by Exercise 2.1.31 since E and E ′

are empty. So E = E ′, as claimed.

Knowing that there is one and only one empty set means that we may now make the
following definition, without worrying about whether the word ‘the’ is problematic.

F Definition 2.1.33
The empty set (also known as the null set) is the set with no elements, and is denoted by
∅ (LATEX code: \varnothing).
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Some authors write {} instead of ∅, since {} is simply the empty set expressed in list
notation.

. Exercise 2.1.34
Let X be a set. Prove that ∅⊆ X . C

Set operations

In Example 2.1.24 we noted that [0,∞) is the set of all non-negative real numbers. What
if we wanted to talk about the set of all non-negative rational numbers instead? It would
be nice if there was some expression in terms of [0,∞) and Q to denote this set.

This is where set operations come in—they allow us to use previously defined sets to
introduce new sets.

Intersection (∩)

The intersection of two sets is the set of things which are elements of both sets.

F Definition 2.1.35
Let X and Y be sets. The (pairwise) intersection of X and Y , denoted X ∩Y (LATEX code:
\cap), is defined by

X ∩Y = {a | a ∈ X ∧a ∈ Y}

0 Example 2.1.36
By definition of intersection, we have x ∈ [0,∞)∩Q if and only if x ∈ [0,∞) and x ∈ Q.
Since x ∈ [0,∞) if and only if x is a non-negative real number (see Example 2.1.24), it
follows that [0,∞)∩Q is the set of all non-negative rational numbers. C

. Exercise 2.1.37
Prove that [0,∞)∩Z= N. C

. Exercise 2.1.38
Write down the elements of the set

{0,1,4,7}∩{1,2,3,4,5}
C

. Exercise 2.1.39
Express [−2,5)∩ [4,7) as a single interval. C

C Proposition 2.1.40
Let X and Y be sets. Prove that X ⊆ Y if and only if X ∩Y = X .

Proof
Suppose that X ⊆ Y . We prove X ∩Y = X by double containment.

• (⊆) Suppose a ∈ X ∩Y . Then a ∈ X and a ∈ Y by definition of intersection, so in
particular we have a ∈ X .
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• (⊇) Suppose a ∈ X . Then a ∈ Y since X ⊆ Y , so that a ∈ X ∩Y by definition of
intersection.

Conversely, suppose that X ∩Y = X . To prove that X ⊆ Y , let a ∈ X . Then a ∈ X ∩Y
since X = X ∩Y , so that a ∈ Y by definition of intersection, as required. �

. Exercise 2.1.41
Let X be a set. Prove that X ∩∅=∅. C

F Definition 2.1.42
Let X and Y be sets. We say X and Y are disjoint if X ∩Y is empty.

0 Example 2.1.43
The sets {0,2,4} and {1,3,5} are disjoint, since they have no elements in common. C

. Exercise 2.1.44
Let a,b,c,d ∈ R with a < b and c < d. Prove that the open intervals (a,b) and (c,d) are
disjoint if and only if b < c or d < a. C

Union (∪)

The union of two sets is the set of things which are elements of at least one of the sets.

F Definition 2.1.45
Let X and Y be sets. The (pairwise) union of X and Y , denoted X ∪Y (LATEX code:
\cup), is defined by

X ∪Y = {a | a ∈ X ∨a ∈ Y}

0 Example 2.1.46
Let E be the set of even integers and O be the set of odd integers. Since every integer
is either even or odd, E ∪O = Z. Note that E ∩O = ∅, thus {E,O} is an example of a
partition of Z—see Definition 4.2.21. C

. Exercise 2.1.47
Write down the elements of the set

{0,1,4,7}∪{1,2,3,4,5}

C

. Exercise 2.1.48
Express [−2,5)∪ [4,7) as a single interval. C

The union operation allows us to define the following class of sets that will be particularly
useful for us when studying counting principles in Section 6.2.

. Exercise 2.1.49
Let X and Y be sets. Prove that X ⊆ Y if and only if X ∪Y = Y . C
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0 Example 2.1.50
Let X ,Y,Z be sets. We prove that X ∩ (Y ∪Z) = (X ∩Y )∪ (X ∩Z).

• (⊆) Let x ∈ X ∩(Y ∪Z). Then x ∈ X , and either x ∈Y or x ∈ Z. If x ∈Y then x ∈ X ∩Y ,
and if x ∈ Z then x ∈ X ∩Z. In either case, we have x ∈ (X ∩Y )∪ (X ∩Z).

• (⊇) Let x ∈ (X ∩Y )∪ (X ∩Z). Then either x ∈ X ∩Y or x ∈ X ∩Z. In both cases we
have x ∈ X by definition of intersection In the first case we have x ∈ Y , and in the
second case we have x ∈ Z; in either case, we have x ∈ Y ∪Z, so that x ∈ X ∩ (Y ∪Z).

C

. Exercise 2.1.51
Let X ,Y,Z be sets. Prove that X ∪ (Y ∩Z) = (X ∪Y )∩ (X ∪Z). C

Indexed families of sets

We will often have occasion to take the intersection or union not of just two sets, but of
an arbitrary collection of sets (even of infinitely many sets). For example, we might want
to know which real numbers are elements of [0,1+ 1

n ) for each n > 1, and which real
numbers are elements of at least one of such sets.

Our task now is therefore to generalise our pairwise notions of intersection and union to
arbitrary collections of sets, called indexed families of sets.

F Definition 2.1.52
An (indexed) family of sets is a specification of a set Xi for each element i of some
indexing set I. We write {Xi | i ∈ I} for the indexed family of sets.

0 Example 2.1.53
The sets [0,1 + 1

n ) mentioned above assemble into an indexed family of sets, whose
indexing set is {n ∈ N | n> 1}. We can abbreviate this family of sets by

{[0,1+ 1
n ) | n> 1}

Observe that we have left implicit the fact that the variable n is ranging over the natural
numbers and just written ‘n > 1’ on the right of the vertical bar, rather than separately
defining I = {n ∈ N | n> 1} and writing {[0,1+ 1

n ) | n ∈ I}. C

F Definition 2.1.54
The (indexed) intersection of an indexed family {Xi | i ∈ I} is defined by⋂

i∈I

Xi = {a | ∀i ∈ I, a ∈ Xi} (LATEX code: \bigcap_{i \in I})

The (indexed) union of {Xi | i ∈ I} is defined by⋃
i∈I

Xi = {a | ∃i ∈ I, a ∈ Xi} (LATEX code: \bigcup_{i \in I})
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0 Example 2.1.55
We prove that the intersection of the half-open intervals [0,1+ 1

n ) for n> 1 is [0,1]. We
will use the notation

⋂
n>1

as shorthand for
⋂

n∈{x∈N | x>1}
.

• (⊆) Let x ∈
⋂
n>1

[0,1+
1
n
).

Then x ∈ [0,1+ 1
n ) for all n> 1. In particular, x> 0.

To see that x6 1, assume that x > 1—we will derive a contradiction. Since x > 1, we
have x− 1 > 0. Let N > 1 be some natural number greater or equal to 1

x−1 , so that
1
N 6 x− 1. Then x > 1+ 1

N , and hence x 6∈ [0,1+ 1
N ), contradicting the assumption

that x ∈ [0,1+ 1
n ) for all n> 1.

So we must have x6 1 after all, and hence x ∈ [0,1].

• (⊇) Let x ∈ [0,1].

To prove that x ∈
⋂
n>1

[0,1+
1
n
), we need to show that x ∈ [0,1+ 1

n ) for all n > 1. So

fix n > 1. Since x ∈ [0,1], we have x > 0 and x 6 1 < 1+ 1
n , so that x ∈ [0,1+ 1

n ), as
required.

Hence
⋂
n>1

[0,1+
1
n
) = [0,1] by double containment. C

. Exercise 2.1.56
Express

⋃
n>1

[0,1+
1
n
) as an interval. C

. Exercise 2.1.57
Prove that

⋂
n∈N

[n] =∅ and
⋃

n∈N
[n] = {k ∈ N | k > 1}. C

Indexed intersections and unions generalise their pairwise counterparts, as the following
exercise proves.

. Exercise 2.1.58
Let X1 and X2 be sets. Prove that

X1∩X2 =
⋂

k∈[2]
Xk and X1∪X2 =

⋃
k∈[2]

Xk

C

. Exercise 2.1.59
Find a family of sets {Xn | n ∈ N} such that:

(i)
⋃

n∈N
Xn = N;

(ii)
⋂

n∈N
Xn =∅; and
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(iii) Xi∩X j 6=∅ for all i, j ∈ N.

C

Relative complement (\)

F Definition 2.1.60
Let X and Y be sets. The relative complement of Y in X , denoted X \Y (LATEX code:
\setminus), is defined by

X \Y = {x ∈ X | x 6∈ Y}

0 Example 2.1.61
Let E be the set of all even integers. Then n ∈ Z \E if and only if n is an integer and
n is not an even integer; that is, if and only if n is odd. Thus Z \E is the set of all odd
integers.

Moreover, n∈N\E if and only if n is a natural number and n is not an even integer. Since
the even integers which are natural numbers are precisely the even natural numbers,N\E
is precisely the set of all odd natural numbers. C

. Exercise 2.1.62
Write down the elements of the set

{0,1,4,7}\{1,2,3,4,5}

C

. Exercise 2.1.63
Express [−2,5)\ [4,7) and [4,7)\ [−2,5) as intervals. C

. Exercise 2.1.64
Let X and Y be sets. Prove that Y \ (Y \X) = X ∩Y , and deduce that X ⊆Y if and only if
Y \ (Y \X) = X . C

Comparison with logical operators and quantifiers

The astute reader will have noticed some similarities between set operations and the
logical operators and quantifiers that we saw in Chapter 1.

Indeed, this can be summarised in the following table. In each row, the expressions in
both columns are equivalent, where p denotes ‘a∈X’, q denotes ‘a∈Y ’, and r(i) denotes
‘a ∈ Xi’.
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sets logic
a 6∈ X ¬p

a ∈ X ∩Y p∧q
a ∈ X ∪Y p∨q
a ∈

⋂
i∈I

Xi ∀i ∈ I, r(i)

a ∈
⋃
i∈I

Xi ∃i ∈ I, r(i)

a ∈ X \Y p∧ (¬q)

This translation between logic and set theory does not stop there; in fact, as the following
theorem shows, De Morgan’s laws for the logical operators (Theorem 1.3.24) and for
quantifiers (Theorem 1.3.28) also carry over to the set operations of union and intersec-
tion.

C Theorem 2.1.65 (De Morgan’s laws for sets)
Given sets A,X ,Y and a family {Xi | i ∈ I}, we have

(a) A\ (X ∪Y ) = (A\X)∩ (A\Y );

(b) A\ (X ∩Y ) = (A\X)∪ (A\Y );

(c) A\
⋃
i∈I

Xi =
⋂
i∈I

(A\Xi);

(d) A\
⋂
i∈I

Xi =
⋃
i∈I

(A\Xi).

Proof of (a)
Let a be arbitrary. By definition of union and relative complement, the assertion that
a ∈ A\ (X ∪Y ) is equivalent to the logical formula

a ∈ A∧¬(a ∈ X ∨a ∈ Y )

By de Morgan’s laws for logical operators, this is equivalent to

a ∈ A∧ (a 6∈ X ∧a 6∈ Y )

which, in turn, is equivalent to

a ∈ A∧a 6∈ X)∧ (a ∈ A∧a 6∈ Y

But then by definition of intersection and relative complement, this is equivalent to

a ∈ (A\X)∩ (A\Y )

Hence A\ (X ∪Y ) = (A\X)∩ (A\Y ), as required. �

. Exercise 2.1.66
Complete the proof of de Morgan’s laws for sets. C
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Power sets

F Definition 2.1.67
Let X be a set. The power set of X , written P(X) (LATEX code: \mathcal{P}), is the
set of all subsets of X .

0 Example 2.1.68
There are four subsets of {1,2}, namely

∅, {1}, {2}, {1,2}

so P(X) = {∅,{1},{2},{1,2}}. C

. Exercise 2.1.69
Write out the elements of P({1,2,3}). C

. Exercise 2.1.70
Let X be a set. Show that ∅ ∈P(X) and X ∈P(X). C

. Exercise 2.1.71
Write out the elements of P(∅), P(P(∅)) and P(P(P(∅))). C

Power sets are often a point of confusion because they bring the property of being a
subset of one set to that of being an element of another, in the sense that for all sets U
and X we have

U ⊆ X ⇔ U ∈P(X)

This distinction looks easy to grasp, but when the sets U and X look alike, it’s easy to
fall into various traps. Here’s a simple example.

0 Example 2.1.72
It is true that ∅⊆∅, but false that ∅ ∈∅. Indeed,

• ∅ ⊆ ∅ means ∀x ∈ ∅, x ∈ ∅; but propositions of the form ∀x ∈ ∅, p(x) are always
true, as discussed in Exercise 2.1.31.

• The empty set has no elements; if ∅ ∈ ∅ were true, it would mean that ∅ had an
element (that element being ∅). So it must be the case that ∅ 6∈∅.

C

The following exercise is intended to help you overcome similar potential kinds of con-
fusion by means of practice. Try to think precisely about what the definitions involved
are.

. Exercise 2.1.73
Determine, with proof, whether or not each of the following statements is true.

(a) P(∅) ∈P(P(∅));

(b) ∅ ∈ {{∅}};

(c) {∅} ∈ {{∅}};
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(d) P(P(∅)) ∈ {∅,{∅,{∅}}}.

Repeat the exercise with all instances of ‘∈’ replaced by ‘⊆’. C

Product (×)

F Definition 2.1.74
Let X and Y be sets. The (pairwise) cartesian product of X and Y is the set X×Y (LATEX
code: \times) defined by

X×Y = {(a,b) | x ∈ X ∧ y ∈ Y}

The elements (a,b) ∈ X ×Y are called ordered pairs, whose defining property is that,
for all a,x ∈ X and all b,y ∈ Y , we have (a,b) = (x,y) if and only if a = x and b = y.

0 Example 2.1.75
If you have ever taken calculus, you will probably be familiar with the set R×R.

R×R= {(x,y) | x,y ∈ R}

Formally, this is the set of ordered pairs of real numbers. Geometrically, if we interpret
R as an infinite line, the set R×R is the (real) plane: an element (x,y) ∈R×R describes
the point in the plane with coordinates (x,y).

We can investigate this further. For example, the following set:

R×{0}= {(x,0) | x ∈ R}

is precisely the x-axis. We can describe graphs as subsets of R×R. Indeed, the graph of
y = x2 is given by

G = {(x,y) ∈ R×R | y = x2}= {(x,x2) | x ∈ R} ⊆ R×R

C

. Exercise 2.1.76
Write down the elements of the set {1,2}×{3,4,5}. C

. Exercise 2.1.77
Let X be a set. Prove that X×∅=∅. C

. Exercise 2.1.78
Let X , Y and Z be sets. Under what conditions is it true that X×Y =Y ×X? Under what
conditions is it true that (X×Y )×Z = X× (Y ×Z)? C

We might have occasion to take cartesian products of more than two sets. For example,
whatever the set R×R×R is, its elements should be ordered triples (a,b,c) consisting
of elements a,b,c ∈ R. This is where the following definition comes in handy.
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F Definition 2.1.79
Let n ∈ N and let X1,X2, . . . ,Xn be sets. The (n-fold) cartesian product of X1,X2, . . . ,Xn

is the set
n

∏
k=1

Xk (LATEX code: \prod_{k=1}ˆ{n}) defined by

n

∏
k=1

Xk = {(a1,a2, . . . ,an) | ak ∈ Xk for all 16 k 6 n}

The elements (a1,a2, . . . ,an) ∈
n

∏
k=1

Xk are called ordered k-tuples, whose defining prop-

erty is that, for all 16 k6 n and all ak,bk ∈ Xk, we have (a1,a2, . . . ,an) = (b1,b2, . . . ,bn)
if and only if ak = bk for all 16 k 6 n.

Given a set X , write Xn to denote the set
n

∏
k=1

X . We might on occasion also write

X1×X2×·· ·×Xn =
n

∏
k=1

Xk

0 Example 2.1.80
In Exercise 2.1.78 you might have noticed that the sets (X ×Y )×Z and X × (Y ×Z) are
not always equal—Definition 2.1.79 introduces a third potentially non-equal cartesian
product of X , Y and Z. For example, consider when X = Y = Z = R. Then

• The elements of (R×R)×R are ordered pairs ((a,b),c), where (a,b) is itself an
ordered pair of real numbers and c is a real number.

• The elements of R×(R×R) are ordered pairs (a,(b,c)), where a is a real number and
(b,c) is an ordered pair of real numbers.

• The elements of R×R×R (= R3) are ordered triples (a,b,c), where a, b and c are
real numbers.

So, although these three sets appear to be the same, zooming in closely on the definitions
reveals that there are subtle differences between them. A sense in which they are the same
is that there are bijections between them—the notion of a bijection will be introduced in
Section 2.3. C
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Section 2.2

Functions

One way of studying interactions between sets is by studying functions between them,
which we will define informally in Definition 2.2.1. Functions are mathematical objects
which assign to each element of one set exactly one element of another. Almost every
branch of mathematics studies functions, be it directly or indirectly, and almost every
application of mathematics arises from a translation of the abstract notion of a function to
the real world. Just one example of this is the theory of computation—functions provide
precisely the language necessary to describe the deterministic input-output behaviour of
algorithms.

You might have come across the notion of a function before now. In schools, functions
are often introduced as being like machines—they have inputs and outputs, and on a
given input they always return the same output. For instance, there is a function which
takes integers as inputs and gives integers as outputs, which on the input x returns the
integer x+3.

This characterisation of functions, however, is clearly not precise enough for the purposes
of mathematical proof. A next approximation to a precise definition of a function might
look something like this:

F Definition 2.2.1
A function f from a set X to a set Y is a specification of elements f (x) ∈ Y for x ∈ X ,
such that

∀x ∈ X , ∃!y ∈ Y, y = f (x)

Given x ∈ X , the (unique!) element f (x) ∈ Y is called the value of f at x.

The set X is called the domain (or source) of f , and Y is called the codomain (or target)
of f . We write f : X → Y (LATEX code: f : X \to Y) to denote the assertion that f is a
function with domain X and codomain Y .

This is better—we’re now talking about sets (and not mysterious ‘machines’), which we
have explored in Section 2.1.

Moreover, this definition establishes a close relationship between functions and the ∃!
quantifier: indeed, to say that f assigns to each element of X a unique element of Y is to
say precisely that

∀x ∈ X , ∃!y ∈ Y, y = f (x)

Conversely, any true proposition of the form ∀x ∈ X , ∃!y ∈ Y, p(x,y) defines a function
f : X →Y : the function f assigns to each x ∈ X the unique y ∈Y such that p(x,y) is true.
In other words, ∀x ∈ X , p(x, f (x)) is true!

We can use this to generate some examples of functions.
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0 Example 2.2.2
Example 1.2.27 said that every positive real number has a unique positive square root;
we proved this in Example 1.2.30. What this means is that there is a function

r : R>0→ R>0 where R>0 = {x ∈ R | x > 0}

defined by letting r(x) be the (unique) positive square root of x, for each x ∈ R>0. That
is, we have a function r defined by r(x) =

√
x. C

. Exercise 2.2.3
Recall Exercise 1.2.31. Which of the statements (a), (b) or (c) is of the form ∀x∈X , ∃!y∈
Y, p(x,y)? For each statement of this form, determine the domain and codomain of the
corresponding function, and write an expression defining this function. C

Specifying a function

Just like with sets, there are many ways to specify a function f : X →Y , but when we do
so, we must be careful that what we write really does define a function!

This correctness of specification is known as well-definedness, and ultimately amounts
to verifying that the condition ∀x ∈ X , ∃!y ∈ Y, f (x) = y holds for the specification of f .
Namely totality, existence and uniqueness:

• Totality. A value f (x) should be specified for each x ∈ X—this corresponds to the
‘∀x ∈ X’ quantifier in the definition of functions.

• Existence. For each x ∈ X , the specified value f (x) should actually exist, and should
be an element of Y —this corresponds to the existence part of the ‘∃!y ∈ Y ’ quantifier
in the definition of functions.

• Uniqueness. For each x ∈ X , the specified value f (x) should refer to only one ele-
ment of Y —this corresponds to the uniqueness part of the ‘∃!y ∈ Y ’ quantifier in the
definition of functions.

When specifying a function, you should justify each of these components of well-
definedness unless they are extremely obvious. You will probably find that, in most
cases, the only component in need of justification is uniqueness, but keep all three in
mind.

Lists. If X is finite, then we can specify a function f : X→Y by simply listing the values
of f at all possible elements x ∈ X . For example, we can define a function

f : {1,2,3}→ {red,yellow,green,blue,purple}

by declaring
f (1) = red, f (2) = purple, f (3) = green

Note that the function is at this point completely specified: we know its values at all
elements of the domain {1,2,3}. It doesn’t matter that some of the elements of the
codomain (yellow and blue) are unaccounted for—all that matters is that each element of
the domain is associated with exactly one element of the codomain.
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Unfortunately, most of the sets that we work with will be infinite, or of an unspecified
finite size; in these cases, simply writing a list of values isn’t sufficient. Fortunately for
us, there are other ways of specifying functions.

Formulae. In many cases, particularly when the domain X and codomain Y are number
sets, we can define a function by giving a formula for the value of f (x) for each x ∈ X .
For example, we can define a function f : R→ R by letting

f (x) = x2 +3 for all x ∈ R

By cases. It will at times be convenient to define a function using different specifica-
tions for different elements of the domain. A very simple example is the absolute value
function |−| : R→ R, defined for x ∈ R

|x|=
{

x if x> 0
−x if x6 0

Here we have split into two cases based on the conditions x> 0 and x6 0.

When specifying a function f : X → Y by cases, it is important that the conditions be:

• exhaustive: given x ∈ X , at least one of the conditions on X must hold; and

• compatible: if any x ∈ X satisfies more than one condition, the specified value must
be the same no matter which condition is picked.

For the absolute value function defined above, these conditions are satisfied. Indeed,
for x ∈ R, it is certainly the case that x > 0 or x 6 0, so the conditions are exhaustive.
Moreover, given x ∈R, if both x> 0 and x6 0, then x = 0—so we need to check that the
specification yields the same value when x = 0 regardless of which condition we pick.
The x> 0 condition yields the value 0, and the x6 0 condition yields the value−0, which
is equal to 0—so the conditions are compatible. We could have used x < 0 instead of
x6 0; in this case the conditions are mutually exclusive, so certainly compatible because
they do not overlap.

Algorithms. You might, on first exposure to functions, have been taught to think of a
function as a machine which, when given an input, produces an output. This ‘machine’
is defined by saying what the possible inputs and outputs are, and then providing a list
of instructions (an algorithm) for the machine to follow, which on any input produces
an output—and, moreover, if fed the same input, the machine always produces the same
output.

For example, we might instruct a machine to take rational numbers as inputs and give
rational numbers as outputs, and to follow the following sequence of steps on a given
input

multiply by 2→ add 5→ square the result→ divide by 6
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This ‘machine’ defines a function M :Q→Q which, in equation form, is specified by

M(x) =
(2x+5)2

6
for all x ∈Q

In our more formal set-up, therefore, we can define a function M : I→ O by specifying:

• a set I of all inputs;

• a set O of potential outputs; and

• a deterministic[a] algorithm which describes how an input x ∈ I is transformed into an
output M(x) ∈ O.

That is, the domain is the set I of all possible ‘inputs’, the codomain is a set O contain-
ing all the possible ‘outputs’, and the function M is a rule specifying how an input is
associated with the corresponding output.

For now, we will use algorithmic specifications of functions only sparingly—this is be-
cause it is much harder to make formal what is meant by an ‘algorithm’, and it is import-
ant to check that a given algorithm is deterministic.

Function equality

In Section 2.1 we discussed how there may be many different possible ways of charac-
terising equality of sets. This matter was resolved by declaring that two sets are equal if
and only if they have the same elements (this was Axiom 2.1.22).

A similar matter arises for functions. For example, consider the function f : R→ R
defined by f (x) = 2x for all x ∈ R, and the function g : R→ R, defined by letting g(x)
be the result of taking x, multiplying it by three, dividing the result by four, dividing the
result by six, and then multiplying the result by sixteen. It so happens that g(x) = 2x for
all x ∈R as well, but that is not how g is defined; moreover, if f and g were implemented
as algorithms, then it would take longer to compute the values of g than it would take to
compute the values of f .

Should we consider f and g to be equal? If we are only interested in whether f and
g have the same values on each argument, then the answer should be ‘yes’; if we are
interested in the algorithmic behaviour of f and g, then the answer should be ‘no’.

We resolve this dilemma with the following axiom. By adopting this axiom, we are
stating that the functions f and g discussed above are equal.

[a]The word ‘deterministic’ just means that the algorithm always produces the same output on a single input.
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C Axiom 2.2.4 (Function extensionality)
Let f : X → Y and g : A→ B be functions. Then f = g if and only if the following
conditions hold:

(i) X = A and Y = B; and

(ii) f (x) = g(x) for all x ∈ X .

v Strategy 2.2.5 (Proving two functions are equal)
Given functions f ,g : X →Y with the same domain and codomain, in order to prove that
f = g, it suffices to prove that f (x) = g(x) for all x ∈ X .

A consequence of Axiom 2.2.4 is that, for fixed sets X and Y , a function X → Y is
uniquely determined by its input-output pairs. This set is called the graph of the func-
tion; the proof of the equivalence between functions and their graphs is the content of
Theorem 2.2.9.

F Definition 2.2.6
Let f : X → Y be a function. The graph of f is the subset Gr( f ) ⊆ X ×Y (LATEX code:
\mathrm{Gr}) defined by

Gr( f ) = {(x, f (x)) | x ∈ X}= {(x,y) ∈ X×Y | y = f (x)}
0 Example 2.2.7

Given a (sufficiently well-behaved) function f :R→R, we can represent Gr( f )⊆R×R
by plotting it on a pair of axes using Cartesian coordinates in the usual way. For example,
if f is defined by f (x) = x

2 for all x ∈ R, then its graph

Gr( f ) =
{(

x,
x
2

) ∣∣∣∣ x ∈ R
}

can be represented by graph plot in Figure 2.1.
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Figure 2.1: Graph of the function f : R→ R defined by f (x) = x
2 for all x ∈ R
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C

. Exercise 2.2.8
Find a function f : Z→ Z whose graph is equal to the set

{. . . ,(−2,−5),(−1,−2),(0,1),(1,4),(2,7),(3,10), . . .}

C

Theorem 2.2.9 below provides a way of verifying that a function is well-defined by char-
acterising their graphs.

C Theorem 2.2.9
Let X and Y be sets. A subset G⊆ X×Y is the graph of a function if and only if

∀x ∈ X , ∃!y ∈ Y, (x,y) ∈ G

Proof
(⇒). Suppose G⊆ X×Y is the graph of a function, say G = Gr( f ) for some f : X → Y .
Then for each x∈X , it follows from well-definedness of f that f (x) is the unique element
y ∈ Y for which (x,y) ∈ G. That is, (x, f (x)) ∈ G, and if y ∈ Y with (x,y) ∈ G, then
y = f (x).

(⇐). Suppose G⊆X×Y satisfies ∀x∈X , ∃!y∈Y, (x,y)∈G. Define a function f : X→Y
by, for each x ∈ X , defining the value f (x) to be the unique element y ∈ Y for which
(x,y)∈G. Well-definedness of f is then immediate from our assumption of the existence
and uniqueness of such a value of y for each x ∈ X . �

0 Example 2.2.10
The set G defined by

G = {(1, red),(2, red),(3,green)}
is the graph of a function f : {1,2,3}→ {red,green,blue}. The function f is defined by

f (1) = red, f (2) = red, f (3) = green

However, G is not the graph of a function {1,2,3,4} → {red,green,blue}, since G con-
tains no elements of the form (4,y) for y ∈ {red,green,blue}. Moreover, the set G′

defined by
G′ = {(1, red),(2, red),(2,blue),(3,green)}

does not define the graph of a function {1,2,3}→ {red,green,blue}, since there is not a
unique element of the form (2,y) in G′—rather, there are two of them! C

. Exercise 2.2.11
For each of the following specifications of sets X , Y , G, determine whether or not G is
the graph of a function from X to Y .

(a) X = R, Y = R, G = {(a,a2) | a ∈ R};

(b) X = R, Y = R, G = {(a2,a) | a ∈ R};
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(c) X = R>0, Y = R>0, G = {(a2,a) | a ∈ R>0}, where R>0 = {x ∈ R | x> 0};

(d) X =Q, Y =Q, G = {(x,y) ∈Q×Q | xy = 1}.

(e) X =Q, Y =Q, G = {(a,a) | a ∈ Z};

C

v Aside
In light of Theorem 2.2.9, some people choose to define functions X → Y as particular
subsets of X ×Y —that is, they identify functions with their graphs. This is particularly
useful when studying the logical foundations of mathematics. We avoid this practice
here, because it is not conceptually necessary, and it would preclude other possible ways
of encoding functions. C

We will now look at some more examples (and non-examples) of functions.

0 Example 2.2.12
Example 1.2.27 gives a prime example of a function: it says that for every positive real
number a there is a unique positive real number b such that b2 = a. This unique b
is precisely the positive square root

√
a of a. Writing R>0 for the set of positive real

numbers, we have thus established that taking the positive square root defines a function
R>0→ R>0. C

There is a class of functions called identity functions that, despite being very simple, are
so important that we will give them a numbered definition!

F Definition 2.2.13
Let X be a set. The identity function on X is the function idX : X → X (LATEX code:
\mathrm{id}_X) defined by idX (x) = x for all x ∈ X .

You should convince yourself that the specification of idX given in Definition 2.2.13 is
well-defined.

Another interesting example of a function is the empty function, which is useful in com-
ing up with counterexamples and proving combinatorial identities (see Section 6.2).

F Definition 2.2.14
Let X be a set. The empty function with codomain X is the (unique!) function ∅→ X .
It has no values, since there are no elements of its domain.

Again, you should convince yourself that this specification is well-defined. Conceptually,
convincing yourself of this is not easy; but writing down the proof of well-definedness is
extremely easy—you will find that there is simply nothing to prove!

0 Example 2.2.15
Define f : R→ R by the equation f (x)2 = x for all x ∈ R. This is not well-defined for a
few reasons. First, if x < 0 then there is no real number y such that y2 = x, so for x < 0

95



96 Chapter 2. Sets and functions

there are no possible values of f (x) in the codomain of f , so existence fails. Second, if
x> 0 then there are in fact two real numbers y such that y2 = x, namely the positive square
root
√

x and the negative square root−√x. The specification of f does not indicate which
of these values to take, so uniqueness fails.

Notice that the function r : R>0 → R>0 from Example 2.2.2 is (well-)defined by the
equation r(x)2 = x for all x ∈R>0. This illustrates why it is very important to specify the
domain and codomain when defining a function. C

. Exercise 2.2.16
Which of the following specifications of functions are well-defined?

(a) g :Q→Q defined by the equation (x+1)g(x) = 1 for all x ∈Q;

(b) h : N→Q defined by (x+1)h(x) = 1 for all x ∈ N;

(c) k : N→ N defined by (x+1)k(x) = 1 for all x ∈ N;

(d) ` : N→ N defined by `(x) = `(x) for all x ∈ N.

C

. Exercise 2.2.17
Find a condition on sets X and Y such that the specification of a function i : X∪Y→{0,1}
given by

i(z) =

{
0 if z ∈ X
1 if z ∈ Y

to be well-defined. C

Composition of functions

In our section on sets, we talked about various operations that can be performed on sets—
union, intersection, and so on. There are also operations on functions, by far the most
important of which is composition. To understand how composition works, let’s revisit
the algorithmically defined function M :Q→Q from page 91:

multiply by 2→ add 5→ square the result→ divide by 6

The function M is, in some sense, a sequence of functions, performed one-by-one until
the desired result is reached. This is precisely composition of functions.

F Definition 2.2.18
Given functions f : X → Y and g : Y → Z, their composite g ◦ f (LATEX code: g \circ
f) (read ‘g composed with f ’ or ‘g after f ’ or even just ‘g f ’) is the function g◦ f : X→ Z
defined by

(g◦ f )(x) = g( f (x)) for all x ∈ X
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Intuitively, g ◦ f is the function resulting from first applying f , and then applying g, to
the given input.

v Common error
Function composition is in some sense written ‘backwards’: in the expression g ◦ f ,
the function which is applied first is written last—there is a good reason for this: the
argument to the function is written after the function! However, this mis-match often
trips students up on their first exposure to function composition, so be careful! C

0 Example 2.2.19
The function M from page 91 can be defined as the composite

M = ((k ◦h)◦g)◦ f

where

• f :Q→Q is defined by f (x) = 2x for all x ∈Q;

• g :Q→Q is defined by g(x) = x+5 for all x ∈Q;

• h :Q→Q is defined by h(x) = x2 for all x ∈Q;

• k :Q→Q is defined by k(x) = x
6 for all x ∈Q.

C

. Exercise 2.2.20
Let f ,g,h,k :Q→Q be as in Example 2.2.19. Compute equations defining the following
composites:

(a) f ◦g;

(b) g◦ f ;

(c) (( f ◦g)◦h)◦ k;

(d) f ◦ (g◦ (h◦ k));

(e) (g◦g)◦ (g◦g).

C

0 Example 2.2.21
Let f : X → Y be any function. Then

idY ◦ f = f = f ◦ idX

To see this, let x ∈ X . Then

(idY ◦ f )(x) = idY ( f (x)) by definition of composition
= f (x) by definition of idY

= f (idX (x)) by definition of idX

= ( f ◦ idX )(x) by definition of composition

Equality of the three functions in question follows. C
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. Exercise 2.2.22
Prove that composition of functions is associative, that is, if f : X → Y , g : Y → Z and
h : Z→W are functions, then

h◦ (g◦ f ) = (h◦g)◦ f : X →W

As a consequence of associativity, when we want to compose more than two functions,
it doesn’t matter what order we compose the functions in. As such, we can just write
h◦g◦ f . C

. Exercise 2.2.23
Let f : X → Y and g : Z→W be functions, and suppose that Y $ Z. Note that there is a
function h : X →W defined by h(x) = g( f (x)) for all x ∈ X . Write h as a composite of
functions involving f and g. C

Characteristic functions

A class of functions that are particularly useful for proving results about sets are charac-
teristic functions.

F Definition 2.2.24
Let X be a set and let U ⊆ X . The characteristic function of U in X is the function
χU : X →{0,1} (LATEX code: \chi_{U}) defined by

χU (a) =

{
1 if a ∈U
0 if a 6∈U

0 Example 2.2.25
Consider the subset U = {1,3,5} ⊆ [6]. Then the values of the characteristic function
χU : [6]→{0,1} are given by

χU (1) = 1 χU (2) = 0 χU (3) = 1
χU (4) = 0 χU (5) = 1 χU (6) = 0

C

C Theorem 2.2.26
Let X be a set and let U,V ⊆ X . Then U =V if and only if χU = χV .

Proof
• (⊆) Assume U =V and let a ∈ X . Then

χU (a) = 1⇔ a ∈U by definition of χU

⇔ a ∈V since U =V

⇔ χV (a) = 1 by definition of χV

Likewise χU (a) = 0 if and only if χV (a) = 1, so that χU = χV by function extension-
ality.
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• (⊇) Assume χU = χV and let a ∈ X . Then

a ∈U ⇔ χU (a) = 1 by definition of χU

⇔ χV (a) = 1 since χU = χV

⇔ a ∈V by definition of χV

so U =V by set extensionality.

�

v Strategy 2.2.27 (Proving set identities using characteristic functions)
In order to prove that two subsets U and V of a set X are equal, it suffices to prove that
χU = χV .

C Theorem 2.2.28
Let X be a set and let U,V ⊆ X . Then

(a) χU∩V (a) = χU (a)χV (a) for all a ∈ X ;

(b) χU∪V (a) = χU (a)+χV (a)−χU (a)χV (a) for all a ∈ X ;

(c) χX\U (a) = 1−χU (a) for all a ∈ X .

Proof of (a)
Let a ∈ X . Since the only values that χU (a) and χV (a) can take are 0 and 1, we have

χU (a)χV (a) =

{
1 if χU (a) = 1 and χV (a) = 1
0 otherwise

But χU (a) = 1 if and only if a ∈U and χV (a) = 1 if and only if a ∈V , so that

χU (a)χV (a) =

{
1 if a ∈U ∩V
0 if a 6∈U ∩V

This is exactly to say that χU (a)χV (a) = χU∩V (a), as required. �

. Exercise 2.2.29
Prove parts (b) and (c) of Theorem 2.2.28. C

Theorem 2.2.28 can be used in conjunction with Strategy 2.2.27 to prove set theoretic
identities using their characteristic functions.

0 Example 2.2.30
In Example 2.1.50 we proved that X ∩ (Y ∪Z) = (X ∩Y )∪ (X ∩Z) for all sets X , Y and
Z. We prove this again using characteristic functions, considering X , Y and Z as subsets
of a universal set U .
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So let a ∈U . Then

χX∩(Y∪Z)(a)

= χX (a)χY∪Z(a) by Theorem 2.2.28(a)
= χX (a)(χY (a)+χZ(a)−χY (a)χZ(a)) by Theorem 2.2.28(b)
= χX (a)χY (a)+χX (a)χZ(a)−χX (a)χY (a)χZ(a) rearranging

= χX (a)χY (a)+χX (a)χZ(a)−χX (a)2
χY (a)χZ(a) since χX (a)2 = χX (a)

= χX∩Y (a)+χX∩Z(a)−χX∩Y (a)χX∩Z(a) by Theorem 2.2.28(a)
= χ(X∩Y )∪(X∩Z)(a) by Theorem 2.2.28(b)

Using Strategy 2.2.27, it follows that X ∩ (Y ∪Z) = (X ∩Y )∪ (X ∩Z). C

. Exercise 2.2.31
Use characteristic functions to prove de Morgan’s laws for pairwise unions and intersec-
tions (Theorem 2.1.65). C

Images and preimages

F Definition 2.2.32
Let f : X → Y be a function and let U ⊆ X . The image of U under f is the subset
f [U ]⊆ Y (also written f∗(U) (LATEX code: f_*) or even just f (U)) is defined by

f [U ] = { f (x) | x ∈U}= {y ∈ Y | ∃x ∈U, y = f (x)}

That is, f [U ] is the set of values that the function f takes when given inputs from U .

The image of f is the image of the entire domain, i.e. the set f [X ].

0 Example 2.2.33
Let f : R→ R be defined by f (x) = x2. The image of f is the set R>0 of all nonnegative
real numbers. Let’s prove this:

• ( f [R]⊆R>0). Let y ∈ f [R]. Then y = x2 for some x ∈R. But x2 > 0, so we must have
y ∈ R>0, as required.

• (R>0 ⊆ f [R]). Let y ∈ R>0. Then
√

y ∈ R, and y = (
√

y)2 = f (
√

y). Hence y ∈ f [R],
as required.

We have shown by double containment that f [R] = R>0. C

. Exercise 2.2.34
For each of the following functions f and subsets U of their domain, describe the image
f [U ].

(a) f : Z→ Z defined by f (n) = 3n, with U = N;

(b) f : X → X×X (where X is any set) defined by f (x) = (x,x) with U = X ;

(c) f : {a,b,c} → {1,2,3} defined by f (a) = 1, f (b) = 3 and f (c) = 1, with U =
{a,b,c}.
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C

. Exercise 2.2.35
Prove that f [∅] =∅ for all functions f . C

0 Example 2.2.36
Let f : X → Y be a function and let U,V ⊆ X . Then f [U ∩V ]⊆ f [U ]∩ f [V ]. To see this,
let y ∈ f [U ∩V ]. Then y = f (x) for some x ∈U ∩V . By definition of intersection, x ∈U
and x ∈ V . Since x ∈U and y = f (x), we have y ∈ f [U ]; likewise, since x ∈ V , we have
y ∈ f [V ]. But then by definition of intersection, we have y ∈ f [U ]∩ f [V ]. C

. Exercise 2.2.37
Let f : X→Y be a function and let U,V ⊆ X . We saw in Example 2.2.36 that f [U ∩V ]⊆
f [U ]∩ f [V ]. Determine which of the following is true, and for each, provide a proof of
its truth or falsity:

(a) f [U ]∩ f [V ]⊆ f [U ∩V ];

(b) f [U ∪V ]⊆ f [U ]∪ f [V ];

(c) f [U ]∪ f [V ]⊆ f [U ∪V ].

C

F Definition 2.2.38
Let f : X → Y be a function and let V ⊆ Y . The preimage of V under f is the subset
f−1[V ] (LATEX code: fˆ{-1}) (also written f ∗(V ) (LATEX code: fˆ*), or just f−1(V )) is
defined by

f−1[V ] = {x ∈ X | f (x) ∈V}= {x ∈ X | ∃y ∈V, f (x) = y}

That is, f−1[V ] is the set of all the elements of its domain X that the function f sends to
elements of V .

0 Example 2.2.39
Let f : Z→ Z be the function defined by f (x) = x2 for all x ∈ X . Then

• f−1[{1,4,9}] = {−3,−2,−1,1,2,3};

• f−1[{1,2,3,4,5,6,7,8,9}] = {−3,−2,−1,1,2,3} too, since the other elements of [9]
are not perfect squares, and hence not of the form f (x) for x ∈ Z;

• f−1[N] = Z, since for any x ∈ Z we have f (x)> 0, so that f (x) ∈ N.

C

0 Example 2.2.40
Let f : X → Y be a function, let U ⊆ X and let V ⊆ Y . Then f [U ] ⊆ V if and only if
U ⊆ f−1[V ]. The proof is as follows.

(⇒). Suppose f [U ] ⊆ V ; we’ll prove U ⊆ f−1[V ]. So fix x ∈ U . Then f (x) ∈ f [U ]
by definition of image. But then f (x) ∈ V by our assumption that f [U ] ⊆ V , and so
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x ∈ f−1[V ] by definition of preimage. Since x was arbitrarily chosen from U , it follows
that U ⊆ f−1[V ].

(⇐). Suppose U ⊆ f−1[V ]; we’ll prove f [U ] ⊆ V . So fix y ∈ f [U ]. Then y = f (x)
for some x ∈ U by definition of image. But then x ∈ f−1[V ] by our assumption that
U ⊆ f−1[V ], and so f (x) ∈ V by definition of preimage. But y = f (x), so y ∈ V , and
since y was arbitrarily chosen, it follows that f [U ]⊆V . C

The following exercise demonstrates that preimages interact very nicely with the basic
set operations (intersection, union and relative complement):

. Exercise 2.2.41
Let f : X → Y be a function and let U,V ⊆ Y . Prove that:

(a) f−1[U ∩V ] = f−1[U ]∩ f−1[V ];

(b) f−1[U ∪V ] = f−1[U ]∪ f−1[V ]; and

(c) f−1[Y \U ] = X \ f−1[U ].

C

. Exercise 2.2.42
Let f : X → Y be a function. Prove that f−1[∅] =∅ and f−1[Y ] = X . C

. Exercise 2.2.43
Let f : X→Y be a function. Provide a proof of the truth or falsity of each of the following
statements:

(a) U ⊆ f−1[ f [U ]] for all U ⊆ X ;

(b) f−1[ f [U ]]⊆U for all U ⊆ X ;

(c) V ⊆ f [ f−1[V ]] for all V ⊆ Y ;

(d) f [ f−1[V ]]⊆V for all V ⊆ Y .

C

. Exercise 2.2.44
Let X be a set. Prove that every function f : X → {0,1} is the characteristic function of
the subset f−1[{1}]⊆ X . C
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Section 2.3

Injections and surjections

To motivate some of the definitions to come, look at the dots (•) and stars (?) below. Are
there more dots or more stars?

• • • • • • • • • • • • • • • • • • •

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Pause for a second and think about how you knew the answer to this question.

Indeed, there are more dots than stars. There are a couple of ways to arrive at this
conclusion:

(i) You could count the number of dots, count the number of stars, and then compare
the two numbers; or

(ii) You could notice that the dots and the stars are evenly spaced, but that the line of
dots is longer than the line of stars.

It is likely that you chose method (ii). In fact, it is likely that you haven’t even counted
the number of dots or the number of stars yet—and you don’t need to! We can conclude
that there are more dots than stars by simply pairing up dots with stars—we eventually
run out of stars, and there are still dots left over, so there must have been more dots than
stars.

Injectivity

One way of formalising this act of pairing up stars with dots mathematically is to define
a function f : S→ D from the set S of stars to the set D of dots, where the value of f at
each star is the dot that it is paired with. We of course must do this in such a way that
each dot is paired with at most one star:

• • • • • • • • • • • • • • • • • • •

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

It is a property of this function—called injectivity—that allows us to deduce that there
are more dots than stars.
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Intuitively, a function f : X → Y is injective if it puts the elements of X in one-to-one
correspondence with the elements of a subset of Y —just like how the stars are in one-to-
one correspondence with a subset of the dots in the example above.

F Definition 2.3.1
A function f : X → Y is injective (or one-to-one) if

∀a,b ∈ X , f (a) = f (b)⇒ a = b

An injective function is said to be an injection.

v Strategy 2.3.2 (Proving a function is injective)
In order to prove that a function f : X → Y is injective, it suffices to fix a,b ∈ X , assume
that f (a) = f (b), and then derive a = b.

By contraposition, f : X → Y being injective is equivalent to saying, for all a,b ∈ X , if
a 6= b, then f (a) 6= f (b). This is usually less useful for proving that a function is injective,
but it does provide a good intuition—it says that f sends distinct inputs to distinct outputs.

The following is a very simple example from elementary arithmetic:

0 Example 2.3.3
Define f : Z→ Z by letting f (x) = 2n+1 for all n ∈ Z. We’ll prove that f is injective.
Fix m,n∈Z, and assume that f (m) = f (n). By definition of f , we have 2m+1 = 2n+1.
Subtracting 1 yields 2m = 2n, and dividing by 2 yields m = n. Hence f is injective. C

The following example is slightly more sophisticated.

C Proposition 2.3.4
Let f : X →Y and g : Y → Z be functions. If f and g are injective, then g◦ f is injective.

Proof
Suppose that f and g are injective and let a,b ∈ X . We need to prove that

(g◦ f )(a) = (g◦ f )(b) ⇒ a = b

So assume (g ◦ f )(a) = (g ◦ f )(b). By definition of function composition, this implies
that g( f (a)) = g( f (b)). By injectivity of g, we have f (a) = f (b); and by injectivity of
f , we have a = b. �

. Exercise 2.3.5
Let f : X → Y and g : Y → Z be functions. Prove that if g ◦ f is injective, then f is
injective. C

. Exercise 2.3.6
Write out what it means to say a function f : X → Y is not injective, and say how you
would prove that a given function is not injective. Give an example of a function which
is not injective, and use your proof technique to write a proof that it is not injective. C

. Exercise 2.3.7
For each of the following functions, determine whether it is injective or not injective.
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• f : N→ Z, defined by f (n) = n2 for all n ∈ N.

• g : Z→ N, defined by g(n) = n2 for all n ∈ Z.

• h : N×N×N→ N, defined by h(x,y,z) = 2x ·3y ·5z for all x,y,z ∈ N.

C

. Exercise 2.3.8
Let a,b ∈ R with b 6= 0, and define f : R→ R by f (t) = a+bt for all t ∈ R. Prove that
f is injective. C

Surjectivity

Let’s revisit the rows of dots and stars that we saw earlier. Beforehand, we made our
idea that there are more dots than stars formal by proving the existence of an injection
f : S→ D from the set S of stars to the set D of dots.

However, we could have drawn the same conclusion instead from defining a function
D→ S, which in some sense covers the stars with dots—that is, every star is paired up
with at least one dot.

• • • • • • • • • • • • • • • • • • •

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

This property is called surjectivity—a function f : X → Y is surjective if every element
of Y is a value of f . This is made precise in Definition 2.3.9.

F Definition 2.3.9
A function f : X → Y is surjective (or onto) if

∀y ∈ Y, ∃x ∈ X , f (x) = y

A surjective function is said to be a surjection.

v Strategy 2.3.10
To prove that a function f : X → Y is surjective, it suffices to take an arbitrary element
y ∈ Y and, in terms of y, find an element x ∈ X such that f (x) = y.

In order to find x, it is often useful to start from the equation f (x) = y and derive some
possible values of x. But be careful—in order to complete the proof, it is necessary to
verify that the equation f (x) = y is true for the chosen value of x.
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0 Example 2.3.11
Fix n∈N with n > 0, and define a function r :Z→{0,1, . . . ,n−1} by letting r(a) be the
remainder of a when divided by n (see Theorem 0.18). This function is surjective, since
for each k ∈ {0,1, . . . ,n−1} we have r(k) = k. C

. Exercise 2.3.12
For each of the following pairs of sets (X ,Y ), determine whether the function f : X → Y
defined by f (x) = 2x+1 is surjective.

(a) X = Z and Y = {x ∈ Z | x is odd};
(b) X = Z and Y = Z;

(c) X =Q and Y =Q;

(d) X = R and Y = R.

C

. Exercise 2.3.13
Let f : X → Y be a function. Find a subset V ⊆ Y and a surjection g : X → V agreeing
with f (that is, such that g(x) = f (x) for all x ∈ X). C

. Exercise 2.3.14
Let f : X → Y be a function. Prove that f is surjective if and only if Y = f [X ] C

. Exercise 2.3.15
Let f : X → Y be a function. Prove that there is a set Z and functions

p : X → Z and i : Z→ Y

such that p is surjective, i is injective, and f = i◦ p. C

. Exercise 2.3.16
Let f : X →P(X) be a function. By considering the set B = {x ∈ X | x 6∈ f (x)}, prove
that f is not surjective. C

Bijectivity

Bijective functions formalise the idea of putting sets into one-to-one correspondence—
each element of one set is paired with exactly one element of another.

F Definition 2.3.17
A function f : X → Y is bijective if it is injective and surjective. A bijective function is
said to be a bijection.

v Proof tip
To prove that a function f is bijective, prove that it is injective and surjective. C

0 Example 2.3.18
Let D⊆Q be the set of dyadic rational numbers, that is

D =

{
x ∈Q

∣∣∣∣ x =
a
2n for some a ∈ Z and n ∈ N

}
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Let k ∈ N, and define f : D→ D by f (x) = x
2k . We will prove that f is a bijection.

• (Injectivity) Fix x,y ∈ D and suppose that f (x) = f (y). Then x
2k = y

2k , so that x = y,
as required.

• (Surjectivity) Fix y ∈ D. We need to find x ∈ D such that f (x) = y. Well certainly if
2ky ∈ D then we have

f (2ky) =
2ky
2k = y

so it suffices to prove that 2ky ∈D. Since y ∈D, we must have y = a
2n for some n ∈N.

� If k 6 n then n− k ∈ N and so 2ky = a
2n−k ∈ D.

� If k > n then k−n > 0 and 2ky = 2k−na ∈ Z; but Z⊆ D since if a ∈ Z then a = a
20 .

So again we have 2ky ∈ D.

In both cases we have 2ky ∈ D; and f (2ky) = y, so that f is surjective.

Since f is both injective and surjective, it is bijective. C

. Exercise 2.3.19
Let X be a set. Prove that the identity function idX : X → X is a bijection. C

. Exercise 2.3.20
Let n ∈N and let {Xk | 16 k6 n} be a family of sets. Prove by induction on n that there

is a bijection
n+1

∏
k=1

Xk→
(

n

∏
k=1

Xk

)
×Xn. C

. Exercise 2.3.21
Let f : X → Y and g : Y → Z be bijections. Prove that g◦ f is a bijection. C

Inverses

Our next goal is to characterise injections, surjections and bijections in terms of other
functions, called inverses.

Recall Definition 2.3.1, which says that a function f : X → Y is injective if, for all a,b ∈
X , if f (a) = f (b) then a = b.

. Exercise 2.3.22
Let f : X → Y be a function. Prove that f is injective if and only if

∀y ∈ f [X ], ∃!x ∈ X , y = f (x)

C

Thinking back to Section 2.2, you might notice that this means that the logical formula
‘y = f (x)’ defines a function f [X ]→ X—specifically, if f is injective then there is a
function g : f [X ]→ X which is (well-)defined by specifying x = g( f (x)) for all x ∈ X .
Thinking of f as an encoding function, we then have that g is the corresponding decoding
function—decoding is possible by injectivity of f . (If f were not injective then distinct
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elements of X might have the same encoding, in which case we’re stuck if we try to
decode them!)

. Exercise 2.3.23
Define a function e : N×N→ N by e(m,n) = 2m · 3n. Prove that e is injective. We can
think of e as encoding pairs of natural numbers as single natural numbers—for example,
the pair (4,1) is encoded as 24 · 31 = 48. For each of the following natural numbers k,
find the pairs of natural numbers encoded by e as k:

1 24 7776 59049 396718580736

C

In Exercise 2.3.23, we were able to decode any natural number of the form 2m · 3n for
m,n ∈ N. This process of decoding yields a function

d : {k ∈ N | k = 2m ·3n for some m,n ∈ N}→ N×N

What would happen if we tried to decode a natural number not of the form 2m · 3n for
m,n ∈ N, say 5 or 100? Well. . . it doesn’t really matter! All we need to be true is that
d(e(m,n)) = (m,n) for all (m,n) ∈ N×N; the value of d on other natural numbers is
irrelevant.

F Definition 2.3.24
Let f : X→Y be a function. A left inverse (or post-inverse) for f is a function g : Y → X
such that g◦ f = idX .

0 Example 2.3.25
Let e : N×N→ N be as in Exercise 2.3.23. Define a function d : N→ N×N by

d(k) =

{
(m,n) if k = 2m ·3n for some m,n ∈ N
(0,0) otherwise

Note that d is well-defined by the fundamental theorem of arithmetic (Theorem 5.2.12).
Moreover, given m,n ∈ N, we have

d(e(m,n)) = d(2m ·3n) = (m,n)

and so d is a left inverse for e. C

. Exercise 2.3.26
Let f : X → Y be a function. Prove that if f has a left inverse, then f is injective. C

Exercise 2.3.26 gives us a new strategy for proving that a function is injective.

v Strategy 2.3.27 (Proving a function is injective by finding a left inverse)
In order to prove that a function f : X → Y is injective, it suffices to find a function
g : Y → X such that g( f (x)) = x for all x ∈ X .
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It would be convenient if the converse to Exercise 2.3.26 were true—and it is, provided
that we impose the condition that the domain of the function be inhabited.

C Proposition 2.3.28
Let f : X →Y be a function. If f is injective and X is inhabited, then f has a left inverse.

Proof
Suppose that f is injective and X is inhabited. Fix x0 ∈ X—note that this element exists
since X is inhabited—and define g : Y → X as follows.

g(y) =

{
x if y = f (x) for some x ∈ X
x0 otherwise

The only part of the specification of g that might cause it to fail to be well-defined is
the case when y = f (x) for some x ∈ X . The reason why g is well-defined is precisely
injectivity of f : if y = f (x) for some x ∈ X , then the value of x ∈ X for which y = f (x) is
unique. (Indeed, if a ∈ X satisfied y = f (a), then we’d have a = x by injectivity of f .)

So g is indeed well-defined. To see that g is a left inverse for f , let x∈X . Letting y= f (x),
we see that y falls into the first case in the specification of g, so that g( f (x))= g(y)= a for
the value of a ∈ X for which y = f (a)—but as noted above, we have a = x by injectivity
of f . �

. Exercise 2.3.29
Let f : X →Y be a function with left inverse g : Y → X . Prove that g is a surjection. C

We established a relationship between injections and left inverses in Exercise 2.3.26
and proposition 2.3.28, so it might come as no surprise that there is a relationship between
surjections and right inverses.

F Definition 2.3.30
Let f : X→Y be a function. A right inverse (or pre-inverse) for f is a function g :Y→X
such that f ◦g = idY .

0 Example 2.3.31
Define f : R→ R>0 by f (x) = x2. Note that f is surjective, since for each y ∈ R>0 we
have

√
y ∈ R and f (

√
y) = y. However f is not injective; for instance

f (−1) = 1 = f (1)

Here are three right inverses for f :

• The positive square root function g : R>0→ R defined by g(y) =
√

y for all y ∈ R>0.
Indeed, for each y ∈ R>0 we have

f (g(y)) = f (
√

y) = (
√

y)2 = y

• The negative square root function h :R>0→R defined by h(y) =−√y for all y∈R>0.
Indeed, for each y ∈ R>0 we have

f (h(y)) = f (−√y) = (−√y)2 = y
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• The function k : R>0→ R defined by

k(y) =

{√
y if 2n6 y < 2n+1 for some n ∈ N
−√y otherwise

Note that k is well-defined, and again f (k(y)) = y for all y ∈R>0 since no matter what
value k(y) takes, it is equal to either

√
y or −√y.

There are many more right inverses for f —in fact, there are infinitely many more! C

. Exercise 2.3.32
Let f : X → Y be a function. Prove that if f has a right inverse, then f is surjective. C

v Strategy 2.3.33 (Proving a function is surjective by finding a right inverse)
In order to prove that a function f : X → Y is surjective, it suffices to find a function
g : Y → X such that f (g(y)) = y for all y ∈ Y .

Interlude: the axiom of choice

It would be convenient if the converse to Exercise 2.3.32 were true—that is, if f : X →Y
is surjective, then it has a right inverse. Let’s examine what a proof of this fact would
entail. The fact that f : X → Y is surjective can be expressed as

∀y ∈ Y, ∃x ∈ X , f (x) = y

A right inverse would be a function g : Y → X , so by Definition 2.2.1, it must satisfy the
following condition

∀y ∈ Y, ∃!x ∈ X , g(y) = x

The temptation is therefore to construct g : Y → X as follows. Let y ∈ Y . By definition
of surjectivity, there exists some x ∈ X such that f (x) = y—define g(y) to be such an
element x. Then we have f (g(y)) = f (x) = y, as required.

There is an extremely subtle—but important—issue with this construction.

By choosing g(y) to be a fixed element of X such that f (x) = y, we are assuming ahead
of time that there is a mechanism for choosing, for each y ∈ Y , a unique element of
f−1[{y}] to be the value of g(y). In other words we are assuming that some statement
R(x,y) satisfies the property

∀y ∈ Y, ∃!x ∈ X , [x ∈ f−1[{y}]∧R(x,y)]

But by Definition 2.2.1, this assumption is saying exactly that there exists a function
Y → X that associates to each y ∈ Y an element x ∈ X such that f (x) = y.

To state this in plainer terms: we tried to prove that there exists a right inverse for f
by assuming that there exists a right inverse for f . Evidently, this is not a valid proof
strategy.
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Surprisingly, it turns out that neither the assumption that every surjection has a right
inverse, nor the assumption that there exists a surjection with no right inverse, leads
to a contradiction. As such, the assertion that every surjection has a right inverse is
provably unprovable, although the proof that it is unprovable is far beyond the scope of
this textbook.

Nonetheless, the construction of a right inverse that we gave above didn’t feel like we
were abusing the fabric of mathematics and logic.

The essence of the proof is that if a statement of the form ∀a ∈ A, ∃b ∈ B, p(a,b) is true,
then we should be able to define a function h : A→ B such that p(a,h(a)) is true for all
a ∈ A: the function h ‘chooses’ for each a ∈ A a particular element b = h(a) ∈ B such
that p(a,b) is true.

What makes this possible is to axiom of choice, stated precisely below.

C Axiom 2.3.34 (Axiom of choice)
Let {Xi | i ∈ I} be a family of inhabited sets. Then there is a function h : I→

⋃
i∈I

Xi such

that h(i) ∈ Xi for each i ∈ I.

There are reasons to keep track of the axiom of choice:

• The axiom of choice is perhaps the strangest assumption that we make—most of the
other axioms that we have stated have been ‘evidently true’, but this is not the case for
the axiom of choice;

• There are fields of mathematics which require the translation of results about sets
into results about other kinds of objects—knowing whether the axiom of choice is
necessary to prove a result tells us whether this is possible;

• The axiom of choice is highly non-constructive: if a proof of a result that does not use
the axiom of choice is available, it usually provides more information than a proof of
the same result that does use the axiom of choice.

With this in mind, when we need to invoke the axiom of choice to prove a result, we
will mark the result with the letters AC. This can be freely ignored on first reading, but
readers may find it useful when using this book as a reference at a later date.

C PropositionAC 2.3.35
Let X and Y be sets and let p(x,y) be a logical formula with free variables x ∈ X and
y ∈ Y . If ∀x ∈ X , ∀y ∈ Y, p(x,y) is true, then there exists a function h : X → Y such that
∀x ∈ X , p(x,h(x)) is true.

Proof
For each a ∈ X , define Ya = {b ∈Y | p(a,b)}. Note that Ya is inhabited for each a ∈ X by
the assumption that ∀x ∈ X , ∃y ∈ Y, p(x,y) is true. Since Ya ⊆ Y for each a ∈ X , by the
axiom of choice there exists a function h : X → Y such that h(a) ∈ Ya for all a ∈ X . But
then p(a,h(a)) is true for each a ∈ X by definition of the sets Ya. �
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In light of Proposition 2.3.35, the axiom of choice manifests itself in proofs as the fol-
lowing proof strategy.

v StrategyAC 2.3.36 (Making choices)
If an assumption in a proof has the form ∀x ∈ X , ∃y ∈ Y, p(x,y), then we may make a
choice, for each a ∈ A, of a particular element b = ba ∈ B for which p(a,b) is true.

Back to inverses

We now return to the converse of Exercise 2.3.32.

C PropositionAC 2.3.37
Every surjection has a right inverse.

Proof
Let f : X → Y be a surjection, and define g : Y → X as follows. Given y ∈ Y , define
g(y) to be a particular choice of x ∈ X such that f (x) = y—note that there exists such an
element x ∈ X since f is surjective, so g exists by Strategy 2.3.36. But then by definition
of g we have f (g(y)) = y for all y ∈ Y , so that g is a surjection. �

It seems logical that we might be able to classify bijections as being those functions
which have a left inverse and a right inverse. We can actually say something stronger—
the left and right inverse can be taken to be the same function! (In fact, Proposition 2.3.43
establishes that they are necessarily the same function.)

F Definition 2.3.38
Let f : X → Y be a function. A (two-sided) inverse for f is a function g : Y → X which
is both a left inverse and a right inverse for f .

It is customary to simply say ‘inverse’ rather than ‘two-sided inverse’.

0 Example 2.3.39
Let D be the set of dyadic rational numbers, as defined in Example 2.3.18. There, we
defined a function f : D→ D defined by f (x) = x

2k for all x ∈ D, where k is some fixed
natural number. We find an inverse for f .

Define g : D→ D by g(x) = 2kx. Then

• g is a left inverse for f . To see this, note that for all x ∈ D we have

g( f (x)) = g(
x
2k ) = 2k · x

2k = x

• g is a right inverse for f . To see this, note that for all y ∈ D we have

f (g(y)) = f (2ky) =
2ky
2k = y
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Since g is a left inverse for f and a right inverse for f , it is a two-sided inverse for f . C

. Exercise 2.3.40
The following functions have two-sided inverses. For each, find its inverse and prove that
it is indeed an inverse.

(a) f : R→ R defined by f (x) = 2x+1
3 .

(b) g : P(N)→P(N) defined by g(X) = N\X .

(c) h : N×N→ N defined by h(m,n) = 2m(2n+1)−1 for all m,n ∈ N.

C

In light of the correspondences between injections and left inverses, and surjections and
right inverses, it may be unsurprising that there is a correspondence between bijections
and two-sided inverses.

. Exercise 2.3.41
Let f : X → Y be a function. Then f is bijective if and only if f has an inverse. C

v Strategy 2.3.42 (Proving a function is bijective by finding an inverse)
In order to prove that a function f : X → Y is bijective, it suffices to find a function
g : Y → X such that g( f (x)) = x for all x ∈ X and f (g(y)) = y for all y ∈ Y .

When proving a function f : X → Y is bijective by finding an inverse g : Y → X , it is
important to check that g is both a left inverse and a right inverse for f . If you only prove
that g is a left inverse for f , for example, then you have only proved that f is injective!

It turns out that if a function has both a left and a right inverse, then they must be equal.
This is the content of the following proposition.

C Proposition 2.3.43
Let f : X → Y be a function and suppose ` : Y → X is a left inverse for f and r : Y → X
is a right inverse for f . Then `= r.

Proof
The proof is deceptively simple:

`= `◦ idY by definition of identity functions
= `◦ ( f ◦ r) since r is a right inverse for f

= (`◦ f )◦ r by Exercise 2.2.22
= idX ◦ r since ` is a left inverse for f

= r by definition of identity functions

�

There is some intuition behind why the left and right inverses of a function f : X → Y
should be equal if they both exist.
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• A left inverse ` : Y → X exists only if f is injective. It looks at each element y∈Y and,
if it is in the image of f , returns the (unique) value x ∈ X for which f (x) = y.

• A right inverse r : Y → X exists only if f is surjective. It looks at each element y ∈ Y
and picks out one of the (possibly many) values x ∈ X for which f (x) = y.

When f is a bijection, every element of Y is in the image of f (by surjectivity), and is a
value of f at a unique element of X (by injectivity), and so the left and right inverses are
forced to return the same value on each input—hence they are equal.

It follows from Proposition 2.3.43 that, for any function f : X → Y , any two inverses for
f are equal—that is, every bijective function has a unique inverse!

F Notation 2.3.44
Let f : X → Y be a function. Write f−1 : Y → X to denote the (unique) inverse for f , if
it exists.

C Proposition 2.3.45
Let f : X → Y be a bijection. A function g : Y → X is a left inverse for f if and only if it
is a right inverse for f .

Proof
We will prove the two directions separately.

• (⇒) Suppose g : Y → X is a left inverse for f —that is, g( f (x)) = x for all x ∈ X . We
prove that f (g(y)) = y for all y ∈Y , thus establishing that g is a right inverse for f . So
let y ∈ Y . Since f is a bijection, it is in particular a surjection, so there exists x ∈ X
such that y = f (x). But then

f (g(y)) = f (g( f (x))) since y = f (x)

= f (x) since g( f (x)) = x

= y since y = f (x)

So indeed g is a right inverse for f .

• (⇐) Suppose g : Y → X is a right inverse for f —that is, f (g(y)) = y for all y ∈ Y .
We prove that g( f (x)) = x for all x ∈ X , thus establishing that g is a left inverse for f .
So let x ∈ X . Letting y = f (x), we have f (g(y)) = y since g is a right inverse for f .
This says precisely that f (g( f (x)) = f (x), since y = f (x). By injectivity of f , we have
g( f (x)) = x, as required.

�

. Exercise 2.3.46
Let f : X → Y be a bijection. Prove that f−1 : Y → X is a bijection. C

. Exercise 2.3.47
Let f : X → Y and g : Y → Z be bijections. Prove that g ◦ f : X → Z is a bijection, and
write an expression for its inverse in terms of f−1 and g−1. C

. Exercise 2.3.48
Let f : X → A and g : Y → B be bijections. Prove that there is a bijection X×Y → A×B,
and describe its inverse. C
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At the beginning of this section we motivated the definitions of injections, surjections
and bijections by using them to compare two quantities (of dots and stars)—however, as
you might have noticed, we have not yet actually proved that thais intuition aligns with
reality. For example, how do we know that if there is an injection f : X → Y then Y has
at least as many elements as X?

Answering this seemingly simple question is surprisingly difficult and has different an-
swers depending on whether the sets involved are finite or infinite. In fact, the words
‘finite’, ‘infinite’ and ‘size’ are themselves defined in terms of injections, surjections and
bijections! We therefore leave this task to future sections.

In Section 6.1, we define what it means for a set to be finite and what the size of a finite
set is (Definition 6.1.1), and then prove that the sizes of finite sets can be compared by
finding an injection, surjection or bijection between them Theorem 6.1.6.

Comparing the sizes of infinite sets, and even defining what ‘size’ means for infinite
sets, is another can of worms entirely and leads to some fascinating mathematics. For
example, we can prove some counterintuitive results, such as the setN of natural numbers
and the set Q of rational numbers have the same size. The journey down this rabbit hole
begins in Chapter 8.
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Section 2.E

Chapter 2 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Set notation

2.1. Express the following sets in the indicated form of notation.

(a) {n ∈ Z | n2 < 20} in list notation;

(b) {4k+3 | k ∈ N} in implied list notation;

(c) The set of all odd multiples of six in set-builder notation;

(d) The set {1,2,5,10,17, . . . ,n2 +1, . . .} in set-builder notation.

Set operations

2.2. For each of the following statements, determine whether it is true for all sets X ,Y ,
false for all sets X ,Y , or true for some choices of X and Y and false for others.

(a) P(X ∪Y ) = P(X)∪P(Y )

(b) P(X ∩Y ) = P(X)∩P(Y )

(c) P(X×Y ) = P(X)×P(Y )

(d) P(X \Y ) = P(X)\P(Y )

Questions 2.3 to 2.7 concern the symmetric difference of sets, defined below.

F Definition 2.E.1
The symmetric difference of sets X and Y is the set X4Y (LATEX code: \triangle)
defined by

X4Y = {a | a ∈ X or a ∈ Y but a 6∈ X ∩Y}

2.3. Prove that X4Y = (X \Y )∪ (Y \X) = (X ∪Y )\ (X ∩Y ) for all sets X and Y .

2.4. Let X be a set. Prove that X4X =∅ and X4∅= X .

2.5. Let X and Y be sets. Prove that X = Y if and only if X4Y =∅.

2.6. Prove that sets X and Y are disjoint if and only if X4Y = X ∪Y .

2.7. Prove that X4 (Y4Z) = (X4Y )4Z for all sets X , Y and Z.
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Functions

2.8. Show that there is only one function whose codomain is empty. What is its domain?

F Definition 2.E.2
A function f : R→ R is even if f (−x) = f (x) for all x ∈ R, and it is odd if f (−x) =
− f (x) for all x ∈ R.

2.9. Let n ∈ N. Prove that the function f : R→ R defined by f (x) = xn for all x ∈ R is
even if and only if n is even, and odd if and only if n is odd.

2.10. Prove that there is a unique function f : R→ R that is both even and odd.

2.11. Prove that for every function f :R→R, there is a unique even function g :R→R
and a unique odd function h : R→ R such that f (x) = g(x)+h(x) for all x ∈ R.

2.12. Let {θn : [n]→ [n] | n ∈ N} be a family of functions such that f ◦θm = θn ◦ f for
all f : [m]→ [n]. Prove that θn = id[n] for all n ∈ N.

2.13. Let X be a set and let U,V ⊆ X . Describe the indicator function χU4V of the
symmetric difference of U and V (Definition 2.E.1) in terms of χU and χV .

Images and preimages

2.14. Let f : X → Y be a function. For each of the following statements, either prove it
is true or find a counterexample.

(a) U ⊆ f−1[ f [U ]] for all U ⊆ X ;

(b) f−1[ f [U ]]⊆U for all U ⊆ X ;

(c) V ⊆ f [ f−1[V ]] for all V ⊆ Y ;

(d) f [ f−1[V ]]⊆V for all V ⊆ Y .

Injections, surjections and bijections

2.15. (a) Prove that, for all functions f : X →Y and g : Y → Z, if g◦ f is bijective, then
f is injective and g is surjective.

(b) Find an example of a function f : X → Y and a function g : Y → Z such that g◦ f is
bijective, f is not surjective and g is not injective.

2.16. For each of the following pairs (U,V ) of subsets of R, determine whether the
specification ‘ f (x) = x2− 4x+ 7 for all x ∈U’ defines a function f : U → V and, if it
does, determine whether f is injective and whether f is surjective.

(a) U = R and V = R;

(b) U = (1,4) and V = [3,7);

(c) U = [3,4) and V = [4,7);

(d) U = (3,4] and V = [4,7);

(e) U = [2,∞) and V = [3,∞);

(f) U = [2,∞) and V = R.
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2.17. For each of the following pairs of sets X and Y , find (with proof) a bijection f :
X → Y .

(a) X = Z and Y = N;

(b) X = R and Y = (−1,1);

(c) X = [0,1] and Y = (0,1);

(d) X = [a,b] and Y = (c,d), where a,b,c,d ∈ R with a < b and c < d.

2.18. Prove that the function f : N×N→ N defined by f (a,b) =
(

a+b+1
2

)
+ b for

all (a,b) ∈ N×N is a bijection.
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Section 3.1

Peano’s axioms

The purpose of this section is to forget everything we think we know about the natural
numbers, and reconstruct our former knowledge (and more!) using the following funda-
mental property:

Every natural number can be obtained in a unique way by
starting from zero and adding one some finite number of times.

This is slightly imprecise—it is not clear what is meant by ‘adding one some finite num-
ber of times’, for example. Worse still, we are going to define what ‘finite’ means in terms
of natural numbers in Section 6.1, so we’d better not refer to finiteness in our definition
of natural numbers!

The following definition captures precisely the properties that we need in order to charac-
terise the idea ofN that we have in our minds. To begin with,N should be a set. Whatever
the elements of this setN actually are, we will think about them as being natural numbers.
One of the elements, in particular, should play the role of the natural number 0—this will
be the zero element z ∈ N; and there should be a notion of ‘adding one’—this will be
the successor function s : N→ N. Thus given an element n ∈ N, though of as a natural
number, we think about the element s(n) as the natural number ‘n+1’. Note that this is
strictly for the purposes of intuition: we will define ‘+’ and ‘1’ in terms of z and s, not
vice versa.

F Definition 3.1.1
A notion of natural numbers is a set N, together with an element z ∈ N, called a zero
element, and a function s : N→ N called a successor function, satisfying the following
properties:

(i) z 6∈ s[N]; that is, z 6= s(n) for any n ∈ N.

(ii) s is injective; that is, for all m,n ∈ N, if s(m) = s(n), then m = n.

(iii) N is generated by z and s; that is, for all sets X , if z ∈ X and s(n) ∈ X for all n ∈N,
then N⊆ X .

The properties (i), (ii) and (iii) are called Peano’s axioms.

Note that Definition 3.1.1 does not specify what N, z and s actually are; it just specifies
the properties that they must satisfy. It turns out that it doesn’t really matter what notion
of natural numbers we use, since any two notions are essentially the same. We will not
worry about the specifics here—that task is left to Section B.2: a particular notion of
natural numbers is defined in Construction B.2.5, and the fact that all notions of natural
numbers are ‘essentially the same’ is made precise and proved in Theorem B.2.8.
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We can define all the concepts involving natural numbers that we are familiar with, and
prove all the properties that we take for granted, just from the element z ∈ N and the
successor function s : N→ N.

For instance, we define ‘0’ to mean z, define ‘1’ to mean s(z), define ‘2’ to mean s(s(z)),
and so on. For instance, ‘12’ is defined to mean

s(s(s(s(s(s(s(s(s(s(s(s(z))))))))))))

From now on, then, let’s write 0 instead of z for the zero element of N. It would be nice if
we could write ‘n+1’ instead of s(n), but we must first define what ‘+’ means. In order
to do this, we need a way of defining expressions involving natural numbers; this is what
the recursion theorem allows us to do.

C Theorem 3.1.2 (Recursion theorem)
Let X be a set. For all a ∈ X and all h : N×X → X , there is a unique function f : N→ X
such that f (0) = a and f (s(n)) = h(n, f (n)) for all n ∈ N.

Proof
Let a ∈ X and h : N×X → X . We prove existence and uniqueness of f separately.

• Define f : N → X by specifying f (0) = a and f (s(n)) = h(n, f (n)). Since h is a
function and s is injective, existence and uniqueness of x ∈ X such that f (n) = x is
guaranteed, provided that f (n) is defined, so we need only verify totality.

So let D = {n ∈ N | f (n) is defined}. Then:

� 0 ∈ D, since f (0) is defined to be equal to a.

� Let n ∈ N and suppose n ∈ D. Then f (n) is defined and f (s(n)) = h(n, f (n)), so
that f (s(n)) is defined, and hence s(n) ∈ D.

By condition (iii) of Definition 3.1.1, we have N ⊆ D, so that f (n) is defined for all
n ∈ N, as required.

• To see that f is unique, suppose g : N→ X were another function such that g(0) = a
and g(s(n)) = h(n,g(n)) for all n ∈ N.

To see that f = g, let E = {n ∈ N | f (n) = g(n)}. Then

� 0 ∈ E, since f (0) = a = g(0).

� Let n ∈ N and suppose that n ∈ E. Then f (n) = g(n), and so

f (s(n)) = h(n, f (n)) = h(n,g(n)) = g(s(n))

and so s(n) ∈ E.

Again, condition (iii) of Definition 3.1.1 is satisfied, so that N ⊆ E. It follows that
f (n) = g(n) for all n ∈ N, and so f = g.

Thus we have established the existence and uniqueness of a function f :N→ X such that
f (0) = a and f (s(n)) = h(n, f (n)) for all n ∈ N. �
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The recursion theorem allows us to define expressions involving natural numbers by re-
cursion; this is Strategy 3.1.3.

v Strategy 3.1.3 (Definition by recursion)
In order to specify a function f : N→ X , it suffices to define f (0) and, for given n ∈ N,
assume that f (n) has been defined, and define f (s(n)) in terms of n and f (n).

0 Example 3.1.4
We can use recursion to define addition on the natural numbers as follows.

For fixed m ∈ N, we can define a function addm : N→ N by recursion by:

addm(0) = m and addm(s(n)) = s(addm(n)) for all n ∈ N

In more familiar notation, for m,n ∈ N, define the expression ‘m+ n’ to mean addm(n).
Another way of expressing the recursive definition of addm(n) is to say that, for each
m ∈ N, we are defining m+n by recursion on n as follows:

m+0 = m and m+ s(n) = s(m+n) for all n ∈ N

C

We can use the recursive definition of addition to prove familiar equations between num-
bers. The following proposition is a proof that 2+2 = 4. This may seem silly, but notice
that the expression ‘2+2 = 4’ is actually shorthand for the following:

adds(s(0))(s(s(0))) = s(s(s(s(0))))

We must therefore be careful to apply the definitions in its proof.

C Proposition 3.1.5
2+2 = 4

Proof
We use the recursive definition of addition.

2+2 = 2+ s(1) since 2 = s(1)
= s(2+1) by definition of +
= s(2+ s(0)) since 1 = s(0)
= s(s(2+0)) by definition of +
= s(s(2)) by definition of +
= s(3) since 3 = s(2)
= 4 since 4 = s(3)

as required. �

The following result allows us to drop the notation ‘s(n)’ and just write ‘n+1’ instead.

C Proposition 3.1.6
For all n ∈ N, we have s(n) = n+1.
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Proof
Let n ∈ N. Then by the recursive definition of addition we have

n+1 = n+ s(0) = s(n+0) = s(n)

as required. �

In light of Proposition 3.1.6, we will now abandon the notation s(n), and write n+ 1
instead.

We can define the arithmetic operations of multiplication and exponentiation by recur-
sion, too.

0 Example 3.1.7
Fix m ∈ N. Define m ·n for all n ∈ N by recursion on n as follows:

m ·0 = 0 and m · (n+1) = (m ·n)+m for all n ∈ N
Formally, what we have done is define a function multm : N → N recursively by
multm(z) = z and multm(s(n)) = addmultm(n)(m) for all n ∈ N. But the definition we
provided is easier to understand. C

C Proposition 3.1.8
2 ·2 = 4

Proof
We use the recursive definitions of addition and recursion.

2 ·2 = 2 · (1+1) since 2 = 1+1
= (2 ·1)+2 by definition of ·
= (2 · (0+1))+2 since 1 = 0+1
= ((2 ·0)+2)+2 by definition of ·
= (0+2)+2 by definition of ·
= (0+(1+1))+2 since 2 = 1+1
= ((0+1)+1)+2 by definition of +
= (1+1)+2 since 1 = 0+1
= 2+2 since 2 = 1+1
= 4 by Proposition 3.1.5

as required. �

. Exercise 3.1.9
Given m ∈ N, define mn for all n ∈ N by recursion on n, and prove that 22 = 4 using the
recursive definitions of exponentiation, multiplication and addition. C

We could spend the rest of our lives doing long computations involving recursively
defined arithmetic operations, so at this point we will stop, and return to taking for gran-
ted the facts that we know about arithmetic operations.

There are, however, a few more notions that we need to define by recursion so that we
can use them in our proofs later.
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F Definition 3.1.10

The sum of real numbers a1,a2, . . . ,an is the real number
n

∑
k=1

ak defined by recursion on

n ∈ N by
0

∑
k=1

ak = 0 and
n+1

∑
k=1

ak =

(
n

∑
k=0

ak

)
+an+1 for all n ∈ N

F Definition 3.1.11

The product of real numbers a1,a2, . . . ,an is the real number
n

∏
k=1

ak defined by recursion

on n ∈ N by

0

∏
k=1

ak = 1 and
n+1

∏
k=1

ak =

(
n

∏
k=0

ak

)
·an+1 for all n ∈ N

0 Example 3.1.12
Let xi = i2 for each i ∈ N. Then

5

∑
i=1

xi = 1+4+9+16+25 = 55

and
5

∏
i=1

xi = 1 ·4 ·9 ·16 ·25 = 14400

C

. Exercise 3.1.13
Let x1,x2 ∈R. Working strictly from the definitions of indexed sum and indexed product,
prove that

2

∑
i=1

xi = x1 + x2 and
2

∏
i=1

xi = x1 · x2

C

Binomials and factorials

F Definition 3.1.14 (to be redefined in Definition 6.2.10)
Let n ∈ N. The factorial of n, written n!, is defined recursively by

0! = 1 and (n+1)! = (n+1) ·n! for all n> 0

Put another way, we have

n! =
n

∏
i=1

i

for all n ∈ N—recall Definition 3.1.11 to see why these definitions are really just two
ways of wording the same thing.
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F Definition 3.1.15 (to be redefined in Definition 6.2.4)
Let n,k ∈N. The binomial coefficient

(n
k

)
(LATEX code: \binom{n}{k}) (read ‘n choose

k’) is defined by recursion on n and on k by(
n
0

)
= 1,

(
0

k+1

)
= 0,

(
n+1
k+1

)
=

(
n
k

)
+

(
n

k+1

)

This definition gives rise to an algorithm for computing binomial coefficients: they fit
into a diagram known as Pascal’s triangle, with each binomial coefficient computed as
the sum of the two lying above it (with zeroes omitted):

(0
0

)
1(1

0

) (1
1

)
1 1(2

0

) (2
1

) (2
2

)
= 1 2 1(3

0

) (3
1

) (3
2

) (3
3

)
1 3 3 1(4

0

) (4
1

) (4
2

) (4
3

) (4
4

)
1 4 6 4 1(5

0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)
1 5 10 10 5 1

...
...

...
...

...
...

...
...

...

. Exercise 3.1.16
Write down the next two rows of Pascal’s triangle. C
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Section 3.2

Weak induction

Just as recursion exploited the structure of the natural numbers to define expressions
involving natural numbers, induction exploits the very same structure to prove results
about natural numbers.

C Theorem 3.2.1 (Weak induction principle)
Let p(n) be logical formula with free variable n ∈ N, and let n0 ∈ N. If

(i) p(n0) is true; and

(ii) For all n> n0, if p(n) is true, then p(n+1) is true;

then p(n) is true for all n> n0.

Proof
Define X = {n ∈ N | p(n0 +n) is true}; that is, given a natural number n, we have n ∈ X
if and only if p(n0 +n) is true. Then

• 0 ∈ X , since n0 +0 = n0 and p(n0) is true by (i).

• Let n ∈ N and assume n ∈ X . Then p(n0 +n) is true. Since n0 +n> n0 and p(n0 +n)
is true, we have p(n0 +n+1) is true by (ii). But then n0 +n+1 ∈ X .

So by Definition 3.1.1(iii) we have N⊆ X . Hence p(n0 +n) is true for all n ∈N. But this
is equivalent to saying that p(n) is true for all n> n0. �

v Strategy 3.2.2 (Proof by (weak) induction)
In order to prove a proposition of the form ∀n ∈ N, p(n), it suffices to prove that p(0) is
true and that, for all n ∈ N, if p(n) is true, then p(n+1) is true.

Some terminology has evolved for proofs by induction, which we mention now:

• The proof of p(n0) is called the base case;

• The proof of ∀n> n0, (p(n)⇒ p(n+1)) is called the induction step;

• In the induction step, the assumption p(n) is called the induction hypothesis;

• In the induction step, the proposition p(n+1) is called the induction goal.

The following diagram illustrates the weak induction principle.

n0 n0 +1 · · · n−1 n n+1
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To interpret this diagram:

• The shaded diamond represents the base case p(n0);

• The square represents the induction hypothesis p(n);

• The dashed circle represents the induction goal p(n+1);

• The arrow represents the implication we must prove in the induction step.

We will use analogous diagrams to illustrate the other induction principles in this section.

C Proposition 3.2.3

Let n ∈ N. Then
n

∑
k=1

k =
n(n+1)

2

Proof
We proceed by induction on n> 0.

• (Base case) We need to prove
0

∑
k=1

k =
0(0+1)

2
.

This is true, since
0(0+1)

2
= 0, and

0

∑
k=1

k = 0 by Definition 3.1.10.

• (Induction step) Let n > 0 and suppose that
n

∑
k=1

k =
n(n+1)

2
; this is the induction

hypothesis.

We need to prove that
n+1

∑
k=1

k =
(n+1)(n+2)

2
; this is the induction goal.

We proceed by calculation:

n+1

∑
k=1

k =

(
n

∑
k=1

k

)
+(n+1) by Definition 3.1.10

=
n(n+1)

2
+(n+1) by induction hypothesis

= (n+1)
(n

2
+1
)

factorising

=
(n+1)(n+2)

2
rearranging

The result follows by induction. �

Before moving on, let’s reflect on the proof of Proposition 3.2.3 to highlight some effect-
ive ways of writing a proof by induction.

• We began the proof by indicating that it was a proof by induction. While it is clear in
this section that most proofs will be by induction, that will not always be the case, so
it is good practice to indicate the proof strategy at hand.
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• The base case and induction step are clearly labelled in the proof. This is not strictly
necessary from a mathematical perspective, but it helps the reader to navigate the proof
and to identify what the goal is at each step.

• We began the induction step by writing, ‘Let n> n0 and suppose that [. . . induction hy-
pothesis goes here. . . ]’. This is typically how your induction step should begin, since
the proposition being proved in the induction step is of the form ∀n> n0, (p(n)⇒···).

• Before proving anything in the base case or induction step, we wrote out what it was
that we were trying to prove in that part of the proof. This is helpful because it helps
to remind us (and the person reading the proof) what we are aiming to achieve.

Look out for these features in the proof of the next proposition, which is also by induction
on n> 0.

C Proposition 3.2.4
The natural number n3−n is divisible by 3 for all n ∈ N.

Proof
We proceed by induction on n> 0.

• (Base case) We need to prove that 03−0 is divisible by 3. Well

03−0 = 0 = 3×0

so 03−0 is divisible by 3.

• (Induction step) Let n ∈N and suppose that n3−n is divisible by 3. Then n3−n = 3k
for some k ∈ Z.

We need to prove that (n+1)3− (n+1) is divisible by 3; in other words, we need to
find some natural number ` such that

(n+1)3− (n+1) = 3`

We proceed by computation.

(n+1)3− (n+1)

= (n3 +3n2 +3n+1)−n−1 expand brackets

= n3−n+3n2 +3n+1−1 rearrange terms

= n3−n+3n2 +3n since 1−1 = 0

= 3k+3n2 +3n by induction hypothesis

= 3(k+n2 +n) factorise

Thus we have expressed (n+1)3− (n+1) in the form 3` for some ` ∈ Z; specifically,
`= k+n2 +n.

The result follows by induction. �

. Exercise 3.2.5

Prove by induction that
n

∑
k=0

2k = 2n+1−1 for all n ∈ N. C
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The following proposition has a proof by induction in which the base case is not zero.

C Proposition 3.2.6
For all n> 4, we have 3n < 2n.

Proof
We proceed by induction on n> 4.

• (Base case) p(4) is the statement 3 ·4 < 24. This is true, since 12 < 16.

• (Induction step) Suppose n> 4 and that 3n < 2n. We want to prove 3(n+1)< 2n+1.
Well,

3(n+1) = 3n+3 expanding
< 2n +3 by induction hypothesis

< 2n +24 since 3 < 16 = 24

6 2n +2n since n> 4
= 2 ·2n simplifying

= 2n+1 simplifying

So we have proved 3(n+1)< 2n+1, as required.

The result follows by induction. �

Note that the proof in Proposition 3.2.6 says nothing about the truth or falsity of p(n)
for n = 0,1,2,3. In order to assert that these cases are false, you need to show them
individually; indeed:

• 3×0 = 0 and 20 = 1, hence p(0) is true;

• 3×1 = 3 and 21 = 2, hence p(1) is false;

• 3×2 = 6 and 22 = 4, hence p(2) is false;

• 3×3 = 9 and 23 = 8, hence p(3) is false.

So we deduce that p(n) is true when n = 0 or n> 4, and false when n ∈ {1,2,3}.
. Exercise 3.2.7

Find all natural numbers n such that n5 < 5n. C

. Exercise 3.2.8
Prove that (1+ x)123 456 789 > 1+123 456 789 x for all real x>−1. C

Sometimes a ‘proof’ by induction might appear to be complete nonsense. The following
is a classic example of a ‘fail by induction’:

0 Example 3.2.9
The following argument supposedly proves that every horse is the same colour.

• (Base case) Suppose there is just one horse. This horse is the same colour as itself, so
the base case is immediate.
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• (Induction step) Suppose that every collection of n horses is the same colour. Let X
be a set of n+1 horses. Removing the first horse from X , we see that the last n horses
are the same colour by the induction hypothesis. Removing the last horse from X , we
see that the first n horses are the same colour. Hence all the horses in X are the same
colour.

By induction, we’re done. C

. Exercise 3.2.10
Write down the statement p(n) that Example 3.2.9 attempted to prove for all n > 1.
Convince yourself that the proof of the base case is correct, then write down—with
quantifiers—exactly the proposition that the induction step is meant to prove. Explain
why the argument in the induction step failed to prove this proposition. C

There are several ways to avoid situations like that of Example 3.2.9 by simply putting
more thought into writing the proof. Some tips are:

• State p(n) explicitly. In the statement ‘all horses are the same colour’ it is not clear
exactly what the induction variable is. However, we could have said:

Let p(n) be the statement ‘every set of n horses has the same colour’.

• Refer explicitly to the base case n0 in the induction step. In Example 3.2.9, our induc-
tion hypothesis simply stated ‘assume every set of n horses has the same colour’. Had
we instead said:

Let n> 1 and assume every set of n horses has the same colour.

We may have spotted the error in what was to come.

What follows are a couple more examples of proofs by weak induction.

C Proposition 3.2.11

For all n ∈ N, we have
n

∑
k=0

k3 =

(
n

∑
k=0

k

)2

.

Proof

We proved in Proposition 3.2.6 that
n

∑
k=0

k =
n(n+1)

2
for all n ∈ N, thus it suffices to

prove that
n

∑
k=0

k3 =
n2(n+1)2

4

for all n ∈ N.

We proceed by induction on n> 0.

• (Base case) We need to prove that 03 =
02(0+1)2

4
. This is true since both sides of the

equation are equal to 0.
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• (Induction step) Fix n ∈ N and suppose that
n

∑
k=0

k3 =
n2(n+1)2

4
. We need to prove

that
n+1

∑
k=0

k3 =
(n+1)2(n+2)2

4
. This is true since:

n+1

∑
i=0

k3 =
n

∑
i=0

k3 +(n+1)3 by definition of sum

=
n2(n+1)2

4
+(n+1)3 by induction hypothesis

=
n2(n+1)2 +4(n+1)3

4
(algebra)

=
(n+1)2(n2 +4(n+1))

4
(algebra)

=
(n+1)2(n+2)2

4
(algebra)

By induction, the result follows. �

In the next proposition, we prove the correctness of a well-known formula for the sum of
an arithmetic progression of real numbers.

C Proposition 3.2.12
Let a,d ∈ R. Then

n

∑
k=0

(a+ kd) =
(n+1)(2a+nd)

2

for all n ∈ N.

Proof
We proceed by induction on n> 0.

• (Base case) We need to prove that
0

∑
k=0

(a+ kd) =
(0+1)(2a+0d)

2
. This is true, since

0

∑
k=0

(a+ kd) = a+0d = a =
2a
2

=
1 · (2a)

2
=

(0+1)(2a+0d)
2

• (Induction step) Fix n ∈ N and suppose that
n

∑
k=0

(a+ kd) =
(n+1)(2a+nd)

2
. We

need to prove:
n+1

∑
k=0

(a+ kd) =
(n+2)(2a+(n+1)d)

2
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This is true, since

n+1

∑
k=0

(a+ kd)

=
n

∑
k=0

(a+ kd)+(a+(n+1)d) by definition of sum

=
(n+1)(2a+nd)

2
+(a+(n+1)d) by induction hypothesis

=
(n+1)(2a+nd)+2a+2(n+1)d

2
(algebra)

=
(n+1) ·2a+(n+1) ·nd +2a+2(n+1)d

2
(algebra)

=
2a(n+1+1)+(n+1)(nd +2d)

2
(algebra)

=
2a(n+2)+(n+1)(n+2)d

2
(algebra)

=
(n+2)(2a+(n+1)d)

2
(algebra)

By induction, the result follows. �

The following exercises generalises Exercise 3.2.5 to prove the correctness of a formula
for the sum of a geometric progression of real numbers.

. Exercise 3.2.13
Let a,r ∈ R with r 6= 1. Then

n

∑
k=0

arn =
a(1− rn+1)

1− r

for all n ∈ N. C

When attempting the following exercise, you might find that your induction step requires
an auxiliary result, which itself has a proof by induction.

. Exercise 3.2.14
Prove by induction that 7n−2 ·4n +1 is divisible by 18 for all n ∈ N. C

Binomials and factorials

Proof by induction turns out to be a very useful way of proving facts about binomial
coefficients

(n
k

)
and factorials n!.

0 Example 3.2.15

We prove that
n

∑
i=0

(
n
i

)
= 2n by induction on n.

132



Section 3.2. Weak induction 133

• (Base case) We need to prove
(0

0

)
= 1 and 20 = 1. These are both true by the definitions

of binomial coefficients and exponents.

• (Induction step) Fix n> 0 and suppose that
n

∑
i=0

(
n
i

)
= 2n

We need to prove
n+1

∑
i=0

(
n+1

i

)
= 2n+1

This is true, since

n+1

∑
i=0

(
n+1

i

)
=

(
n+1

0

)
+

n+1

∑
i=1

(
n+1

i

)
splitting the sum

= 1+
n

∑
j=0

(
n+1
j+1

)
letting j = i−1

= 1+
n

∑
j=0

((
n
j

)
+

(
n

j+1

))
by Definition 3.1.15

= 1+
n

∑
j=0

(
n
j

)
+

n

∑
j=0

(
n

j+1

)
separating the sums

Now
n

∑
j=0

(
n
j

)
= 2n by the induction hypothesis. Moreover, reindexing the sum using

k = j+1 yields

n

∑
j=0

(
n

j+1

)
=

n+1

∑
k=1

(
n
k

)
=

n

∑
k=1

(
n
k

)
+

(
n

n+1

)
By the induction hypothesis, we have

n

∑
k=1

(
n
k

)
=

n

∑
k=0

(
n
k

)
−
(

n
0

)
= 2n−1

and
( n

n+1

)
= 0, so that

n

∑
j=0

(
n

j+1

)
= 2n−1.

Putting this together, we have

1+
n

∑
j=0

(
n
j

)
+

n

∑
j=0

(
n

j+1

)
= 1+2n +(2n−1)

= 2 ·2n

= 2n+1

so the induction step is finished.
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By induction, we’re done. C

. Exercise 3.2.16
Prove by induction on n> 1 that

n

∑
i=0

(−1)i
(

n
i

)
= 0

C

C Theorem 3.2.17
Let n,k ∈ N. Then (

n
k

)
=


n!

k!(n− k)!
if k 6 n

0 if k > n

Proof
We proceed by induction on n.

• (Base case) When n = 0, we need to prove that
(0

k

)
= 0!

k!(−k)! for all k 6 0, and that(0
k

)
= 0 for all k > 0.

If k 6 0 then k = 0, since k ∈ N. Hence we need to prove(
0
0

)
=

0!
0!0!

But this is true since
(0

0

)
= 1 and 0!

0!0! =
1

1×1 = 1.

If k > 0 then
(0

k

)
= 0 by Definition 3.1.15.

• (Induction step) Fix n ∈ N and suppose that
(n

k

)
= n!

k!(n−k)! for all k 6 n and
(n

k

)
= 0

for all k > n.

We need to prove that, for all k 6 n+1, we have(
n+1

k

)
=

(n+1)!
k!(n+1− k)!

and that
(n+1

k

)
= 0 for all k > n+1.

So fix k ∈ N. There are four possible cases: either (i) k = 0, or (ii) 0 < k 6 n, or (iii)
k = n+ 1, or (iv) k > n+ 1. In cases (i), (ii) and (iii), we need to prove the factorial
formula for

(n+1
k

)
; in case (iv), we need to prove that

(n+1
k

)
= 0.

(i) Suppose k = 0. Then
(n+1

0

)
= 1 by Definition 3.1.15, and

(n+1)!
k!(n+1− k)!

=
(n+1)!

0!(n+1)!
= 1

since 0! = 1. So
(n+1

0

)
= (n+1)!

0!(n+1)! .
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(ii) If 0 < k 6 n then k = `+1 for some natural number ` < n. Then `+1 6 n, so
we can use the induction hypothesis to apply factorial formula to both

(n
`

)
and( n

`+1

)
. Hence(

n+1
k

)
=

(
n+1
`+1

)
since k = `+1

=

(
n
`

)
+

(
n

`+1

)
by Definition 3.1.15

=
n!

`!(n− `)!
+

n!
(`+1)!(n− `−1)!

by induction hypothesis

Now note that

n!
`!(n− `)!

=
n!

`!(n− `)!
· `+1
`+1

=
n!

(`+1)!(n− `)!
· (`+1)

and
n!

(`+1)!(n− `−1)!
=

n!
(`+1)!(n− `−1)!

· n− `

n− `
=

n!
(`+1)!(n− `)!

· (n− `)

Piecing this together, we have

n!
`!(n− `)!

+
n!

(`+1)!(n− `−1)!

=
n!

(`+1)!(n− `)!
· [(`+1)+(n− `)]

=
n!(n+1)

(`+1)!(n− `)!

=
(n+1)!

(`+1)!(n− `)!

so that
(n+1
`+1

)
= (n+1)!

(`+1)!(n−`)! . Now we’re done; indeed,

(n+1)!
(`+1)!(n− `)!

=
(n+1)!

k!(n+1− k)!

since k = `+1.
(iii) If k = n+1, then(

n+1
k

)
=

(
n+1
n+1

)
since k = n+1

=

(
n
n

)
+

(
n

n+1

)
by Definition 3.1.15

=
n!

n!0!
+0 by induction hypothesis

= 1

and (n+1)!
(n+1)!0! = 1, so again the two quantities are equal.
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(iv) If k > n+1, then k = `+1 for some ` > n, and so by Definition 3.1.15 and the
induction hypothesis we have(

n+1
k

)
=

(
n+1
`+1

)
IH
=

(
n
`

)
+

(
n

`+1

)
= 0+0 = 0

�

On first reading, this proof is long and confusing, especially in the induction step where
we are required to split into four cases. We will give a much simpler proof in Section 6.2
(see Theorem 6.2.42), where we prove the statement combinatorially by putting the ele-
ments of two sets in one-to-one correspondence.

We can use Theorem 3.2.17 to prove useful identities involving binomial coefficients.

0 Example 3.2.18
Let n,k, ` ∈ N with `6 k 6 n then(

n
k

)(
k
`

)
=

(
n
`

)(
n− `

k− `

)
Indeed: (

n
k

)(
k
`

)
=

n!
k!(n− k)!

· k!
`!(k− `!)

by Theorem 3.2.17

=
n!k!

k!`!(n− k)!(k− `)!
combine fractions

=
n!

`!(n− k)!(k− `)!
cancel k!

=
n!(n− `)!

`!(n− k)!(k− `)!(n− `)!
multiply by

(n− `)!
(n− `)!

=
n!

`!(n− `!)
· (n− `)!
(k− `)!(n− k)!

separate fractions

=
n!

`!(n− `!)
· (n− `)!
(k− `)!((n− `)− (k− `))!

rearranging

=

(
n
`

)(
n− `

k− `

)
by Theorem 3.2.17

C

. Exercise 3.2.19
Prove that

(n
k

)
=
( n

n−k

)
for all n,k ∈ N with k 6 n. C

A very useful application of binomial coefficients in elementary algebra is to the binomial
theorem.
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C Theorem 3.2.20 (Binomial theorem)
Let n ∈ N and x,y ∈ R. Then

(x+ y)n =
n

∑
k=0

(
n
k

)
xkyn−k

Proof
In the case when y = 0 we have yn−k = 0 for all k < n, and so the equation reduces to

xn = xnyn−n

which is true, since y0 = 1. So for the rest of the proof, we will assume that y 6= 0.

We will now reduce to the case when y = 1; and extend to arbitrary y 6= 0 afterwards.

We prove (1+ x)n =
n

∑
k=0

(
n
k

)
xk by induction on n.

• (Base case) (1+ x)0 = 1 and
(0

0

)
x0 = 1 ·1 = 1, so the statement is true when n = 0.

• (Induction step) Fix n ∈ N and suppose that

(1+ x)n =
n

∑
k=0

(
n
k

)
xk

We need to show that (1+ x)n+1 =
n+1

∑
k=0

(
n+1

k

)
xk. Well,

(1+ x)n+1

= (1+ x)(1+ x)n by laws of indices

= (1+ x) ·
n

∑
k=0

(
n
k

)
xk by induction hypothesis

=
n

∑
k=0

(
n
k

)
xk + x ·

n

∑
k=0

(
n
k

)
xk by expanding (x+1)

=
n

∑
k=0

(
n
k

)
xk +

n

∑
k=0

(
n
k

)
xk+1 distributing x

=
n

∑
k=0

(
n
k

)
xk +

n+1

∑
k=1

(
n

k−1

)
xk k→ k−1 in second sum

=

(
n
0

)
x0 +

n

∑
k=1

((
n
k

)
+

(
n

k−1

))
xk +

(
n
n

)
xn+1 splitting the sums

=

(
n
0

)
x0 +

n

∑
k=1

(
n+1

k

)
xk +

(
n
n

)
xn+1 by Definition 3.1.15

=

(
n+1

0

)
x0 +

n

∑
k=1

(
n+1

k

)
xk +

(
n+1
n+1

)
xn+1 see (∗) below

=
n+1

∑
k=0

(
n+1

k

)
xk
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The step labelled (∗) holds because(
n
0

)
= 1 =

(
n+1

0

)
and

(
n
n

)
= 1 =

(
n+1
n+1

)

By induction, we’ve shown that (1+ x)n =
n

∑
i=0

(
n
k

)
xk for all n ∈ N.

When y 6= 0 is not necessarily equal to 1, we have that

(x+ y)n = yn ·
(

1+
x
y

)n

= yn ·
n

∑
k=0

(
n
k

)(
x
y

)k

=
n

∑
k=0

(
n
k

)
xkyn−k

The middle equation follows by what we just proved; the leftmost and rightmost equa-
tions are simple algebraic rearrangements. �

0 Example 3.2.21
In Example 3.2.15 we saw that

n

∑
k=0

(
n
k

)
= 2n

This follows quickly from the binomial theorem, since

2n = (1+1)n =
n

∑
k=0

(
n
k

)
·1k ·1n−k =

n

∑
k=0

(
n
k

)
Likewise, in Exercise 3.2.16 you proved that the alternating sum of binomial coefficients
is zero; that is, for n ∈ N, we have

n

∑
k=0

(−1)k
(

n
k

)
= 0

The proof is greatly simplified by applying the binomial theorem. Indeed, by the bino-
mial theorem, we have

0 = 0n = (−1+1)n =
n

∑
k=0

(
n
k

)
(−1)k1n−k =

n

∑
k=0

(−1)k
(

n
k

)
Both of these identities can be proved much more elegantly, quickly and easily using
enumerative combinatorics. This will be the topic covered in Section 6.2. C
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Section 3.3

Strong induction

Consider the following example, which we will attempt to prove by induction.

0 Example 3.3.1
Define a sequence recursively by

b0 = 1 and bn+1 = 1+
n

∑
k=0

bk for all n ∈ N

We will attempt to prove by induction that bn = 2n for all n ∈ N.

• (Base case) By definition of the sequence we have b0 = 1 = 20. So far so good.

• (Induction step) Fix n ∈ N, and suppose that bn = 2n. We need to show that bn+1 =
2n+1.

Well, bn+1 = 1+
n

∑
k=0

bk = . . . uh oh.

Here’s what went wrong. If we could replace each bk by 2k in the sum, then we’d be
able to complete the proof. However we cannot justify this substitution: our induction
hypothesis only gives us information about bn, not about a general term bk for k < n. C

The strong induction principle looks much like the weak induction principle, except
that its induction hypothesis is more powerful. Despite its name, strong induction is
no stronger than weak induction; the two principles are equivalent. In fact, we’ll prove
the strong induction principle by weak induction!

C Theorem 3.3.2 (Strong induction principle)
Let p(x) be a statement about natural numbers and let n0 ∈ N. If

(i) p(n0) is true; and

(ii) For all n ∈ N, if p(k) is true for all n0 6 k 6 n, then p(n+1) is true;

then p(n) is true for all n> n0.

Proof
For each n> n0, let q(n) be the assertion that p(k) is true for all n0 6 k 6 n.

Notice that q(n) implies p(n) for all n > n0, since given n > n0, if p(k) is true for all
n0 6 k 6 n, then in particular p(k) is true when k = n.

So it suffices to prove q(n) is true for all n> n0. We do so by weak induction.

• (Base case) q(n0) is equivalent to p(n0), since the only natural number k with n0 6
k 6 n0 is n0 itself; hence q(n0) is true by condition (i).
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• (Induction step) Let n > n0 and suppose q(n) is true. Then p(k) is true for all n0 6
k 6 n.

We need to prove that q(n+1) is true—that is, that p(k) is true for all n0 6 k 6 n+1.
But we know p(k) is true for all n06 k6 n—this is the induction hypothesis—and then
p(n+ 1) is true by condition (ii). So we have that p(k) is true for all n0 6 k 6 n+ 1
after all.

By induction, q(n) is true for all n> n0. Hence p(n) is true for all n> n0. �

v Strategy 3.3.3 (Proof by strong induction)
In order to prove a proposition of the form ∀n > n0, p(n), it suffices to prove that p(n0)
is true and that, for all n> n0, if p(k) is true for all n0 6 k 6 n, then p(n+1) is true.

Like with weak induction, we can illustrate how strong induction works diagrammatic-
ally. The induction hypothesis, represented by the large square, now encompasses p(k)
for all n0 6 k 6 n, where p(n0) is the base case.

n0 n0 +1 · · · n−1 n n+1

Observe that the only difference from weak induction is the induction hypothesis.

• Weak induction step: Fix n> n0, assume p(n) is true , derive p(n+1);

• Strong induction step: Fix n > n0, assume p(k) is true for all n0 6 k 6 n , derive
p(n+1).

We now use strong induction to complete the proof of Example 3.3.1.

0 Example 3.3.4 (Example 3.3.1 revisited)
Define a sequence recursively by

b0 = 1 and bn+1 = 1+
n

∑
k=0

bk for all n ∈ N

We will prove by strong induction that bn = 2n for all n ∈ N.

• (Base case) By definition of the sequence we have b0 = 1 = 20.

• (Induction step) Fix n ∈ N, and suppose that bk = 2k for all k 6 n. We need to show
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that bn+1 = 2n+1. This is true, since

bn+1 = 1+
n

∑
k=0

bk by the recursive formula for bn+1

= 1+
n

∑
k=0

2k by the induction hypothesis

= 1+(2n+1−1) by Exercise 3.2.5

= 2n+1

By induction, it follows that bn = 2n for all n ∈ N. C

The following theorem adapts the strong induction principle to proofs where we need to
refer to a fixed number of previous steps in our induction step.

C Theorem 3.3.5 (Strong induction principle (multiple base cases))
Let p(n) be a logical formula with free variable n ∈ N and let n0 < n1 ∈ N. If

(i) p(n0), p(n0 +1), . . . , p(n1) are all true; and

(ii) For all n> n1, if p(k) is true for all n0 6 k 6 n, then p(n+1) is true;

then p(n) is true for all n> n0.

Proof
The fact that p(n) is true for all n> n0 follows from strong induction. Indeed:

• (Base case) p(n0) is true by (i);

• (Induction step) Fix n> n0 and assume p(k) is true for all n0 6 k 6 n. Then:

� If n < n1, then n+16 n1, so that p(n) is true by (i);

� If n> n1, then p(n+1) is true by (ii).

In both cases we see that p(n+1) is true, as required.

Thus by strong induction, we have that p(n) is true for all n> n0. �

v Strategy 3.3.6 (Proof by strong induction with multiple base cases)
In order to prove a statement of the form ∀n > n0, p(n), it suffices to prove p(k) for all
k ∈ {n0,n0 +1, . . . ,n1}, where n1 > n0, and then given n> n1, assuming p(k) is true for
all n0 6 k 6 n, prove that p(n+1) is true.

This kind of strong induction differs from the usual kind in two main ways:

• There are multiple base cases p(n0), p(n0 +1), . . . , p(n1), not just one.
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• The induction step refers to both the least base case n0 and the greatest base case n1:
the variable n in the induction step is taken to be greater than or equal to n1, while the
induction hypothesis assumes p(k) for all n0 6 k 6 n.

The following diagram illustrates how strong induction with multiple base cases works.

n0 · · · n1 n1 +1 · · · n n+1

Note the difference in quantification of variables in the induction step between regular
strong induction and strong induction with multiple base cases:

• One base case. Fix n> n0 and assume p(k) is true for all n0 6 k 6 n.

• Multiple base cases. Fix n> n1 and assume p(k) is true for all n0 6 k 6 n.

Getting the quantification of the variables n and k in the strong induction step is crucial,
since the quantification affects what may be assumed about n and k.

The need for multiple base cases often arises when proving results about recursively
defined sequences, where the definition of a general term depends on the values of a
fixed number of previous terms.

0 Example 3.3.7
Define the sequence

a0 = 0, a1 = 1, an = 3an−1−2an−2 for all n> 2

We find and prove a general formula for an in terms of n. Writing out the first few terms
in the sequence establishes a pattern that we might attempt to prove:

n 0 1 2 3 4 5 6 7 8
an 0 1 3 7 15 31 63 127 255

It appears that an = 2n− 1 for all n > 0. We prove this by strong induction, taking the
cases n = 0 and n = 1 as our base cases.

• (Base cases) By definition of the sequence, we have:

� a0 = 0 = 20−1; and

� a1 = 1 = 21−1;

so the claim is true when n = 0 and n = 1.

• (Induction step) Fix n> 1 and assume that ak = 2k−1 for all 06 k 6 n. We need to
prove that an+1 = 2n+1−1.
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Well since n > 1, we have n+ 1 > 2, so we can apply the recursive formula to an+1.
Thus

an+1 = 3an−2an−1 by definition of an+1

= 3(2n−1)−2(2n−1−1) by induction hypothesis

= 3 ·2n−3−2 ·2n−1 +2 expanding
= 3 ·2n−3−2n +2 using laws of indices
= 2 ·2n−1 simplifying

= 2n+1−1 using laws of indices

So the result follows by induction. C

The following exercises have proofs by strong induction with multiple base cases.

. Exercise 3.3.8
Define a sequence recursively by a0 = 4, a1 = 9 and an = 5an−1− 6an−2 for all n > 2.
Prove that an = 3 ·2n +3n for all n ∈ N. C

. Exercise 3.3.9
The Tribonacci sequence is the sequence t0, t1, t2, . . . defined by

t0 = 0, t1 = 0, t2 = 1, tn = tn−1 + tn−2 + tn−3 for all n> 3

Prove that tn 6 2n−3 for all n> 3. C

. Exercise 3.3.10
The Frobenius coin problem asks when a given amount of money can be obtained from
coins of given denominations. For example, a value of 7 dubloons cannot be obtained
using only 3 dubloon and 5 dubloon coins, but for all n > 8, a value of n dubloons can
be obtained using only 3 dubloon and 5 dubloon coins. Prove this. C

Well-ordering principle

The underlying reason why we can perform induction and recursion on the natural num-
bers is because of the way they are ordered. Specifically, the natural numbers satisfy
the well-ordering principle: if a set of natural numbers has at least one element, then it
has a least element. This sets the natural numbers apart from the other number sets; for
example, Z has no least element, since if a ∈ Z then a−1 ∈ Z and a−1 < a.

C Theorem 3.3.11 (Well-ordering principle)
Let X be a set of natural numbers. If X is inhabited, then X has a least element.

Idea of proof
Under the assumption that X is a set of natural numbers, the proposition we want to prove
has the form p⇒ q. Namely

X is inhabited ⇒ X has a least element
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Assuming X is inhabited doesn’t really give us much to work with, so let’s try the con-
trapositive:

X has no least element ⇒ X is empty

The assumption that X has no least element does give us something to work with. Under
this assumption we need to deduce that X is empty.

We will do this by ‘forcing X up’ by strong induction. Certainly 0 6∈ X , otherwise it
would be the least element. If none of the numbers 0,1, . . . ,n are elements of X then
neither can n+1 be, since if it were then it would be the least element of X . Let’s make
this argument formal.

Proof
Let X be a set of natural numbers containing no least element. We prove by strong
induction that n 6∈ X for all n ∈ N.

• (Base case) 0 6∈ X since if 0 ∈ X then 0 must be the least element of X , as it is the least
natural number.

• (Induction step) Suppose k 6∈ X for all 06 k 6 n. If n+1 ∈ X then n+1 is the least
element of X ; indeed, if ` < n+1 then 06 `6 n, so ` 6∈ X by the induction hypothesis.
This contradicts the assumption that X has no least element, so n+1 6∈ X .

By strong induction, n 6∈ X for each n ∈ N. Since X is a set of natural numbers, and it
contains no natural numbers, it follows that X is empty. �

The following proof that
√

2 is irrational is a classic application of the well-ordering
principle.

C Proposition 3.3.12
The number

√
2 is irrational.

To prove Proposition 3.3.12 we will use the following lemma, which uses the well-
ordering principle to prove that fractions can be ‘cancelled to lowest terms’.

C Lemma 3.3.13
Let q be a positive rational number. There is a pair of nonzero natural numbers a,b such
that q = a

b and such that the only natural number which divides both a and b is 1.

Proof
First note that we can express q as the ratio of two nonzero natural numbers, since q is a
positive rational number. By the well-ordering principle, there is a least natural number
a such that q = a

b for some positive b ∈ N.

Suppose that some natural number d other than 1 divides both a and b. Note that d 6= 0,
since if d = 0 then that would imply a = 0. Since d 6= 1, it follows that d > 2.

Since d divides a and b, there exist natural numbers a′,b′ such that a = a′d and b = b′d.
Moreover, a′,b′ > 0 since a,b,d > 0. It follows that

q =
a
b
=

a′d
b′d

=
a′

b′
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But d > 2, and hence
a′ =

a
d
6

a
2
< a

contradicting minimality of a. Hence our assumption that some natural number d other
than 1 divides both a and b was false—it follows that the only natural number dividing
both a and b is 1. �

We are now ready to prove that
√

2 is irrational.

Proof of Proposition 3.3.12
Suppose

√
2 is rational. Since

√
2 > 0, this means that we can write

√
2 =

a
b

where a and b are both positive natural numbers. By Lemma 3.3.13, we may assume that
the only natural number dividing a and b is 1.

Multiplying the equation
√

2 = a
b and squaring yields

a2 = 2b2

Hence a2 is even. By Proposition 1.1.46, a is even, so we can write a = 2c for some
c > 0. Then a2 = (2c)2 = 4c2, and hence

4c2 = 2b2

Dividing by 2 yields
2c2 = b2

and hence b2 is even. By Proposition 1.1.46 again, b is even.

But if a and b are both even, the natural number 2 divides both a and b. This contradicts
the fact that the only natural number dividing both a and b is 1. Hence our assumption
that
√

2 is rational is incorrect, and
√

2 is irrational. �

v Writing tip
In the proof of Proposition 3.3.12 we could have separately proved that a2 being even
implies a is even, and that b2 being even implies b is even. This would have required
us to repeat the same proof twice, which is somewhat tedious! Proving auxiliary results
separately (as in Lemma 3.3.13) and then quoting them in later theorems can improve
the readability of the main proof, particularly when the auxiliary results are particularly
technical. Doing so also helps emphasise the important steps. C

. Exercise 3.3.14
What goes wrong in the proof of Proposition 3.3.12 if we try instead to prove that

√
4 is

irrational? C

. Exercise 3.3.15
Prove that

√
3 is irrational. C
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Section 3.E

Chapter 3 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Recursive definitions

In Questions 3.1 to 3.5, use the recursive definitions of addition, multiplication and ex-
ponentiation directly to prove the desired equation.

3.1. 1+3 = 4

3.2. 0+5 = 5

3.3. 2 ·3 = 6

3.4. 0 ·5 = 0

3.5. 23 = 8

3.6. Give a recursive definition of new quantifiers ∃=n for n∈N, where given a set X and
a predicate p(x), the logical formula ∃=nx ∈ X , p(x) means ‘there are exactly n elements
x ∈ X such that p(x) is true’. That is, define ∃=0, and then define ∃=n+1 in terms of ∃=n.

3.7. Use the recursive definition of binomial coefficients (Definition 3.1.15) to prove

directly that
(

4
2

)
= 6.

3.8. (a) Find the number of trailing 0s in the decimal expansion of 41!.

(b) Find the number of trailing 0s in the binary expansion of 41!.

3.9. Let N be a set, let z ∈ N and let s : N→ N. Prove that (N,z,s) is a notion of natural
numbers (in the sense of Definition 3.1.1) if and only if, for every set X , every element
a ∈ X and every function f : X → X , there is a unique function h : N → X such that
h(z) = a and h◦ f = s◦h.

Proofs by induction

3.10. Let a ∈ N and assume that the last digit in the decimal expansion of a is 6. Prove
that the last digit in the decimal expansion of an is 6 for all n> 1.

3.11. Let f : R→ R be a function such that f (0) > 0 and f (x+ y) = f (x) f (y) for all
x,y ∈ R. Prove that there is some positive real number a such that f (x) = ax for all
rational numbers x..
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Section 4.1

Relations

Many interesting results or concepts in mathematics arise from observing how the ele-
ments of one set interact with the elements of another set, or how elements of a single set
interact with each other. We can make this idea of ‘interaction’ precise using the notion
of a relation.

F Definition 4.1.1
Let X and Y be sets. A (binary) relation from X to Y is a logical formula R(x,y) with
two free variables x ∈ X and y ∈ Y . We call X the domain of R and Y the codomain of
R.

A relation R is homogeneous if it has the same domain and codomain X , in which case
we say that R is a relation on X .

Given x ∈ X and y ∈ Y , if R(x,y) is true then we say ‘x is related to y by R’, and write
x R y (LATEX code: x \mathrel{R} y).

0 Example 4.1.2
We have already seen many examples of relations.

• Divisibility (‘x divides y’) is a relation on Z.

• The inequality relation 6 is a relation on R.

• For any set X , equality = is a relation on X .

• Logical equivalence ≡ is a relation on the set of all logical formulae.

• For any set X , the subset relation ⊆ is a relation on P(X).

These relations were all homogeneous, but not all relations are:

• For any set X , the elementhood relation ∈ is a relation from X to P(X).

• Every function f : X → Y induces a relation R f from X to Y , defined by taking x R f y
to mean f (x) = y.

C

. Exercise 4.1.3
Give three more examples of relations, not all of which are homogeneous. C

Like with sets and functions, we must determine when to declare that two relations are
equal. For example, consider the relation R on R defined for a,b ∈ R by letting a R b
mean ∃x∈R, a+x2 = b. It so happens that aRb if and only if a6 b—we’ll prove this in
Example 4.1.5. So should R be equal to 6? On the one hand you might say ‘yes’, since
6 and R relate the same pairs of real numbers. On the other hand you might say ‘no’,
since the fact that 6 and R relate the same pairs of real numbers was not immediate and
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required proof. In fact, if we were to replace R byQ, it then6 and R would not relate the
same pairs of elements, since for instance 0 6 2 but there is no rational number x such
that 0+ x2 = 2.

But as with sets and functions, we settle for the extensional notion of equality: just as
two sets are equal when they have the same elements (Axiom 2.1.22), and two functions
are equal when they have the same values (Axiom 2.2.4), we consider two relations to be
equal when they relate the same pairs of elements (Axiom 4.1.4).

C Axiom 4.1.4 (Relation extensionality)
Let R and S be relations. Then R = S if and only if R and S have the same domain X and
codomain Y , and

∀x ∈ X , ∀y ∈ Y, (x R y⇔ x S y)

That is, two relations with the same domain and codomain are equal precisely when they
relate the same pairs of elements.

0 Example 4.1.5
Recall the relation R on R that we defined above for a,b ∈ R by letting a R b if and only
if a+ x2 = b for some x ∈ R. To see that R = 6, note that a+(b− a) = b, and that
b−a is the square of a real number if and only if b−a > 0, which occurs if and only if
a6 b. C

. Exercise 4.1.6
Let R and S be relations on R defined for a,b ∈ R by letting

a R b ⇔ b−a ∈Q and a S b ⇔ ∃n ∈ Z, (n 6= 0)∧n(b−a) ∈ Z

Prove that R = S. C

The true reason why Axiom 4.1.4 is powerful is that it allows us to reason about relations
entirely set theoretically by working with their graphs—the sets of pairs of elements that
they relate—rather than with the particular formulae defining the relation.

F Definition 4.1.7
Let R be a relation from a set X to a set Y . The graph of R is the set Gr(R) (LATEX code:
\mathrm{Gr}{R}) of pairs (x,y) ∈ X×Y for which x R y. That is

Gr(R) = {(x,y) ∈ X×Y | x R y} ⊆ X×Y

0 Example 4.1.8
The graph of the relation 6 on [3] is

{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}

Likewise, the graph of the relation 6 viewed as a relation from [2] to [4] is

{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4)}

This demonstrates that the graph of a relation is sensitive to the domain (and codomain)
of the relation. C
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0 Example 4.1.9
Consider the relation C from R to R defined by x C y⇔ x2 + y2 = 1. Then

Gr(C) = {(x,y) ∈ R×R | x2 + y2 = 1}
Plotting Gr(C) on a standard pair of axes yields a circle with radius 1 centred at the point
(0,0), shown below with a unit grid.

x

y

Note that Gr(C) is not the graph of a function f : [0,1]→R, since for example both (0,1)
and (0,−1) are elements of Gr(C), the value f (0) would not be uniquely defined. C

. Exercise 4.1.10
Let R be the relation on Z defined for x,y ∈ Z by letting x R y if and only if x2 = y2.
Describe its graph Gr(R)⊆ Z×Z. C

. Exercise 4.1.11
Let f : X → Y be a function, and define the relation R f from X to Y as in Example 4.1.2.
Prove that Gr(R f ) = Gr( f )—that is, the graph of the relation R f is equal to the graph of
the function f . C

F Definition 4.1.12
The discrete relation from a set X to a set Y is the relation DX ,Y defined by letting
x DX ,Y y be true for all x,y ∈ X .

The empty relation from a set X to a set Y is the relation ∅X ,Y (LATEX code:
\varnothing) defined by letting x∅X ,Y y be false for all x,y ∈ X .

. Exercise 4.1.13
Let X and Y be sets. Describe the graphs Gr(DX ,Y ) and Gr(∅X ,Y ). C

It turns out that, for fixed sets X and Y , relations from X to Y correspond with subsets
of X ×Y —see Theorem 4.1.14 below. This fact is so convenient that many (if not most)
authors actually define ‘relation from X to Y ’ to mean ‘subset of X×Y ’.
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C Theorem 4.1.14
Let X and Y be sets. Every subset G⊆ X ×Y is the graph of a unique relation R from X
to Y .

Proof
Fix G⊆ X×Y . Define a relation R by

∀x ∈ X , ∀y ∈ Y, x R y⇔ (x,y) ∈ G

Then certainly G = Gr(R), since for all x ∈ X and y ∈ Y we have

(x,y) ∈ G ⇔ x R y ⇔ (x,y) ∈ Gr(R)

Moreover, if S is a relation from X to Y such that G = Gr(S), then, for all x ∈ X and y∈Y

x S y⇔ (x,y) ∈ Gr(S)⇔ (x,y) ∈ G⇔ x R y

so S = R.

Hence there is exactly one relation from X to Y whose graph is G. �

Theorem 4.1.14 suggests that, for the purposes of defining relations and proving that
relations are equal, we may work entirely set theoretically with the graphs of the relations.

v Strategy 4.1.15 (Relations as graphs)
In order to specify a relation R, it suffices to specify its domain X , its codomain Y , and
its graph Gr(R) ⊆ X ×Y . Furthermore, in order to prove that two relations R and S are
equal, it suffices to prove that they have the same domain and codomain, and that their
graphs are equal.

0 Example 4.1.16
Consider the set G = {(2m+ i,2n+ i) | m,n ∈ Z, i ∈ {0,1}}. Since G⊆ Z×Z, it is the
graph of a (unique) relation R on Z, which is necessarily defined for a,b ∈ Z by letting
a R b if and only if there are integers m and n, and i ∈ {0,1}, such that a = 2m+ i and
b = 2n+ i. But this says precisely that a and b both leave the same remainder (namely
i) when divided by 2, so that R can be described by saying that, for all a,b ∈ Z, we have
a R b if and only if a and b are both even or both odd. C

F Definition 4.1.17
Let X be a set. The diagonal subset of X ×X is the set ∆X (LATEX code: \Delta_X)
defined by ∆X = {(x,x) | x ∈ X}.

To see why ∆X is called the ‘diagonal’ subset, try plotting ∆R ⊆R×R on a standard pair
of axes (like in Example 4.1.9).

. Exercise 4.1.18
Let X be a set. Prove that ∆X = Gr(=). C
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Properties of homogeneous relations

Most of the relations of interest to us in this book are homogeneous—that is, relations
on a set. In fact, they broadly fall into one of two categories: equivalence relations,
which are relations that ‘behave like =’; and order relations, which are relations that
‘behave like 6’. We will study equivalence relations in Section 4.2 and order relations
in Section 10.1, but examples of such relations pop up throughout the book. (In fact, we
have already seen several!)

Our task for the rest of this section is to isolate the properties that a relation must satisfy
in order to be classified as an equivalence relation or an order relation.

To aid with intuition, we will illustrate these properties with diagrams: given a relation
R, the fact that a R b will be represented diagramatically as follows:

a b

A reflexive relation is one that relates every element of its domain to itself.

F Definition 4.1.19
A relation R on a set X is reflexive if a R a for all a ∈ X .

a

0 Example 4.1.20
Given any set X , the equality relation = on X is reflexive, since a = a for all a ∈ X . C

0 Example 4.1.21
Let R be the relation on R defined for a,b ∈ R by a R b if and only if b−a ∈Q. Then R
is reflexive, since for all a ∈ R, we have a−a = 0 ∈Q, so that a R a. C

. Exercise 4.1.22
Let X be a set. Prove that ⊆ is a reflexive relation on P(X), but $ is not. C

. Exercise 4.1.23
Prove that the relation ‘x divides y’ on Z is reflexive. C

The next exercise demonstrates that when determining if a relation is reflexive, we must
be careful to specify its domain.

. Exercise 4.1.24
Let G = {(1,1),(2,2),(3,3)}. Let R be the relation on [3] whose graph is G, and let S be
the relation on [4] whose graph is G. Prove that R is reflexive, but S is not. C
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Symmetric relations are those for which the direction of the relation doesn’t matter: two
elements are either each related to the other, or not related at all.

F Definition 4.1.25
A relation R on a set X is symmetric if, for all a,b ∈ X , if a R b, then b R a.

a b

0 Example 4.1.26
Given any set X , the equality relation = on X is symmetric, since for all a,b∈ X , if a = b,
then b = a. C

0 Example 4.1.27
Let R be the relation on R defined for a,b ∈ R by a R b if and only if b−a ∈Q. Then R
is symmetric.

To see this, let a,b ∈ R and assume that a R b. Then b− a ∈ Q, so that b− a =
p
q

for

some p,q ∈ Z with q 6= 0. But then

a−b =−(b−a) =
−p
q

so that a−b ∈Q. Hence b R a, as required. C

. Exercise 4.1.28
Find all subsets U ⊆ Z such that the relation ‘x divides y’ on U is symmetric. C

We showed in Exercise 4.1.24 that reflexivity of a relation is sensitive to its domain. The
next exercise demonstrates that symmetry is not sensitive to the domain—that is, it is an
intrinsic property of the relation.

. Exercise 4.1.29
Let R and S be relations such that Gr(R) = Gr(S). Note that the domain of R might be
different from the domain of S. Prove that R is symmetric if and only if S is symmetric.

C

A condition related to symmetry, but in a sense opposite to it, is antisymmetry. It says
that the only way that two elements of a set can each be related to the other is if they are
equal.

F Definition 4.1.30
Let X be a set. A relation R on X is antisymmetric if, for all a,b ∈ X , if a R b and b R a,
then a = b.

a b ⇒ a = b
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A word of warning here is that ‘antisymmetric’ does not mean the same thing as ‘not
symmetric’—indeed, we we will see, equality is both symmetric and antisymmetric, and
many relations are neither symmetric nor antisymmetric. [Even more confusingly, there
is a notion of asymmetric relation, which also does not mean ‘not symmetric’.]

0 Example 4.1.31
Given any set X , the equality relation = on X is antisymmetric, since for all a,b ∈ X , if
a = b and b = a, then a = b. C

0 Example 4.1.32
The order relation 6 on R is antisymmetric, since for all a,b ∈ R, if a 6 b and b 6 a,
then a = b. C

. Exercise 4.1.33
Prove that the relation ‘x divides y’ on N is antisymmetric, but not on Z. C

. Exercise 4.1.34
Let X be a set. Prove that ⊆ is an antisymmetric relation on P(X). C

. Exercise 4.1.35
Let X be a set and let R be a relation on X . Prove that R is both symmetric and anti-
symmetric if and only if Gr(R) ⊆ ∆X , where ∆X is the diagonal subset of X ×X (see
Definition 4.1.17). Deduce that the only reflexive, symmetric and antisymmetric relation
on a set X is the equality relation on X . C

The last property we will study in some detail is transitivity. Transitive relations are those
for which we can skip over intermediate related elements—for example, we can deduce
0 < 3 from the facts that 0 < 1 and 1 < 2 and 2 < 3.

F Definition 4.1.36
A relation R on a set X is transitive if, for all a,b,c ∈ X , if a R b and b R c, then a R c.

a b c

0 Example 4.1.37
Given any set X , the equality relation = on X is transitive since, for all a,b,c ∈ X , if
a = b and b = c, then a = c. C

0 Example 4.1.38
Let R be the relation on R defined for a,b ∈ R by a R b if and only if b−a ∈Q. Then R
is transitive.

To see this, let a,b,c ∈R and assume that a R b and b R c. Then b−a ∈Q and c−b ∈Q,
so there exist p,q,r,s ∈ Z with q,s 6= 0 such that

b−a =
p
q

and c−b =
r
s
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It follows that
c−a = (c−b)+(b−a) =

p
q
+

r
s
=

ps+qr
qs

so that c−a ∈Q. Hence a R c, as required. C

. Exercise 4.1.39
Let X be a set. Prove that ⊆ is a transitive relation on P(X). C

. Exercise 4.1.40
Prove that the relation ‘x divides y’ on Z is transitive. C

Like symmetry, transitive is an intrinsic property of relations—that is, transitivity is not
sensitive to the domain of the relation—as the next exercise demonstrates.

. Exercise 4.1.41
Let R and S be relations such that Gr(R) = Gr(S). Note that the domain of R might be
different from the domain of S. Prove that R is transitive if and only if S is transitive. C

A fundamental property of transitive relations is that we can prove two elements a and b
are related by finding a chain of related elements starting at a and finishing at b. This is
the content of the following proposition.

C Proposition 4.1.42
Let R be a relation on a set X . Then R is transitive if and only if, for any finite sequence
x0,x1, . . . ,xn of elements of X such that xi−1 R xi for all i ∈ [n], we have x0 R xn.

Proof
For the sake of abbreviation, let p(n) be the assertion that, for any n> 1 and any sequence
x0,x1, . . . ,xn of elements of X such that xi−1 R xi for all i ∈ [n], we have x0 R xn.

We prove the two directions of the proposition separately.

• (⇒) Suppose R is transitive. For n> 1. We prove p(n) is true for all n> 1 by induction.

� (Base case) When n = 1 this is immediate, since we assume that x0 R x1.

� (Induction step) Fix n > 1 and suppose p(n) is true. Let x0, . . . ,xn,xn+1 is a se-
quence such that xi−1 R xi for all i ∈ [n+1]. We need to prove that x0 R xn+1.
By the induction hypothesis we know that x0 R xn. By definition of the sequence we
have xn R xn+1. By transitivity, we have x0 R xn+1.

So by induction, we have proved the⇒ direction.

• (⇐) Suppose p(n) is true for all n > 1. Then in particular p(2) is true, which is
precisely the assertion that R is transitive.

So we’re done. �

That is, Proposition 4.1.42 states that for a transitive relation R on a set X , if
x0,x1, . . . ,xn ∈ X , then

x0 R x1 R · · · R xn ⇒ x0 R xn

where ‘x0 R x1 R · · · R xn’ abbreviates the assertion that xi R xi+1 for each i < n.
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Section 4.2

Equivalence relations and partitions

An equivalence relation on a set X is a relation on X that, to a certain extent, behaves like
equality. That is, equivalence relations give us a way of saying that two elements of a set
are ‘similar’, without having to be equal. As an example, we might be interested in when
the base-10 expansions of two natural numbers end in the same digit, or when two finite
sets have the same number of elements.

F Definition 4.2.1
A relation R on a set X is an equivalence relation if it is reflexive, symmetric and trans-
itive.

To denote a relation that we know (or suspect) is an equivalence relation, we will usually
use a symbol like ‘∼’ (LATEX code: \sim) or ‘≡’ (LATEX code: \equiv) or ‘≈’ (LATEX
code: \approx) instead of a letter like ‘R’ or ‘S’.

0 Example 4.2.2
Given any set X , it follows from Examples 4.1.20, 4.1.26 and 4.1.37 that the equality re-
lation = is an equivalence relation on X . This is a relief, since we motivated equivalence
relations by saying that they are those that behave like equality! C

0 Example 4.2.3
Let R be the relation on R defined for a,b ∈ R by a R b if and only if b−a ∈Q. Piecing
together Examples 4.1.21, 4.1.27 and 4.1.38, we see that R is an equivalence relation on
R. C

. Exercise 4.2.4
Given a function f : X → Y , define a relation ∼ f on X by

a∼ f b ⇔ f (a) = f (b)

for all a,b ∈ X . Prove that ∼ f is an equivalence relation on X . C

The equivalence relation in the next exercise comes back with a vengeance in Section 8.2,
where we will use it to compare the sizes of (finite and) infinite sets.

. Exercise 4.2.5
Let S be some set whose elements are all sets. (For example, we could take S =P(X)
for some fixed set X .) Define a relation ∼= (LATEX code: \cong) on S by letting U ∼= V
if and only if there exists a bijection f : U → V , for all U,V ∈ S . Prove that ∼= is an
equivalence relation on S . C

A first look at modular arithmetic

A particularly useful family of equivalence relations is given by congruence of integers,
which allows us to do modular arithmetic—this is the topic of Section 5.3. For a fixed
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integer n, this relation identifies two integers when they have the same remainder upon
division by n (as in Theorem 0.18).

F Definition 4.2.6
Fix n ∈ Z. Given integers a,b ∈ Z, we say a is congruent to b modulo n, and write

a≡ b mod n (LATEX code: a \equiv b \bmod{n})

if n divides a−b. If a is not congruent to b modulo n, write

a 6≡ b mod n (LATEX code: \not\equiv)

The number n is called the modulus of the congruence.

Before we prove that congruence is modulo n is an equivalence relation for all n ∈ Z, it
is worthwhile to get a feel for how it works.

0 Example 4.2.7
Let a,b ∈ Z. Then a≡ b mod 2 if and only if a and b are both even or both odd—that is,
if and only if they have the same parity.

Indeed, by the division theorem, we can write a = 2k+ i and b = 2`+ j for some k, ` ∈ Z
and i, j ∈ {0,1}. Then

b−a = (2k+ i)− (2`+ j) = 2(k− `)+(i− j)

Note that i− j ∈ {−1,0,1}, and so a ≡ b mod 2 if and only if i = j. But this occurs if
and only if i = j = 0, in which case a and b are both even, or i = j = 1, in which case a
and b are both odd. C

0 Example 4.2.8
Let a,b ∈N. Then a≡ b mod 10 if and only if 10 divides b−a, which occurs if and only
if the last digit in the decimal expansion of b− a is 0. But this implies that the decimal
expansions of a and b have the same last digit. So the relation of congruence modulo 10
on N is the same as the relation of ‘having the same last (decimal) digit’. C

. Exercise 4.2.9
Let n ∈ Z. Prove that if n 6= 0, then a ≡ b mod n if and only if a and b have the same
remainder when divided by n. C

. Exercise 4.2.10
Let a,b ∈ Z. When is it true that a≡ b mod 0? C

Having got a better feel for how congruence works, we now prove that, for each n ∈ Z,
congruence modulo n is an equivalence relation on Z.
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C Theorem 4.2.11
Let n ∈ Z. Then congruence modulo n is an equivalence relation on Z. That is:

(a) a≡ a mod n for all a ∈ Z;

(b) For all a,b ∈ Z, if a≡ b mod n, then b≡ a mod n;

(c) For all a,b,c ∈ Z, if a≡ b mod n and b≡ c mod n, then a≡ c mod n.

Proof
(a) Let a ∈ Z. Note that a− a = 0, which is divisible by n since 0 = 0× n, and hence

a≡ a mod n. So congruence modulo n is reflexive.

(b) Let a,b ∈ Z and suppose a≡ b mod n. Then n divides a−b, so that a−b = kn for
some k ∈ Z. Hence b− a = −kn, and so n divides b− a, so that b ≡ a mod n as
required. So congruence modulo n is symmetric.

(c) Let a,b,c ∈ Z and suppose that a≡ b mod n and b≡ c mod n. Then n divides both
a−b and b− c, so there exist k, ` ∈ Z such that

a−b = kn and b− c = `n

Hence a−c = (a−b)+(b−c) = (k+`)n, so that n divides a−c. Hence a≡ c mod
n, as required. So congruence modulo n is transitive.

Since congruence modulo n is reflexive, symmetric and transitive, it is an equivalence
relation. �

Equivalence classes

What makes equivalence relations so useful is they give us a way of ignoring information
that is irrelevant to the task at hand.

For example, suppose a and b are two very large natural numbers, each with several
trillion (decimal) digits. We want to know what the last digit of ab is. To find this out, it
would be silly to compute ab and then look at its last digit. Instead, we can observe that
the last digit of a product of two integers depends only on the last digit of each integer—
for example, 1527×9502 has the same last digit as 7×2 = 14. By using the equivalence
relation ‘has the same last digit as’, we are able to ignore the irrelevant information
about a and b—that is, all but one of their trillions of digits—and simplify the problem
considerably.

To make this precise, we introduce the notion of an equivalence class. For a set X with an
equivalence relation, the equivalence class of an element a∈ X will be the set of elements
of X that a is equivalent to. By working with the equivalence classes of elements of X ,
rather than the elements of X themselves, we are able to regard two equivalent elements
as being ‘the same’.
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F Definition 4.2.12
Let X be a set and let ∼ be an equivalence relation on X . The ∼-equivalence class of an
element a ∈ X is the set [a]∼ (LATEX code: [x]_{\sim}) defined by

[a]∼ = {x ∈ X | a∼ x}

The quotient of X by ∼ is the set X/∼ (LATEX code: X/{\sim}) of all ∼-equivalence
classes of elements of X ; that is

X/∼= {[a]∼ | a ∈ X}

v LATEX tip
Putting {curly brackets} around the command for a symbol like ∼ (\sim) tells LATEX to
consider the symbol as a symbol, rather than as a connective. Compare the following:

TEX code Output
X/\sim = Y X/∼= Y

X/{\sim} = Y X/∼= Y

This is because, without braces, LATEX thinks you’re saying ‘X-forward-slash is related
to is equal to Y ’, which clearly makes no sense; putting braces around \sim signifies to
LATEX that the ∼ symbol is being considered as an object in its own right, rather than as
a connective. C

0 Example 4.2.13
Let ∼ be the relation of congruence modulo 2 on Z. We showed in Example 4.2.7 that,
for all a,b ∈ Z we have a≡ b mod 2 if and only if a and b have the same parity. But this
means that, for all [a]∼ is the set of all integers with the same parity as a—that is:

• If a is even, then [a]∼ is the set of all even integers; and

• If a is odd, then [a]∼ is the set of all odd integers.

It follows that Z/∼ = {[0]∼, [1]∼} = {E,O}, where E is the set of all even integers and
O is the set of all odd integers. C

. Exercise 4.2.14
Let ≈ be the relation of congruence modulo 10 on N. Describe the equivalence classes,
and give an explicit expression of the quotient N/≈ in list notation. C

0 Example 4.2.15
Let f : X → Y be a function, and let ∼ f be the equivalence relation on X that we defined
in Exercise 4.2.4. Given a ∈ X , we have

[a]∼ f = {x ∈ X | a∼ f x}= {x ∈ X | f (a) = f (x)}

Thus we have [a]∼ f = f−1[{ f (a)}]. C

. Exercise 4.2.16
Let f : X → Y be a function. Prove that f is injective if and only if each ∼ f -equivalence
class has a unique element, where ∼ f is the equivalence relation defined in Exer-
cise 4.2.4. C
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The next result demonstrates that an equivalence relation ∼ on a set X ‘descends’ to the
equality relation = on the quotient X/∼. This means that if we would rather deal with
equality than with the equivalence relation itself, then we may do so by working inside
the quotient X/∼ rather than in the set X .

C Theorem 4.2.17
Let ∼ be an equivalence relation on a set X . Then for all a,b ∈ X , we have a ∼ b if and
only if [a]∼ = [b]∼.

Proof
The proof is an exercise in piecing together the properties of equivalence relations.

Fix a,b ∈ X .

• (⇒) Suppose a∼ b. We prove [a]∼ = [b]∼ by double containment.

� (⊆) Let x ∈ [a]∼—then a ∼ x. We are assuming that a ∼ b, so that b ∼ a by sym-
metry, and so b∼ x by transitivity. So x ∈ [b]∼.

� (⊇) Let x ∈ [b]∼—then b∼ x. We are assuming that a∼ b, and so a∼ x by transit-
ivity. So x ∈ [a]∼.

We have shown by double containment that [a]∼ = [b]∼.

• (⇐) Assume [a]∼ = [b]∼. We have b ∼ b by reflexivity, and so b ∈ [b]∼. But then
b ∈ [a]∼, so that a∼ b, as required.

So a∼ b if and only if [a]∼ = [b]∼. �

For congruence, special terminology and notation exists for equivalence classes and quo-
tients.

F Definition 4.2.18
Let n ∈ Z. The congruence class of an integer a modulo n is defined by

[a]n = [a]≡ mod n = {x ∈ Z | a≡ x mod n}

The set of all congruence classes modulo n is denoted by

Z/nZ = Z/≡ mod n = {[a]n | a ∈ Z}

0 Example 4.2.19
Using the terminology of congruence classes, Example 4.2.13 can be rephrased by saying
that Z/2Z= {[0]2, [1]2}. Moreover, Theorem 4.2.17 gives us a more succinct proof: for
all a ∈ Z, we have a≡ 0 mod 2 if and only if a is even, and a≡ 1 mod 2 if and only if a
is odd. Therefore for all a ∈ Z, we have [a]2 = [0]2 or [a]2 = [1]2, and so

Z/2Z = {[a]2 | a ∈ Z} = {[0]2, [1]2}

Additionally, [0]2 is the set of all even integers and [1]2 is the set of all odd integers. C
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The next exercise generalises the previous one, proving that congruence classes corres-
pond with remainders.

. Exercise 4.2.20
Let n ∈ Z with n 6= 0. Prove that the function

i : {0, 1, . . . , |n|−1}→ Z/nZ

defined by i(r) = [r]n for all 06 r < |n| is a bijection. C

Partitions

A partition of a set X is a way of breaking X up into mutually disjoint subsets. They will
be an immensely useful tool for counting how many elements a finite set has in Chapter 6,
and will reappear in Section 8.3 for defining arithmetic operations with cardinal numbers.

F Definition 4.2.21
A partition of a set X is a collection U = {Ui | i ∈ I} of subsets of X such that the
following conditions hold:

(a) For each i ∈ I, the subset Ui is inhabited;

(b) The sets Ui for i ∈ I are pairwise disjoint—that is, Ui ∩U j is empty for all i, j ∈ I
with i 6= j;

(c)
⋃
i∈I

Ui = X .

Note that, by contraposition, condition (b) in Exercise 4.2.26 is equivalent to saying that
for all i, j ∈ I, if Ui ∩U j is inhabited, then i = j—this is useful for verifying pairwise
disjointness in proofs.

v Strategy 4.2.22 (Proving a family of subsets forms a partition)
Let X be a set. In order to prove a collection U ⊆P(X) is a partition of X , it suffices to
prove:

(a) Each U ∈U is inhabited;

(b) For all U,V ∈U , if U ∩V is inhabited, then U =V ;

(c) For all a ∈ X , there is some U ∈U such that a ∈U .

0 Example 4.2.23
We can partition Z as E ∪O, where E is the set of all even integers and O is the set of all
odd integers:

(a) E and O are inhabited, since 0 ∈ E and 1 ∈ O.
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(b) The family {E,O} is pairwise disjoint if and only if E ∩O is empty; and it is, since
no integer can be both even and odd.

(c) E ∪O = Z since every integer is either even or odd.

C

0 Example 4.2.24
The sets {2n,2n+1} for n ∈ N form a partition of N:

(a) 2n ∈ {2n,2n+1} for each n ∈ N, so the sets are all inhabited.

(b) Suppose that m,n ∈ N and that {2m,2m+1}∩{2n,2n+1} is inhabited. Note that
2m 6= 2n+ 1 and 2n 6= 2m+ 1 by the division theorem (Theorem 5.1.1), so either
2m = 2n or 2m+ 1 = 2n+ 1. But in both cases we see that m = n. Hence the sets
{2n,2n+1} for n ∈ N are pairwise disjoint.

(c) Given a ∈ N, we have a = 2n+ i, where n ∈ N is the quotient of a when divided
by 2, and where i ∈ {0,1} is the remainder of a when divided by 2. But then a ∈
{2n,2n+1}. Thus

⋃
n∈N
{2n,2n+1}= N.

C

. Exercise 4.2.25
Let f : X → Y be a surjection, and define a collection F of subsets of X by

F = { f−1[{b}] | b ∈ Y}
That is, F is the set of subsets of X given by the preimages of individual elements of Y
under f . Prove that F is a partition of X . Where in your proof do you use surjectivity of
f ? C

. Exercise 4.2.26
Let X be a set and let U = {Ui | i ∈ I} be a family of inhabited subsets of X . Prove that
U is a partition of X if and only if for reach a ∈ X , there is a unique set Ui ∈ U with
a ∈Ui. C

. Exercise 4.2.27
If ∼ be an equivalence relation on X , then X/∼ is a partition X . Deduce that, for all
a,b ∈ X , we have a∼ b if and only if [a]∼ = [b]∼. C

In fact, the converse of Exercise 4.2.27 is also true, as we prove next.

C Proposition 4.2.28
Let X be a set and let U be a partition of X . Then U = X/∼ for exactly one equivalence
relation ∼ on X .

Proof
Define a relation ∼ by

x∼ y ⇔ ∃U ∈U , x ∈U and y ∈U

for all x,y ∈ X . That is, x ∼ y if and only if x and y are elements of the same set of the
partition. We check that ∼ is an equivalence relation.
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• Reflexivity. Let x ∈ X . Then x ∈U for some U ∈U since
⋃

U∈U
U = X . Hence x∼ x.

• Symmetry. Let x,y ∈ X and suppose x ∼ y. Then there is some U ∈ U with x ∈U
and y ∈U . But then it is immediate that y∼ x.

• Transitivity. Let x,y,z∈X and suppose that x∼ y and y∼ z. Then there exist U,V ∈U
with x,y ∈U and y,z ∈ V . Thus y ∈U ∩V . Since U is a partition of X , its elements
are pairwise disjoint; thus if U 6= V then U ∩V = ∅. Hence U = V . Thus x ∈U and
z ∈U , so x∼ z.

The definition of ∼ makes it immediate that X/∼= U .

To prove that ∼ is the only such relation, suppose ≈ is another equivalence relation on X
for which X/≈= U . Then, given x,y ∈ X , we have:

x∼ y⇔∃U ∈U , x ∈U ∧ y ∈U by definition of ∼
⇔ ∃z ∈ X , x ∈ [z]≈∧ y ∈ [z]≈ since U = X/≈
⇔ ∃z ∈ X , x≈ z∧ y≈ z by definition of [z]≈
⇔ x≈ y by symmetry and transitivity

So ∼=≈. �

Exercise 4.2.27 and Proposition 4.2.28 prove that equivalence relations and quotients are
essentially the same thing: the quotient of a set by an equivalence relation is a partition
of the set, and every partition of a set is the quotient by a unique equivalence relation!

The following lemma can be skipped over without grave consequences—it is a technical
result with an extremely fiddly proof, but we will use it at a couple of points later in the
book. It says that, given two partitioned sets, if we can pair up the sets in the partition,
and pair up the elements in each pair of paired-up partitions, then we can pair up the
elements of each set.

C Lemma 4.2.29
Let X and Y be sets, let {Ui | i ∈ I} be a partition of X and let {Vj | j ∈ J} be a partition
of Y . If there exists:

• A bijection f : I→ J; and

• For each i ∈ I, a bijection gi : Ui→Vf (i);

then there exists a bijection h : X → Y .

Proof
Given a ∈ X , let i(a) be the unique element of I such that a ∈ Xi(a). Note that this is valid
since {Xi | i∈ I} is a partition of X . Likewise, given b∈Y , let j(b) be the unique element
of J such that b ∈ Yj(b).

Define h : X → Y by h(a) = gi(a)(a) for all a ∈ X . This is well-defined since

h(a) = gi(a)(a) ∈ Yf (i(a)) ⊆ Y
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This also shows that j(h(a)) = f (i(a)).

Now define k : Y → X by k(b) = g−1
f−1( j(b))(b) for all b ∈ Y . Then k is well-defined:

indeed, g f−1( j(b)) is a function from U f−1( j(b)) to Vj(b), and so

k(b) = g−1
f−1( j(b))(b) ∈U f−1( j(b)) ⊆ X

This also shows that i(k(b)) = f−1( j(b)).

Then k is an inverse for h. To see this, let a ∈ X ; then

k(h(a)) = g−1
f−1( j(h(a)))(h(a)) by definition of k

= g−1
f−1( f (i(a)))(h(a)) since j(h(a)) = f (i(a))

= g−1
i(a)(h(a)) since f−1 ◦ f = idI

= g−1
i(a)(gi(a)(a)) by definition of h

= a since g−1
i(a) ◦gi(a) = idXi(a)

A similarly tedious computation reveals that h(k(b)) = b for all b ∈ Y :

h(k(b)) = gi(k(b))(k(b)) by definition of h

= g f−1( j(b))(k(b)) since i(k(b)) = f−1( j(b))

= g f−1( j(b))(g
−1
f−1( j(b))(b)) by definition of k

= b since g f−1( j(b)) ◦g−1
f−1( j(b)) = idY j(b)

So k is an inverse for h, as required. �

. Exercise 4.2.30
Let X and Y be sets, let ∼ be an equivalence relation on X and let ≈ be an equivalence
relation on Y . Assume that there is a bijection p : X/∼→Y/≈, and for each equivalence
class E ∈ X/∼ there is a bijection hE : E→ p(E). Use Lemma 4.2.29 to prove that there
is a bijection h : X → Y . C

The quotient function

We will now show that equivalence relations on a set X are essentially the same thing as
surjections from X to another set.

F Definition 4.2.31
Let X be a set and let ∼ be an equivalence relation on X . The quotient function for ∼ is
the function q∼ : X → X/∼ defined by q(a) = [a]∼ for each a ∈ X . That is, the quotient
function sends each element of X to its ∼-equivalence class.
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0 Example 4.2.32
Recall that, given a ∈ Z, we have [a]2 = [0]2 if a is even, and [a]2 = [1]2 is a is odd.
Thus the quotient function q2 : Z→ Z/2Z can be viewed as telling us the parity of an
integer. C

. Exercise 4.2.33
Let n ∈ Z with n 6= 0. Describe the quotient function qn : Z→ Z/nZ in terms of remain-
ders. C

. Exercise 4.2.34
Let ∼ be an equivalence relation on a set X . Prove that the quotient function q∼ : X →
X/∼ is surjective. C

The theorem we prove next can be viewed as the converse to Exercise 4.2.34. It proves
that every surjection ‘is’ a quotient function, in the sense that given any surjection p :
X → A, we can view A as a quotient of X by a suitably-defined equivalence relation, and
then p ‘is’ the corresponding quotient function.

C Theorem 4.2.35
Let X be a set. Then for every set A and every surjection p : X → A, there exist a unique
equivalence relation ∼ on X and bijection f : X/∼→ A such that f ([x]) = p(x) for all
x ∈ X .

Proof
Let A be a set and p : X → A be a surjection.

• (Existence) Define a relation ∼ on X by x ∼ y if and only if p(x) = p(y). Then ∼ is
an equivalence relation by Exercise 4.2.4.

Moreover, given x ∈ X , we have

[x]∼ = {y ∈ X | p(x) = p(y)}= p−1[{p(x)}]

So define f : X/∼ → A by letting f ([x]∼) = p(x). Then f is well-defined, since if
[x]∼ = [y]∼ then x∼ y, so that p(x) = p(y).

Furthermore, f is a bijection:

� (Injectivity) Let [x]∼, [y]∼ ∈X/∼ and assume f ([x]∼) = f ([y]∼). Then p(x) = p(y),
so that x∼ y, and hence [x]∼ = [y]∼.

� (Surjectivity) Let a ∈ A. Since p is a surjection, there is some x ∈ X such that
p(x) = a. But then f ([x]∼) = p(x) = a.

So we have established that there exist an equivalence relation ∼ on X and a bijection
f : X/∼→ A such that f ([x]∼) = p(x) for all x ∈ X .

• (Uniqueness) Suppose ≈ is another equivalence relation on X and that g : X/≈→ A
is a bijection such that g([x]≈) = p(x) for all x ∈ X . We prove that ∼ = ≈, and then
that g = f , so that ∼ and f are unique.
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So let x,y ∈ X . Then

x∼ y⇔ p(x) = p(y) by definition of ∼
⇔ g([x]≈) = g([y]≈) by definition of g

⇔ [x]≈ = [y]≈ since g is bijective
⇔ x≈ y by Exercise 4.2.27

It follows that ∼=≈, and then for all x ∈ X we have

f ([x]∼) = p(x) = g([x]≈) = g([x]∼)

so that f = g, as required.

�

In light of Theorem 4.2.35, we have now established the equivalence of three notions for
a given set X :

equivalence relations
on X

partitions
of X

surjections with
domain X

. Exercise 4.2.36
Give an explicit description of the dashed arrow in the above diagram. That is, describe
the correspondence between partitions of a set X and surjections whose domain is X .

C
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Section 4.E

Chapter 4 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Properties of relations

4.1. For each of the eight subsets

P⊆ {reflexive,symmetric, transitive}

find a relation satisfying (only) the properties in P.

4.2. Prove that if R is a symmetric, antisymmetric relation on a set X , then it is a subre-
lation of the equality relation—that is, Gr(R)⊆ Gr(=).

4.3. A relation R on a set X is left-total if for all x ∈ X , there exists some y ∈ X such that
x R y. Prove that every left-total, symmetric, transitive relation is reflexive.

Equivalence relations

F Definition 4.E.1
Let R be a relation on a set X and let f : X→Y be a function. The transport of R along f
is the relation S on Y defined for c,d ∈Y by letting c S d if and only if there exist a,b∈ X
such that f (a) = c, f (b) = d and a R b. That is

Gr(S) = {( f (a), f (b)) | a,b ∈ X , a R b}

4.4. Let X and Y be sets and let f : X → Y . Prove that if ∼ is an equivalence relation on
X , then the transport of ∼ along f is an equivalence relation on Y .

F Definition 4.E.2
Let R be any relation on a set X . The equivalence relation generated by R is the relation
∼R on X defined as follows. Given x,y ∈ X , say x ∼R y if and only if for some k ∈ N
there is a sequence (a0,a1, . . . ,ak) of elements of X such that a0 = x, ak = y and, for all
06 i < k, either ai Rai+1 or ai+1 Rai.

4.5. Fix n ∈ Z and let R be the relation on Z defined by xRy if and only if y = x+ n.
Prove that ∼R is the relation of congruence modulo n.

4.6. Let X be a set and let R be the subset relation on P(X). Prove that U ∼R V for all
U,V ⊆ X .
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4.7. Let X be a set, fix two distinct elements a,b ∈ X , and define a relation R on X by
declaring aRb only—that is, for all x,y ∈ X , we have xRy if and only if x = a and y = b.
Prove that the relation∼R is defined by x∼R y if and only if either x= y or {x,y}= {a,b}.

In Questions 4.8 to 4.11, let R be a relation on a set X , and let ∼R be the equivalence
relation generated by R (as in Definition 4.E.2). In these questions, you will prove that
∼R is the ‘smallest’ equivalence relation extending R.

4.8. Prove that ∼R is an equivalence relation on X .

4.9. Prove that xRy⇒ x∼R y for all x,y ∈ X .

4.10. Prove that if ≈ is any equivalence relation on X and xRy⇒ x≈ y for all x,y ∈ X ,
then x∼R y⇒ x≈ y for all x,y ∈ X .

4.11. Prove that if R is an equivalence relation, then ∼R = R.
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Section 5.1

Division

This section introduces the notion of divisibility. As we have already mentioned, it is not
always the case that one integer can divide another. As you read through this section,
note that we never use fractions; everything we do is internal to Z, and does not require
that we ‘spill over’ to Q at any point. This will help you when you study ring theory in
the future, and is a good practice to mimic in your own work.

The following theorem, called the division theorem, is the crux of everything that is to
follow.

C Theorem 5.1.1 (Division theorem)
Let a,b ∈ Z with b 6= 0. There exist unique q,r ∈ Z such that

a = qb+ r and 06 r < |b|

v Strategy
Let’s look at the simple case when a > 0 and b > 0. We can always find q,r such that
a = qb+ r, for example q = 0 and r = a. Moreover, by increasing q we can reduce r,
since

qb+ r = (q+1)b+(r−b)

We will keep doing this until the ‘remainder’ is as small as it can be without being
negative. As an example, consider the case when a = 14 and b = 5. This procedure gives

14 = 0×5+14
= 1×5+9
= 2×5+4 ← least nonnegative remainder
= 3×5+(−1)
= · · ·

This procedure shows that in this case we should take q= 2 and r = 4, since 14= 2×5+4
and 06 4 < |5|.

We can show that such a descending sequence of remainders terminates using the well-
ordering principle, and then we must argue that the quotient and remainder that we obtain
are unique. C

Proof
We may assume that b > 0: if not, replace b by −b and q by −q. We may also assume
that a> 0. Otherwise, replace a by −a, q by −(q+1) and r by b− r.

Thus, what follows assumes that a> 0 and b > 0.

• Existence. We prove that such integers q,r exist by the well-ordering principle.
Namely, we define a sequence (rn)n∈N such that a = nb+ rn and r0 > r1 > r2 > · · · ,
and use this sequence to find the values of q,r.
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� Let r0 = a. Then a = 0b+ r0, as required.

� Suppose rn has been defined, and let rn+1 = rn−b. Then

(n+1)b+ rn+1 = (n+1)b+ rn−b

= nb+b+ rn−b

= nb+ r = a

Since b > 0, we must have rn+1 < rn for all n.

Let R = N∩{rn | n ∈ N}. That is, R is the set of terms of the sequence which are
non-negative. Since r0 = a> 0, we have that r0 ∈ R and hence R is inhabited. By the
well-ordering principle, R has a least element rk for some k ∈ N.

Define q = k and r = rk. By construction we have a = qb+ r and r > 0, so it remains
to show that r < b. Well, if r > b then r−b> 0, but r−b = rk+1, so this would imply
rk+1 ∈ R, contradicting minimality of r. Hence r < b, so q,r are as required.

• Uniqueness. Suppose q′,r′ also satisfy a = q′b+ r′ and 0 6 r′ < b. If we can show
that r′ = r then this proves that q = q′: indeed, if qb+ r = q′b+ r then we can subtract
r and then divide by b, since b > 0.

First note that q′ > 0. If q′ < 0 then q′ 6−1, so

a = q′b+ r′ 6−b+ r′

and hence r′ > a+b > b since a > 0. This contradicts the assumption that r < b. So
q′ > 0.

Since q′ > 0, we also know that a = q′b+ rq′ , and hence r′ = rq′ ∈ R. By minimality
of r we have r 6 r′. It remains to show that r = r′. If not then r < r′. Thus

qb+ r = q′b+ r′ > q′b+ r ⇒ qb > q′b ⇒ q > q′

and hence q = q′+ t for some t > 1. But then

q′b+ r′ = a = qb+ r = (q′+ t)b+ r = q′b+(tb+ r)

so r′ = tb+ r > b, contradicting r′ < b. So r = r′ as desired, and hence q = q′.

At long last, we are done. �

F Definition 5.1.2
Let a,b ∈ Z with b 6= 0, and let q,r be the unique integers such that

a = qb+ r and 06 r < |b|

We say q is the quotient and r is the remainder of a divided by b.

0 Example 5.1.3
Some examples of division include:

14 = 2×5+4, −14 =−3×5+1, 15 = 3×5+0

C
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F Definition 5.1.4
Let a,b ∈ Z. We say b divides a, or that b is a divisor (or factor) of a, if there exists
q ∈ Z such that a = qb. To denote the fact that b divides a we write b | a (LATEX code:
\mid). For the negation ¬(b | a) write b - a (LATEX code: \nmid).

Thus, when b 6= 0, saying b | a is equivalent to saying that the remainder of a divided by
b is 0.

0 Example 5.1.5
5 divides 15 since 15= 3×5. However, 5 does not divide 14: we know that the remainder
of 14 divided by 5 is 4, not 0—and it can’t be both since we proved in the division theorem
that remainders are unique! C

. Exercise 5.1.6
Show that if a ∈ Z then 1 | a, −1 | a and a | 0. For which integers a does a | 1? For which
integers a does 0 | a? C

We now introduce the very basic notion of a unit. This notion is introduced to rule out
trivialities. Units become interesting when talking about general rings, but in Z, the units
are very familiar.

F Definition 5.1.7
Let u ∈ Z. We say u is a unit if u | 1; that is, u is a unit if there exists v ∈ Z such that
uv = 1.

C Proposition 5.1.8
The only units in Z are 1 and −1.

Proof
First note that 1 and −1 are units, since 1 ·1 = 1 and (−1) · (−1) = 1. Now suppose that
u ∈ Z is a unit, and let v ∈ Z be such that uv = 1. Certainly u 6= 0, since 0v = 0 6= 1. If
u > 1 or u <−1 then v = 1

u 6∈ Z. So we must have u ∈ {−1,1}. �

Exercise 5.1.6 shows that −1, 0 and 1 are, from the point of view of divisibility, fairly
trivial. For this reason, most of the results we discuss regarding divisibility will concern
nonzero nonunits, i.e. all integers except −1, 0 or 1.

Greatest common divisors

F Definition 5.1.9
Let a,b ∈ Z. An integer d is a greatest common divisor of a and b if:

(a) d | a and d | b;

(b) If q is another integer such that q | a and q | b, then q | d.

0 Example 5.1.10
2 is a greatest common divisor of 4 and 6; indeed:
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(a) 4 = 2×2, and 6 = 3×2, so 2 | 4 and 2 | 6;

(b) Suppose q | 4 and q | 6. The divisors of 4 are ±1,±2,±4 and the divisors of 6 are
±1, ±2, ±3, ±6. Since q divides both, it must be the case that q ∈ {−2,−1,1,2};
in any case, q | 2.

Likewise, −2 is a greatest common divisor of 4 and 6. C

. Exercise 5.1.11
There are two greatest common divisors of 6 and 15; find both. C

We will now prove that greatest common divisors exist—that is, any two integers have a
greatest common divisor—and that they are unique up to sign.

C Theorem 5.1.12
Every pair of integers a,b has a greatest common divisor.

Proof
First note that if a = b = 0, then 0 is a greatest common divisor for a and b. Moreover,
we may take a,b to be non-negative, since divisibility is insensitive to sign. So suppose
that a,b> 0 and that a,b are not both zero.

Define a set X ⊆ Z by

X = {au+bv | u,v ∈ Z, au+bv > 0}

That is, X is the set of positive integers of the form au+bv.

X is inhabited. To see this, note that a2 > 0 or b2 > 0 since a 6= 0 or b 6= 0, so letting
u = a and v = b in the expression au+bv, we see that

au+bv = a2 +b2 > 0 ⇒ a2 +b2 ∈ X

By the well-ordering principle, X has a least element d, and by definition of X there exist
u,v ∈ Z such that d = au+bv.

We will prove that d is a greatest common divisor for a and b.

• d | a. If a = 0, then this is immediate, so suppose that a > 0. Let q,r ∈ Z be such that

a = qd + r and 06 r < d

Now a = a ·1+b ·0, so a ∈ X , and hence d 6 a. Moreover

r = a−qd = a−q(au+bv) = a(1−qu)+b(−qv)

If r > 0 then this implies that r ∈ X ; but this would contradict minimality of d, since
r < d. So we must have r = 0 after all.

• d | b. The proof of this is identical to the proof that d | a.

• Suppose q is an integer dividing both a and b. Then q | au+bv by Exercise 0.16. Since
au+bv = d, we have q | d.
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So d is a greatest common divisor of a and b after all. �

. Exercise 5.1.13
Let a,b ∈ Z. If d and d′ are two greatest common divisors of a and b, then either d = d′

or d =−d′. C

v Aside
A consequence of Theorem 5.1.12 and Exercise 5.1.13 is that every pair of integers has
a unique non-negative greatest common divisor! Written symbolically, we can say

∀(a,b) ∈ Z×Z, ∃!d ∈ Z,
(

d > 0 and d is a greatest
common divisor for a and b

)
As discussed in Section 2.2, since this is a formula of the form ‘for all . . . there exists
a unique . . . ’, this defines a function gcd : Z×Z→ Z. We won’t explicitly refer to
the fact that gcd is a function; rather, we’ll just concern ourselves with its values, as in
Notation 5.1.14. C

Exercise 5.1.13 justifies our use of the following notation to refer to greatest common
divisors.

F Notation 5.1.14
Let a,b ∈ Z. Denote by gcd(a,b) (LATEX code: \mathrm{gcd}) the (unique!) non-
negative greatest common divisor of a and b.

0 Example 5.1.15
In Example 5.1.10, we saw that both 2 and −2 are greatest common divisors of 4 and 6.
Using Notation 5.1.14, we can now write gcd(4,6) = 2. C

. Exercise 5.1.16
For each n ∈ Z, let Dn ⊆ Z be the set of divisors of n. Prove that Da∩Db = Dgcd(a,b) for
all a,b ∈ Z. C

Our goal for the rest of this subsection is to investigate the behaviour of greatest common
divisors, find out how to compute them, and look into the implications they have for
solutions to certain kinds of equations.

C Theorem 5.1.17
Let a,b,q,r ∈ Z, and suppose that a = qb+ r. Then

gcd(a,b) = gcd(b,r)

Proof
Let d = gcd(a,b). We check that d satisfies the conditions required to be a greatest
common divisor of b and r.

Note that d | a and d | b, so let s, t ∈ Z be such that a = sd and b = td.

• d | b by definition, and d | r since

r = a−qb = sd−qtd = (s−qt)d
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• Suppose d′ | b and d′ | r; say b = ud′ and r = vd′ with u,v ∈ Z. Then d′ | a, since

a = qb+ r = qud′+ vd′ = (qu+ v)d′

so d′ | d since d = gcd(a,b).

So d is a greatest common divisor of b and r. Since d > 0, the result is shown. �

Combined with the division theorem (Theorem 5.1.1), Theorem 5.1.17 gives a relatively
fast algorithm for computing the greatest common divisor of two integers, known as the
Euclidean algorithm.

v Strategy 5.1.18 (Euclidean algorithm)
Let a,b ∈ Z. To compute gcd(a,b), proceed as follows.

• Set r0 = |a| and r1 = |b|.

• Given rn−2 and rn−1, define rn to be the remainder of rn−2 divided by rn−1.

• Stop when rn = 0; then rn−1 = gcd(a,b).

0 Example 5.1.19
We will find the greatest common divisor of 148 and 28.

148 = 5×28+8
28 = 3×8+4

8 = 2× 4 +0 ← Stop!

Hence gcd(148,28) = 4. Here the sequence of remainders is given by:

r0 = 148, r1 = 28, r2 = 8, r3 = 4, r4 = 0

C

0 Example 5.1.20
The Euclidean algorithm works surprisingly quickly, even for relatively large numbers.
Consider the problem of computing gcd(1311,5757) for example:

5757 = 4×1311+513
1311 = 2×513+285

513 = 1×285+228
285 = 1×228+57

228 = 4× 57 +0 ← Stop!

Hence gcd(1311,5757) = 57. Here the sequence of remainders is given by:

r0 = 5757, r1 = 1311, r2 = 513, r3 = 285, r4 = 228, r5 = 57, r6 = 0

C
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0 Example 5.1.21
Here’s an example where one of the numbers is negative: we compute the value of
gcd(−420,76):

−420 = (−6)×76+36
76 = 2×36+4

36 = 9× 4 +0 ← Stop!

Hence gcd(−420,76) = 4. C

0 Example 5.1.22
Use the Euclidean algorithm to compute the greatest common divisors of the following
pairs of integers

(12,9), (100,35), (7125,1300), (1010,101010), (−4,14)

C

The following theorem will be useful when we study modular arithmetic in Section 5.3;
it is called a ‘lemma’ for historical reasons, and is really an important result in its own
right.

C Theorem 5.1.23 (Bézout’s lemma)
Let a,b,c ∈ Z, and let d = gcd(a,b). The equation

ax+by = c

has a solution (x,y) ∈ Z×Z if and only if d | c.

Proof
(⇒) Write a = a′d and b = b′d, for a′,b′ ∈Z. If there exist x,y∈Z such that ax+by = c,
then

c = ax+by = a′dx+b′dy = (a′x+b′y)d

and so d | c.

(⇐) Suppose d | c, and let c = kd for some k ∈ Z.

If c = 0, then a solution is x = y = 0. If c < 0, then ax+ by = c if and only if a(−x)+
b(−y) =−c; so we may assume that c > 0.

We proved in Theorem 5.1.12 that a greatest common divisor of a and b is a least element
of the set

X = {au+bv | u,v ∈ Z, au+bv > 0}
So let u,v ∈ Z be such that au+bv = d. Then

a(ku)+b(kv) = k(au+bv) = kd = c

and so letting x = ku and y = kv, we see that the equation ax+ by = c has a solution
(x,y) ∈ Z×Z. �
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Bézout’s lemma completely characterises when the equation ax+by = c has a solution.
An easy generalisation of Bézout’s lemma provides a complete characterisation of when
solutions to linear Diophantine equations exist, that is equations of the form

ax+by = c

where a,b,c∈Z. We will soon develop an algorithm for computing all solutions to these
equations.

0 Example 5.1.24
Here are some examples of applications of Bézout’s lemma.

• Consider the equation 1311x+5757y = 12963. We computed in Example 5.1.20 that
gcd(1311,5757) = 57. But 57 - 12963 since 12963 = 227× 57+ 24. By Bézout’s
lemma, the equation 1311x+5757y = 12963 has no integer solutions.

• For fixed z, the equation 4u + 6v = z has solutions exactly when z is even, since
gcd(4,6) = 2.

• For fixed a,b, the equation au+bv = 0 always has solution. Indeed, setting u = b and
v =−a gives a solution; but we knew one had to exist since by Exercise 5.1.6 we know
that d | 0 for all d ∈ Z.

C

. Exercise 5.1.25
Which of the following equations have solutions?

(a) 12u+9v =−18

(b) 12u+9v = 1

(c) 100u+35v = 125

(d) 7125u+1300v = 0

(e) 1010u+101010v = 1010101010101010

(f) 14u−4v = 12

C

Coprimality

F Definition 5.1.26
Let a,b ∈ Z. We say a and b are coprime (or relatively prime), and write a⊥ b (LATEX
code: \perp) (read ‘a is coprime to b’), if gcd(a,b) = 1.

0 Example 5.1.27
4 ⊥ 9. To see this, note that if d | 4 then d ∈ {−4,−2,−1,1,2,4}, and if d | 9 then
d ∈ {−9,−3,−1,1,3,9}. Hence if d | 4 and d | 9, then d = 1 or d =−1. It follows that
gcd(4,9) = 1. C
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. Exercise 5.1.28
Which integers in the set [15] are coprime to 15? C

C Proposition 5.1.29
Let a,b ∈ Z. The following are equivalent:

(1) a and b are coprime;

(2) If d ∈ Z with d | a and d | b, then d is a unit.

Proof
We prove that condition (1) implies condition (2), and vice versa.

• (1)⇒(2). Suppose a and b are coprime, and fix d ∈ Z with d | a and d | b. Then
d | gcd(a,b) = 1, so d is a unit.

• (2)⇒(1). Suppose condition (2) above holds. We prove that 1 satisfies the conditions
required to be a greatest common divisor of a and b. The fact that 1 | a and 1 | b is
automatic; and the fact that if d | a and d | b implies d | 1 is precisely the condition (2)
that we are assuming.

Hence the two conditions are equivalent. �

. Exercise 5.1.30
Let a and b be integers, not both zero, and let d = gcd(a,b). The integers a

d and b
d are

coprime. C

The following corollary is a specialisation of Bézout’s lemma to the case when a and b
are coprime.

C Corollary 5.1.31
Let a,b ∈ Z. The equation au+bv = 1 has a solution if and only if a and b are coprime.
Moreover, if a and b are coprime, then the equation au+ bv = z has a solution for all
z ∈ Z.

Proof
By Bézout’s lemma (Theorem 5.1.23), the equation au+bv = 1 has a solution if and only
if gcd(a,b) | 1. But the only positive divisor of 1 is 1, so a solution exists if and only if
gcd(a,b) = 1, which is precisely the assertion that a and b are coprime.

If a and b are coprime, then 1 = gcd(a,b) | z for all z ∈ Z. So by Bézout’s lemma again,
the equation au+bv = z has a solution for all z ∈ Z. �

A useful consequence of Bézout’s lemma is the following result:

C Proposition 5.1.32
Let a,b,c ∈ Z. If a and b are coprime and a | bc, then a | c.

Proof
By Bézout’s lemma (Theorem 5.1.23) there exist integers u and v such that au+bv = 1.
Multiplying by c gives acu+bcv = c. Since a | bc, we can write bc = ka for some k ∈ Z,
and so acu+ kav = c. But then

(cu+ kv)a = c
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which proves that a | c. �

Linear Diophantine equations

We have now seen two important results:

• The Euclidean algorithm, which was a procedure for computing the greatest common
divisor of two integers.

• Bézout’s lemma, which provides a necessary and sufficient condition for equations of
the form ax+by = c to have an integer solution.

We will now develop the reverse Euclidean algorithm, which provides a method for
computing a solutions to (bivariate) linear Diophantine equations, when such a solution
exists. Then we will prove a theorem that characterises all integer solutions in terms of a
given solution.

0 Example 5.1.33
Suppose we want to find integers x and y such that 327x + 114y = 18. Running the
Euclidean algorithm yields that gcd(327,114) = 3 — see below. For reasons soon to
become apparent, we rearrange each equation to express the remainder on its own.

327 = 2×114+99 ⇒ 99 = 327−2×114 (1)
114 = 1×99+15 ⇒ 15 = 114−1×99 (2)

99 = 6×15+9 ⇒ 9 = 99−6×15 (3)
15 = 1×9+6 ⇒ 6 = 15−1×9 (4)
9 = 1×6+3 ⇒ 3 = 9−1×6 (5)
6 = 2×3+0

We can then express 3 in the form 327u+114v by successively substituting the equations
into each other:

• Equation (5) expresses 3 as a linear combination of 6 and 9. Substituting equation (4)
yields:

3 = 9−1× (15−1×9) ⇒ 3 = 2×9−1×15

• This now expresses 3 as a linear combination of 9 and 15. Substituting equation (3)
yields:

3 = 2× (99−6×15)−1×15 ⇒ 3 = (−13)×15+2×99

• This now expresses 3 as a linear combination of 15 and 99. Substituting equation (2)
yields:

3 = (−13)× (114−1×99)+2×99 ⇒ 3 = 15×99−13×114

• This now expresses 3 as a linear combination of 99 and 114. Substituting equation (1)
yields:

3 = 15× (327−2×114)−13×114 ⇒ 3 = (−43)×114+15×327
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Now that we’ve expressed 3 as a linear combination of 114 and 327, we’re nearly done:
we know that 18 = 6×3, so multiplying through by 6 gives

18 = (−258)×114+90×327

Hence (x,y) = (90,−258) is a solution to the equation 327x+114y = 18. C

v Proof tip
Let a,b ∈ Z and let d = gcd(a,b). To find integers x,y such that ax+by = d:

(i) Run the Euclidean algorithm on the pair (a,b), keeping track of all quotients and
remainders.

(ii) Rearrange each equation of the form rn−2 = qnrn−1 + rn to isolate rn.

(iii) Substitute for the remainders rk in reverse order until gcd(a,b) is expressed in the
form ax+by for some x,y ∈ Z.

This process is called the reverse Euclidean algorithm. C

. Exercise 5.1.34
Find a solution (x,y) ∈ Z×Z to the equation 630x+385y = 4340. C

Now that we have a procedure for computing one solution to the equation ax+ by = c,
we need to come up with a procedure for computing all solutions. This can be done by
proving the following theorem.

C Theorem 5.1.35
Let a,b,c ∈ Z, where a and b are not both zero. Suppose that x0 and y0 are integers such
that ax0 +by0 = c. Then, (x,y) ∈ Z×Z is another solution to the equation ax+by = c if
and only if

x = x0 + k · b
gcd(a,b)

and y = y0− k · a
gcd(a,b)

for some k ∈ Z.

Thus, as soon as we’ve found one solution (x,y) = (x0,y0) to the equation ax+ by = c,
this theorem tells us what all other solutions must look like.

Proof of Theorem 5.1.35
We prove the two directions separately.

(⇒). First suppose that (x0,y0) is an integer solution to the equation ax+ by = c. Let
k ∈ Z and let

x = x0 + k · b
gcd(a,b)

and y = y0− k · a
gcd(a,b)

182



Section 5.1. Division 183

Then

ax+by

= a
(

x0 + k · b
gcd(a,b)

)
+b
(

y0− k · a
gcd(a,b)

)
by definition of x and y

= (ax0 +by0)+ak · b
gcd(a,b)

− kb · a
gcd(a,b)

rearranging

= (ax0 +by0)+
kab− kab
gcd(a,b)

combining the fractions

= ax0 +by0 since kab− kab = 0
= c since (x0,y0) is a solution

so (x,y) is indeed a solution to the equation.

(⇐). First suppose that a⊥ b. Fix a solution (x0,y0) to the equation ax+by = c, and let
(x,y) be another solution. Then

a(x− x0)+b(y− y0) = (ax0 +by0)− (ax+by) = c− c = 0

so that
a(x− x0) = b(y0− y)

Now a and b are coprime, so by Proposition 5.1.32, we have a | y0− y and b | x− x0.
Let k, ` ∈ Z be such that x− x0 = kb and y0− y = `a. Then substituting into the above
equation yields

a · kb = b · `a
and hence (k− `)ab = 0. Since ab 6= 0, we have k = `, so that

x = x0 + kb and y = y0− ka

Now we drop the assumption that a ⊥ b. Let gcd(a,b) = d > 1. We know that d | c, by
Bézout’s lemma (Theorem 5.1.23), and so

a
d

x+
b
d

y =
c
d

is another linear Diophantine equations, and moreover a
d ⊥ b

d by Exercise 5.1.30. By
what we proved above, we have

x = x0 + k · b
d

and y = y0− k · a
d

for some k ∈ Z. But this is exactly what we sought to prove! �

0 Example 5.1.36
We know that (x,y) = (90,−258) is a solution to the equation 327x+114y = 18, and

327
gcd(327,114)

=
327

3
= 109 and

114
gcd(327,114)

=
114

3
= 38

so this theorem tells us that (x,y) ∈ Z×Z is a solution to the equation 327x+114y = 18
if and only if

x = 90+38k and y =−258−109k

for some k ∈ Z. C
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. Exercise 5.1.37
Find all integers x,y such that

630x+385y = 4340

C

Least common multiples

You would be forgiven for wondering why so much of the foregoing section was devoted
to greatest common divisors, with no mention of least common multiples. We will now
give the latter some attention.

F Definition 5.1.38
Let a,b ∈ Z. An integer m is a least common multiple of a and b if:

(a) a | m and b | m;

(b) If c is another integer such that a | c and b | c, then m | c.

The definition of least common multiple is dual to that of greatest common divisor
(Definition 5.1.9). This means that many properties of greatest common divisors have
corresponding ‘dual’ properties, which hold of least common multiples. As such, we
will not say much here about least common multiples, and that which we do say is in the
form of exercises.

. Exercise 5.1.39
Let a,b ∈ Z. Prove that a and b have a least common multiple. Furthermore, prove that
least common multiples are unique up to sign, in the sense that if m,m′ are two least
common multiples of a and b, then m = m′ or m =−m′. C

As with greatest common divisors, Exercise 5.1.39 justifies the following definition.

F Definition 5.1.40
Given a,b ∈ Z, denote by lcm(a,b) (LATEX code: \mathrm{lcm}) the non-negative least
common multiple of a and b.

. Exercise 5.1.41
Let a,b ∈ Z. Prove that gcd(a,b) · lcm(a,b) = |ab|. C
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Section 5.2

Prime numbers

Thinking of divisibility as a way of breaking down an integer, for example 12= 2×2×3,
our goal now is to show that there are particular integers that are atomic—they are the
building blocks of the integers, in the sense that:

• Every integer can be broken into a product of these atomic integers. . .

• . . . and these atomic integers cannot themselves be broken down any further. . .

• . . . and there is an essentially unique way to write an integer as a product of these
atomic integers.

There are a couple of fairly vague terms used here: ‘atomic’ and ‘essentially unique’.
But as always, we will make these terms precise when we need to.

Primes and irreducibles

There are two ways that we might want to characterise the so-called atomic integer that
we just mentioned.

• One way that an integer might be atomic is if it allows us to break down products of
integers—this leads to the notion of prime (Definition 5.2.1).

• Another way is that an integer might be atomic is if it cannot be split up as a product
of more than one integer (in a nontrivial way)—this leads to the notion of irreducible
(Definition 5.2.6).

Conveniently, as we will show in Theorem 5.2.11, these two notions coincide. But the
fact that they coincide is not obvious, and uses essential properties of the integers that do
not hold in more general structures.

The definition of prime that we are about to give comes from abstract algebra (specific-
ally, from ring theory). It might seem strange, but we will soon be able to show that the
more familiar definition—that is, having exactly two positive divisors—is equivalent to
this one.

F Definition 5.2.1
An integer p is (ring theoretically) prime if p is a nonzero nonunit and, for all a,b ∈ Z,
if p | ab then p | a or p | b.

0 Example 5.2.2
2 is prime. To see this, suppose it isn’t. Then there exist a,b ∈ Z such that 2 | ab but 2
divides neither a nor b. Thus a and b are both odd, meaning that ab is odd. . . but this
contradicts the assumption that 2 | ab.
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However, 18 is not prime. Indeed, 18 | 12×15 but 18 divides neither 12 nor 15. C

. Exercise 5.2.3
Using Definition 5.2.1, prove that 3 and 5 are prime, and that 4 is not prime. C

0 Example 5.2.4
Let k ∈ Z with 0 < k < 5. We’ll show that 5 |

(5
k

)
.

Well, by Theorem 3.2.17 we know that

5! =
(

5
k

)
k!(5− k)!

By Definition 3.1.14, we have

5×4!︸ ︷︷ ︸
=5!

=

(
5
k

)
×1×·· ·× k︸ ︷︷ ︸

=k!

×1×·· ·× (5− k)︸ ︷︷ ︸
=(5−k)!

Since 5 is prime, it must divide one of the factors on the right-hand side of this equation.
Thus, either 5 divides

(5
k

)
, or it divides ` for some 16 `6 k or 16 `6 5− k. But k < 5

and 5− k < 5, so it cannot divide any of these values of `—if it did, it would imply
56 `6 k or 56 `6 5− k, which is nonsense. Hence 5 must divide

(5
k

)
. C

. Exercise 5.2.5
Let p ∈ Z be a positive prime and let 0 < k < p. Show that p |

(p
k

)
. C

We now arrive at our second notion of atomic, capturing the idea that it should not be
possible to break an atomic integer into smaller parts.

F Definition 5.2.6
An integer a is irreducible if a is a nonzero nonunit and, for all m,n ∈ Z, if a = mn, then
either m or n is a unit. Otherwise, a is reducible.

The notion of irreducible captures more closely the more familiar notion of ‘prime’, as
the next result shows.

C Proposition 5.2.7
Let p ∈ Z be a nonzero nonunit. Then p is irreducible if and only if the only divisors of
p are p, −p, 1 and −1.

Proof
Suppose p is irreducible and that a | p. Then p = ab for some b ∈ Z. Since p is irredu-
cible, either a or b is a unit. If a is a unit then b =±p, and if b is a unit then a =±p. So
the only divisors of p are ±1 and ±p.

Conversely, suppose that the only divisors of p are ±1 and ±p, and let a,b ∈ Z with
p = ab. We want to prove that a or b is a unit. Since a | p, we have a ∈ {1,−1, p,−p}.
If a =±1, then a is a unit; if a =±p, then b =±1, so that b is a unit. In any case, either
a or b is a unit, and hence p is irreducible. �
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0 Example 5.2.8
A couple of examples of reducible and irreducible numbers are:

• 2 is irreducible: if 2 = mn then either m or n is even, otherwise we’d be expressing
an even number as the product of two odd numbers. We may assume m is even, say
m = 2k; then 2 = 2kn, so kn = 1 and hence n is a unit.

• 20 is reducible since 20 = 4×5 and neither 4 nor 5 is a unit.

C

. Exercise 5.2.9
Let p ∈ Z. Prove that if p is ring theoretically prime, then p is irreducible. C

C Lemma 5.2.10
Let a∈Z be a nonzero nonunit. Then there are irreducibles p1, . . . , pn such that a = p1×
·· ·× pn.

Proof
We may assume a > 0, since if a < 0 we can just multiply by −1.

We proceed by strong induction on a > 2. The base case has a = 2 since we consider
only nonunits.

• (Base case) We have shown that 2 is irreducible, so setting p1 = 2 yields a product of
primes.

• (Induction step) Let a> 2 and suppose that each integer k with 26 k 6 a has an ex-
pression as a product of irreducibles. If a+1 is irreducible then we’re done; otherwise
we can write a+1 = st, where s, t ∈ Z are nonzero nonunits. We may assume further
that s and t are positive. Moreover, s < a+1 and t < a+1 since s, t > 2.

By the induction hypothesis, s and t have expressions as products of irreducibles.
Write

s = p1×·· ·× pm and t = q1×·· ·×qn

This gives rise to an expression of a as a product of irreducibles:

a = st = p1×·· ·× pm︸ ︷︷ ︸
=s

× q1×·· ·×qn︸ ︷︷ ︸
=t

The result follows by induction. �

C Theorem 5.2.11
Let p ∈ Z. Then p is ring theoretically prime if and only if p is irreducible.

Proof
We prove the two directions separately.

• Prime⇒ irreducible. This was Exercise 5.2.9.

• Irreducible⇒ prime. Suppose p is irreducible. Let a,b ∈ Z and suppose p | ab. We
need to show that p | a or p | b. It suffices to show that if p - a then p | b.
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So suppose p - a. Let d = gcd(p,a). Since d | p and p is irreducible, we must have
d = 1 or d = p by Proposition 5.2.7. Since p - a and d | a, we must therefore have
d = 1.

By Bézout’s lemma (Theorem 5.1.23), there exist u,v ∈ Z such that au+ pv = 1. Mul-
tiplying by b gives abu+ pbv = b. Since p | ab, there exists k ∈ Z such that pk = ab.
Define q = ku+bv; then

b = abu+ pbv = pku+ pbv = p(ku+bv) = qp

so p | b, as required.

So we’re done. �

Since primes and irreducibles are the same thing in Z, we will refer to them as ‘primes’,
unless we need to emphasise a particular aspect of them.

Prime factorisation

Having described prime numbers in two ways, each of which emphasises their nature of
being ‘unbreakable’ by multiplication, we will extend Lemma 5.2.10 to prove that every
integer can be expressed as a product of primes in an essentially unique way.

C Theorem 5.2.12 (Fundamental theorem of arithmetic)
Let a ∈ Z be a nonzero nonunit. There exist primes p1, . . . , pk ∈ Z such that

a = p1×·· ·× pk

Moreover, this expression is essentially unique: if a = q1×·· ·×q` is another expression
of a as a product of primes, then k = ` and, re-ordering the qi if necessary, for each i there
is a unit ui such that qi = ui pi.

Proof
We showed that such a factorisation exists in Lemma 5.2.10, with the word ‘prime’ re-
placed by the word ‘irreducible’. It remains to prove (essential) uniqueness.

Let k be least such that there is an expression of a as a product of k primes, namely
a = p1× ·· · × pk. Let a = q1× ·· · × q` be any other such expression. We prove by
induction on k that ` = k and, after re-ordering if necessary, for each i there is a unit ui
such that qi = ui pi.

• (Base case) If k = 1 then a = p1 is itself prime. Then we have p1 = q1×·· ·×q`. Since
p1 is prime, p1 | q j for some j; by relabelling q1 and q j we may assume that j = 1, so
that p1 | q1. By irreducibility of q1 we have q1 = u1 p1 for some unit u1.

• (Induction step) Let k > 1 and suppose that any integer which can be expressed as
a product of k primes is (essentially) uniquely expressible in such a way. Suppose a
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has an expression as a product of k+1 primes, and that k+1 is the least such number.
Suppose also that

a = p1×·· ·× pk× pk+1 = q1×·· ·×q`

Note that ` > k + 1. Since pk+1 is prime we must have pk+1 | q j for some j; by
relabelling q j and q` if necessary, we may assume that j = `, so that pk+1 | q`. As
before, q` = uk+1 pk+1 for some unit uk+1. Dividing through by pk+1 gives

p1×·· ·× pk = q1×·· ·×q`−1×uk+1

Replacing q`−1 by q`−1uk+1, which is still prime, we can apply the induction hypo-
thesis to obtain k = `−1, so k+1 = `, and, after reordering if necessary qi = ui pi for
all i6 k. Since this also holds for i = k+1, the induction step is complete.

The result follows by induction. �

0 Example 5.2.13
Here are some examples of numbers written as products of primes:

• 12 = 2×2×3. We could also write this as 2×3×2 or (−2)× (−3)×2, and so on.

• 53 = 53 is an expression of 53 as a product of primes.

• −1000 = 2×5× (−2)×5×2×5.

• We can view any unit as a product of no primes. (Don’t dwell on this point for too
long as it will not arise very often!)

C

. Exercise 5.2.14
Express the following numbers as products of primes:

16 −240 5050 111111 −123456789

C

To make things slightly more concise, we introduce a standard way of expressing a num-
ber as a product of primes:
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F Definition 5.2.15
The canonical prime factorisation of a nonzero integer a is the expression in the form

a = up j1
1 · · · p jr

r

where r > 0 and:

• u = 1 if a > 0, and u =−1 if a < 0;

• The numbers pi are all positive primes;

• p1 < p2 < · · ·< pr;

• ji > 1 for all i.

We call ji the multiplicity of pi in a, and we call u the sign of a.

Typically we omit u if u = 1 (unless a = 1), and just write a minus sign (−) if u =−1.

0 Example 5.2.16
The canonical prime factorisations of the integers given in Example 5.2.13 are:

• 12 = 22 ·3.

• 53 = 53.

• −1000 =−23 ·53.

• 1 = 1.

C

. Exercise 5.2.17
Write out the canonical prime factorisations of the numbers from Exercise 5.2.14, which
were:

16 −240 5050 111111 −123456789

C

The following exercise provides another tool for computing greatest common divisors of
pairs of integers by looking at their prime factorisations.

. Exercise 5.2.18
Let p1, p2, . . . , pr be distinct primes, and let ki, `i ∈ N for all 16 i6 r. Define

m = pk1
1 × pk2

2 ×·· ·× pkr
r and n = p`1

1 × p`2
2 ×·· ·× p`r

r

Prove that
gcd(m,n) = pu1

1 × pu2
2 ×·· ·× pur

r

where ui = min{ki, `i} for all 16 i6 r. C
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0 Example 5.2.19
We use Exercise 5.2.18 to compute the greatest common divisor of 17640 and 6468.

First we compute the prime factorisations of 17640 and 6468:

17640 = 23 ·32 ·5 ·72 and 6468 = 22 ·3 ·72 ·11

It now follows from Exercise 5.2.18 that

gcd(17640,6468) = 22 ·31 ·50 ·72 ·110

= 4 ·3 ·1 ·49 ·1
= 588

C

Exercise 5.2.18 allows us to provide a concise proof of the following result.

C Corollary 5.2.20
Let p ∈ Z be prime, let a ∈ Z be nonzero, and let k > 1. Then a⊥ pk if and only if p - a.

Proof
By the fundamental theorem of arithmetic, we can write

a = p j× p j1
1 ×·· ·× p jr

r

where p1, . . . , pr are the primes other than p appearing in the prime factorisation of a,
and j, ji ∈ N for all 16 i6 r. Note that p | a if and only if j > 1.

Furthermore we have
pk = pk× p0

1×·· ·× p0
r

By Exercise 5.2.18 it follows that

gcd(a, pk) = pmin{ j,k}× p0
1×·· ·× p0

r = pmin{ j,k}

Now:

• If min{ j,k}= 0 then j = 0, in which case p - a, and gcd(a, pk) = p0 = 1;

• If min{ j,k}> 0 then j > 1, in which case p | a, and p | gcd(a, pk), so gcd(a, pk) 6= 1.

In particular, p - a if and only if a⊥ pk. �

Distribution of primes

So far we have seen several examples of prime numbers; to name a few, we’ve seen 2,
3, 5 and 53. It might seem like the prime numbers go on forever, but proving this is less
than obvious.
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. Exercise 5.2.21
Let P be an inhabited finite set of positive prime numbers and let m be the product of all
the elements of P. That is, for some n> 1 let

P = {p1, . . . , pn} and m = p1×·· ·× pn

where each pk ∈ P is a positive prime. Using the fundamental theorem of arithmetic,
show that m+1 has a positive prime divisor which is not an element of P. C

C Theorem 5.2.22
There are infinitely many primes.

Proof
We prove that there are infinitely many positive prime numbers—the result then follows
immediately. Let P be the set of all positive prime numbers. Then P is inhabited, since
2 ∈ P, for example. If P were finite, then by Exercise 5.2.21, there would be a posit-
ive prime which is not an element of P—but P contains all positive primes, so that is
impossible. Hence there are infinitely many positive primes. �

This is one proof of many and is attributed to Euclid, who lived around 2300 years ago.
We might hope that a proof of the infinitude of primes gives some insight into how the
primes are distributed. That is, we might ask questions like: how frequently do primes
occur? How fast does the sequence of primes grow? How likely is there to be a prime
number in a given set of integers?

As a starting point, Euclid’s proof gives an algorithm for writing an infinite list of primes:

• Let p1 = 2; we know that 2 is prime;

• Given p1, . . . , pn, let pn+1 be the smallest positive prime factor of p1×·· ·× pn +1.

The first few terms produced would be:

• p1 = 2 by definition;

• 2+1 = 3, which is prime, so p2 = 3;

• 2×3+1 = 7, which is prime, so p3 = 7;

• 2×3×7+1 = 43, which is prime, so p4 = 43;

• 2×3×7×43+1 = 1807 = 13×139, so p5 = 13;

• 2×3×7×43×13+1 = 23479 = 53×443, so p6 = 53;

• . . . and so on.

The sequence obtained, called the Euclid–Mullin sequence, is a bit bizarre:

2,3,7,43,13,53,5,6221671,38709183810571,139,2801,11,17,5471, . . .

Big primes like 38709183810571 often appear before small primes like 11. It remains
unknown whether or not every positive prime number appears in this list!
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The chaotic nature of this sequence makes it difficult to extract information about how
the primes are distributed: the numbers p1× ·· · × pn + 1 grow very quickly—indeed,
it must be the case that p1× ·· · × pn + 1 > 2n for all n—so the upper bounds for the
sequence grow at least exponentially.

Another proof of the infinitude of primes that gives a (slightly) tighter bound can be
obtained using the following exercise.

. Exercise 5.2.23
Let n ∈ Z with n > 2. Prove that the set {k ∈ Z | n < k < n!} contains a prime number.

C
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Section 5.3

Modular arithmetic

Recall the definition of congruence modulo an integer from Section 4.2.

F Definition 4.2.6
Fix n ∈ Z. Given integers a,b ∈ Z, we say a is congruent to b modulo n, and write

a≡ b mod n (LATEX code: a \equiv b \bmod{n})

if n divides a−b. If a is not congruent to b modulo n, write

a 6≡ b mod n (LATEX code: \not\equiv)

The number n is called the modulus of the congruence.

In Section 4.2, we proved that congruence is an equivalence relation:

C Theorem 4.2.11
Let n ∈ Z. Then congruence modulo n is an equivalence relation on Z. That is:

(a) a≡ a mod n for all a ∈ Z;

(b) For all a,b ∈ Z, if a≡ b mod n, then b≡ a mod n;

(c) For all a,b,c ∈ Z, if a≡ b mod n and b≡ c mod n, then a≡ c mod n.

In this section, we turn our attention to addition, subtraction, multiplication and divi-
sion: our goal is to find out how much arithmetic can be done with equality replaced by
congruence. For example:

(i) Can we add a number to both sides of a congruence? That is, given a,b,c,n ∈ Z,
is it the case that a≡ b mod n implies a+ c≡ b+ c mod n?

(ii) Can we multiply both sides of a congruence by a number? That is, given a,b,c,n∈
Z, is it the case that a≡ b mod n implies ac≡ bc mod n?

(iii) Can we divide both sides of a congruence by a nonzero common factor? That is,
given a,b,c,n ∈ Z with c 6≡ 0 mod n, is it the case that if ac ≡ bc mod n implies
a≡ b mod n?

The answers to (i) and (ii) are ‘yes’, as we will prove; but surprisingly, the answer to
(iii) is ‘no’ (except under certain circumstances). For example, 2×3≡ 4×3 mod 6, but
2 6≡ 4 mod 6, even though 3 6≡ 0 mod 6.

In light of this, it is important from the outset to point out that, although congruence is
written with a symbol that looks like that of equality (‘≡’ vs. ‘=’), and although it is an
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equivalence relation, we can only treat congruence like equality inasmuch as we prove
that we can. Specifically:

• In Theorem 4.2.11 we proved that congruence is an equivalence relation. This allows
us to make some basic inferences about congruences—for example, transitivity means
that the following implication is valid:

−5≡ 18≡ 41≡ 64 mod 23 ⇒ −5≡ 64 mod 23

• Theorem 5.3.3, which we will prove soon, tells us that we can treat congruence like
equality for the purposes of addition, multiplication and subtraction. Thus it will be
valid to write things like

x≡ 7 mod 12 ⇒ 2x+5≡ 19 mod 12

and we’ll be able to replace values by congruent values in congruences, provided
they’re only being added, subtracted or multiplied. For example, from the knowledge
that 260 ≡ 1 mod 61 and 60!≡−1 mod 61, we will be able to deduce

260 ·3≡ 60! · x mod 61 ⇒ 3≡−x mod 61

After we have worked out what arithmetic properties carry over to congruence, we will
be able to prove some interesting theorems involving congruences and discuss their ap-
plications.

The first result we prove gives us a few equivalent ways of talking about congruence.

C Proposition 5.3.1
Fix a modulus n and let a,b ∈ Z. The following are equivalent:

(i) a and b leave the same remainder when divided by n;

(ii) a = b+ kn for some k ∈ Z;

(iii) a≡ b mod n.

Proof
We prove (i)⇔ (iii) and (ii)⇔ (iii).

• (i) ⇒ (iii). Suppose a and b leave the same remainder when divided by n, and let
q1,q2,r ∈ Z be such that

a = q1n+ r, b = q2n+ r and 06 r < n

Then a−b = (q1−q2)n, which proves that n | a−b, and so a≡ b mod n.

• (iii)⇒ (i). Suppose that a≡ b mod n, so that b−a = qn for some q ∈ Z. Write

a = q1n+ r1, b = q2n+ r2 and 06 r1,r2 < n

We may further assume that r1 6 r2. (If not, swap the roles of a and b—this is fine,
since n | b−a if and only if n | a−b.) Now we have

b−a = qn⇒ (q2n+ r2)− (q1n+ r1) = qn

⇒ (q2−q1−q)n+(r2− r1) = 0 rearranging
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since 0 6 r1 6 r2 < n we have 0 6 r2− r1 < n, so that r2− r1 is the remainder of 0
when divided by n. That is, r2− r1 = 0, so r1 = r2. Hence a and b have the same
remainder when divided by n.

• (ii)⇔ (iii). We unpack the definitions of (ii) and (iii) to see that they are equivalent.
Indeed

(ii)⇔ a = b+ kn for some k ∈ Z
⇔ a−b = kn for some k ∈ Z rearranging
⇔ n | a−b by definition of divisibility
⇔ a≡ b mod n by definition of congruence
⇔ (iii)

�

. Discussion 5.3.2
Where in the proof of Proposition 5.3.1 did we rely on the convention that the modulus
n is positive? Is the result still true if n is negative? C

We now prove that we can treat congruence like equality for the purposes of adding,
subtracting and multiplying (but not dividing!) integers.

C Theorem 5.3.3 (Modular arithmetic)
Fix a modulus n, and let a1,a2,b1,b2 ∈ Z be such that

a1 ≡ b1 mod n and a2 ≡ b2 mod n

Then the following congruences hold:

(a) a1 +a2 ≡ b1 +b2 mod n;

(b) a1a2 ≡ b1b2 mod n;

(c) a1−a2 ≡ b1−b2 mod n.

Proof
By Definition 4.2.6 that n | a1−b1 and n | a2−b2, so there exist q1,q2 ∈ Z such that

a1−b1 = q1n and a2−b2 = q2n

This implies that

(a1 +a2)− (b1 +b2) = (a1−b1)+(a2−b2) = q1n+q2n = (q1 +q2)n

so n | (a1 +a2)− (b1 +b2). This proves (a).

The algebra for (b) is slightly more involved:

a1a2−b1b2 = (q1n+b1)(q2n+b2)−b1b2

= q1q2n2 +b1q2n+b2q1n+b1b2−b1b2

= q1q2n2 +b1q2n+b2q1n

= (q1q2n+b1q2 +b2q1)n
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This shows that n | a1a2−b1b2, thus proving (b).

Now (a) and (b) together imply (c). Indeed, we know that −1 ≡ −1 mod n and b1 ≡
b2 mod n, so by (b) we have −b1 ≡−b2 mod n. We also know that a1 ≡ a2 mod n, and
hence a1−b1 ≡ a2−b2 mod n by (a). �

Theorem 5.3.3 allows us to perform algebraic manipulations with congruences as if they
were equations, provided all we’re doing is adding, multiplying and subtracting.

0 Example 5.3.4
We will solve the congruence 3x−5≡ 2x+3 mod 7 for x:

3x−5≡ 2x+3 mod 7
⇔ x−5≡ 3 mod 7 (⇒) subtract 2x (⇐) add 2x

⇔ x≡ 8 mod 7 (⇒) add 5 (⇐) subtract 5
⇔ x≡ 1 mod 7 since 8≡ 1 mod 7

So the integers x for which 3x−5 and 2x+3 leave the same remainder when divided by
7, are precisely the integers x which leave a remainder of 1 when divided by 7:

3x−5≡ 2x+3 mod 7 ⇔ x = 7q+1 for some q ∈ Z

C

. Exercise 5.3.5
For which integers x does the congruence 5x+1≡ x+8 mod 3 hold? Characterise such
integers x in terms of their remainder when divided by 3. C

So far this all feels like we haven’t done very much: we’ve just introduced a new symbol
≡ which behaves just like equality. . . but does it really? The following exercises should
expose some more ways in which congruence does behave like equality, and some in
which it doesn’t.

. Exercise 5.3.6
Fix a modulus n. Is it true that

a≡ b mod n ⇒ ak ≡ bk mod n

for all a,b ∈ Z and k ∈ N? If so, prove it; if not, provide a counterexample. C

. Exercise 5.3.7
Fix a modulus n. Is it true that

k ≡ ` mod n ⇒ ak ≡ a` mod n

for all k, ` ∈ N and a ∈ Z? If so, prove it; if not, provide a counterexample. C

. Exercise 5.3.8
Fix a modulus n. Is it true that

qa≡ qb mod n ⇒ a≡ b mod n

for all a,b,q∈Z with q 6≡ 0 mod n? If so, prove it; if not, provide a counterexample. C
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0 Example 5.3.9
Now that we have seen several things that we can do with modular arithmetic, let’s look
at some things that we cannot do:

• We cannot talk about fractions in modular arithmetic; for instance, it is invalid to say
2x≡ 1 mod 5 implies x≡ 1

2 mod 5.

• We cannot take square roots in modular arithmetic; for instance, it is invalid to say
x2≡ 3 mod 4 implies x≡±

√
3 mod 4. In fact, it is invalid to say x2≡ 1 mod 8 implies

x≡±1 mod 8, since for example 32 ≡ 1 mod 8 but 3 6≡ ±1 mod 8.

• We cannot replace numbers in exponents by other numbers they are congruent to; for
instance, it is invalid to say x3 ≡ 23 mod 4 implies x≡ 2 mod 4.

C

Multiplicative inverses

We made a big deal about the fact that fractions don’t make sense in modular arithmetic.
That is, it is invalid to say

2x≡ 1 mod 5 ⇒ x≡ 1
2

mod 5

Despite this, we can still make sense of ‘division’, provided we change what we mean
when we say ‘division’. Indeed, the congruence 2x≡ 1 mod 5 has a solution:

2x≡ 1 mod 5
⇔ 6x≡ 3 mod 5 (⇒) multiply by 3 (⇐) subtract 3
⇔ x≡ 3 mod 5 since 6≡ 1 mod 5

Here we didn’t divide by 2, but we still managed to cancel the 2 by instead multiplying
through by 3. For the purposes of solving the equation this had the same effect as division
by 2 would have had if we were allowed to divide. The key here was that 2×3≡ 1 mod 5.

F Definition 5.3.10
Fix a modulus n. Given a ∈ Z, a multiplicative inverse for a modulo n is an integer u
such that au≡ 1 mod n.

0 Example 5.3.11
Some examples of multiplicative inverses are as follows:

• 2 is a multiplicative inverse of itself modulo 3, since 2×2≡ 4≡ 1 mod 3.

• 2 is a multiplicative inverse of 3 modulo 5, since 2×3≡ 6≡ 1 mod 5.

• 7 is also a multiplicative inverse of 3 modulo 5, since 3×7≡ 21≡ 1 mod 5.
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• 3 has no multiplicative inverse modulo 6. Indeed, suppose u ∈ Z with 3u ≡ 1 mod 6.
Then 6 | 3u−1, so 3u−1 = 6q for some q ∈ Z. But then

1 = 3u−6q = 3(u−2q)

which implies that 3 | 1, which is nonsense.

C

Knowing when multiplicative inverses exist is very important for solving congruences:
if u is a multiplicative inverse for a modulo n, then we can solve equations of the form
ax≡ b mod n extremely easily:

ax≡ b mod n ⇒ x≡ ub mod n

. Exercise 5.3.12
For n = 7,8,9,10,11,12, either find a multiplicative inverse for 6 modulo n, or show that
no multiplicative inverse exists. Can you spot a pattern? C

Some authors write a−1 to denote multiplicative inverses. We refrain from this, since
it suggests that multiplicative inverses are unique—but they’re not, as you’ll see in the
following exercise.

. Exercise 5.3.13
Let n be a modulus and let a ∈ Z. Suppose that u is a multiplicative inverse for a modulo
n. Prove that, for all k ∈ Z, u+ kn is a multiplicative inverse for a modulo n. C

C Proposition 5.3.14
Let a ∈ Z and let n be a modulus. Then a has a multiplicative inverse modulo n if and
only if a⊥ n.

Proof
Note that a has a multiplicative inverse u modulo n if and only if there is a solution (u,v)
to the equation au+nv = 1. Indeed, au≡ 1 mod n if and only if n | au−1, which occurs
if and only if there is some q ∈ Z such that au−1 = nq. Setting q =−v and rearranging
yields the desired equivalence.

By Bézout’s lemma (Theorem 5.1.23), such a solution (u,v) exists if and only if
gcd(a,n) | 1. This occurs if and only if gcd(a,n) = 1, i.e. if and only if a⊥ n. �

v Proof tip
To solve a congruence of the form ax ≡ b mod n when a ⊥ n, first find a multiplicative
inverse u for a modulo n, and then simply multiply through by u to obtain x ≡ ub mod
n. C

C Corollary 5.3.15
Let a, p ∈ Z, where p is a positive prime. If p - a then a has a multiplicative inverse
modulo p.

Proof
Suppose p - a, and let d = gcd(a, p). Since d | p and p is prime we have d = 1 or d = p.
Since d | a and p - a we can’t have d = p; therefore d = 1. By Proposition 5.3.14, a has
a multiplicative inverse modulo p. �
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0 Example 5.3.16
11 is prime, so each of the integers a with 16 a6 10 should have a multiplicative inverse
modulo 11. And indeed, the following are all congruent to 1 modulo 11:

1×1 = 1 2×6 = 12 3×4 = 12 4×3 = 12 5×9 = 45
6×2 = 12 7×8 = 56 8×7 = 56 9×5 = 45 10×10 = 100

C

. Exercise 5.3.17
Find all integers x such that 25x−4≡ 4x+3 mod 13. C

Orders and totients

For any modulus n, there are only finitely many possible remainders modulo n. A nice
consequence of this finiteness is that, when a⊥ n, we can choose some power of a to be
its multiplicative inverse, as proved in the following exercise.

. Exercise 5.3.18
Let n be a modulus and let a ∈ Z with a ⊥ n. Prove that there exists k > 1 such that
ak ≡ 1 mod n. C

Exercise 5.3.18, together with the well-ordering principle, justify the following defini-
tion.

F Definition 5.3.19
Let n be a modulus and let a ∈ Z with a⊥ n. The order of a modulo n is the least k > 1
such that ak ≡ 1 mod n.

Note that this definition makes sense by Exercise 5.3.18 and the well-ordering principle.

0 Example 5.3.20
The powers of 7 modulo 100 are:

• 71 = 7, so 71 ≡ 7 mod 100;

• 72 = 49, so 72 ≡ 49 mod 100;

• 73 = 343, so 73 ≡ 43 mod 100;

• 74 = 2401, so 74 ≡ 1 mod 100.

Hence the order of 7 modulo 100 is 4, and 73 and 43 are multiplicative inverses of 7
modulo 100. C

Our focus turns to computing specific values of k such that ak ≡ 1 mod n, whenever a∈Z
and a⊥ n. We first focus on the case when n is prime; then we develop the machinery of
totients to study the case when n is not prime.
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C Lemma 5.3.21
Let a,b ∈ Z and let p ∈ Z be a positive prime. Then (a+b)p ≡ ap +bp mod p.

Proof
By the binomial theorem (Theorem 3.2.20), we have

(a+b)p =
p

∑
k=0

(
p
k

)
akbp−k

By Exercise 5.2.5, p |
(p

k

)
for all 0 < k < p, and hence

(p
k

)
akbp−k ≡ 0 mod p for all

0 < k < p. Thus

(a+b)p ≡
(

p
0

)
a0bp−0 +

(
p
p

)
apbp−p ≡ ap +bp mod p

as desired. �

C Theorem 5.3.22 (Fermat’s little theorem)
Let a, p ∈ Z with p a positive prime. Then ap ≡ a mod p.

Proof
We may assume that a> 0, otherwise replace a by its remainder modulo p.

We will prove that ap ≡ a mod p by induction on a.

• (BC) Since p > 0 we have 0p = 0, hence 0p ≡ 0 mod p.

• (IS) Fix a > 0 and suppose ap ≡ a mod p. Then (a + 1)p ≡ ap + 1p mod p by
Lemma 5.3.21. Now ap ≡ a mod p by the induction hypothesis, and 1p = 1, so we
have (a+1)p ≡ a+1 mod p.

By induction, we’re done. �

The following consequence of Theorem 5.3.22 is often also referred to as ‘Fermat’s little
theorem’, but is slightly less general since it requires an additional hypothesis. In keep-
ing with the wider mathematical community, we will refer to both Theorem 5.3.22 and
Corollary 5.3.23 as ‘Fermat’s little theorem’.

C Corollary 5.3.23 (Fermat’s little theorem — alternative version)
Let a, p ∈ Z with p a positive prime and p - a. Then ap−1 ≡ 1 mod p.

Proof
Since p - a, it follows that a⊥ p. Theorem 5.3.22 tells us that ap ≡ a mod p. By Propos-
ition 5.3.14, a has a multiplicative inverse b modulo p. Hence

apb≡ ab mod p

But apb≡ ap−1ab mod p, and ab≡ 1 mod p, so we get

ap−1 ≡ 1 mod p

as required. �
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Corollary 5.3.23 can be useful for computing remainders of humongous numbers when
divided by smaller primes.

0 Example 5.3.24
We compute the remainder of 21000 when divided by 7. Since 7 - 2, it follows from
Fermat’s little theorem (Corollary 5.3.23) that 26 ≡ 1 mod 7. Now 1000 = 166×6+4,
so

21000 ≡ 2166×6+4 ≡ (26)166 ·24 ≡ 24 ≡ 16≡ 2 mod 7

so the remainder of 21000 when divided by 7 is 2. C

. Exercise 5.3.25
Find the remainder of 3244886 when divided by 13. C

Unfortunately, the hypothesis that p is prime in Fermat’s little theorem cannot be dis-
posed of. For example, 6 is not prime, and 56−1 = 55 = 3125 = 520× 6 + 5, so
55 ≡ 5 mod 6. Our next order of business is to generalise Corollary 5.3.23 by remov-
ing the requirement that the modulus p be prime, and replacing p− 1 by the totient of
the modulus.

F Definition 5.3.26
Let n ∈ Z. The totient of n is the natural number ϕ(n) (LATEX code: \varphi(n))
defined by

ϕ(n) = |{k ∈ [|n|] | k ⊥ n}|
That is, ϕ(n) is the number of integers from 1 up to |n| which are coprime to n. The
function ϕ : Z→ N is called Euler’s totient function.

0 Example 5.3.27
Here are some examples of totients:

• The elements of [6] which are coprime to 6 are 1 and 5, so ϕ(6) = 2.

• If p is a positive prime, then by Corollary 5.2.20, every element of [p] is coprime to p
except for p itself. Hence if p is a positive prime then ϕ(p) = p−1. More generally,
if p is prime then ϕ(p) = |p|−1.

C

. Exercise 5.3.28
Let n ∈ Z and let p > 0 be prime. Prove that if p | n, then ϕ(pn) = p ·ϕ(n). Deduce that
ϕ(pk) = pk− pk−1 for all prime p > 0 and all k > 1. C

. Exercise 5.3.29
Let n ∈ Z and let p > 0 be prime. Prove that if p - n, then ϕ(pn) = (p−1)ϕ(n). C

Together, Exercises 5.3.28 and 5.3.29 allow us to compute the totient of any integer with
up to two primes in its prime factorisation.

0 Example 5.3.30
We compute ϕ(100). The prime factorisation of 100 is 22×52. Applying Exercise 5.3.28
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twice
ϕ(22×52) = 2×5×ϕ(2×5) = 10ϕ(10)

Finally, Exercise 5.3.29 tells us that

ϕ(10) = ϕ(2×5) = 1×ϕ(5) = 1×4 = 4

Hence ϕ(100) = 40. C

. Exercise 5.3.31
Prove that ϕ(100) = 40, this time using the inclusion–exclusion principle. C

Euler’s theorem uses totients to generalise Fermat’s little theorem (Theorem 5.3.22) to
arbitrary moduli, not just prime ones.

C Theorem 5.3.32 (Euler’s theorem)
Let n be a modulus and let a ∈ Z with a⊥ n. Then

aϕ(n) ≡ 1 mod n

Proof
By definition of totient, the set X defined by

X = {k ∈ [n] | k ⊥ n}

has ϕ(n) elements. List the elements as

X = {x1,x2, . . . ,xϕ(n)}

Note that axi ⊥ n for all i, so let yi be the (unique) element of X such that axi ≡ yi mod n.

Note that if i 6= j then yi 6= y j. We prove this by contraposition; indeed, since a ⊥ n, by
Proposition 5.3.14, a has a multiplicative inverse, say b. Then

yi ≡ y j mod n ⇒ axi ≡ ax j mod n ⇒ baxi ≡ bax j mod n ⇒ xi ≡ x j mod n

and xi ≡ x j mod n if and only if i = j. Thus

X = {x1,x2, . . . ,xϕ(n)}= {y1,y2, . . . ,yϕ(n)}

This means that the product of the ‘xi’s is equal to the product of the ‘yi’s, and hence

x1 · . . . · xϕ(n)

≡ y1 · . . . · yϕ(n) mod n since {x1, . . .}= {y1, . . .}
≡ (ax1) · . . . · (axϕ(n)) mod n since yi ≡ axi mod n

≡ aϕ(n) · x1 · . . . · xϕ(n) mod n rearranging

Since each xi is coprime to n, we can cancel the xi terms (by multiplying by their multi-
plicative inverses) to obtain

aϕ(n) ≡ 1 mod n

as required. �
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0 Example 5.3.33
Some examples of Euler’s theorem in action are as follows:

• We have seen that ϕ(6) = 2, and we know that 5⊥ 6. And, indeed,

5ϕ(6) = 52 = 25 = 4×6+1

so 5ϕ(6) ≡ 1 mod 6.

• By Exercise 5.3.28, we have

ϕ(121) = ϕ(112) = 112−111 = 121−11 = 110

Moreover, given a ∈ Z, a ⊥ 121 if and only if 11 - a by Corollary 5.2.20. Hence
a110 ≡ 1 mod 121 whenever 11 - a.

C

. Exercise 5.3.34
Use Euler’s theorem to prove that the last two digits of 379 are ‘67’. C

0 Example 5.3.35
Let n be a modulus and let a ∈ Z with a⊥ n. Prove that the order of a modulo n divides
ϕ(n). C

A formula for the totient of an arbitrary nonzero integer is proved in Theorem 5.3.59—its
proof is an application of the Chinese remainder theorem Theorem 5.3.46, and uses the
techniques for counting finite sets discussed in Section 6.2.

Wilson’s theorem

We conclude this chapter on number theory with Wilson’s theorem, which is a nice result
that completely characterises prime numbers in the sense that we can tell when a number
is prime by computing the remainder of (n−1)! when divided by n.

Let’s test a few numbers first:

n (n−1)! remainder
2 1 1
3 2 2
4 6 2
5 24 4
6 120 0
7 720 6
8 5040 0
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n (n−1)! remainder
9 40320 0
10 362880 0
11 3628800 10
12 39916800 0
13 479001600 12
14 6227020800 0
15 87178291200 0

It’s tempting to say that an integer n > 1 is prime if and only if n - (n−1)!, but this isn’t
true since it fails when n = 4. But it’s extremely close to being true.

C Theorem 5.3.36 (Wilson’s theorem)
Let n > 1 be a modulus. Then n is prime if and only if (n−1)!≡−1 mod n.

The following sequence of exercises will piece together into a proof of Wilson’s theorem.

. Exercise 5.3.37
Let n ∈ Z be composite. Prove that if n > 4, then n | (n−1)!. C

. Exercise 5.3.38
Let p be a positive prime and let a ∈ Z. Prove that, if a2 ≡ 1 mod p, then a ≡ 1 mod p
or a≡−1 mod p. C

Exercise 5.3.38 implies that the only elements of [p−1] that are their own multiplicative
inverses are 1 and p− 1; this morsel of information allows us to deduce result in the
following exercise.

. Exercise 5.3.39
Let p be a positive prime. Prove that (p−1)!≡−1 mod p. C

Proof of Wilson’s theorem (Theorem 5.3.36)
Let n > 1 be a modulus.

• If n is prime, then (n−1)!≡−1 mod n by Exercise 5.3.39.

• If n is composite, then either n = 4 or n > 4. If n = 4 then

(n−1)! = 3! = 6≡ 2 mod 4

and so (n−1)! 6≡ −1 mod n. If n > 4, then

(n−1)!≡ 0 mod n

by Exercise 5.3.37.

Hence (n−1)!≡−1 mod n if and only if n is prime, as desired. �

Since Wilson’s theorem completely characterises the positive prime numbers, we could
have defined ‘n is prime’, for n > 1, to mean that (n−1)!≡−1 mod n. We don’t do this
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because, although this is an interesting result, it is not particularly useful in applications.
We might even hope that Wilson’s theorem gives us an easy way to test whether a number
is prime, but unfortunately even this is a bust: computing the remainder (n− 1)! on
division by n is not particularly efficient.

However, there are some nice applications of Wilson’s theorem, which we will explore
now.

0 Example 5.3.40
We’ll compute the remainder of 345 · 44! when divided by 47. Note that 345 · 44! is
equal to a monstrous number with 76 digits; I don’t recommend doing the long division!
Anyway. . .

• 47 is prime, so we can apply both Fermat’s little theorem (Theorem 5.3.22) and
Wilson’s theorem (Theorem 5.3.36).

• By Fermat’s little theorem, we know that 346 ≡ 1 mod 47. Since 3 ·16 = 48≡ 1 mod
47, we have

345 ≡ 345 · (3 ·16)≡ 346 ·16≡ 16 mod 47

• By Wilson’s theorem, we have 46!≡−1 mod 47. Now

� 46≡−1 mod 47, so 46 is its own multiplicative inverse modulo 47.

� The extended Euclidean algorithm yields 45 ·23≡ 1 mod 47.

So we have

44! = 44! · (45 ·23) · (46 ·46)≡ 46! ·23 ·46≡ (−1) ·23 · (−1)≡ 23 mod 47

Putting this information together yields

345 ·44!≡ 16 ·23 = 368≡ 39 mod 47

So the remainder left when 345 ·44! is divided by 47 is 39. C

. Exercise 5.3.41
Let p be an odd positive prime. Prove that[(

p−1
2

)
!
]2

≡ (−1)
p+1

2 mod p

C

Chinese remainder theorem

We introduce the Chinese remainder theorem with an example.

0 Example 5.3.42
We find all integer solutions x to the system of congruences

x≡ 2 mod 5 and x≡ 4 mod 8
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Note that x ≡ 4 mod 8 if and only if x = 4+ 8k for some k ∈ Z. Now, for all k ∈ Z we
have

x≡ 2 mod 5
⇔ 4+8k ≡ 2 mod 5 since x = 4+8k

⇔ 8k ≡−2 mod 5 subtracting 4
⇔ 3k ≡ 3 mod 5 since 8≡−2≡ 3 mod 5
⇔ k ≡ 1 mod 5 multiplying by a multiplicative inverse for 3 modulo 5

So 4+8k ≡ 2 mod 5 if and only if k = 1+5` for some ` ∈ Z.

Combining this, we see that x satisfies both congruences if and only if

x = 4+8(1+5`) = 12+40`

for some ` ∈ Z.

Hence the integers x for which both congruences are satisfied are precisely those integers
x such that x≡ 12 mod 40. C

. Exercise 5.3.43
Find all integer solutions x to the system of congruences:

x≡−1 mod 4
x≡ 1 mod 9
x≡ 5 mod 11

Express your solution in the form x≡ a mod n for suitable n > 0 and 06 a < n. C

. Exercise 5.3.44
Let m,n be coprime moduli and let a,b ∈ Z. Let u,v ∈ Z be such that

mu≡ 1 mod n and nv≡ 1 mod m

In terms of a,b,m,n,u,v, find an integer x such that

x≡ a mod m and x≡ b mod n

C

. Exercise 5.3.45
Let m,n be coprime moduli and let x,y ∈ Z. Prove that if x≡ y mod m and x≡ y mod n,
then x≡ y mod mn. C

C Theorem 5.3.46 (Chinese remainder theorem)
Let m,n be moduli and let a,b ∈ Z. If m and n are coprime, then there exists an integer
solution x to the simultaneous congruences

x≡ a mod m and x≡ b mod n

Moreover, if x,y ∈ Z are two such solutions, then x≡ y mod mn.
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Proof
Existence of a solution x is precisely the content of Exercise 5.3.44.

Now let x,y ∈ Z be two solutions to the two congruences. Then{
x≡ a mod m
y≡ a mod m ⇒ x≡ y mod m{
x≡ b mod n
y≡ b mod n ⇒ x≡ y mod n

so by Exercise 5.3.45, we have x≡ y mod mn, as required. �

We now generalise the Chinese remainder theorem to the case when the moduli m,n
are not assumed to be coprime. There are two ways we could make this generalisation:
either we could reduce the more general version of the theorem to the version we proved
in Theorem 5.3.46, or we could prove the more general version from scratch. We opt for
the latter approach, but you might want to consider what a ‘reductive’ proof would look
like.

C Theorem 5.3.47
Let m,n be moduli and let a,b ∈ Z. There exists an integer solution x to the system of
congruences

x≡ a mod m and x≡ b mod n

if and only if a≡ b mod gcd(m,n).

Moreover, if x,y ∈ Z are two such solutions, then x≡ y mod lcm(m,n)

Proof
Let d = gcd(m,n), and write m = m′d and n = n′d for some m′,n′ ∈ Z.

We prove that an integer solution x to the system of congruences exists if and only if
a≡ b mod d.

• (⇒) Suppose an integer solution x to the system of congruences exists. Then there
exist integers k, ` such that

x = a+mk = b+n`

But m = m′d and n = n′d, so we have a+m′dk = b+n′d`, and so

a−b = (n′`−m′k)d

so that a≡ b mod d, as required.

• (⇐) Suppose a≡ b mod d, and let t ∈ Z be such that a−b = td. Let u,v ∈ Z be such
that mu+ nv = d—these exist by Bézout’s lemma (Theorem 5.1.23). Note also that,
since m = m′d and n = n′d, dividing through by d yields m′u+n′v = 1.

Define
x = an′v+bm′u
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Now we have

x = an′v+bm′u by definition of x

= an′v+(a− td)m′u since a−b = td

= a(m′u+n′v)− tdm′u rearranging
= a− tdm′u since m′u+n′v = 1
= a− tum since m = m′d

so x≡ a mod m. Likewise

x = an′v+bm′u by definition of x

= (b+ td)n′v+bm′u since a−b = td

= b(m′u+n′v)+ tdn′v rearranging
= b+ tdn′v since m′u+n′v = 1
= b+ tvn since n = n′d

so x≡ b mod n.

Hence x = an′v+bm′u is a solution to the system of congruences.

We now prove that if x,y are two integer solutions to the system of congruences, then
they are congruent modulo lcm(a,b). First note that we must have

x≡ y mod m and x≡ y mod n

so that x = y+ km and x = y+ `n for some k, ` ∈ Z. But then

x− y = km = `n

Writing m = m′d and n = n′d, we see that km′d = `n′d, so that km′ = `n′. But m′,n′ are
coprime by Exercise 5.1.30, and hence m′ | ` by Proposition 5.1.32. Write ` = `′m′ for
some `′ ∈ Z. Then we have

x− y = `n = `′m′n

and hence x≡ y mod m′n. But m′n = lcm(m,n) by Exercise 5.1.41. �

This theorem is in fact constructive, in that it provides an algorithm for finding all integer
solutions x to a system of congruences

x≡ a mod m and x≡ b mod n

as follows:

• Use the Euclidean algorithm to compute d = gcd(m,n).

• If d - a− b then there are no solutions, so stop. If d | a− b, then proceed to the next
step.

• Use the extended Euclidean algorithm to compute u,v ∈ Z such that mu+nv = d.
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• The integer solutions x to the system of congruences are precisely those of the form

x =
anv+bmu+ kmn

d
for some k ∈ Z

. Exercise 5.3.48
Verify that the algorithm outlined above is correct. Use it to compute the solutions to the
system of congruences

x≡ 3 mod 12 and x≡ 15 mod 20

C

. ? Exercise 5.3.49
Generalise the Chinese remainder theorem to systems of arbitrarily (finitely) many con-
gruences. That is, given r ∈ N, find precisely the conditions on moduli n1,n2, . . . ,nr and
integers a1,a2, . . . ,ar such that an integer solution exists to the congruences

x≡ a1 mod n1, x≡ a2 mod n2, · · · xr ≡ ar mod nr

Find an explicit formula for such a value of x, and find a suitable modulus n in terms
of n1,n2, . . . ,nr such that any two solutions to the system of congruences are congruent
modulo n. C

. Exercise 5.3.50
Prove that gaps between consecutive primes can be made arbitrarily large. That is, prove
that for all n ∈ N, there exists an integer a such that the numbers

a, a+1, a+2, . . . , a+n

are all composite. C

Application: tests for divisibility

The language of modular arithmetic provides a practical setting for proving tests for
divisibility using number bases. Number bases were introduced in Chapter 0, and we
gave a preliminary definition in Definition 0.6 of what a number base is. Our first job
will be to justify why this definition makes sense at all—that is, we need to prove that
every natural number has a base-b expansion, and moreover, that it only has one of them.
Theorem 5.3.51 says exactly this.

C Theorem 5.3.51
Let n ∈ N and let b ∈ N with b > 2. Then there exist unique r ∈ N and d0,d1, . . . ,dr ∈
{0,1, . . . ,b−1} such that

n =
r

∑
i=0

dibi

and such that dr 6= 0, except n = 0, in which case r = 0 and d0 = 0.

Proof
We proceed by strong induction on n.
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• (BC) We imposed the requirement that if n = 0 then r = 0 and d0 = 0; and this evid-

ently satisfies the requirement that n =
r

∑
i=0

dibi.

• (IS) Fix n > 0 and suppose that the requirements of the theorem are satisfied for all
the natural numbers up to and including n.

By the division theorem (Theorem 5.1.1), there exist unique u,v ∈ N such that

n+1 = ub+ v and v ∈ {0,1, . . . ,b−1}

Since b> 2, we have u < n+1, and so u6 n. It follows from the induction hypothesis
that there exist unique r ∈ N and d1, . . . ,dr ∈ {0,1, . . . ,b−1} such that

u =
r

∑
i=0

di+1bi

and dr 6= 0. Writing d0 = v yields

n = ub+ v =
r

∑
i=0

di+1bi+1 +d0 =
r

∑
i=0

dibi

Since dr 6= 0, this proves existence.

For uniqueness, suppose that there exists s ∈ N and e0, . . . ,es ∈ {0,1, . . . ,b− 1} such
that

n+1 =
s

∑
j=0

e jb j

and es 6= 0. Then

n+1 =

(
s

∑
j=1

e jb j−1

)
b+ e0

so by the division theorem we have e0 = d0 = v. Hence

u =
n+1− v

b
=

s

∑
j=1

e jb j−1 =
r

∑
i=1

dib j−1

so by the induction hypothesis, it follows that r = s and di = ei for all 16 i6 r. This
proves uniqueness.

By induction, we’re done. �

We now re-state the definition of base-b expansion, confident in the knowledge that this
definition makes sense.

F Definition 5.3.52
Let n ∈ N. The base-b expansion of n is the unique string drdr−1 . . .d0 such that the
conditions in Theorem 5.3.51 are satisfied. The base-2 expansion is also known as the
binary expansion, and the base-10 expansion is called the decimal expansion.
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0 Example 5.3.53
Let n ∈ N. Then n is divisible by 3 if and only if the sum of the digits in the decimal
expansion of n is divisible by 3. Likewise, n is divisible by 9 if and only if the sum of the
digits in the decimal expansion n is divisible by 9.

We prove this for divisibility by 3. Let

n = drdr−1 · · ·d1d0

be the decimal expansion of n, and let s =
r

∑
i=0

di be the sum of the digits of n.

Then we have

n≡
r

∑
i=0

di10i mod 3 since n = ∑
i

di10i

≡
r

∑
i=0

di1i mod 3 since 10≡ 1 mod 3

≡
r

∑
i=0

di since 1i = 1 for all i

≡ s by definition of s

Since n≡ s mod 3, it follows that n is divisible by 3 if and only if s is divisible by 3. C

. Exercise 5.3.54
Let n ∈ N. Prove that n is divisible by 5 if and only if the final digit in the decimal
expansion of n is 5 or 0.

More generally, fix k > 1 and let m be the number whose decimal expansion is given by
the last k digits of that of n. Prove that n is divisible by 5k if and only if m is divisible by
5k. For example, we have

125 | 9 550 828 230 495 875 ⇔ 125 | 875

C

. Exercise 5.3.55
Let n ∈ N. Prove that n is divisible by 11 if and only if the alternating sum of the digits
of n is divisible by 11. That is, prove that if the decimal expansion of n is drdr−2 · · ·d0,
then

11 | n ⇔ 11 | d0−d1 +d2−·· ·+(−1)rdr

C

. Exercise 5.3.56
Let n∈N. Find a method for testing if n is divisible by 7 based on the decimal expansion
of n. C
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Application: public-key cryptography

Public-key cryptography is a method of encryption and decryption that works according
to the following principles:

• Encryption is done using a public key that is available to anyone.

• Decryption is done using a private key that is only known to the recipient.

• Knowledge of the private key should be extremely difficult to derive from knowledge
of the public key.

Specifically, suppose that Alice wants to securely send Bob a message. As the recipient
of the message, Bob has a public key and a private key. So:

• Bob sends the public key to Alice.

• Alice uses the public key to encrypt the message.

• Alice sends the encrypted message, which is visible (but encrypted) to anyone who
intercepts it.

• Bob keeps the private key secret, and uses it upon receipt of the message to decrypt
the message.

Notice that, since the public key can only be used to encrypt messages, a hacker has no
useful information upon intercepting the message or the public key.

RSA encryption is an algorithm which provides one means of doing public-key crypto-
graphy using the theory of modular arithmetic. It works as follows.

Step 1. Let p and q be distinct positive prime numbers, and let n = pq. Then ϕ(n) =
(p−1)(q−1).

Step 2. Choose e ∈ Z such that 1 < e < ϕ(n) and e⊥ ϕ(n). The pair (n,e) is called the
public key.

Step 3. Choose d ∈ Z such that de≡ 1 mod ϕ(n). The pair (n,d) is called the private
key.

Step 4. To encrypt a message M (which is encoded as an integer), compute K ∈ [n] such
that K ≡Me mod n. Then K is the encrypted message.

Step 5. The original message M can be recovered since M ≡ Kd mod n.

Computing the private key (n,d) from the knowledge of (n,e) would allow a hacker to
decrypt an encrypted message. However, doing so is typically very difficult when the
prime factors of n are large. So if we choose p and q to be very large primes—which
we can do without much hassle at all—then it becomes computationally infeasible for a
hacker to compute the private key.

Example. Suppose I want to encrypt the message M, which I have encoded as the integer
32. Let p = 13 and q = 17. Then n = 221 and ϕ(n) = 192. Let e = 7, and note that
7⊥ 192. Now 7×55≡ 1 mod 192, so we can define d = 55.
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• The public key is (221,7), which Bob sends to Alice. Now Alice can encrypt the
message:

327 ≡ 59 mod 221

Alice then sends Bob the encrypted message 59.

• The private key is (221,55), so Bob can decrypt the message:

5955 ≡ 32 mod 221

so Bob has received Alice’s message 32.

. Exercise 5.3.57
Prove that the RSA algorithm is correct. Specifically, prove:

(a) If n = pq, for distinct positive primes p and q, then ϕ(n) = (p−1)(q−1);

(b) Given 1 < e < ϕ(n) with e⊥ ϕ(n), there exists d ∈ Z with de≡ 1 mod ϕ(n).

(c) Given M,K ∈ Z with K ≡Me mod n, it is indeed the case that Kd ≡M mod n.

C

Application: Euler’s totient function

We now derive a formula for computing the totient of an arbitrary integer using the tools
from Section 6.2—in particular, if you chose to read this section before learning about
the multiplication principle, you should skip over this material.

C Theorem 5.3.58 (Multiplicativity of Euler’s totient function)
Let m,n ∈ Z and let ϕ : Z→ N be Euler’s totient function (see Definition 5.3.26). If m
and n are coprime, then ϕ(mn) = ϕ(m)ϕ(n).

Proof
Since ϕ(−k) = ϕ(k) for all k ∈ Z, we may assume that m > 0 and n > 0. Moreover, if
m = 0 or n = 0, then ϕ(m)ϕ(n) = 0 and ϕ(mn) = 0, so the result is immediate. Hence
we may assume that m > 0 and n > 0.

Given k ∈ Z, define
Ck = {a ∈ [k] | a⊥ k}

By definition of Euler’s totient function, we thus have |Ck|= ϕ(k) for all k ∈ Z. We will
define a bijection

f : Cm×Cn→Cmn

using the Chinese remainder theorem (Theorem 5.3.46).

Given a ∈Cm and b ∈Cn, let f (a,b) be the element x ∈ [mn] such that{
x≡ a mod m
x≡ b mod n
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• f is well-defined. We check the properties of totality, existence and uniqueness.

� Totality. We have accounted for all the elements of Cm×Cn in our specification of
f .

� Existence. By the Chinese remainder theorem, there exists x ∈ Z such that x ≡
a mod m and x ≡ b mod n. By adding an appropriate integer multiple of mn to x,
we may additionally require x ∈ [mn]. It remains to check that x⊥ mn.
So let d = gcd(x,mn). If d > 1, then there is a positive prime p such that p | x and
p |mn. But then p |m or p | n, meaning that either p | gcd(x,m) or p | gcd(x,n). But
x≡ a mod m, so gcd(x,m) = gcd(a,m); and likewise gcd(x,n) = gcd(b,n). So this
contradicts the assumption that a⊥ m and b⊥ n. Hence x⊥ mn after all.

� Uniqueness. Suppose x,y ∈Cmn both satisfy the two congruences in question. By
the Chinese remainder theorem, we have x≡ y mod mn, and hence x = y+ kmn for
some k ∈ Z. Since x,y ∈ [mn], we have

|k|mn = |kmn|= |x− y|6 mn−1 < mn

This implies |k|< 1, so that k = 0 and x = y.

so f is well-defined.

• f is injective. Let a,a′ ∈Cm and b,b′ ∈Cn, and suppose that f (a,b) = f (a′,b′). Then
there is an element x ∈Cmn such that

x≡ a mod m
x≡ a′ mod m
x≡ b mod n
x≡ b′ mod n

Hence a≡ a′ mod m and b≡ b′ mod n. Since a,a′ ∈ [m] and b,b′ ∈ [n], we must have
a = a′ and b = b′.

• f is surjective. Let x ∈ Cmn. Let a ∈ [m] and b ∈ [n] be the (unique) elements such
that x≡ a mod m and x≡ b mod n, respectively. If a ∈Cm and b ∈Cn, then we’ll have
f (a,b) = x by construction, so it remains to check that a⊥ m and b⊥ n.

Suppose d ∈ Z with d | a and d | m. We prove that d = 1. Since x ≡ a mod m, we
have d | x by Theorem 5.1.17. Since m | mn, we have d | mn. By definition of greatest
common divisors, it follows that d | gcd(x,mn). But gcd(x,mn) = 1, so that d is a unit,
and so a⊥ m as required.

The proof that b⊥ n is similar.

It was a lot of work to check that it worked, but we have defined a bijection f : Cm×
Cn→Cmn. By the multiplication principle, we have

ϕ(m)ϕ(n) = |Cm| · |Cn|= |Cm×Cn|= |Cmn|= ϕ(mn)

as required. �

It turns out that Theorem 5.3.58 and Exercise 5.3.28 are precisely the ingredients we need
to find a general formula for the totient of a nonzero integer.
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C Theorem 5.3.59 (Formula for Euler’s totient function)
Let n be a nonzero integer. Then

ϕ(n) = |n| ·∏
p|n

(
1− 1

p

)
where the product is indexed over positive primes p dividing n

Proof
Since ϕ(n) = ϕ(−n) for all n ∈ Z, we may assume that n > 0. Moreover

ϕ(1) = 1 = 1 ·∏
p|1

(
1− 1

p

)
Note that the product here is empty, and hence equal to 1, since there are no positive
primes p which divide 1. So now suppose n > 1.

Using the fundamental theorem of arithmetic (Theorem 5.2.12), we can write

n = pk1
1 pk2

2 · · · pkr
r

for primes 0 < p1 < p2 < · · ·< pr and natural numbers k1,k2, . . . ,kr > 1.

By repeated application of Theorem 5.3.58, we have

ϕ(n) =
r

∏
i=1

ϕ(pki
i )

By Exercise 5.3.28, we have

ϕ(pki
i ) = pki

i − pki−1
i = pki

i

(
1− 1

pi

)
Combining these two results, it follows that

ϕ(n) =
r

∏
i=1

pki
i

(
1− 1

pi

)
=

(
r

∏
i=1

pki
i

)(
r

∏
i=1

(
1− 1

pi

))
= n ·

r

∏
i=1

(
1− 1

pi

)
which is as required. �
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Section 5.E

Chapter 5 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

5.1. Let n ∈ N. Prove that the number of trailing 0s in the decimal expansion of n! is
equal to

d

∑
k=1

⌊ n
5k

⌋
where d ∈N is least such that 5d+1 > n, and where bxc (LATEX code: \lfloor,\rfloor)
denotes the greatest integer less than or equal to x ∈ R (called the floor of x).

5.2. Let b∈Nwith b> 2. Find an expression in terms of n∈N for the number of trailing
0s in the base-b expansion of n!.
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Section 6.1

Finite sets

As its title suggests, this section is all about exploring the properties of finite sets, and
to do this we must first define what we mean by ‘finite’. We certainly know a finite set
when we see one—for example:

• The set {red,orange,yellow,green,blue,purple} is finite.

• The set [0,1] is infinite, but it has finite length.

• The set [0,∞) is infinite and has infinite length.

• The set P(N) is infinite, but has no notion of ‘length’ to speak of.

• The empty set ∅ is finite.

If we are to make a definition of ‘finite set’, we must first figure out what the finite sets
above have in common but the infinite sets do not.

It is difficult to define ‘finite’ without being imprecise. A first attempt at a definition
might be something like the following:

A set X is finite if the elements of X don’t go on forever.

This is good intuition, but isn’t good enough as a mathematical definition, because ‘go
on’ and ‘forever’ are not precise terms (unless they themselves are defined). So let’s try
to make this more precise:

A set X is finite if the elements of X can be listed one by one
in such a way that the list has both a start and an end.

This is better but is still not entirely precise—it is not entirely clear what is meant by
‘listed one by one’. But we can make this precise: to list the elements of X one-by-one
means that we are specifying a ‘first element’, a ‘second element’, a ‘third element’, and
so on. To say that this list has an end means that we eventually reach the ‘nth element’,
for some n ∈ N, and there is no ‘(n+ 1)st element’. In other words, for some natural
number n, we are pairing up the elements of X with the natural numbers from 1 to n.

Recall that, for each n∈N, the set of natural numbers from 1 up to n has its own notation:

F Definition 2.1.9
Let n ∈ N. The set [n] is defined by [n] = {k ∈ N | 16 k 6 n}.

Since ‘pairing up’ really means ‘finding a bijection’, we are now ready to define what it
means for a set to be finite.
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F Definition 6.1.1
A set X is finite if there exists a bijection f : [n]→ X for some n ∈ N. The function f is
called an enumeration of X . If X is not finite we say it is infinite.

This definition suggests the following strategy for proving that a set is finite.

v Strategy 6.1.2 (Proving that a set is finite)
In order to prove that a set X is finite, it suffices to find a bijection [n]→ X for some
n ∈ N.

0 Example 6.1.3
Let X = {red,orange,yellow,green,blue,purple}. We said above that X is finite; now we
can prove it. Define f : [6]→ X by

f (1) = red f (2) = orange f (3) = yellow
f (4) = green f (5) = blue f (6) = purple

The function f is evidently a bijection, since each element of X can be expressed uniquely
as f (k) for some k ∈ [6]. So X is finite. C

. Exercise 6.1.4
Prove that [n] is finite for each n ∈ N. C

Note that Exercise 6.1.4 implies, in particular, that ∅ is finite, since ∅= [0].

The size of a finite set

Whilst it might sometimes be useful just to know that set is finite, it will be even more
useful to know how many elements it has. This quantity is called the size of the set.
Intuitively, the size of the set should be the length of the list of its elements, but for
this to be well-defined, we first need to know that the number of elements in the list is
independent of the order in which we list them.

The ‘list of elements’ of a finite set X is the bijection [n]→ X given by Definition 6.1.1,
and n is the length of the list, this means that we need to prove that if [m]→X and [n]→X
are bijections, then m = n. This will be Theorem 6.1.8.

To be able to prove this, we must first prove some technical results that we will use in the
proof.

C Lemma 6.1.5
Let X be an inhabited set. There is a bijection X \{a}→ X \{b} for all a,b ∈ X .

Proof
Let a,b ∈ X . First note that if a = b then X \{a}= X \{b}, and so the identity function
idX\{a} is the desired bijection.
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So assume a 6= b, and define f : X \{a}→ X \{b} by

f (x) =

{
a if x = b
x otherwise

Note that f is well-defined since it ensures that f (x) 6= b for any x ∈ X \{a}.

We prove that f is a bijection by finding an inverse.

So define g : X \{b}→ X \{a} by

g(x) =

{
b if x = a
x otherwise

Again, g is well-defined since we have ensured that g(x) 6= a for any x ∈ X \{b}.

Given x ∈ X , if x 6= a and x 6= b, then f (x) 6= a and g(x) 6= b, so that

g( f (x)) = g(x) = x and f (g(x)) = f (x) = x

Moreover g( f (b)) = g(a) = b and f (g(a)) = f (b) = a.

This proves that g ◦ f = idX\{a} and f ◦ g = idX\{b}, so that g is an inverse for f , as
required. �

C Theorem 6.1.6
Let m,n ∈ N.

(a) If there exists an injection f : [m]→ [n], then m6 n.

(b) If there exists a surjection g : [m]→ [n], then m> n.

(c) If there exists a bijection h : [m]→ [n], then m = n.

Proof of (a)
For fixed m ∈ N, let p(m) be the assertion that, for all n ∈ N, if there exists an injection
[m]→ [n], then m6 n. We prove that p(m) is true for all m ∈ N by induction.

• (Base case) We need to prove that, for all n ∈ N if there exists an injection [0]→ [n],
then 06 n. This is automatically true, since 06 n for all n ∈ N.

• (Induction step) Fix m ∈N and suppose that, for all n ∈N, if there exists an injection
[m]→ [n], then m6 n.

Now let n ∈ N and suppose that there is an injection f : [m+ 1]→ [n]. We need to
prove that m+16 n.

First note that n> 1. Indeed, since m+1> 1, we have 1 ∈ [m+1], and so f (1) ∈ [n].
This means that [n] is inhabited, and so n > 1. In particular, n− 1 ∈ N and so the set
[n−1] is well-defined. It suffices to prove that m6 n−1.
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Let a = f (m+1) ∈ [n] and define f− : [m]→ [n]\{a} by f−(k) = f (k) for all k ∈ [m].
Note that f− is well-defined; indeed, f (k) 6= a for all k ∈ [m] since a = f (m+1) and
f is injective.

The function f− is injective. To see this, let k, ` ∈ [m] and suppose f−(k) = f−(`).
Then f (k) = f (`) by definition of f−, and so k = ` by injectivity of f .

Since [n−1] = [n]\{n}, there is a bijection s : [n]\{a}→ [n−1] by Lemma 6.1.5. In
particular, s is injective, and so s◦ f− is an injection [m]→ [n−1] by Proposition 2.3.4.

By the induction hypothesis, we have m6 n−1, and so m+16 n as required.

The result now follows by induction. �

. Exercise 6.1.7
Prove parts (b) and (c) of Theorem 6.1.6. C

Phew! That was fun. With these technical results proved, we can now prove the theorem
we needed for the size of a finite set to be well-defined.

C Theorem 6.1.8 (Uniqueness of size)
Let X be a finite set and let f : [m]→ X and g : [n]→ X be enumerations of X , where
m,n ∈ N. Then m = n.

Proof
Since f : [m]→ X and g : [n]→ X are bijections, the function g−1 ◦ f : [m]→ [n] is a
bijection by Exercises 2.3.21 and 2.3.46. Hence m = n by Theorem 6.1.6(c). �

As we mentioned above, Theorem 6.1.8 tells us that any two ways of listing (enumerat-
ing) the elements of a finite set yield the same number of elements. We may now make
the following definition.

F Definition 6.1.9
Let X be a finite set. The size of X , written |X |, is the unique natural number n for which
there exists a bijection [n]→ X .

0 Example 6.1.10
Example 6.1.3 showed that |{red,orange,yellow,green,blue,purple}|= 6, and provided
the proof was correct, Exercise 6.1.4 showed that |[n]| = n for all n ∈ N; in particular,
|∅|= 0. C

0 Example 6.1.11
Fix n∈N and let X = {a∈Z | −n6 a6 n}. There is a bijection f : [2n+1]→ X defined
by f (k) = k−n−1. Indeed:

• f is well-defined. We need to prove f (k)∈ X for all k ∈ [2n+1]. Well given k ∈ [2n+
1], we have 16 k 6 2n+1, and so

−n = 1− (n+1)6 k− (n+1)︸ ︷︷ ︸
= f (k)

6 (2n+1)− (n+1) = n

so that f (k) ∈ X as claimed.
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• f is injective. Let k, ` ∈ [2n+1] and assume f (k) = f (`). Then k−n−1 = `−n−1,
and so k = `.

• f is surjective. Let a ∈ X and define k = a+n+1. Then

1 = (−n)+n+16 a+n+1︸ ︷︷ ︸
=k

6 n+n+1 = 2n+1

and so k ∈ [2n+1], and moreover f (k) = (a+n+1)−n−1 = a.

Since f is a bijection, we have |X |= 2n+1 by Definition 6.1.9. C

. Exercise 6.1.12
Let X be a finite set with |X |= n > 1. Let a ∈ X and let b 6∈ X . Prove that

(a) X \{a} is finite and |X \{a}|= n−1; and

(b) X ∪{b} is finite and |X ∪{b}|= n+1.

Identify where in your proofs you make use the hypotheses that a ∈ X and b 6∈ X . C

Comparing the sizes of finite sets

When we used dots and stars to motivate the definitions of injective and surjective func-
tions at the beginning of Section 2.3, we suggested the following intuition:

• If there is an injection f : X → Y , then X has ‘at most as many elements as Y ’; and

• If there is a surjection g : X → Y , then X has ‘at least as many elements as Y ’.

We are now in a position to prove this, at least when X and Y are finite. The following
theorem is a generalisation of Theorem 6.1.6.

C Theorem 6.1.13
Let X and Y be sets.

(a) If Y is finite and there is an injection f : X → Y , then X is finite and |X |6 |Y |.

(b) If X is finite and there is a surjection f : X → Y , then Y is finite and |X |> |Y |.

(c) If one of X or Y is finite and there is a bijection f : X → Y , then X and Y are both
finite and |X |= |Y |.

Proof of (a)

We prove by induction that, for all n ∈ N, if Y is a finite set of size n and there is an
injection f : X → Y , then X is finite and |X |6 n.
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• (Base case) Let Y be a finite set of size 0—that is, Y is empty. Suppose there is
an injection f : X → Y . If X is inhabited, then there exists an element a ∈ X , so that
f (a)∈Y . This contradicts emptiness of Y , so that X must be empty. Hence |X |= 06 0,
as required.

• (Induction step) Fix n ∈N and assume that, if Y is a finite set of size n and there is an
injection f : X → Y , then X is finite and |X |6 n.

Fix a finite set Y of size n+1 and an injection f : X → Y . We need to prove that X is
finite and |X |6 n+1.

If X is empty, then |X |= 06 n+1 as required. So assume that X is inhabited, and fix
an element a ∈ X .

Define f∨ : X \{a}→ Y \{ f (a)} by f∨(x) = f (x) for all x ∈ X \{a}. Note that f∨ is
well-defined since f (x) 6= f (a) for any x ∈ X \{a} by injectivity of f . Moreover f∨ is
injective; indeed, let x,y ∈ X \{a} and assume f∨(x) = f∨(y). Then

f (x) = f∨(x) = f∨(y) = f (y) ⇒ x = y

by injectivity of f . So f∨ is an injection.

By Exercise 6.1.12, Y \{ f (a)} is finite and |Y \{ f (a)}|= (n+1)−1 = n.

By the induction hypothesis, X \ {a} is finite and |X \ {a}| 6 (n+ 1)− 1. But |X \
{a}|= |X |−1 by Exercise 6.1.12, and so |X |6 n+1, as required.

The result now follows by induction. �

. Exercise 6.1.14
Prove parts (b) and (c) of Theorem 6.1.13. C

Theorem 6.1.13 suggests the following strategies for comparing the sizes of finite sets:

v Strategy 6.1.15 (Comparing the sizes of finite sets)
Let X and Y be finite sets.

(a) In order to prove that |X |6 |Y |, it suffices to find an injection X → Y .

(b) In order to prove that |X |> |Y |, it suffices to find a surjection X → Y .

(c) In order to prove that |X |= |Y |, it suffices to find a bijection X → Y .

Strategy (c) is commonly known as bijective proof.

Closure properties of finite sets

We now use Strategy 6.1.15 to prove some closure properties of finite sets—that is, op-
erations we can perform on finite sets to ensure that the result remains finite.

. Exercise 6.1.16
Let X be a finite set. Prove that every subset U ⊆ X is finite and |U |6 |X |. C
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. Exercise 6.1.17
Let X and Y be finite sets. Prove that X ∩Y is finite. C

C Proposition 6.1.18
Let X and Y be finite sets. Then X ∪Y is finite, and moreover

|X ∪Y |= |X |+ |Y |− |X ∩Y |

Proof
We will prove this in the case when X and Y are disjoint. The general case, when X and
Y are not assumed to be disjoint, will be Exercise 6.1.19.

Let m = |X | and n = |Y |, and let f : [m]→ X and g : [n]→ Y be bijections.

Since X and Y are disjoint, we have X ∩Y = ∅. Define h : [m+ n]→ X ∪Y as follows;
given k ∈ [m+n], let

h(k) =

{
f (k) if k 6 m
g(k−m) if k > m

Note that h is well-defined: the cases k6m and k > m are mutually exclusive, they cover
all possible cases, and k−m ∈ [n] for all m+16 k 6 n so that g(k−m) is defined. It is
then straightforward to check that h has an inverse h−1 : X ∪Y → [m+n] defined by

h−1(z) =

{
f−1(z) if z ∈ X
g−1(z)+m if z ∈ Y

Well-definedness of h−1 relies fundamentally on the assumption that X ∩Y = ∅, as this
is what ensures that the cases x ∈ X and x ∈ Y are mutually exclusive.

Hence |X ∪Y |= m+n = |X |+ |Y |, which is as required since |X ∩Y |= 0. �

. Exercise 6.1.19
The following steps complete the proof of Proposition 6.1.18:

(a) Given sets A and B, prove that the sets A×{0} and B×{1} are disjoint, and find
bijections A→ A×{0} and B→ B×{1}. Write AtB (LATEX code: \sqcup) to
denote the set (A×{0})∪ (B×{1}). The set AtB is called the disjoint union of A
and B.

(b) Prove that, if A and B are finite then AtB is finite and

|AtB|= |A|+ |B|

(c) Let X and Y be sets. Find a bijection

(X ∪Y )t (X ∩Y )→ X tY

(d) Complete the proof of Proposition 6.1.18—that is, prove that if X and Y are finite
sets, not necessarily disjoint, then X ∪Y is finite and

|X ∪Y |= |X |+ |Y |− |X ∩Y |
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C

. Exercise 6.1.20
Let X be a finite set and let U ⊆ X . Prove that X \U is finite, and moreover |X \U | =
|X |− |U |. C

. Exercise 6.1.21
Let m,n ∈ N. Prove that |[m]× [n]|= mn. C

C Proposition 6.1.22
Let X and Y be finite sets. Then X×Y is finite, and moreover

|X×Y |= |X | · |Y |

Proof
Let X and Y be finite sets, let m = |X | and n = |Y |, and let f : [m]→ X and g : [n]→Y be
bijections. Define a function h : [m]× [n]→ X×Y by

h(k, `) = ( f (k),g(`))

for each k ∈ [m] and ` ∈ [n]. It is easy to see that this is a bijection, with inverse defined
by

h−1(x,y) = ( f−1(x),g−1(y))

for all x ∈ X and y ∈ Y . By Exercise 6.1.21 there is a bijection p : [mn]→ [m]× [n], and
by Exercise 2.3.21 the composite h ◦ p : [mn]→ X ×Y is a bijection. Hence |X ×Y | =
mn. �

In summary, we have proved that the property of finiteness is preserved by taking sub-
sets, pairwise unions, pairwise intersections, pairwise cartesian products, and relative
complements.

Infinite sets

We conclude this section by proving that not all sets are finite—specifically, we’ll prove
that N is infinite. Intuitively this seems extremely easy: of course N is infinite! But in
mathematical practice, this isn’t good enough: we need to use our definition of ‘infinite’
to prove that N is infinite. Namely, we need to prove that there is no bijection [n]→ N
for any n ∈ N. We will use Lemma 6.1.23 below in our proof.

C Lemma 6.1.23
Every inhabited finite set of natural numbers has a greatest element.

Proof
We’ll prove by induction on n > 1 that every subset U ⊆ N of size n has a greatest
element.

• (Base case) Take U ⊆ N with |U |= 1. then U = {m} for some m ∈ N. Since m is the
only element of U , it is certainly the greatest element of U!

• (Induction step) Fix n> 1 and suppose that every set of natural numbers of size n has
a greatest element (IH).
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Let U ⊆ N with |U |= n+1. We wish to show that U has a greatest element.

Since |U |= n+1, we may write U = {m1,m2, . . . ,mn,mn+1} for distinct natural num-
bers mk. But then |U \{mn+1}|= n by Exercise 6.1.12, and so by the induction hypo-
thesis, U \{mn+1} has a greatest element, say mk. Now:

� If mk < mn+1, then mn+1 is the greatest element of U .

� If mk > mn+1, then mk is the greatest element of U .

In any case, U has a greatest element. This completes the induction step.

�

C Theorem 6.1.24
The set N is infinite.

Proof
We proceed by contradiction. Suppose N is finite. Then |N| = n for some n ∈ N, and
hence N is either empty (nonsense, since 0 ∈ N) or, by Lemma 6.1.23, it has a greatest
element g. But g+1 ∈ N since every natural number has a successor, and g+1 > g, so
this contradicts maximality of g. Hence N is infinite. �
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Section 6.2

Counting principles

In Section 6.1 we were interested in establishing conditions under which a set is finite,
and proving that we may perform certain operations on finite sets—such as unions and
cartesian products—without losing the property of finiteness.

In this section, our attention turns to the task of finding the size of a set that is known to
be finite. This process is called counting and is at the core of the mathematical field of
combinatorics.

Binomials and factorials revisited

We defined binomial coefficients
(n

k

)
and factorials n! recursively in Chapter 3, and

proved elementary facts about them by induction. We will now re-define them com-
binatorially—that is, we give them meaning in terms of sizes of particular finite sets. We
will prove that the combinatorial and recursive definitions are equivalent, and prove facts
about them using combinatorial arguments.

The reasons for doing so are manifold. The combinatorial definitions allow us to reason
about binomials and factorials with direct reference to descriptions of finite sets, which
will be particularly useful when we prove identities about them using double counting.
Moreover, the combinatorial definitions remove the seemingly arbitrary nature of the
recursive definitions—for example, they provide a reason why it makes sense to define
0! = 1 and

(0
0

)
= 1.

F Definition 6.2.1
Let X be a set and let k ∈N. A k-element subset of X is a subset U ⊆X such that |U |= k.
The set of all k-element subsets of X is denoted

(X
k

)
(read: ‘X choose k’) (LATEX code:

\binom{X}{k}).

Intuitively,
(X

k

)
is the set of ways of picking k elements from X , without repetitions, in

such a way that order doesn’t matter. (If order mattered, the elements would be sequences
instead of subsets.)

0 Example 6.2.2
We find

([4]
k

)
for all k ∈ N.

•
([4]

0

)
= {∅} since the only set with 0 elements is ∅;

•
([4]

1

)
= {{1},{2},{3},{4}};

•
([4]

2

)
= {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}};

•
([4]

3

)
= {{1,2,3},{1,2,4},{1,3,4},{2,3,4}};
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•
([4]

4

)
= {{1,2,3,4}};

• If k > 5 then
([4]

k

)
=∅, since by Exercise 6.1.16, no subset of [4] can have more than

4 elements.

C

C Proposition 6.2.3

If X is a finite set, then P(X) =
⋃

k6|X |

(
X
k

)
.

Proof
Let U ⊆ X . By Exercise 6.1.16, U is finite and |U | 6 |X |. Thus U ∈

( X
|U |
)
, and hence

U ∈
⋃

k6|X |

(
X
k

)
. This proves that P(X)⊆

⋃
k6|X |

(
X
k

)
.

The fact that
⋃

k6|X |

(
X
k

)
⊆P(X) is immediate, since elements of

(X
k

)
are defined to be

subsets of X , and hence elements of P(X). �

F Definition 6.2.4
Let n,k ∈ N. Denote by

(n
k

)
(read: ‘n choose k’) (LATEX code: \binom{n}{k}) the

number of k-element subsets of [n]. That is, we define
(n

k

)
=
∣∣∣([n]k

)∣∣∣. The numbers
(n

k

)
are

called binomial coefficients.

Some authors use the notation nCk or nCk instead of
(n

k

)
. We avoid this, as it is unneces-

sarily clunky.

Intuitively,
(n

k

)
is the number of ways of selecting k things from n, without repetitions, in

such a way that order doesn’t matter.

The value behind this notation is that it allows us to express huge numbers in a concise
and meaningful way. For example,(

4000
11

)
= 103 640 000 280 154 258 645 590 429 564 000

Although these two numbers are equal, their expressions are very different; the expres-
sion on the left is meaningful, but the expression on the right is completely meaningless
out of context.

v Writing tip
When expressing the sizes of finite sets described combinatorially, it is best to avoid eval-
uating the expression; that is, leave in the powers, products, sums, binomial coefficients
and factorials! The reason for this is that performing the calculations takes the meaning
away from the expressions. C

0 Example 6.2.5
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In Example 6.2.2 we proved that:(
4
0

)
= 1,

(
4
1

)
= 4,

(
4
2

)
= 6,

(
4
3

)
= 4,

(
4
4

)
= 1

and that
(4

k

)
= 0 for all k > 5. C

. Exercise 6.2.6
Fix n ∈ N. Prove that

(n
0

)
= 1,

(n
1

)
= n and

(n
n

)
= 1. C

F Definition 6.2.7
Let X be a set. A permutation of X is a bijection X → X . Denote the set of all per-
mutations of X by Sym(X) (LATEX code: \mathrm{Sym}) and write Sn = Sym([n]) for
n ∈ N.

0 Example 6.2.8
There are six permutations of the set [3]. Representing each f ∈ S3 by the ordered triple
( f (1), f (2), f (3)), these permutations are thus given by

(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)

For example, (2,3,1) represents the permutation f : [3]→ [3] defined by f (1)= 2, f (2)=
3 and f (3) = 1. C

. Exercise 6.2.9
List all the permutations of the set [4]. C

F Definition 6.2.10
Let n ∈ N. Denote by n! (read: ‘n factorial’) the number of permutations of a set of size
n. That is, n! = |Sn|. The numbers n! are called factorials.

0 Example 6.2.11
Example 6.2.8 shows that 3! = 6. C

Products and procedures

We saw in Proposition 6.1.22 that, given two finite sets X and Y , the product X ×Y is
finite. We also found a formula for its size, namely |X×Y |= |X | · |Y |. The multiplication
principle (Strategy 6.2.21) generalises this formula to products that may contain any
finite number of sets, not just two.

C Lemma 6.2.12

Let {X1, . . . ,Xn} be a family of finite sets, with n> 1. Then
n

∏
i=1

Xi is finite, and

∣∣∣∣∣ n

∏
i=1

Xi

∣∣∣∣∣= |X1| · |X2| · · · · · |Xn|
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Proof
We proceed by induction on n.

• (Base case) When n = 1, an element of
1

∏
i=1

Xi is ‘officially’ a sequence (x1) with x1 ∈

X1. This is the same as an element of X1, in the sense that the assignments (x1) 7→ x1

and x1 7→ (x1) define mutually inverse (hence bijective) functions between
1

∏
i=1

Xi and

X1, and so ∣∣∣∣∣ 1

∏
i=1

Xi

∣∣∣∣∣= |X1|

• (Induction step) Fix n ∈ N, and suppose that∣∣∣∣∣ n

∏
i=1

Xi

∣∣∣∣∣= |X1| · |X2| · · · · · |Xn|

for all sets Xi for i ∈ [n]. This is our induction hypothesis.

Now let X1, . . . ,Xn,Xn+1 be sets. We define a function

F :
n+1

∏
i=1

Xi→
(

n

∏
i=1

Xi

)
×Xn+1

by letting F((x1, . . . ,xn,xn+1)) = ((x1, . . . ,xn),xn+1). It is again easy to check that F
is a bijection, and hence ∣∣∣∣∣n+1

∏
i=1

Xi

∣∣∣∣∣=
∣∣∣∣∣ n

∏
i=1

Xi

∣∣∣∣∣ · |Xn+1|

by Proposition 6.1.22. Applying the induction hypothesis, we obtain the desired result,
namely ∣∣∣∣∣n+1

∏
i=1

Xi

∣∣∣∣∣= |X1| · |X2| · · · · · |Xn| · |Xn+1|

By induction, we’re done. �

Lemma 6.2.12 gives rise to a useful strategy for computing the size of a finite set X—
see Strategy 6.2.13. Intuitively, by devising a step-by-step procedure for specifying an

element of X , we are constructing a cartesian product
n

∏
k=1

Xk, where Xk is the set of choices

to be made in the kth step. This establishes a bijection
n

∏
k=1

Xk → X , which by bijective

proof (Strategy 6.1.15(c)) lets us compute |X | as the product of the numbers of choices
that can be made in each step.
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v Strategy 6.2.13 (Multiplication principle (independent version))
Let X be a finite set. In order to compute |X |, it suffices to find a step-by-step procedure
for specifying elements of X , such that:

• Each element is specified by a unique sequence of choices;

• Each step in the procedure is independent of the previous step;

• There are finitely many choices to be made at each step.

If there are n ∈ N steps and mk ∈ N possible choices in the kth step, then |X |=
n

∏
k=1

mk.

0 Example 6.2.14
You go to an ice cream stand selling the following flavours:

vanilla, strawberry, chocolate, rum and raisin, mint choc chip, toffee crunch

You can have your ice cream in a tub, a regular cone or a choco-cone. You can have one,
two or three scoops. We will compute how many options you have.

To select an ice cream, you follow the following procedure:

• Step 1. Choose a flavour. There are 6 ways to do this.

• Step 2. Choose whether you’d like it in a tub, regular cone or choco-cone. There are
3 ways to do this.

• Step 3. Choose how many scoops you’d like. There are 3 ways to do this.

Hence there are 6×3×3 = 54 options in total. C

This may feel informal, but really what we are doing is establishing a bijection. Letting
X be the set of options, the above procedure defines a bijection

F×C×S→ X

where F is the set of flavours, C = {tub, regular cone,choco-cone} and S = [3] is the set
of possible numbers of scoops.

0 Example 6.2.15
We will prove that |P(X)|= 2|X | for all finite sets X .

Let X be a finite set and let n = |X |. Write

X = {xk | k ∈ [n]}= {x1,x2, . . . ,xn}

Intuitively, specifying an element of P(X)—that is, a subset U ⊆X—is equivalent to de-
ciding, for each k ∈ [n], whether xk ∈U or xk 6∈U (‘in or out’), which in turn is equivalent
to specifying an element of {in,out}n.

233



234 Chapter 6. Enumerative combinatorics

For example, taking X = [7], the subset U = {1,2,6} corresponds with the choices

1 in, 2 in, 3 out, 4 out, 5 out, 6 in, 7 out

and hence the element (in, in,out,out,out, in,out) ∈ {in,out}7.

This defines a function i : P(X)→ {in,out}n. This function is injective, since different
subsets determine different sequences; and it is surjective, since each sequence determ-
ines a subset.

The above argument is sufficient for most purposes, but since this is the first bijective
proof we have come across, we now give a more formal presentation of the details.

Define a function
i : P(X)→{in,out}n

by letting the kth component of i(U) be ‘in’ if xk ∈U or ‘out’ if xk 6∈U , for each k ∈ [n].

We prove that i is a bijection.

• i is injective. To see this, take U,V ⊆ X and suppose i(U) = i(V ). We prove that
U =V . So fix x ∈ X and let k ∈ [n] be such that x = xk. Then

x ∈U ⇔ the kth component of i(U) is ‘in’ by definition of i

⇔ the kth component of i(V ) is ‘in’ since i(U) = i(V )

⇔ x ∈V by definition of i

so indeed we have U =V , as required.

• i is surjective. To see this, let v ∈ {in,out}n, and let

U = {xk | the kth component of v is ‘in’}

Then i(U) = v, since for each k ∈ [n] we have xk ∈U if and only if the kth component
of v is ‘in’, which is precisely the definition of i(U).

Hence
|P(X)|= |{in,out}|n = 2n

as required. C

Some authors actually write 2X to refer to the power set of a set X . This is justified by
Example 6.2.15.

. Exercise 6.2.16
Let X and Y be finite sets, and recall that Y X denotes the set of functions from X to Y .
Prove that |Y X |= |Y ||X |. C

0 Example 6.2.17
We count the number of ways we can shuffle a standard deck of cards in such a way that
the colour of the cards alternate between red and black.

A procedure for choosing the order of the cards is as follows:
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(i) Choose the colour of the first card. There are 2 such choices. This then determines
the colours of the remaining cards, since they have to alternate.

(ii) Choose the order of the red cards. There are 26! such choices.

(iii) Choose the order of the black cards. There are 26! such choices.

By the multiplication principle, there are 2 · (26!)2 such rearrangements. This number is
huge, and in general there is no reason to write it out. Just for fun, though:

325 288 005 235 264 929 014 077 766 819 257 214 042 112 000 000 000 000

C

. Exercise 6.2.18
Since September 2001, car number plates on the island of Great Britain have taken the
form XX NN XXX, where each X can be any letter of the alphabet except for ‘I’, ‘Q’ or ‘Z’,
and NN is the last two digits of the year. [This is a slight simplification of what is really
the case, but let’s not concern ourselves with too many details!] How many possible
number plates are there? Number plates of vehicles registered in the region of Yorkshire
begin with the letter ‘Y’. How many Yorkshire number plates can be issued in a given
year? C

The multiplication principle in the form of Strategy 6.2.13 does not allow for steps later
in a procedure to depend on those earlier in the procedure. To see why this is a problem,
suppose we want to count the size of the set X = {(a,b) ∈ [n]× [n] | a 6= b}. A step-by-
step procedure for specifying such an element is as follows:

• Step 1. Select an element a ∈ [n]. There are n choices.

• Step 2. Select an element b ∈ [n] with b 6= a. There are n−1 choices.

We would like to use Strategy 6.2.13 to deduce that |X | = n(n− 1). Unfortunately, this
is not valid because the possible choices available to us in Step 2 depend on the choice
made in Step 1. Elements of cartesian products do not depend on one another, and so the
set of sequences of choices made cannot necessarily be expressed as a cartesian product
of two sets. Thus we cannot apply Lemma 6.2.12. Oh no!

However, provided that the number of choices in each step remains constant, in spite of
the choices themselves changing, it turns out that we can still compute the size of the set
in question by multiplying together the numbers of choices.

This is what we prove next. We begin with a pairwise version (analogous to Exer-
cise 6.1.21) and then prove the general version by induction (like in Lemma 6.2.12).

C Lemma 6.2.19
Fix m,n ∈ N. Let X be a finite set with |X |= m, and for each a ∈ X , let Ya be a finite set
with |Ya|= n. Then the set

P = {(a,b) | a ∈ X and b ∈ Ya}

is finite and |P|= mn.
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Proof
Fix bijections f : [m]→ X and ga : [n]→ Ya for each a ∈ X . Define h : [m]× [n]→ P by
letting h(i, j) = ( f (i),g f (i)( j)) for each (i, j) ∈ [m]× [n]. Then:

• h is well-defined, since for all i ∈ [m] and j ∈ [n] we have f (i) ∈ X and g f (i)( j) ∈Yf (i).

• h is injective. To see this, fix (i, j),(k, `) ∈ [m]× [n] and assume that h(i, j) = h(k, `).
Then ( f (i),g f (i)( j)) = ( f (k),g f (k)(`)), so that f (i) = f (k) and g f (i)( j) = g f (k)(`).
Since f is injective, we have i = k—therefore g f (i)( j) = g f (i)(`), and then since g f (i)
is injective, we have j = `. Thus (i, j) = (k, `), as required.

• h is surjective. To see this, let (a,b) ∈ P. Since f is surjective and a ∈ X , we have
a = f (i) for some i ∈ [m]. Since ga is surjective and b ∈ Ya, we have b = ga( j) for
some j ∈ [n]. But then

(a,b) = ( f (i),ga( j)) = ( f (i),g f (i)( j)) = h(i, j)

so that h is surjective.

Since h is a bijection, we have |P|= |[m]× [n]| by Theorem 6.1.13(iii), which is equal to
mn by Proposition 6.1.22. �

We are now ready to state and prove the theorem giving rise to the multiplication principle
in its full generality.

C Theorem 6.2.20 (Multiplication principle)
Let n > 1 and m1,m2, . . . ,mn ∈ N. Suppose for each i ∈ [n] that we are given finite sets
X (i)

a1,...,ai−1 with |X (i)
a1,...,ai−1 |= mi, where a j ∈ X (i)

a1,...,a j−1 for each j < i. Define

P = {(a1,a2, . . . ,an) | a1 ∈ X (1), a2 ∈ X (2)
a1 , . . . , an ∈ X (n)

a1,...,an−1}

Then P is finite and |P|= m1×m2×·· ·×mn.

Proof
We proceed by induction on n> 1.

• (Base case) When n = 1, the statement says that given m1 ∈ N and a finite set X (1)

with |X (1)|= m1, then P = {(a1) | a1 ∈ X (1)} is finite and |P|= m1. This is true, since
the function X (1)→ P defined by a 7→ (a) is evidently a bijection.

• (Induction step) Fix n> 1 and assume that the statement is true for this value of n.

Let m1,m2, . . . ,mn,mn+1 ∈ N and suppose that we are given finite sets X (i)
a1,...,ai−1 for

each i ∈ [n+1] just as in the statement of the theorem, and let

P = {(a1,a2, . . . ,an+1) | a1 ∈ X (1), a2 ∈ X (2)
a1 , . . . , an+1 ∈ X (n+1)

a1,...,an−1,an}

We need to prove that |P|= m1×m2×·· ·×mn×mn+1.

So define

Q = {(a1,a2, . . . ,an) | a1 ∈ X (1), a2 ∈ X (2)
a1 , . . . , an ∈ X (n)

a1,...,an−1}
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and, given q = (a1, . . . ,an) ∈ Q, define Yq = X (n+1)
a1,...,an . Observe that there is an evident

bijection
{(q,an+1) | q ∈ Q, an+1 ∈ Yq}→ P

defined by ((a1,a2, . . . ,an),an+1) 7→ (a1,a2, . . . ,an,an+1).

Now |Q| = m1×m2× ·· · ×mn, and |Yq| = mn+1 for each q ∈ Q, so it follows from
Lemma 6.2.19 that

|P|= (m1×m2×·· ·×mn)×mn+1 = m1×m2×·· ·×mn×mn+1

as required.

�

Strategy 6.2.21 summarises how Theorem 6.2.20 is useful in our proofs.

v Strategy 6.2.21 (Counting using the multiplication principle)
Let X be a finite set. In order to compute |X |, it suffices to find a step-by-step procedure
for specifying elements of X , such that:

• Each element is specified by a unique sequence of choices;

• The choices available in each step depend only on choices made in previous steps;

• There are finitely many choices available in each step;

• The number of choices available in each step does not depend on choices made in
previous steps;

If there are n ∈ N steps and mk ∈ N possible choices in the kth step, then |X |=
n

∏
k=1

mk.

0 Example 6.2.22
We prove that there are six bijections [3]→ [3]. We can specify a bijection f : [3]→ [3]
according to the following procedure.

• Step 1. Choose the value of f (1). There are 3 choices.

• Step 2. Choose the value of f (2). The values f (2) can take depend on the chosen
value of f (1).

� If f (1) = 1, then f (2) can be equal to 2 or 3.

� If f (1) = 2, then f (2) can be equal to 1 or 3.

� If f (1) = 3, then f (2) can be equal to 1 or 2.

In each case, there are 2 choices for the value of f (2).

• Step 3. Choose the value of f (3). The values f (3) can take depend on the values of
f (1) and f (2). We could split into the (six!) cases based on the values of f (1) and
f (2) chosen in Steps 1 and 2; but we won’t. Instead, note that { f (1), f (2)} has two
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elements, and by injectivity f (3) must have a distinct value, so that [3]\{ f (1), f (2)}
has one element. This element must be the value of f (3). Hence there is only possible
choice of f (3).

By the multiplication principle, there are 3×2×1 = 6 bijections [3]→ [3]. C

. Exercise 6.2.23
Count the number of injections [3]→ [4]. C

Sums and partitions

We saw in Proposition 6.1.18 that, given two finite sets X and Y , the union X ∪Y is finite.
We also found formulae for their size, namely |X ∪Y |= |X |+ |Y |−|X ∩Y |. The addition
principle (Strategy 6.2.26) generalises this formula to any finite number of sets, provided
the sets have no elements in common with one another—that is they are pairwise disjoint.
[The hypothesis of pairwise disjointness is removed in the inclusion–exclusion principle,
which is studied in Section 6.3.]

If you have not covered Section 4.2 yet, you are encouraged to take a brief detour to read
from Definition 4.2.21 to Exercise 4.2.26; the definition of a partition of a set is recalled
below.

F Definition 4.2.21
A partition of a set X is a collection U = {Ui | i ∈ I} of subsets of X such that the
following conditions hold:

(a) For each i ∈ I, the subset Ui is inhabited;

(b) The sets Ui for i ∈ I are pairwise disjoint—that is, Ui ∩U j is empty for all i, j ∈ I
with i 6= j;

(c)
⋃
i∈I

Ui = X .

In this section, we will simplify matters in two ways:

• When we say ‘partition’ in this section (and Section 6.3), we will allow the sets in
the partition to be empty—that is, we will just need conditions (b) and (c) of Defini-
tion 4.2.21 to hold.

• Since our sets are finite, so will the index set I be; so we will only ever partition our sets
into finitely many pieces. That is, all of our partitions will take form {U1,U2, . . . ,Un}
for some n ∈ N.

With all of this said, let’s get right to it.
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C Theorem 6.2.24 (Addition principle)
Let X be a set and let {U1, . . . ,Un} be a partition of X for some n ∈ N, such that each set
Ui is finite. Then X is finite, and

|X |= |U1|+ |U2|+ · · ·+ |Un|

. Exercise 6.2.25
Prove Theorem 6.2.24. The proof follows the same pattern as that of Lemma 6.2.12.
Be careful to make sure you identify where you use the hypothesis that the sets Ui are
pairwise disjoint! C

v Strategy 6.2.26 (Counting using the addition principle)
Let X be a finite set. In order to compute |X |, it suffices to find a partition U1,U2, . . . ,Un

of X ; it then follows that |X |=
n

∑
k=1
|Xi|.

0 Example 6.2.27
We will count the number of inhabited subsets of [7] which either contain only even
numbers, or contain only odd numbers.

Let O denote the set of inhabited subsets of [7] containing only odd numbers, and let E
denote the set of inhabited subsets of [7] containing only even numbers. Note that {O,E}
forms a partition of the set we are counting, and so our set has |O|+ |E| elements.

• An element of O must be a subset of {1,3,5,7}. By Example 6.2.15 there are 24 = 16
such subsets. Thus the number of inhabited subsets of [7] containing only odd numbers
is 15, since we must exclude the empty set. That is, |O|= 15.

• A subset containing only even numbers must be a subset of {2,4,6}. Again by Ex-
ample 6.2.15 there are 23 = 8 such subsets. Hence there are 7 inhabited subsets of [7]
containing only even numbers. That is, |E|= 7.

Hence there are 15+ 7 = 22 inhabited subsets of [7] containing only even or only odd
numbers. And here they are:

{1} {3} {5} {7} {1,3} {2} {4} {6}
{1,5} {1,7} {3,5} {3,7} {5,7} {2,4} {2,6} {4,6}
{1,3,5} {1,3,7} {1,5,7} {3,5,7} {1,3,5,7} {2,4,6}

C

. Exercise 6.2.28
Pick your favourite integer n > 1000. For this value of n, how many inhabited subsets of
[n] contain either only even or only odd numbers? (You need not evaluate exponents.) C

We now consider some examples of finite sets which use both the multiplication principle
and the addition principle.

0 Example 6.2.29
A city has 6n inhabitants. The favourite colour of n of the inhabitants is orange, the
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favourite colour of 2n of the inhabitants is pink, and the favourite colour of 3n of the
inhabitants is turquoise. The city government wishes to form a committee with equal
representation from the three colour preference groups to decide how the new city hall
should be painted. We count the number of ways this can be done.

Let X be the set of possible committees. First note that

X =
n⋃

k=0

Xk

where Xk is the set of committees with exactly k people from each colour preference
group. Indeed, we must have k6 n, since it is impossible to have a committee with more
than n people from the orange preference group.

Moreover, if k 6= ` then Xk ∩X` = ∅, since if k 6= ` then a committee cannot simultan-
eously have exactly k people and exactly ` people from each preference group.

By the addition principle, we have

|X |=
n

∑
k=0
|Xk|

We count Xk for fixed k using the following procedure:

• Step 1. Choose k people from the orange preference group to be on the committee.
There are

(n
k

)
choices.

• Step 2. Choose k people from the pink preference group to be on the committee. There
are
(2n

k

)
choices.

• Step 3. Choose k people from the turquoise preference group to be on the committee.
There are

(3n
k

)
choices.

By the multiplication principle, it follows that |Xk|=
(n

k

)(2n
k

)(3n
k

)
. Hence

|X |=
n

∑
k=0

(
n
k

)(
2n
k

)(
3n
k

)
C

. Exercise 6.2.30
In Example 6.2.29, how many ways could a committee be formed with a representative
number of people from each colour preference group? That is, the proportion of people
on the committee which prefer any of the three colours should be equal to the corres-
ponding proportion of the population of the city. C

Pigeonhole principle

A nice application of the addition principle is to prove the pigeonhole principle, which is
used heavily in combinatorics.

240



Section 6.2. Counting principles 241

Informally, the pigeonhole principle says that if you assign pigeons to pigeonholes, and
there are more pigeons than pigeonholes, then some pigeonhole must have more than one
pigeon in it. We can (and do) generalise this slightly: it says that given q∈N, if you have
more than q times as many pigeons than pigeonholes, then some pigeonhole must have
more than q pigeons in it.

The proof is deceptively simple.

C Theorem 6.2.31 (Pigeonhole principle)
Let q ∈ N, and let X and Y be finite sets with |X |= m ∈ N and |Y |= n ∈ N. Then:

(a) If m > qn, then for every function f : X → Y , there is some a ∈ Y such that
| f−1[{a}]|> q.

(b) If m6 qn, then there is a function f : X → Y such that | f−1[{a}]|6 q for all a ∈ Y .

Proof of (a)
Suppose m > qn. It follows from Exercise 4.2.25 that the sets f−1[{a}] partition X .
Towards a contradiction, assume | f−1[{a}]| 6 q for all a ∈ Y . Then by the addition
principle

m = |X | =
∣∣∣∣∣⋃
a∈Y

f−1[{a}]
∣∣∣∣∣ = ∑

a∈Y
| f−1[{a}]| 6 ∑

a∈Y
q = |Y | ·q = qn

This contradicts the assumption that m > qn. �

. Exercise 6.2.32
Prove part (b) of Theorem 6.2.31. C

0 Example 6.2.33
Let n,k ∈ N. Assume that you have n pairs of socks in a drawer, and each sock is one of
k colours. We wish to know how many socks you must take out of the drawer before you
can guarantee that you have a matching pair.

Let C be set of colours of the socks, so that |C| = k, and let X be the set of socks that
you have selected. We obtain a function f : X →C that assigns to each sock x its colour
f (x) ∈C. Given a colour c ∈C, the preimage f−1[{c}] is the set of socks of colour c that
we have selected.

Thus the question becomes: what size must X be in order to have | f−1[{c}]| > 2 for
some c ∈C? [The English translation of this question is: how many socks must we have
picked in order for two of the socks to have the same colour?]

Well, by the pigeonhole principle, we can guarantee | f−1[{c}]|> 2 (or equivalently > 1)
if and only if |X | > 2|C|. That is, we need to select at least 2k+ 1 socks to guarantee a
matching pair. C

. Exercise 6.2.34
Six people throw eggs at each other, each throwing as many eggs as they like (possibly
none). Prove that there is some set of three people such that either (i) each person in the
set threw an egg at each other person in the set; or (ii) no person in the set threw an egg
at anyone else in the set. C
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Double counting

Double counting (also known as counting in two ways) is a proof technique that allows
us to prove that two natural numbers are equal by establishing they are two expressions
for the size of the same set. (More generally, by Theorem 6.1.13(iii), we can relate them
to the sizes of two sets which are in bijection.)

The proof of Proposition 6.2.35 illustrates this proof very nicely. We proved it already
by induction in Example 3.2.15; the combinatorial proof we now provide is much shorter
and cleaner.

C Proposition 6.2.35

Let n ∈ N. Then 2n =
n

∑
k=0

(
n
k

)
.

Proof

We know that |P([n])|= 2n by Example 6.2.15 and that P([n]) =
n⋃

k=0

(
[n]
k

)
by Propos-

ition 6.2.3. Moreover, the sets
([n]

k

)
are pairwise disjoint, so by the addition principle it

follows that

2n = |P([n])|=
∣∣∣∣∣ n⋃
k=0

(
[n]
k

)∣∣∣∣∣= n

∑
k=0

∣∣∣∣([n]k

)∣∣∣∣= n

∑
k=0

(
n
k

)
�

v Strategy 6.2.36 (Double counting)
In order to prove that two expressions involving natural numbers are equal, it suffices
to define a set X and devise two counting arguments to show that |X | is equal to both
expressions.

The next example counts elements of different sets and puts them in bijection to establish
an identity.

C Proposition 6.2.37
Let n,k ∈ N with n> k. Then (

n
k

)
=

(
n

n− k

)
Proof
First note that

(n
k

)
=
∣∣∣([n]k

)∣∣∣ and
( n

n−k

)
=
∣∣∣( [n]

n−k

)∣∣∣, so in order to prove
(n

k

)
=
( n

n−k

)
, it

suffices by Strategy 6.1.15 to find a bijection f :
([n]

k

)
→
( [n]

n−k

)
. Intuitively, this bijection

arises because choosing k elements from [n] to put into a subset is equivalent to choosing
n− k elements from [n] to leave out of the subset. Specifically, we define

f (U) = [n]\U for all U ∈
(
[n]
k

)
Note first that f is well-defined, since if U ⊆ [n] with |U | = k, then [n] \U ⊆ [n] and
|[n]\U |= |[n]|− |U |= n− k by Exercise 6.1.20. We now prove f is a bijection:
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• f is injective. Let U,V ⊆ [n] and suppose [n] \U = [n] \V . Then for all k ∈ [n], we
have

k ∈U ⇔ k 6∈ [n]\U by definition of set difference
⇔ k 6∈ [n]\V since [n]\U = [n]\V

⇔ k ∈V by definition of set difference

so U =V , as required.

• f is surjective. Let V ∈
( [n]

n−k

)
. Then |[n]\V |= n− (n− k) = k by Exercise 6.1.20, so

that [n]\V ∈
([n]

k

)
. But then

f ([n]\V ) = [n]\ ([n]\V ) =V

by Exercise 2.1.64.

Since f is a bijection, we have(
n
k

)
=

∣∣∣∣([n]k

)∣∣∣∣= ∣∣∣∣( [n]
n− k

)∣∣∣∣= ( n
n− k

)
as required. �

We put a lot of detail into this proof. A slightly less formal proof might simply say
that

(n
k

)
=
( n

n−k

)
since choosing k elements from [n] to put into a subset is equivalent to

choosing n− k elements from [n] to leave out of the subset. This would be fine as long
as the members of the intended audience of your proof could reasonably be expected to
construct the bijection by themselves.

The proof of Proposition 6.2.38 follows this more informal format.

C Proposition 6.2.38
Let n,k, ` ∈ N with n> k > `. Then(

n
k

)(
k
`

)
=

(
n
`

)(
n− `

k− `

)
Proof
Let’s home in on the left-hand side of the equation. By the multiplication principle,(n

k

)(k
`

)
is the number of ways of selecting a k-element subset of [n] and an `-element

subset of [k]. Equivalently, it’s the number of ways of selecting a k-element subset of [n]
and then an `-element subset of the k-element subset that we just selected. To make this
slightly more concrete, let’s put it this way:

(n
k

)(k
`

)
is the number of ways of painting k balls red from a bag of n balls, and

painting ` of the red balls blue. This leaves us with ` blue balls and k−` red balls.

Now we need to find an equivalent interpretation of
(n
`

)(n−`
k−`
)
. Well, suppose we pick the

` elements to be coloured blue first. To make up the rest of the k-element subset, we now
have to select k− ` elements, and there are now n− ` to choose from. Thus
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(n
`

)(n−`
k−`
)

is the number of ways of painting ` balls from a bag of n balls blue, and
painting k− ` of the remaining balls red.

Thus, both numbers represent the number of ways of painting ` balls blue and k− ` balls
red from a bag of n balls. Hence they are equal. �

. Exercise 6.2.39
Make the proof of Proposition 6.2.38 more formal by defining a bijection between sets
of the appropriate sizes. C

. Exercise 6.2.40
Provide a combinatorial proof that if n,k ∈ N with n> k, then(

n+1
k+1

)
=

(
n
k

)
+

(
n

k+1

)

Deduce that the combinatorial definition of binomial coefficients (Definition 6.2.4) is
equivalent to the recursive definition (Definition 3.1.15). C

The following proposition demonstrates that the combinatorial definition of factorials
(Definition 6.2.10) is equivalent to the recursive definition (Definition 3.1.14).

C Theorem 6.2.41
0! = 1 and if n ∈ N then (n+1)! = (n+1) ·n!.

Proof
The only permutation of ∅ is the empty function e : ∅→ ∅. Hence S0 = {e} and 0! =
|S0|= 1.

Let n ∈N. A permutation of [n+1] is a bijection f : [n+1]→ [n+1]. Specifying such a
bijection is equivalent to carrying out the following procedure:

• Choose the (unique!) element k ∈ [n+ 1] such that f (k) = n+ 1. There are n+ 1
choices for k.

• Choose the values of f at each ` ∈ [n+ 1] with ` 6= k. This is equivalent to finding a
bijection [n+1]\{k}→ [n]. Since |[n+1]\{k}|= |[n]|= n, there are n! such choices.

By the multiplication principle, we have

(n+1)! = |Sn+1|= (n+1) ·n!

so we’re done. �

We now revisit Theorem 3.2.17; this time, our proof will be combinatorial, rather than
inductive.
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C Theorem 6.2.42
Let n,k ∈ N. Then (

n
k

)
=


n!

k!(n− k)!
if k 6 n

0 if k > n

Proof
Suppose k > n. By Exercise 6.1.16, if U ⊆ [n] then |U | 6 n. Hence if k > n, then([n]

k

)
=∅, and so

(n
k

)
= 0, as required.

Now suppose k 6 n. We will prove that n! =
(n

k

)
· k! · (n− k)!; the result then follows

by dividing through by k!(n− k)!. We prove this equation by counting the number of
elements of Sn.

A procedure for defining an element of Sn is as follows:

(i) Choose which elements will appear in the first k positions of the list. There are
(n

k

)
such choices.

(ii) Choose the order of these k elements. There are k! such choices.

(iii) Choose the order of the remaining n−k elements. There are (n−k)! such choices.

By the multiplication principle, n! =
(n

k

)
· k! · (n− k)!. �

Note that the proof of Theorem 6.2.42 relied only on the combinatorial definitions of
binomial coefficients and factorials; we didn’t need to know how to compute them at
all! The proof was much shorter, cleaner and, in some sense, more meaningful, than the
inductive proof we gave in Theorem 3.2.17.

We conclude this section with some more examples and exercises in which double count-
ing can be used.

. Exercise 6.2.43
Let n,k ∈ N with k 6 n+1. Prove that

k
(

n
k

)
= (n− k+1)

(
n

k−1

)
C

0 Example 6.2.44
Let m,n,k ∈ N. We prove that

k

∑
`=0

(
m
`

)(
n

k− `

)
=

(
m+n

k

)
by finding a procedure for counting the number of k-element subsets of an appropriate
(m+ n)-element set. Specifically, let X be a set containing m cats and n dogs. Then∣∣(m+n

k

)∣∣ is the number of k-element subsets U ⊆ X . We can specify such a subset accord-
ing to the following procedure.

245



246 Chapter 6. Enumerative combinatorics

• Step 1. Split into cases based on the number ` of cats in U . Note that we must have
0 6 ` 6 k, since the number of cats must be a natural number and cannot exceed k as
|U |= k. Moreover, these cases are mutually exclusive. Hence by the addition principle
we have (

m+n
k

)
=

k

∑
`=0

a`

where a` is the number of subsets of X containing ` cats and k− ` dogs.

• Step 2. Choose ` cats from the m cats in X to be elements of U . There are
([m]

`

)
such

choices.

• Step 3. Choose k− ` dogs from the n dogs in X to be elements of U . There are
( [n]

k−`
)

such choices.

The multiplication principle shows that a` =
(m
`

)( n
k−`
)
. Hence(

m+n
k

)
=

k

∑
`=0

(
m
`

)(
n

k− `

)
as required. C

. Exercise 6.2.45
Given natural numbers n,a,b,c with a + b + c = n, define the trinomial coefficient(

n
a,b,c

)
to be the number of ways of partitioning [n] into three sets of sizes a, b and

c, respectively. That is,
(

n
a,b,c

)
is the size of the set

(A,B,C)

∣∣∣∣∣∣
A⊆ [n], B⊆ [n], C ⊆ [n],
|A|= a, |B|= b, |C|= c,

and A∪B∪C = [n]


By considering trinomial coefficients, prove that if a,b,c∈N, then (a+b+c)! is divisible
by a! ·b! · c!. C
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Section 6.3

Alternating sums

Using the addition principle, together with double counting, turned out to be very useful
for proving combinatorial identities involving sums in Section 6.2. In this section, we
turn our attention to alternating sums, which are sums whose terms alternate between
positive and negative. As we will see later, sums of this kind can be used to computing
sizes of unions of not-necessarily-disjoint sets—this has all manner of uses and applica-
tions.

An example of such a sum is the following.(
6
0

)
−
(

6
1

)
+

(
6
2

)
−
(

6
3

)
+

(
6
4

)
−
(

6
5

)
+

(
6
6

)
We can express such sums more succinctly by observing that, given k ∈ N, we have

(−1)k =

{
1 if k is even
−1 if k is odd

For example, the sum above could be expressed as
6

∑
k=0

(−1)k
(

6
k

)
. It so happens that this

sum evaluates to zero:
1−6+15−20+15−6+1 = 0

The goal of the following exercise is to demonstrate how. . . annoying. . . it is to prove
identities involving alternating sums using induction.

. Exercise 6.3.1

Prove by induction that
n

∑
k=0

(−1)k
(

n
k

)
= 0 for all n ∈ N. C

Evidently we need a better approach.

If you stare at the equation in Exercise 6.3.1 for long enough, you should be able to
convince yourself that

n

∑
k=0

(−1)k
(

n
k

)
= ∑

even k

(
n
k

)
− ∑

odd k

(
n
k

)

and it suffices to prove that ∑
even k

(
n
k

)
= ∑

odd k

(
n
k

)
. This will be our strategy in the proof

of Proposition 6.3.2, which serves as our prototype for the abstract material to come.

For the sake of readability, we left implicit that k is varying over (the even or odd elements
of) the set {0,1, . . . ,n} in each sum—we shall adopt this practice throughout this section.
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C Proposition 6.3.2

Let n ∈ N. Then
n

∑
k=0

(−1)k
(

n
k

)
= 0.

Proof
As we observed, it sufficies to prove

∑
even k

(
n
k

)
= ∑

odd k

(
n
k

)

So define

E = {U ⊆ [n] | |U | is even} and O = {U ⊆ [n] | |U | is odd}

That is, E is the set of all even-sized subsets of [n], and O is the set of all odd-sized
subsets of [n].

Note that the sets
(
[n]
k

)
for even k 6 n partition E , and the sets

(
[n]
k

)
for odd k 6 n

partition O . So by the addition principle, we have

|E |=
∣∣∣∣∣ ⋃
even k

(
[n]
k

)∣∣∣∣∣= ∑
even k

(
n
k

)
and |O|=

∣∣∣∣∣ ⋃
odd k

(
[n]
k

)∣∣∣∣∣= ∑
odd k

(
n
k

)

It suffices to show that |E |= |O|. To do this, define a function f : E → O for U ∈ E by

f (U) =

{
U ∪{n} if n 6∈U
U \{n} if n ∈U

That is, f puts n into a subset if it wasn’t already there, and removes it if it was. Then:

• f is well-defined. Given U ∈ E , note that | f (U)|= |U |±1; since |U | is even, we have
that | f (U)| is odd, so that f (U) ∈ O .

• f is bijective. Define g : O → E by letting

g(V ) =

{
V ∪{n} if n 6∈V
V \{n} if n ∈V

for all V ∈ O . The proof that g is well-defined is identical to that of f . Moreover,
given U ∈ E , we have:

� If n ∈U , then f (U) =U \{n}, so that g( f (U)) = (U \{n})∪{n}=U .

� If n 6∈U , then f (U) =U ∪{n}, so that g( f (U)) = (U ∪{n})\{n}=U .

Hence g( f (U)) =U for all U ∈ E . An identical computation reveals that f (g(V )) =V
for all V ∈ O , and so g is an inverse for f .
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Putting all of this together, it follows form the fact that f : E → O is a bijection that
|E |= |O|, and so

n

∑
k=0

(−1)k
(

n
k

)
= ∑

even k

(
n
k

)
− ∑

odd k

(
n
k

)
= |E |− |O| = 0

as required. �

Wait a minute—didn’t I say this would be a better approach than induction? That proof
felt like a lot of work. The reason for working through this proof is that it highlights
the ideas that we will use throughout this section. These ideas will allow us to derive
a general proof strategy, called the involution principle (Strategy 6.3.24), which greatly
simplifies proofs of results of this nature—indeed, we will prove Proposition 6.3.2 again
using the involution principle in Example 6.3.25.

With that said, Proposition 6.3.2 highlights the following general strategy for proving
that an alternating sum evaluates to zero.

v Strategy 6.3.3 (Proving that an alternating sum evaluates to zero)

Let a0,a1, . . . ,an ∈ N. In order to prove that
n

∑
k=0

(−1)kak = 0, it suffices to find:

(i) A partition U0,U2, . . . of a set E , with |Uk|= ak for all even k;

(ii) A partition U1,U3, . . . of a set O , with |Uk|= ak for all odd k; and

(iii) A bijection E → O .

. Exercise 6.3.4
Use Strategy 6.3.3 to prove that

n

∑
k=0

(−1)k · k ·
(

n
k

)
= 0

for all n> 2. C

Unfortunately Strategy 6.3.3 is still somewhat limited. For a start, it tells us nothing
about how to evaluate an alternating sum that doesn’t end up being equal to zero. Also,
it ignores a key clue from the proof of Proposition 6.3.2: namely, the function f : E →O
and its inverse g : O→ E were defined identically. They are both restrictions of a function
h : P([n])→P([n]) defined in the same way:

h(U) =

{
U ∪{n} if n 6∈U
U \{n} if n ∈U

This function has the property that h(h(U))=U for all U ⊆ [n] (that is, h is an involution),
and h restricts to a bijection between the set of even-sized subsets of [n] and the set of
odd-sized subsets of [n] (that is, h swaps parity).

This property of being a parity-swapping involution will be the key to deriving the invol-
ution principle.
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Involutions

An involution is a function that is its own inverse.

F Definition 6.3.5
Let X be a set. An involution of X is a function h : X → X such that h◦h = idX .

0 Example 6.3.6
Consider the function h : R→ R defined by h(x) = 1− x for each x ∈ R. Then h is an
involution, since for all x ∈ R we have h(h(x)) = 1− (1− x) = x. C

. Exercise 6.3.7
Given a set X , prove that the relative complement function r : P(X)→P(X), defined
by r(U) = X \U for all U ⊆ X , is an involution. C

. Exercise 6.3.8
Prove that every involution is a bijection. C

. Exercise 6.3.9
Let h : X → X be an involution and let a ∈ X . Prove that h either fixes a—that is, h(a) =
a—or swaps it with another element b ∈ X—that is, h(a) = b and h(b) = a. C

The involution that we used in the proof of Proposition 6.3.2 was an instance of toggling
an element in a subset—that is, removing it if it is there, and putting it in if it is not.

Toggling is so useful that we assign special notation.

F Definition 6.3.10
Let X be a set. The toggle operation ⊕ (LATEX code: \oplus) is defined by letting

U⊕a =

{
U ∪{a} if a 6∈U
U \{a} if a ∈U

for each U ⊆ X and each a ∈ X .

0 Example 6.3.11
Taking X = [3] and a = 3, we have:

∅⊕3 = {3} {1}⊕3 = {1,3} {2}⊕3 = {2,3} {1,2}⊕3 = {1,2,3}

{3}⊕3 =∅ {1,3}⊕3 = {1} {2,3}⊕3 = {2} {1,2,3}⊕3 = {1,2}
C

The next two exercises are generalisations of facts that we showed in the proof of Pro-
position 6.3.2.

. Exercise 6.3.12
Let X be a set and let a ∈ X . Prove that the function Ta : P(X)→P(X) defined by
Ta(U) =U⊕a for all U ⊆ X is an involution. C
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. Exercise 6.3.13
Let X be a finite set and let a ∈ X . Prove that, for all U ⊆ X , if |U | is even then |U⊕a| is
odd, and if |U | is odd then |U⊕a| is even. C

The property of the toggle operation that you proved in Exercise 6.3.13 is an instance
of parity-swapping. While toggling swaps the parity of the size of a subset, we can
generalise the notion of parity more generally, provided we have a notion of what it
means for an element of a set to be ‘even’ or ‘odd’.

A first attempt to define ‘even’ and ‘odd’ might be to simply partition a set X as X =
E ∪O, for disjoint subsets E,O⊆ X—the elements of E will be deemed to be ‘even’ and
the elements of O will be deemed to be ‘odd’. But it will be helpful later on to go one
step further than this: we will partition X into finitely many pieces, indexed by natural
numbers, and the natural number will determine the parities of the elements of X .

F Definition 6.3.14
Let X be a set and let U = {U0,U1, . . . ,Un} be a partition of X for some n ∈ N. The
parity of an element a ∈ X (relative to U ) is the parity—even or odd—of the unique
k ∈ {0,1, . . . ,n} such that a ∈Uk.

Write X+ = {a ∈ X | a has even parity} (LATEX code: Xˆ+) and X− = {a ∈ X |
a has odd parity} (LATEX code: Xˆ-).

Note that, with notation as in Definition 6.3.14, we have partitions of X+ and X− as

X+ =
⋃

even k

Uk and X− =
⋃

odd k

Uk

0 Example 6.3.15

Let X be a finite set, and consider the partition of P(X) given by Uk =

(
X
k

)
for all

0 6 k 6 n. With respect to this partition, an element U ∈P(X) has even parity if and
only if |U | is even, and odd parity if and only if |U | is odd.

For example, we have

P([2])+ = {∅,{1,2}} and P([2])− = {{1},{2}}

C

0 Example 6.3.16
Let m,n ∈ N and let X be the set of all functions [n]→ [n]. For each k 6 n, define

Xk = { f : [n]→ [n] | |{a ∈ [n] | f (a) = a}|= k}

That is, for each k 6 n, the set Xk is the set of all functions f : [n]→ [n] that fix exactly k
elements of [n].

A function f : [n]→ [n] has even parity with respect to this partition if it fixes an even
number of elements, and odd parity if it fixes an odd number of elements. C
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F Definition 6.3.17
Let X be a set and let {U0,U1, . . .Un} be a partition of X for some n ∈ N. A function
f : X → X swaps parity (or is parity-swapping) if, for all a ∈ X , if a has even parity
then f (a) has odd parity, and if a has odd parity then f (a) has even parity.

0 Example 6.3.18
With parity defined as in Example 6.3.15, the result of Exercise 6.3.12 says precisely
that, for every set X and element a ∈ X , the toggle function Ta : P(X)→P(X) swaps
parity, where Ta is defined by Ta(U) =U⊕a for all U ⊆ X . C

. Exercise 6.3.19
Let X be a finite set. Under what conditions does the involution r : P(X)→P(X) given
by r(U) = X \U for all U ⊆ X swap parity? C

. Exercise 6.3.20
Let n ∈N and let X be the set of all functions [n]→ [n], partitioned as in Example 6.3.16,
so that a function f : [n]→ [n] has even parity if it fixes an even number of elements,
and odd parity if it fixes an odd number of elements. Find a parity-swapping function
X → X . C

The next two following technical results will be used fundamentally in the proof of The-
orem 6.3.23.

C Lemma 6.3.21
Let X be a finite set, let {U0,U1, . . . ,Un} be a partition of X for some n ∈ N, and let
h : X → X be a parity-swapping involution. Then h induces a bijection f : X+ → X−

defined by f (x) = h(x) for all x ∈ X+.

Proof
First note that the definition f : X+→ X− by letting f (x) = h(x) for all x ∈ X+ is well-
defined since h swaps parity. Indeed, if x∈ X+, then x has even parity, so that f (x) = h(x)
has odd parity, meaning that f (x) ∈ X−.

To see that f is a bijection, define a function g : X−→ X+ by g(x) = h(x) for all x ∈ X−.
Again, g is well-defined since h swaps parity.

Finally note that g is an inverse for f —given x ∈ X+, we have

g( f (x)) = h(h(x)) = x

and likewise f (g(x)) = x for all x ∈ X−.

Since f has an inverse, it is a bijection. �

C Lemma 6.3.22
Let X be a finite set, let {U1,U2, . . . ,Un} be a partition of X for some n ∈ N, and let
h : X → X be a parity-swapping involution. Then

n

∑
k=1

(−1)k|Uk|= 0

Proof
By Lemma 6.3.21 we know that h : X → X restricts to a bijection X+→ X−, and so we
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have |X+|= |X−|. By the addition principle, we have

n

∑
k=0

(−1)k|Uk| = ∑
even k

|Uk|− ∑
odd k
|Uk| = |X+|− |X−| = 0

as required. �

Lemma 6.3.22 gets us well on our way to deriving the involution principle. In fact,
it already makes Strategy 6.3.3 obsolete: we can now prove that an alternating sum is
equal to zero simply by finding a parity-swapping involution from a suitably partitioned
set to itself!

But in practice, it might not be easy (or even possible) to define a parity-swapping invol-
ution h : X → X on the whole set X . In such cases, we do the best that we can: define h
on some subset D⊆ X , and worry about what is left over afterwards.

C Theorem 6.3.23
Let X be a finite set, let {U1,U2, . . . ,Un} be a partition of X for some n ∈ N, let D ⊆ X ,
let h : D→ D be a parity-swapping involution, and let Fk =Uk \D for each k ∈ [n]. Then

n

∑
k=1

(−1)k|Uk|=
n

∑
k=1

(−1)k|Fk|

Proof
Note first that the sets Uk ∩D for k ∈ [n] partition D, with the elements of D having the
same parities as they did when they were considered as elements of X .

It follows from Lemma 6.3.22 that

n

∑
k=1
|Uk ∩D|= 0

Moreover |Uk| = |Uk ∩D|+ |Uk \D| for each k ∈ [n] by the addition principle. Since
Fk =Uk \D for each k ∈ [n], we have

n

∑
k=1

(−1)k|Uk| =
n

∑
k=1

(−1)k|Uk ∩D|︸ ︷︷ ︸
=0

+
n

∑
k=1

(−1)k|Uk \D| =
n

∑
k=1

(−1)k|Fk|

as required. �

We have suggestively used the letter D to refer to where the involution is defined, and the
letter F to refer to the elements where the involution fails.
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v Strategy 6.3.24 (Involution principle)

Let a1,a2, . . . ,an ∈ N. In order to evaluate an alternating sum
n

∑
k=1

(−1)kak, it suffices to

follow the following steps:

(i) Find a set X with a partition {U1,U2, . . . ,Un}, such that |Uk|= ak for all k ∈ [n].

(ii) Find a parity-swapping involution h : D→ D for some subset D ⊆ X—often it is
easiest to specify the values of h first, and take D to be the set of elements of X for
which the specification makes sense.

(iii) Evaluate
n

∑
k=1

(−1)k|Fk|, where Fk = Uk \D for all k ∈ [n]—that is, count the ele-

ments of each Uk where the involution failed to be well-defined, and add them
positively or negatively according to their parity.

It will often be the case that many of the sets Fk are empty, simplifying matters greatly.

This is rather abstract, so let’s see some examples of the involution principle in action.

0 Example 6.3.25

Here is a succinct proof that
n

∑
k=0

(−1)k
(

n
k

)
= 0 for all n ∈ N using the involution prin-

ciple.

Let n∈N and define Uk =

(
[n]
k

)
for all 06 k6 n—these sets form a partition of P([n]),

and |Uk|=
(

n
k

)
for each 06 k 6 n.

By Exercise 6.3.12, the function h : P([n]) → P([n]) defined by h(U) = U ⊕ n
is a parity-swapping involution. By the involution principle (Strategy 6.3.24) with
D = P([n]), we have Uk \D =∅ for each 06 k 6 n, and hence

n

∑
k=0

(−1)k
(

n
k

)
= 0

as required. C

. Exercise 6.3.26
Repeat Exercise 6.3.4 using the involution principle—that is, use the involution principle
to prove that

n

∑
k=0

(−1)k · k ·
(

n
k

)
= 0

for all n> 2. C

. Exercise 6.3.27
Use the involution principle to prove that

n

∑
k=0

(−1)k
(

n
k

)(
k
`

)
= 0
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for all n, ` ∈ N with ` < n. C

The next example is slightly more involved, because we find an involution that is not
defined on the whole set being counted. This generalises the result of Example 6.3.25.

C Proposition 6.3.28

Let n,r ∈ N with r 6 n. Then
r

∑
k=0

(−1)k
(

n
k

)
= (−1)r

(
n−1

r

)
.

Proof

Let X be the set of subsets of [n] of size 6 r, and for each 0 6 k 6 r, let Uk =

(
[n]
k

)
.

Note that the sets Uk partition X for 06 k 6 r.

Define h(U) = U ⊕ n for all U ∈ X . Since h is defined by toggling n, it is a parity-
swapping involution.

The only way that h can fail to be well-defined is if |h(U)|> r. Since |U ⊕n|= |U |±1
for all U ∈ X , the only way we can have |h(U)|> r is if |U |= r and n 6∈U , in which case
h(U) =U ∪{n} has size r+1.

Hence Fk = ∅ for all k < r, and Fr = {U ⊆ [n] | |U | = r and n 6∈ U}. Specifying an
element of Fr is therefore equivalent to specifying a subset of [n− 1] of size r, so that

|Fr|=
(

n−1
r

)
.

Putting this all together, we obtain
r

∑
k=0

(−1)k
(

n
k

)
=

r

∑
k=0

(−1)k|Fk| = (−1)r
(

n−1
r

)
as required. �

The next example is slightly more colourful.

0 Example 6.3.29
Let a,b,r ∈ N with a6 r 6 b. We prove that

r

∑
k=0

(−1)k
(

a
k

)(
b

r− k

)
=

(
b−a

r

)

Consider a population of b animals, of which exactly a are cats. A government of exactly
r animals must be formed, and a Feline Affairs Committee—which is a branch of the
government—must be chosen from amongst the cats. The Feline Affairs Committee
may have any size, but its size is bounded by the size of the government.

Let X be the set of all pairs (G,C), where G is a government and C ⊆ G is the Feline
Affairs Committee.

For k6 r, let Uk be the set of all government–committee pairs (G,C) such that |C|= k—
that is, such that exactly k cats sit on the Feline Affairs Committee. Note that parity is
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determined by the number of cats on the Feline Affairs Committee: indeed, (G,C) has
even parity if |C| is even, and odd parity if |C| is odd.

Given a government–committee pair (G,C), let h(G,C) = (G,C⊕ x), where x ∈ G is the
youngest cat on the government. That is, if the youngest cat on the government is on
the Feline Affairs Committee, then that cat is removed from the committee; and if the
youngest cat on the government is not on the Feline Affairs Committee, then that cat is
added to the committee.

Evidently h is an involution, and it swaps parity since it adds or removes one cat to or
from the Feline Affairs Committee.

The only way that h can fail to be well-defined is if there are no cats on the government,
in which case k = 0. Thus by the involution principle

r

∑
k=0

(−1)k
(

a
k

)(
b

r− k

)
= (−1)0 ·

∣∣∣∣{(G,∅) ∈ X
∣∣∣ G contains no cats

}∣∣∣∣
But there are exactly b−a non-cats in the animal population, so that∣∣∣∣{(G,∅) ∈ X

∣∣∣ G contains no cats
}∣∣∣∣= (b−a

r

)

and hence we have
r

∑
k=0

(−1)k
(

a
k

)(
b

r− k

)
=

(
b−a

r

)
, as required. C

If you dislike reasoning about animals, Example 6.3.29 could be reformulated by taking:

• X = {(A,B) | A⊆ B∩ [a], B⊆ [b], |B|= r};
• Uk = {(A,B) ∈ X | |A|= k} for all k 6 r; and

• h(A,B) = h(A⊕ x,B), where x is the least element of B∩ [a].

You are encouraged to verify the details!

. Exercise 6.3.30
Let n ∈ N and consider the set

X = {(k, i) | k 6 n, i ∈ [k]}

For example, if n = 3 then X = {(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)}.

(a) Prove that |X |=
n

∑
k=0

k.

(b) Use the involution principle to prove that

n

∑
k=0

(−1)kk =


n
2

if n is even

−n−1
2

if n is odd

C
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Inclusion–exclusion principle

Our final application of the involution principle will be to prove the inclusion–exclusion
principle, which is used for computing the sizes of unions of sets that are not necessarily
pairwise disjoint.

We saw in Proposition 6.1.18 how to compute the size of a union of two not-necessarily-
disjoint sets:

|X ∪Y |= |X |+ |Y |− |X ∩Y |
So far so good. But what if we have three or four sets instead of just two?

. Exercise 6.3.31
Let X ,Y,Z be sets. Show that

|X ∪Y ∪Z|= |X |+ |Y |+ |Z|− |X ∩Y |− |X ∩Z|− |Y ∩Z|+ |X ∩Y ∩Z|

Let W be another set. Derive a similar formula for |W ∪X ∪Y ∪Z|. C

The inclusion–exclusion principle is a generalisation of Exercise 6.3.31 to arbitary finite
collections of finite sets, but it is stated in a slightly different way in order to make the
proof more convenient.

C Theorem 6.3.32 (Inclusion–exclusion principle)
Let n ∈ N, let Xi be a finite set for each i ∈ [n], and let X = X1∪X2∪·· ·∪Xn. Then

∑
I⊆[n]

(−1)|I||XI |= 0

where XI = {a ∈ X | a ∈ Xi for all i ∈ I}.

The statement of Theorem 6.3.32 looks fairly abstract, so before we prove it, let’s exam-
ine its content. The sum is over all subsets I ⊆ [n], and then the power (−1)|I| is equal
to 1 if I has an even number of elements, and −1 if I has an odd number of elements.
Moreover, if I is inhabited then XI is the intersection of the sets Xi for i ∈ I—for example
X{2,3,5} = X2 ∩X3 ∩X5; on the other hand, a careful examination of the definition of XI
reveals that X∅ = X .

Thus when n = 3, the sum ∑
I⊆[3]

(−1)|I||XI | can be evaluated as

|X |− |X1|− |X2|− |X3|+ |X1∩X2|+ |X1∩X3|+ |X2∩X3|− |X1∩X2∩X3|

The theorem says that this sum is equal to zero, and solving for |X |= |X1∪X2∪X3| yields
an equivalent equation to that in Exercise 6.3.31.

Proof of Theorem 6.3.32
We will prove the inclusion–exclusion principle using the involution principle.

First we introduce some notation:

257



258 Chapter 6. Enumerative combinatorics

• Define S = {(I,a) | I ⊆ [n], a ∈ XI}. We can think of an element (I,a) ∈ S as being an
element a ∈ X together with a label I indicating that a ∈ Xi for all i ∈ I.

• For each 06 k 6 n, define Sk = {(I,a) ∈ S | |I|= k}.

• For each a ∈ X , let ia = min{k ∈ [n] | a ∈ Xk}.

Note that the sets S0,S1,S2, . . . ,Sn form a partition of S, so we can consider the parity of
an element (I,a) ∈ S—namely, the parity of (I,a) is even if |I| is even, and odd if |I| is
odd.

Define a function f : S→ S by letting

f (I,a) = (I⊕ ia,a)

for each I ⊆ [n] and each a ∈ XI . Then:

• f is an involution since by Exercise 6.3.12 we have

f ( f (I,a)) = f (I⊕ ia,a) = ((I⊕ ia)⊕ ia,a) = (I,a)

• f is parity-swapping, since |I⊕ ia| and |I| have opposite parity for each a ∈ X .

By the involution principle, we have

n

∑
k=0

(−1)k|Sk|= 0

Now for fixed I ⊆ [n], let TI = {(I,a) | a ∈ X}. Then for each 0 6 k 6 n, the sets TI for
|I| = k partition Sk, and moreover (−1)k = (−1)|I|, so that by the addition principle we
have

n

∑
k=0

(−1)k|Sk| =
n

∑
k=0

∑
I∈([n]k )

(−1)|I||TI | = ∑
I⊆[n]

(−1)|I||TI | = 0

Finally note that, for each I ⊆ [n], the function gI : XI → TI defined by gI(a) = (I,a) for
all a ∈ XI is a bijection, with inverse given by g−1

I (I,a) = a for all (I,a) ∈ TI .

Hence |XI |= |TI |, and the result is proved. �

It is more common to see the inclusion–exclusion principle stated in one two equivalent
forms, stated here as Corollaries 6.3.33 and 6.3.34.

C Corollary 6.3.33
Let X1,X2, . . . ,Xn be sets. Then∣∣∣∣∣ n⋃

i=1

Xi

∣∣∣∣∣ = n

∑
k=1

(
∑

16i1<i2<···<ik6n
(−1)k−1|Xi1 ∩Xi2 ∩·· ·∩Xik |

)
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Proof
Moving all terms to the left-hand side of the equation and observing that −(−1)k−1 =
(−1)k, the statement is equivalent to∣∣∣∣∣ n⋃

i=1

Xi

∣∣∣∣∣ − n

∑
k=1

(
∑

16i1<i2<···<ik6n
(−1)k|Xi1 ∩Xi2 ∩·· ·∩Xik |

)
= 0

But using the notation of Theorem 6.3.32, we have∣∣∣∣∣ n⋃
i=1

Xi

∣∣∣∣∣= |X |= (−1)|∅||X∅|

and for all 16 i1 < i2 < · · ·< ik 6 n, we have

(−1)k|Xi1 ∩Xi2 ∩·· ·∩Xik |= (−1)|{i1,i2,...,ik}||X{i1,i2,...,ik}|

and so we see that this is just a restatement of Theorem 6.3.32. �

C Corollary 6.3.34
Let X be a set and let U1,U2, . . . ,Un ⊆ X . Then∣∣∣∣∣X \ n⋃

i=1

Ui

∣∣∣∣∣= |X | + n

∑
k=1

(
∑

16i1<i2<···<ik6n
(−1)k|Ui1 ∩Ui2 ∩·· ·∩Uik |

)

Proof

Since
n⋃

i=1

Ui ⊆ X , we have

∣∣∣∣∣X \ n⋃
i=1

Ui

∣∣∣∣∣= |X |−
∣∣∣∣∣ n⋃
i=1

Ui

∣∣∣∣∣
The result then follows immediately from Corollary 6.3.33. �

v Strategy 6.3.35 (Finding the size of a union by inclusion–exclusion)

In order to find the size of a union of
n⋃

i=1

Xi, it suffices to:

• Add the sizes of the individual sets Xi;

• Subtract the sizes of the double-intersections Xi∩X j;

• Add the sizes of the triple-intersections Xi∩X j ∩Xk;

• Subtract the sizes of the quadruple-intersections Xi∩X j ∩Xk ∩X`;

• . . . and so on . . .

Continue alternating until the intersection of all the sets is covered.
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0 Example 6.3.36
We count how many subsets of [12] contain a multiple of 3. Precisely, we count the
number of elements of the set

X3∪X6∪X9∪X12

where Xk = {S⊆ [12] | k ∈ S}. We will apply the inclusion–exclusion principle:

(i) An element S ∈ X3 is precisely a set of the form {3}∪ S′, where S′ ⊆ [12] \ {3}.
Since [12] \ {3} has 11 elements, there are 211 such subsets. So |X3| = 211, and
likewise |X6|= |X9|= |X12|= 211.

(ii) An element S ∈ X3 ∩X6 is a set of the form {3,6}∪ S′, where S′ ⊆ [12] \ {3,6}.
Thus there are 210 such subsets, so |X3∩X6|= 210. And likewise

|X3∩X9|= |X3∩X12|= |X6∩X9|= |X6∩X12|= |X9∩X12|= 210

(iii) Reasoning as in the last two cases, we see that

|X3∩X6∩X9|= |X3∩X6∩X12|= |X3∩X9∩X12|= |X6∩X9∩X12|= 29

(iv) . . . and |X3∩X6∩X9∩X12|= 28.

Thus the number of subsets of [12] which contain a multiple of 3 is

4×211︸ ︷︷ ︸
by (i)

− 6×210︸ ︷︷ ︸
by (ii)

+ 4×29︸ ︷︷ ︸
by (iii)

− 28︸︷︷︸
by (iv)

which is equal to 3840. C

. Exercise 6.3.37
How many natural numbers less than 1000 are multiples of 2, 3, 5 or 7? C
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Section 6.E

Chapter 6 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Finite sets

6.1. Let n ∈ N and let f : [n]→ [n] be a function. Prove that f is injective if and only if
f is surjective.

6.2. Prove that |Z/nZ|= n for all n> 1.

Counting

6.3. Let X and Y be finite sets with |X | = m ∈ N and |Y | = n ∈ N. Prove that there are
2mn relations from X to Y .

6.4. Let X be a set and let R be a relation on X . Prove that R is reflexive if and only if
∆X ⊆ Gr(R), where ∆X is the diagonal subset of X ×X (see Definition 4.1.17). Deduce
that if X is finite and |X |= n ∈ N, then there are 2n(n−1) reflexive relations on X .

6.5. Let X be a finite set with |X | = n ∈ N. Prove that there are 2(
n
2) · 2n symmetric

relations on X .

6.6. Let X be a finite set with |X | = n ∈ N. Prove that there are 3(
n
2) · 2n antisymmetric

relations on X .

6.7. Let X be a finite set with |X | = n ∈ N, let ∼ be an equivalence relation on X , and
suppose that there is some natural number k such that |[a]∼|= k for all a ∈ X . Prove that
k divides n, and that |X/∼|= n

k
.

6.8. Let n,k ∈ N with k 6 n. Prove that the number of functions f : [n]→ [n] that fix

exactly k elements of [n] is equal to
(

n
k

)
(n−1)n−k.

Double counting

6.9. Let a,b,m,n ∈ N. Prove each of the following by double counting.

(a) a(m+n) = am+an

(b) am+n = am ·an

(c) (am)n = amn

(d) (ab)n = an ·bn
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6.10. Prove that
n

∑
k=0

(
n
k

)2

=

(
2n
n

)
for all n ∈ N

6.11. Prove that
n

∑
k=m

(
n
k

)(
k
m

)
= 2n−m

(
n
m

)
for all m,n ∈ N with m6 n.

6.12. Prove that
k

∑
j=0

(
n− j
k− j

)
=

(
n+1

k

)
for all n,k ∈ N.

6.13. Prove that
n

∑
k=1

k

∑
`=0

k
(

n
k

)(
n− k
`

)
= n ·3n−1 for all n ∈ N.

6.14. Prove that
(

n
r+ s+1

)
=

n−s

∑
k=r+1

(
k−1

r

)(
n− k

s

)
for all n,r,s ∈ N.

6.15. Let a1,a2, . . . ,ar ∈ N and let n = a1 +a2 + · · ·+ar. Prove that

(
n

a1,a2, . . . ,ar

)
=

r−1

∏
k=0

(n−
k

∑
i=1

ai

ak+1

)

where
(

n
a1,a2, . . . ,ar

)
is the number of ordered r-tuples (U1,U2, . . . ,Ur) such that

U1,U2, . . . ,Ur is a partition of [n] and |Uk|= ak for all k ∈ [r].

Involution principle

6.16. Let X be a finite set. Prove that if |X | is odd then there is no parity-swapping
involution X → X .

Inclusion–exclusion principle

6.17. Find the number of subsets of [100] that do not contain a multiple of 8.
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Section 7.1

Inequalities and means

We first encountered the real numbers in Chapter 0, when the real numbers were intro-
duced using a vague (but intuitive) notion of an infinite number line (Definition 0.25):

−5 −4 −3 −2 −1 0 1 2 3 4 5

This section will scrutinise the set of real numbers in its capacity as a complete ordered
field. Decomposing what this means:

• A field is a set with a notion of ‘zero’ and ‘one’, in which it makes sense to talk
about addition, subtraction, multiplication, and division by everything except zero.
Examples are Q, R, and Z/pZ when p is a prime number (but not when p is compos-
ite). However, Z is not a field, since we can’t freely divide by nonzero elements—for
example, 1 ∈ Z and 2 ∈ Z, but no integer n satisfies 2n = 1.

• An ordered field is a field which is equipped with a well-behaved notion of order. Both
Q and R are ordered fields, but Z/pZ is not. We’ll see why soon.

• A complete ordered field is an ordered field in which every set with an upper bound
has a least upper bound. As we will see, Q is not a complete ordered field, but R is.

This is made (extremely) precise in Section B.2.

Magnitude and scalar product

In this part of the section, we home in on sets of the form Rn, for n ∈ N. Elements of
Rn are sequences of the form (x1,x2, . . . ,xn), where each xi ∈ R. With our interpreta-
tion of the reals R as a line, we can interpret a sequence (x1,x2, . . . ,xn) as a point in
n-dimensional space:

• 0-dimensional space is a single point. The set R0 has one element, namely the empty
sequence (), so this makes sense.

• 1-dimensional space is a line. This matches our intuition that R= R1 forms a line.

• 2-dimensional space is a plane. The elements of R2 are pairs (x,y), where x and y are
both real numbers. We can interpret the pair (x,y) as coordinates for a point which is
situated x units to the right of (0,0) and y units above (0,0) (where negative values of
x or y reverse this direction)—see Figure 7.1.

With this intuition in mind, we set up the following notation.
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x

y

(0,0)

(
√

2,
√

2)

(0,−2)

(2,0)

(−2, 3
2 )

Figure 7.1: Some points in R2

F Notation 7.1.1
Let n ∈ N. Elements of Rn will be denoted ~x,~y,~z, . . . (LATEX code: \vec) and called (n-
dimensional) vectors. Given a vector~x ∈ Rn, we write xi for the ith component of~x, so
that

~x = (x1,x2, . . . ,xn)

The element (0,0, . . . ,0) ∈ Rn is called the origin or zero vector of Rn, and is denoted
by~0.

Moreover, if~x,~y ∈ Rn and a ∈ R we write

~x+~y = (x1 + y1,x2 + y2, . . . ,xn + yn) and a~x = (ax1,ax2, . . . ,axn)

0 Example 7.1.2
For all~x ∈ Rn, we have

~x+~0 =~x and 1~x =~x

C

F Definition 7.1.3
Let ~x ∈ Rn. The magnitude of ~x is the real number ‖~x‖ (LATEX code: \lVert \vec x
\rVert) defined by

‖~x‖=
√

n

∑
i=1

x2
i =

√
x2

1 + x2
2 + · · ·+ x2

n

Given vectors ~x,~y ∈ Rn, the distance from ~x to ~y is defined to be ‖~y−~x‖. Thus the
magnitude of a vector can be thought of as the distance from that vector to the origin.

0 Example 7.1.4
In R2, Definition 7.1.3 says that

‖(x,y)‖=
√

x2 + y2
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266 Chapter 7. Real numbers

This matches the intuition obtained from the Pythagorean theorem on the sides of right-
hand triangles. For example, consider the triangle with vertices (0,0), (4,0) and (4,3):

(0,0) (4,0)

(4,3)

The hypotenuse of the triangle has magnitude

‖(4,3)‖=
√

42 +32 =
√

25 = 5

C

. Exercise 7.1.5
Let ~x,~y ∈ Rn. Prove that ‖~x−~y‖ = ‖~y−~x‖. That is, the distance from ~x to~y is equal to
the distance from~y to~x. C

. Exercise 7.1.6
Prove that if x ∈ R then the magnitude ‖(x)‖ is equal to the absolute value |x|. C

. Exercise 7.1.7
Let~x ∈ Rn. Prove that ‖~x‖= 0 if and only if~x =~0. C

The triangle inequality and the Cauchy–Schwarz inequality

The first, and simplest, inequality that we investigate is the (one-dimensional version of
the) triangle inequality (Theorem 7.1.9). It is so named because of a generalisation to
higher dimensions (Theorem 7.1.19), which can be interpreted geometrically as saying
that the sum of two side lengths of a triangle is greater than or equal to the third side
length.

The triangle inequality is used very frequently in mathematical proofs—you will en-
counter it repeatedly in this chapter—yet its proof is surprisingly simple.

Before we can prove the triangle inequality, we need the following fact about square roots
of real numbers.

C Lemma 7.1.8
Let x,y ∈ R. If 06 x6 y, then

√
x6
√

y.

Proof
Suppose 0 6 x 6 y. Note that, by definition of the square root symbol, we have

√
x > 0

and
√

y> 0.

266



Section 7.1. Inequalities and means 267

Suppose
√

x >
√

y. By two applications of Theorem B.2.30(d), we have

y =
√

y ·√y <
√

x ·√y <
√

x ·√x = x

so that y< x. But this contradicts the assumption that x6 y. Hence
√

x6
√

y, as required.
�

C Theorem 7.1.9 (Triangle inequality in one dimension)
Let x,y ∈ R. Then |x+ y| 6 |x|+ |y|. Moreover, |x+ y| = |x|+ |y| if and only if x and y
have the same sign.

Proof
Note first that xy6 |xy|; indeed, xy and |xy| are equal if xy is non-negative, and otherwise
we have xy < 0 < |xy|. Also x2 = |x|2 and y2 = |y|2. Hence

(x+ y)2 = x2 +2xy+ y2 6 |x|2 +2|xy|+ |y|2 = (|x|+ |y|)2

Taking (nonnegative) square roots yields

|x+ y|6 ||x|+ |y||

by Lemma 7.1.8. But |x|+ |y| > 0, so ||x|+ |y|| = |x|+ |y|. This completes the first part
of the proof.

Equality holds in the above if and only if xy = |xy|, which occurs if and only if xy > 0.
But this is true if and only if x and y are both non-negative or both non-positive—that is,
they have the same sign. �

0 Example 7.1.10
Let x,y ∈ R. We prove that

|x+ y|
1+ |x+ y| 6

|x|
1+ |x| +

|y|
1+ |y|

First note that, if 06 s6 t, then
s

1+ s
6

t
1+ t

To see this, note that

s6 t⇒ 1+ s6 1+ t rearranging

⇒ 1
1+ t

6
1

1+ s
since 1+ s,1+ t > 0

⇒ 1− 1
1+ s

6 1− 1
1+ t

rearranging

⇒ s
1+ s

6
t

1+ t
rearranging

Now letting s = |x+ y| and t = |x|+ |y|, we have s 6 t by the triangle inequality, and
hence

|x+ y|
1+ |x+ y| 6

|x|
1+ |x|+ |y| +

|y|
1+ |x|+ |y| 6

|x|
1+ |x| +

|y|
1+ |y|

as required. C
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. Exercise 7.1.11
Let n ∈ N and let xi ∈ R for each i ∈ [n]. Prove that∣∣∣∣∣ n

∑
i=1

xi

∣∣∣∣∣6 n

∑
i=1
|xi|

with equality if and only if the numbers xi are either all non-positive or all non-negative.
C

. Exercise 7.1.12
Let x,y ∈ R. Prove that

||x|− |y||6 |x− y|
C

We will generalise the triangle inequality to arbitrary dimensions in Theorem 7.1.19.
Our proof will go via the Cauchy–Schwarz inequality (Theorem 7.1.16). To motivate
the Cauchy–Schwarz inequality, we introduce another geometric notion called the scalar
product of two vectors.

F Definition 7.1.13
Let ~x,~y ∈ Rn. The scalar product (or dot product) of ~x with ~y is the real number ~x ·~y
(LATEX code: \cdot) defined by

~x ·~y =
n

∑
i=1

xiyi = x1y1 + x2y2 + · · ·+ xnyn

0 Example 7.1.14
Let~x ∈ Rn. Then~x ·~x = ‖~x‖2. Indeed

~x ·~x =
n

∑
i=1

x2
i = ‖~x‖2

C

. Exercise 7.1.15
Let~x,~y,~z,~w ∈ Rn and let a,b,c,d ∈ R. Prove that

(a~x+b~y) · (c~z+d~w) = ac(~x ·~z)+ad(~x ·~w)+bc(~y ·~z)+bd(~y ·~w)

C

Intuitively, the scalar product of two vectors~x and~y measures the extent to which~x and
~y fail to be orthogonal. In fact, if θ is the acute angle formed between the lines `1 and
`2, where `1 passes through~0 and~x and `2 passes through~0 and~y, then a formula for the
scalar product of~x and~y is given by

~x ·~y = ‖~x‖‖~y‖cosθ
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Section 7.1. Inequalities and means 269

~0

~x

~y

‖x‖cosθ

θ

Evidently,~x and~y are orthogonal if and only if cosθ = 0, in which case~x ·~y = 0 as well.
We cannot prove this yet, though, as we have not yet defined trigonometric functions or
explored their properties, but hopefully this provides some useful intuition.

The Cauchy–Schwarz inequality provides a useful comparison of the size of a scalar
product of two vectors with the magnitudes of the vectors.

C Theorem 7.1.16 (Cauchy–Schwarz inequality)
Let n ∈ N and let xi,yi ∈ R for each i ∈ [n]. Then

|~x ·~y|6 ‖~x‖‖~y‖

with equality if and only if a~x = b~y for some a,b ∈ R which are not both zero.

Proof
If~y =~0, then this is trivial: both sides of the equation are equal to zero! So assume that
~y 6=~0. In particular, by Exercise 7.1.7, we have ‖~y‖> 0.

Define k =
~x ·~y
‖~y‖2 . Then

06 ‖~x− k~y‖2 since squares are nonnegative
= (~x− k~y) · (~x− k~y) by Example 7.1.14

= (~x ·~x)−2k(~x ·~y)+ k2(~y ·~y) by Exercise 7.1.15

= ‖~x‖2− (~x ·~y)2

‖y‖2 by definition of k

Multiplying through by ‖~y‖2, which is non-negative and therefore doesn’t change the
sign of the inequality, yields

06 ‖~x‖2‖~y‖2− (~x ·~y)2

which is equivalent to what was to be proved.

Evidently, equality holds if and only if ‖~x− k~y‖ = 0, which by Exercise 7.1.7 occurs if
and only if~x− k~y = 0. Now:
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270 Chapter 7. Real numbers

• If~x− k~y = 0, then we have

~x− k~y = 0

⇔~x− ~x ·~y
‖~y‖2~y = 0 by definition of k

⇔‖~y‖2~x = (~x ·~y)~y rearranging

If~y 6=~0 then let a = ‖~y‖2 and b =~x ·~y; otherwise, let a = 0 and b = 1. In both cases,
we have a~x = b~y and a,b are not both zero.

If a~x = b~y for some a,b ∈ R not both zero, then either:

� a = 0 and b 6= 0, in which case~y = 0 and we have equality in the Cauchy–Schwarz
inequality; or
� a 6= 0, in which case~y = b

a~x. Write c = b
a . Then

|~x ·~y|= |~x · (c~x)|
= |c(~x ·~x)| by Exercise 7.1.15

= |c|‖~x‖2 by Example 7.1.14
= ‖~x‖‖c~x‖ rearranging
= ‖~x‖‖~y‖

In either case, we have equality in the Cauchy–Schwarz inequality.

So equality holds if and only if a~x = b~y for some a,b ∈ R not both zero. �

0 Example 7.1.17
Let a,b,c ∈ R. We’ll prove that

ab+bc+ ca6 a2 +b2 + c2

and examine when equality holds.

Letting~x = (a,b,c) and~y = (b,c,a) yields

~x ·~y = ab+bc+ ca

and
‖~x‖=

√
a2 +b2 + c2 =

√
b2 + c2 +a2 = ‖~y‖

Hence ‖~x‖‖~y‖= a2 +b2 + c2. By the Cauchy–Schwarz inequality, it follows that

~x ·~y = ab+bc+ ca6 a2 +b2 + c2 = ‖~x‖‖~y‖
as required. Equality holds if and only if k(a,b,c) = `(b,c,a) for some k, ` ∈ R not both
zero. We may assume k 6= 0—otherwise, swap the vectors~x and~y in what follows. Then,
letting t = `

k , we have

k(a,b,c) = `(b,c,a)

⇔ (a,b,c) = (tb, tc, ta) by definition of t

⇔ (a,b,c) = (t2c, t2a, t2b) substituting a = tb etc.

⇔ (a,b,c) = (t3a, t3b, t3c) substituting a = tb etc. again

⇔~x = t3~x
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Section 7.1. Inequalities and means 271

This occurs if and only if either (a,b,c) = (0,0,0), or t = 1, in which case

(a,b,c) = (tb, tc, ta) = (b,c,a)

So equality holds if and only if a = b = c. C

. Exercise 7.1.18
Let r ∈ N and let a1,a2, . . . ,ar ∈ R be such that a2

1 +a2
2 + · · ·+a2

n = 6. Prove that

(a1 +2a2 + · · ·+nan)
2 6 n(n+1)(2n+1)

and determine when equality holds. C

We now use the Cauchy–Schwarz inequality to generalise the one-dimensional version
of the triangle inequality (Theorem 7.1.9) to arbitrary (finite) dimensions.

C Theorem 7.1.19 (Triangle inequality)
Let~x,~y ∈ Rn. Then

‖~x+~y‖6 ‖~x‖+‖~y‖
with equality if and only if a~x = b~y for some real numbers a,b> 0.

Proof
We proceed by calculation:

‖~x+~y‖2 = (~x+~y) · (~x+~y) by Example 7.1.14
= (~x ·~x)+2(~x ·~y)+(~y ·~y) by Exercise 7.1.15
6 (~x ·~x)+2|~x ·~y|+(~y ·~y) since a6 |a| for all a ∈ R
6 ‖~x‖2 +2‖x‖‖y‖+‖~y‖2 by Example 7.1.14 and Cauchy–Schwarz

= (‖~x‖+‖~y‖)2 rearranging

Taking (nonnegative) square roots of both sides yields

‖~x+~y‖6 ‖~x‖+‖~y‖

by Lemma 7.1.8, as required.

Equality holds if and only if the two ‘6’ symbols in the above derivation are in fact ‘=’
symbols.

• The first inequality is equality if and only if ~x ·~y = |~x ·~y|, which holds if and only if
~x ·~y> 0.

• The second inequality is equality if and only if equality holds in the Cauchy–Schwarz
inequality. In turn, this occurs if and only if a~x = b~y for some a,b ∈ R. We may,
moreover, assume that a> 0—if not, replace a and b by their negatives.

If a = 0 then we can take b = 0. If a > 0, then by Example 7.1.14 and Exercise 7.1.15,
we have

~x ·
(

b
a
~x
)
=

b
a
‖~x‖2
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which is non-negative if and only if b> 0, since we are assuming that a> 0.

Thus, equality holds in the triangle inequality if and only if a~x= b~y for some a,b> 0. �

This general version of the triangle inequality has a geometric interpretation in terms
of—you guessed it—triangles. Any three points ~a,~b,~c ∈ Rn form a (potentially flat)
triangle:

~a

u

~b

v

~c

w

The side lengths u,v,w are given by the following equations:

u = ‖~b−~a‖, v = ‖~c−~b‖, w = ‖~a−~c‖

The triangle inequality says tells us that u6 v+w. Indeed:

u = ‖~b−~a‖ by definition of u

= ‖(~b−~c)+(~c−~a)‖ rearranging

6 ‖~b−~c‖+‖~c−~a‖ by the triangle inequality

= ‖~c−~b‖+‖~a−~c‖ by Exercise 7.1.5
= v+w by definition of v and w

That is, the triangle inequality says that the sum of two side lengths of a triangle is
greater than or equal to the third side length. Moreover, it tells us u = v+w precisely
when k(~a−~c) = `(~c−~b) for some k, `> 0. If k = 0 then

~c = ~b = 0~a+(1−0)~b

if k > 0, then k+ ` > 0, so we have

~c =
k

k+ `
~a+

`

k+ `
~b =

k
k+ `

~a+
(

1− k
k+ `

)
~b

Examining this a bit more closely yields that u = v+w if and only if

~c = t~a+(1− t)~b
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for some 0 6 t 6 1, which is to say precisely that ~c lies on the line segment between ~a
and~b. In other words, equality holds in the triangle inequality only if the three vertices
of the triangle are collinear, which is to say that the triangle whose vertices are the points
~a,~b and~c, is flat.

Inequalities of means

Our goal now is to explore different kinds of average—specifically, means—of finite sets
of non-negative real numbers. We will compare the relative sizes of these means with
respect to one-another, with emphasis on three particular kinds of mean: the arithmetic
mean (Definition 7.1.20), the geometric mean (Definition 7.1.21) and the harmonic mean
(Definition 7.1.29). These means in fact assemble into a continuum of means, called
generalised means (Definition 7.1.37), all of which can be compared with one another.

F Definition 7.1.20
Let n> 1. The (arithmetic) mean of real numbers x1, . . . ,xn is

1
n

n

∑
i=1

xi =
x1 + x2 + · · ·+ xn

n

F Definition 7.1.21
Let n> 1. The geometric mean of non-negative real numbers x1, . . . ,xn is

n

√
n

∏
i=1

xi = n
√

x1 · x2 · · · · · xn

The following theorem is commonly known as the AM–GM inequality.

C Theorem 7.1.22 (Inequality of arithmetic and geometric means)
Let n ∈ N and x1,x2, . . . ,xn > 0. Then

n
√

x1 · · ·xn︸ ︷︷ ︸
geometric mean

6
x1 + · · ·+ xn

n︸ ︷︷ ︸
arithmetic mean

with equality if and only if x1 = · · ·= xn.

Proof when n = 2
We need to show that, if x,y ∈ R with x,y> 0, then

√
xy6

x+ y
2

with equality if and only if x = y.
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First note that the square roots of x and y exist since they are non-negative. Now

06 (
√

x−√y)2 since squares are nonnegative

= (
√

x)2−2
√

x
√

y+(
√

y)2 expanding
= x−2

√
xy+ y rearranging

Rearranging the inequality 06 x−2
√

xy+ y yields the desired result.

If
√

xy = x+y
2 , then we can rearrange the equation as follows:

√
xy =

x+ y
2
⇒ 2
√

xy = x+ y multiplying by 2

⇒ 4xy = x2 +2xy+ y2 squaring both sides

⇒ x2−2xy+ y2 = 0 rearranging

⇒ (x− y)2 = 0 factorising

⇒ x− y = 0 since a2 = 0⇒ a = 0 for a ∈ R
⇒ x = y rearranging

So we have proved both parts of the theorem. �

0 Example 7.1.23
We use the AM–GM inequality to prove that the area of a rectangle with fixed perimeter
is maximised when the rectangle is a square.

Indeed, fix a perimeter p> 0, and let x,y> 0 be side lengths of a rectangle with perimeter
p—that is, x and y satisfy the equation 2x+2y = p. The area a of the rectangle satisfies
a = xy. By the AM–GM inequality, we have

a = xy6
(

x+ y
2

)2

=
p2

16

Equality holds if and only if x = y, in other words, if and only if the rectangle is a
square. C

. Exercise 7.1.24

Let a,b > 0 be real numbers. Prove that
a2 +b2

2
> ab. C

0 Example 7.1.25
Let x > 0. We find the minimum possible value of x+ 9

x . By the AM–GM inequality, we
have

x+
9
x
> 2

√
x · 9

x
= 2
√

9 = 6

with equality if and only if x = 9
x , which occurs if and only if x = 3. Hence the minimum

value of x+ 9
x when x > 0 is 6. C

. Exercise 7.1.26

Let x > 0 and let n ∈ N. Find the minimum possible value of
n

∑
k=−n

xk. C
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Exercises 7.1.27 and 7.1.28 complete the proof of the AM–GM inequality (The-
orem 7.1.22). Before proceeding with the exercises, let’s fix some notation: for each
n ∈ N, let pAM–GM(n) be the assertion that the AM–GM inequality holds for collections
of n numbers; that is, pAM–GM(n) is the assertion:

For all x1,x2, . . . ,xn > 0, we have

n

√
n

∏
i=1

xi 6
1
n

n

∑
i=1

xi

with equality if and only if x1 = x2 = · · ·= xn.

Note that we already proved pAM–GM(2).

. Exercise 7.1.27
Let r ∈ N and let x1,x2, . . . ,x2r ∈ R. Write

a =
1
r

r

∑
i=1

xi and g = r

√
r

∏
i=1

xi

for the arithmetic and geometric means, respectively, of the numbers x1, . . . ,xr; write

a′ =
1
r

2r

∑
i=r+1

xi and g′ = r

√√√√ 2r

∏
i=r+1

xi

for the arithmetic and geometric means, respectively, of the numbers xr+1, . . . ,x2r; and
write

A =
1
2r

2r

∑
i=1

xi and G = 2r

√
2r

∏
i=1

xi

for the arithmetic and geometric means, respectively, of all the numbers x1, . . . ,x2r.

Prove that

A =
a+a′

2
and G =

√
gg′

Deduce that, for each r ∈ N, if pAM–GM(r) is true then pAM–GM(2r) is true. Deduce
further than pAM–GM(2m) is true for all m ∈ N. C

. Exercise 7.1.28
Let r > 2 and let x1, . . . ,xr−1 ∈ N. Define

xr =
1

r−1

r−1

∑
i=1

xi

Prove that
1
r

r

∑
i=1

xi = xr
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Assuming pAM–GM(r), deduce that

xr
r >

r

∏
i=1

xi =

(
r−1

∏
i=1

xi

)
· xr

with equality if and only if x1 = x2 = · · · = xr. Deduce that pAM–GM(r) implies
pAM–GM(r− 1). Use Exercise 7.1.27 to deduce further that pAM–GM(n) is true for all
n> 1. C

We now introduce another kind of mean, called the harmonic mean.

F Definition 7.1.29
Let n ∈ N. The harmonic mean of nonzero real numbers x1,x2, . . . ,xn is(

1
n

n

∑
i=1

x−1
i

)−1

=
n

1
x1
+ 1

x2
+ · · ·+ 1

xn

The harmonic mean of two nonzero real numbers x and y has a simpler expression:(
x−1 + y−1

2

)−1

=
2xy

x+ y

The harmonic mean arises naturally when considering rates of change of quantities over
fixed amounts of time.

0 Example 7.1.30
The cities of York and Leeds are located d > 0 miles apart. Two cars drive from York to
Leeds, then immediately turn around and drive back. The two cars depart from York at
the same time and arrive back in York at the same time.

• The first car drives from York to Leeds at a constant speed of u miles per hour, and
drives back to York at a constant speed of v miles per hour.

• The second car drives from York to Leeds and back again at the same constant speed
of w miles per hour.

According to the following formula from physics:

speed× time = distance

the time spent driving by the first car is d
u +

d
v , and the time spent driving by the second

car is 2d
w .

Since the cars spend the same amount of time driving, it follows that

2d
w

=
d
u
+

d
v

⇒ w =
2uv

u+ v

That is, the second car’s speed is the harmonic mean of the two speeds driven by the first
car. C
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As might be expected, we now prove a theorem relating the harmonic means with the
other means we have established so far—this theorem is known as the GM–HM in-
equality.

C Theorem 7.1.31 (Inequality of geometric and harmonic means)
Let n ∈ N and x1,x2, . . . ,xn > 0. Then

n
1
x1
+ 1

x2
+ · · ·+ 1

xn︸ ︷︷ ︸
harmonic mean

6 n
√

x1x2 · · ·xn︸ ︷︷ ︸
geometric mean

with equality if and only if x1 = · · ·= xn.

Proof when n = 2
We need to prove that if x,y > 0, then

2
1
x +

1
y

6
√

xy

This is almost immediate from the AM–GM inequality (Theorem 7.1.22). Indeed, since
all numbers in sight are positive, we can take reciprocals to see that this inequality is
equivalent to the assertion that

1√
xy
6

x−1 + y−1

2

But 1√
xy =

√
x−1y−1, so this is immediate from the AM–GM inequality. �

. Exercise 7.1.32
Prove the GM–HM inequality for general values of n ∈ N. C

Another example of a mean that has applications in probability theory and statistics is
that of the quadratic mean.

F Definition 7.1.33
Let n ∈ N. The quadratic mean (or root-mean-square) of real numbers x1,x2, . . . ,xn is(

1
n

n

∑
i=1

x2
i

) 1
2

=

√
x2

1 + x2
2 + · · ·+ x2

n

n

The following theorem is, predictably, known as the QM–AM inequality (or RMS–AM
inequality); it is a nice application of the Cauchy–Schwarz inequality.
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C Theorem 7.1.34 (Inequality of quadratic and arithmetic means)
Let n > 0 and x1,x2, . . . ,xn > 0. Then

x1 + · · ·+ xn

n︸ ︷︷ ︸
arithmetic mean

6

√
x2

1 + x2
2 + · · ·+ x2

n

n︸ ︷︷ ︸
quadratic mean

with equality if and only if x1 = · · ·= xn.

Proof
Define

~x = (x1,x2, . . . ,xn) and ~y = (1,1, . . . ,1)

Then

x1 + x2 + · · ·+ xn =~x ·~y by definition of scalar product
6 ‖~x‖‖~y‖ by Cauchy–Schwarz

=
√

x2
1 + x2

2 + · · ·+ x2
n ·
√

n evaluating the magnitudes

Dividing through by n yields

x1 + x2 + · · ·+ xn

n
6

√
x2

1 + x2
2 + · · ·+ x2

n

n

as required. Equality holds if and only if equality holds in the Cauchy–Schwarz inequal-
ity, which occurs if and only if

(ax1,ax2, . . . ,axn) = (b,b, . . . ,b)

for some a,b ∈ R not both zero. If a = 0 then b = 0, so we must have a 6= 0. Hence
equality holds if and only if xi =

b
a for all i ∈ [n]—in particular, if and only if x1 = x2 =

· · ·= xn. �

To summarise, what we have proved so far is

harmonic
mean

(7.1.31)
6

geometric
mean

(7.1.22)
6

arithmetic
mean

(7.1.34)
6

quadratic
mean

with equality in each case if and only if the real numbers whose means we are taking are
all equal.

The following exercise allows us to bookend our chain of inequalities with the minimum
and maximum of the collections of numbers.

. Exercise 7.1.35
Let n > 0 and let x1,x2, . . . ,xn be positive real numbers. Prove that

min{x1,x2, . . . ,xn}6
(

1
n

n

∑
i=1

x−1
i

)−1

and max{x1,x2, . . . ,xn}>
(

1
n

n

∑
i=1

x2
i

) 1
2

with equality in each case if and only if x1 = x2 = · · ·= xn. C
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? Generalised means

We conclude this section by mentioning a generalisation of the results we have proved
about means. We are not yet ready to prove the results that we mention; they are only
here for the sake of interest.

F Definition 7.1.36
The extended real number line is the (ordered) set [−∞,∞], defined by

[−∞,∞] = R∪{−∞,∞}

where R is the set of real numbers with its usual ordering, and −∞,∞ are new elements
ordered in such a way that −∞ < x < ∞ for all x ∈ R.

Note that the extended real line does not form a field—the arithmetic operations are not
defined on −∞ or ∞, and we will at no point treat −∞ and ∞ as real numbers; they are
merely elements which extend the reals to add a least element and a greatest element.

F Definition 7.1.37
Let p ∈ [−∞,∞], let n ∈ N, and let x1,x2, . . . ,xn be positive real numbers. The gen-
eralised mean with exponent p (or simply p-mean) x1,x2, . . . ,xn is the real number
Mp(x1,x2, . . . ,xn) defined by

Mp(x1,x2, . . . ,xn) =

(
1
n

n

∑
i=1

xp
i

) 1
p

if p 6∈ {−∞,0,∞}, and by

Mp(x1,x2, . . . ,xn) = lim
q→p

Mq(x1,x2, . . . ,xn)

if p ∈ {−∞,0,∞}, where the notation lim
q→p

refers to the limit as q tends to p, as discussed

in Section B.3.

We can see immediately that the harmonic, arithmetic and quadratic means of a finite set
of positive real numbers are the p-means for a suitable value of p: the harmonic mean is
the (−1)-mean, the arithmetic mean is the 1-mean, and the quadratic mean is the 2-mean.
Furthermore, Proposition 7.1.38 exhibits the minimum as the (−∞)-mean, the geometric
mean as the 0-mean, and the maximum as the ∞-mean.

C Proposition 7.1.38
Let n > 0 and let x1,x2, . . . ,xn > 0. Then

• M−∞(x1,x2, . . . ,xn) = min{x1,x2, . . . ,xn};

• M0(x1,x2, . . . ,xn) = n
√

x1x2 · · ·xn; and

• M∞(x1,x2, . . . ,xn) = min{x1,x2, . . . ,xn}.
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All of the inequalities of means we have seen so far will be subsumed by Theorem 7.1.39,
which compares the p-mean and q-mean of a set of numbers for all values of p,q ∈
[−∞,∞].

C Theorem 7.1.39
Let n > 0, let x1,x2, . . . ,xn > 0 and let p,q ∈ [−∞,∞] with p < q. Then

Mp(x1,x2, . . . ,xn)6Mq(x1,x2, . . . ,xn)

with equality if and only if x1 = x2 = · · ·= xn.

Theorem 7.1.39 implies each of the following:

• HM–min inequality (Exercise 7.1.35): take p =−∞ and q =−1;

• GM–HM inequality (Theorem 7.1.31): take p =−1 and q = 0;

• AM–GM inequality (Theorem 7.1.22): take p = 0 and q = 1;

• QM–AM inequality (Theorem 7.1.34): take p = 1 and q = 2;

• max–QM inequality (Exercise 7.1.35): take p = 2 and q = ∞.
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Section 7.2

Completeness and convergence

For most of the results that we proved in Section 7.1, it did not matter that we were
talking about real numbers. We could just as well have been working with any other
ordered field, such as the rational numbers—that is, most of the results in Section 7.1
remain true by replacing R by Q (or any other ordered field) throughout.

From here onwards, we isolate the property of R that separates it fromQ—namely, com-
pleteness. It is completeness that will allow us to define and explore the fundamental
concepts of mathematical analysis: sequences, functions, convergence, limits, continu-
ity, differentiability, and so on.

The property of completeness concerns least upper bounds for certain sets of real num-
bers.

F Definition 7.2.1
Let A⊆R. A real number m is an upper bound for A if a6m for all a∈A. A supremum
of A is a least upper bound of A; that is, a real number m such that:

(i) m is an upper bound of A—that is, a6 m for all a ∈ A; and

(ii) m is least amongst all upper bounds for A—that is, for all x ∈ R, if a 6 x for all
a ∈ A, then x6 m.

0 Example 7.2.2
We prove that 1 is a supremum of the open interval (0,1).

(i) Let a ∈ (0,1). Then a < 1, so that 1 is an upper bound of (0,1).

(ii) Let x ∈ R be another upper bound of (0,1). If x < 1, then we have

x =
x+ x

2
<

x+1
2

<
1+1

2
= 1

and so x <
x+1

2
∈ (0,1). This contradicts the assumption that x is an upper bound

of (0,1). It follows that x> 1, as required.

Hence 1 is indeed a supremum of (0,1). C

. Exercise 7.2.3
Define the notions of lower bound and infimum, and find the infimum of the open
interval (0,1). C

The following proposition provides a convenient way of testing whether a real number is
a supremum of a subset.

C Proposition 7.2.4
Let A⊆R and suppose m ∈R is an upper bound of A. Then m is a supremum of A if and
only if, for all ε > 0, there exists a ∈ A such that a > m− ε .
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Proof
• (⇒). Suppose m is a supremum of A, and let ε > 0. If there is no a ∈ A such that

a > m−ε , then a6m−ε for all a ∈ A. But this contradicts the assumption that m is a
supremum of a, since m− ε is an upper bound of A that is less than m. So there exists
a ∈ A with a > m− ε , as required.

• (⇐). Suppose that, for all ε > 0, there exists a ∈ A with a > m− ε , and let x ∈ R be
an upper bound of A. In order to prove that m is a supremum of A, we must prove that
m6 x.

Suppose x < m, and define ε = m− x. Then ε > 0, so there exists a ∈ A such that

a > m− ε = m− (m− x) = x

But this contradicts the assumption that x is an upper bound of A. So we must have
m6 x, as required.

�

C Theorem 7.2.5 (Uniqueness of suprema)
Let A be a subset of R. If m1 and m2 are suprema of A, then m1 = m2.

Proof
Since m1 is an upper bound of A and m2 is a supremum of A, we have m2 > m1 by
Definition 7.2.1(ii). Likewise, since m2 is an upper bound of A and m1 is a supremum of
A, we have m1 > m2 by Definition 7.2.1(ii) again. But this implies that m1 = m2. �

An analogous result proves that a subset ofRmay have at most one infimum. This allows
us to introduce the following notation.

F Definition 7.2.6
Let A ⊆ R. The supremum of A, if it exists is denoted by sup(A) (LATEX code:
\mathrm{sup}); the infimum of A, if it exists, is denoted by inf(A) (LATEX code:
\mathrm{inf}).

Now that we are more familiar with suprema, here is the completeness axiom in its full
glory.

C Axiom 7.2.7 (Completeness axiom)
Let A⊆ R be inhabited. If A has an upper bound, then A has a supremum.

The true power of the completeness axiom will become apparent later in the section when
we discuss the existence of limits of sequences of real numbers.

Before we embark on that adventure, we first prove that the rational numbers are not
complete, by exhibiting a subset of Q that has no rational supremum.
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C Proposition 7.2.8
Let A = {x ∈Q | x2 < 2}. Then A does not have a rational supremum.

A quick proof of Proposition 7.2.8 would be to verify that
√

2, which is irrational, is a
supremum of A, and use uniqueness of suprema to deduce that there can be no rational
supremum. However, this is cheating. Failure of completeness is an intrinsic property—
we should be able to prove Proposition 7.2.8 without venturing outside of the realm of
rational numbers at all. That is, we cannot use irrational numbers in our proof. This
makes the proof significantly longer, but significantly more satisfying.

Proof of Proposition 7.2.8
Towards a contradiction, suppose that A has a supremum q.

First note that q > 0. Indeed, 12 < 2, so that 1 ∈ A, and so q> 1 > 0.

Next, we prove that q2 = 2. Indeed:

• Assume q2 < 2, so that 2−q2 > 0. For each n> 1, we have(
q+

1
n

)2

= q2 +
2q
n

+
1
n2

Choose n sufficiently large that 2q
n < 2−q2

2 and
1
n2 <

2−q2

2
. Then by the above, we

observe that (
q+

1
n

)2

< q2 +
2−q2

2
+

2−q2

2
= q2 +(2−q2) = 2

and so q+ 1
n ∈ A. But q+ 1

n > q, so this contradicts the assumption that q is an upper
bound of A.

• Assume q2 > 2, so that q2−2 > 0. For each n> 1, we have(
q− 1

n

)2

= q2− 1
n

(
2q− 1

n

)
Choose n sufficiently large that 1

n < q (< 2q) and 2q
n < q2− 2. Then by the above

work, we observe that(
q− 1

n

)2

> q2− 2q
n

> q2− (q2−2) = 2

Moreover q− 1
n > 0 since 1

n < q.

Suppose that q− 1
n is not an upper bound for A. Then there is some x ∈ A with x > q−

1
n > 0. But then (q− 1

n )
2 < x2 < 2, contradicting the fact that

(
q− 1

n

)2
> 2.

So q− 1
n is an upper bound for A, contradicting the fact that q is a supremum of A.

So we must have q2 = 2. But this is impossible—the proof is identical to that of Propos-
ition 3.3.12, but with all instances of ‘

√
2’ replaced by ‘q’ in the proof.

So {x ∈Q | x2 < 2} has no rational supremum. �
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Sequences of real numbers

The rest of this chapter is dedicated to studying convergence of sequences of real num-
bers. We will use the completeness axiom to find sufficient conditions for a sequence to
converge.

F Definition 7.2.9
A sequence of real numbers is a function x : N→ R. Given a sequence x, we write xn
instead of x(n) and write (xn)n>0, or even just (xn), instead of x : N→ R. The values xn
are called the terms of the sequence, and the variable n is called the index of the term xn.

0 Example 7.2.10
Some very basic but very boring examples of sequences are constant sequences. For
example, the constant sequence with value 0 is

(0,0,0,0,0,0, . . .)

More generally, for fixed a ∈ R, the constant sequence with value a is defined by xn = a
for all n ∈ N. C

0 Example 7.2.11
Sequences can be defined just like functions. For example, there is a sequence defined
by xn = 2n for all n ∈ N. Writing out the first few terms, this sequence is

(1,2,4,8,16, . . .)

C

Sometimes it will be convenient to start the indexing of our sequence from numbers other
than 0, particularly when an expression involving a variable n isn’t defined when n = 0.
We’ll denote such sequences by (xn)n>1 or (xn)n>2, and so on.

0 Example 7.2.12
Let (zn)n>2 be the sequence defined by zn =

(n+1)(n+2)
(n−1)n for all n> 2:(

6,
10
3
,

5
2
,

21
10

, . . .

)
The indexing of this sequence begins at 2, rather than 0, since when n = 0 or n = 1,
the expression (n+1)(n+2)

(n−1)n is undefined. We could reindex the sequence: by letting z′n =

zn+2 for all n > 0, we obtain a new sequence (z′n)n>0 defined by z′n =
(n+3)(n+4)
(n+1)(n+2) whose

indexing starts from 0. Fortunately for us, such matters won’t cause any problems—it’s
just important to make sure that whenever we define a sequence, we make sure the terms
make sense for all of the indices. C

Convergence of sequences

Of particular interest to us will be sequences whose terms get closer and closer to a fixed
real number. This phenomenon is called convergence.
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0 Example 7.2.13
Consider the sequence (yn)n>1 defined by yn =

1
n for all n> 1:(

1,
1
2
,

1
3
,

1
4
,

1
5
, . . .

)
It is fairly clear that the terms yn become closer and closer to 0 as n grows; the following
diagram is a plot of yn against n for a few values of n. C

0 Example 7.2.14
Define a sequence (rn)n>0 by rn =

2n
n+1 for all n ∈N. Some of the values of this sequence

are illustrated in the following table:

n rn decimal expansion
0 0 0
1 1 1
2 4

3 1.333 . . .
3 3

2 1.5
10 20

11 1.818 . . .
100 200

101 1.980 . . .
1000 2000

1001 1.998 . . .
...

...
...

As n increases, the values of rn become closer and closer to 2. C

The precise sense in which the terms of the sequences in Examples 7.2.13 and 7.2.14 ‘get
closer’ to 0 and 2, respectively, is called convergence, which we will define momentarily
in Definition 7.2.15.

First, let’s try to work out what the definition should be for a sequence (xn) to converge
to a real number a.

A naïve answer might be to say that the sequence is ‘eventually equal to a’—that is, after
some point in the sequence, all terms are equal to a. Unfortunately, this isn’t quite good
enough: if it were, then the values rn = 2n

n+1 from Example 7.2.14 would be equal to 2
for sufficiently large n. However, if for some n ∈N we have 2n

n+1 = 2, then it follows that
2n = 2(n+1); rearranging this gives 1 = 0, which is a contradiction.

However, this answer isn’t too far from giving us what we need. Instead of saying that
the terms xn are eventually equal to a, we might want to say that they become infinitely
close to a, whatever that means.

We can’t really make sense of an ‘infinitely small positive distance’ (e.g. Exercise 1.1.41),
so we might instead make sense of ‘infinitely close’ by saying that the terms xn eventually
become as close to a as we could possibly want them to be. Spelling this out, this means
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that for any positive distance ε (LATEX code: \varepsilon) (read: ‘epsilon’)[a] no matter
how small, the terms xn are eventually within distance ε of a. In summary:

F Definition 7.2.15
Let (xn) be a sequence and let a∈R. We say that (xn) converges to a, and write (xn)→ a
(LATEX code: \to), if the following condition holds:

∀ε > 0, ∃N ∈ N, ∀n> N, |xn−a|< ε

The value a is called a limit of (xn). Moreover, we say that a sequence (xn) converges if
it has a limit, and diverges otherwise.

Sometimes, we may write ‘xn → a as n→ ∞’ to mean (xn)→ a; this indicates that the
terms xn approach a as n increases without bound. Take heed of the fact that the symbol
‘∞’ in here does not have meaning on its own—it is simply a means of suggesting that as
the index n gets greater, the values xn of the terms in the sequence get closer to the limit.

Before we move onto some examples, let’s quickly digest the definition of the expression
(xn)→ a. The following table presents a suggestion of how you might read the expression
‘∀ε > 0, ∃N ∈ N, ∀n> N, |xn−a|< ε’ in English.

Symbols English
∀ε > 0. . . For any positive distance ε (no matter how small). . .
. . .∃N ∈ N . . . . . . there is a stage in the sequence. . .
. . .∀n> N. . . . . . after which all terms in the sequence. . .
. . . |xn−a|< ε . . . . are within distance ε of a.

Thus, a sequence (xn) converges to a if ‘for any positive distance ε (no matter how
small), there is a stage in the sequence after which all terms in the sequence are within ε

of a’. After reading this a few times, you should hopefully be content that this definition
captures what is meant by saying that the terms in the sequence are eventually as close
to a as we could possibly want them to be.

We are now ready to see some examples of convergent (and divergent) sequences. When
reading the following proofs, keep in mind the logical structure—that is, the alternating
quantifiers ∀ε . . .∃N . . .∀n . . .—in the definition of (xn)→ a.

C Proposition 7.2.16
The sequence (yn) defined by yn =

1
n for all n> 1 converges to 0.

Proof
By Definition 7.2.15, we need to prove

∀ε > 0, ∃N ∈ N, ∀n> N,

∣∣∣∣1n −0
∣∣∣∣< ε

[a]The lower case Greek letter epsilon (ε) is traditionally used in analysis to denote a positive quantity whose
value can be made arbitrarily small. We will encounter this letter frequently in this section and the next when
discussing convergence.

286



Section 7.2. Completeness and convergence 287

So fix ε > 0. Our goal is to find N ∈ N such that
∣∣ 1

n

∣∣< ε for all n> N.

Let N be any natural number which is greater than 1
ε

. Then for all n> N, we have∣∣∣∣1n
∣∣∣∣= 1

n
since

1
n
> 0 for all n> 1

6
1
N

since n> N

<
1

1/ε
since N >

1
ε

= ε

Hence |yn|< ε for all n> N. Thus we have proved that (yn)→ 0. �

v Remark 7.2.17
The value of N you need to find in the proof of convergence will usually depend on
the parameter ε . (For instance, in Proposition 7.2.16, we defined N to be some natural
number greater than 1

ε
.) This is to be expected—remember that ε is the distance away

from the limit that the terms are allowed to vary after the Nth term. If you make this
distance smaller, you’ll probably have to go further into the sequence before your terms
are all close enough to a. In particular, the value of N will usually grow as the value
of ε gets smaller. This was the case in Proposition 7.2.16: note that 1

ε
increases as ε

decreases. C

0 Example 7.2.18

Let (rn) be the sequence from Example 7.2.14 defined by rn =
2n

n+1
for all n ∈N. We’ll

prove that (rn)→ 2. So fix ε > 0. We need to find N ∈ N such that∣∣∣∣ 2n
n+1

−2
∣∣∣∣< ε for all n> N

To find such a value of n, we’ll first do some algebra. Note first that for all n∈N we have∣∣∣∣ 2n
n+1

−2
∣∣∣∣= ∣∣∣∣2n−2(n+1)

n+1

∣∣∣∣= ∣∣∣∣ −2
n+1

∣∣∣∣= 2
n+1

Rearranging the inequality 2
n+1 < ε gives n+1

2 > 1
ε

, and hence n > 2
ε
−1.

To be clear, what we’ve shown so far is that a necessary condition for |rn−2|< ε to hold
is that n > 2

ε
−1. This informs us what the desired value of N might look like—we will

then verify that the desired inequality holds.
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So define N = 2
ε
−1. For all n> N, we have∣∣∣∣ 2n

n+1
−2
∣∣∣∣= 2

n+1
by the above work

6
2

N +1
since n> N

<
2( 2

ε
−1
)
+1

since N >
2
ε
−1

=
2

2/ε
rearranging

= ε rearranging

Thus, as claimed, we have |rn−2|< ε for all n>N. It follows that (rn)→ 2, as required.
C

. Exercise 7.2.19
Let (xn) be the constant sequence with value a ∈ R. Prove that (xn)→ a. C

. Exercise 7.2.20
Prove that the sequence (zn) defined by zn =

n+1
n+2 converges to 1. C

Here’s a slightly more involved example.

C Proposition 7.2.21
Let r ∈ (−1,1). Then (rn)→ 0.

Proof
If r = 0, then rn = 0 for all n> 1, and so for any ε > 0 and n> 1 we have

|rn−0|= |0|= 0 < ε

so that (rn)→ 0 as required.

So assume r 6= 0 and let a =
1
|r| > 1. Then a = 1+ δ for some δ > 0, so that by the

binomial theorem we have

an = (1+δ )n = 1+nδ +
n

∑
k=2

(
n
k

)
δ

n−k > 1+nδ

for all n> 1.

Now let ε > 0, and let N > 2 be such that 1+Nδ >
1
ε

; any N >
1− ε

δε
will do.

Then for all n> N, we have

|rn| = 1
an 6

1
aN 6

1
1+Nδ

<
1

1/ε
= ε

and so (rn)→ 0, as required. �
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Divergence

Before we go too much further, let’s see some examples of sequences which diverge.
Recall (Definition 7.2.15) that a sequence (xn) converges if (xn)→ a for some a ∈ R.
Spelling this out symbolically, to say ‘(xn) converges’ is to say the following:

∃a ∈ R, ∀ε > 0, ∃N ∈ N, ∀n> N, |xn−a|< ε

We can negate this using the tools of Section 1.3: to say that a sequence (xn) diverges is
to say the following:

∀a ∈ R, ∃ε > 0, ∀N ∈ N, ∃n> N, |xn−a|> ε

In more intuitive terms: for all possible candidates for a limit a ∈ R, there is a positive
distance ε such that, no matter how far down the sequence you go (say xN), you can find
a term xn beyond that point which is at distance > ε away from a.

0 Example 7.2.22
Let (xn) be the sequence defined by xn = (−1)n for all n ∈ N:

(1,−1,1,−1,1,−1, . . .)

We’ll prove that (xn) diverges. Fix a ∈R. Intuitively, if a is non-negative, then it must be
at distance > 1 away from −1, and if a is negative, then it must be at distance > 1 away
from 1. We’ll now make this precise.

So let ε = 1, and fix N ∈N. We need to find n> N such that |(−1)n−a|> 1. We’ll split
into cases based on whether a is non-negative or negative.

• Suppose a> 0. Then −1−a6−1 < 0, so that we have

|−1−a|= a− (−1) = a+1> 1

So let n = 2N +1. Then n> N and n is odd, so that

|xn−a|= |(−1)n−a|= |−1−a|> 1

• Suppose a < 0. Then 1−a > 1 > 0, so that we have

|1−a|= 1−a > 1

So let n = 2N. Then n> N and n is even, so that

|xn−a|= |(−1)n−a|= |1−a|> 1

In both cases, we’ve found n>N such that |xn−a|> 1. It follows that (xn) diverges. C

Example 7.2.22 is an example of a periodic sequence—that is, it’s a sequence that repeats
itself. It is difficult for such sequences to converge since, intuitively speaking, they jump
up and down a lot. (In fact, the only way that a period sequence can converge is if it is a
constant sequence!)
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. Exercise 7.2.23
Let (yn) be the sequence defined by yn = n for all n ∈ N:

(0,1,2,3, . . .)

Prove that (yn) diverges. C

. Exercise 7.2.24
Let r ∈ R. Recall that (rn)→ 0 if |r| < 1 (this was Proposition 7.2.21) and that (rn)
diverges if r =−1 (this was Example 7.2.22). Prove that (rn) diverges if |r|> 1. C

‘Eventually’

Consider the following sequence:(
1, 2, −10, 7,

1√
2
, 0, 0, 0, 0, 0, 0, . . .

)
It takes some nonzero values initially, but after the 5th term in the sequence, it remains
constant with the value 0. For most intents and purposes, we can treat it as a constant
sequence: after a certain point, it is constant, and so any properties involving limits of
constant sequences will also be true of this sequence.

Situations like this arise frequently. For example, we might not need a sequence to be
increasing (Definition 7.2.44)—we might just need it to be increasing after some finite
stage.

We use the word ‘eventually’ to refer to this phenomenon. (In fact, the word ‘eventually’
is a new kind of quantifier!)

F Definition 7.2.25
Let p(x) be a logical formula with free variable x ranging over sequences of real numbers.
We say p((xn)n>0) is eventually true if p((xn)n>k) is true for some k ∈ N.

0 Example 7.2.26
Some examples of the word ‘eventually’ include:

• A sequence (xn) is eventually constant if (xn)n>k is constant for some k ∈ N—that is,
if there is some k ∈ N such that xm = xn for all m,n> k.

• A sequence (xn) is eventually nonzero if there is some k ∈ N such that xn 6= 0 for all
n> k.

• Two sequences (xn) and (yn) are eventually equal if there is some k ∈ N such that
xn = yn for all n> k.

C

0 Example 7.2.27
The definition of (xn)→ a can be equivalently phrased as:
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For all ε > 0, the sequence (xn) eventually satisfies |xn−a|< ε .

This is because ‘∃N ∈N, ∀n>N, |xn−a|< ε’ means precisely that |xn−a| is eventually
less than ε . C

. Exercise 7.2.28
Prove that if a sequence (xn) converges to a nonzero limit, then (xn) is eventually nonzero.
Find a sequence (xn) that converges to zero, but is not eventually nonzero. C

. Exercise 7.2.29
Let (xn) be a sequence and let p(x) be a logical formula. What does it mean to say that
p(xn) is not eventually true? Find a sentence involving the phrase ‘not eventually’ that is
equivalent to the assertion that (xn) diverges. C

The next theorem will allow us to use the word ‘eventually’ in our proofs, without wor-
rying about whether we’re being precise.

C Theorem 7.2.30 (‘Eventually’ preserves conjunction and disjunction)
Let (xn) be a sequence, and let p(x) and q(x) be logical formula with free variable x
ranging over sequences of real numbers.

(a) If p(xn) is eventually true and q(xn) is eventually true, then p(xn)∧q(xn) is eventu-
ally true.

(b) If p(xn) is eventually true or q(xn) is eventually true, then p(xn)∨q(xn) is eventually
true.

Proof
(a) Let k, ` ∈ N be such that p(xn) is true for all n > k and q(xn) is true for all n > `.

Define N = max{k, `}. Then for all n > N, we have p(xn) is true since n > N > k,
and q(xn) is true since n> N > `, so that p(xn)∧q(xn) is true for all n> N. Hence
p(xn)∧q(xn) is eventually true.

(b) Assume that p(xn) is eventually true. Then there is some k ∈ N such that p(xn) is
true for all n> k. But then p(xn)∨q(xn) is true for all n> k, so that p(xn)∨q(xn) is
eventually true. Likewise, if q(xn) is eventually true, then p(xn)∨q(xn) is eventually
true.

�

The next exercise urges you not to become too complacent with your use of the word
‘eventually’.

. Exercise 7.2.31 (‘Eventually’ does not preserve negation)
Find a sequence (xn) and a logical formula p(x) such that p(xn) is neither eventually
true nor eventually false. (Thus ‘p(xn) is eventually false’ does not imply ‘¬p(xn) is
eventually true’.) C

The following proposition justifies our use of ‘eventually’ in proofs regarding limits—it
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implies that limiting behaviour of a sequence is not affected by changing (or completely
disregarding) the finitely many terms at the beginning of the sequence.

C Theorem 7.2.32
Let (xn) and (yn) be sequences. If (xn) and (yn) are eventually equal, then (xn) converges
if and only if (yn) converges and, if (xn)→ a ∈ R, then (yn)→ a as well.

Proof
• First assume that (xn) converges to a ∈ R. We prove that (yn)→ a.

So fix ε > 0. Since (xn)→ a, eventually we have |xn−a|< ε by Example 7.2.27. But
eventually xn = yn, and so we eventually have

|yn−a|= |xn−a|< ε

as required.

• Now assume that (xn) diverges. We prove that (yn) diverges. So let a ∈ R, and fix
ε > 0 such that, for all N ∈ N, we have |xn−a|> ε for some n> N.

Let M ∈ N and define N = max{k,N}, where k ∈ N is such that xn = yn for all n> k.

Since (xn) diverges, there is some n > N such that |xn−a| > ε . But then n > N >M
and

|yn−a|= |xn−a|> ε

so that (yn) diverges.

�

Computing limits

Finding limits of sequences can be tricky. Theorem 7.2.34 makes it slightly easier by say-
ing that if a sequence is built up using arithmetic operations—addition, subtraction, mul-
tiplication and division—from sequences whose limits you know, then you can simply
apply those arithmetic operations to the limits.

In order to prove part of Theorem 7.2.34, however, the following lemma will be useful.

C Lemma 7.2.33
Let (xn) be a sequence of real numbers. If (xn) converges, then (xn) is bounded—that is,
there is some real number k such that |xn|6 k for all n ∈ N.

Proof
Let a ∈ R be such that (xn)→ a. Letting ε = 1 in the definition of convergence, it
follows that there exists some N ∈ N such that |xn−a|< 1 for all n> N. It follows that
−1 < xn−a < 1 for all n> N, and hence −(1−a)< xn < 1+a for all n> N.

Now define
k = max{|x0|, |x1|, . . . , |xN−1|, |1−a|, |1+a|}+1
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For all n < N, we have
−k <−|xn|6 xn 6 |xn|< k

so that |xn|< k. For all n> N, we have

−k <−|1−a|6−(1−a)< xn < 1+a6 |1+a|< k

so that |xn|< k.

Hence |xn|< k for all n ∈ N, as required. �

C Theorem 7.2.34
Let (xn) and (yn) be sequences of real numbers, let a,b ∈ R, and suppose that (xn)→ a
and (yn)→ b. Then

(a) (xn + yn)→ a+b;

(b) (xn− yn)→ a−b;

(c) (xnyn)→ ab; and

(d) ( xn
yn
)→ a

b , so long as b 6= 0.

Proof of (a) and (c)
(a). Fix ε > 0. We need to prove that eventually |(xn + yn)− (a+b)|< ε .

• Since (xn)→ a, we eventually have |xn−a|< ε

2 ;

• Since (yn)→ b, we eventually have |xn−b|< ε

2 .

It follows from the triangle inequality (Theorem 7.1.9) that we eventually have

|(xn + yn)− (a+b)|= |(xn−a)+(yn−b)|6 |xn−a|+ |yn−b|< ε

2
+

ε

2
as required.

(c). This one is a little harder. Fix ε > 0. Since (xn) converges, it follows from
Lemma 7.2.33 that there is some real number k with |xn|< k for all n ∈ N.

• Since (xn)→ a, we eventually have |xn−a|< ε

2|b| ;

• Since (yn)→ b, we eventually have |xn−b|< ε

2k .

Then using the triangle inequality again, eventually we have:

|xnyn−ab|= |xn(yn−b)+b(xn−a)| rearranging
6 |xn(yn−b)|+ |b(xn−a)| by the triangle inequality
= |xn||yn−b|+ |b||xn−a| rearranging
< k|yn−b|+ |b||xn−a| since |xn|< k for all n

< k
ε

2k
+ |b| ε

2|b| (eventually)

= ε rearranging
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Hence (xnyn)→ ab, as required. �

. Exercise 7.2.35
Prove parts (b) and (d) of Theorem 7.2.34. C

Theorem 7.2.34 appears obvious, but as you can see in the proof, it is more complicated
than perhaps expected. It was worth the hard work, though, because we can now compute
more complicated limits formed in terms of arithmetic operations by taking the limits of
the individual components.

The following example uses Theorem 7.2.34 to prove that
( 2n

n+1

)
→ 2 in a much simpler

way than we saw in Example 7.2.18.

0 Example 7.2.36
We provide another proof that the sequence (rn) of Example 7.2.14, defined by rn =

2n
n+1

for all n ∈ N, converges to 2.

For all n> 1, dividing by the top and bottom gives

rn =
2

1+ 1
n

The constant sequences (2) and (1) converge to 2 and 1, respectively; and by Proposi-
tion 7.2.16, we know that ( 1

n )→ 0. It follows that

(rn)→
2

1+0
= 2

as required. C

. Exercise 7.2.37
Let (xn) be a sequence of real numbers converging to a real number a, and let p(x) =
a0 + a1x+ · · ·+ adxd be a polynomial function. Prove that (p(xn))→ p(a), and that(

1
p(xn)

)
→ 1

p(a) if p(a) 6= 0. C

The so-called squeeze theorem provides another means of computing limits. It says that
if we can eventually ‘squeeze’ the terms of a sequence (yn) between terms of two other
sequences that converge to the same limit, then we can deduce that (yn) converges to the
same limit.

C Theorem 7.2.38 (Squeeze theorem)
Let (xn), (yn) and (zn) be sequences of real numbers such that:

(i) (xn)→ a and (zn)→ a; and

(ii) Eventually xn 6 yn 6 zn.

Then (yn)→ a.

Proof
Fix ε > 0. We need to prove that, eventually, |yn−a|< ε .
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Since (xn)→ a and (zn)→ a, we eventually have |xn−a|< ε and |zn−a|< ε .

Fix N ∈ N such that for all n > N we have |yn− a| < ε , |zn− a| < ε and xn < yn < zn.
Given n> N:

• If yn > a, then we have a6 yn 6 zn, and so

|yn−a|= yn−a6 zn−a = |zn−a|< ε

• If yn < a, then we have xn 6 yn 6 a, and so

|yn−a|= a− yn 6 a− xn = |xn−a|< ε

In both cases we have proved |yn−a|< ε . It follows that (yn)→ a. �

0 Example 7.2.39

Fix k > 1. We prove that the sequence
(

1
nk

)
n>1

converges to zero.

Note that nk > n, so that we have 0 < 1
nk 6

1
n for all n ∈ N. We know that ( 1

n )→ 0 by
Example 7.2.13, and (0)→ 0 since it is a constant sequence, so the squeeze theorem
implies that ( 1

nk )→ 0. C

. Exercise 7.2.40
Fix r ∈ N, and let p(x) = a0 +a1x+ · · ·+arxr and q(x) = b0 +b1x+ · · ·+brxr be poly-

nomials with real coefficients. Prove that if br 6= 0, then
(

p(n)
q(n)

)
→ ar

br
. C

Uniqueness of limits

We now prove that a sequence can have at most one limit. This will allow us to talk about
‘the’ limit of a sequence, and introduce notation for the limit of a sequence.

C Theorem 7.2.41 (Uniqueness of limits)
Let (xn) be a sequence and let a,b ∈ R. If (xn)→ a and (xn)→ b, then a = b.

Proof
We’ll prove that |a− b| = 0, which will imply that a = b. To do this, we’ll prove that
|a− b| is not positive: we already know it’s non-negative, so this will imply that it is
equal to zero. To prove that |a− b| is not positive, we’ll prove that it is less than every
positive number.

So fix ε > 0. Then also ε

2 > 0. The definition of convergence (Definition 7.2.15) tells us
that eventually |xn−a|< ε

2 and |xn−b|< ε

2 .
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By the triangle inequality (Theorem 7.1.9), it follows that eventually

|a−b|= |(a− xn)+(xn−b)| by cancelling the xn terms
6 |a− xn|+ |xn−b| by the triangle inequality
= |xn−a|+ |xn−b| by Exercise 7.1.5

<
ε

2
+

ε

2
= ε (eventually)

Since |a− b| < ε for all ε > 0, it follows that |a− b| is a non-negative real number that
is less than every positive real number, so that it is equal to zero.

Since |a−b|= 0, we have a−b = 0, and so a = b. �

Theorem 7.2.41 justifies the following notation.

F Definition 7.2.42
Let (xn) be a convergent sequence. The limit of (xn) is denoted by lim

n→∞
(xn) (LATEX code:

\lim_{n \to \infty}).

[The usual warnings about the symbol ∞ apply.]

0 Example 7.2.43
Proposition 7.2.16 and example 7.2.18 tell us that

lim
n→∞

(
1
n

)
= 0 and lim

n→∞

(
2n

n+1

)
= 2

C

Existence of limits

It is often useful to know that a sequence converges, but not necessary to go to the
arduous lengths of computing its limit. However, as it currently stands, we don’t really
have any tools for proving that a sequence converges other than finding a limit for it! The
remainder of this section is dedicated to deriving tools for finding out when a sequence
does or does not converge, without needing to know exactly what the limit is.

Perhaps the most fundamental result is the monotone convergence theorem (The-
orem 7.2.48), since it underlies the proofs of all the other results that we will prove.
What it says is that if the terms in a sequence always increase, or always decrease, and
the set of terms in the sequence is bounded, then the sequence converges to a limit.

The sequence (rn) from Example 7.2.14, defined by rn =
2n

n+1 for all n∈N, is an example
of such a sequence. We proved that it converged by computing its limit in Example 7.2.18
and again in Example 7.2.36. We will soon (Example 7.2.51) use the monotone conver-
gence theorem to give yet another proof that it converges, but this time without going to
the trouble of first finding its limit.
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Before we can state the monotone convergence theorem, we must first define what we
mean by a monotonic sequence.

F Definition 7.2.44
A sequence of real numbers (xn) is. . .

• . . . increasing if m6 n implies xm 6 xn for all m,n ∈ N;

• . . . decreasing if m6 n implies xm > xn for all m,n ∈ N.

If a sequence is either increasing or decreasing, we say it is monotonic.

0 Example 7.2.45
The sequence (xn) defined by xn = n2 for all n ∈ N is increasing, since for all m,n ∈ N,
if m6 n, then m2 6 n2. To see this, note that if m6 n, then n−m> 0 and n+m> 0, so
that

n2−m2 = (n−m)(n+m)> 0 ·0 = 0

and hence n2 > m2, as required. C

0 Example 7.2.46
The sequence (rn) from Examples 7.2.14 and 7.2.36, defined by rn =

2n
n+1 for all n ∈ N,

is increasing. To see this, suppose m6 n. Then n = m+ k for some k > 0. Now

06 k by assumption

⇔ m2 + km+m6 m2 + km+m+ k adding m2 + km+m to both sides
⇔ m(m+ k+1)6 (m+1)(m+ k) factorising
⇔ m(n+1)6 (m+1)n since n = m+ k

⇔ m
m+1

6
n

n+1
dividing both sides by (m+1)(n+1)

⇔ rm 6 rn by definition of (rn)

Note that the step where we divided through by (m+ 1)(n+ 1) is justified since this
quantity is positive.

It is perhaps useful to add that to come up with this proof, it is more likely that you
would start with the assumption rm 6 rn and derive that k > 0—noting that all steps are
reversible then allows us to write it in the ‘correct’ order. C

. Exercise 7.2.47
Prove that the sequence (5n−n5)n>0 is eventually increasing—that is, there is some k∈N
such that (5n−n5)n>k is an increasing sequence. C

The monotone convergence theorem underlies all of the other tools for proving conver-
gence of sequences that are to follow. It makes essential use of the completeness axiom.
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C Theorem 7.2.48 (Monotone convergence theorem)
Let (xn) be a sequence of real numbers.

(a) If (xn) is increasing and has an upper bound, then it converges;

(b) If (xn) is decreasing and has a lower bound, then it converges.

Proof of (a)
We prove (a) here—part (b) is Exercise 7.2.49.

So suppose (xn) is increasing and has an upper bound. Then:

(i) xm 6 xn for all m6 n; and

(ii) There is some real number u such that u> xn for all n ∈ N.

Condition (ii) tells us that the set {xn | n ∈N} ⊆R has an upper bound. By the complete-
ness axiom, it has a supremum a. We prove that (xn)→ a.

So let ε > 0. We need to find N ∈ N such that |xn−a|< ε for all n> N.

Since a is a supremum of {xn | n ∈ N}, there is some N ∈ N such that xN > a− ε .

Since (xn) is increasing, by (i) we have xN 6 xn for all n > N. Moreover, since a is an
upper bound of the sequence, we actually have xN 6 xn 6 a for all n> N.

Putting this together, for all n> N, we have

|xn−a|= a− xn since xn−a6 0
6 a− xN since xN 6 xn for all n> N

< ε since xN > a− ε

It follows that (xn)→ a, as required. �

. Exercise 7.2.49
Prove part (b) of the monotone convergence theorem (Theorem 7.2.48). That is, prove
that if a sequence (xn) is decreasing and has a lower bound, then it converges. C

0 Example 7.2.50
The monotone convergence theorem can be used to show that many of the sequences
that we have already seen converge, although it doesn’t tell us what their limit is. For
example,

( 1
n

)
converges since it is a decreasing sequence that is bounded below by 0. C

0 Example 7.2.51
Let (rn) be our recurring example sequence from Examples 7.2.14, 7.2.36 and 7.2.46,
defined by rn =

2n
n+1 for all n ∈ N. We proved in Example 7.2.46 that (rn) is increasing.

Moreover, for all n ∈ N we have

rn =
2n

n+1
<

2(n+1)
n+1

= 2

and so (rn) is bounded above by 2. By the monotone convergence theorem, the sequence
(rn) converges. Unfortunately, the monotone convergence theorem does not tell us what
the limit of (rn) is, but we have already computed it twice! C
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. Exercise 7.2.52
Use the monotone convergence theorem to prove that the sequence

( n!
nn

)
converges. C

. Exercise 7.2.53
A sequence (xn) is defined recursively by x0 = 0 and xn+1 =

√
2+ xn for all n> 0. That

is,

xn =

√
2+

√
2+
√
· · ·+

√
2︸ ︷︷ ︸

n ‘2’s

Prove that (xn) converges. C

We now define the notion of a subsequence of a sequence. A subsequence of a sequence
is just like a subset of a set, except we can only pick out terms in a sequence in the order
they appear.

F Definition 7.2.54
Let (xn) be a sequence of real numbers. A subsequence of (xn) is a sequence of the form
(xni)i>0, where ni < n j for all 06 i < j.

In Definition 7.2.54 we were careful to write (xni)i>0 rather than just (xni), because we
wanted to emphasise that the indexing variable is i, rather than n. This is good practice in
any situation where confusion might arise over which variable is the indexing variable.

0 Example 7.2.55
Define a sequence (xn) by xn = (−1)n for all n> 0.

(xn)n>0 = (1,−1,1,−1,1,−1, . . .)

The subsequence (x2i) is the constant sequence with value 1, since for each i> 0 we have
x2i = (−1)2i = 1, and the subsequence (x2i+1) is the constant sequence with value −1,
since for each i> 0 we have x2i+1 = (−1)2i+1 =−1. C

C Theorem 7.2.56
Let (xn) be a sequence, let a∈R, and suppose (xn)→ a. Then every subsequence of (xn)
converges to a.

Proof
Let (xni)i>0 be a subsequence of (xn). We need to prove that (xni)→ a as i→ ∞. To this
end, fix ε > 0. We need to find I > 0 such that |xni −a|< ε for all i> I.

Since (xn)→ a as n→ ∞, there exists some N > 0 such that |xn− a| < ε for all n > N.
Let I > 0 be least such that nI > N. We know that I exists since we have 06 n0 < n1 <
n2 < .. . .

But then for all i> I, we have ni > nI > N, and hence |xni −a|< ε by definition of N.

Hence the subsequence (xni) converges to a, as required. �
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. Exercise 7.2.57
Prove that a subsequence of an increasing sequence is increasing, that a subsequence of
a decreasing sequence is decreasing, and that a subsequence of a constant sequence is
constant. C

We can use the monotone convergence theorem and the squeeze theorem to prove the
following very powerful result, which is related to a notion in the field of topology known
as sequential compactness.

C Theorem 7.2.58 (Bolzano–Weierstrass theorem)
Every bounded sequence of real numbers has a convergent subsequence.

Proof
Let (xn) be a sequence of real numbers and let a,b ∈ R be such that a < xn < b for each
n> 0—the numbers a and b exist since the sequence (xn) is bounded.

Our strategy is as follows. The sequence (xn) is entirely contained inside the interval
[a,b], which has length ` = b− a. Letting c = a+b

2 be the (arithmetic) mean of a and b,
we see that one of the intervals [a,c] or [c,b], or possibly both, must contain infinitely
many terms of the sequence (xn)—but then this defines a subsequence of (xn) which
is entirely contained inside a sub-interval of [a,b] whose length is `

2 . We iterate this
process inductively, obtaining smaller and smaller intervals that contain infinitely many
terms in the sequence (xn). The end-points of these intervals are then bounded mono-
tone sequences—the sequence of lower end-points is increasing, and the sequence of
upper end-points is decreasing. The monotone convergence theorem implies that both
sequences converge. We will prove that they converge to the same limit, thereby ‘trap-
ping’ a subsequence of (xn), which will converge by the squeeze theorem.

Now let’s put our strategy into action. We will define the terms ni, ai and bi by induction
on i, and then verify that the resulting subsequence (xni)i>0 converges.

First, define n0 = 0, a0 = a and b0 = b.

Now fix i> 0 and suppose that the numbers ni, ai and bi have been defined in such a way
that:

(i) xni ∈ [ai,bi];

(ii) xn ∈ [ai,bi] for infinitely many n > ni;

(iii) a j 6 ai < bi 6 b j for all j 6 i; and

(iv) bi−ai =
`
2i .

Write ci =
ai+bi

2 . By condition (ii), it must be case that infinitely many of the terms xn, for
n > ni, are contained in either [ai,ci] or in [ci,bi]. In the former case, define ai+1 = ai and
bi+1 = ci; and in the latter case define ai+1 = ci and bi+1 = bi; and then define ni+1 > ni
such that xni+1 ∈ [ai+1,bi+1].
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Note that conditions (i)–(iv) are satisfied, with i now replaced by i+1. Indeed, (i) and (ii)
are satisfied by definition of ai+1,bi+1 and ni+1. Condition (iii) is satisfied since either
ai+1 = ai or ai+1 =

ai+ci
2 > ai, and likewise for bi+1. Condition (iv) is satisfied since

ci−ai =
ai +bi

2
−ai =

bi−ai

2
=

`/2i

2
=

`

2i+1

and likewise bi− ci =
`

2i+1 .

Since by construction we have ni < ni+1 for each i > 0, we have defined a subsequence
(xni)i>0 of (xn).

Now the sequence (ai) is increasing and is bounded above by b, and the sequence (bi) is
decreasing and is bounded below by a. By the monotone convergence theorem (ai)→ a?

and (bi)→ b? for some a?,b? ∈ R. But moreover we have

`

2i = bi−ai→ b?−a?

Since `
2i → 0, we have b?−a? = 0 by uniqueness of limits, and so a? = b?. Write x? for

the common value of a? and b?.

Finally, we have ai 6 xni 6 bi for all i> 0, so that xni → x? by the squeeze theorem. �

The Bolzano–Weierstrass theorem can be used to prove that a sequence converges by
verifying that its terms get arbitrarily close together. Such sequences are called Cauchy
sequences, and the fact that all Cauchy sequences converge is proved in Theorem 7.2.62.

F Definition 7.2.59
A Cauchy sequence is a sequence (xn) of real numbers such that, for all ε > 0, there
exists N ∈ N such that |xm− xn|< ε for all m,n> N.

0 Example 7.2.60
Let (rn) be our favourite recurring example sequence from Examples 7.2.14, 7.2.36,

7.2.46 and 7.2.51, defined by rn =
2n

n+1
for all n ∈ N. We prove that (rn) is Cauchy.

First note that, given m,n> 1, we have

|rm− rn|=
∣∣∣∣ 2m
m+1

− 2n
n+1

∣∣∣∣= 2|m−n|
(m+1)(n+1)

=
2| 1n − 1

m |
(1+ 1

m )(1+
1
n )

Now fix ε > 0, and let N ∈ N be such that 1
m < ε

2 and 1
n < ε

2 for all m,n > N. Note that
such a value of N exists by Example 7.2.13.

Now let m,n>N. Then | 1n− 1
m |< ε

2 since both 1
m and 1

n are elements of (0, ε

2 ). Moreover
1+ 1

m > 1 and 1+ 1
n > 1. It follows that, for all m,n> N, we have

|rm− rn|<
2 · ε

2
1 ·1 = ε
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Hence (rn) is Cauchy, as claimed. C

The following exercise generalises the previous example.

. Exercise 7.2.61
Prove that every convergent sequence is a Cauchy sequence. C

C Theorem 7.2.62 (Cauchy criterion)
Every Cauchy sequence of real numbers converges.

Proof
Let (xn) be a Cauchy sequence of real numbers.

First note that (xn) is bounded. To see this, note that by definition of Cauchy sequences,
there is some N ∈ N such that |xm− xn|< 1 for all m,n> N. In particular, |xm− xN |< 1
for all m> N. This means that the sequence (xn) is bounded below by

a = min{x0,x1, . . . ,xN−1,xN−1}

and is bounded above by

b = max{x0,x1, . . . ,xN−1,xN +1}

By the Bolzano–Weierstrass theorem (Theorem 7.2.58), the sequence (xn) has a conver-
gent subsequence (xni). Let x? = limi→∞(xni). We prove that (xn)→ x?.

So let ε > 0. Fix M sufficiently large that:

• |xni − x?|< ε

3 for all ni >M; and

• |xn− xm|< ε

3 for all m,n>M.

Such a value of M exists by convergence of (xni) and the Cauchy property of (xn).

Fix n>M, and let i ∈ N be arbitrary such that ni >M. Then we have

|xn− x?|
= |(xn− xM)+(xM− xni)+(xni − x?)| rearranging
6 |xn− xM|+ |xM− xni |+ |xni − x?| by the triangle inequality

<
ε

3
+

ε

3
+

ε

3
by the above properties

= ε

Hence (xn)→ x?, as required. �
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Section 7.3

Series and sums

A series can be thought of as the result of adding up all of the terms in a sequence. The
uses of series inside and outside of mathematics is widespread, particularly in analysis
and statistics. In fact, we will use series repeatedly when we study probability theory in
Chapter 9!

Unfortunately the definition of a series is not quite as simple as ‘the result of adding up
all of the terms in a sequence’. For a start, we haven’t defined what means to add up infin-
itely many numbers, and sometimes this might not even be possible—for example, you
might encounter problems if you try adding up all of the terms in the constant sequence
(1,1,1, . . .).

The definition of a series, then, is that of a formal sum (see Definition 7.3.1). The word
‘formal’ here means that it is an expression that represents a sum, but is not actually
evaluated. So for example

1+1+1+ · · ·
is a series.

We will then separately define what it means for it to be possible to evaluate an infinite
sum represented by a series (Definition 7.3.3); this definition implies that the series 1+
1+1+ · · · is not summable, for example.

F Definition 7.3.1
A (real) series is a formal sum of a sequence (an)n>0, denoted by

∑
n>0

an (LATEX code: \sum_{n \ge 0})

or by
∞

∑
n=0

an (LATEX code: \sum_{n=0}ˆ{\infty}), or even by a0 +a1 +a2 + · · · .

As with sequences, it is possible for a series to be indexed from a different starting
number, like in the next example.

0 Example 7.3.2
The sequence ( 1

k )k>1 defines the series

∑
k>1

1
k
=

1
1
+

1
2
+

1
3
+

1
4
+ · · ·

We will soon see that this series diverges (Theorem 7.3.27), since adding these terms
together one by one yields unboundedly larger and larger real numbers. C

Series in isolation are not particularly useful or interesting. They become so by defining
what it means to evaluate them—at least, when it is possible to do so.
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F Definition 7.3.3

Let N ∈ N. The Nth partial sum of a series ∑
n>0

an is the real number sN =
N

∑
n=0

an.

We say that the series converges if the sequence of partial sums (sN)N>0 converges; in
this case, the sum of the series is the real number lim

N→∞
(sN), also written ∑

n>0
an.

If the sequence of partial sums (sN)N>0 diverges, then we say the series diverges.

0 Example 7.3.4
Consider the series

S = ∑
n>2

(
n
2

)−1

We prove that S converges and its sum is 2.

To see this, note that for all n> 2, we have by Theorem 3.2.17 that(
n
2

)−1

=

(
n(n−1)

2

)−1

=
2

n(n−1)
=

2
n−1

− 2
n

Therefore, for all N > 2, the Nth partial sum of S is given by

sN =
N

∑
n=2

(
n
2

)−1

=

(
2
1
− 2

2

)
+

(
2
2
− 2

3

)
+ · · ·+

(
2

N−1
− 2

N

)
= 2− 2

N

It follows that S = lim
N→∞

(sN) = 2, as required. C

. Exercise 7.3.5

Prove that the series ∑
n>3

(
n
3

)−1

converges, and find its sum. C

0 Example 7.3.6
We prove that the series ∑

n>0
1 diverges. Indeed, for all N ∈ N, we have

N

∑
n=0

= 1+1+ · · ·+1︸ ︷︷ ︸
N+1 times

= N +1

Thus the sequence of partial sums is unbounded, so does not converge to a real number.
C

. Exercise 7.3.7
Prove that the series ∑

n>0
(−1)n diverges. C

The underlying reason why the series in Example 7.3.6 and Exercise 7.3.7 diverge is that
their terms do not get smaller and smaller. We will prove in Theorem 7.3.22 that in order
for a series to converge, its terms must tend to zero.
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C Theorem 7.3.8 (Sum of geometric series)

Let r ∈ (−1,1). Then ∑
n>0

rn =
1

1− r
.

Proof
Given N ∈ N, the Nth partial sum sN of the series is given by by

sN =
N

∑
n=0

rn = 1+ r+ r2 + · · ·+ rN

Note that

rsN =
n

∑
n=0

rn+1 = r+ r2 + · · ·+ rN+1 = sN+1−1

and hence

(1− r)sN = sN− rsN = sN− (sN+1−1) = 1− (sN+1− sN) = 1− rN+1

and hence dividing by 1− r, which is permissible since r 6= 1, yields

sN =
1− rN+1

1− r

Since |r|< 1, we have (rN+1)→ 0 by Proposition 7.2.21, and so

∑
n>0

rn = lim
N→∞

1− rN+1

1− r
=

1−0
1− r

=
1

1− r

as claimed. �

. Exercise 7.3.9
Prove that the series ∑

n>0
rn diverges for all r ∈ R\ (−1,1). C

The next result allows us to add two series together by adding their terms, and to multiply
a series by a constant by multiplying their terms by the constant.

C Theorem 7.3.10 (Linearity of summation)
Let ∑

n>0
an and ∑

n>0
bn be convergent series. Then

(a) The series ∑
n>0

(an +bn) is convergent, and its sum is ∑
n>0

an + ∑
n>0

bn;

(b) For all c ∈ R, the series ∑
n>0

can is convergent, and its sum is c ∑
n>0

an.

Proof of (a)
For (a), note that the partial sums of ∑

n>0
(an +bn) are given by

N

∑
n=0

(an +bn) =
N

∑
n=0

an +
N

∑
n=0

bn
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so we may apply Theorem 7.2.34(a) to obtain

∑
n>0

(an +bn)

= lim
N→∞

(
N

∑
n=0

(an +bn)

)

= lim
N→∞

(
N

∑
n=0

an +
N

∑
n=0

bn

)

= lim
N→∞

(
N

∑
n=0

an

)
+ lim

N→∞

(
N

∑
n=0

bn

)
= ∑

n>0
an + ∑

n>0
bn

as required. �

. Exercise 7.3.11
Prove part (b) of Theorem 7.3.10, and deduce that if ∑

n>0
an and ∑

n>0
bn are convergent

series, then ∑
n>0

(an−bn) converges, and its sum is equal to ∑
n>0

an−∑
n>0

bn. C

Expansions of real numbers in number bases

We now take a brief detour away from the general theory of series to discuss an applica-
tion, namely expansions of real numbers in number bases.

You are likely familiar with decimal expansions of real numbers, for example

1
2
= 0.5,

1
7
= 0.142857142857 . . . ,

√
2 = 1.414213562373 . . .

A decimal expansion is really a series in disguise. For example

0.142857 . . . = 1 · 1
10

+4 · 1
102 +2 · 1

103 +8 · 1
104 +5 · 1

105 +7 · 1
106 + · · ·

Thus when we write out a decimal expansion of a (non-negative, say) real number x as
x = x0.x1x2x3 . . . , what we are really saying is that

x = x0 +∑
i>1

xi ·10−i

where x0 ∈ N and xi ∈ {0,1,2,3,4,5,6,7,8,9} for all i> 1.

We can apply this to other number bases. For example, the binary (base-2) expansion of
1
2 is 0.1 since 1

2 = 1 ·2−1, and the binary expansion of 1
3 is 0.010101 . . . since

0.010101 . . . (2) = ∑
n>1

1
22n =

1
4 ∑

k>0

1
4k =

1
4
· 1

1− 1
4

=
1
3

306



Section 7.3. Series and sums 307

Our goal is to give a precise definition of the base-b expansion of a real number for an
arbitrary number base b > 1.

In order to do this, we must prove that they are well-defined—that is, every real number
has a unique base-b expansion. But wait! It’s not true! Expansions are not quite unique—
for example, we have

0.999 . . . = ∑
i>1

9 ·10−i =
9

10 ∑
k>0

1
10k =

9
10
· 1

1− 1
10

= 1 = 1.000 . . .

Conveniently, the only problem with uniqueness occurs with recurring 0s and recurring
9s: every number that has a decimal expansion with recurring 9s also has one with recur-
ring 0s. More generally, in a base b > 0, recurring ‘b−1’s may be replaced by recurring
0s.

We are now ready to proceed.

C Theorem 7.3.12
Let b ∈ N with b > 1. For all x ∈ [0,∞), there is a unique series ∑

i>0

xi

bi , such that:

(i) x0 ∈ N, and xi ∈ {0,1, . . . ,b−1} for all i> 1;

(ii) The series ∑
i>0

xi

bi converges, and its sum is equal to x; and

(iii) The sequence (xi) is not eventually equal to b−1.

Proof of existence
Fix x> 0. Define integers xi and real numbers yi ∈ [0,1) for i ∈N recursively as follows:

• Let x0 ∈ N be such that x0 6 x < x0 +1, and let y0 = x− x0—note that 06 y0 < 1, as
required.

• Given i∈N, let xi+1 ∈Z such that xi+16 byi < xi+1+1, and let yi+1 = byi−xi+1—note
06 yi+1 < 1 as required.

For all n ∈ N we have

x−
n

∑
i=0

xi

bi =
yn

bn

We can prove this by induction:

• (Base case) We have x− x0

b0 = x− x0 = y0 =
y0

b0 by construction.

• (Induction step) Fix n> 0 and suppose that x−
n

∑
i=0

xi

bi =
yn

bn . Then

x−
n+1

∑
i=0

xi

bi =
yn

bn −
xn+1

bn+1 =
byn− xn+1

bn+1 =
yn+1

bn+1

as required.
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We now verify the conditions in the statement of the theorem.

• Condition (i) is satisfied by construction of the sequence (xi): indeed, we defined xi
to be integers for all i ∈ N, and if i> 1 then the fact that xi ∈ {0,1, . . . ,b−1} follows
from the facts that xi 6 byi−1 < xi +1 and yi ∈ [0,1).

• To see that (ii) holds, note that for all n ∈ N we have

06 x−
n

∑
i=0

xi

bi =
yn

bn <
1
bn

But ( 1
bn )→ 0 by Proposition 7.2.21, and so

n

∑
i=0

xi

bi converges to x.

• To prove (iii), suppose there is some n ∈ N such that xi = b−1 for all i > n. Then

yn = bn

(
x−

n

∑
i=0

xi

bi

)
as we proved above

= bn

(
∑
i>0

xi

bi −
n

∑
i=0

xi

bi

)
by condition (ii)

= bn
∑

i>n+1

xi

bi simplifying

= bn
∑

i>n+1

b−1
bi since xi = b−1 for all i > n

= bn
∑
j>0

b−1
b j+n+1 substituting j = i−n−1

= bn · b−1
bn+1 ∑

j>0

1
b j rearranging

= bn · b−1
bn+1 ·

1
1− 1

b

by Theorem 7.3.8

= 1 simplifying

But this contradicts the fact that yn ∈ [0,1). So we do indeed have that (xi) is not
eventually equal to b−1.

This completes the proof of existence. �

. Exercise 7.3.13
Prove the ‘uniqueness’ part of Theorem 7.3.12—that is, prove that for all x ∈ [0,∞), if

∑
i>0

ui

bi and ∑
i>0

vi

bi

are two series satisfying conditions (i)–(iii) of Theorem 7.3.12, then ui = vi for all i ∈ N.
C

Theorem 7.3.12 justifies the following definition.
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F Definition 7.3.14
Let b > 1. The base-b expansion of a real number x is the unique signed series ±∑

i>0

xi

bi

such that:

(i) x0 ∈ N, and xi ∈ {0,1, . . . ,b−1} for all i> 1;

(ii) The series ∑
i>0

xi

bi converges, and its sum is equal to |x|; and

(iii) The sequence (xi) is not eventually equal to b−1.

To denote the fact that this is the base-b expansion of x, we may also write

x =±x0 .x1x2x3 . . . (b) or x =±drdr−1 . . .d1d0 .x1x2 . . .(b)

where drdr−1 . . .d1d0 is the base-b expansion of |x0| (as in Definition 0.6), and ± is the
sign of x (positive or negative).

The recursive definition of the sequence (xi) in the proof of Theorem 7.3.12 yields an
algorithm for computing base-b expansions.

v Strategy 7.3.15 (Finding base-b expansions of real numbers)
In order to find the base-b expansion of a real number x:

• Let x0 ∈ N be such that x0 6 |x|< x0 +1, and define y0 = |x|− x0.

• For n ∈ N, given xn and yn, let xn+1 ∈ N be such that xn+1 6 byn < xn+1 + 1, and let
yn+1 = byn− xn+1. [Note that the value of xn+1 depends only on the value of yn, not
on xn.]

Then x =±x0.x1x2x3 . . . (b), where ± is ‘+’ if x> 0, and − if x < 0.

0 Example 7.3.16
Let’s find the decimal expansion of 1

3 .

• 06 1
3 < 1, so x0 = 0 and y0 =

1
3 −0 = 1

3 .

• 36 10 · 1
3 < 4, so x1 = 3 and y1 =

10
3 −3 = 1

3 .

• 36 10 · 1
3 < 4, so x2 = 3 and y2 =

10
3 −3 = 1

3 .

• . . . evidently, this pattern repeats. (In fact, this can be proved by induction!)

So 1
3 = 0.33333 . . . . C

0 Example 7.3.17
Now let’s find the decimal expansion of 1

7 .

• 06 1
7 < 1, so x0 = 0 and y0 =

1
7 −0 = 1

7 .
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• 16 10 · 1
7 < 2, so x1 = 1 and y1 =

10
7 −1 = 3

7 .

• 46 10 · 3
7 < 5, so x2 = 4 and y2 =

30
7 −4 = 2

7 .

• 26 10 · 2
7 < 3, so x3 = 2 and y3 =

20
7 −2 = 6

7 .

• 86 10 · 6
7 < 9, so x4 = 8 and y4 =

60
7 −8 = 4

7 .

• 56 10 · 4
7 < 6, so x5 = 5 and y5 =

40
7 −5 = 5

7 .

• 76 10 · 5
7 < 8, so x6 = 7 and y6 =

50
7 −7 = 1

7 .

• . . . and now it repeats with the same pattern, since y6 = y0.

So 1
7 = 0.142857142857 . . . . C

. Exercise 7.3.18
Use Strategy 7.3.15 to find the decimal expansion of 1

6 . C

. Exercise 7.3.19
Use Strategy 7.3.15 to find the binary expansion of 1

7 . C

. Exercise 7.3.20
Prove that between any two distinct real numbers, there is a rational number. C

We will use expansions of real numbers in Chapter 8 to prove that the set of real numbers
is uncountably infinite—that is, even though the sets N of natural numbers and R of real
numbers are both infinite, the size of the infinitude of R is greater than that of N.

Now let’s return to learning about series in the abstract.

Tests for convergence and divergence

Sometimes all we need to know about a series is whether it converges or diverges. In
such cases, it can be very tricky to find an exact value for the sum of the series. We now
develop some techniques for determining whether or not a series converges.

C Theorem 7.3.21 (Cauchy’s convergence test)
A series ∑

n>0
an converges if and only if, for all ε > 0, there is some K ∈ N such that

∣∣∣∣∣ n1

∑
n=n0

an

∣∣∣∣∣< ε for all n1 > n0 > K

Proof
Let (sN)N>0 be the sequence of partial sums of the series. By Theorem 7.2.62, we know
that ∑

n>0
an is convergent if and only if (sN)N>0 is a Cauchy sequence.
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But the assertion that (sN)N>0 is Cauchy is equivalent to the condition in the statement
of this theorem: note that we may replace K by any larger value (in particular, we may
assume K > 1), and so

n1

∑
n=n0

an = sn1 − sn0−1

as required. �

We will use Cauchy’s convergence test frequently in our proofs. One example of how
Cauchy’s convergence test can be put to work is the term test, which is very useful for
proving that a series diverges—in fact, it instantly implies that the series in Example 7.3.6
and Exercise 7.3.7 diverge.

C Theorem 7.3.22 (Term test)
Let S = ∑

n>0
an be a series. If S converges, then (an)→ 0.

Proof
Fix ε > 0. Since S converges, by Cauchy’s convergence test (Theorem 7.3.21) there

exists K ∈ N such that

∣∣∣∣∣ n1

∑
n=n0

an

∣∣∣∣∣< ε for all n1 > n0 > K.

But then for all k > N we have k+1> k > K, and so

|ak| =
∣∣∣∣∣k+1

∑
n=k

an

∣∣∣∣∣ < ε

so that (ak)→ 0, as required. �

0 Example 7.3.23
The series ∑

n>0
n diverges since the sequence (n) does not tend to zero. C

. Exercise 7.3.24
Let a ∈ R. Prove that the series ∑

n>0
a converges if and only if a = 0. C

C Theorem 7.3.25 (Comparison test)
Let ∑

n>0
an and ∑

n>0
bn be series.

(a) If ∑
n>0

an converges and eventually 06 bn 6 an, then ∑
n>0

bn converges; and

(b) If ∑
n>0

an diverges and eventually 06 an 6 bn, then ∑
n>0

bn diverges.

Proof of (a)
Suppose ∑

n>0
an converges and its sum is equal to A. Let N ∈ N be sufficiently large that

06 bn 6 an for all n> N.
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For all L> K > N we have

L

∑
n=0

bn =
K

∑
n=0

bn +
L

∑
n=K+1

bn︸ ︷︷ ︸
>0

>
K

∑
n=0

bn

and so the sequence of partial sums of ∑
n>0

bn is eventually increasing.

Also for all M > N we have

M

∑
n=0

bn =
N

∑
n=0

bn +
M

∑
n=N+1

bn 6
N

∑
n=0

bn +
M

∑
n=N+1

an =
N

∑
n=0

(bn−an)+
M

∑
n=0

an

Moreover an > 0 for all n > M, and so we have

M

∑
n=0

bn 6
N

∑
n=0

(bn−an)+ ∑
n>0

an

Thus the sequence of partial sums of ∑
n>0

bn is eventually bounded above.

By the monotone convergence theorem (Theorem 7.2.48), the sequence of partial sums
of ∑

n>0
bn converges, hence so does the series. �

. Exercise 7.3.26
Prove part (b) of Theorem 7.3.25. C

The next result is a nice example of an indirect use of the term test (Theorem 7.3.22):

although the terms in the series ∑
n>1

1
n

converge to zero, we can manipulate it to bound it

below by a series whose terms are unbounded.

C Theorem 7.3.27 (Divergence of the harmonic series)

The series ∑
n>1

1
n

diverges.

Proof
By rounding up denominators to the next power of 2, we get

1
1
+

1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
+ · · ·> 1

1
+

1
2
+

1
4
+

1
4︸ ︷︷ ︸

=1/2

+
1
8
+

1
8
+

1
8
+

1
8︸ ︷︷ ︸

=1/2

+ · · ·

This diverges since we’re adding 1
2 infinitely many times.

More precisely, define a sequence (an)n>1 by letting an =
1
2k for the least k ∈ N with

1
2k 6

1
n

. Then 06 an 6
1
n

for each n ∈ N.
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Now note that

∑
n>1

an = 1+ ∑
k>0

2k+1

∑
n=2k+1

1
2k+1 = 1+ ∑

k>0
(2k+1−2k) · 1

2k+1 = 1+ ∑
k>0

1
2

which diverges by the term test since ( 1
2 )9 0.

Thus ∑
r>0

1
r

diverges by the comparison test. �

. Exercise 7.3.28
Prove that ∑

n>1
n−r diverges for all real r > 1. C

C Theorem 7.3.29 (Alternating series test)
Let (an) be a sequence such that (an)→ 0 and an> 0 for all n∈N. If (an) is decreasing—
that is, if am > an for all m,n ∈ N with m6 n—then the series ∑

n>0
(−1)nan converges.

Proof
Define sequences (eN) and (oN) by eN = s2N and oN = s2N+1 for all n ∈ N. That is, (eN)
is the sequence of even partial sums, and (oN) is the sequence of odd partial sums.

Then for all N ∈ N, we have

eN+1 = s2N+2 = s2N−a2N+1 +a2N+2 = eN− (a2N+1−a2N+2︸ ︷︷ ︸
>0

) 6 eN

so that (eN) is a decreasing sequence, and

eN = a0−a1 +
N−1

∑
k=1

(a2k−a2k+1︸ ︷︷ ︸
>0

)+ a2N︸︷︷︸
>0

> a0−a1

so that (eN) is bounded below. By the monotone convergence theorem (Theorem 7.2.48),
the sequence (eN) converges.

Likewise, for all N ∈ N, we have

oN+1 = s2N+3 = s2N+1 +a2N+2−a2N+1 = oN +(a2N+2−a2N+1︸ ︷︷ ︸
>0

) > oN

so that (oN) is an increasing sequence, and

oN = a0 +
N

∑
k=0

(a2k+2−a2k+1︸ ︷︷ ︸
60

)−a2N+2︸ ︷︷ ︸
>0

6 a0

so that (oN) is bounded above. By the monotone convergence theorem again, the se-
quence (oN) converges.
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Moreover for all N ∈ N we have

oN− eN = a2N+1 > 0 and eN+1−oN = a2N+2 > 0

so that eN 6 oN 6 eN+1 for all N ∈ N.

But then by the squeeze theorem (Theorem 7.2.38), (eN) and (oN) converge to the same
limit A ∈ R.

Finally, let ε > 0 and let K ∈ N be sufficiently large that |eM−A| < ε and |oM−A| < ε

for all M > K. Then given N > 2K, if N is even then

|sN−A|= |e N
2
−A|< ε

and if N is odd then
|sN−A|= |o N−1

2
−A|< ε

as required. So (sN)→ A, and so the series converges. �

0 Example 7.3.30
The sequence ( 1

n ) is positive and decreasing, so the series

∑
n>1

(−1)n

n
=−1+

1
2
− 1

3
+

1
4
− 1

5
+ · · ·

converges. C

. Exercise 7.3.31
Prove that if (an) is a sequence such that (an)→ 0 and an 6 0 for all n ∈N. Prove that if
(an) is an increasing sequence, then the series ∑

n>0
(−1)nan converges. C

. Exercise 7.3.32
Find a decreasing sequence (an) of non-negative real numbers such that ∑

n>0
(−1)nan

diverges. C

Absolute convergence

F Definition 7.3.33
A series ∑

n>0
an converges absolutely if the series ∑

n>0
|an| converges.

0 Example 7.3.34
For all r ∈ (−1,1), the geometric series ∑

n>0
rn converges absolutely. Indeed, for all r ∈

(−1,1) we have |r| ∈ (−1,1) as well, and so ∑
n>0
|r|n converges by Theorem 7.3.8. C

0 Example 7.3.35
Let ∑

n>0
an be a convergent series.
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If an > 0 for all n ∈ N, then the series absolutely, since |an|= an for all n ∈ N.

Likewise, if an 6 0 for all n ∈ N, then

∑
n>0
|an| = ∑

n>0
(−an) = −∑

n>0
an

by linearity of summation, and so again the series converges absolutely. C

. Exercise 7.3.36
Find a series that converges, but does not converge absolutely. C

. Exercise 7.3.37
Prove Theorem 7.3.10 with ‘convergent’ replaced by ‘absolutely convergent’ throughout.

C

Absolutely convergent series enjoy some properties that are not enjoyed by series that
converge but not absolutely—for example, they do not depend on what order you choose
to add up their terms. We will prove this in Theorem 7.3.42.

The ratio test is useful for proving that a series converges absolutely.

C Theorem 7.3.38 (Ratio test)

Let (an) be a sequence of real numbers, and suppose that
(∣∣∣∣an+1

an

∣∣∣∣)→ `> 0.

(a) If ` < 1, then ∑
n>0

an converges absolutely.

(b) If ` > 1, then ∑
n>0

an diverges.

Proof of (a)
Assume ` < 1, and pick ε with 0 < ε < 1− `. Define r = `+ ε and note that 0 < r < 1.

Since
(∣∣∣∣an+1

an

∣∣∣∣)→ `, there exists N ∈N such that
∣∣∣∣an+1

an
− `

∣∣∣∣< ε for all n>N. But then

06
∣∣∣∣an+1

an

∣∣∣∣< `+ ε = r

Note that for all n> N we have

|an|= |aN |×
∣∣∣∣aN+1

aN

∣∣∣∣×·· ·× an

an−1
< |aN |rn−N

The series
∞

∑
n=N

rn−N converges by Theorem 7.3.8 since r ∈ (−1,1), and so the series

M

∑
n=0
|an| converges by the comparison test, as required. �
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. Exercise 7.3.39
Prove part (b) of Theorem 7.3.38. C

0 Example 7.3.40

Let r ∈ R and consider the series ∑
n>1

rn

n
. Then

∣∣∣∣∣ rn+1

n+1
rn

n

∣∣∣∣∣ = n
n+1

|r| → |r|

By the ratio test, if |r| < 1 then the series converges absolutely, and if |r| > 1 then the
series diverges.

The ratio test tells us notihng about what happens when |r| = 1. However, we already
know: we proved in Theorem 7.3.27 that this series diverges when r = 1, and in Ex-
ample 7.3.30 that it converges when r =−1. C

. Exercise 7.3.41
Use the ratio test to prove that the series ∑

n>0

xn

n!
converges for all x ∈ R. C

C Theorem 7.3.42 (Absolutely convergent series can be reordered)
Let ∑

n>0
an be an absolutely convergent series and let σ : N→ N be a bijection. Then the

series ∑
n>0

aσ(n) converges absolutely, and ∑
n>0

aσ(n) = ∑
n>0

an.

Proof
Write A = ∑

n>0
an. In order to prove ∑

n>0
aσ(n) = A, we need to prove that for all ε > 0,

there is some N ∈ N such that

∣∣∣∣∣ K

∑
n=0

aσ(n)−A

∣∣∣∣∣< ε for all K > N.

So let ε > 0. Then:

(1) Since ∑
n>0

an = A, there is some M1 ∈ N such that

∣∣∣∣∣ L

∑
n=0

an−A

∣∣∣∣∣< ε

2

for all L>M1.

(2) Since ∑
n>0

an converges absolutely, it follows from Cauchy’s convergence test (The-

orem 7.3.21) there is some M2 ∈ N such that

n1

∑
n=n0

|an|<
ε

2

for all n1 > n0 >M2.
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Let M be the greater of M1 and M2.

Now let N ∈ N be such that {0,1, . . . ,M} ⊆ {σ(0),σ(1), . . . ,σ(N)}. This ensures that
the terms a0,a1, . . . ,aM appear amongst the terms aσ(0),aσ(1), . . . ,aσ(N). Such a value
exists since σ is a bijection; for example, we can take N to be the greatest value of
σ−1(i) for i6M. Note that N >M.

It remains to prove that

∣∣∣∣∣ K

∑
n=0

aσ(n)−A

∣∣∣∣∣< ε for all K > N.

So let K > N, let L = max{σ(0),σ(1), . . . ,σ(K)}, and let m0,m1, . . . ,mr ∈ N be such
that the terms in the list a0,a1, . . . ,aL that remain after the terms aσ(0), . . . ,aσ(K) have
been deleted are precisely the terms am0 , am1 , . . . , amr . Thus

K

∑
n=0

aσ(n) =
L

∑
n=0

an −
r

∑
i=0

ami

Note in particular that L > K. Additionally, mi > N for all i 6 r, since we ensured that
the terms a0,a1, . . . ,aM appear amongst the terms aσ(0),aσ(1), . . . ,aσ(N).

By the triangle inequality (Theorem 7.1.9) we have∣∣∣∣∣ K

∑
n=0

aσ(n)−A

∣∣∣∣∣ =
∣∣∣∣∣ L

∑
n=0

an−A−
r

∑
i=0

ami

∣∣∣∣∣ 6
∣∣∣∣∣ L

∑
n=0

an−A

∣∣∣∣∣+
∣∣∣∣∣ r

∑
i=0

ami

∣∣∣∣∣
Now conditions (1) and (2) above give the following:

(1) L> K > N >M >M1, and so

∣∣∣∣∣ L

∑
n=0

an−A

∣∣∣∣∣< ε

2
.

(2) By the triangle inequality again, we have∣∣∣∣∣ r

∑
i=0

ami

∣∣∣∣∣ 6 r

∑
i=0
|ami | 6

L

∑
n=N
|ami | <

ε

2

since L> N >M >M2.

Putting all of this together, we have∣∣∣∣∣ K

∑
n=0

aσ(n)−A

∣∣∣∣∣ 6
∣∣∣∣∣ L

∑
n=0

an−A

∣∣∣∣∣+
∣∣∣∣∣ r

∑
i=0

ami

∣∣∣∣∣ < ε

2
+

ε

2
= ε

as required.

By replacing an with |an| in the above proof, it follows that ∑
n>0
|aσ(n)| converges to the

same limit as ∑
n>0
|an|. In particular, it converges, and so the series ∑

n>0
aσ(n) converges

absolutely. �
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0 Example 7.3.43
Consider the following geometric series

∑
n>0

(−1)n

2n = 1− 1
2
+

1
4
− 1

8
+

1
16
− 1

32
+ · · · = 1

1− (− 1
2 )

=
2
3

As noted in Example 7.3.34, this series converges absolutely. So if we were to add the
terms in any other way, then we’d obtain the same result. For example

1+
1
4
− 1

2
− 1

8
+

1
16

+
1
64
− 1

32
− 1

128
+ · · ·= 2

3

Absolute convergence is what allows us to do this. C

Theorem 7.3.42 allows us to index absolutely convergent series over sets other than N.
This will be useful in Chapter 9, when the numbers we add are probabilities that are more
naturally indexed by the outcomes of a random process than by natural numbers.

F Definition 7.3.44
Let I = {in | n ∈ N} be a set with im 6= in for all m,n ∈ N with m 6= n, and let (ai)i∈I be
an I-indexed sequence of real numbers—formally (ai)i∈I is a function a : I→ R, like in
Definition 7.2.9. The I-indexed series ∑

i∈I
ai is defined by

∑
i∈I

ai = ∑
n>0

ain

Note that, for general sums, the value of ∑
i∈I

ai might depend on how the set I is enu-

merated. However, in practice, we will only use the notation ∑
i∈I

ai when either (i) the

series ∑
n>0

ain converges absolutely, in which case the terms can be reordered however we

like; or (ii) the terms ain are all non-negative, in which case the series either converges
absolutely, or diverges no matter how the elements of I are ordered.

0 Example 7.3.45
Suppose (ak)k∈Z is a sequence of non-negative real numbers. Given n ∈ N, define

in =

{
n
2 if n is even
− n+1

2 if n is odd

Then Z= {in | n ∈ N}= {0,−1,1,−2,2, . . .}, and so

∑
k∈Z

ak = a0 +a−1 +a1 +a−2 +a3 +a−3 + · · · ?
= ∑

i>0
ai +∑

i>1
a−i

as expected. The step (?) implicitly used non-negativity of the terms in the sequence:
either the sequence diverges, or it converges absolutely, in which case we can shuffle the
order of the terms. C
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. Exercise 7.3.46
Let J = { jn | n ∈ N} be a set such that, for all m,n ∈ N, we have jm 6= jn. Let (a j) j∈J be
a J-indexed sequence such that either (i) ∑

j∈J
a j is absolutely convergent, or (ii) a j > 0 for

all j ∈ J. Prove that if there is a bijection σ : I→ J, then ∑
i∈I

aσ(i) = ∑
j∈J

a j. C

Absolutely convergent series can be multiplied using the so-called Cauchy product,
which is a kind of convolution operation on series.

C Theorem 7.3.47 (The Cauchy product)
Let ∑

n>0
an and ∑

n>0
bn be absolutely convergent series. Then the series

∑
n>0

(
n

∑
k=0

akbn−k

)
=

(
∑
i>0

ai

)(
∑
j>0

b j

)

Proof
By linearity of summation we have(

∑
n>0

an

)(
∑
n>0

bn

)
= ∑

i>0

(
∑
j>0

aib j

)
= ∑

(i, j)∈N×N
aib j

Note that this series converges absolutely. Indeed, given ε > 0, since ∑
n>0

an converges

absolutely, there is some N ∈ N such that ∑
i>N
|an|<

ε

∑
j∈N
|b j|

, and then

∑
i>N

∞

∑
j=0
|aib j| = ∑

i>N

(
|ai|

∞

∑
j=0
|b j|
)

< ε

as required.

Now define P = {(n,k) ∈ N×N | k 6 n}, and note that

∑
n>0

(
n

∑
k=0

akbn−k

)
= ∑

(n,k)∈P
akbn−k

The function σ : N×N→ P defined by σ(i, j) = (i+ j, i) is a bijection. Since the series
converges absolutely, we may apply Exercise 7.3.46 to obtain

∑
(n,k)∈P

akbn−k = ∑
(i, j)∈N×N

aib(i+ j)−i = ∑
(i, j)∈N×N

aib j

as required. �
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An example of how the Cauchy product can come in handy is to prove the multiplicativity
of the exponential function, defined in Definition 7.3.48.

F Definition 7.3.48
The exponential function is the function exp : R→ R defined by

exp(x) = ∑
n>0

xn

n!

for all x ∈ R.

Note that the exponential function is well-defined by Exercise 7.3.41.

C Theorem 7.3.49 (Multiplicativity of the exponential function)
Let x,y ∈ R. Then exp(x+ y) = exp(x)exp(y).

Proof
First note that the function

R : {(n,k) ∈ N×N | k 6 n}→ N×N
defined by R(n,k) = (k,n− k) is a bijection. Indeed:

• Let (n,k),(m, `) ∈ N×N with k 6 n and ` 6 m. If (k,n− k) = (`,m− `) then k = `,
and so n− k = m− `, so that m = n. So R is injective.

• Let (a,b) ∈N×N. Then b6 a+b and b = (a+b)−b, and so (a,b) = R(a+b,a). So
R is surjective.

Now we proceed by computation:

exp(x+ y)

= ∑
n>0

(x+ y)n

n!
by definition of exp

= ∑
n>0

n

∑
k=0

1
n!

(
n
k

)
xkyn−k by the binomial theorem (Theorem 3.2.20)

= ∑
n>0

n

∑
k=0

1
k!(n− k)!

xkyn−k by Theorem 3.2.17

= ∑
a>0

∑
b>0

1
a!b!

xayb using the reindexing bijection R

=

(
∑
a>0

xa

a!

)(
∑
b>0

yb

b!

)
by linearity of summation

= exp(x)exp(y) by definition of exp

This is as required. �

. Exercise 7.3.50
Let x ∈ (−1,1). Prove that ∑

n>1
nxn−1 =

1
(1− x)2 . C
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The constant e

We conclude this section by defining e, a mathematical constant used heavily in calculus
and analysis. We will prove that e is irrational.

C Lemma 7.3.51
The series ∑

n>0

1
n!

converges.

Proof
This follows from the ratio test. Indeed

1/(n+1)!
1/n!

=
n!

(n+1)!
=

1
n+1

→ 0

so by the ratio test (Theorem 7.3.38), the series converges. �

F Definition 7.3.52
The real number e, also known as Euler’s constant, is defined by e = exp(1) = ∑

n>0

1
n!

.

The number e, like its more famous cousin π , is one of the fundamental constants of
mathematics. It might seem arbitrary now, but it has remarkable analytic properties that
are beyond the scope of this book.

0 Example 7.3.53
We can prove that 2 < e < 3. Indeed e > 2 since

e >
1
0!

+
1
1!

= 1+1 = 2

To see that e < 3, note that n!> 2n−1 for all n> 1, with strict inequality for n> 2, and so

e <
1
0!

+ ∑
n>1

1
2n−1 = 1+

1
1− 1

2

= 3

C

. Exercise 7.3.54
Prove that exp(x) = ex for all x ∈Q. C

C Theorem 7.3.55
e is irrational.

Proof
Towards a contradiction, suppose that e ∈Q.

Then k!e ∈ Z for some natural number k > 2. Indeed, letting e =
a
b

for some a,b ∈ Z
with b 6= 0, we obtain |b|e =±a ∈N, and so we can take k to be the greatest of 2 and |b|.
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Now observe that

k!e = ∑
n>0

k!
n!

=
k

∑
n=0

k!
n!

+ ∑
n>k+1

k!
n!

Define c = ∑
n>k+1

k!
n!

. We will prove that c ∈ Z and 0 < c < 1, which is a contradiction.

Note that for all n6 k we have n! divides k!, and so
k

∑
n=0

k!
n!
∈ Z. Therefore

c = k!e−
k

∑
n=0

k!
n!
∈ Z

since this is the difference of two integers.

Now all the terms in the sum ∑
n>k+1

k!
n!

are positive, and so

c = ∑
n=k+1

k!
n!

>
k!

(k+1)!
=

1
k+1

> 0

Furthermore, for all n> k+1, we have

k!
n!

=
1×2×·· ·× k
1×2×·· ·× k× (k+1)×·· ·×n

=
1

(k+1)×·· ·×n
6

1
(k+1)n−k

It follows that

c = ∑
n>k+1

k!
n!
6 ∑

n>k+1

1
(k+1)n−k as we just observed

= ∑
r>0

1
(k+1)r+1 substituting r = n− k−1

=
1

k+1 ∑
r>0

1
(k+1)r by linearity

=
1

k+1
· 1

1− 1
k+1

by Theorem 7.3.8

=
1
k

rearranging

< 1 since k > 2

But this implies that 0 < c < 1, which is nonsense since c ∈ Z.

We have arrived at a contradiction, so it follows that e is irrational. �
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Section 7.E

Chapter 7 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Means

7.1. Unit cost averaging is an investment strategy in which an investor invests a fixed
amount of money in an asset in equal instalments over a fixed period of time.

Let a,b ∈R with a < b, let n> 1, and let f : [a,b]→ [0,∞) be such that at time t ∈ [a,b],
an asset is trading at £ f (t) per share. Assume that you invest a total of £M in the asset in

equal instalments of £
M
n

at times t0, t1, . . . , tn−1, where M ∈ [0,∞), n> 1, and ti = a+ i ·
b−a

n
for all 06 i < n.

(a) Prove that the value of the shares that you hold at time b is equal to

£
f (b)

HM
(

f (t0), f (t1), . . . , f (tn−1)
) ·M

where HM(a1,a2, . . . ,an) denotes the harmonic mean of a1,a2, . . . ,an ∈ R.

(b) Under what condition have you made a profit?

Sequences

7.2. Does there exist a sequence (xn) such that (xn+1− xn)→ 0 but (xn) diverges?
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Infinity
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Section 8.1

Countable and uncountable sets

In Section 6.1, we defined what it means for a set to be ‘finite’ in order to capture the
idea that its elements can be listed in such a way that the list has a start and an end. We
did so by observing that a list of the elements of a finite set is essentially the same thing
as a bijection f : [n]→ X for some n ∈ N, with the element f (k) ∈ X playing the role of
the kth element of the list.

We are now interested in infinite sets. We certainly can’t expect a list of all the elements
of an infinite set to end, so the question now is: can its elements be listed if we allow the
list to be infinite? We will call such sets countable sets.

It is perhaps surprising that not every set is countable: some sets are ‘too big’ for their
elements to be listed! We will prove that such uncountable sets exist later in this section.

The precise definition of what it means for a set X to be countable (Definition 8.1.1)
captures the idea that we can list the elements of X one-by-one such that, even if the list
goes on forever, each element of X appears at some finite stage in the list. The list might
or might not be finite; it has a start, but it might not have an end.

To illustrate, consider the following list of the elements of N:

0, 1, 2, 3, 4, . . . , n, n+1, . . .

The list does not end, since N is infinite (Theorem 6.1.24), but nevertheless every natural
number appears at some finite stage along the list.

As another example, consider the set Z of all integers. We might wish to list the elements
of Z in the usual way:

. . . , −(n+1), −n, . . . , −3, −2, −1, 0, 1, 2, 3, . . . , n, n+1, . . .

This does not fulfil our criterion that the list must have a start: it is infinite in both
directions. However, it is still possible to list them, by slotting the negative integers
in-between the non-negative integers:

0, −1, 1, −2, 2, −3, 3, . . . , −n, n, −(n+1), n+1, . . .

This is not how we would usually think about listing the integers, but we have nonetheless
found a way of doing it so that every integer appears at some finite stage on the list.

But specifying a list of the elements of an infinite set X , such that every element of X
appears at some finite stage on the list, is equivalent to specifying a bijection f : N→ X ,
where the element f (k) ∈ X plays the role of the kth element of the list—that is, the
elements of X can be listed as

f (0), f (1), f (2), . . . , f (n), f (n+1),

This motivates the following definition.
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F Definition 8.1.1
A set X is countably infinite if there exists a bijection f : N→ X . The bijection f is
called an enumeration of X . We say X is countable if it is finite or countably infinite.

Some authors prefer to use ‘countable’ to mean ‘countably infinite’, in which case they
would say ‘finite or countable’ to mean ‘countable’.

0 Example 8.1.2
The setN is countably infinite, since by Exercise 2.3.19, the identity function idN :N→N
is a bijection. This enumeration yields the usual list of natural numbers

0, 1, 2, 3, . . . , n, n+1, . . .

C

0 Example 8.1.3
The function f : Z→ N defined for x ∈ Z by

f (x) =

{
2x if x> 0
−(2x+1) if x < 0

is a bijection. Indeed, it has an inverse is given by

f−1(x) =

{
x
2 if x is even
− x+1

2 if x is odd

Hence the set of integers Z is countably infinite. The corresponding list of integers is
given by

0, −1, 1, −2, 2, −3, 3, −4, 4, . . .

which is exactly the list we presented earlier! The fact that f is a bijection ensures that
each integer appears on this list exactly once. C

. Exercise 8.1.4
Prove that the set of all positive integers is countably infinite. C

. Exercise 8.1.5
Prove that the set of all even natural numbers is countably infinite, and that the set of all
odd natural numbers is countably infinite. C

Since the inverse of a bijection is a bijection, we may also prove that a set X is countable
by finding a bijection X → N.

. Exercise 8.1.6
Prove that the function p : N×N→ N defined by p(x,y) = 2x(2y+1)−1 is a bijection.
Deduce that N×N is countable. C

Closure properties of countable sets

Proving that a set is infinite by finding an explicit bijection with the set of natural numbers
can be overly burdensome, so we will now develop some closure properties of countable
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sets. This will allow us to prove that a X set is countable by relating it to sets that we
already know are countable, without having to find a bijection f : N→ X every time.

C Proposition 8.1.7
Let f : X → Y be a bijection. Prove that X is countably infinite if and only if Y is
countably infinite.

Proof
Suppose X is countably infinite. Then there is a bijection g :N→ X . But then f ◦g :N→
X is a composite of bijections, so is bijective, meaning that Y is countably infinite.

Conversely, suppose Y is countably infinite. Then there is a bijection h :N→Y . But then
f−1 ◦h : N→ X is a composite of bijections, so is bijective, meaning that X is countably
infinite. �

. Exercise 8.1.8
Prove if X and Y are countably infinite sets, then X×Y is countably infinite. C

Exercise 8.1.8 allows us to prove that the product of finitely many countably infinite sets
are countably infinite—this is an analogue of (the independent version of) the multiplic-
ation principle (Lemma 6.2.12) for countably infinite sets.

C Proposition 8.1.9 (The product of finitely many countable sets is countable)

Let n> 1 and let X1, . . . ,Xn be countably infinite sets. Then the product
n

∏
i=1

Xi is countably

infinite.

Proof
We proceed by induction on n> 1.

• (Base case) When n = 1 the assertion is trivial: if X1 is countably infinite then X1 is
countably infinite.

• (Induction step) Fix n> 1 and suppose that for any sets X1, . . . ,Xn, the product
n

∏
i=1

Xi

is countably infinite. Fix sets X1, . . . ,Xn+1. Then
n

∏
i=1

Xi is countably infinite by the in-

duction hypothesis, and Xn+1 is countably infinite by assumption, so by Exercise 8.1.8,
the set (

n

∏
i=1

Xi

)
×Xn+1

is countably infinite. But by Exercise 2.3.20 there is a bijection

n+1

∏
i=1

Xi→
(

n

∏
i=1

Xi

)
×Xn+1

and so by Exercise 8.1.8 we have that
n+1

∏
i=1

Xi is countably infinite, as required.

By induction, we’re done. �

328



Section 8.1. Countable and uncountable sets 329

We often just want to know whether a set is countable, rather than countably infinite.
This might be because we only seek an upper bound on how large the set is; or it might
because we already know that the set is infinite, so proving that it is countable suffices.

The following theorem allows us to prove that a set X is countable—that is, finite or
countably infinite—by either surjecting N onto X , or injecting X into N. Using the in-
tuition of Section 6.1, where we compared the sizes of finite sets using injections and
surjections, this says that a set is countable if and only if X is at most as large as N.

C Theorem 8.1.10
Let X be an inhabited set. The following are equivalent:

(i) X is countable;

(ii) There exists a surjection f : N→ X ;

(iii) There exists an injection f : X → N.

Proof
We’ll prove (i)⇔(ii) and (i)⇔(iii).

• (i)⇒(ii). Suppose X is countable. If X is countably infinite, then there exists a bijection
f :N→ X , which is a surjection. If X is finite then there exists a bijection g : [m]→ X ,
where m = |X |> 1. Define f : N→ X by

f (n) =

{
g(n) if 16 n6 m
g(1) if n = 0 or n > m

Then f is surjective: if x ∈ X then there exists n ∈ [m] such that g(n) = x, and then
f (n) = g(n) = x.

• (ii)⇒(i). Suppose there exists a surjection f : N→ X . To prove that X is countable,
it suffices to prove that if X is infinite then it is countably infinite. So suppose X is
infinite, and define a sequence recursively by

� a0 = 0;

� Fix n ∈ N and suppose a0, . . . ,an have been defined. Define an+1 to be the least
natural number for which f (an+1) 6∈ { f (a0), f (a1), . . . , f (an)}.

Define g : N→ X by g(n) = f (an) for all n ∈ N. Then

� g is injective, since if m 6 n then f (am) 6= f (an) by construction of the sequence
(an)n∈N.

� g is surjective. Indeed, given x ∈ X , by surjectivity there exists m ∈N which is least
such that f (m) = x, and we must have an = m for some n 6 m by construction of
the sequence (an)n∈N. So x = f (an) = g(n), and hence g is surjective.

So g is a bijection, and X is countable.

• (i)⇒(iii). Suppose X is countable. If X is countably infinite, then there exists a bijec-
tion f :N→ X , so f−1 : X→N is bijective and hence injective. If X is finite then there
exists a bijection g : [m]→ X , where m = |X |> 1. Then g−1 : X→ [m] is injective. Let
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i : [m]→ N be defined by i(k) = k for all k ∈ [m]. Then i◦g−1 is injective; indeed, for
x,x′ ∈ X we have

i(g−1(x)) = i(g−1(x′))⇒ g−1(x) = g−1(x′)⇒ x = x′

The first implication is by definition of i, and the second is by injectivity of g−1. So
there exists an injection X → N.

• (iii)⇒(i). Suppose there exists an injection f : X → N. To prove that X is countable,
it suffices to prove that if X is infinite then it is countably infinite. Define a sequence
(an)n∈N recursively as follows:

� Let a0 be the least element of f [X ];

� Fix n ∈ N and suppose a0, . . . ,an have been defined. Let an+1 be the least element
of f [X ]\{a0, . . . ,an}. This exists since f is injective, so f [X ] is infinite.

Define g : N→ X by, for each n ∈ N, letting g(n) be the unique value of x for which
f (x) = an. Then

� g is injective. By construction am 6= an whenever m 6= n. Let x,y ∈ X be such
that f (x) = am and f (y) = an. Since f is injective, we must have x 6= y, and so
g(m) = x 6= y = g(n).

� g is surjective. Fix x ∈ X . Then f (x) ∈ f [X ], so there exists m ∈ N such that f (x) =
am. Hence g(m) = x.

So g is a bijection, and X is countably infinite.

Hence the equivalences have been proved. �

In fact, we needn’t even use N as the domain of the surjection or the codomain of the
injection; we can in fact use any countable set C.

. Exercise 8.1.11
Let X be an inhabited set. The following are equivalent:

(i) X is countable;

(ii) There exists an injection f : X →C for some countable set C;

(iii) There exists a surjection f : C→ X for some countable set C.

C

Exercise 8.1.11 is useful for proving the countability of many other sets: as we build up
our repertoire of countable sets, all we need to do in order to prove a set X is countable
is find a surjection from a set we already know is countable to X , or an injection from X
into a set we already know is countable.

This proof technique yields an incredibly short proof of the following counterintuitive
result, which can be interpreted to mean that there are exactly as many rational numbers
as there are natural numbers.
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C Theorem 8.1.12
The set Q of rational numbers is countable.

Proof
Define a function q : Z× (Z\{0})→Q by letting q(a,b) = a

b for all a,b ∈ Z with b 6= 0.

By Example 8.1.3 and Exercise 8.1.8, the set Z× (Z\{0}) is countable.

The function q is surjective by definition of Q—indeed, to say x ∈ Q is precisely to say
that x =

a
b
= q(a,b) for some (a,b) ∈ Z× (Z\{0}).

By Exercise 8.1.11, it follows that Q is countable. �

. Exercise 8.1.13
Let X be a countable set. Prove that

(X
k

)
is countable for each k ∈ N. C

C Theorem 8.1.14 (The union of countably many countable sets is countable)
Let {Xn | n ∈ N} be a family of countable sets. Then the set X defined by

X =
⋃

n∈N
Xn

is countable.

Proof
We may assume that the sets Xn are all inhabited, since the empty set does not contribute
to the union.

For each n∈N there is a surjection fn :N→Xn. Define f :N×N→X by f (m,n)= fm(n)
for all m,n ∈ N. Then f is surjective: if x ∈ X then x ∈ Xm for some m ∈ N. Since fm is
surjective, it follows that x = fm(n) for some n ∈ N. But then x = f (m,n). Since N×N
is countable, it follows from Exercise 8.1.11 that X is countable. �

0 Example 8.1.15
Let X be a countable set. The set of all finite subsets of X is countable. Indeed, the set of

all finite subsets of X is equal to
⋃
k∈N

(
X
k

)
, which is a union of countably many countable

sets by Exercise 8.1.13, so is countable by Theorem 8.1.14. C

Uncountable sets

We have now seen plenty of examples of countable sets. It is not immediately obvious
that not every set is countable. How do we know that there are sets out there whose
elements can’t be listed?

We prove in Theorem 8.1.16 that there exists an uncountable set, namely the power set of
the natural numbers. The proof is deceptively simple, but the implications are important.
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C Theorem 8.1.16
P(N) is uncountable.

Proof
We proved in Exercise 2.3.16 that no function f : N→P(N) is surjective. Specifically,
given f : N→P(N), we can show that the element

B = {k ∈ N | k 6∈ f (k)} ∈P(N)

is not equal to f (n) for any n ∈ N. It follows from Exercise 8.1.11(iii) that P(N) is
uncountable. �

The argument used in Theorem 8.1.16 is an example of Cantor’s diagonal argument, and
is typical .

C Theorem 8.1.17
Let X be a set, and assume that for every function f : N→ X , there is:

(i) A family of logical formulae pn(x) with x ∈ X , one for each n ∈ N; and

(ii) An element b ∈ X ;

such that ∀n ∈ N, [pn(b)⇔¬pn( f (n))]. Then X is uncountable.

Proof
We prove that no function f : N→ X is surjective. So let f : N→ X be an arbitrary
function and let pn(x) and b ∈ X be as in the statement of the theorem.

To see that f is not surjective, assume towards a contradiction that b = f (k) for some
k ∈ N.

• If pk(b) is true, then pk( f (k)) is true since b = f (k), and ¬pk( f (k)) is true since
pk(b)⇒¬pk( f (k)). This is a contradiction.

• If ¬pk(b) is true, then ¬pk( f (k)) is false since b = f (k), and so pk(b) is true since
[¬pk( f (k))]⇒ pk(b). This is a contradiciton.

In both cases we arrive at a contradiction. So b 6= f (k) for any k ∈ N, and so f is not
surjective.

Hence X is uncountable by Exercise 8.1.11(iii). �

v Strategy 8.1.18 (Cantor’s diagonal argument)
In order to prove that a set X is uncountable, it suffices to prove that no function f :N→X
is surjective using the following argument: given a function f : N→ X , find an element
b ∈ X that ‘disagrees’ with each value f (n) about some statement involving n.

0 Example 8.1.19
In the proof of Theorem 8.1.16, we proved that P(N) is uncountable as follows. Given
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f : N→P(N), we needed to find an element B ∈P(N)—that is, a subset B⊆ N—that
‘disagreed’ with each value f (n) about something involving n.

Keep in mind that, for each n∈N, the element f (n)∈P(N) is a subset of N, so it makes
sense to ask whether n is an element of f (n) or not.

With this in mind, for each n ∈ N, we forced B to disagree with f (n) about whether n is
an element. That is

n ∈ B ⇔ n 6∈ f (n)

In the language of Theorem 8.1.17, the statement pn(U) (for n ∈N and U ∈P(N) is the
statement ‘n ∈U’; for each n ∈ N, this statement is true with U = B if and only if it is
false with U = f (n).

The definition B = {k ∈ N | k 6∈ f (k)} forces n ∈ B⇔ n 6∈ f (n) to be true for all n ∈ N,
and so Cantor’s diagonal argument applies. C

Cantor’s diagonal argument can also be used to prove that R is uncountable by consider-
ing the decimal expansions of real numbers (Definition 7.3.14).

C Theorem 8.1.20
R is uncountable.

Proof
Let f : N→ R be an arbitrary function. We prove that f is not surjective.

For each n ∈ N, let the decimal expansion of f (n) ∈ R be xn
0 .x

n
1xn

2xn
3 . . .—that is

f (n) = ∑
i>0

xn
i ·10−i

[The superscript ‘n’ here is a label, not an exponent.]

We define b∈R by forcing the decimal expansions of b and f (n) to differ in the nth place
for each n ∈ N. Specifically, for each n ∈ N let

bn =

{
0 if xn

n 6= 0
1 if xn

n = 0

and let b = b0.b1b2b3 . . . = ∑
i>0

bi ·10−i.

Note that b does not have recurring 9s, so it is a valid decimal expansion of a real number.
Moreover b 6= f (n) for any n ∈ N by uniqueness of decimal expansions of real numbers
(Theorem 7.3.12), since bn 6= xn

n.

Hence f is not surjective, so that R is uncountable. �

. Exercise 8.1.21
Use Cantor’s diagonal argument to prove that the set NN of all functions N→ N is un-
countable. C
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Using Cantor’s diagonal argument every time we want to prove that a set is uncountable
can be cumbersome. However, just like with, Theorem 8.1.10, we can prove that sets are
uncountable by relating them to other sets that we already know are uncountable.

C Theorem 8.1.22
Let X be a set. The following are equivalent:

(a) X is uncountable;

(b) There exists a surjection f : X →U for some uncountable set U ;

(c) There exists an injection f : U → X for some uncountable set U .

Proof
For (i)⇒(ii) and (i)⇒(iii), take U = X and f = idX .

For (ii)⇒(i), suppose that there is a surjection f : X →U for some uncountable set U .
Then

For (iii)⇒(i), suppose there is an injection f : U → X for some uncountable set U . If X
were countable, there would be an injection g : X → N by Theorem 8.1.10(iii); but then
g◦ f : U → N would be an injection, contradicting the fact that U is uncountable. �

C Proposition 8.1.23
The set {0,1}N of all functions N→{0,1} is uncountable.

Proof
Define F : P(N)→ {0,1}N for U ⊆ N by letting F(U) = χU : N→ {0,1} be the char-
acteristic function of U (Definition 2.2.24).

Given U,V ⊆ N, we have

F(U) = F(V ) ⇒ χU = χV ⇒ U =V

by Theorem 2.2.26. But then F is injective, and P(N) is uncountable by Cantor’s the-
orem, so that {0,1}N is uncountable by Theorem 8.1.22. �

. Exercise 8.1.24
Prove that if a set X has an uncountable subset, then X is uncountable. C

. Exercise 8.1.25
Let X be a set. Prove that P(X) is either finite or uncountable. C

Detecting countability

We have now seen several examples of countable and uncountable sets. But being able
to prove that a set is countable, or that a set is uncountable, only gets us so far—it will be
beneficial to gain some intuition for how to detect whether a set is countable or uncount-
able.

We now work towards proving the following heuristic:
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A set is countable if each of its elements has a finite description.

Before we make this precise, let’s see this heuristic in action. Consider some of the sets
that we have already seen are countable:

• The set N is countable; every natural number can be expressed as a finite string of
digits, so has a finite description—for example, 7 or 15213.

• The set Z is countable; every integer has a finite description as a finite string of digits,
possibly modified by a minus sign—for example, 7 or −15213.

• The set Q is countable; every rational number has a finite description as a pair of
integers (which themselves have finite descriptions), one atop the other, separated by
a horizontal line—for example, 7

1 or −15213
21128 .

• The set of all finite subsets of N is countable; every finite subset of N has a finite
expression in list notation by writing an open curly bracket ‘{’, followed by a finite
number of natural numbers (which themselves have finite expressions) separated by
commas, and finally writing a closed curly bracket ‘}’—for example {15,0,281} or
{}.

Now consider some of the sets that we know (or have been told) are uncountable:

• The set P(N) is uncountable; intuitively, the infinite subsets of N cannot be expressed
finitely in a uniform way.

• The set R is uncountable; intuitively, there is no uniform way of finitely describing
real numbers—for example, decimal expansions are no good since they are infinite.

F Definition 8.1.26
Let Σ be a set. A word over Σ is an expression of the form a1a2 . . .an, where n ∈ N
and ai ∈ Σ for all i ∈ [n]. The natural number n is called the length of the word. The
unique word of length 0 is called the empty word, and is denoted by ε (LATEX code:
\varepsilon).

The set Σ is called the alphabet. The set of all words over Σ is denoted by Σ∗ (LATEX
code: \Sigmaˆ*); the operation (−)? is called the Kleene star.

Formally, Σ∗ is defined to be the union
⋃

n∈N
Σ

n, where the sets Σn are recursively defined

by
Σ

0 = {ε} and Σ
n+1 = {wa | w ∈ Σ

n, a ∈ Σ} for all n> 0

That is, given n ∈ N, the elements of Σn are precisely the words over Σ of length n.

0 Example 8.1.27
The elements of {0,1}∗ are precisely the finite binary strings:

{0,1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .}
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Likewise, the elements of {0,1,2,3,4,5,6,7,8,9}∗ are the finite strings of the base-10
digits. Keep in mind, though, that formally the elements of this string are words and
not numbers, and that two words may correspond with the same natural number—for
example 123 and 00123 are distinct elements of {0,1,2,3,4,5,6,7,8,9}∗, despite the
fact that they both represent the same natural number. C

. Exercise 8.1.28
Let Σ = {0,1,2,3,4,5,6,7,8,9,÷,−}. Describe which words over Σ immediately rep-
resent rational numbers (in the sense of treating the digit symbols as numbers and the
symbols ÷ and − as arithmetic operations). Find some examples of elements of Σ∗ that
do not represent rational numbers. C

. Exercise 8.1.29
Let Σ be an alphabet. Prove that if Σ is countable, then Σ∗ is countable. C

As hinted by Example 8.1.27, we can use words over sets to make precise what we mean
by ‘finite description’.

The idea is that finitely describing the elements of a set X amounts to defining a function
D : X → Σ∗ for some set Σ; given x ∈ X , the word D(x) ∈ Σ∗ can be thought of as a finite
description of the element x ∈ X .

But D cannot be any old function—if two elements of X have the same description, then
they should be equal. That is

∀x,y ∈ X , D(x) = D(y)⇒ x = y

But this says exactly that D must be injective!

F Definition 8.1.30
Let X be a set and let Σ be an alphabet. A finite description of the elements of X over Σ

is an injection D : X → Σ∗.

0 Example 8.1.31
Let F (N) be the set of all finite subsets of N. We already know that this set is countable
by Example 8.1.15; now we exhibit a finite description of its elements.

Let Σ =
{

0,1,2,3,4,5,6,7,8,9, { , } , ,
}

—that is, the elements of the alphabet Σ are
the digits 0 through 9, an open curly bracket, a closed curly bracket and a comma. (The
curly brackets and comma are boxed to distinguish them from the same symbols used in
the list notation describing Σ.)

Define D : F (N)→ Σ∗ by letting D(U) be the expression of the finite set U ⊆ N in list
notation, with its elements listed in increasing order. This ensures well-definedness of
D—for example

{1,2,3}= {2,3,1} but D({1,2,3}) = D({2,3,1}) = {1,2,3}

But then D is injective: given finite subsets U,V ⊆ N, if D(U) = D(V ), then U and V
have identical expressions in list notation—this means that they have the same elements,
so they are equal! C
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0 Example 8.1.32
Every set has a trivial finite description, taking the set itself to be the alphabet. Indeed,
the function D : X → X∗ defined by D(x) = x for all x ∈ X is evidently an injection! C

Example 8.1.32 raises the point that if we want to prove that a set is countable by showing
that its elements have finite descriptions, then we must place some restrictions on the
alphabets that we may use. For example, the alphabet that we used in Example 8.1.31 is
finite—it has 13 elements.

. Exercise 8.1.33
Give an explicit finite description of the rational numbers over a finite alphabet. C

. Exercise 8.1.34
Let C (N) be the set of all cofinite subsets of N; that is

C (N) = {U ⊆ N | N\U is finite}

Give an explicit finite description of the elements of C (N) over a finite alphabet. C

C Theorem 8.1.35
Let X be a set. Then X is countable if and only if there is a finite description of the
elements of X over a countable alphabet.

Proof
If X is countable, then we may take X itself to be our alphabet! The function D : X → X∗

defined by D(x) = x for all x ∈ X is evidently injective.

Conversely, if there is an injection D : X → Σ∗ for some countable alphabet Σ, then Σ∗ is
countable by Exercise 8.1.29, and so X is countable by Exercise 8.1.11(ii). �

0 Example 8.1.36
In light of Theorem 8.1.35, we may deduce from Example 8.1.31 and Exercises 8.1.33
and 8.1.34 that F (N), Q and C (N) are all countable sets. C

. Exercise 8.1.37
Prove that the set of all polynomials with rational coefficients is countable. C

. Exercise 8.1.38
Consider the following argument that claims to be a proof that P(N) is uncountable. (It
isn’t.)

Let Σ=
{
N,x,U,V, | , ∈ , { , }

}
—again, we have boxed some symbols to em-

phasise that they are elements of Σ.

Define D : P(N)→ Σ∗ by

D(U) = {x ∈ N | x ∈U} and D(V ) = {x ∈ N | x ∈V}

for all U,V ⊆ N. Then Σ is finite, and D is injective since for all U,V ⊆ N we
have

D(U) = D(V ) ⇒ {x ∈ N | x ∈U}= {x ∈ N | x ∈V} ⇒ U =V
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Since D is a finite description of the subsets of N over a finite alphabet, it follows
from Theorem 8.1.35 that P(N) is countable. �

This proof cannot be valid, since we know that P(N) is uncountable. Where in the proof
did we go wrong? C

. Exercise 8.1.39
Suppose we were to attempt to prove that P(N) is countable using the same argument
as Example 8.1.31. Where does the proof fail? C

. Exercise 8.1.40
Prove that, for every countable set X , there is a finite description of the elements of X
over a finite alphabet. C
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Section 8.2

Cardinality

Section 6.1 was all about defining a notion of size for finite sets, and using this definition
to compare and contrast the sizes of finite sets by constructing injections, surjections and
bijections between them.

We made some progress in comparing the sizes of infinite sets in Section 8.1, but only to a
certain extent: at this point, we can only distinguish between two sizes of infinity, namely
‘countable’ and ‘uncountable’. While this is interesting, we can do much better—that is
where this section comes in.

The cardinality (defined in Definition 8.2.1) of a set can be understood as a measure of
its size, generalising the notion of size for finite sets. In particular:

• Whereas the size of a finite set X is a natural number |X | ∈ N, the cardinality of an
arbitrary set is a cardinal number—but if the set happens to be finite, then this cardinal
number is equal to the natural number given by its size.

• We proved in Theorem 6.1.13 that two finite sets X and Y have equal size if and only if
there is a bijection X → Y . We generalise this fact to arbitrary sets by building it into
the definition of cardinality: that is, two sets X and Y will have equal cardinality if and
only if there is a bijection X → Y .

Without further ado, behold the definition of cardinality.

F Definition 8.2.1
The cardinality of a set X is an element |X | of the collection Card (LATEX code:
\mathsf{Card}) of all cardinal numbers, defined so that the following properties hold:

(i) For every set X , there is a unique cardinal number κ ∈ Card such that |X |= κ;

(ii) For all sets X and Y , we have |X |= |Y | if and only if there exists a bijection X→Y ;

(iii) N⊆ Card, and if X is finite, then its cardinality |X | is equal to its size; and

(iv) For each cardinal number κ , there exists a set [κ] with |[κ]| = κ , with [n] defined
as in Definition 2.1.9 for all n ∈ N⊆ Card.

A cardinal number κ ∈ Card\N is called an infinite cardinal number.

Condition (iii) ensures that cardinality generalises the notion of size: whereas size is
defined only for finite sets, cardinality is defined for both finite and infinite sets.

Definition 8.2.1 tells us only what properties cardinal numbers satisfy; it doesn’t tell us
what they actually are, how they are defined, or even whether they exist. This is on
purpose: the construction of the cardinal numbers is very intricate, and far beyond the
scope of this introductory textbook.
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One cardinal number of interest to us is the cardinality of the natural numbers. In a sense
that we will make precise later (Theorem 8.2.13), we can think of this cardinal number
as being the smallest infinite cardinal number.

F Definition 8.2.2
The cardinal number ℵ0 (LATEX code: \aleph_0), called aleph naught (or aleph null),
is defined by ℵ0 = |N|.

The symbol ℵ is the Hebrew letter aleph. The cardinal number ℵ0 is the first infinite
cardinal number in a hierarchy of so-called well-orderable cardinals.

0 Example 8.2.3
A set X is countably infinite if and only if |X | = ℵ0. Indeed, to say that X is countably
infinite is to say that there is a bijectionN→X , which by Definition 8.2.1(ii) is equivalent
to saying that ℵ0 = |N|= |X |. C

In light of Example 8.2.3, we have

|N|= |Z|= |Q|= ℵ0

So what about R? We know that |R| 6= ℵ0 by Theorem 8.1.20. The cardinality of the
real numbers has its own notation, given next.

F Definition 8.2.4
The cardinality of the continuum is the cardinal number c (LATEX code:
\mathfrak{c}) defined by c= |R|.

. Exercise 8.2.5
Consider the function f : R→ (−1,1) defined by

f (x) =
x

1+ |x|

for all x ∈ R. Prove that f is a bijection, and deduce that |(−1,1)|= c. C

. Exercise 8.2.6
Let a,b ∈ R with a < b. Prove that each of the sets (a,b), [a,b), (a,b] and [a,b] has
cardinality c. C

Ordering the cardinal numbers

In Theorem 6.1.13 we proved that, given finite sets X and Y , we can prove that |X |6 |Y |
by constructing an injection X → Y . This made intuitive sense: for an injection X → Y
to exist, there must be sufficiently many elements in Y to be able to spread out all of the
elements of X .

The intuition bestowed upon us by the finite case yields the following definition.
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F Definition 8.2.7
Given cardinal numbers κ and λ , we say that κ is less than or equal to λ , and write
κ 6 λ , if there exists an injection [κ]→ [λ ]. We say κ is less than λ , and write κ < λ ,
if κ 6 λ and κ 6= λ .

A word of warning is pertinent at this point. Given m,n ∈ N, but regarding m and n
as cardinal numbers, Definition 8.2.7 defines the expression ‘m 6 n’ to mean that there
exists an injection [m]→ [n]. This is not how ‘m 6 n’ is typically defined for natural
numbers m and n. Fortunately for us, we proved in Theorem 6.1.6 that m 6 n (in the
usual sense) if and only if there is an injection [m]→ [n]. This ensures that these two
notions of ‘6’—for cardinal numbers and for natural numbers—are consistent with one
another.

This is typical for the definitions we will make involving cardinal numbers, particularly
in Section 8.3: results that we proved for natural numbers in Chapter 6 will be general-
ised to form definitions for cardinal numbers, but then these generalised definitions are
consistent with the usual definitions for natural numbers. While it is not worth losing
sleep over these matters, it is good practice to check that the definitions we make are not
mutually contradictory!

We may at times write λ > κ to mean κ 6 λ , and λ > κ to mean κ < λ . Note that λ > κ

should not be interpreted to mean ‘there exists a surjection [λ ]→ [κ]’—for example, that
would imply that 1> 0 is false, which is nonsense.

In any case Definition 8.2.7 provides the following proof strategy.

v Strategy 8.2.8
Let X and Y be sets.

• In order to prove |X |6 |Y |, it suffices to find an injection X → Y .

• In order to prove |X |< |Y |, it suffices to find an injection X → Y , and prove that there
does not exist a surjection X → Y .

0 Example 8.2.9
ℵ0 6 c. To see this, note that the function i : N→ R given by i(n) = n for all n ∈ N is an
injection. C

. Exercise 8.2.10
Prove that n < ℵ0 for all n ∈ N. C

. Exercise 8.2.11
Prove that 6 is a reflexive, transitive relation on Card. That is, prove that:

(a) κ 6 κ for all cardinal numbers κ; and

(b) For all cardinal numbers κ,λ ,µ , if κ 6 λ and λ 6 µ , then κ 6 µ .

C
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C Theorem 8.2.12 (Cantor’s theorem)
Let X be a set. Then |X |< |P(X)|.

Proof
The function x 7→ {x} evidently defines an injection X →P(X), so |X |6 |P(X)|. The
fact that |X | 6= |P(X)| is then immediate from Exercise 2.3.16, which proves that no
function X →P(X) is surjective. �

Cantor’s theorem implies that there is no bound on how large a cardinal number can be.
Indeed, if κ is any cardinal number, then Cantor’s theorem implies that

κ = |[κ]|< |P([κ])|

and so |P([κ])| is a larger cardinal number yet.

Earlier in the section we claimed that ℵ0 is, in a suitable sense, the smallest infinite
cardinal number. Theorem 8.2.13 makes it clear what we mean by this.

C Theorem 8.2.13
The cardinal number ℵ0 is the smallest infinite cardinal in the following sense:

(a) n6ℵ0 for all n ∈ N; and

(b) For all cardinal numbers κ , if n6 κ for all n ∈ N, then ℵ0 6 κ .

Thus ℵ0 can be thought of as the cardinal supremum of N⊆ Card.

Proof
For part (a), note that for each n ∈ N, we have [n] ⊆ N, and so the function i : [n]→ N
given by i(k) = k for all k ∈ [n] is an injection. It follows that

n = |[n]|6 |N|= ℵ0

as required.

For part (b), fix a cardinal number κ and assume that n 6 κ for all n ∈ N. Then there
exist injections jn : {0,1, . . . ,n}→ [κ] for each n ∈ N.

We will use these injections to construct an injection f : N→ [κ] in the following way:
each function jn : {0,1, . . . ,n} → [κ] takes exactly n+ 1 values. This means that for
all n ∈ N, the function jn+1 takes at least one value in [κ] that the function jn does not
take—we will define f (n+1) to be one of these values.

Now let’s define f properly: define f (n) ∈ [κ] for n ∈ N recursively as follows:

• f (0) = j0(0) ∈ [κ].

• Fix n ∈ N and suppose f (k) has been defined for all k 6 n, such that f (k) 6= f (`) for
` < k. Let

A = {a6 n+1 | jn+1(a) 6= f (k) for all k 6 n}
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Note that A is inhabited: the set { jn+1(a) | 06 a6 n+1} has size n+2 since jn+1 is
injective, and the set { f (k) | 06 k 6 n} has size n+1 by construction, so at least one
a6 n+1 must satisfy the requirement that jn+1(a) 6= f (k) for all k 6 n.

Let a be the least element of A, and define f (n+1) = jn+1(a). Then by construction
we have jn+1(a) 6= f (k) for any k < n+1, as required.

By construction, the function f is injective, since for all n ∈ N, the value f (n) ∈ [κ] was
defined so that f (n) 6= f (k) for any k < n.

Hence ℵ0 = |N|6 |[κ]|= κ , as required. �

The Cantor–Schröder–Bernstein theorem

Even if two sets X and Y have the same cardinality, it is not always easy to find a bijection
X → Y . This is problematic if we want to prove that they do have the same cardinality!
The Cantor–Schröder–Bernstein theorem greatly simplifies this process, allowing us to
deduce that |X |= |Y | from the existence of injections X → Y and Y → X .

C Theorem 8.2.14 (Cantor–Schröder–Bernstein theorem)
The relation 6 on Card is antisymmetric. That is, for all cardinal numbers κ and λ , if
κ 6 λ and λ 6 κ , then κ = λ .

Proof
This is one of the most involved proofs that we will see in this book, and so we break it
into steps. Some details are left as exercises, in part because the details cloud the bigger
picture of the proof, and in part because they provide good practice with working with
all the definitions.

Let κ and λ be cardinal numbers and assume that κ 6 λ and λ 6 κ . Then there exist
injections f : [κ]→ [λ ] and g : [λ ]→ [κ].

The steps we will follow are these:

• Step 1. We will use the injections f and g to partition [κ] and [λ ] into equivalence
classes. Intuitively, two elements of [κ] will be ‘equivalent’ if one can be obtained
from the other by successively applying g◦ f , and likewise for [λ ] with f ◦g.

• Step 2. We will prove that f and g induce a bijection [κ]/∼→ [λ ]/≈—that is, they
pair up the ∼-equivalence classes with the ≈-equivalence classes.

• Step 3. We will prove that there is a bijection between each pair of the paired-up
equivalence classes.

• Step 4. We will piece together the bijections between equivalence classes to obtain a
bijection [κ]→ [λ ].

So here we go.
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Step 1. Define a relation ∼ on [κ] by letting

a∼ b ⇔ (g◦ f )n(a) = b or (g◦ f )n(b) = a for some n ∈ N

for all a,b ∈ [κ]. Here (g◦ f )n refers to the n-fold composite of g◦ f , that is

(g◦ f )n(x) = ((g◦ f )◦ (g◦ f )◦ · · · ◦ (g◦ f )︸ ︷︷ ︸
n copies of (g◦ f )

)(x)

In other words, a∼ b means that we can get from a to b, or from b to a, by applying the
function g◦ f some number of times.

. Exercise 8.2.15
Prove that ∼ is an equivalence relation on [κ]. C

Likewise the relation ≈ on [λ ], defined by letting

c≈ d ⇔ ( f ◦g)n(c) = d or ( f ◦g)n(d) = c for some n ∈ N

for all c,d ∈ [λ ], is an equivalence relation.

Step 2. Define functions p : [κ]/∼→ [λ ]/≈ and q : [λ ]/≈→ [κ]/∼ by

p([a]∼) = [ f (a)]≈ and q([b]≈) = [g(b)]∼

for all [a]∼ ∈ [κ]/∼ and [b] ∈ [λ ]≈.

. Exercise 8.2.16
Prove that p and q are well-defined, and that q is an inverse for p. C

In particular, p defines a bijection [κ]/∼→ [λ ]/≈.

Step 3. Fix a ∈ [κ] and let b = f (a) ∈ [λ ]. We prove that there is a bijection [a]∼→ [b]≈.
There are three possible cases:

• Case 1. Suppose [a]∼ contains an element a0 such that a0 6= g(y) for any y ∈ [λ ].
Define a function ha : [a]∼→ [b]≈ by letting ha(x) = f (x) for all x ∈ [a]∼.

• Case 2. Suppose [b]≈ contains an element b0 such that b0 6= f (x) for any x ∈ [κ].
Define a function kb : [b]≈→ [a]∼ by letting kb(y) = g(x) for all y ∈ [b]≈.

• Case 3. Otherwise, define ha : [a]∼→ [b]≈ by ha(x) = f (x) for all x ∈ [a]∼.

. Exercise 8.2.17
Prove that each of the functions defined in the above three cases is a bijection. C

Step 4. By taking ha = k−1
b : [a]∼→ [b]≈ in Case 2 above, we have proved that:

• There is a bijection p : [κ]/∼→ [λ ]/≈; and

• For each E = [a]∼ ∈ [κ]/∼, there is a bijection ha : E→ p(E).
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By Exercise 4.2.30, it follows that there is a bijection [κ]→ [λ ], as required. This com-
pletes the proof. �

The Cantor–Schröder–Bernstein theorem is not just an interesting fact: it is useful for
proving that two sets have the same cardinality without having to explicitly construct a
bijection between them.

v Strategy 8.2.18 (Proving that two sets have equal cardinality)
Let X and Y be sets. In order to prove that |X |= |Y |, it suffices to show that there exists
an injection X → Y and an injection Y → X .

0 Example 8.2.19
Let a,b ∈ R with a < b, and consider the chain of functions

(0,1)
f1−→ (a,b)

f2−→ [a,b]
f3−→ [0,1]

f4−→ (0,1)

defined by:

• f1(t) = a+ t(b−a) for all t ∈ (0,1).

• f2(t) = t for all t ∈ (a,b).

• f3(t) =
t−a
b−a

for all t ∈ [a,b].

• f4(t) = 1
4 +

1
2 t for all t ∈ [0,1].

Each of these functions is injective by Exercise 2.3.8. Hence we can compose these
functions to obtain injections from any of these sets to any other—for example, f1 ◦ f4 ◦
f3 : [0,1]→ (a,b) is an injection.

By the Cantor–Schröder–Bernstein theorem, it follows that

|(0,1)|= |(a,b)|= |[a,b]|= |[0,1]|

C

0 Example 8.2.20
Here is a proof that N×N is countably infinite using the Cantor–Schröder–Bernstein
theorem.

Define f : N→ N×N by f (n) = (n,0) for all n ∈ N. Given m,n ∈ N we have

f (m) = f (n) ⇒ (m,0) = (n,0) ⇒ m = n

So f is injective.

Next, define g : N × N → N by g(m,n) = 2m · 3n for all m,n ∈ N. Then given
(m,n),(p,q) ∈ N×N, if g(m,n) = g(p,q), then 2m · 3n = 2p · 3q. It follows from the
fundamental theorem of arithmetic (Theorem 5.2.12) that m = n and p = q, so that g is
injective.
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Since f : N → N×N and g : N×N → N are injective, it follows from the Cantor–
Schröder–Bernstein theorem that

|N×N|= |N|= ℵ0

so that N×N is countably infinite. C

We can use the Cantor–Schröder–Bernstein theorem to prove that P(N) has the cardin-
ality of the coninuum.

C Theorem 8.2.21
|P(N)|= c

Proof
Define a function f : P(N)→ R as follows. Given U ⊆ N, define

Un =

{
1 if n ∈U
0 if n 6∈U

Let f (U) be the real number whose decimal expansion is U0.U1U2 . . . . Then f is an
injection: given U,V ⊆ N, if f (U) = f (V ), then f (U) and f (V ) have the same decimal
expansion, so that Un =Vn for all n ∈ N. But that says precisely that n ∈U if and only if
n ∈V for all n ∈ N, so that U =V .

Next, define a function g : [0,1)→P(N) as follows: given x ∈ R, let the binary expan-
sion of x be

x = 0.x1x2x3x4 . . . (2)

Define g(x) = {i ∈ N | xi = 1}. Then g is injective by uniqueness of binary expansions
again.

Then:

• Since f is injective we have |P(N)|6 |R|= c.

• Since g is injective we have c= |[0,1)|6 |P(N)|.

By the Cantor–Schröder–Bernstein theorem (Theorem 8.2.14), it follows that |P(N)|=
c. �

. Exercise 8.2.22
Let F (N) be the set of all finite subsets of N, and define f : F (N)→ N by

f (U) = ∑
a∈U

10a =
n

∑
k=1

10ak

for all U = {a1,a2, . . . ,an} ∈F (N). Put another way, f (U) is the natural number whose
decimal expansion has a 1 in the rth position (counting from r = 0) if r ∈ U , and a 0
otherwise. For example

f ({0,1,3,4,8}) = 100011011 and f (∅) = 0
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Prove that f is injective, and use the Cantor–Schröder–Bernstein theorem to deduce that
F (N) is countably infinite. C

. Exercise 8.2.23
Let X , Y and Z be sets. Prove that if |X |= |Z| and X ⊆ Y ⊆ Z, then |X |= |Y |= |Z|. C
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Section 8.3

Cardinal arithmetic

In this section we will define arithmetic operations for cardinal numbers, and then de-
rive infintary counting principles by analogy with Section 6.2. It is surprising how little
additional work needs to be done for the results proved there to carry over.

We begin by defining the sum κ +λ , product κ ·λ and power λ κ , for cardinal numbers
κ and λ .

Cardinal addition

F Definition 8.3.1
The (cardinal) sum of cardinal numbers κ and λ is the cardinal number κ +λ defined
by

κ +λ = |[κ]t [λ ]|
where for sets A and B, the notation AtB denotes the disjoint union

AtB = (A×{0})∪ (B×{1})

as discussed in Exercise 6.1.19.

Note that Definition 8.3.1 is compatible with addition for natural numbers by Exer-
cise 6.1.19(b), which implies that |[m]t [n]|= m+n for all m,n ∈ N.

The following lemma makes cardinal addition easier to work with.

C Lemma 8.3.2
Let X and Y be sets. If X ∩Y =∅, then |X ∪Y |= |X |+ |Y |.
Proof
Let κ = |X | and λ = |Y |. Note that |[κ]×{0}| = κ = |X | and |[λ ]×{1}| = λ = |Y |, so
there are bijections f : [κ]×{0}→ X and g : [λ ]×{1}→ Y .

Define a function h : [κ]t [λ ]→ X ∪Y by

h(a, i) =

{
f (a) if i = 0
g(b) if i = 1

for all (a, i) ∈ [κ]t [λ ].

Then h is a bijection; to see this, define k : X ∪Y → [κ]t [λ ] by

k(a) =

{
( f−1(a),0) if a ∈ X
(g−1(a),1) if a ∈ Y
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for all a ∈ X ∪Y . Then k is well-defined since X ∩Y =∅ and f and g are bijections. And
k can readily be seen to be an inverse for h.

Since h : [κ]t [λ ]→ X ∪Y is a bijection, we have

|X ∪Y |= |[κ]t [λ ]|= κ +λ

as required. �

0 Example 8.3.3
We show that ℵ0 +ℵ0 = ℵ0. To see this, note that N = E ∪O, where E is the set of
all even natural numbers and O is the set of all odd natural numbers. But E and O are
disjoint, so that by Lemma 8.3.2 we have

ℵ0 +ℵ0 = |E|+ |O| = |E ∪O| = |N| = ℵ0

as claimed. C

Many of the basic properties enjoyed by addition of natural numbers carry over to car-
dinal numbers.

C Theorem 8.3.4 (Properties of cardinal addition)

(a) κ +(λ +µ) = (κ +λ )+µ for all cardinal numbers κ,λ ,µ;

(b) κ +λ = λ +κ for all cardinal numbers κ,λ ;

(c) 0+κ = κ = κ +0 for all cardinal numbers κ .

Proof of (a)
Let κ , λ and µ be cardinal numbers, and define

X = [κ]×{0}, Y = [λ ]×{1}, Z = [µ]×{2}

Note that |X | = κ , |Y | = λ and |Z| = µ , and that X , Y and Z are pairwise disjoint.
Therefore X and Y ∪Z are disjoint, and X ∪Y and Z are disjoint, so that

κ +(λ +µ) = |X |+(|Y |+ |Z|) = |X |+ |Y ∪Z|= |X ∪ (Y ∪Z)|

and likewise

(κ +λ )+µ = (|X |+ |Y |)+ |Z|= |X ∪Y |+ |Z|= |(X ∪Y )∪Z|

But X ∪ (Y ∪Z) = (X ∪Y )∪Z, so that κ +(λ +µ) = (κ +λ )+µ , as required. �

. Exercise 8.3.5
Prove parts (b) and (c) of Theorem 8.3.4. C

We can generalise the argument in Example 8.3.3 to prove the following proposition.

C Proposition 8.3.6
κ +ℵ0 = κ for all cardinal numbers κ >ℵ0.
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Proof
Let κ >ℵ0 and let A = [κ]. Note that by Definition 8.2.7 there is an injection i : N→ A.
Write an = i(n) for all n ∈ N, so that i[N] = {a0,a1,a2, . . .} ⊆ A.

Partition A as A = B∪U ∪V , where:

• B = A\ i[N] = A\{a0,a1,a2,a3, . . .};
• U = i[E] = {a0,a2,a4, . . .}; and

• V = i[O] = {a1,a3,a5, . . .}.

Here E and O are the sets of even and odd natural numbers, respectfully.

The sets U , V and i[N] are all countably infinite, since E, O and N are countably infinite
and i is an injection.

Since U and i[N] are countably infinite, there is a bijection f : U → i[N], which in turn
yields a bijection g : B∪U → B∪ i[N] defined by

g(a) =

{
a if a ∈ B
f (a) if a ∈U

Note that g is well-defined since A∩U =∅ and B∩ i[N] =∅. And g is bijective: it has
an inverse function, defined similarly but with f replaced by f−1.

Thus
|A| = |B∪ i[N]| = |B∪U |

Since U and V are countably infinite, we have |U |= |V |= ℵ0. It follows that

κ +ℵ0 = |A|+ |V | = |B∪U |+ |V | = |B∪U ∪V | = |A| = κ

as required. �

Cardinal multiplication

Products of cardinal numbers are defined by analogy with the result of Exercise 6.1.21,
which says that |[m]× [n]|= mn for all m,n ∈ N.

F Definition 8.3.7
The (cardinal) product of cardinal numbers κ and λ is the cardinal number κ ·λ defined
by

κ ·λ = |[κ]× [λ ]|
That is, the cardinal product is the cardinality of the cartesian product.

Like Lemma 8.3.2, the following lemma allows us to replace [κ] and [λ ] in Defini-
tion 8.3.7 by arbitrary sets of size κ and λ , respectively.
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C Lemma 8.3.8
Let X and Y be sets. Then |X×Y |= |X |× |Y |.
Proof
Let κ = |X | and λ = |Y |, and fix bijections f : [κ]→ X and g : [λ ]→ Y . By Exer-
cise 2.3.48, there is a bijection [κ]× [λ ]→ X×Y , and so

|X×Y |= |[κ]× [λ ]|= κ ·λ

as required. �

0 Example 8.3.9
We will prove that ℵ0 ·ℵ0 = ℵ0. Indeed, we proved in Example 8.2.20 that |N×N| =
ℵ0, and so by Lemma 8.3.8 we have

ℵ0 ·ℵ0 = |N×N| = ℵ0

as required. C

0 Example 8.3.10
We will prove that ℵ0 · c= c.

Define f : Z× [0,1)→ R by f (n,r) = n+ r for all n ∈ Z and all 06 r < 1. Then:

• f is injective. To see this, let (n,r),(m,s) ∈ Z× [0,1) and assume that n+ r = m+ s.
Then n−m = s−r. Since s,r ∈ [0,1), we have s−r ∈ (−1,1), and so n−m∈ (−1,1).
Since n−m ∈ Z, we must have n−m = 0, and so m = n. But then n+ r = n+ s, and
so r = s. Thus (n,r) = (m,s), as required.

• f is surjective. To see this, let x ∈ R. Let n ∈ Z be such that n 6 x < n+ 1, and let
r = x−n. Note that 06 r < 1, so that (n,r) ∈ Z× [0,1), and then x = n+ r = f (n,r),
as required.

Since f is a bijection, we have

ℵ0 · c = |Z|× |[0,1)| = |Z× [0,1)| = |R| = c

as required. C

. Exercise 8.3.11
Prove that c · c= c. C

. Exercise 8.3.12
Let X be a set and let ∼ be an equivalence relation on X . Prove that if κ is a cardinal
number such that |[a]∼|= κ for all a ∈ X , then |X |= |X/∼| ·κ . C

C Theorem 8.3.13 (Properties of cardinal multiplication)

(a) κ · (λ ·µ) = (κ ·λ ) ·µ for all cardinal numbers κ,λ ,µ;

(b) κ ·λ = λ ·κ for all cardinal numbers κ,λ ;

(c) 1 ·κ = κ = κ ·1 for all cardinal numbers κ;

(d) κ · (λ +µ) = (κ ·λ )+(κ ·µ) for all cardinal numbers κ,λ ,µ .
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Proof of (a)
Define f : [κ]× ([λ ]× [µ])→ ([κ]× [λ ])× [µ] by f (a,(b,c)) = ((a,b),c) for all a ∈ [κ],
b ∈ [λ ] and c ∈ [µ]. Then f is a bijection, since it has an inverse g : ([κ]× [λ ])× [µ]→
[κ]× ([λ ]× [µ]) defined by g((a,b),c) = (a,(b,c)) for all a ∈ [κ], b ∈ [λ ] and c ∈ [µ].

But then by Lemma 8.3.8 we have

κ · (λ ·µ) = |[κ]× ([λ ]× [µ])| = |([κ]× [λ ])× [µ]| = (κ ·λ ) ·µ
as required. �

. Exercise 8.3.14
Prove parts (b), (c) and (d) of Theorem 8.3.13. C

Cardinal exponentiation

F Definition 8.3.15
Let κ and λ be cardinal numbers. The κ th (cardinal) power of λ is the cardinal number
λ κ defined by

λ
κ = |[λ ][κ]|

where for sets A and B, the notation BA refers to the set of functions A→ B.

Again, exponentiation of cardinal numbers agrees with that of natural numbers, since we
proved in Exercise 6.2.16 that |[n][m]|= nm for all m,n ∈ N.

Like with cardinal multiplication, the next lemma proves that we can replace the sets [κ]
and [λ ] in Definition 8.3.15 with arbitrary sets of cardinality κ and λ , respectively.

C Lemma 8.3.16
Let X and Y be sets. Then |Y X |= |Y ||X |.
Proof
Let κ = |X | and λ = |Y |, and fix bijections f : [κ]→ X and g : [λ ]→ Y .

Define H : [λ ][κ]→ Y X as follows. Given θ ∈ [λ ]κ , that is θ : [κ]→ [λ ], define hθ = g◦
θ ◦ f−1 : X → Y , and let H(θ) = hθ ∈ Y X .

To see that H is a bijection, note that the function K : Y X → [λ ][κ] defined by K(ϕ) =
kϕ = g−1 ◦ϕ ◦ f is a bijection, since for all θ : [κ]→ [λ ] we have

K(H(θ)) = K(g◦θ ◦ f−1 = g−1 ◦g◦θ ◦ f−1 ◦ f = θ

and for all ϕ : X → Y , we have

H(K(ϕ)) = H(g−1 ◦ϕ ◦ f ) = g◦g−1 ◦ϕ ◦ f ◦ f−1 = ϕ

Since H : [λ ][κ]→ Y X is a bijection, we have

|Y X | = |[λ ][κ]| = λ
κ

as required. �
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0 Example 8.3.17
We prove that κ2 = κ ·κ for all cardinal numbers κ .

To see this, define f : [κ]{0,1} → [κ]× [κ] by letting f (θ) = (θ(0),θ(1)) for all θ :
{0,1}→ [κ]. Then

• f is injective. To see this, let θ ,ϕ : {0,1} → [κ] and assume f (θ) = f (ϕ). Then
(θ(0),θ(1)) = (ϕ(0),ϕ(1)), so that θ(0) = ϕ(0) and θ(1) = ϕ(1). But then θ = ϕ

by function extensionality, as required.

• f is surjective. To see this, let (a,b) ∈ [κ]× [κ], and define θ : {0,1}→ [κ] by letting
θ(0) = a and θ(1) = b. Then we have f (θ) = (θ(0),θ(1)) = (a,b), as required.

Since f is a bijection, it follows that

κ
2 = |[κ]||{0,1}| = |[κ]{0,1}| = |[κ]× [κ]| = κ ·κ

as required. C

Cardinal exponentiation gives us a convenient way of expressing the cardinalities of
power sets.

C Theorem 8.3.18
Let X be a set. Then |P(X)|= 2|X |.

Proof
There is a bijection i : P(X)→ {0,1}X defined for all U ⊆ X by letting i(U) = χU ∈
{0,1}X , where χU : X→{0,1} is the characteristic function of U (see Definition 2.2.24).
Note that i is a bijection by Theorem 2.2.26.

It follows by Lemma 8.3.16 that

|P(X)| = |{0,1}X | = |{0,1}||X | = 2|X |

as required. �

In light of Theorem 8.3.18, we can interpret Cantor’s theorem (Theorem 8.2.12) as saying
that κ < 2κ for all cardinal numbers κ . Thus the cardinal numbers are unbounded.

Furthermore, Theorem 8.3.18 allows us to express the cardinality of the continuum c in
terms of ℵ0.

C Corollary 8.3.19
c= 2ℵ0

Proof
We proved in Theorem 8.2.21 that |P(N)|= c, and so by Theorem 8.3.18 we have

c = |P(N)| = 2|N| = 2ℵ0

as claimed. �
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. Exercise 8.3.20
Prove that for all cardinal numbers κ,λ ,µ , if λ 6 µ , then λ κ 6 µκ . C

Many of the properties satisfied by exponentiation of natural numbers generalise to car-
dinal numbers.

C Theorem 8.3.21 (Properties of cardinal exponentiation)

(a) µκ+λ = µκ ·µλ for all cardinal numbers κ,λ ,µ;

(b) (µ ·λ )κ = µκ ·λ κ for all cardinal numbers κ,λ ,µ;

(c) (µλ )κ = µκ·λ for all cardinal numbers κ,λ ,µ .

Proof of (a)
Let κ,λ ,µ be cardinal numbers and let X , Y and Z be sets with |X | = κ , |Y | = λ and
|Z|= µ . Assume furthermore that Y and Z are disjoint.

Given a function f : X ∪Y → Z, define fX : X → Z and fY : Y → Z by fX (a) = f (a) for
all a ∈ X , and fY (a) = f (a) for all y ∈ X .

Define H : ZX∪Y → ZX ×ZY by H( f ) = ( fX , fY ). Then:

• H is injective. To see this, let f ,g : X ∪Y → Z and suppose that H( f ) = H(g). Then
fX = gX and fY = gY . Now let a ∈ X ∪Y . Then:

� If a ∈ X , then f (a) = fX (a) = gX (a) = g(a);

� If a ∈ Y , then f (a) = fY (a) = gY (a) = g(a).

In both cases we have f (a) = g(a), so that f = g by function extensionality.

• H is surjective. To see this, let (p,q) ∈ ZX × ZY , so that we have p : X → Z and
q : Y → Z. Define f : X ∪Y → Z by

f (a) =

{
p(a) if a ∈ X
q(a) if a ∈ Y

Then f is well-defined since X and Y are disjoint. Moreover for all a ∈ X we have
fX (a) = p(a) and for all a∈Y we have fY (a) = q(a), so that (p,q) = ( fX , fY ) = H( f ),
as required.

Since H is a bijection, it follows that

µ
κ+λ = |Z||X |+|Y | = |Z||X∪Y | = |ZX∪Y | = |ZX ×ZY | = |ZX | · |ZY | = µ

κ ·µλ

as required. �

. Exercise 8.3.22
Prove parts (b) and (c) of Theorem 8.3.21. C

0 Example 8.3.23
We prove that ℵ

ℵ0
0 = 2ℵ0 . Indeed:
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• We know that ℵ0 < 2ℵ0 by Cantor’s theorem (Theorem 8.2.12), so that:

ℵ
ℵ0
0 6 (2ℵ0)ℵ0 by Exercise 8.3.20

= 2ℵ0·ℵ0 by Theorem 8.3.21(c)

= 2ℵ0 by Example 8.3.9

• Since ℵ0 > 2, we have 2ℵ0 6ℵ
ℵ0
0 by Exercise 8.3.20.

It follows from the Cantor–Schröder–Bernstein theorem (Theorem 8.2.14) that ℵ
ℵ0
0 =

2ℵ0 . C

. Exercise 8.3.24
Prove that cc = 2c. C

. Exercise 8.3.25

Prove that ℵ
ℵ

ℵ0
0

0 = 2c. C

Indexed cardinal sums and products

F Definition 8.3.26
Let {Ai | i ∈ I} be a family of sets indexed by a set I. The (indexed) disjoint union of
{Ai | i ∈ I} is the set

⊔
i∈I

Ai (LATEX code: \bigsqcup_{i \in I}) defined by

⊔
i∈I

Ai =
⋃
i∈I

({i}×Ai) = {(i,a) | i ∈ I, a ∈ Ai}

Note that for all i, j ∈ I with i 6= j, the sets {i}×Ai and { j}×A j are disjoint even if the
sets Ai and A j are not—hence the term disjoint union!

An element (i,a)∈
⊔
i∈I

Ai can be thought of as simply being an element a∈Ai, but keeping

track of the label i of the set Ai.

0 Example 8.3.27
Given a set I and a set A, we have⊔

i∈I

A =
⋃
i∈I

({i}×A) = I×A

Thus the disjoint union of ‘I-many’ copies of a set A is simply I×A. C

. Exercise 8.3.28
Let {Xi | i ∈ I} be a family of sets indexed by a set I, and define a function

q :
⊔
i∈I

Xi→
⋃
i∈I

Xi

by q(i,a) = a for all i ∈ I and a ∈ Xi. Prove that if the sets Xi for i ∈ I are pairwise
disjoint, then q is a bijection. C
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F Definition 8.3.29
Let {κi | i ∈ I} be an indexed family of cardinal numbers. The (indexed) cardinal sum
of κi for i ∈ I is defined by

∑
i∈I

κi =

∣∣∣∣∣⊔
i∈I

[κi]

∣∣∣∣∣
That is, the indexed cardinal sum is the cardinality of the indexed disjoint union.

As with the finitary operations, we should check that this agrees with the definition of
addition for natural numbers. And indeed it does—given a finite set I and natural num-

bers ni for each i ∈ I, the fact that

∣∣∣∣∣⊔
i∈I

[ni]

∣∣∣∣∣ = ∑
i∈I

ni is an immediate consequence of the

addition principle (Theorem 6.2.24).

0 Example 8.3.30
By Example 8.3.27 we have

∑
i∈I

κ = |I× [κ]|= |I| ·κ

for all sets I and all cardinal numbers κ . C

0 Example 8.3.31
We prove that ∑

n∈N
n = ℵ0.

Define a function f :
⊔

n∈N
[n]→ N×N by f (n,k) = (n,k) for all n ∈ N and k ∈ [n]. Evid-

ently f is injective, since it is the inclusion function of a subset. Therefore

∑
n∈N

n 6 |N×N| = ℵ0 ·ℵ0 = ℵ0

Define a function g :N→
⊔

n∈N
[n] by g(n) = (n+1,1) for all n∈N. Then g is an injection,

since given m,n ∈ N, if g(m) = g(n), then (m+1,1) = (n+1,1), and so m+1 = n+1.
Thus m = n, as required. So we have

ℵ0 = |N| 6
∣∣∣∣∣⊔
n∈N

[n]

∣∣∣∣∣ = ∑
n∈N

n

By the Cantor–Schröder–Bernstein theorem, we have ∑
n∈N

n = ℵ0. C

. Exercise 8.3.32
Let (an)n∈N be a sequence of natural numbers, and let I = {n ∈ N | an > 0}. Prove that

∑
n∈N

an =


ℵ0 if I is infinite

n

∑
k=1

ank if I = {nk | k ∈ [n]} is finite

C
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C Lemma 8.3.33
Let {Xi | i ∈ I} be a family of pairwise disjoint sets, indexed by a set I. Then∣∣∣∣∣⋃

i∈I

Xi

∣∣∣∣∣ = ∑
i∈I
|Xi|

Proof
For each i ∈ I let κi = |Xi|, and let fi : [κi]→ Xi be a bijection. Then the function

f :
⊔
i∈I

[κi]→
⊔
i∈I

Xi

defined by f (i,a) = fi(a) for all i ∈ I and a ∈ [κi] is a bijection, since it has an inverse g
given by g(i,a) = f−1

i (a) for all i ∈ I and a ∈ Xi.

Since the sets Xi are pairwise disjoint, we have by Exercise 8.3.28 that there is a bijection⊔
i∈I

Xi→
⋃
i∈I

Xi. Hence

∣∣∣∣∣⋃
i∈I

Xi

∣∣∣∣∣ =
∣∣∣∣∣⊔
i∈I

Xi

∣∣∣∣∣ =
∣∣∣∣∣⊔
i∈I

[κi]

∣∣∣∣∣ = ∑
i∈I

κi = ∑
i∈I
|Xi|

as required. �

F Definition 8.3.34
Let {Xi | i ∈ I} be family of sets indexed by a set I. The (indexed) cartesian product of
the sets Xi for i ∈ I is defined by

∏
i∈I

Xi =

{
f : I→

⋃
i∈I

Xi

∣∣∣∣∣ f (i) ∈ Xi for all i ∈ I

}

An element f ∈∏
i∈I

Xi is called a choice function for the family {Xi | i ∈ I}.

It is worth pointing out that the axiom of choice (Axiom 2.3.34) says precisely that the
cartesian product of every family of inhabited sets is inhabited.

0 Example 8.3.35
Given a set I and a set X , a choice function for {X | i ∈ I} is a function f : I→

⋃
i∈I

X = X

such that f (i) ∈ X for all i ∈ I. But then every function f : I→ X is a choice function,
and so

∏
i∈I

X = X I

which is the set of functions I→ X . C
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F Definition 8.3.36
Let {κi | i ∈ I} be an indexed family of cardinal numbers. The (indexed) cardinal
product of κi for i ∈ I is defined by

∏
i∈I

κi =

∣∣∣∣∣∏i∈I
[κi]

∣∣∣∣∣
That is, the indexed cardinal product is the cardinality of the indexed cartesian product.

0 Example 8.3.37
By Example 8.3.35, we have

∏
i∈I

κ = |[κ]||I| = κ
|I|

for all sets I and all cardinal numbers κ . C

. Exercise 8.3.38
Prove that ∏

n∈N
n = 2ℵ0 . C

. Exercise 8.3.39
Prove that there do not exist cardinal numbers {κn | n ∈N} such that κn 6= 1 for all n ∈N
and ∏

n∈N
κn = ℵ0. C
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Section 8.E

Chapter 8 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Countability

In Questions 8.1 to 8.4, prove that the set is countable.

8.1. The set D =
{ a

2n | a ∈ Z,n ∈ N
}

of dyadic rational numbers.

8.2. The set of all functions [n]→ Z, where n ∈ N.

8.3. The set of all real numbers whose square is rational.

8.4. The following set:

[(Z×Q)\ (N×Z)]∪{n ∈ N | ∃u,v ∈ N, n = 5u+6v}∪{x ∈ R | x−
√

2 ∈Q}

In Questions 8.5 to 8.7, prove that the set is uncountable.

8.5. The set of all functions Z→{0,1}.
8.6. The set of all subsets U ⊆ N such that neither U nor N\U is finite.

8.7. The set of all sequences of rational numbers that converge to 0.

In Questions 8.8 to 8.12, determine whether the set is countable or uncountable, and then
prove it.

8.8. The set of all functions f :N→N that are weakly decreasing—that is, such that for
all m,n ∈ N, if m6 n, then f (m)> f (n).

8.9. The set of all functions f : N→ Z that are weakly decreasing.

8.10. The set of all periodic functions f :Z→Q—that is, such that there is some integer
p > 0 such that f (x+ p) = f (x) for all x ∈ Z.

8.11. The set of all periodic functions f :Q→Z—that is, such that there is some rational
number p > 0 such that f (x+ p) = f (x) for all x ∈Q.

8.12. The set of all real numbers x such that p(x) = 0 for some polynomial p(x) = a0 +
a1x+ · · ·+adxd with rational coefficients a0,a1, . . . ,ad .

8.13. A subset D ⊆ R is dense if (a− ε,a+ ε)∩U is inhabited for all a ∈ R and all
ε > 0—intuitively, this means that there are elements of U arbitrarily close to any real
number. Must a dense subset of R be uncountable?
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Cardinality

F Definition 8.E.1

Given cardinal numbers κ and λ , define the binomial coefficient
(

κ

λ

)
by

(
κ

λ

)
= |{U ⊆ [κ] | |U |= λ}|

8.14. Let κ be a cardinal number. Prove that

(
ℵ0

κ

)
=


1 if κ = 0
ℵ0 if κ ∈ N and κ > 0
2ℵ0 if κ = ℵ0

0 if κ 6∈ N∪{ℵ0}

8.15. Find the values of
(
c

κ

)
for κ ∈ N∪{ℵ0,c}.
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Discrete probability theory
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Section 9.1

Discrete probability spaces

Probability theory is a field of mathematics which attempts to model randomness and
uncertainty in the ‘real world’. The mathematical machinery it develops allows us to
understand how this randomness behaves and to extract information which is useful for
making predictions.

Discrete probability theory, in particular, concerns situations in which the possible out-
comes form a countable set. This simplifies matters considerably: if there are only count-
ably many outcomes, then the probability that any event occurs is determined entirely by
the probabilities that the individual outcomes comprised by the event occur.

For example, the number N of words spoken by a child over the course of a year takes
values in N, so is discrete. To each n ∈ N, we may assign a probability that N = n,
which can take positive values in a meaningful way, and from these probabilities we
can compute the probabilities of more general events occurring (e.g. the probability that
the child says under a million words). However, the height H grown by the child over
the same period takes values in [0,∞), which is uncountable; for each h ∈ [0,∞), the
probability that H = h is zero, so these probabilities give us no information. We must
study the behaviour of H through some other means.

In this chapter, we will concern ourselves only with the discrete setting.

It is important to understand from the outset that, although we use language like outcome,
event, probability and random, and although we use real-world examples, everything
we do concerns mathematical objects: sets, elements of sets, and functions. If we say,
for example, “the probability that a roll of a fair six-sided die shows 3 or 4 is 1

3 ,” we
are actually interpreting the situation mathematically—the outcomes of the die rolls are
interpreted as the elements of the set [6]; the event that the die shows 3 or 4 is interpreted
as the subset {3,4} ⊆ [6]; and the probability that this event occurs is the value of a
particular function P : P([6])→ [0,1] on input {3,4}. The mathematical interpretation
is called a model of the real-world situation.
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F Definition 9.1.1
A discrete probability space is a pair (Ω,P) (LATEX code: (\Omega, \mathbb{P})),
consisting of a countable set Ω and a function P : P(Ω)→ [0,1], such that

(i) P(Ω) = 1; and

(ii) (Countable additivity) If {Ai | i ∈ I} is any family of pairwise disjoint subsets of
Ω, indexed by a countable set I, then

P

(⋃
i∈I

Ai

)
= ∑

i∈I
P(Ai)

The set Ω is called the sample space; the elements ω ∈ Ω are called outcomes;a the
subsets A ⊆ Ω are called events; and the function P is called the probability measure.
Given an event A, the value P(A) is called the probability of A.

aThe symbols Ω,ω (LATEX code: \Omega,\omega) are the upper- and lower-case forms, respectively, of the
Greek letter omega.

There is a general notion of a probability space, which does not require the sample space
Ω to be countable. This definition is significantly more technical, so we restrict our at-
tention in this section to discrete probability spaces. Thus, whenever we say ‘probability
space’ in this section, the probability space can be assumed to be discrete. However,
when our proofs do not specifically use countability of Ω, they typically are true of arbit-
rary probability spaces. As such, we will specify discreteness in the statement of results
only when countability of the sample space is required.

0 Example 9.1.2
We model the roll of a fair six-sided die.

The possible outcomes of the roll are 1, 2, 3, 4, 5 and 6, so we can take Ω = [6] to be the
sample space.

The events correspond with subsets of [6]. For example:

• {4} is the event that the die roll shows 4. This event occurs with probability 1
6 .

• {1,3,5} is the event that the die roll is odd. This event occurs with probability 1
2

• {1,4,6} is the event that the die roll is not prime. This event occurs with probability
1
2 .

• {3,4,5,6} is the event that the die roll shows a number greater than 2. This event
occurs with probability 2

3 .

• {1,2,3,4,5,6} is the event that anything happens. This event occurs with probability
1.

• ∅ is the event that nothing happens. This event occurs with probability 0.
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More generally, since each outcome occurs with equal probability 1
6 , we can define

P(A) =
|A|
6

for all events A

We will verify that P defines a probability measure on [6] in Example 9.1.6. C

0 Example 9.1.3
Let (Ω,P) be a probability space. We prove that P(∅) = 0.

Note that Ω and ∅ are disjoint, so by countable additivity, we have

1 = P(Ω) = P(Ω∪∅) = P(Ω)+P(∅) = 1+P(∅)

Subtracting 1 throughout yields P(∅) = 0, as required. C

. Exercise 9.1.4
Let (Ω,P) be a probability space. Prove that

P(Ω\A) = 1−P(A)

for all events A. C

Countable additivity of probability measures—that is, condition (ii) in Definition 9.1.1—
implies that probabilities of events are determined by probabilities of individual out-
comes. This is made precise in Proposition 9.1.5.

C Proposition 9.1.5
Let Ω be a countable set and let P : P(Ω)→ [0,1] be a function such that P(Ω) = 1. The
following are equivalent:

(i) P is a probability measure on Ω;

(ii) ∑
ω∈A

P({ω}) = P(A) for all A⊆Ω.

Proof
Since P(Ω) = 1, it suffices to prove that condition (ii) of Proposition 9.1.5 is equivalent
to countable additivity of P.

• (i)⇒(ii). Suppose P is a probability measure on Ω. Let A⊆Ω.

Note that since A ⊆ Ω and Ω is countably infinite, it follows that {{ω} | ω ∈ A} is a
countable family of pairwise disjoint sets. By countable additivity, we have

P(A) = P

(⋃
ω∈A

{ω}
)

= ∑
ω∈A

P({ω})

as required. Hence condition (ii) of the proposition is satisfied.

• (ii)⇒(i). Suppose that ∑
ω∈A

P({ω}) = P(A) for all A ⊆ Ω. We prove that P is a prob-

ability measure on Ω.
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So let {Ai | i ∈ I} be a family of pairwise disjoint events, indexed by a countable set
I. Define A =

⋃
i∈I

Ai. Since the sets Ai partition A, summing over elements of A is the

same as summing over each of the sets Ai individually, and then adding those results
together; specifically, for each A-tuple (pω)ω∈A, we have

∑
ω∈A

pω = ∑
i∈I

∑
ω∈Ai

pω

Hence

P(A) = ∑
ω∈A

P({ω}) by condition (ii) of the proposition

= ∑
i∈I

∑
ω∈Ai

P({ω}) by the above observation

= ∑
i∈I
P(Ai) by condition (ii) of the proposition

So P satisfies the countable additivity condition. Thus P is a probability measure on
Ω.

Hence the two conditions are equivalent. �

0 Example 9.1.6
We prove that the function P from Example 9.1.2 truly does define a probability measure.
Indeed, let Ω = [6] and let P : P(Ω)→ [0,1] be defined by

P(A) =
|A|
6

for all events A

Then P(Ω) = 6
6 = 1, so condition (i) in Definition 9.1.1 is satisfied. Moreover, for each

A⊆ [6] we have

∑
ω∈A

P({ω}) = ∑
ω∈A

1
6
=
|A|
6

= P(A)

so, by Proposition 9.1.5, P defines a probability measure on [6]. C

Proposition 9.1.5 makes defining probability measures much easier, since it implies that
probability measures are determined entirely by their values on individual outcomes.
This means that, in order to define a probability measure, we only need to specify its
values on individual outcomes and check that the sum of these probabilities is equal to 1.
This is significantly easier than defining P(A) on all events A⊆Ω and checking the two
conditions of Definition 9.1.1.

This is made precise in Proposition 9.1.7 below.

C Proposition 9.1.7
Let Ω be a countable set and, for each ω ∈ Ω, let pω ∈ [0,1]. If ∑

ω∈Ω

pω = 1, then there

is a unique probability measure P on Ω such that P({ω}) = pω for each ω ∈Ω.

Proof
We prove existence and uniqueness of P separately.
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• Existence. Define P : P(Ω)→ [0,1] be defined by

P(A) = ∑
ω∈A

pω

for all events A⊆Ω. Then condition (ii) of Proposition 9.1.5 is automatically satisfied,
and indeed P({ω}) = pω for each ω ∈Ω. Moreover

P(Ω) = ∑
ω∈Ω

P({ω}) = ∑
ω∈Ω

pω = 1

and so condition (i) of Definition 9.1.1 is satisfied. Hence P defines a probability
measure on Ω.

• Uniqueness. Suppose that P′ : P(Ω)→ [0,1] is another probability measure such that
P′({ω}) = pω for all ω ∈Ω. For each event A⊆Ω, condition (ii) of Proposition 9.1.5
implies that

P′(A) = ∑
ω∈A

P′({ω}) = ∑
ω∈A

pω = P(A)

hence P′ = P.

So P is uniquely determined by the values pω . �

The assignments of pω ∈ [0,1] to each ω ∈Ω in fact defines something that we will later
defined to be a probability mass function (Definition 9.2.5).

With Proposition 9.1.7 proved, we will henceforth specify probability measures P on
sample spaces Ω by specifying only the values of P({ω}) for ω ∈Ω.

0 Example 9.1.8
Let p ∈ [0,1]. A coin, which shows heads with probability p, is repeatedly flipped until
heads shows.

The outcomes of such a sequence of coin flips all take the form

(tails, tails, · · · , tails︸ ︷︷ ︸
n ‘tails’

,heads)

for some n ∈ N. Identifying such a sequence with the number n of flips before heads
shows, we can take Ω = N to be the sample space.

For each n ∈ N, we can define

P({n}) = (1− p)n p

This will define a probability measure on N, provided these probabilities all sum to 1;
and indeed by Theorem 7.3.8, we have

∑
n∈N
P({n}) = ∑

n∈N
(1− p)n p = p · 1

1− (1− p)
= p · 1

p
= 1

By Proposition 9.1.7, it follows that (Ω,P) is a probability space. C
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. Exercise 9.1.9
A fair six-sided die is rolled twice. Define a probability space (Ω,P) that models this
situation. C

. Exercise 9.1.10
Let (Ω,P) be a probability space and let A,B be events with A ⊆ B. Prove that P(A) 6
P(B). C

Set operations on events

In the real world, we might want to talk about the probability that two events both happen,
or the probability that an event doesn’t happen, or the probability that at least one of
some collection of events happens. This is interpreted mathematically in terms of set
operations.

0 Example 9.1.11
Let (Ω,P) be the probability space modelling two rolls of a fair six-sided die—that is,
the sample space Ω = [6]× [6] with probability measure P defined by P({(a,b)}) = 1

36
for each (a,b) ∈Ω.

Let A be the event that the sum of the die rolls is even, that is

A =

(1,1), (1,3), (1,5), (2,2), (2,4), (2,6),
(3,1), (3,3), (3,5), (4,2), (4,4), (4,6),
(5,1), (5,3), (5,5), (6,2), (6,4), (6,6)


and let B be the event that the sum of the die rolls is greater than or equal to 9, that is

B = {(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)}

Then

• Consider the event that the sum of the die rolls is even or greater than or equal to 9.
An outcome ω gives rise to this event precisely when either ω ∈ A or ω ∈ B; so the
event in question is A∪B;

• Consider the event that the sum of the die rolls is even and greater than or equal to 9.
An outcome ω gives rise to this event precisely when both ω ∈ A and ω ∈ B; so the
event in question is A∩B;

• Consider the event that the sum of the die rolls is not even. An outcome ω gives rise
to this event precisely when ω 6∈ A; so the event in question is is ([6]× [6])\A.

Thus we can interpret ‘or’ as union, ‘and’ as intersection, and ‘not’ as relative comple-
ment in the sample space. C

The intuition provided by Example 9.1.11 is formalised in Exercise 9.1.13. Before we do
this, we adopt a convention that simplifies notation when discussing events in probability
spaces.
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F Definition 9.1.12
Let (Ω,P) be a probability space. The complement of an event A ⊆ Ω is the event
Ω\A⊆Ω. We write Ac (LATEX code: Aˆc) for Ω\A.

That is, when we talk about the complement of an event, we really mean their relative
complement inside the sample space.

. Exercise 9.1.13
Let (Ω,P) be a probability space, and let p(ω),q(ω) be logical formulae with free vari-
able ω ranging over Ω. Let

A = {ω ∈Ω | p(ω)} and B = {ω ∈Ω | q(ω)}

Prove that

• {ω ∈Ω | p(ω)∧q(ω)}= A∩B;

• {ω ∈Ω | p(ω)∨q(ω)}= A∪B;

• {ω ∈Ω | ¬p(ω)}= Ac.

For reference, in Example 9.1.11, we had Ω= [6]× [6] and we defined p(a,b) to be ‘a+b
is even’ and q(a,b) to be ‘a+b> 7’. C

With this in mind, it will be useful to know how set operations on events interact with
probabilities. A useful tool in this investigation is that of an indicator function.

F Definition 9.1.14
Let Ω be a set and let A⊆Ω. The indicator function of A in Ω is the function iA : Ω→
{0,1} defined by

iA(ω) =

{
1 if ω ∈ A
0 if ω 6∈ A

C Proposition 9.1.15
Let Ω be a set and let A,B⊆Ω. Then for all ω ∈Ω we have

(i) iA∩B(ω) = iA(ω)iB(ω);

(ii) iA∪B(ω) = iA(ω)+ iB(ω)− iA∩B(ω); and

(iii) iAc(ω) = 1− iA(ω).

Proof of (i)
Let ω ∈ Ω. If ω ∈ A∩B then ω ∈ A and ω ∈ B, so that iA∩B(ω) = iA(ω) = iB(ω) = 1.
Hence

iA(ω)iB(ω) = 1 = iA∩B(ω)

If ω 6∈ A∩B then either ω 6∈ A or ω 6∈ B. Hence iA∩B(ω) = 0, and either iA(ω) = 0 or
iB(ω) = 0. Thus

iA(ω)iB(ω) = 0 = iA∩B(ω)

In both cases, we have iA∩B(ω) = iA(ω)iB(ω), as required. �
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. Exercise 9.1.16
Prove parts (ii) and (iii) of Proposition 9.1.15. C

. Exercise 9.1.17
Let (Ω,P) be a discrete probability space, and for each ω ∈ Ω let pω = P({ω}). Prove
that, for each event A, we have

P(A) = ∑
ω∈Ω

pω iA(ω)

C

C Theorem 9.1.18
Let (Ω,P) be a probability space and let A,B⊆Ω. Then

P(A∪B) = P(A)+P(B)−P(A∩B)

Proof
For each ω ∈Ω, let pω = P({ω}). Then

P(A∪B) = ∑
ω∈Ω

pω iA∪B(ω) by Exercise 9.1.17

= ∑
ω∈Ω

pω(iA(ω)+ iB(ω)− iA∩B(ω)) by Proposition 9.1.15(ii)

= ∑
ω∈Ω

pω iA(ω)+ ∑
ω∈Ω

pω iB(ω)+ ∑
ω∈Ω

pω iA∩B(ω) rearranging

= P(A)+P(B)−P(A∩B) by Exercise 9.1.17

as required. �

Although there are nice expressions for unions and complements of events, it is not al-
ways the case that intersection of events corresponds with multiplication of probabilities.

0 Example 9.1.19
Let Ω = [3] and define a probability measure P on Ω by letting

P({1}) = 1
4
, P({2}) = 1

2
and P({3}) = 1

4

Then we have

P({1,2}∩{2,3}) = P({2}) = 1
2
6= 9

16
=

3
4
· 3

4
= P({1,2}) ·P({2,3})

C

This demonstrates that it is not always the case that P(A∩B) = P(A)P(B) for events A,B
in a given probability space. Pairs of events A,B for which this equation is true are said
to be independent.
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F Definition 9.1.20
Let (Ω,P) be a probability space and let A,B be events. We say A and B are independent
if P(A∩B) = P(A)P(B); otherwise, we say they are dependent. More generally, events
A1,A2, . . . ,An are mutually independent if

P(A1∩A2∩·· ·∩An) = P(A1)P(A2) · · ·P(An)

0 Example 9.1.21
A fair six-sided die is rolled twice. Let A be the event that the first roll shows 4, and let
B be the event that the second roll is even. Then

A = {(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)}

so P(A) = 6
36 = 1

6 ; and

B = {(a,2),(a,4),(a,6) | a ∈ [6]}

so P(B) = 18
36 = 1

2 . Moreover A∩B = {(4,2),(4,4),(4,6)}, so it follows that

P(A∩B) =
3

36
=

1
12

=
1
6
· 1

2
= P(A)P(B)

so the events A and B are independent.

Let C be the event that the sum of the two dice rolls is equal to 5. Then

C = {(1,4),(2,3),(3,2),(4,1)}

so P(C) = 4
36 = 1

9 . Moreover A∩C = {(4,1)}, so it follows that

P(A∩C) =
1

36
6= 1

54
=

1
6
· 1

9
= P(A)P(C)

so the events A and C are dependent. C

. Exercise 9.1.22
Let (Ω,P) be a probability space. Under what conditions is an event A independent from
itself? C

Conditional probability

Suppose we model a random process, such as the roll of a die or the flip of a coin, using a
probability space (Ω,P). When we receive new information, the situation might change,
and we might want to model this new situation by updating our probabilities to reflect
the fact that we know that B has occurred. This is done by defining a new probability
measure P̃ on Ω. What follows is an example of this.

0 Example 9.1.23
Two cards are drawn at random, in order, without replacement, from a 52-card deck.
We can model this situation by letting the sample space Ω be the set of ordered pairs of
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distinct cards, and letting P assign an equal probability (of 1
|Ω| ) to each outcome. Note

that |Ω|= 52 ·51, and so

P({ω}) = 1
52 ·51

for each outcome ω .

We will compute two probabilities:

• The probability that the second card drawn is a heart.

• The probability that the second card drawn is a heart given that the first card drawn is
a diamond.

Let A⊆Ω be the event that the second card drawn is a heart, and let B⊆Ω be the event
that the first card drawn is a diamond.

To compute P(A), note first that A = A′∪A′′, where

• A′ is the event that both cards are hearts, so that |A′|= 13 ·12; and

• A′′ is the event that only the second card is a heart, so that |A′′|= 39 ·13.

Since A′∩A′′ =∅, it follows from countable additivity that

P(A) = P(A′)+P(A′′) =
13 ·12+39 ·13

52 ·51
=

13 · (12+39)
52 ·51

=
1
4

Now suppose we know that first card drawn is a diamond—that is, event B has occurred—
and we wish to update our probability that A occurs. We do this by defining a new
probability measure

P̃ : P(Ω)→ [0,1]

such that:

(a) The outcomes that do not give rise to the event B are assigned probability zero; that
is, P̃({ω}) = 0 for all ω 6∈ B; and

(b) The outcomes that give rise to the event B are assigned probabilities proportional
to their old probability; that is, there is some k ∈ R such that P̃(ω) = kP(ω) for all
ω ∈ B.

In order for P̃ to be a probability measure on Ω, we need condition (i) of Definition 9.1.1
to occur.

P̃(Ω) = ∑
ω∈Ω

P̃({ω}) by condition (ii) of Proposition 9.1.5

= ∑
ω∈B

P̃({ω}) since P̃({ω}) = 0 for ω 6∈ B

= ∑
ω∈B

kP({ω}) since P̃({ω}) = kP({ω} for ω ∈ B

= kP(B) by condition (ii) of Proposition 9.1.5
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Since we need P̃(Ω) = 1, we must therefore take k = 1
P(B) . (In particular, we need P(B)>

0 for this notion to be well-defined.)

Recall that, before we knew that the first card was a diamond, the probability that the
second card is a heart was 1

4 . We now calculate how this probability changes with the
updated information that the first card was a diamond.

The event that the second card is a heart in the new probability space is precisely A∩B,
since it is the subset of B consisting of all the outcomes ω giving rise to the event A. As
such, the new probability that the second card is a heart is given by

P̃(A) =
P(A∩B)
P(B)

Now:

• A∩B is the event that the first card is a diamond and the second is a heart. To specify
such an event, we need only specify the ranks of the two cards, so |A∩B|= 13 ·13 and
hence P(A∩B) = 13·13

52·51 .

• B is the event that the first card is a diamond. A similar procedure as with A yields
P(B) = 1

4 .

Hence

P̃(A) =
P(A∩B)
P(B)

=
13 ·13 ·4

52 ·51
=

13
51

Thus the knowledge that the first card drawn is a diamond very slightly increases the
probability that the second card is a heart from 1

4 = 13
52 to 13

51 . C

Example 9.1.23 suggests the following schema: upon discovering that an event B occurs,
the probability that event A occurs should change from P(A) to P(A∩B)

P(B) . This motivates
the following definition of conditional probability.

F Definition 9.1.24
Let (Ω,P) be a probability space and let A,B be events such that P(B) > 0. The con-
ditional probability of A given B is the number P(A | B) (LATEX code: \mathbb{P}(A
\mid B)) defined by

P(A | B) = P(A∩B)
P(B)

0 Example 9.1.25
A fair six-sided die is rolled twice. We compute the probability that the first roll showed
a 2 given that the sum of the die rolls is less than 5.

We can model this situation by taking the sample space to be [6]× [6], with each outcome
having an equal probability of 1

36 .

Let A be the event that the first die roll shows a 2, that is

A = {(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)}
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and let B be the event that the sum of the die rolls is less than 5, that is

B = {(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}

We need to compute P(A | B). Well,

A∩B = {(2,1),(2,2)}

so P(A∩B) = 2
36 ; and P(B) = 6

36 . Hence

P(A | B) =
2

36
6

36

=
2
6
=

1
3

C

. Exercise 9.1.26
A fair six-sided die is rolled three times. What is the probability that the sum of the die
rolls is less than or equal to 12, given that each die roll shows a power of 2? C

. Exercise 9.1.27
Let (Ω,P) be a probability space and let A,B be events with P(B)> 0. Prove that

P(A | B) = P(A∩B | B)

C

. Exercise 9.1.28
Let (Ω,P) be a probability space and let A,B be events such that P(B) > 0. Prove that
P(A | B) = P(A) if and only if A and B are independent. C

We will soon see some useful real-world applications of probability theory using Bayes’s
theorem (Theorem 9.1.33). Before we do so, some technical results will be useful in our
proofs.

C Proposition 9.1.29
Let (Ω,P) be a probability space and let A,B be events with 0 < P(B)< 1. Then

P(A) = P(A | B)P(B)+P(A | Bc)P(Bc)

Proof
Note first that we can write

A = A∩Ω = A∩ (B∪Bc) = (A∩B)∪ (A∩Bc)

and moreover the events A∩B and A∩Bc are mutually exclusive. Hence

P(A) = P(A∩B)+P(A∩Bc)

by countable additivity. The definition of conditional probability (Definition 9.1.24) then
gives

P(A) = P(A | B)P(B)+P(A | Bc)P(Bc)

as required. �
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0 Example 9.1.30
An animal rescue centre houses a hundred animals, sixty of which are dogs and forty
of which are cats. Ten of the dogs and ten of the cats hate humans. We compute the
probability that a randomly selected animal hates humans.

Let A be the event that a randomly selected animal hates humans, and let B be the event
that the animal is a dog. Note that Bc is precisely the event that the animal is a cat. The
information we are given says that:

• P(B) = 60
100 , since 60 of the 100 animals are dogs;

• P(Bc) = 40
100 , since 40 of the 100 animals are cats;

• P(A | B) = 10
60 , since 10 of the 60 dogs hate humans;

• P(A | Bc) = 10
40 , since 10 of the 40 cats hate humans.

By Proposition 9.1.29, it follows that the probability that a randomly selected animal
hates humans is

P(A) = P(A | B)P(B)+P(A | Bc)P(Bc) =
60
100
· 10

60
+

40
100
· 10

40
=

20
100

=
1
5

C

The following example generalises Proposition 9.1.29 to arbitrary partitions of a sample
space into events with positive probabilities.

0 Example 9.1.31
The animal rescue centre from Example 9.1.30 acquires twenty additional rabbits, of
whom sixteen hate humans. We compute the probability that a randomly selected animal
hates humans, given the new arrivals.

A randomly selected animal must be either a dog, a cat or a rabbit, and each of these
occurs with positive probability. Thus, letting D be the event that the selected animal is a
dog, C be the event that the animal is a cat, and R be the event that the animal is a rabbit,
we see that the sets D,C,R form a partition of the sample space.

Letting A be the event that the selected animal hates humans. Then

P(A) = P(A | D)P(D)+P(A |C)P(C)+P(A | R)P(R)

=
10
60
· 60

120
+

10
40
· 40

120
+

16
20
· 20

120

=
3
10

C

Proposition 9.1.32 below is a technical result which proves that conditional probability
truly does yield a new probability measure on a given sample space.
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C Proposition 9.1.32
Let (Ω,P) be a probability space and let B be an event such that P(B)> 0. The function
P̃ : P(Ω)→ [0,1] defined by

P̃(A) = P(A | B) for all A⊆Ω

defines a probability measure on Ω.

Proof
First note that

P̃(Ω) = P(Ω | B) = P(Ω∩B)
P(B)

=
P(B)
P(B)

= 1

so condition (i) of Definition 9.1.1 is satisfied.

Moreover, for each A⊆Ω we have

P̃(A) = P(A | B) by definition of P̃

=
P(A∩B)
P(B)

by Definition 9.1.24

=
1
P(B) ∑

ω∈A∩B
P({ω}) by Proposition 9.1.5

= ∑
ω∈A∩B

P({ω} | B) by Definition 9.1.24

= ∑
ω∈A

P({ω} | B) since P({ω} | B) = 0 for ω ∈ A\B

= ∑
ω∈A

P̃({ω}) by definition of P̃

so condition (ii) of Proposition 9.1.5 is satisfied. Hence P̃ defines a probability measure
on Ω. �

Proposition 9.1.32 implies that we can use all the results we’ve proved about probability
measures to conditional probability given a fixed event B. For example, Theorem 9.1.18
implies that

P(A∪A′ | B) = P(A | B)+P(A′ | B)−P(A∩A′ | B)
for all events A,A′,B in a probability space (Ω,P) such that P(B)> 0.

The next theorem we prove has a very short proof, but is extremely important in applied
probability theory.

C Theorem 9.1.33 (Bayes’s theorem)
Let (Ω,P) be a probability space and let A,B be events with positive probabilities. Then

P(B | A) = P(A | B)P(B)
P(A)

Proof
Definition 9.1.24 gives

P(A | B)P(B) = P(A∩B) = P(B∩A) = P(B | A)P(A)
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Dividing through by P(A) yields the desired equation. �

As stated, Bayes’s theorem is not necessarily particularly enlightening, but its usefulness
increases sharply when combined with Proposition 9.1.29 to express the denominator of
the fraction in another way.

C Corollary 9.1.34
Let (Ω,P) be a probability space and let A,B be events such that P(A) > 0 and 0 <
P(B)< 1. Then

P(B | A) = P(A | B)P(B)
P(A | B)P(B)+P(A | Bc)P(Bc)

Proof
Bayes’s theorem tells us that

P(B | A) = P(A | B)P(B)
P(A)

By Proposition 9.1.29 we have

P(A) = P(A | B)P(B)+P(A | Bc)P(Bc)

Substituting for P(A) therefore yields

P(B | A) = P(A | B)P(B)
P(A | B)P(B)+P(A | Bc)P(Bc)

as required. �

The following example is particularly counterintuitive.

0 Example 9.1.35
A town has 10000 people, 30 of whom are infected with Disease X. Medical scientists
develop a test for Disease X, which is accurate 99% of the time. A person takes the test,
which comes back positive. We compute the probability that the person truly is infected
with Disease X.

Let A be the event that the person tests positive for Disease X, and let B be the event that
the person is infected with Disease X. We need to compute P(B | A).

By Corollary 9.1.34, we have

P(B | A) = P(A | B)P(B)
P(A | B)P(B)+P(A | Bc)P(Bc)

It remains to compute the individual probabilities on the right-hand side of this equation.
Well,

• P(A | B) is the probability that the person tests positive for Disease X, given that they
are infected. This is equal to 99

100 , since the test is accurate with probability 99%.

• P(A | Bc) is the probability that the person tests positive for Disease X, given that they
are not infected. This is equal to 1

100 , since the test is inaccurate with probability 1%.
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• P(B) = 30
10000 , since 30 of the 10000 inhabitants are infected with Disease X.

• P(Bc) = 9970
10000 , since 9970 of the 10000 inhabitants are not infected with Disease X.

Piecing this together gives

P(B | A) =
99

100 · 30
10000

99
100 · 30

10000 +
1

100 · 9970
10000

=
297

1294
≈ 0.23

Remarkably, the probability that the person is infected with Disease X given that the test
is positive is only 23%, even though the test is accurate 99% of the time! C

The following result generalises Corollary 9.1.34 to arbitrary partitions of the sample
space into sets with positive probabilities.

C Corollary 9.1.36
Let (Ω,P) be a probability space, let A be an event with P(A)> 0, and let {Bi | i ∈ I} be
a family of mutually exclusive events indexed by a countable set I such that

P(Bi)> 0 for all i ∈ I and
⋃
i∈I

Bi = Ω

Then

P(Bi | A) =
P(A | Bi)P(Bi)

∑
i∈I
P(A | Bi)P(Bi)

for each i ∈ I.

Proof
Bayes’s theorem tells us that

P(Bi | A) =
P(A | Bi)P(Bi)

P(A)

By countable additivity, we have

P(A) = P

(⋃
i∈I

A∩Bi

)
= ∑

i∈I
P(A∩Bi) = ∑

i∈I
P(A | Bi)P(Bi)

Substituting for P(A) therefore yields

P(Bi | A) =
P(A | Bi)P(Bi)

∑
i∈I
P(A | Bi)P(Bi)

as required. �

0 Example 9.1.37
A small car manufacturer, Cars N’At, makes three models of car: the Allegheny, the
Monongahela and the Ohio. It made 3000 Alleghenys, 6500 Monongahelas and 500
Ohios. In a given day, an Allegheny breaks down with probability 1

100 , a Monongahela
breaks down with probability 1

200 , and the notoriously unreliable Ohio breaks down with
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probability 1
20 . An angry driver calls Cars N’At to complain that their car has broken

down. We compute the probability that the driver was driving an Ohio.

Let A be the event that the car is an Allegheny, let B be the event that the car is a Mononga-
hela, and let C be the event that the car is an Ohio. Then

P(A) =
3000

10000
, P(B) =

6500
10000

, P(C) =
500

10000

Let D be the event that the car broke down. Then

P(D | A) = 1
100

, P(D | B) = 1
200

, P(D |C) =
1
20

We need to compute P(C | D). Since the events A,B,C partition the sample space and
have positive probabilities, we can use Corollary 9.1.36, which tells us that

P(C | D) =
P(D |C)P(C)

P(D | A)P(A)+P(D | B)P(B)+P(D |C)P(C)

Substituting the probabilities that we computed above, it follows that

P(C | D) =
1
20 · 500

10000
1

100 · 3000
10000 +

1
200 · 6500

10000 +
1
20 · 500

10000

=
2
7
≈ 0.29

C

. Exercise 9.1.38
In Example 9.1.37, find the probabilities that the car was an Allegheny and that the car
was a Monongahela. C
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Section 9.2

Discrete random variables

Events in a probability space are sometimes unenlightening when looked at in isolation.
For example, suppose we roll a fair six-sided die twice. The outcomes are elements of
the set [6]× [6], each occurring with equal probability 1

36 . The event that the die rolls
sum to 7 is precisely the subset

{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)} ⊆ [6]× [6]

and so we can say that the probability that the two rolls sum to 7 is

P({(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}) = 1
6

However, it is not at all clear from the expression {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
that, when we wrote it down, what we had in mind was the event that the sum of the die
rolls is 7. Moreover, the expression of the event in this way does not make it clear how
to generalise to other possible sums of die rolls.

Note that the sum of the die rolls defines a function S : [6]× [6]→ [12], defined by

S(a,b) = a+b for all (a,b) ∈ [6]× [6]

The function S allows us to express our event in a more enlightening way: indeed,

{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}= {(a,b) ∈ [6]× [6] | a+b = 7}= S−1[{7}]

(Recall the definition of preimage in Definition 2.2.38.) Thus the probability that the sum
of the two die rolls is 7 is equal to P(S−1[{7}]).

If we think of S not as a function [6]× [6]→ [12], but as a [12]-valued random variable,
which varies according to a random outcome in [6]× [6], then we can informally say

P{S = 7}= 1
6

which formally means P(S−1[{7}]) = 1
6

This affords us much more generality. Indeed, we could ask what the probability is that
the die rolls sum to a value greater than or equal to 7. In this case, note that the die rolls
(a,b) sum to a number greater than or equal to 7 if and only if a+b∈ {7,8,9,10,11,12},
which occurs if and only if (a,b) ∈ S−1[{7,8,9,10,11,12}]. Thus, we might informally
say

P{S> 7}= 7
12

which formally means P(S−1[{7,8,9,10,11,12}]) = 7
12

We might also ask what the probability is that the sum of the die rolls is prime. In this
case, we might informally say

P{S is prime}= 5
12

which formally means P(S−1[{2,3,5,7,11}]) = 5
12
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and so on. In each of these cases, we’re defining events—which are subsets of the sample
space—in terms of conditions on the values of a random variable (which is, formally, a
function).

We make the above intuition formal in Definition 9.2.1.

F Definition 9.2.1
Let (Ω,P) be a probability space and let E be a set. An E-valued random variable on
(Ω,P) is a function X : Ω→ E such that the image

X [Ω] = {X(ω) | ω ∈Ω}

is countable. The set E is called the state space of X . A random variable with countable
state space is called a discrete random variable.

Before we proceed with examples, some notation for events regarding values of random
variables will be particularly useful.

F Notation 9.2.2
Let (Ω,P) be a probability space, let E be a set and let X be an E-valued random variable
on (Ω,P). For each e ∈ E, write

{X = e}= {ω ∈Ω | X(ω) = e}= X−1[{e}]

to denote the event that X takes the value e. More generally, for each logical formula
p(x) with free variable x ranging over E, we write

{p(X)}= {ω ∈Ω | p(X(ω))}= X−1[{e ∈ E | p(e)}]

for the event that the value of X satisfies p(x).

We will usually write P{X = e} instead of P({X = e}) for the probability that a random
variable X takes a value e, and so on.

0 Example 9.2.3
We can model a sequence of three coin flips using the probability space (Ω,P), where
Ω = {H,T}3 and P({ω}) = 1

8 for all ω ∈Ω.

Let N be the real-valued random variable representing number of heads that show. This
is formalised as a function

N : Ω→ R where N(i1, i2, i3) = the number of heads amongst i1, i2, i3

for example, N(H,T,H) = 2. Now

• The probability that exactly two heads show is

P{N = 2}= P(N−1[{2}]) by Notation 9.2.2

= P({(H,H,T),(H,T,H),(T,H,H)}) evaluating event N−1[{2}]

=
3
23 =

3
8
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• The probability that at least two heads show is

P{N > 2}= P({ω ∈Ω | N(ω)> 2}) by Notation 9.2.2

= P
({

(H,H,T), (H,T,H),
(T,H,H), (H,H,H)

})
evaluating event

=
4
23 =

1
2

C

. Exercise 9.2.4
With probability space (Ω,P) and random variable N defined as in Example 9.2.3, com-
pute P{N is odd} and P{N = 4}. C

Each random variable comes with an associated probability mass function, which allows
us to ‘forget’ the underlying probability space for the purposes of studying only the
random variable.

F Definition 9.2.5
Let (Ω,P) be a probability space, let X : Ω→ E be an E-valued random variable. The
probability mass function of X is the function fX : E→ [0,1] defined by

fX (e) = P{X = e} for all e ∈ E

0 Example 9.2.6
The probability mass function of the random variable N from Example 9.2.3 is the func-
tion fN : R→ [0,1] defined by

fN(e) = P{N = e}= 1
8

(
3
e

)
for all e ∈ {0,1,2,3}, and fN(e) = 0 otherwise. Indeed, there are 23 = 8 possible
outcomes, each equally likely, and

(3
e

)
of those outcomes show exactly e heads for

e ∈ {0,1,2,3}. C

. Exercise 9.2.7
Let (Ω,P) be a probability space, let E be a set, let X be an E-valued random variable
and let U ⊆ E. Prove that the event {X ∈U} is equal to the preimage X−1[U ]. Deduce
that

P{X ∈U}= ∑
e∈U

fX (e)

C

In Example 9.2.6, we could have just specified the value of fN on {0,1,2,3}, with the
understanding that N does not take values outside of this set and hence that P{N = e}= 0
for all e 6∈ {0,1,2,3}. This issue arises frequently when dealing with real-valued discrete
random variables, and it will be useful to ignore most (or all) of those real numbers which
are not values of the random variable.

As such, for E ⊆ R, we will from now on blur the distinction between the following
concepts:
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(i) E-valued random variables;

(ii) Real-valued random variables X such that P{X = x}= 0 for all x 6∈ E.

0 Example 9.2.8
The probability mass function of the random variable N from Example 9.2.3 can be taken
to be the function fX : {0,1,2,3}→ [0,1] defined by

fX (k) =
1
8

(
3
k

)
for all k ∈ {0,1,2,3}

C

C Lemma 9.2.9
Let (Ω,P) be a probability space, let E be a set and let X be an E-valued random variable.
The events {X = e} for e ∈ E are mutually exclusive, and their union is Ω.

Proof
If e,e′ ∈ E, then for all ω ∈Ω we have

ω ∈ {X = e}∩{X = e′}⇔ ω ∈ X−1[{e}]∩X−1[{e′}] by Notation 9.2.2
⇔ X(ω) = e and X(ω) = e′ by definition of preimage
⇒ e = e′

so if e 6= e′ then {X = e}∩{X = e′}=∅. So the events are mutually exclusive.

Moreover, if ω ∈Ω, then ω ∈ {X = X(ω)}. Hence

Ω =
⋃
e∈E

{X = e}

as required. �

C Theorem 9.2.10
Let (Ω,P) be a probability space, let E be a countable set, and let X be an E-valued
random variable. Then

∑
e∈E

fX (e) = 1

Proof
Since fX (e) = P{X = e} for all e ∈ E, we need to check that

∑
e∈E
P{X = e}= 1

By Lemma 9.2.9, we have

∑
e∈E
P{X = e}= P

(⋃
e∈E

{X = e}
)

= P(Ω) = 1

as required. �

The following corollary follows immediately.
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C Corollary 9.2.11
Let (Ω,P) be a probability space, let E be a countable set, and let X be an E-valued
random variable. The function X∗P : P(E)→ [0,1] defined by

(X∗P)(A) = ∑
e∈A

fX (e) = P{X ∈ A}

for all A⊆ E defines a probability measure on E. The space (E,X∗P) is called the push-
forward probability measure of X .

Corollary 9.2.11 implies that any statement about probability measures can be applied to
the pushforward measure. For example,

P{X ∈ A∪B}= P{X ∈ A}+P{X ∈ B}−P{X ∈ A∩B}

for all subsets A,B⊆ E.

As with events, there is a notion of independence for random variables.

F Definition 9.2.12
Let (Ω,P) be a discrete probability space and let X ,Y : Ω→ E be discrete random vari-
ables on (Ω,P). We say X and Y are independent if, for all e,e′ ∈ E, the events {X = e}
and {Y = e′} are independent. More generally, random variables X1,X2, . . . ,Xn are mu-
tually independent if, for all e1,e2, . . . ,en ∈ E, the events {Xi = ei} are mutually inde-
pendent.

0 Example 9.2.13
A fair six-sided die is rolled twice. Let X be the value shown on the first roll and Y be
the value shown on the second roll.

We can model this situation by letting Ω = [6]× [6] with P({(a,b)}) = 1
36 for all (a,b) ∈

Ω. The random variables X ,Y can thus be taken to be functions Ω→ [6] defined by

X(a,b) = a and Y (a,b) = b for all (a,b) ∈Ω

So let e,e′ ∈ [6]. Note first that

{X = e}∩{Y = e′}
= {(a,b) ∈Ω | a = e}∩{(a,b) ∈Ω | b = e′} by Notation 9.2.2
= {(a,b) ∈Ω | a = e and b = e′}
= {(e,e′)}

Hence

P({X = e}∩{Y = e′}) = P({(e,e′)}) = 1
36

=
1
6
· 1

6
= P{X = e}P{Y = e′}

The events {X = e} and {Y = e′} are independent, and so X and Y are independent. C
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. Exercise 9.2.14
A coin which shows heads with probability p ∈ [0,1], and tails otherwise, is flipped five
times. For each i ∈ [5], let

Xi =

{
0 if the ith flip shows tails
1 if the ith flip shows heads

Prove that the random variables X1,X2,X3,X4,X5 are mutually independent. C

One final technicality that we mention before continuing concerns performing arithmetic
with random variables which assume real values.

F Notation 9.2.15
Let (Ω,P) be a probability space, and let X ,Y be real-valued random variables on (Ω,P).
Then we can define a new real-valued random variable X +Y by

(X +Y )(ω) = X(ω)+Y (ω) for all ω ∈Ω

Likewise for multipication, scalar multiplication and constants: for each ω ∈Ω, define

(XY )(ω) = X(ω)Y (ω), (aX)(ω) = a ·X(ω), a(ω) = a

where a ∈ R. Note that the random variables X +Y,XY,aX ,a are all supported on a
countable set.

0 Example 9.2.16
A coin which shows heads with probability p ∈ [0,1], and tails otherwise, is flipped n
times. For each i ∈ [n], let

Xi =

{
0 if the ith flip shows tails
1 if the ith flip shows heads

Then each Xi is a {0,1}-valued random variable.

Define X = X1 +X2 + · · ·+Xn. Then X is a {0,1, . . . ,n}-valued random variable repres-
enting the number of heads that show in total after the coin is flipped n times. C

Probability distributions

Most of the random variables we are interested in are characterised by one of a few
probability distributions. We won’t define the term ‘probability distribution’ precisely—
indeed, its use in the mathematical literature is often ambiguous and informal—instead,
we will take it to mean any description of the random behaviour of a probability space or
random variable.

The uniform distribution models the real-world situation in which any of a fixed number
of outcomes occurs with equal probability.
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F Definition 9.2.17 (Uniform distribution)
Let (Ω,P) be a probability space, let E be a finite set, and let X : Ω→E be a random vari-
able. We say X follows the uniform distribution on E, or X is uniformly distributed
on E, if fX is constant—that is, if

fX (e) =
1
|E| for all e ∈ E

If X is uniformly distributed on E, we write X ∼ Unif(E) (LATEX code: \sim).

0 Example 9.2.18
Let (Ω,P) be the probability space modelling the roll of a fair six-sided die, and let X be
the [6]-valued random variable representing the number shown. Then for each k ∈ [6] we
have

fX (k) = P{X = k}= P({k}) = 1
6

so X is uniformly distributed on [6]. C

. Exercise 9.2.19
Let (Ω,P) be the probability space modelling the roll of a fair six-sided die, and let X be
the {0,1}-valued random variable which is equal to 0 if the die shows an even number
and 1 if the die shows an odd number. Prove that X ∼ Unif({0,1}). C

Before we continue, we prove that the notion of ‘uniform distribution’ does not make
sense for countably infinite sets.

C Theorem 9.2.20
Let (Ω,P) be a probability space and let E be a countably infinite set. There is no notion
of a uniformly E-valued random variable X—that is, there is no p ∈ [0,1] such that
fX (e) = p for all e ∈ E.

Proof
We may assume E = N; otherwise, re-index the sums accordingly.

Let p ∈ [0,1]. Note that

∑
n∈N

fX (n) = ∑
n∈N

p = lim
N→∞

N

∑
n=0

p = lim
N→∞

(N +1)p

If p = 0 then
lim

N→∞
(N +1)p = lim

N→∞
0 = 0

If p > 0 then, for all K > 0, letting N = K
p yields (N +1)p = K + p > K, and hence

lim
N→∞

(N +1)p = ∞

Thus ∑
n∈N

p 6= 1 for all p ∈ [0,1].

In both cases, we have contradicted Theorem 9.2.10. As such, there can be no random
variable X : Ω→ N such that fX is constant. �
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The Bernoulli distribution models real-world situations in which one of two outcomes
occurs, but not necessarily with the same probability.

F Definition 9.2.21 (Bernoulli distribution)
Let (Ω,P) be a probability space. A {0,1}-valued random variable X follows
the Bernoulli distribution with parameter p if its probability mass function
fX : {0,1}→ [0,1] satisfies

fX (0) = 1− p and fX (1) = p

If X follows the Bernoulli distribution with parameter p, we write X ∼ B(1, p).

The reason behind the notation B(1, p) will become clear soon—the Bernoulli distribu-
tion is a specific instance of a more general distribution, which we will see in Defini-
tion 9.2.24.

0 Example 9.2.22
A coin shows ‘heads’ with probability p and ‘tails’ with probability 1− p. Let X be the
random variable which takes the value 0 if the coin shows tails and 1 if the coin shows
heads. Then X ∼ B(1, p). C

. Exercise 9.2.23
Let X be a {0,1}-valued random variable. Prove that X ∼ U({0,1}) if and only if X ∼
B(1, 1

2 ). C

Suppose that, instead of flipping a coin just once, as in Example 9.2.22, you flip it n times.
The total number of heads that show must be an element of {0,1, . . . ,n}, and each such
element occurs with some positive probability. The resulting probability distribution is
called the binomial distribution.

F Definition 9.2.24 (Binomial distribution)
Let (Ω,P) be a probability space. A {0,1, . . . ,n}-valued random variable X follows
the binomial distribution with parameters n, p if its probability mass function fX :
{0,1, . . . ,n}→ [0,1] satisfies

fX (k) =
(

n
k

)
pk(1− p)n−k

for all k ∈ {0,1, . . . ,n}. If X follows the binomial distribution with parameters n, p, we
write X ∼ B(n, p).

0 Example 9.2.25
A coin which shows heads with probability p ∈ [0,1], and tails otherwise, is flipped n
times. We will prove that the number of heads that show is binomially distributed.

We can model this situation with probability space (Ω,P) defined by taking Ω= {H,T}n,
and letting P({ω}) = ph(1− p)t for all ω ∈Ω, where h is the number of heads that show
and t is the number of tails that show in outcome ω . For example, if n = 5 then

P({HTHHT}) = p3(1− p)2 and P({TTTTT}) = (1− p)5
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Note in particular that h+ t = n.

Let X be the random variable which counts the number of heads that show. Formally, we
can define X : {H,T}n→{0,1, . . . ,n} by letting X(ω) be the number of heads that show
in outcome ω . For example if n = 5 then

X(HTHHT) = 3 and X(TTTTT) = 0

The event {X = k} is the set of n-tuples of ‘H’s and ‘T’s which contain exactly k ‘H’.
Hence |{X = k}|=

(n
k

)
, since such an n-tuple can be specified by choosing the k positions

of the ‘H’s, and putting ‘T’s in the remaining positions. Since each outcome in this event
occurs with equal probability pk(1− p)n−k, it follows that

fX (k) =
(

n
k

)
pk(1− p)n−k

for all k ∈ {0,1, . . . ,n}. Hence X ∼ B(n, p). C

The following theorem proves that the sum of Bernoulli random variables follows the
binomial distribution.

C Theorem 9.2.26
Let (Ω,P) be a probability space, let p ∈ [0,1] and let X1,X2, . . . ,Xn : Ω→ {0,1} be
independent random variables such that Xi ∼ B(1, p). Then

X1 +X2 + · · ·+Xn ∼ B(n, p)

Proof
Let X = X1 +X2 + · · ·+Xn. For each outcome ω and each k ∈ {0,1, . . . ,n}, we have
X(ω) = k if and only if exactly k of the values X1(ω),X2(ω), . . . ,Xn(ω) are equal to 1.

For each specification S of which of the random variables Xi is equal to 1, let AS ⊆Ω be
the event that this occurs. Formally, this is to say that, for each S⊆ [n], we define

AS = {ω ∈Ω | Xi(ω) = 0 for all i 6∈ S and Xi(ω) = 1 for all i ∈ S}

Then P(AS) = pk(1− p)n−k, since the random variables X1,X2, . . . ,Xn are mutually inde-
pendent.

As argued above sets {AS |U ⊆ [n], |S|= k} form a partition of {X = k}, and hence

fX (k) = ∑
S∈([n]k )

P(AS) = ∑
S∈([n]k )

pk(1− p)n−k =

(
n
k

)
pk(1− p)n−k

which is to say that X ∼ B(n, p). �

We will make heavy use of Theorem 9.2.26 when we will study the expectation of bino-
mially distributed random variables (Definition 9.2.34). First, let’s will look at a couple
of scenarios in which a binomially distributed random variable is expressed as a sum of
independent Bernoulli random variables.
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0 Example 9.2.27
In Example 9.2.25, we could have defined {0,1}-valued random variables X1,X2, . . . ,Xn
by letting

Xi(ω) =

{
0 if the ith coin flip shows tails
1 if the ith coin flip shows heads

Then the number of heads shown in total is the random variable X = X1 +X2 + · · ·+Xn.
Note that each random variable Xi follows the Bernoulli distribution with parameter p,
and they are independent, so that X ∼ B(n, p) by Theorem 9.2.26. C

In Example 9.2.25, we flipped a coin a fixed number of times and counted how many
heads showed. Now suppose that we flip a coin repeatedly until heads show, and then
stop. The number of times the coin was flipped before heads shows could, theoretically,
be any natural number. This situation is modelled by the geometric distribution.

F Definition 9.2.28 (Geometric distribution on N)
Let (Ω,P) be a probability space. AnN-valued random variable X follows the geometric
distribution with parameter p if its probability mass function fX : N→ [0,1] satisfies

fX (k) = (1− p)k p for all k ∈ N

If X follows the geometric distribution with parameter p, we write X ∼ Geom(p).

0 Example 9.2.29
A coin which shows heads with probability p ∈ [0,1], and tails otherwise, is flipped
repeatedly until heads shows. C

. Exercise 9.2.30
Let p ∈ [0,1] and let X ∼ Geom(p). Prove that

P{X is even}= 1
2− p

What is the probability that X is odd? C

Occasionally, it will be useful to consider geometrically distributed random variables
which are valued in the set

N+ = {1,2,3, . . .}
of all positive natural numbers. The probability mass function of such a random variable
is slightly different.

F Definition 9.2.31 (Geometric distribution on N+)
Let (Ω,P) be a probability space. An N+-valued random variable X follows the geo-
metric distribution with parameter p if its probability mass function fX : N+→ [0,1]
satisfies

fX (k) = (1− p)k−1 p for all k ∈ N+

If X follows the geometric distribution with parameter p, we write X ∼ Geom(p).
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It is to be understood from context whether a given geometric random variable is N-
valued or N+-valued.

0 Example 9.2.32
An urn contains n> 1 distinct coupons. Each time you draw a coupon that you have not
drawn before, you get a stamp. When you get all n stamps, you win. Let X be the number
of coupons drawn up to, and including, a winning draw.

For each k ∈ [n], let Xk be the random variable representing the number of draws required
to draw the kth new coupon, after k− 1 coupons have been collected. Then the total
number of times a coupon must be drawn is X = X1 +X2 + · · ·+Xn.

After k− 1 coupons have been collected, there are n− k + 1 uncollected coupons re-
maining in the urn, and hence on any given draw, an uncollected coupon is drawn with
probability n−k+1

n , and a coupon that has already been collected is drawn with probability
k−1

n . Hence for each r ∈ N+ we have

P[Xk = r] =
(

k−1
n

)r−1(n− k+1
n

)
That is to say, Xk is geometrically distributed on N+ with parameter n−k+1

n .

We will use this in Example 9.2.47 to compute the number of times a person should
expect to have to draw coupons from the urn until they win. C

Expectation

We motivate the definition of expectation (Definition 9.2.34) with the following example.

0 Example 9.2.33
For each n > 1, let Xn be the average value shown when a fair six-sided die is rolled n
times.

When n is small, the value of Xn is somewhat unpredictable. For example, X1 is uniformly
distributed, since it takes each of the values 1,2,3,4,5,6 with equal probability. This is
summarised in the following table:

e 1 2 3 4 5 6
P{X1 = e} 1

6
1
6

1
6

1
6

1
6

1
6

The distribution of X2 is shown in the following table:

e 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
P{X2 = e} 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

As can be seen, the probabilities increase towards the middle of the table; the extreme
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values occur with low probability. This effect is exaggerated as n increases. Indeed,

P{Xn = 1}= P{Xn = 6}= 1
6n

so that P{Xn = 1} → 0 and P{Xn = 6} → 0 as n→ ∞; however, it can be shown that for
all ε > 0, we have

P{3.5− ε < Xn < 3.5+ ε}
so that P{|Xn−3.5|< ε}→ 1 as n→ ∞.

Thus when we roll a die repeatedly, we can expect its value to eventually be as close to
3.5 as we like. This is an instance of a theorem called the law of large numbers C

The value 3.5 in Example 9.2.33 is special because it is the average of the numbers
1,2,3,4,5,6. More generally, assignments of different probabilities to different values
of a random variable X yields a weighted average of the possible values. This weighted
average, known as the expectation of the random variable, behaves in the same way as
the number 3.5 did in Example 9.2.33.

F Definition 9.2.34
Let (Ω,P) be a probability space, let E ⊆ R be countable, and let X be an E-valued
random variable on (Ω,P). The expectation (or expected value) of X , if it exists, is the
real number E[X ] (LATEX code: \mathbb{E}) defined by

E[X ] = ∑
e∈E

e fX (e)

0 Example 9.2.35
Let X be a random variable representing the value shown when a fair six-sided die is
rolled. Then X ∼ U([6]), so that fX (k) = 1

6 for all k ∈ [6], and hence

E[X ] = 1 · 1
6
+2 · 1

6
+3 · 1

6
+4 · 1

6
+5 · 1

6
+6 · 1

6
=

21
6

= 3.5

so the expected value of the die roll is 3.5. C

0 Example 9.2.36
Let p ∈ [0,1] and let X ∼ B(1, p). Then

E[X ] = 0 · (1− p)+1 · p = p

So the expected value of a Bernoulli random variable is equal to the parameter. C

. Exercise 9.2.37
Let (Ω,P) be a probability space and let c ∈ R. Thinking of c as a constant real-valued
random variable,[a] prove that E[c] = c. C

The following lemma provides an alternative method for computing the expectation
of a random variable. It will be useful for proving that expectation is linear in The-
orem 9.2.43.
[a]Formally, we should define X : Ω→ R by letting X(ω) = c for all ω ∈Ω; then compute E[X ].
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C Lemma 9.2.38
Let (Ω,P) be a probability space, let E be a countable set and let X be an E-valued
random variable on (Ω,P). Then

E[X ] = ∑
ω∈Ω

X(ω)P({ω})

Proof
Recall from Lemma 9.2.9 that

Ω =
⋃
e∈E

{X = e}

and the events {X = e} are mutually exclusive. Hence

∑
ω∈Ω

X(ω)P({ω}) = ∑
e∈E

∑
ω∈{X=e}

X(ω)P({ω}) by Lemma 9.2.9

= ∑
e∈E

eP{X = e} by (ii) in Proposition 9.1.5

= ∑
e∈E

e fX (e) by Definition 9.2.5

as required. �

C Proposition 9.2.39
Let n ∈ N and p ∈ [0,1], and suppose that X is a random variable such that X ∼ B(n, p).
Then E[X ] = np.

Proof
Since X ∼ B(n, p), we have fX (k) =

(n
k

)
pk(1− p)n−k for all 06 k 6 n. Hence

E[X ] =
n

∑
k=0

k ·
(

n
k

)
pk(1− p)n−k by definition of expectation

=
n

∑
k=1

k ·
(

n
k

)
pk(1− p)n−k since the k = 0 term is zero

=
n

∑
k=1

n
(

n−1
k−1

)
pk(1− p)n−k by Proposition 6.2.38

=
n−1

∑
`=0

n
(

n−1
`

)
p`+1(1− p)(n−1)−` writing `= k+1

= np ·
n−1

∑
`=0

(
n−1
`

)
p`(1− p)(n−1)−` pulling out constant factors

= np(p+(1− p))n−1 by the binomial theorem
= np since p+(1− p) = 1

as required. �

0 Example 9.2.40
A coin which shows heads with probability 1

3 , and tails otherwise, is tossed 12 times.
Letting X be the random variable represent the number of heads that show, we see that
X ∼ B(12, 1

3 ), and hence the expected number of heads that show is equal to

E[X ] = 12 · 1
3
= 4
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C

. Exercise 9.2.41
Use Exercise 7.3.50 to prove that the expectation of a N-valued random variable which is
geometrically distributed with parameter p ∈ [0,1] is equal to 1−p

p . Use this to compute
the expected number of times a coin must be flipped before the first time heads shows,
given that heads shows with probability 2

7 . C

. Exercise 9.2.42
Prove that the expectation of a N+-valued random variable which is geometrically dis-
tributed with parameter p ∈ [0,1] is equal to 1

p . C

C Theorem 9.2.43 (Linearity of expectation)
Let (Ω,P) be a probability space, let E ⊆ R be countable, let X and Y be E-valued
random variables on (Ω,P), and let a,b ∈ R. Then

E[aX +bY ] = aE[X ]+bE[Y ]

Proof
This follows directly from the fact that summation is linear. Indeed,

E[aX +bY ] = ∑
ω∈Ω

(aX +bY )(ω)P({ω}) by Lemma 9.2.38

= ∑
ω∈Ω

(
aX(ω)P({ω})+bY (ω)P({ω})

)
expanding

= a ∑
ω∈Ω

X(ω)P({ω})+b ∑
ω∈Ω

Y (ω)P({ω}) by linearity of summation

= aE[X ]+bE[Y ] by Lemma 9.2.38

as required. �

0 Example 9.2.44
Let X be a random variable representing the sum of the numbers shown when a fair six-
sided die is rolled twice. We can write X =Y +Z, where Y is the value of the first die roll
and Z is the value of the second die roll. By Example 9.2.35, we have E[Y ] =E[Z] = 3.5.
Linearity of expectation then yields

E[X ] = E[Y ]+E[Z] = 3.5+3.5 = 7

so the expected value of the sum of the two die rolls is 7. C

0 Example 9.2.45
A coin, when flipped, shows heads with probability p ∈ [0,1]. The coin is flipped. If it
shows heads, I gain $10; if it shows tails, I lose $20. We compute the least value of p
that ensures that I do not expect to lose money.

Let X be the random variable which is equal to 0 if tails shows, and 1 if heads shows.
then X ∼ B(1, p), so that E[X ] = p by Example 9.2.36. Let Y be the amount of money I
gain. Then

Y = 10X−20(1−X) = 30X−20
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Hence my expected winnings are

E[Y ] = 30E[X ]−20 = 30p−20

In order for this number to be non-negative, we require p> 2
3 . C

Theorem 9.2.43 generalises by induction to linear combinations of countably many ran-
dom variables; this is proved in the following exercise

. Exercise 9.2.46
Let (Ω,P) be a probability space, let E ⊆R be countable, let {Xi | i∈ I} be a family of E-
valued random variables on (Ω,P), indexed by some countable set I, and let {an | n ∈N}
be an I-indexed family of real numbers. Prove that

E

[
∑
i∈I

aiXi

]
= ∑

i∈I
aiE[Xi]

C

0 Example 9.2.47
Recall Example 9.2.32: an urn contains n > 1 distinct coupons. Each time you draw a
coupon that you have not drawn before, you get a stamp. When you get all n stamps, you
win. We find the expected number of times you need to draw a coupon from the urn in
order to win.

For each k ∈ [n], let Xk be the random variable representing the number of draws required
to draw the kth new coupon, after k− 1 coupons have been collected. Then the total
number of times a coupon must be drawn is X = X1 +X2 + · · ·+Xn.

We already saw that Xk ∼ Geom
( n−k+1

n

)
for each k ∈ [n]. By Exercise 9.2.42, we have

E[Xk] =
n

n−k+1 for all k ∈ [n]. By linearity of expectation, it follows that

E[X ] =
n

∑
k=1
E[Xk] =

n

∑
k=1

n
n− k+1

= n
n

∑
i=1

1
i

C
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Section 9.E

Chapter 9 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.
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Section 10.1

Orders and lattices

We saw in Section 4.1 how equivalence relations behave like ‘=’, in the sense that they
are reflexive, symmetric and transitive.

This section explores a new kind of relation which behaves like ‘6’. This kind of rela-
tion proves to be extremely useful for making sense of mathematical structures, and has
powerful applications throughout mathematics, computer science and even linguistics.

F Definition 10.1.1
A relation R on a set X is a partial order if R is reflexive, antisymmetric and transitive.
That is, if:

• (Reflexivity) x R x for all x ∈ X ;

• (Antisymmetry) For all x,y ∈ X , if x R y and y R x, then x = y;

• (Transitivity) For all x,y,z ∈ X , if x R y and y R z, then x R z.

A set X together with a partial order R on X is called a partially ordered set, or poset
for short, and is denoted (X ,R).

When we talk about partial orders, we usually use a suggestive symbol like ‘4’ (LATEX
code: \preceq) or ‘v’ (LATEX code: \sqsubseteq).

0 Example 10.1.2
We have seen many examples of posets so far:

• Any of the sets N, Z, Q or R, with the usual order relation 6.

• Given a set X , its power set P(X) is partially ordered by ⊆. Indeed:

� Reflexivity. If U ∈P(X) then U ⊆U .

� Antisymmetry. If U,V ∈P(X) with U ⊆V and V ⊆U , then U =V by definition
of set equality.

� Transitivity. If U,V,W ∈P(X) with U ⊆V and V ⊆W , then U ⊆W by Proposi-
tion 2.1.20.

• The set N of natural numbers is partially ordered by the divisibility relation—see Ex-
ercises 4.1.23, 4.1.33 and 4.1.40. However, as noted in Exercise 4.1.33, the set Z of
integers is not partially ordered by divisibility, since divisibility is not antisymmetric
on Z.

• Any set X is partially ordered by its equality relation. This is called the discrete order
on X .

C
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Much like the difference between the relations 6 and < on N, or between ⊆ and $ on
P(X), every partial order can be strictified, in a precise sense outlined in the following
definition and proposition.

F Definition 10.1.3
A relation R on a set X is a strict partial order if it is irreflexive, asymmetric and
transitive. That is, if:

• (Irreflexivity) ¬(x R x) for all x ∈ X ;

• (Asymmetry) For all x,y ∈ X , if x R y, then ¬(y R x);

• (Transitivity) For all x,y,z ∈ X , if x R y and y R z, then x R z.

C Proposition 10.1.4
Let X be a set. Partial orders 4 on X are in natural correspondence with strict partial
orders ≺ on X , according to the rule:

x4 y ⇔ (x≺ y∨ x = y) and x≺ y ⇔ (x4 y∧ x 6= y)

Proof
Let P be the set of all partial orders on X and let S be the set of all strict partial orders on
X . Define functions

f : P→ S and g : S→ P

as in the statement of the proposition, namely:

• Given a partial order 4, let f (4) be the relation ≺ defined for x,y ∈ X by letting x≺ y
be true if and only if x4 y and x 6= y;

• Given a strict partial order ≺, let g(≺) be the relation 4 defined for x,y ∈ X by letting
x4 y be true if and only if x≺ y or x = y.

We’ll prove that f and g are mutually inverse functions. Indeed:

• f is well-defined. To see this, fix 4 and ≺= f (4) and note that:

� ≺ is irreflexive, since for x ∈ X if x≺ x then x 6= x, which is a contradiction.

� ≺ is asymmetric. To see this, let x,y ∈ X and suppose x≺ y. Then x4 y and x 6= y.
If also y≺ x, then we’d have y4 x, so that x = y by antisymmetry of 4. But x 6= y,
so this is a contradiction.

� ≺ is transitive. To see this, let x,y,z ∈ X and suppose x ≺ y and y ≺ z. Then x 4 y
and y4 z, so that x4 z. Moreover, if x = z then we’d also have z4 x by reflexivity
of 4, so z4 y by transitivity of 4, and hence y = z by antisymmetry of 4. But this
contradicts y≺ z.

So ≺ is a strict partial order on X .

• g is well-defined. To see this, fix ≺ and 4= g(≺) and note that:

� 4 is reflexive. This is built into the definition of 4.
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� 4 is symmetric. To see this, fix x,y ∈ X and suppose x4 y and y4 x. Now if x 6= y
then x≺ y and y≺ x, but this contradicts asymmetry of ≺. Hence x = y.

� 4 is transitive. To see this, fix x,y,z ∈ X and suppose x4 y and y4 z. Then one of
the following four cases must be true:
∗ x = y = z. In this case, x = z, so x4 z.
∗ x = y≺ z. In this case, x≺ z, so x4 z.
∗ x≺ y = z. In this case, x≺ z, so x4 z.
∗ x≺ y≺ z. In this case, x≺ z by transitivity of ≺, so x4 z.
In any case, we have that x4 z.

So 4 is a partial order on X .

• g ◦ f = idP. To see this, let ≺ = f (4) and v = g(≺). For x,y ∈ X , we have x v y if
and only if x ≺ y or x = y, which in turn occurs if and only if x = y or both x 4 y and
x 6= y. This is equivalent to x4 y, since if x = y then x4 y by reflexivity. Hence v and
4 are equal relations, so g◦ f = idP.

• f ◦ g = idS. To see this, let 4 = g(≺) and @ = f (4). For x,y ∈ X , we have x @ y if
and only if x 4 y and x 6= y, which in turn occurs if and only if x 6= y and either x ≺ y
or x = y. Since x 6= y precludes x = y, this is equivalent to x ≺ y. Hence ≺ and @ are
equal relations, so f ◦g = idS.

So f and g are mutually inverse functions, and we have established the required bijection.
�

In light of Proposition 10.1.4, we will freely translate between partial orders and strict
partial orders wherever necessary. When we do so, we will use ≺ (LATEX code: \prec)
to denote the ‘strict’ version, and4 to denote the ‘weak’ version. (Likewise for@ (LATEX
code: \sqsubet).)

F Definition 10.1.5
Let (X ,4) be a poset. A 4-least element of X (or a least element of X with respect to
4) is an element ⊥ ∈ X (LATEX code: \bot) such that ⊥4 x for all x ∈ X . A 4-greatest
element of X (or a greatest element of X with respect to4) is an element>∈ X (LATEX
code: \top) such that x4> for all x ∈ X .

0 Example 10.1.6
Some examples of least and greatest elements that we have already seen are:

• In (N,6), 0 is a least element; there is no greatest element.

• Let n ∈N with n > 0. Then 1 is a least element of ([n],6), and n is a greatest element.

• (Z,6) has no greatest or least elements.

C

Proposition 10.1.7 says that least and greatest elements of posets are unique, if they exist.
This allows us to talk about ‘the’ least or ‘the’ greatest element of a poset.
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C Proposition 10.1.7
Let (X ,4) be a poset. If X has a least element, then it is unique; and if X has a greatest
element, then it is unique.

Proof
Suppose X has a least element `. We prove that if `′ is another least element, then `′ = `.

So take another least element `′. Since ` is a least element, we have `4 `′. Since `′ is a
least element, we have `′ 4 `. By antisymmetry of 4, it follows that `= `′.

Hence least elements are unique. The proof for greatest elements is similar, and is left as
an exercise. �

. Exercise 10.1.8
Let X be a set. The poset (P(X),⊆) has a least element and a greatest element; find
both. C

. Exercise 10.1.9
Prove that the least element of N with respect to divisibility is 1, and the greatest element
is 0. C

F Definition 10.1.10 (Supremum)
Let (X ,4) be a poset and let A⊆ X . A 4-supremum of A is an element s ∈ X such that

• a4 s for each a ∈ A; and

• If s′ ∈ X with a4 s′ for all a ∈ A, then s4 s′.

A 4-infimum of A is an element i ∈ X such that

• i4 a for each a ∈ A; and

• If i′ ∈ X with i′ 4 a for all a ∈ A, then i′ 4 i.

0 Example 10.1.11
The well-ordering principle states that if U ⊆ N is inhabited then U has a 6-infimum,
and moreover the infinum of U is an element of U . C

. Exercise 10.1.12
Let X be a set, and let U,V ∈P(X). Prove that the ⊆-supremum of {U,V} is U ∪V ,
and the ⊆-infimum of {U,V} is U ∩V . C

. Exercise 10.1.13
Let a,b∈N. Show that gcd(a,b) is an infimum of {a,b} and that lcm(a,b) is a supremum
of {a,b} with respect to divisbility. C

0 Example 10.1.14
Define U = [0,1) = {x ∈ R | 0 6 x < 1}. We prove that U has both an infimum and a
supremum in the poset (R,6).

• Infimum. 0 is an infimum for U . Indeed:

(i) Let x ∈U . Then 06 x by definition of U .
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(ii) Let y ∈ R and suppose that y6 x for all x ∈U . Then y6 0, since 0 ∈U .

so 0 is as required.

• Supremum. 1 is a supremum for U . Indeed:

(i) Let x ∈U . Then x < 1 by definition of U , so certainly x6 1.

(ii) Let y ∈ R and suppose that x 6 y for all x ∈U . We prove that 1 6 y by contra-
diction. So suppose it is not the case that 16 y. Then y < 1. Since x6 y for all
x ∈U , we have 06 y. But then

06 y =
y+ y

2
<

y+1
2

<
1+1

2
= 1

But then y+1
2 ∈U and y < y+1

2 . This contradicts the assumption that x 6 y for
all x ∈U . So it must in fact have been the case that 16 y.

so 1 is as required.

C

The following proposition proves that suprema and infima are unique, provided they
exist.

C Proposition 10.1.15
Let (X ,4) is a poset, and let A⊆ X .

(i) If s,s′ ∈ X are suprema of A, then s = s′;

(ii) If i, i′ ∈ X are infima of A, then i = i′.

Proof
Suppose s,s′ are suprema of A. Then:

• a4 s′ for all a ∈ A, so s′ 4 s since s is a supremum of A;

• a4 s for all a ∈ A, so s4 s′ since s′ is a supremum of A.

Since 4 is antisymmetric, it follows that s = s′. This proves (i).

The proof of (ii) is almost identical and is left as an exercise to the reader. �

F Notation 10.1.16
Let (X ,4) be a poset and let U ⊆ X . Denote the 4-infimum of U , if it exists, by

∧
U

(LATEX code: \bigwedge); and denote the 4-supremum of U , if it exists, by
∨

U (LATEX
code: \bigvee). Moreover, for x,y ∈ X , write∧

{x,y}= x∧ y (LATEX code: \wedge),
∨
{x,y}= x∨ y (LATEX code: \vee)

0 Example 10.1.17
Some examples of Notation 10.1.16 are as follows.

• Let X be a set. In (P(X),⊆) we have U ∧V = U ∩V and U ∨V = U ∪V for all
U,V ∈P(X).
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• We have seen that, in (N, |), we have a∧ b = gcd(a,b) and a∨ b = lcm(a,b) for all
a,b ∈ N.

• In (R,6), we have a∧b = min{a,b} and a∨b = max{a,b}.

C

F Definition 10.1.18
A lattice is a poset (X ,4) such that every pair of elements of X has a 4-supremum and
a 4-infimum.

0 Example 10.1.19
We have seen that (P(X),⊆), (R,6) and (N, |) are lattices. C

C Proposition 10.1.20 (Associativity laws for lattices)
Let (X ,4) be a lattice, and let x,y,z ∈ X . Then

x∧ (y∧ z) = (x∧ y)∧ z and x∨ (y∨ z) = (x∨ y)∨ z

Proof
We prove x∧ (y∧ z) = (x∧y)∧ z; the other equation is dual and is left as an exercise. We
prove that the sets {x,y∧ z} and {x∧y,z} have the same sets of lower bounds, and hence
the same infima. So let

L1 = {i ∈ X | i4 x and i4 y∧ z} and L2 = {i ∈ X | i4 x∧ y and i4 z}

We prove L1 = L = L2, where

L = {i ∈ X | i4 x, i4 y and i4 z}

First we prove L1 = L. Indeed:

• L1 ⊆ L. To see this, suppose i ∈ L1. Then i4 x by definition of L1. Since i4 y∧ z, and
y∧ z4 y and y∧ z4 z, we have i4 y and i4 z by transitivity of 4.

• L⊆ L1. To see this, suppose i ∈ L. Then i4 x by definition of L. Moreover, i4 y and
i4 z by definition of L, so that i4 y∧ z by definition of ∧. Hence i ∈ L.

The proof that L2 = L is similar. Hence L1 = L2. But x∧ (y∧ z) is, by definition of ∧, the
4-greatest element of L1, which exists since (X ,4) is a lattice. Likewise, (x∧ y)∧ z is
the 4-greatest element of L2.

Since L1 = L2, it follows that x∧ (y∧ z) = (x∧ y)∧ z, as required. �

In the next exercise, you will prove some properties satisfied by suprema and infima in
addition to associativity.

. Exercise 10.1.21 (Properties of suprema and infima)
Let (X ,4) be a lattice. Prove that, for all x,y ∈ X , we have:

(a) (Idempotence) x∧ x = x and x∨ x = x;
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(b) (Commutativity) x∧ y = y∧ x and x∨ y = y∨ x;

(c) (Absorption) x∨ (x∧ y) = x and x∧ (x∨ y) = x.

C

0 Example 10.1.22
It follows from what we’ve proved that if a,b,c ∈ Z then

gcd(a,gcd(b,c)) = gcd(gcd(a,b),c)

For example, take a = 882, b = 588 and c = 252. Then

• gcd(b,c) = 84, so gcd(a,gcd(b,c)) = gcd(882,84) = 42;

• gcd(a,b) = 294, so gcd(gcd(a,b),c) = gcd(294,252) = 42.

These are indeed equal. C

Distributive lattices and Boolean algebras

One particularly important class of lattice is that of a distributive lattice, in which su-
prema and infima interact in a particularly convenient way. This makes algebraic manip-
ulations of expressions involving suprema and infima particularly simple.

F Definition 10.1.23
A lattice (X ,4) is distributive if

x∧ (y∨ z) = (x∧ y)∨ (x∧ z) and x∨ (y∧ z) = (x∨ y)∧ (x∨ z)

for all x,y,z ∈ X .

0 Example 10.1.24
For any set X , the power set lattice (P(X),⊆) is distributive. That is to say that for all
U,V,W ⊆ X we have

U ∩ (V ∪W ) = (U ∩V )∪ (U ∩W ) and U ∪ (V ∩W ) = (U ∪V )∩ (U ∪W )

This was the content of Example 2.1.50 and Exercise 2.1.51. C

. Exercise 10.1.25
Prove that (N, |) is a distributive lattice. C

F Definition 10.1.26
Let (X ,4) be a lattice with a greatest element > and a least element ⊥, and let x ∈ X . A
complement for x is an element y such that

x∧ y =⊥ and x∨ y =>
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0 Example 10.1.27
Let X be a set. We show that every element U ∈P(X) has a complement. C

. Exercise 10.1.28
Let (X ,4) be a distributive lattice with a greatest element and a least element, and let
x ∈ X . Prove that, if a complement for x exists, then it is unique; that is, prove that if
y,z ∈ X are complements for X , then y = z. C

Exercise 10.1.28 justifies the following notation.

F Notation 10.1.29
Let (X ,4) be a distributive lattice with greatest and least elements. If x ∈ X has a com-
plement, denote it by ¬x.

C Proposition 10.1.30
Let (X ,4) be a distributive lattice and let x ∈ X . If x has a complement ¬x, then ¬x has
a complement, and ¬(¬x) = x.

Proof
Assume that x has a complement¬x. Then by commutativity of∧ and∨ and by definition
of ¬, we have

(¬x)∧ x = x∧ (¬x) = ⊥ and (¬x)∨ x = x∨ (¬x) = >
so x satisfies the definition of what it means to be a complement of ¬x. By uniqueness of
complements (Exercise 10.1.28), we have x = ¬(¬x). �

F Definition 10.1.31
A lattice (X ,4) is complemented if every element x ∈ X has a complement. A Boolean
algebra is a complemented distributive lattice with a greatest element and a least element.

The many preceding examples and exercises concerning (P(X),⊆) piece together to
provide a proof of the following theorem.

C Theorem 10.1.32
Let X be a set. Then (P(X),⊆) is a Boolean algebra.

Another extremely important example of a Boolean algebra is known as the Lindenbaum–
Tarski algebra, which we define in Definition 10.1.35. In order to define it, we need to
prove that the definition will make sense. First of all, we fix some notation.

F Definition 10.1.33
Let P be a set, thought of as a set of propositional variables. Write L(P) to denote the
set of propositional formulae with propositional variables in P—that is, the elements of
L(P) are strings built from the elements of P, using the operations of conjunction (∧),
disjunction (∨) and negation (¬).

C Lemma 10.1.34
Logical equivalence ≡ is an equivalence relation on L(P).
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Proof
This is immediate from definition of equivalence relation, since for s, t ∈ L(P), s ≡ t is
defined to mean that s and t have the same truth values for all assignments of truth values
to their propositional variables. �

In what follows, the set P of propositional variables is fixed; we may moreover take it to
be countably infinite, since all strings in L(P) are finite.

F Definition 10.1.35
The Lindenbaum–Tarski algebra (for propositional logic) over P is the pair (A,`),
where A = L(P)/≡ and ` is the relation on A defined by [s]≡ ` [t]≡ if and only if s⇒ t
is a tautology.

In what follows, we will simply write [−] for [−]≡.

C Theorem 10.1.36
The Lindenbaum–Tarski algebra is a Boolean algebra.

Proof Sketch proof
There is lots to prove here! Indeed, we must prove:

• ` is a well-defined relation on A; that is, if s≡ s′ and t ≡ t ′ then we must have [s] ` [t]
if and only if [s′] ` [t ′].

• ` is a partial order on A; that is, it is reflexive, antisymmetric and transitive.

• The poset (A,`) is a lattice; that is, it has suprema and infima.

• The lattice (A,`) is distributive, has a greatest element and a least element, and is
complemented.

We will omit most of the details, which are left as an exercise; instead, we outline what
the components involved are.

The fact that ` is a partial order can be proved as follows.

• Reflexivity of ` follows from the fact that s⇒ s is a tautology for all propositional
formulae s.

• Symmetry of ` follows from the fact that, for all propositional formulae s, t, if s⇔ t
is a tautology then s and t are logically equivalent.

• Transitivity of ` follows immediately from transitivity of⇒.

The fact that (A,`) is a lattice can be proved by verifying that:

• Given [s], [t] ∈ A, the infimum [s]∧ [t] is given by conjunction, namely [s]∧ [t] = [s∧ t].

• Given [s], [t]∈A, the supremum [s]∨ [t] is given by disjunction, namely [s]∨ [t] = [s∨t].
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Finally, distributivity of suprema and infima in (A,`) follows from the corresponding
properties of conjunction and disjunction; (A,`) has greatest element [p⇒ p] and least
element [¬(p⇒ p)], where p is some fixed propositional variable; and the complement
of [s] ∈ A is given by [¬s]. �

De Morgan’s laws revisited

We finish this section on orders and lattices with a general version of de Morgan’s laws
for Boolean algebras, which by Theorems Theorems 10.1.32 and 10.1.36 implies the ver-
sions we proved for logical formulae (Theorem 1.3.24) and for sets (Theorem 2.1.65(a)–
(b)).

C Theorem 10.1.37 (De Morgan’s laws)
Let (X ,4) be a Boolean algebra, and let x,y ∈ X . Then

¬(x∧ y) = (¬x)∨ (¬y) and ¬(x∨ y) = (¬x)∧ (¬y)

Proof of (a)
We prove that (¬x)∨ (¬y) satisfies the definition of a complement for x∧ y; then we’ll
have (¬x)∨ (¬y) = ¬(x∧ y) by Exercise 10.1.28.

So let z = (¬x)∨ (¬y). Then

(x∧ y)∧ z

= (x∧ y)∧ ((¬x)∨ (¬y)) by definition of z

= [(x∧ y)∧ (¬x)]∨ [(x∧ y)∧ (¬y)] by distributivity
= [(x∧ (¬x))∧ y]∨ [x∧ (y∧ (¬y))] by associativity and commutativity
= [⊥∧ y]∨ [x∧⊥] by definition of complements
=⊥∨⊥ by definition of ⊥ and ∧
=⊥ by idempotence

Likewise we have

(x∧ y)∨ z

= (x∧ y)∨ ((¬x)∨ (¬y)) by definition of z

= [x∨ ((¬x)∨ (¬y))]∧ [y∨ ((¬x)∨ (¬y))] by distributivity
= [((x∨ (¬x))∨ (¬y)]∧ [(¬x)∨ (y∨ (¬y))] by associativity and commutativity
= [>∨ (¬y)]∧ [(¬x)∨>] by definition of complements
=>∧> by definition of > and ∧
=> by idempotence

Since (x∧ y)∧ z =⊥ and (x∧ y)∨ z =>, we have

(¬x)∨ (¬y) = z = ¬(x∧ y)
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by definition of complements. �

. Exercise 10.1.38
Prove part (b) of Theorem 10.1.37. C
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Section 10.2

Inductively defined sets

In Section 3.1, we formalised the idea that the set of natural numbers should be what is
obtained by starting with zero and repeating the successor (‘plus one’) operation—this
was done using Peano’s axioms (Definition 3.1.1). From these axioms we were able
to derive the weak and strong induction principles, which turned out to be extremely
powerful for proving results about natural numbers.

We now generalise this idea to other so-called inductively defined sets. The definition
(Definition 10.2.9) is a little tricky to digest, but the idea is relatively simple: an induct-
ively defined set X is one whose elements are built out of some specified basic elements
(such as 0) by iterating some specified operations, called constructors (such as the suc-
cessor operation)—every element of X should either be a basic element, or should be
built in a unique way out of simpler elements of X by using a constructor.

Each inductively defined set X will have its own induction principle: which says that if a
property is true of all of the basic elements of X , and if all of its constructors preserve the
truth of the property, then the property is true of all of the elements of X . We will prove
this in Theorem 10.2.27.

Before jumping into the definition of an inductively defined set, it is helpful to see some
examples. The first example is familiar.

0 Example 10.2.1
The set N of natural numbers is the canonical example of an inductively defined set.
The Peano axioms (Definition 3.1.1) tell us that every element of N can be obtained by
starting from 0 and applying the successor operation (‘plus one’) some finite number of
times. In particular, every natural number is either 0, or is the successor of a unique
natural number.

We can think of N as being the set generated by the following rules:

(i) 0 ∈ N; and

(ii) If n ∈ N, then n+1 ∈ N.

Certainly these rules are true, but that is not enough to fully characterise the set of natural
numbers: both rules are also true with N replaced by Z or R, for example.

But what it means to say that N is ‘generated by’ these rules is that:

• Each time one of the rules is applied, we obtain a new natural number. In particular:

� Since 0 ∈ N and rule (ii) must give us a new natural number every time we apply it,
we must have n+1 6= 0 for all n ∈ N. This is exactly what Definition 3.1.1(i) says;
note that this fails with N replaced by Z or R since we have (−1)+1 = 0.

� If we apply rule (ii) to two different natural numbers, we must obtain two different
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results. Thus for all m,n ∈ N, if m+ 1 = n+ 1, then m = n. This is exactly what
Definition 3.1.1(ii) says.

• Only those things that can be obtained by applying rules (i) and (ii) some finite number
of times are natural numbers. This is exactly what Definition 3.1.1(iii) says.

Thus we can think of the natural numbers as being precisely those things that are given
to us by applying rules (i) and (ii). C

The next example concerns words over an alphabet, which we studied in Section 8.1 in
the context of determining when a set is countable—see Definition 8.1.26.

0 Example 10.2.2
Let Σ be a fixed alphabet. The set Σ∗ of words over Σ is built by starting from the empty
word ε by appending elements a ∈ Σ. Thus Σ∗ is generated by the following rules:

(i) ε ∈ Σ∗; and

(ii) For all a ∈ Σ, if w ∈ Σ∗, then wa ∈ Σ∗.

The fact that Σ∗ is generated by these rules means that:

• Each time we append an element a ∈ Σ to the end of a word w ∈ Σ∗, the resulting word
wa is a new element of Σ∗; and

• Only those things obtained by appending elements a ∈ Σ to the end of the empty word
ε some finite number of times are elements of Σ∗.

We can actually think of rule (ii) as being a family of rules, one rule for each a ∈ Σ. For
fixed a, the rule says ‘for all w, if w∈ Σ∗, then wa∈ Σ∗’. This viewpoint is useful because
it allows us to restrict our attention to rules that only have variable elements of the set
being inductively defined in the hypothesis. C

We alluded to the inductive character of propositional formulae in Section 1.1. Although
we were not able to make the idea precise at the time, we are now well on our way to
doing so.

0 Example 10.2.3
Given a set P, consider the set L(P) of all propositional formulae with propositional
variables from P and logical operators from the set {∧,∨,⇒,¬}. Then L(P) is built out
of the elements of P using these logical operators.

Specifically, L(P) is generated by the following rules:

• For each p ∈ P, we have p ∈ L(P);

• If ϕ,ψ ∈ L(P), then ϕ ∧ψ ∈ L(P);

• If ϕ,ψ ∈ L(P), then ϕ ∨ψ ∈ L(P);

• If ϕ,ψ ∈ L(P), then ϕ ⇒ ψ ∈ L(P);

• If ϕ ∈ L(P), then ¬ϕ ∈ L(P).
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To say that L(P) is generated by these rules means that every propositional formula is
(exclusively) either: a propositional variable, the conjunction of two simpler formulae,
the disjunction of two simpler formulae, the implication formed by two simpler formulae,
or the negation of a simper formula.

We can interpret (i) as being a family of rules, one for each p ∈ P, where for fixed p, the
rule simply says ‘p ∈ L(P)’. Just like we said in Example 10.2.2, this is useful because
it removes variable elements of sets other than L(P) from the hypotheses of the rule. C

Keeping these examples in mind, we will now work towards defining the notion of an
inductively defined set. First we formalise the notion of a rule.

F Definition 10.2.4
A (finitary) rule for an inductive definition is an expression of the form

(x1,x2, . . . ,xr | σ(x1,x2, . . . ,xr)) (LATEX code: \mid)

where r∈N, x1,x2, . . . ,xr are variables, and σ(x1,x2, . . . ,xr) is some expression involving
the variables x1,x2, . . . ,xr.

The number of variables r ∈ N is called the arity of the rule, and is denoted by ar(σ)
(LATEX code: \mathrm{ar}).

A quick note on terminology: a constructor of arity r ∈ N is called an r-ary constructor.
For r = 0,1,2, we may say nullary, unary and binary, respectively.

We interpret the rule (x1,x2, . . . ,xr | σ(x1,x2, . . . ,xr)) as meaning ‘if x1,x2, . . . ,xr are
elements of the set being defined, then σ(x1,x2, . . . ,xr) is an element of the set being
defined’.

Note that nullary rules take the form ( | a), where a is some expression with no variables;
we would interpret such a rule as saying ‘a is an element of the set being defined’, with
no hypotheses.

0 Example 10.2.5
The rules describing the natural numbers are ( | 0) and (n | n+ 1). The rule ( | 0) can
be interpreted to mean ‘0 is a natural number’, and the rule (n | n+1) can be interpreted
to mean ‘if n is a natural number, then n+ 1 is a natural number’. In the context of
Example 10.2.1, this means that ( | 0) corresponds with rule (i) and (n | n+1) corresponds
with rule (ii). C

0 Example 10.2.6
Let P be a set of propositional variables. The rules that describe the set L(P) of logical
formulae over P, as described in Example 10.2.3, are given by

(− | p)︸ ︷︷ ︸
one for each p∈P

(ϕ,ψ | ϕ ∧ψ) (ϕ,ψ | ϕ ∨ψ) (ϕ,ψ | ϕ ⇒ ψ) (ϕ | ¬ϕ)

The first of these rules says that every propositional variable p ∈ P is a propositional
formula. The next three say that if ϕ and ψ are propositional formulae, then so are

409



410 Chapter 10. Additional topics

ϕ ∧ψ , ϕ ∨ψ and ϕ ⇒ ψ . The last rule says that if ϕ is a propositional formula, then so
is ¬ϕ . C

. Exercise 10.2.7
Fix an alphabet Σ. Following Example 10.2.2, define rules that describe the set Σ∗ of
words over Σ. How would your rules need to be changed if the empty word ε were not
allowed? C

We can represent a rule σ = (x1,x2, . . . ,xr | σ(x1,x2, . . . ,xr)) diagrammatically by draw-
ing a node with r inputs, one for each variable in the rule, and one output, representing
the expression σ(x1,x2, . . . ,xr). (Note that a nullary rule has no inputs.) For example:

x1 x2 · · · xr

σ

σ(x1,x2, . . . ,xr)

a

a

Thus the rules 0 = ( | 0) and s = (n | n+ 1) that describe the natural numbers can be
expressed as follows:

0

0

n

s

n+1

These diagrams can be pieced together to represent the result of applying a rule to the
outputs of other rules. For example:

x1 x2 x3

σ

σ(x1,x2,x3)

y1 y2

τ

τ(y1,y2)

α

α(σ(x1,x2,x3),τ(y1,y2))

This can be useful for seeing how an element of a set is obtained by applying the rules.
For example, the following diagram shows how the natural number 3 is obtained by
applying the rules ( | 0) and (n | n+1)
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0 0 s 1 s 2 s 3

The following diagram shows how the logical formula (p⇒ q)∧ (¬r) is obtained by
applying the rules described in Example 10.2.6.

p q r

p q

⇒

p⇒ q

r

¬

¬r

∧

(p⇒ q)∧ (¬r)

. Exercise 10.2.8
Let Σ = {a,b,c,d}. Draw a diagram to represent how the word cbadbd ∈ Σ∗ can be
obtained by applying the rules you defined in Exercise 10.2.7. C

We are now ready to define an inductively defined set.

F Definition 10.2.9
An inductively defined set is a set A equipped with a set R of rules and, for each rule
σ = (x1,x2, . . . ,xr | σ(x1,x2, . . . ,xr)) ∈ R, a function fσ : Ar→ A, such that:

(a) For each a ∈ A, there is a unique rule σ ∈ R and unique elements a1,a2, . . . ,ar ∈ A
such that a = fσ (a1,a2, . . . ,ar); and

(b) For every set X , if fσ (a1,a2, . . . ,ar) ∈ X for all σ ∈ R and all a1,a2, . . . ,ar ∈ A, then
A⊆ X .

Given a rule σ of arity r, the functions fσ : Ar → A is called the constructor associated
with σ ; the natural number r is called the arity of the constructor.

Note that nullary constructors are the same thing as elements of A. Indeed, A0 = {()},
where () is the empty list of elements of A, and so specifying a function fσ : A0 → A
is equivalent to specifying an element fσ (()) ∈ A. In this sense, we may regard nullary
constructors as being the elements of A—we call such elements basic elements.
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F Definition 10.2.10
A basic element of an inductively defined set A is an element of A that is the value of
a nullary constructor fσ : A0 → A. If σ = ( | a) is a nullary rule, we will denote this
element by a—thus we have a = fσ (()) ∈ A for all nullary rules σ = ( | a).

Considering basic elements separately from constructors of positive arity has its pros and
cons, so we will take whichever approach is most convenient for us at any given point
in time. Unless otherwise specified, we will not separate nullary constructors from the
others.

We have already seen some examples of inductively defined sets—let’s prove that they
truly are inductively defined sets!

C Proposition 10.2.11
The set N of natural numbers is inductively defined by the rules ( | 0) and (n | n+1).

Proof
Since ( | 0) is a nullary rule, it will correspond to a basic element of N—it may be no
surprise that we take this element to be the natural number 0.

The rule s = (n | n+ 1) induces a function fs : N→ N; we take this to be the successor
function, defined by fs(n) = n+1 for all n ∈ N.

Now we must verify conditions (a) and (b) of Definition 10.2.9.

(a) Let n ∈ N.

• If n = 0, then since 0 is a basic element and 0 6= n+1 = fs(n) for any n ∈ N, we
have that ‘0’ is the unique expression of 0 as a (nullary) constructor applied to
(no) elements of N.

• If n > 0, then n−1 ∈ N and n = (n−1)+1 = fs(n−1). Moreover if m ∈ N and
n = fs(m), then n = m+1, so that m = n−1. Moreover n 6= 0, meaning that there
is a unique rule (namely s) and a unique natural number m (namely m = n− 1)
such that n = fs(m).

(b) Let X be a set, and assume that 0 ∈ X and fs(n) ∈ X for all n ∈ N. Then condition
(iii) of Definition 3.1.1 ensures that N⊆ X .

Thus N is inductively defined by ( | 0) and (n | n+1), as required. �

0 Example 10.2.12
Let P be a set of propositional variables. In order to exhibit L(P) as an inductively
defined set, we should be slightly more precise about the role of brackets in propositional
formulae than we have been so far.

For example, if we take the rules discussed in Example 10.2.3 literally, then p∧ q∨ r
would be a valid logical formula. This is problematic for two reasons: first, does it
mean (p∧ q)∨ r, or p∧ (q∨ r)? These are not logically equivalent, so the distinction
matters. Second, this causes the ‘uniqueness’ part of Definition 10.2.9 to fail, since
p∧q∨ r = f∧(p, f∨(q,r)) = f∨( f∧(p,q),r).
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To remedy this, we will require parentheses to be added whenever we introduce a logical
operator. Thus the rules defining a logical formula are:

(− | p)︸ ︷︷ ︸
one for each p∈P

(ϕ,ψ | (ϕ ∧ψ)) (ϕ,ψ | (ϕ ∨ψ)) (ϕ,ψ | (ϕ ⇒ ψ)) (ϕ | (¬ϕ))

Thus p∧q∨ r is not a valid element of L(P), but ((p∧q)∨ r) and (p∧ (q∨ r)) are. C

. Exercise 10.2.13
Let Σ be an alphabet. Prove that Σ∗ is inductively defined by the rules ( | ε) and σa =
(w | wa) for a ∈ Σ. C

. Exercise 10.2.14
Prove that N is generated by the rules ( | 0), ( | 1) and ( | n+2). C

Defining new inductively defined sets

Now that we have seen what it means for a set to be inductively defined, it would be
useful to be able to make definitions of inductively defined sets. Based on what we have
seen so far, in order to define an inductively defined set, all we should need to do is
specify a set of rules that tell us how to generate its elements.

We now prove that it really is that simple!

F Definition 10.2.15
Let R be a set of rules. The set generated by R is defined by A =

⋃
n∈N

An, where the sets

An for n ∈ N are defined recursively by:

A0 = {a | ( | a) ∈ R}

and

An+1 = {σ(a1,a2, . . . ,ar) | a1,a2, . . . ,ar ∈ An, (x1,x2, . . . ,xr | σ(x1,x2, . . . ,xr) ∈ R}

That is, A0 is the set of symbols to the right of the bar ‘|’ in the nullary rules in R, and
An+1 is the set of all expressions obtained by substituting the elements of An symbol-by-
symbol for the variables in the expressions to the right of the bar the other rules.

0 Example 10.2.16
Let N be the set generated by the rules ( | z) and (n | s(n)). Then

• N0 = {z}, since ( | z) is the only nullary rule.

• N1 is the result of applying the rules to the elements of N0, of which there is only one,
namely z. Applying the rule ( | z) (to no elements, since it is nullary) gives z; applying
the rule (n | s(n)) to z gives s(z). So N1 = {z,s(z)}.

• Continuing, we get N2 = {z,s(z),s(s(z))}, and so on.
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We thus have
N =

⋃
n∈N

Nn = {z,s(z),s(s(z)),s(s(s(z))), . . .}

This looks an awful lot like the set of all natural numbers; and indeed it is, provided we
interpret z = 0 and s(n) = n+1 (like we did in Section 3.1). C

0 Example 10.2.17
Let A be the set generated by the rules ( | ?) and (x,y | [x,y]). Then

• A0 = {?};

• A1 = {?, [?,?]};

• A2 = {?, [?,?], [?, [?,?]], [[?,?],?], [[?,?], [?,?]]};

• . . . and so on.

Thus for each n ∈ N, the set An consists of all parenthesised lists of ‘?’s, where the list
has length between 1 and 2n (inclusive). This can be proved by induction on n.

Hence A =
⋃

n∈N
An is the set of all (finite) such lists. C

. Exercise 10.2.18
Let R be a set of rules for an inductive definition and let A be the set generated by R.
Prove that if R has no nullary rules, then A is empty. C

. Exercise 10.2.19
Let R be a set of rules for an inductive definition, and let A be the set generated by R.
Prove that if R is countable, then A is countable. C

. Exercise 10.2.20
Let R be a set of rules. Prove that the set A generated by R is inductively defined; for
each rule σ = (x1,x2, . . . ,xr | σ(x1,x2, . . . ,xr)), the constructor fσ : Ar→ A is defined by

fσ (a1,a2, . . . ,ar) = σ(a1,a2, . . . ,ar)

where σ(a1,a1, . . . ,ar) denotes the result of substituting ai for the variable xi for each
i ∈ [r]. C

Structural recursion

The recursion theorem for the natural numbers (Theorem 3.1.2) says that we can define
a function h : N→ X by specifying the value of h(0), and for each n ∈ N, specifying
the value of h(n+ 1) in terms of the value of h(n). This makes intuitive sense: since
every natural number is obtained from 0 by adding one some finite number of times, if
we know the value of h(0), and we know how the value of h changes when we add one
to its argument, then we should know the value of h(n) for all natural numbers n.

It turns out that there is nothing special about N here: exactly the same argument demon-
strates that for any inductively defined set A, if we know what a function h : A→ X does
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to its basic elements, and we know how its values change when we apply a constructor
to its arguments, then we should know the value of h(a) for all a ∈ A.

The proof of the structural recursion theorem is one of the times where treating basic
elements (≡ nullary constructors) separately from constructors of positive arity makes
the proof more difficult; so we will phrase it entirely in terms of constructors.

C Theorem 10.2.21 (Structural recursion theorem)
Let A be an inductively defined set, let X be a set, and for each rule σ , let hσ : Ar→ X be
a function, where r = ar(σ). Then there is a unique function h : A→ X such that

h( fσ (a1,a2, . . . ,ar)) = hσ (a1,a2, . . . ,ar)

for all rules σ and all a1,a2, . . . ,ar ∈ A.

Proof
Given a ∈ A, we know by Definition 10.2.9(a) that there is a unique rule σ and unique
a1,a2, . . . ,ar ∈ A such that a = fσ (a1,a2, . . . ,ar). Thus the specification

h(a) = hσ (a1,a2, . . . ,ar)

uniquely determines a function h : A→ X , satisfying the required condition. �

v Strategy 10.2.22 (Defining functions by structural recursion)
Let A be an inductively defined set and let X be a set. In order to specify a function h : A→
X , it suffices to define h(a) for all basic elements a∈A, and to define h( fσ (a1,a2, . . . ,ar))
in terms of the values of h(ai) for each i ∈ [r].

0 Example 10.2.23
Let L(P) be the inductively defined set of propositional formulae over a set P of propos-
itional variables. Define h : L(P)→ N recursively as follows:

(i) Let h(p) = 0 for all p ∈ P;

(ii) For all ϕ,ψ ∈ L(P), let h(ϕ ∧ψ) = h(ϕ)+h(ψ)+1;

(iii) For all ϕ,ψ ∈ L(P), let h(ϕ ∨ψ) = h(ϕ)+h(ψ)+1;

(iv) For all ϕ,ψ ∈ L(P), let h(ϕ ⇒ ψ) = h(ϕ)+h(ψ)+1;

(v) For all ϕ ∈ L(P), let h(¬ϕ) = h(ϕ)+1.

By the structural recursion theorem, this completely determines the function h.

For example

h((p⇒ q)∧ (¬r))

= h(p⇒ q)+h(¬r)+1 by (ii)
= [h(p)+h(q)+1]+ [h(r)+1]+1 by (iv) and (v)
= [0+0+1]+ [0+1]+1 by (i)
= 3
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More generally, for each ϕ ∈ L(P), the value h(ϕ) is the number of logical operators that
appear in ϕ . We can prove this by structural induction—more on this soon. C

F Definition 10.2.24
Let A be an inductively defined set. The rank rk(a) (LATEX code: \mathrm{rk}) of an
element a ∈ A is defined by recursively by letting rk(a) = 0 for all basic elements a, and

rk( fσ (a1,a2, . . . ,ar)) = max{rk(a1), rk(a2), . . . , rk(ar)}+1

for all rules σ of arity r > 0 and all elements a1,a2, . . . ,ar ∈ A.

0 Example 10.2.25
The rank of a natural number n is n. Indeed we have rk(0) = 0 since 0 is a basic element,
and for all n ∈ N we have rk(n+ 1) = max{rk(n)}+ 1 = rk(n)+ 1. By the recursion
theorem (take your pick from Theorem 3.1.2 or Theorem 10.2.21), we have rk(n) = n for
all n ∈ N. C

. Exercise 10.2.26
Let Σ be an alphabet and let Σ∗ be the inductively defined set of words over Σ. Prove that
for all w ∈ Σ, the rank rk(w) is equal to the length of W . [We regard the empty string ε to
have length 0, despite the fact that the placeholder character ε is used to denote it.] C

Structural induction

We now derive the structural induction principle, which is used for proving that a property
p(x) is true for all elements x of an inductively defined set A.

The idea behind structural induction is the same as the idea behind weak induction: since
every element a∈ A is of the form fσ (a1,a2, . . . ,ar) for some (possibly nullary) rule σ , if
we can prove that the truth of p is preserved by applying each constructor fσ , then p(x)
must be true for all x ∈ A. [In the nullary case, this amounts to checking that p(a) is true
for each basic element a ∈ A.]

Thus in order to prove ∀x ∈ A, p(x), we need to prove that for every rule σ . . .

a1 a2 · · · ar

σ

fσ (a1,a2, . . . ,ar)

. . . if p(x) is true for these elements. . .

. . . then p(x) is true for this element.

Let’s prove that this intuition is valid.
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C Theorem 10.2.27 (Structural induction principle)
Let A be an inductively defined set and let p(x) be a logical formula with free variable
x ∈ A. If for all rules σ and all a1, . . . ,ar ∈ A we have

[∀i ∈ [r], p(ai)]⇒ fσ (a1,a2, . . . ,ar)

then p(x) is true for all x ∈ A.

Proof
Assume that for all rules σ and all a1, . . . ,ar ∈ A we have

[p(a1)∧ p(a2)∧·· ·∧ p(ar)]⇒ p( fσ (a1,a2, . . . ,ar))

Let X = {a ∈ A | p(a)} ⊆ A. Then for all a ∈ A we have a ∈ X if and only if p(a) is true.
Thus we have

[∀i ∈ [r], p(i)]⇒ fσ (a1,a2, . . . ,ar) ∈ X

But this is exactly the hypothesis of condition (b) of Definition 10.2.9, and so A⊆ X .

Hence A = X , so that p(a) is true for all a ∈ A, as required. �

Let’s digest the statement of Theorem 10.2.27.

For a nullary rule σ = ( | a), the arity r is 0, so ∀i ∈ [r], p(ai) is vacuously true (see
Exercise 2.1.31), so that

[∀i ∈ [r], p(ai)]⇒ p( fσ (a1,a2, . . . ,ar)) ≡ p(a)

Therefore, saying that [∀i ∈ [r], p(ai)]⇒ fσ (a1,a2, . . . ,ar) is true for all rules σ and all
elements a1,a2, . . . ,ar ∈ A is equivalent to saying:

• p(a) is true for all basic elements a; and

• [∀i ∈ [r], p(ai)]⇒ fσ (σ(a1,a2, . . . ,ar)) is true for all rules σ of positive arity r, and
all elements a1,a2, . . . ,ar.

This suggests the following proof strategy.
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v Strategy 10.2.28 (Proof by structural induction)
In order to prove a proposition of the form ∀a ∈ A, p(a), where A is an inductively
defined set, it suffices to prove for all rules σ that

[p(a1)∧ p(a2)∧·· ·∧ p(ar)]⇒ p( fσ (a1,a2, . . . ,ar))

Equivalently, it suffices to:

• For each basic element a ∈ A, prove p(a)—this is the base case for a;

• For each constructor σ of arity r > 0, let a1,a2, . . . ,ar ∈ A and assume that p(ai) is
true for all i ∈ [r], and prove that p( fσ (a1,a2, . . . ,ar)) is true—this is the induction
step for σ .

The assumption p(a1,a2, . . . ,ar) in the induction step for σ is called the induction hy-
pothesis for σ .

0 Example 10.2.29
The structural induction principle for the inductively defined set N is exactly the same as
the weak induction principle (Theorem 3.2.1). It says that to prove ∀n ∈ N, p(n) is true,
it suffices to:

• Prove p(0) is true (since 0 is the only basic element); and

• Let n ∈N, assume that p(n) is true, and prove that p(n+1) is true (since the successor
operation is the only constructor of positive arity).

Thus we recover weak induction as a special case of structural induction. C

0 Example 10.2.30
Fix a set P of propositional variables and let L(P) be the inductively defined set of (prop-
erly parenthesised) propositional formulae over P, as in Example 10.2.12.

We prove that every propositional formula ϕ ∈ L(P) has the same number of open brack-
ets ‘(’ as closed brackets ‘)’.

• (Base cases) The basic elements of L(P) are the propositional variables p ∈ P. So let
p ∈ P; this is a logical formula with no open brackets and no closed brackets, so the
number of open brackets is equal to the number of closed brackets.

• (Induction step for ∧) Let ϕ,ψ ∈ L(P) and assume that ϕ and ψ each have the same
number of open brackets as closed brackets. Say ϕ has a open brackets and a closed
brackets, and ψ has b open brackets and b closed brackets, where a,b ∈ N. Now

f∧(ϕ,ψ) = (ϕ ∧ψ)

Since ϕ contributes a open brackets and ψ contributes b open brackets, this has a+
b+1 open brackets; likewise it has a+b+1 closed brackets.

This completes the induction step for ∧.

• (Induction steps for ∨ and ⇒) These are identical to the induction step for ∧—just
replace ∧ by the necessary logical operator throughout.
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• (Induction step for ¬) Let ϕ ∈ L(P) and assume that ϕ has the same number of open
brackets as closed brackets—say it has a of each, where a ∈ N. Then

f¬(ϕ) = (¬ϕ)

Since ϕ contributes a open brackets, this has a+1 open brackets; likewise it has a+1
closed brackets.

This completes the induction step for ¬.

So by structural induction, it follows that every propositional formula ϕ ∈ L(P) has the
same number of open brackets as closed brackets. C

. Exercise 10.2.31
Let P be a set of propositional variables. Prove by structural induction that the rank of a
propositional formula ϕ ∈ L(P) is equal to the number of logical operators in ϕ . C

A nice application of structural induction is to provide a formula for the totient of an
integer n (Definition 5.3.26). We proved such a formula in Section 5.3, but that proof
relied on the heavy machinery of the Chinese remainder theorem (Theorem 5.3.46)—
here we give a proof without it.

C Theorem 5.3.59 (Formula for Euler’s totient function)
Let n be a nonzero integer. Then

ϕ(n) = |n| ·∏
p|n

(
1− 1

p

)
where the product is indexed over positive primes p dividing n

Proof
Recall that ϕ(−n) = ϕ(n) for all n∈Z, so we may assume without loss of generality that
n> 0—otherwise just replace n by −n throughout. Moreover

ϕ(0) = 0 = 0 ·∏
p|n

(
1− 1

p

)
so for the rest of the proof, assume that n > 0.

Let P be the set of all positive prime numbers, and let

A =
⋃

n∈N
Pn = {(p1, p2, . . . , pk) | k ∈ N, p1, p2, . . . , pk ∈ P}

The elements of A are precisely lists of positive primes of finite length. Note that A is
inductively defined by the rules

( | ()) and σq = (x | (x,q)) for each q ∈ P

That is, the empty list () is an element of A, and for each (p1, p2, . . . , pk) ∈ A and q ∈ P,
we have (p1, p2, . . . , pk,q) ∈ A.
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By the fundamental theorem of arithmetic (Theorem 5.2.12) there is a surjection Π : A→
{n ∈ Z | n > 0} defined by

Π(p1, p2, . . . , pk) =
k

∏
i=1

pi = p1× p2×·· ·× pk

for all k ∈ N and p1, p2, . . . , pk ∈ P. Note in particular that Π(()) = 1, where () is the
empty list.

We prove by structural induction on (p1, p2, . . . , pk) ∈ A that the integer
n = Π(p1, p2, . . . , pk)> 0 satisfies the formula in the statement of the theorem.

• (Base case) The unique basic element of A is the empty list (). Since Π(()) = 1, we
must prove that the equation in the statement of the theorem is satisfied when n = 1.

Well there are no primes p such that p | 1, and so the product ∏
p|1

(
1− 1

p

)
is the empty

product, which is equal to 1. Thus

ϕ(1) = 1 = 1 ·1 = 1 ·∏
p|1

(
1− 1

p

)
as required.

• (Induction step for q ∈ P) Fix (p1, p2, . . . , pk) ∈ A, let n = Π(p1, p2, . . . , pk) and as-
sume that

ϕ(n) = n ·∏
p|n

(
1− 1

p

)
Note that Π(p1, p2, . . . , pk,q) = qn, and so we need to prove that

ϕ(qn) = qn ·∏
p|qn

(
1− 1

p

)
Now either q | n or q - n.

� Assume q | n. Then n and qn have the same prime divisors, and so for all p ∈ P we
have p | n if and only if p | qn. Therefore:

ϕ(qn) = qϕ(n) by Exercise 5.3.28

= qn ·∏
p|n

(
1− 1

p

)
by induction hypothesis

= qn ·∏
p|qn

(
1− 1

p

)
as observed above

as required.

� Assume q - n. Then for all p ∈ P we have p | qn if and only if p | n or p = q.
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Therefore:

ϕ(qn) = (q−1)ϕ(n) by Exercise 5.3.29

= (q−1)n ·∏
p|n

(
1− 1

p

)
by induction hypothesis

= qn
(

1− 1
q

)
·∏

p|n

(
1− 1

p

)
rearranging

= qn ·∏
p|qn

(
1− 1

p

)
absorbing 1− 1

q
into the product

as required.

In both cases, the formula in the statement of the theorem is satisfied by the integer qn.

By structural induction, the result follows. �

Uniqueness of inductive definitions

It would be nice if an inductive definition completely characterises the set that it defines.
But this is slightly too much to ask; for example, the sets

{0,1,2,3, . . .} and {ε,•,••,•••, . . .}

are both inductively defined by the rules ( | z) and (n | s(n)). In the first we take the basic
element z to be the natural number 0, and for each natural number n we take s(n) to be
the natural number n+1; in the second, we take the basic element z to be the empty word
ε , and for each string n we take s(n) to be the string ‘n•’ (so for example s(••) = •••).

But there is evidently a way of translating between these sets: we can define a function
from the first to the second by sending each natural number n to the string ••· · ·•, where
there are n ‘•’s in the string.

Thus the sets {0,1,2,3, . . .} and {ε,•,••,•••, . . .} are ‘essentially the same’—they are
inductively defined by the same rules, and so the only real difference is how we label
their elements.

The next theorem demonstrates that the same is true of inductively defined sets in general.
That is, if two sets A and B are inductively defined by the same rules, then the only
way that they can differ is in the labels we use to denote their elements. Formally, this
‘relabelling’ establishes a bijection h : A→ B between the two sets.

In fact, we prove something stronger: not only is there a bijection between the two sets,
but the bijection respects the constructors—that is, if we apply a constructor in A to
some elements and relabel the result, that is equivalent to relabelling the elements first
and then applying the corresponding constructor in B. Even better, this bijection is the
unique bijection that does so.
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Thus to sum up what the following theorem tells us: inductively defined sets are uniquely
determined by their defining rules, up to a unique bijection that is compatible with the
constructors—this is as close to absolute uniqueness as we could possibly hope to get!

C Theorem 10.2.32 (Uniqueness of inductively defined sets)
Let A and B be two sets that are inductively defined by the same set of rules. There is a
unique bijection h : A→ B such that

h( fσ (a1,a2, . . . ,ar)) = gσ (h(a1),h(a2), . . . ,h(ar))

for all rules σ , where fσ : Ar→ A and gσ : Br→ B are the corresponding constructors.

Proof
Define h : A→ B by structural recursion as follows: given a rule σ with arity r ∈ N and
given a1,a2, . . . ,ar such that h(ai) has been defined for all i ∈ [r], define

h( fσ (a1,a2, . . . ,ar)) = gσ (h(a1),h(a2), . . . ,h(ar))

We just need to prove that h is a bijection, since evidently the other condition on h is
satisfied by construction.

So define k : B→ A by structural recursion on the same way; note that now we have

k(gσ (b1,b2, . . . ,br)) = fσ (k(b1),k(b2), . . . ,k(br))

We prove that k(h(a)) = a for all a ∈ A by structural induction. To this end, let σ be a
rule of arity r ∈ N, let a1,a2, . . . ,ar ∈ A and suppose that k(h(ai)) = ai for all i ∈ [r]. Let
a = fσ (a1,a2, . . . ,ar). Then

k(h(a)) = k(h( fσ (a1,a2, . . . ,ar))) by definition of a

= k(gσ (h(a1),h(a2), . . . ,h(ar))) by construction
= fσ (k(h(a1)),k(h(a2)), . . . ,k(h(ar)) by construction
= fσ (a1,a2, . . . ,ar) by induction hypothesis
= a by definition of a

This completes the induction step. So we have k(h(a)) = a for all a ∈ A.

A similar proof by structural induction reveals that h(k(b)) = b for all b ∈ B.

Thus k is an inverse for h, so that h is a bijection.

The fact that h is the unique such bijection is immediate from the fact that it is defined
by structural recursion. �

0 Example 10.2.33
Let Σ be an alphabet. Then leaf-labelled rooted planar binary trees over Σ are essentially
the same as parenthesisations of lists of elements of Σ of positive length.

Indeed, let R be the set of rules defined by

R = {( | a) | a ∈ Σ}∪{(t1, t2 | [t1, t2])}
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Like in Example 10.2.17, the inductively defined set A generated by R is given by the set
of all parenthesisations of lists of elements of Σ. For example

[[[a1,a2],a3], [a4,a5]] ∈ A

where a1,a2,a3,a4,a5 ∈ Σ.

But the set T of all leaf-labelled rooted planar binary trees over Σ is also inductively
defined by the rules in R. The basic element a corresponding to the rule ( | a) is precisely
the tree consisting of just its root, which is labelled by the element a ∈ Σ:

a

and given trees t1, t2, the tree corresponding to [t1, t2] is given by forming a tree with a root
and two branches, pasting t1 onto the left branch, and pasting t2 onto the right branch:

t1 t2

By Theorem 10.2.32, there is a unique bijection A→ T that is compatible with the con-
structors in each set. For example, the element [[[a1,a2],a3], [a4,a5]] ∈ A corresponds
with the following tree:

a1 a2

a3 a4 a5

C
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Section 10.E

Chapter 10 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.
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Section A.1

Elements of proof-writing

Prior to taking a first course in pure mathematics, most people’s exposure to the subject
has a computational focus: the problems are questions that have a single correct answer,
and the solutions consist of supplying the correct answer together with some explanation
of how it was obtained (‘showing your work’). Typically this amounts to a step-by-step
sequence of calculations, algebraic manipulations and applications of formulae that result
in the desired answer.

Pure mathematics has a different flavour: the task we face is to use the knowledge we
have already established in order to discover new properties of the objects we are study-
ing, and then communicate our discoveries in the form of a proof.

A given (true) statement may have many possible proofs, and the proofs may be qualit-
atively different from one another in many ways. Factors that may differ from one proof
to another include length, verbosity, detail, motivation, proof strategies used, balance of
words and notation, . . . —the list goes on.

To complicate matters further, it might be that a proof is suitable in one setting but not
another. For example, a detailed proof that 2+2 = 4 using the definitions of ‘2’, ‘4’ and
‘+’ is appropriate when studying the set of natural numbers from an axiomatic perspect-
ive (see Proposition 3.1.5), but this level of detail would not be appropriate when using
the fact that 2+2 = 4 in a counting argument (as in Section 6.2).

With all of this going on, it is difficult to know what is expected of us when we are asked
to prove something.

The goal of this section is to shed some light on the following question:

What makes for an effective proof?

Learning how to write a proof is like learning any new style of writing: it is an iterative
process with a cycle of practice, feedback and reflection. Writing a good proof requires
patience and sincere effort, but the ends very much justify the means.

This section should not be read in isolation: it should be read either after working through
a few chapters in the main part of the book, or as a reference for proof-writing in parallel
with the rest of the book.

Proofs as prose

Someone with little mathematical background might look at a calculus textbook and ask
‘where are all the numbers?’, surprised by the sheer quantity of letters and symbols that
appear. In the same vein, someone with little exposure to pure mathematics might look
at this book and ask ‘where are all the equations?’—it can be surprising to look at a
mathematical text and see so many. . . words.
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This is because we—pure mathematicians—use proofs as a tool for communicating our
ideas, and we simply need to use words in order to make ourselves comprehensible to
one another. Furthermore, in order to convince the wider mathematical community that
our results are correct, another mathematician should be able to read and understand the
proofs that we write, and then be able to communicate our arguments to other mathem-
aticians.

This brings us to the first, and perhaps most important, writing principle for proofs.

v Writing Principle A.1.1
Mathematical proofs should be written (and read) as prose—in particular, it should be
possible to read a proof aloud using full sentences.

To illustrate, consider the following proof that the composite of two injective functions
is injective.

} Extract A.1.2
X ,Y,Z sets, f : X → Y , g : Y → Z, f injective, g injective, a,b ∈ X :

g( f (a)) = g( f (b)) def ◦
f (a) = f (b) ∵ g injective

a = b ∵ f injective

∴ g◦ f injective ~

This proof has many assets: it is correct, all of the variables used are quantified, and the
steps are justified. But try reading it aloud. You will soon see that this proof does not
read as prose—at least not easily.

For a short proof like this, that may be inconsequential, but for a more extended proof,
or in a fully fledged mathematical paper (or textbook), it will not do. It is the duty of the
proof-writer—that’s you!—to make the reader feel as if they are being spoken to.

With this in mind, compare Extract A.1.2 with Extract A.1.3 below.

} Extract A.1.3
Let X , Y and Z be sets, let f : X→Y and g : Y → Z, and assume that f and g are injective.
Let a,b ∈ X and assume that (g◦ f )(a) = (g◦ f )(b). Then

g( f (a)) = g( f (b)) by definition of ◦
⇒ f (a) = f (b) by injectivity of g

⇒ a = b by injectivity of f

Hence g◦ f is injective, as required. ~

Despite the fact that Extract A.1.3 is not written exclusively using words, it is much easier
to read it as prose, substituting phrases for the notation where needed—we will see more
of this in Writing Principle A.1.8.
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Here is a transcription of how Extract A.1.3 might be read aloud, with all the variables’
letter names spelt out in italics.

Let ex, wye and zed be sets, let ef be a function from ex to wye and gee be a
function from wye to zed, and assume that ef and gee are injective. Let a and bee
be elements of ex and assume that gee ef of a is equal to gee ef of bee. Then gee
of ef of a equals gee of ef of bee by definition of function composition, so ef of
a equals ef of bee by injectivity of gee, and so a equals bee by injectivity of ef.
Hence gee ef is injective, as required.

. Exercise A.1.4
Consider the following proof that the product of two odd integers is odd.

a,b ∈ Z both odd⇒ a = 2k+1, b = 2`+1, k, ` ∈ Z

ab = (2k+1)(2`+1) = 4k`+2k+2`+1 = 2(2k`+ k+ `)+1

2k`+ k+ ` ∈ Z ∴ ab odd

Rewrite the proof so that it is easier to read it as prose. Read it aloud, and transcribe what
you read. C

Us, ourselves and we

Different fields of study have different conventions about how their results should be
communicated, and these conventions change over time. One such convention in math-
ematics, at least in recent decades, is the use of the first person plural (‘we show that. . . ’).

There are several theories for why this practice has developed; for example, it is more
modest than the first person singular (‘I show that. . . ’), and it implies that the reader is
included in the proof process. But the reasons for using the first person plural are largely
irrelevant for us—what matters is that this is the convention that prevails.

Some texts, particularly older ones, may deviate from this practice, such as by using the
third person impersonal (‘one shows that. . . ’) or the passive voice (‘it is shown that. . . ’).

But although not universal, the first person plural is certainly the most commonplace, and
so we shall adopt it.

v Writing Principle A.1.5
It is customary for mathematical proofs to be written in the first person plural.

Open almost any page in this textbook and you will see the first person plural everywhere.
The next extract was taken almost at random to illustrate.
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} Extract A.1.6 (taken from Theorem 5.1.23)
We proved in Theorem 5.1.12 that a greatest common divisor of a and b is a least element
of the set

X = {au+bv | u,v ∈ Z, au+bv > 0}
So let u,v ∈ Z be such that au+bv = d. Then

a(ku)+b(kv) = k(au+bv) = kd = c

and so letting x = ku and y = kv, we see that the equation ax+ by = c has a solution
(x,y) ∈ Z×Z. ~

Some publishers require that mathematical variables not appear immediately after a punc-
tuation mark, such as a comma or full stop. The first person plural comes to the rescue
in the form of the phrase ‘we have’, which can usually be inserted after the offending
punctuation mark in order to separate it from a statement that begins with a variable.

} Extract A.1.7 (taken from Example 4.1.21)
Let R be the relation on R defined for a,b ∈ R by a R b if and only if b−a ∈Q. Then R
is reflexive, since for all a ∈ R, we have a−a = 0 ∈Q, so that a R a. ~

Without the phrase ‘we have’, this would have read as follows, violating the convention
that variables should not follow punctuation marks.

. . . for all a ∈ R, a−a = 0 ∈Q, so . . .

Mathematical notation

What sets mathematics apart from most other areas of study is its heavy use of notation.
Even in this introductory book, so much new notation is introduced that it can quickly
become overwhelming. When writing a proof, it is sometimes important to take a step
back and remember the reason why it is used.

v Writing Principle A.1.8
Mathematical notation should be used in moderation with the goal of improving readab-
ility and precision.

The material covered in this textbook introduces a huge quantity of new notation, and it
can be tempting to overuse it in proofs. Of course, how much notation is too much or too
little is largely a matter of taste, but there is a balance to be struck.

To illustrate, what follows are three proofs that for all a ∈ Z, if a2 is divisible by 3, then
a is divisible by 3.

The first proof can be read as prose, as long as you’re willing to try hard enough to
translate notation on the fly, but it is very heavy on the notation. Quantifiers and logical
operators are everywhere.
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} Extract A.1.9
Let a ∈ Z and assume 3 | a2. Then ∃k ∈ Z, a2 = 3k by Definition 5.1.4. Also ∃q,r ∈
Z, 06 r < 3∧a = 3q+ r by Theorem 5.1.1. Now

• r = 0⇒ a2 = (3q)2 = 3(3q2)⇒∃k ∈ Z, a2 = 3k X

• r = 1⇒ a2 = (3q+ 1)2 = 3(3q2 + 2q)+ 1⇒¬∃k ∈ Z, a2 = 3k  contradiction by
Theorem 5.1.1

• r = 2⇒ a2 = (3q+2)2 = 3(3q2 +4q+1)+1⇒¬∃k ∈ Z, a2 = 3k contradiction
by Theorem 5.1.1

Now (r = 0∨ r = 1∨ r = 2)∧ (r 6= 1∧ r 6= 2)⇒ r = 0⇒ 3 | a, as required. ~

On the other extreme, the next proof is very easy to read as prose, but its sheer verbosity
makes the actual mathematics harder to follow.

} Extract A.1.10
Suppose the square of an integer a is divisible by three. Then a2 can be expressed as three
multiplied by another integer k by definition of division. Furthermore, by the division
theorem, a can itself be expressed as three multiplied by the quotient q of a upon division
by three, plus the remainder r upon division by three; and the remainder r is greater than
equal to zero and is less than three.

Now if the remainder r is zero, then a2 = (3q)2 = 3(3q2), which is consistent with our as-
sumption that a2 is three multiplied by an integer, since 3q2 is an integer. If the remainder
r is one, then a2 = (3q+ 1)2 = 3(3q2 + 2q)+ 1, which implies by the division theorem
that a2 cannot be expressed as three multiplied by an integer, contradicting our assump-
tion. If the remainder r is equal to two, then a2 = (3q+2)2 = 3(3q2+4q+1)+1, which
again implies by the division theorem that a2 cannot be expressed as three multiplied by
an integer, contradicting our assumption again.

Since the only case that did not lead to a contradiction was that in which the remainder r
was equal to zero, it follows that a is divisible by three. ~

The next extract strikes a better balance. It uses enough words to make reading it as prose
easier than in Extract A.1.9, but it uses enough notation to keep it much more concise
and navigable than Extract A.1.10.

} Extract A.1.11
Let a ∈ Z and assume that 3 | a2. Then a2 = 3k for some k ∈ Z by Definition 5.1.4.
Moreover, by the division theorem (Theorem 5.1.1), there exist q,r ∈ Z with 0 6 r < 3
such that a = 3q+ r. Now

• If r = 0, then a2 = (3q)2 = 3(3q2). Letting k = 3q2, we see that this is consistent with
our assumption that 3 | a.

• If r = 1, then a2 = (3q+ 1)2 = 3(3q2 + 2q)+ 1. By the division theorem, it follows
that 3 - a2, contradicting our assumption.
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• If r = 2, then a2 = (3q+ 2)2 = 3(3q2 + 4q)+ 1. By the division theorem again, it
follows that 3 - a2, contradicting our assumption.

Since r = 0 in the only case that is consistent with our assumption, it follows that a = 3q,
and so 3 | a, as required. ~

Observe that one of the main differences between the notation-heavy Extract A.1.9 and
the more reasonable Extract A.1.11 is that the latter does not use logical operators or
quantifiers—they are replaced by their corresponding English translations.

While logical operators and quantifiers—particularly⇒,⇔ and ∀—do have their place
in proofs, it is often best to tread lightly. The role of symbolic logic is to help you to
figure out how to prove a proposition, and how to word its proof (more in this later); but
the proof in the end should not typically contain much in the way of logical notation.

Think of logical notation as being like an engine in a car, a circuit board in a computer,
or an internal organ in a guinea pig—they make it work, but you don’t want to see them!

In line with Writing Principle A.1.1, when we use mathematical notation, we should be
careful to make sure that what we write can still be read as prose. To illustrate, let’s recall
Extract A.1.3.

} Extract A.1.3
Let X , Y and Z be sets, let f : X→Y and g : Y → Z, and assume that f and g are injective.
Let a,b ∈ X and assume that (g◦ f )(a) = (g◦ f )(b). Then

g( f (a)) = g( f (b)) by definition of ◦
⇒ f (a) = f (b) by injectivity of g

⇒ a = b by injectivity of f

Hence g◦ f is injective, as required. ~

The uses of notation are highlighted in the following transcription.

Let ex, wye and zed be sets, let ef be a function from ex to wye and

gee be a function from wye to zed , and assume that ef and gee are injective. Let

a and bee be elements of ex and assume that gee ef of a is equal to gee ef of bee .

Then gee of ef of a equals gee of ef of bee by definition of function composition ,

so ef of a equals ef of bee by injectivity of gee, and so a equals bee by in-

jectivity of ef. Hence gee ef is injective, as required.

Observe that the kind of phrase that is read aloud depends on how the notation is being
used within a larger sentence. For example, consider the following extract.

} Extract A.1.12
Let n ∈ Z and suppose that n is even. Then n = 2k for some k ∈ Z. ~
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Read aloud, we would say something like:

Let en be an integer and suppose that en is even. Then en equals two kay for some

integer kay .

Despite the fact that ‘n ∈ N’ and ‘k ∈ N’ here differ only in the letter that is used, they
are read aloud differently because they are playing different roles in the sentence—the
former is used as a verb phrase, and the latter as a noun phrase.

. Exercise A.1.13
Consider the following notation-heavy proof that X ∩ (Y ∪Z)⊆ (X ∩Y )∪ (X ∩Z) for all
sets X , Y and Z.

Let X , Y and Z be sets and let a ∈ X ∩ (Y ∪Z). Then

a ∈ X ∧a ∈ Y ∪Z ⇒ a ∈ X ∧ (a ∈ Y ∨a ∈ Z)

• Case 1: a ∈ Y ⇒ (a ∈ X ∧a ∈ Y )⇒ a ∈ X ∩Y ⇒ a ∈ (X ∩Y )∪ (X ∩Z).

• Case 2: a ∈ Z⇒ (a ∈ X ∧a ∈ Z)⇒ a ∈ X ∩Y ⇒ a ∈ (X ∩Y )∪ (X ∩Z).

∴ ∀a, a ∈ X ∩ (Y ∪Z)⇒ a ∈ (X ∩Y )∪ (X ∩Z)

∴ X ∩ (Y ∪Z)⊆ (X ∩Y )∪ (X ∩Z).

Read the proof aloud and transcribe what you said. Then rewrite the proof with a more
appropriate balance of notation and text. C

How much detail to provide

To do: How much detail to provide

To do: Citing definitions and previously-proved results

The Greek alphabet

Greek letters are often used as variables in mathematical texts—sometimes the 26 letters
in the Latin alphabet just aren’t enough! The Greek alphabet has 24 letters and, like the
Latin alphabet, it has two cases.
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Name Upper Lower
Alpha A α

Beta B β

Gamma Γ γ

Delta ∆ δ

Epsilon E ε or ε
Zeta Z ζ

Eta H η

Theta Θ θ

Iota I ι

Lambda Λ λ

Kappa K κ

Mu M µ

Name Upper Lower
Nu N ν

Xi Ξ ξ

Omicron O o
Pi Π π

Rho P ρ

Sigma Σ σ

Tau T τ

Upsilon ϒ υ

Phi Φ ϕ or φ

Chi X χ

Psi Ψ ψ

Omega Ω ω

Note that several of the upper-case Greek letters are identical to upper-case Latin letters—
in mathematics, these are not typically distinguished so that, for example, the letter ‘H’
will always be interpreted as an upper-case Latin letter aitch, rather than an upper-case
Greek letter eta. For the same reason, the lower-case Greek letter omicron is not distin-
guished from the lower-case Latin letter o.

v LATEX tip
In order to use Greek letters as mathematical variables using LATEX:

• For the upper-case letters that are identical to a letter in the Latin alphabet, use the
\mathrm command together with the Latin letter. For example, upper-case rho can be
input as \mathrm{P}, even though rho corresponds phonemically with the Latin letter
R.

• For the upper-case letters that are not identical to a letter in the Latin alphabet, the
LATEX command is given by their Greek name with an upper-case first letter. For
example, the command \Gamma produces the ouput Γ.

• For the lower-case letters (except epsilon and phi—see below), the LATEX command is
given by their Greek name in lower case. For example, the command \eta produces
the output η .

The variant forms of epsilon and phi, respectively ε (\varepsilon) and ϕ (\varphi),
are preferred over ε (\epsilon) and φ (\phi). This is to better distinguish them from
the symbols ∈ (element symbol) and ∅ (empty set), respectively. C

Handwriting

To do:
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Section A.2

Vocabulary for proofs

The focus of Chapter 1 was on examining the logical structure of a proposition and using
this to piece together a proof.

For example, in order to prove that every prime number greater than two is odd, we
observe that ‘every prime number greater than two is odd’ takes the form

∀n ∈ Z, [(n is prime∧n > 2)⇒ n is odd]

By piecing together the proof strategies in Sections 1.1 and 1.2, we can see what a proof
of this must look like:

• By Strategy 1.2.10, we must assume n ∈ Z and, without assuming anything about n
other than that it is an integer, derive ‘(n is prime ∧ n > 2)⇒ n is odd’;

• By Strategy 1.1.22, we must assume ‘n is prime ∧ n > 2’ and derive that n is odd;

• By Strategy 1.1.9, we may separately assume that n is prime and n > 2.

Thus a proof that every prime number greater than two is odd would assume n ∈ Z,
assume that n is prime and n > 2, and then derive that n is odd.

All of this tells us how to structure a proof, but it does not tell us what to write in such a
proof—that is the goal of this section.

This section provides some basic vocabulary and templates that can be used in proofs.
We will use some notation conventions for introducing these template:

• [Square | brackets | and | bars] will be used where one of several choices can be made.
For example, if you see

[then | therefore | so | hence]

it means that any of the words ‘then’, ‘therefore’, ‘so’ or ‘hence’ can be used.

• (Round brackets) will be used where a word or phrase is optional. For example if you
see

Let x ∈ X (be arbitrary)

it means that either ‘Let x ∈ X’ or ‘Let x ∈ X be arbitrary’ can be used.

• 〈Angle brackets〉 will be used to provide instructions. For example if you see

〈insert proof of p here〉

then you should write out a proof of the proposition p being referred to.

436



Section A.2. Vocabulary for proofs 437

Breaking down a proof

As we discussed in Section 1.1, at every stage in a proof, there is some set of assumptions
and some set of goals. The assumptions are the propositions that we may take to be true,
either because we already proved them or because they are being temporarily assumed;
and the goals are the propositions that remain to be deduced in order for the proof to be
complete.

The words we use indicate to the reader how the assumptions and goals are changing.
Thus the words we use allow the reader to follow our logical reasoning and verify our
correctness.

For the next few pages, we will examine the proof strategies governing logical operators
and quantifiers, as discussed in Chapter 1, and identify some words and phrases that can
be used in a proof to indicate which strategy is being used.

Deductive reasoning

At its core, a proof is a sequence of deductions: starting with a proposition that is already
known or assumed to be true, we deduce something new, and continue deducing new
things until the proposition we deduce is the result we are trying to prove.

Each time we make a deduction, it should be clear why that deduction is valid, so it is
good practice to justify each deduction we make by either stating or citing the reason.

F Vocabulary A.2.1
The following construction can be used to indicate that an assumption p is being used to
deduce a goal q.

[then | therefore | so (that) | hence] 〈state q here〉 [by 〈cite p here〉 | since
〈state p here〉]

— or —
we know that 〈state p here〉, and so 〈state q here〉

— or —
it follows from 〈cite p here〉 that 〈state q here〉

If p was the last thing to be proved in the proof, it may not be necessary to cite it or state
it again explicitly—that can be inferred.

Here are a couple of examples of Vocabulary A.2.1 in action.

} Extract A.2.2 (taken from Proposition 2.1.40)
. . . Then a ∈ Y since X ⊆ Y , so that a ∈ X ∩Y by definition of intersection . . . ~

Notice the choice of words used to state versus to cite assumptions; in both the previous
and next example, we used ‘since’ to state, and ‘by’ to cite.
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} Extract A.2.3 (taken from Theorem 7.1.19)
If a > 0, then by Example 7.1.14 and Exercise 7.1.15, we have

~x ·
(

b
a
~x
)
=

b
a
‖~x‖2

which is non-negative if and only if b> 0, since we are assuming that a> 0 . ~

. Exercise A.2.4
In the following proof that every multiple of four is even, identify all instances where an
assumption is stated or cited in order to justify a step in the proof.

Let n∈Z and suppose that n is divisible by 4. Then by definition of divisibility
we have n = 4k for some k ∈ Z. But then n is even, since n = 4k = 2(2k) and
2k ∈ Z. C

Assuming implications: reducing a problem to another problem

One of the ways that an assumption of the form p⇒ q is useful is that it ‘reduces’ the
problem of proving q to that of proving p.

F Vocabulary A.2.5
The following construction can be used to indicate to a reader that you are invoking an
assumption of the form p⇒ q to prove a goal q by instead proving p.

[Since 〈state p⇒ q here〉 | By 〈cite p⇒ q here〉 ], (in order to prove
〈state q here〉,) it suffices to prove 〈state p here〉.

We used this construction in the proof of the strong induction principle:

} Extract A.2.6 (taken from Theorem 3.3.2)
Notice that q(n) implies p(n) for all n > n0, since given n > n0, if p(k) is true for all
n0 6 k 6 n, then in particular p(k) is true when k = n.

So it suffices to prove q(n) is true for all n> n0. ~

In the proof of Proposition 6.2.37, we used Vocabulary A.2.5 in the very first sentence to
guide the rest of the proof.

} Extract A.2.7 (taken from Proposition 6.2.37)
First note that

(n
k

)
=
∣∣∣([n]k

)∣∣∣ and
( n

n−k

)
=
∣∣∣( [n]

n−k

)∣∣∣, so in order to prove
(n

k

)
=
( n

n−k

)
,

it suffices by Strategy 6.1.15 to find a bijection f :
([n]

k

)
→
( [n]

n−k

)
. ~
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Proving implications: introducing assumptions

Several kinds of logical formulae are proved by introducing new assumptions into a
proof. For example:

• Strategy 1.1.22 says that an implication p ⇒ q can be proved by assuming p and
deriving q.

• Strategy 1.2.10 says that a universally quantified proposition ∀x ∈ X , p(x) can be
proved by introducing a new variable x, assuming x ∈ X , and deriving p(x).

• Strategy 1.1.38 says that a negation ¬p can be proved by assuming p and deriving a
contradiction.

F Vocabulary A.2.8
The words assume and suppose can be used to introduce a new assumption p into a
proof.

[assume | suppose] 〈state p here〉.
The proposition p may then be used in the proof.

In the following extract, observe how the introduced assumption is used later in the proof.

} Extract A.2.9 (taken from Theorem 2.2.26)
Assume U =V and let a ∈ X . Then

χU (a) = 1⇔ a ∈U by definition of χU

⇔ a ∈V since U =V

⇔ χV (a) = 1 by definition of χV

~

Proving conjunctions: breaking into steps

Often a goal in a proof has the form p∧ q—for example, in order to prove a function
f : X →Y is a bijection, we can prove that f is injective and f is surjective; and in order
to prove that a relation ∼ is an equivalence relation, we can prove that ∼ is reflexive and
symmetric and transitive.

In these cases, we can split into steps.
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F Vocabulary A.2.10
To indicate to a reader that you are proving a conjunction p∧ q by proving p and q
individually, you can say that you are breaking into steps. For example:

• Step 1: (〈state p here〉) 〈insert proof of p here〉.

• Step 2: (〈state q here〉) 〈insert proof of q here〉.
This can be generalised to conjunctions of more than two propositions. Explicitly enu-
merated steps are not usually necessary, as long as it is clear what you are aiming to
achieve in each step.

A common example of where steps are used is in proving propositions of the form p⇔ q,
which is shorthand for (p⇒ q)∧ (q⇒ p). In these cases, the two steps are the proofs of
p⇒ q and q⇒ p; the steps can then be labelled as (⇒) and (⇐), respectively.

} Extract A.2.11 (taken from Example 1.1.33)
Our goal is now to prove that 8 divides n if and only if 8 divides n′ .

• (⇒) Suppose 8 divides n. Since 8 divides n′′, it follows from Exercise 0.16 that 8
divides an+bn′′ for all a,b ∈ Z. But

n′ = n− (n−n′) = n−n′′ = 1 ·n+(−1) ·n′′

so indeed 8 divides n′, as required.

• (⇐) Suppose 8 divides n′. Since 8 divides n′′, it follows from Exercise 0.16 that 8
divides an′+bn′′ for all a,b ∈ Z. But

n = n′+(n−n′) = n′+n′′ = 1 ·n′+1 ·n′′

so indeed 8 divides n, as required.

~

Proofs of set equality by double containment also follow this format; in Section 2.1 we
denoted the steps by (⊆) and (⊇), respectively.

Assuming disjunctions: breaking into cases

By Strategy 1.1.16, in order to use an assumption of the form p∨q (‘p or q’) to deduce
a goal r, it suffices to show that r may be deduced from each of p and q—the idea here
is that we may not know which of p or q is true, but that is fine since we derive r in both
cases.
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F Vocabulary A.2.12
To indicate to a reader that you are using an assumption p∨q to prove a goal r, you can
say that you are breaking into cases. For example:

We know that either 〈state p here〉 or 〈state q here〉.
• Case 1: Assume that 〈state p here〉. 〈insert proof of r here〉.

• Case 2: Assume that 〈state q here〉. 〈insert proof of r here〉.
In both cases we see that 〈state r here〉, as required.

Like with proofs involving steps (Vocabulary A.2.10), the explicit enumeration of cases
is not usually necessary.

In the following extract, the assumption made is (k 6 n)∨ (k > n), which is valid by the
law of excluded middle (Strategy 1.1.45), and the goal is 2ky ∈ D.

} Extract A.2.13 (taken from Example 2.3.18)
Since y ∈ D, we must have y = a

2n for some n ∈ N.

• If k 6 n then n− k ∈ N and so 2ky = a
2n−k ∈ D .

• If k > n then k− n > 0 and 2ky = 2k−na ∈ Z; but Z ⊆ D since if a ∈ Z then a = a
20 .

So again we have 2ky ∈ D .

In both cases we have 2ky ∈ D ; and f (2ky) = y, so that f is surjective. ~

Sometimes proofs by cases are extremely compact—so much so that you might not notice
it—like in the next extract.

} Extract A.2.14 (taken from Proposition 5.2.7)
Since a | p, we have a ∈ {1,−1, p,−p}. If a =±1 , then a is a unit ; if a =±p , then b =

±1, so that b is a unit . In any case, either a or b is a unit , and hence p is irreducible. ~

Note that cases were not explicitly labelled, but it was clear from context that cases were
what were being used.
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Proving negations: proof by contradiction

F Vocabulary A.2.15
The following construction can be used in order to indicate that an assumption p is being
introduced with the view of deriving a contradiction, thereby proving that p is false (that
is, ¬p is true).

Towards a contradiction, assume 〈state p here〉.
— or —

Assume 〈state p here〉. We will derive a contradiction.

The following construction can be used in order to indicate that a contradiction to an
assumption q has been reached from a contradictory assumption p.

This contradicts 〈cite q here〉. Therefore 〈state ¬p here〉.
— or —

. . . , contrary to 〈cite q here〉, so that 〈state ¬p here〉.
Explicit reference to the proposition being contradicted is not always necessary if it is
clear from context.

This is [a contradiction | nonsense | absurd | impossible]. Therefore
〈state ¬p here〉.

} Extract A.2.16 (taken from Theorem 6.1.24)
We proceed by contradiction. Suppose N is finite. Then |N| = n for some n ∈ N, and
hence N is either empty (nonsense, since 0 ∈ N) or, by Lemma 6.1.23, it has a greatest
element g. But g+1 ∈ N since every natural number has a successor, and g+1 > g, so
this contradicts maximality of g. Hence N is infinite. ~

In the next extract, the contradictory assumption was made a long time before the contra-
diction is reached, so special care is taken to reiterate that a contradiction was reached,
and what the conclusion of the contradiction is.

} Extract A.2.17 (taken from Theorem 7.3.55)
Towards a contradiction, suppose that e ∈Q.

[. . . many lines of proof omitted. . . ]

But this implies that 0 < c < 1, which is nonsense since c ∈ Z .

We have arrived at a contradiction , so it follows that e is irrational . ~

Proofs by contradiction need not be long and drawn out—sometimes you just need to say
that something is false and give a brief justification. This is illustrated in the next extract.

} Extract A.2.18 (taken from Theorem 5.1.1)
. . . it remains to show that r < b. Well, if r > b then r− b > 0, but r− b = rk+1, so

this would imply rk+1 ∈ R, contradicting minimality of r . Hence r < b . . . ~
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Proving universally quantified statements: introducing variables

As discussed in Strategy 1.2.10, proving that a property p(x) hold for all elements x of
a set X is done by introducing a new variable x ∈ X and, assuming nothing about that
variable other than that it is an element of X , deriving the truth of p(x).

This sounds scary, but introducing the variable x is very easy to do.

F Vocabulary A.2.19
The following constructions can be used to introduce a new variable x, referring to an
arbitrary element of a set X .

Let x ∈ X (be arbitrary).
— or —

[Take | Fix] (an (arbitrary) element) x ∈ X .
— or —

Given x ∈ X , . . .

Explicit use of the word ‘arbitrary’ can be useful to drive home the point that nothing is
assumed about x other than that it is an element of X . In practice, it is optional.

If you turn to almost any page in the book, you will see an instance of Vocabulary A.2.19.

For example, in the next extract, the goal was to prove the universally quantified propos-
ition meaning that g◦ f is injective, that is ∀a,b ∈ X , [(g◦ f )(a) = (g◦ f )(b)⇒ a = b].

} Extract A.2.20 (taken from Proposition 2.3.4)
. . . let a,b ∈ X . We need to prove that

(g◦ f )(a) = (g◦ f )(b) ⇒ a = b

. . . ~

Variables can also be introduced mid-sentence using the word ‘given’, like in the next
extract.

} Extract A.2.21 (taken from Example 6.1.11)
We need to prove f (k) ∈ X for all k ∈ [2n+1] . Well given k ∈ [2n+1] , we have 16 k6
2n+1, and so

−n = 1− (n+1)6 k− (n+1)︸ ︷︷ ︸
= f (k)

6 (2n+1)− (n+1) = n

so that f (k) ∈ X as claimed . ~

Proving existentially quantified statements: making definitions

When proving a statement of the form ∃x∈X , p(x), we usually have to define an element
a ∈ X that makes p(a) true, and then prove that p(a) is true.
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F Vocabulary A.2.22
The following construction can be used to indicate that you are proving that there exists
an element x of a set X such that p(x) is true.

[Define | Let] 〈define a here〉. 〈insert proof of p(a) here〉.
([It follows that | So | Therefore] 〈state ∃x ∈ X , p(x) here〉.)

Proofs of divisibility (see Definition 5.1.4) often use this construction, as in the following
example.

} Extract A.2.23 (taken from Theorem 5.2.11)
Define q = ku+bv ; then

b = abu+ pbv = pku+ pbv = p(ku+bv) = qp

so p | b , as required. ~

Here is another example, which uses the word ‘let’.

} Extract A.2.24 (taken from thmCauchySchwarzInequality)
If~y 6=~0 then let a = ‖~y‖2 and b =~x ·~y; otherwise, let a = 0 and b = 1. In both cases, we
have a~x = b~y and a,b are not both zero. ~

Assuming existentially quantified statements: choosing elements

Another reason why variables might be introduces is because an assumption is existen-
tially quantified. For example, if we know that 8 is even, then we know that 8 = 2k for
some k ∈ Z.

F Vocabulary A.2.25
The following construction can be used to indicate that you are invoking an assumption
of the form ∃x ∈ X , p(x).

Let a ∈ X be such that 〈state p(a) here〉.

Again, proofs involving division yield several examples of when this construction is used.

} Extract A.2.26 (taken from Theorem 5.1.35)
. . . so by Proposition 5.1.32, we have a | y0− y and b | x− x0 . Let k, ` ∈ Z be such that

x− x0 = kb and y0− y = `a . ~

Here is an example from Section 7.2 on the convergence of sequences; here, the existen-
tially quantified assumption allowing us to introduce the variables a and b was cited.

} Extract A.2.27 (taken from Theorem 7.2.58)
Let (xn) be a sequence of real numbers and et a,b ∈ R be such that a < xn < b for each

n> 0—the numbers a and b exist since the sequence (xn) is bounded. ~
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‘Without loss of generality’

Sometimes we need to prove a result in one of several cases, but the proofs in each case
turn out to be very similar. This might be because the proofs are the same but with two
variables swapped; or it might be because one case easily reduces to the other.

In such cases, instead of writing out the whole proof again with the minor changes made,
we can inform the reader that this is happening and tell them how to recover the cases we
do not prove.

F Vocabulary A.2.28
When invoking an assumption of the form p∨ q, the phrase without loss of general-
ity can be helpful to avoid splitting into cases when a proof in each case is essentially
identical:

(We may) assume 〈state p here〉 (without loss of generality)—otherwise
〈say how to modify the proof if q were true instead of p〉.

The phrase ‘without loss of generality’ is so widespread that it is sometimes abbreviated
to wlog (or WLOG), but this is best reserved for informal, hand-written proofs.

We only used the phrase ‘without loss of generality’ explicitly once in this book so far;
this is recalled in the next extract.

} Extract A.2.29 (taken from proof of Theorem 5.3.59 in Section 10.2)
Recall that ϕ(−n) = ϕ(n) for all n ∈ Z, so we may assume without loss of generality

that n> 0 —otherwise just replace n by −n throughout . ~

Nonetheless, we used the construction in Vocabulary A.2.28 at other times, as illustrated
in the next extract, where we used it twice!

} Extract A.2.30 (taken from Theorem 5.1.1)
We may assume that b > 0 : if not, replace b by −b and q by −q . We may also assume

that a> 0 . Otherwise, replace a by −a, q by −(q+1) and r by b− r . ~

Keeping track of everything

It can be difficult when writing a proof to keep track of what you have proved and what
you have left to prove, particularly if you partially prove a result and then come back to
it after a break.

On the other hand, it can be very difficult when reading a proof to keep track of what has
been proved and what is left to prove!

As such, when writing a proof, it is of benefit both to you and to your future readers to
insert language into your proofs that clarifies what has been done and what is left to do.
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F Vocabulary A.2.31
The following phrases can be used to indicate that the next goal in a proof is to prove a
proposition p.

[We want | Our goal (now) is | It remains] to [show | prove] 〈state p here〉
— or —

To see that 〈state p here〉, note that . . .

The first extract we look at is taken from the middle of a very long proof in Section 7.3.
The entire highlighted sentence could be deleted and the proof would still be correct, but
it would be much harder to follow—the sentence beginning ‘So let K >N . . . ’ might look
as if it came out of nowhere.

} Extract A.2.32 (taken from Exercise 7.3.41)

. . . It remains to prove that

∣∣∣∣∣ K

∑
n=0

aσ(n)−A

∣∣∣∣∣< ε for all K > N. So let K > N, . . . ~

Here is an example where we reiterate what we are about to prove before we prove it.
Again, the highlighted text could be deleted without making the proof any less correct,
but including it makes the proof easier to navigate.

} Extract A.2.33 (taken from Lemma 8.3.16)
To see that H is a bijection, note that the function K : Y X → [λ ][κ] defined by K(ϕ) =

kϕ = g−1 ◦ϕ ◦ f is a bijection . . . ~

When a key goal in a proof is reached, it is useful to say so.

F Vocabulary A.2.34
The following phrases can be used to reiterate that a goal p has been proved.

[Hence | So (that) | Therefore | It follows that] 〈state p here〉(, as required).

The next proof extract is a very typical example.

} Extract A.2.35 (taken from Theorem 3.1.2)
By condition (iii) of Definition 3.1.1, we have N ⊆ D, so that f (n) is defined for all

n ∈ N, as required . ~

Sometimes it might not be obvious that we have achieved the goal that we set out to
achieve, in which case saying why the conclusion is ‘as required’ is also important.

This is illustrated in the next extract, where the goal was to prove that |X ∪Y | = |X |+
|Y |− |X ∩Y |.

} Extract A.2.36 (taken from Proposition 6.1.18)
Hence |X ∪Y |= m+n = |X |+ |Y |, which is as required since |X ∩Y |= 0. ~
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Case study: proofs by induction

Many of the strategies for structuring and writing proofs are illustrated in proofs by
induction. The strategy of proof by weak induction is described by the weak induction
principle, recalled next.

C Theorem 3.2.1 (Weak induction principle)
Let p(n) be logical formula with free variable n ∈ N, and let n0 ∈ N. If

(i) p(n0) is true; and

(ii) For all n> n0, if p(n) is true, then p(n+1) is true;

then p(n) is true for all n> n0.

Expressed as a single logical formula, the weak induction principle says that

[p(n0)∧ (∀n> n0,(p(n)⇒ p(n+1))] ⇒ [∀n> n0, p(n)]

Let’s pretend we know nothing about proofs by induction, and use the vocabulary in this
section to construct a template for ourselves.

The goal is to prove ∀n> n0, p(n). We are going to invoke the weak induction principle
(Theorem 3.2.1), and so using Vocabulary A.2.5 our proof should look something like
this:

〈insert proof of p(n0)∧ (∀n> n0,(p(n)⇒ p(n+1)) here〉
It follows by the weak induction principle that p(n) is true for all n> n0.

Since our goal is the conjunction of two formulae, using Vocabulary A.2.10 tells us that
we should break up the proof into steps:

• Step 1. 〈insert proof of p(n0) here〉

• Step 2. 〈insert proof of ∀n> n0, p(n)⇒ p(n+1) here〉
It follows by the weak induction principle that p(n) is true for all n> n0.

The goal in Step 2 is universally quantified, so we now need to introduce a variable n
satisfying the condition that (n is a natural number and) n > n0. We can do so using
Vocabulary A.2.19.

• Step 1. 〈insert proof of p(n0) here〉

• Step 2. Fix n> n0. 〈insert proof of p(n)⇒ p(n+1) here〉
It follows by the weak induction principle that p(n) is true for all n> n0.

The goal in Step 2 is an implication, so using Vocabulary A.2.8, we obtain the following.
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• Step 1. 〈insert proof of p(n0) here〉

• Step 2. Fix n> n0 and assume 〈state p(n) here〉.
〈insert proof of p(n+1) here〉

It follows by the weak induction principle that p(n) is true for all n> n0.

To help the reader navigate the proof, we can use Vocabulary A.2.31 to reiterate the goal
that we want to prove in Step 2.

• Step 1. 〈insert proof of p(n0) here〉

• Step 2. Fix n> n0 and assume 〈state p(n) here〉.
We need to prove 〈state p(n+1) here〉.
〈insert proof of p(n+1) here〉

It follows by the weak induction principle that p(n) is true for all n> n0.

This is now a perfectly good template for a proof of ∀n > n0, p(n). But this is exactly
what a proof by induction looks like: ‘Step 1’ is the base case, ‘Step 2’ is the induction
step, the assumption p(n) in Step 2 is the induction hypothesis, and the goal p(n+1) in
Step 2 is the induction goal!
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Appendix B

Mathematical miscellany

There have been a number of times in the book where we have avoided delving too
deeply into the more technical or obscure aspects of a definition or proof. Usually this
was because exploring these aspects was not central to the topic at hand, or because the
details involved were sufficiently messy that providing all the details would obfuscate the
main ideas being discussed.

This appendix provides a home for the comments we didn’t make, the theorems we didn’t
prove, the details we didn’t provide and the obscurities we didn’t explore.

We begin with a quick glance at the foundations of mathematics in Section B.1. We will
provide the axioms for Zermelo–Fraenkel set theory (ZF), which encodes all mathem-
atical objects as sets and allows us to derive all mathematical objects from a collection
of axioms. We will also demonstrate how to encode natural numbers, integers, rational
numbers and complex numbers within this framework.
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Section B.1

Set theoretic foundations

To do:

Zermelo–Fraenkel set theory

To do:

The first two axioms of ZF set theory that we introduce are the axiom of extensionality
and the axiom of foundation. They concern the behaviour of the set elementhood relation
∈, with the axiom of extensionality describing how it relates to equality of sets (as in
Axiom 2.1.22), and axiom of foundation

C Axiom B.1.1 (Axiom of extensionality)
If two sets have the same elements, then they are equal.

∀X , ∀Y, [(∀a, a ∈ X ⇔ a ∈ Y )⇒ X = Y ]

A consequence of the axiom of extensionality is that two sets can be proved to be equal
by proving that they contain the same elements.

C Axiom B.1.2 (Axiom of foundation)
Every inhabited set has an ∈-minimal element.

∀X , [(∃y, y ∈ X)⇒∃x, (x ∈ X ∧∀u ∈ X , u 6∈ x)]

The axiom of foundation states that ∈ is a well-founded relation.

The axiom of foundation is mysterious at first sight, but it captures the idea that every set
should built up from ∅ using set theoretic operations.

C Lemma B.1.3
Under the axiom of foundation, we have X 6∈ X for all sets X .

Proof
Let X be a set. The set {X} is inhabited since X ∈ {X}, so by the axiom of foundation
there is some x ∈ {X} such that u 6∈ x for all u ∈ {X}. But the only element of {X} is X
itself, so this says exactly that X 6∈ X . �

. Exercise B.1.4
Use the axiom of foundation to prove that there is no sequence of sets X0,X1,X2, . . . such
that Xn+1 ∈ Xn for all n ∈ N. C

The next few axioms of ZF set theory posit the existence of certain sets or constructions
of sets.
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C Axiom B.1.5 (Empty set axiom)
There is a set with no elements.

∃X , ∀x, x 6∈ X

The empty set axiom asserts the existence of ∅.

C Axiom B.1.6 (Pairing axiom)
For any two sets x and y, there is a set containing only x and y.

∀x, ∀y, ∃X , ∀u, [u ∈ X ⇔ (u = x∨u = y)]

The axiom of pairing asserts the existence of sets of the form {x,y}.

C Axiom B.1.7 (Union axiom)
The union of any family of sets exists and is a set.

∀F, ∃U, ∀x, [x ∈U ⇔∃X , (x ∈ X ∧X ∈ F)]

The axiom of union asserts that if F = {Xi | i∈ I} is a family of sets then the set U =
⋃
i∈I

Xi

exists.

C Axiom B.1.8 (Power set axiom)
The set of all subsets of a set is a set.

∀X , ∃P, ∀U, [U ∈ P⇔∀u, (u ∈U ⇒ u ∈ X)]

The axiom of power set asserts the existence of P(X) for all sets X .

Assuming only the previously stated axioms, it is entirely plausible that every set be
finite. This isn’t good news for us, since we want to be able to reason about infinite sets,
such as the set N of natural numbers. The axiom of infinity asserts the existence of an
infinite set using a clever set theoretic construction called the successor set operation.

F Definition B.1.9
Given a set X , the successor set of X is the set X+ defined by

X+ = X ∪{X}

C Lemma B.1.10
Let X and Y be sets. If X+ = Y+, then X = Y .

Proof
Assume X+ = Y+. Then

• We have X ∈ X+, so X ∈ Y+ = Y ∪{Y}, and so either X = Y or X ∈ Y ;

• We have Y ∈ Y+, so Y ∈ X+ = X ∪{X}, and so either Y = X or Y ∈ X .
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If X = Y then we’re done. Otherwise, we must have X ∈ Y and Y ∈ X . But then we can
define a sequence of sets by letting

Xn =

{
X if n is even
Y if n is odd

for all n ∈ N. This sequence satisfies Xn+1 ∈ Xn for all n ∈ N, since if n is even then

Xn+1 = Y ∈ X = Xn

and if n is odd then
Xn+1 = X ∈ Y = Xn

This contradicts Exercise B.1.4, so we must have X = Y , as claimed. �

C Axiom B.1.11 (Axiom of infinity)
There is an inhabited set containing successor sets of all of its elements.

∃X , [(∃u, u ∈ X)∧∀x, (x ∈ X ⇒ x+ ∈ X)]

Intuitively, the axiom of infinity tells us that there is a set X which contains (at least)
a family of elements of the form u,u+,u++,u+++, and so on—each of these elements
must be distinct by Lemma B.1.10, so that X must be infinite.

C Axiom B.1.12 (Axiom of replacement)
The image of any set under any function is a set. That is, for each logical formula p(x,y)
with two free variables x,y, we have

∀X , [(∀x ∈ X , ∃!y, p(x,y))⇒∃Y, ∀y, y ∈ Y ⇔∃x ∈ X , p(x,y)]

C Axiom B.1.13 (Axiom of separation)
For any logical formula p(x) with one free variable, and any set X , there is a set consisting
of the elements of X satisfying p(x).

∀X , ∃U, ∀x, [x ∈U ⇔ (x ∈ X ∧ p(x))]

The axiom of separation asserts the existence of sets of the form {x ∈ X | p(x)}.

. Exercise B.1.14
Prove that the axioms of infinity and separation imply the existence of an empty set. C

In light of Exercise B.1.14, the empty set axiom (Axiom B.1.5) is in fact redundant, in
the presence of the other axioms. We keep it around for the sake of convenience.
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Grothendieck universes

In Section 2.1 one of the first things we defined was a universal set, which we promptly
forgot about and mentioned as little as possible. In this short subsection we briefly intro-
duce the notion of a Grothendieck universe, named after the interesting (and influential)
mathematician Alexander Grothendieck.

F Definition B.1.15
A Grothendieck universe is a set U satisfying the following properties:

(i) The elements of U are sets;

(ii) For all X ∈U , if x ∈ X , then x ∈U ;

(iii) NvN ∈U (see Construction B.2.5);

(iv) For all X ∈U , we have P(X) ∈U ;

(v) For all I ∈U and all {Xi | i ∈ I} ⊆U , we have
⋃
i∈I

Xi ∈U .

The existence of a Grothendieck universe is not implied by the axioms of Zermelo–
Frankel set theory (with or without the axiom of choice)—if it were, it would violate
Gödel’s incompleteness theorem, a result that is even further beyond the scope of this
book than Grothendieck universes are!

C Theorem B.1.16
Let U be a Grothendieck universe. The axioms of Zermelo–Fraenkel set theory are
satisfied relative to U . If the axiom of choice is assumed, then that is also satisfied
relative to U .

The upshot of Theorem B.1.16 is that although there is no universal set, if we assume
the existence of a Grothendieck universe U , then for the purposes of this book, we may
relativise everything we do to U and pretend that U is indeed a universal set. And this
is exactly what we did in Section 2.1.
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Section B.2

Constructions of the number sets

To do:

The natural numbers

We can use the framework provided by Zermelo–Fraenkel set theory (Section B.1) to
provide set theoretic constructions of the number sets N, Z, Q, R and C. Indeed, if we
want to reason about mathematics within the confines of ZF, we must encode everything
(including numbers) as sets!

We will begin with a set theoretic construction of the natural numbers—that is, we will
construct a notion of natural numbers in the sense of Definition 3.1.1. We will encode
the natural numbers as sets, called von Neumann natural numbers. We will identify the
natural number 0 with the empty set ∅, and we will identify the successor operation s
with an operation involving sets.

F Definition B.2.1
A von Neumann natural number is any set obtainable from ∅ by repeatedly taking
successor sets (see Definition B.1.9). Write 0vN =∅ and (n+1)vN = (nvN)+; that is

0vN =∅, 1vN =∅+, 2vN =∅++, 3vN =∅+++, 4vN =∅++++, . . .

0 Example B.2.2
The first three von Neumann natural numbers are:

• 0vN =∅;

• 1vN =∅+ =∅∪{∅}= {∅};
• 2vN =∅++ = {∅}+ = {∅}∪{{∅}}= {∅,{∅}}.

C

. Exercise B.2.3
Write out the elements of 3vN (=∅+++) and of 4vN. C

. Exercise B.2.4
Recall the definition of von Neumann natural numbers from Definition B.2.1. Prove that
|nvN|= n for all n ∈ N. C

F Construction B.2.5
We construct the set NvN of all von Neumann natural numbers as follows. Let X be an
arbitrary set satisfying the axiom of infinity (Axiom B.1.11), and then define NvN to be
the intersection of all subsets of X that also satisfy the axiom of infinity—that is:

NvN = {x ∈ X | ∀U ∈P(X), [U satisfies the axiom of infinity ⇒ x ∈U ]}
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The existence ofNvN follows from the axioms of power set (Axiom B.1.8) and separation
(Axiom B.1.13).

C Theorem B.2.6
The setNvN, zero element 0vN and successor function s :NvN→NvN defined by s(nvN) =
n+vN for all nvN ∈ NvN, define a notion of natural numbers.

Proof
We must verify Peano’s axioms, which are conditions (i)–(iii) of Definition 3.1.1.

To prove (i), observe that for all sets X we have X+ = X ∪ {X}, so that X ∈ X+. In
particular, we have nvN ∈ n+vN for all nvN ∈ NvN, and hence n+vN 6=∅= 0vN.

For (ii), let mvN,nvN ∈ NvN and assume that m+
vN = n+vN. Then mvN = nvN by

Lemma B.1.10.

For (iii), let X be a set and suppose that 0vN ∈ X and, for all nvN ∈ NvN, if nvN ∈ X , then
n+vN ∈ X . Then X satisfies the axiom of infinity (Axiom B.1.11), and so by Construc-
tion B.2.5 we have NvN ⊆ X . �

In light of Theorem B.2.6, we may declare ‘the natural numbers’ to be the von Neumann
natural numbers, and have done with it. As such, you can—if you want—think of all nat-
ural numbers in these notes as being their corresponding von Neumann natural number.
With this in mind, we now omit the subscript ‘vN’, leaving implicit the fact that we are
referring to von Neumann natural numbers.

However, there are many other possible notions of natural numbers. In Theorem B.2.8,
we prove that any two notions of natural numbers are essentially the same, and so the
specifics of how we actually define N, the zero element and successor operation, are
irrelevant for most purposes.

First we will prove the following handy lemma, which provides a convenient means of
proving when a function is the identity function (Definition 2.2.13).

C Lemma B.2.7
Let (N,z,s) be a notion of natural numbers, and let j : N→ N be a function such that
j(z) = 0 and j(s(n)) = s( j(n)) for all n ∈ N. Then j = idN.

Proof. By Theorem 3.1.2, there is a unique function i : N→ N such that i(z) = 0 and
i(s(n)) = s(i(n)) for all n ∈ N. But then:

• j = i by uniqueness of i, since j satisfies the same conditions as i; and

• idN = i by uniqueness of i, since idN(z) = z and idN(s(n)) = s(n) = s(idN(n)) for all
n ∈ N.

Hence j = idN, as required.
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C Theorem B.2.8
Any two notions of natural numbers are essentially the same, in a very strong sense.
More precisely, if (N1,z1,s1) and (N2,z2,s2) are notions of natural numbers, then there
is a unique bijection f : N1 → N2 such that f (z1) = z2 and f (s1(n)) = s2( f (n)) for all
n ∈ N1.

Proof. The function f with the desired properties is obtained from Definition 3.1.1 ap-
plied to (N1,z1,s1), with X = N2, a = z2 and h = s2. This also gives us uniqueness of f ,
so it remains only to prove that f is a bijection.

By applying Definition 3.1.1 to (N2,z2,s2), with X = N1, a = z1 and f = s1, we obtain
a (unique!) function g : N2 → N1 such that g(z2) = z1 and g(s2(n)) = s1(g(n)) for all
n ∈ N2.

But then g( f (z1)) = g(z2) = z1 and, for all n ∈ N1, we have

g( f (s1(n))) = g(s2( f (n))) = s2(g( f (n)))

and so g◦ f = idN1 by Lemma B.2.7. Likewise f ◦g = idN2 . Hence g is an inverse for f ,
so that f is a bijection, as required.

To do:

To do: Arithmetic operations, order

To do: Define relation for the integers, prove it’s well-defined, provide intuition.

F Definition B.2.9
The set of integers is the set Z defined by

Z= (N×N)/∼

where ∼ is the equivalence relation on N×N defined by

(a,b)∼ (c,d) if and only if a+d = b+ c

for all (a,b),(c,d) ∈ N×N.

To do: Arithmetic operations, order

To do: Define relation for the rationals, prove it’s well-defined, provide intuition.

456



Section B.2. Constructions of the number sets 457

F Definition B.2.10
The set of rational numbers is the set Q defined by

Q= (Z× (Z\{0}))/∼

where ∼ is the equivalence relation on Z× (Z\{0}) defined by

(a,b)∼ (c,d) if and only if ad = bc

for all (a,b),(c,d) ∈ Z× (Z\{0}).

To do: Arithmetic operations, order

To do: Motivate Dedekind cuts

F Definition B.2.11 (Dedekind’s construction of the real numbers)
The set of (Dedekind) real numbers is the set R defined by

R= {D⊆Q | D is bounded above and downwards-closed}

To do: Arithmetic operations, order

To do: Motivate Cauchy reals

F Definition B.2.12 (Cauchy’s construction of the real numbers)
The set of (Cauchy) real numbers is the set R defined by

R= {(xn) ∈QN | (xn) is Cauchy}/∼

where ∼ is the equivalence relation defined by

(xn)∼ (yn) if and only if (xn− yn)→ 0

for all Cauchy sequences (xn),(yn) of rational numbers.

To do: Arithmetic operations, order

To do: Motivate definition of complex numbers

F Definition B.2.13
The set of complex numbers is the set C= R×R.

To do: Arithmetic operations

Algebraic structures

To do: Monoids, groups, rings
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Axiomatising the real numbers

To do:

C Axioms B.2.14 (Field axioms)
Let X be a set equipped with elements 0 (‘zero’) and 1 (‘unit’), and binary operations +
(‘addition’) and · (‘multiplication’). The structure (X ,0,1,+, ·) is a field if it satisfies the
following axioms:

• Zero and unit

(F1) 0 6= 1.

• Axioms for addition

(F2) (Associativity) x+(y+ z) = (x+ y)+ z for all x,y,z ∈ X .

(F3) (Identity) x+0 = x for all x ∈ X .

(F4) (Inverse) For all x ∈ X , there exists y ∈ X such that x+ y = 0.

(F5) (Commutativity) x+ y = y+ x for all x,y ∈ X .

• Axioms for multiplication

(F6) (Associativity) x · (y · z) = (x · y) · z for all x,y,z ∈ X .

(F7) (Identity) x ·1 = x for all x ∈ X .

(F8) (Inverse) For all x ∈ X with x 6= 0, there exists y ∈ X such that x · y = 1.

(F9) (Commutativity) x · y = y · x for all x,y ∈ X .

• Distributivity

(F10) x · (y+ z) = (x · y)+(x · z) for all x,y,z ∈ X .

0 Example B.2.15
The rationals Q and the reals R both form fields with their usual notions of zero, unit,
addition and multiplication. However, the integers Z do not, since for example 2 has no
multiplicative inverse. C

0 Example B.2.16
Let p > 0 be prime. The set Z/pZ (see Definition 4.2.18) is a field, with zero element
[0]p and unit element [1]p, and with addition and multiplication defined by

[a]p +[b]p = [a+b]p and [a]p · [b]p = [ab]p

for all a,b ∈ Z. Well-definedness of these operations is immediate from Theorem 4.2.11
and the modular arithmetic theorem (Theorem 5.3.3).

The only axiom which is not easy to verify is the multiplicative inverse axiom (F8).
Indeed, if [a]p ∈ Z/pZ then [a]p 6= [0]p if and only if p - a. But if p - a then a ⊥ p, so a
has a multiplicative inverse u modulo p. This implies that [a]p · [u]p = [au]p = [1]p. So
(F8) holds. C
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. Exercise B.2.17
Let n > 0 be composite. Prove that Z/nZ is not a field, where zero, unit, addition and
multiplication are defined as in Example B.2.16. C

Axioms B.2.14 tell us that every element of a field has an additive inverse, and every
nonzero element of a field has a multiplicative inverse. It would be convenient if inverses
were unique whenever they exist. Proposition B.2.18 proves that this is the case.

C Proposition B.2.18 (Uniqueness of inverses)
Let (X ,0,1,+, ·) be a field and let x ∈ X . Then

(a) Suppose y,z ∈ X are such that x+ y = 0 and x+ z = 0. Then y = z.

(b) Suppose x 6= 0 and y,z ∈ X are such that x · y = 1 and x · z = 1. Then y = z.

Proof of (a)
By calculation, we have

y = y+0 by (F3)
= y+(x+ z) by definition of z

= (y+ x)+ z by associativity (F2)
= (x+ y)+ z by commutativity (F5)
= 0+ z by definition of y

= z+0 by commutativity (F5)
= z by (F3)

so indeed y = z.

The proof of (b) is essentially the same and is left as an exercise. �

Since inverses are unique, it makes sense to have notation to refer to them.

F Notation B.2.19
Let (X ,0,1,+, ·) be a field and let x ∈ X . Write −x for the (unique) additive inverse of x
and, if x 6= 0 write x−1 for the (unique) multiplicative inverse of x.

0 Example B.2.20
In the fields Q and R, the additive inverse −x of an element x is simply its negative, and
the multiplicative inverse x−1 of some x 6= 0 is simply its reciprocal 1

x . C

0 Example B.2.21
Let p > 0 be prime and let [a]p ∈ Z/pZ. Then −[a]p = [−a]p and, if p - a, then [a]−1

p =
[u]p, where u is any integer satisfying au≡ 1 mod p. C

. Exercise B.2.22
Let (X ,0,1,+, ·) be a field. Prove that −(−x) = x for all x ∈ X , and that (x−1)−1 = x for
all nonzero x ∈ X . C

0 Example B.2.23
Let (X ,0,1,+, ·) be a field. We prove that if x ∈ X then x ·0 = 0. Well, 0 = 0+0 by (F3).
Hence x · 0 = x · (0+ 0). By distributivity (F10), we have x · (0+ 0) = (x · 0)+ (x · 0).
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Hence
x ·0 = (x ·0)+(x ·0)

Let y =−(x ·0). Then

0 = x ·0+ y by (F4)
= ((x ·0)+(x ·0))+ y as above
= (x ·0)+((x ·0)+ y) by associativity (F2)
= (x ·0)+0 by (F4)
= x ·0 by (F3)

so indeed we have x ·0 = 0. C

. Exercise B.2.24
Let (X ,0,1,+, ·) be a field. Prove that (−1) · x = −x for all x ∈ X , and that (−x)−1 =
−(x−1) for all nonzero x ∈ X . C

What makes the real numbers useful is not simply our ability to add, subtract, multiply
and divide them; we can also compare their size—indeed, this is what gives rise to the
informal notion of a number line. Axioms B.2.25 make precise exactly what it means for
the elements of a field to be assembled into a ‘number line’.

C Axioms B.2.25 (Ordered field axioms)
Let X be a set, 0,1 ∈ X be elements, +, · be binary operations, and 6 be a relation on
X . The structure (X ,0,1,+, ·,6) is an ordered field if it satisfies the field axioms (F1)–
(F10) (see Axioms B.2.14) and, additionally, it satisfies the following axioms:

• Linear order axioms

(PO1) (Reflexivity) x6 x for all x ∈ X .

(PO2) (Antisymmetry) For all x,y ∈ X , if x6 y and y6 x, then x = y.

(PO3) (Transitivity) For all x,y,z ∈ X , if x6 y and y6 z, then x6 z.

(PO4) (Linearity) For all x,y ∈ X , either x6 y or y6 x.

• Interaction of order with arithmetic

(OF1) For all x,y,z ∈ X , if x6 y, then x+ z6 y+ z.

(OF2) For all x,y ∈ X , if 06 x and 06 y, then 06 xy.

0 Example B.2.26
The field Q of rational numbers and and the field R of real numbers, with their usual
notions of ordering, can easily be seen to form ordered fields. C

0 Example B.2.27
We prove that, in any ordered field, we have 0 6 1. Note first that either 0 6 1 or 1 6 0
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by linearity (PO4). If 06 1 then we’re done, so suppose 16 0. Then 06−1; indeed:

0 = 1+(−1) by (F4)
6 0+(−1) by (OF1), since 16 0
= (−1)+0 by commutativity (F5)
=−1 by (F3)

By (OF2), it follows that 0 6 (−1)(−1). But (−1)(−1) = 1 by Exercise B.2.24, and
hence 0 6 1. Since 1 6 0 and 0 6 1, we have 0 = 1 by antisymmetry (PO2). But this
contradicts axiom (F1). Hence 06 1. In fact, 0 < 1 since 0 6= 1. C

We have seen that Q and R are ordered fields (Examples B.2.20 and B.2.26), and that
Z/pZ is a field for p > 0 prime (Example B.2.16). The following proposition is an
interesting result proving that there is no notion of ‘ordering’ under which the field Z/pZ
can be made into an ordered field!

C Proposition B.2.28
Let p > 0 be prime. There is no relation 6 on Z/pZ which satisfies the ordered field
axioms.

Proof
We just showed that [0]6 [1]. It follows that, for all a∈Z, we have [a]6 [a]+[1]; indeed:

[a] = [a]+ [0] by (F3)
6 [a]+ [1] by (OF1), since [0]6 [1]
= [a+1] by definition of + on Z/pZ

It is a straightforward induction to prove that [a]6 [a+n] for all n∈N. But then we have

[1]6 [1+(p−1)] = [p] = [0]

so [0] 6 [1] and [1] 6 [0]. This implies [0] = [1] by antisymmetry (PO2), contradicting
axiom (F1). �

. Exercise B.2.29
Let (X ,0,1,+, ·) be a field. Prove that if X is finite, then there is no relation 6 on X such
that (X ,0,1,+, ·,6) is an ordered field. C

Theorem B.2.30 below summarises some properties of ordered fields which are used in
our proofs. Note, however, that this is certainly not an exhaustive list of elementary
properties of ordered fields that we use—to explicitly state and prove all of these would
not make for a scintillating read.
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C Theorem B.2.30
Let (X ,0,1,+, ·,6) be an ordered field. Then

(a) For all x,y ∈ X , x6 y if and only if 06 y− x;

(b) For all x ∈ X , −x6 06 x or x6 06−x;

(c) For all x,x′,y,y′ ∈ X , if x6 x′ and y6 y′, then x+ y6 x′+ y′;

(d) For all x,y,z ∈ X , if 06 x and y6 z, then xy6 xz;

(e) For all nonzero x ∈ X , if 06 x, then 06 x−1.

(f) For all nonzero x,y ∈ X , if x6 y, then y−1 6 x−1.

Proof of (a), (b) and (e)

(a) (⇒) Suppose x6 y. Then by additivity (OF1), x+(−x)6 y+(−x), that is 06 y−x.
(⇐) Suppose 06 y− x. By additivity (OF1), 0+ x6 (y− x)+ x; that is, x6 y.

(b) We know by linearity (PO4) that either 0 6 x or x 6 0. If 0 6 x, then by (OF1) we
have 0+(−x)6 x+(−x), that is −x6 0. Likewise, if x6 0 then 06−x.

(e) Suppose 0 6 x. By linearity (PO4), either 0 6 x−1 or x−1 6 0. If x−1 6 0, then by
(d) we have x−1 · x 6 0 · x, that is 1 6 0. This contradicts Example B.2.27, so we
must have 06 x−1.

The proofs of the remaining properties are left as an exercise. �

We wanted to characterise the reals completely, but so far we have failed to do so—
indeed, Example B.2.26 showed that both Q and R are ordered fields, so the ordered
field axioms do not suffice to distinguish Q from R. The final piece in the puzzle is com-
pleteness. This single additional axiom distinguishes Q from R, and in fact completely
characterises R (see Theorem B.2.32).

C Axioms B.2.31 (Complete ordered field axioms)
Let X be a set, 0,1 ∈ X be elements, +, · be binary operations, and 6 be a relation on X .
The structure (X ,0,1,+, ·,6) is a complete ordered field if it is an ordered field—that
is, it satisfies axioms (F1)–(F10), (PO1)–(PO4) and (OF1)–(OF2) (see Axioms B.2.14
and B.2.25)—and, in addition, it satisfies the following completeness axiom:

(C1) Let A ⊆ X . If A has an upper bound, then it has a least upper bound. Specifically, if
there exists u ∈ X such that a6 u for all a ∈ A, then there exists s ∈ X such that

� a6 s for all a ∈ A; and

� If s′ ∈ X is such that a6 s′ for all a ∈ A, then s6 s′.

We call such a value s ∈ X a supremum for A.
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C Theorem B.2.32
The real numbers (R,0,1,+, ·,6) form a complete ordered field. Moreover, any two
complete ordered fields are essentially the same.

The notion of ‘sameness’ alluded to in Theorem B.2.32 is more properly called iso-
morphism. A proof of this theorem is intricate and far beyond the scope of this book,
so is omitted. What it tells us is that it doesn’t matter exactly how we define the reals,
since any complete ordered field will do. We can therefore proceed with confidence that,
no matter what notion of ‘real numbers’ we settle on, everything we prove will be true
of that notion. This is for the best, since we haven’t actually defined the set R of real
numbers at all!

The two most common approaches to constructing a set of real numbers are:

• Dedekind reals. In this approach, real numbers are identified with particular subsets
of Q—informally speaking, r ∈ R is identified with the set of rational numbers less
than r.

• Cauchy reals. In this approach, real numbers are identified with equivalence classes of
sequences of rational numbers—informally speaking, r ∈R is identified with the set of
sequences of rational numbers which converge to r (in the sense of Definition 7.2.15).

To do:
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Section B.3

Limits of functions

At the end of Section 7.1 we mentioned the use of limits of functions without properly
defining what we meant. This admittedly brusque section is dedicated to making what
we meant mathematical precise.

Limits

F Definition B.3.1
Let D ⊆ R. A limit point of D is a real number a such that, for all δ > 0, there exists
some x ∈ D such that 0 < |x−a|< δ .

C Lemma B.3.2
Let D ⊆ R. A real number a is a limit point of D if and only if there is a sequence (xn)
of elements of D, which is not eventually constant, such that (xn)→ a.

Proof
(⇒) Let a ∈ R and assume that a is a limit point of D. For each n > 1, let xn be some

element of D such that 0 < |xn−a|< 1
n

.

Evidently (xn)→ a: indeed, given ε > 0, letting N >max{1, 1
ε
} gives |xn−a|< ε for all

n> N.

Moreover, the sequence (xn) is not eventually constant: if it were, there would exist
N > 1 and b ∈ R such that xn = b for all n > N. But then by the squeeze theorem
(Theorem 7.2.38), we’d have

0 6 lim
n→∞
|xn−a| = |b−a| 6 lim

n→∞

1
n

= 0

and so b = a. But this contradicts the fact that |xn−a|> 0 for all n> 1.

(⇐) Let a ∈ R and assume that there is a sequence (xn) of elements of D, which is not
eventually constant, such that (xn)→ a. Then for all δ > 0 there exists some N ∈N such
that |xn−a|< ε for all n> N. Since (xn) is not eventually constant, there is some n> N
such that |xn− a| > 0—otherwise (xn) would be eventually constant with value a! But
then xn ∈ D and 0 < |xn−a|< δ , so that a is a limit point of D. �

F Definition B.3.3
Let D⊆ R. The closure of D is the set D (LATEX code: \overline{D}) defined by

D = D∪{a ∈ R | a is a limit point of D}

That is, D is given by D together with its limit points.
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0 Example B.3.4
We have (0,1) = [0,1]. Indeed, (0,1)⊆ (0,1) since D⊆ D for all D⊆ R. Moreover the
sequences ( 1

n ) and (1− 1
n ) are non-constant, take values in (0,1), and converge to 0 and

1 respectively, so that 0 ∈ (0,1) and 1 ∈ (0,1). Hence [0,1]⊆ (0,1).

Given a∈R, if a > 1, then letting δ = 1−a > 0 reveals that |x−a|> δ for all x∈D; and
likewise, if a < 0, then letting δ = −a > 0 reveals that |x−a| > δ for all x ∈ D. Hence
no element of R\ [0,1] is an element of D, so that (0,1) = [0,1]. C

. Exercise B.3.5
Let a,b ∈ R with a < b. Prove that (a,b) = (a,b] = [a,b) = [a,b]. C

v Convention B.3.6
For the rest of this section, whenever we declare f : D→ R to be a function, it will be
assumed that the domain D is a subset of R, and that every point of D is a limit point of
D. In other words, D has no isolated points, which are points separated from all other
elements of D by a positive distance. For instance, in the set (0,1]∪{2}, the element
2 ∈ R is an isolated point. C

F Definition B.3.7
Let f : D→ R be a function, let a ∈ D, and let ` ∈ R. We say ` is a limit of f (x) as x
approaches a if

∀ε > 0, ∃δ > 0, ∀x ∈ D, 0 < |x−a|< δ ⇒ | f (x)− `|< ε

In other words, for values of x ∈D near a (but not equal to a), the values of f (x) become
arbitrarily close to `.

We write ‘ f (x)→ ` as x→ a’ (LATEX code: \to) to denote the assertion that ` is a limit
of f (x) as x approaches a.

0 Example B.3.8
Define f : R→ R by f (x) = x for all x ∈ R. Then f (x)→ 0 as x→ 0. To see this, let
ε > 0, and define δ = ε > 0. Then for all x ∈ R, if 0 < |x−a|< δ = ε , then

| f (x)− f (a)|= |x−a|< ε

as required. C

. Exercise B.3.9
Let f : D→R be a function, let a ∈D and let ` ∈R. Fix some sequence (xn) of elements
of D, not eventually constant, such that (xn)→ a. Prove that if f (x)→ ` as x→ a, then
the sequence ( f (xn)) converges to `. C

The next exercise tells us that limits of functions are unique, provided that they exist. Its
proof looks much like the analogous result we proved for sequences in Theorem 7.2.41.

. Exercise B.3.10
Let f : D→ R be a function, let a ∈ D, and `1, `2 ∈ R. Prove that if f (x)→ `1 as x→ a,
and f (x)→ `2 as x→ a, then `1 = `2. C
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When the domain D of a function f : D→R is unbounded, we might also be interested in
finding out how the values of f (x) behave as x ∈ D gets (positively or negatively) larger
and larger.

F Definition B.3.11
Let f : D→ R be a function and let ` ∈ R. If D is unbounded above—that is, for all
p ∈ R, there exists x ∈ D with x > p—then we say ` is a limit of f (x) as x increases
without bound if

∀ε > 0, ∃p ∈ R, ∀x ∈ D, x > p ⇒ | f (x)− `|< ε

We write ‘ f (x)→ ` as x→ ∞’ (LATEX code: \infty) to denote the assertion that ` is a
limit of f (x) as x increases without bound.

Likewise, if D is unbounded below—that is, for all p∈R, there exists x∈D with x < p—
then we say ` is a limit of f (x) as x decreases without bound if

∀ε > 0, ∃p ∈ R, ∀x ∈ D, x < p ⇒ | f (x)− `|< ε

We write ‘ f (x)→ ` as x→ −∞’ to denote the assertion that ` is a limit of f (x) as x
decreases without bound.

0 Example B.3.12
Let f : R→ R be the function defined by f (x) =

x
1+ |x| for all x ∈ R. Then:

• f (x)→ 1 as x→ ∞. To see this, let ε > 0, and define p = max{1, 1
ε
}. Then for all

x > p, we have x > 0, so that f (x) =
x

1+ x
, and x > 1

ε
−1. Hence:∣∣∣∣ x

1+ x
−1
∣∣∣∣= ∣∣∣∣ −1

1+ x

∣∣∣∣= 1
1+ x

<
1

1+( 1
ε
−1)

= ε

as required.

• f (x)→−1 as x→ ∞. To see this, let ε > 0 and define p = min{−1, −1
ε
}. Then for all

x < p, we have x < 0, so that f (x) = 1
1−x , and x < −1

ε
+1. Hence:∣∣∣∣ x

1− x
− (−1)

∣∣∣∣= ∣∣∣∣ 1
1− x

∣∣∣∣= 1
1− x

<
1

1− (− 1
ε
+1)

= ε

as required.

So f (x)→ 1 as x→ ∞ and f (x)→−1 as x→−∞. C

. Exercise B.3.13
Let f : D→ R be a function and `1, `2 ∈ R. Prove that if D is unbounded above, and if
f (x)→ `1 as x→ ∞ and f (x)→ `2 as x→ ∞, then `1 = `2. Prove the analogous result
for limits as x→−∞ in the case when D is unbounded below. C

The results of Exercises B.3.10 and B.3.13 justify the following definition.

466



Section B.3. Limits of functions 467

F Definition B.3.14
Let f : D→R and let a ∈ [−∞,∞]. Assuming the limits in question are well-defined and
exist, we write lim

x→a
f (x) to denote the unique real number ` ∈ R such that f (x)→ ` as

x→ a.
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Appendix C

Hints for selected exercises

Chapter 0

Chapter 0 exercises

Section 1.1

Hint for Exercise 1.1.19
f Mimic the proof of Proposition 1.1.18.

Hint for Exercise 1.1.34
Suppose n = dr · 10r + · · ·+ d1 · 10+ d0 and let s = dr + · · ·+ d1 + d0. Start by proving
that 3 | n− s.

Hint for Exercise 1.1.48
Use the law of excluded middle according to whether the proposition ‘

√
2
√

2
is rational’

is true or false.

Section 1.2

Hint for Exercise 1.2.15
Consider the sum of x+ y and x− y.

Hint for Exercise 1.2.22
Look carefully at the definition of divisibility (Definition 0.12).

Section 1.3

Hint for Exercise 1.3.9
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Note that you may need to use the law of excluded middle (Axiom 1.1.44) and the prin-
ciple of explosion (Axiom 1.1.49).

Hint for Exercise 1.3.22
Express this statement as ∀n ∈ Z, (n is even)⇔ (n2 is even), and note that the negation
of ‘x is even’ is ‘x is odd’.

Hint for Exercise 1.3.31
Find a rational number all of whose representations as a ratio of two integers have an
even denominator.

Hint for Exercise 1.3.37
Start by expressing⇔ in terms of⇒ and ∧, as in Definition 1.1.28.

Chapter 1 exercises

Section 2.1

Hint for Exercise 2.1.3
Think about what ‘a ∈ X’ really means—don’t let your intuition fool you.

Hint for Exercise 2.1.31
Recall from the beginning of Section 2.1 that ∀x ∈ X , p(x) is equivalent to ∀x, (x ∈ X ⇒
p(x)) and ∃x ∈ X , p(x) is equivalent to ∃x, (x ∈ X ∧ p(x)). What can be said about the
truth value of x ∈ E when E is empty?

Hint for Exercise 2.1.59
You need to find a family of subsets of N such that (i) any two of the subsets have
infinitely many elements in common, but (ii) given any natural number, you can find one
of the subsets that it is not an element of.

Section 2.2

Hint for Exercise 2.2.17
What is the value of i(z) if z ∈ X ∩Y ?

Hint for Exercise 2.2.23
Look closely at Definition 2.2.18.

Section 2.3

Hint for Exercise 2.3.13
Recall Definition 2.2.32.
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Hint for Exercise 2.3.15
If Z were a subset of Y , then we could easily define an injection i : Z→ Y by i(z) = z for
all z ∈ Z. Are there any subsets of Y that are associated with a function whose codomain
is Y ?

Hint for Exercise 2.3.16
Note that B ∈P(X). Prove that there does not exist a ∈ X such that B = f (a).

Hint for Exercise 2.3.20
To define the bijection, think about what the elements of the two sets look like: The

elements of
n+1

∏
k=1

Xk look like (a1,a2, . . . ,an,an+1), where ak ∈ Xk for each 16 k 6 n+1.

On the other hand, the elements of

(
n

∏
k=1

Xk

)
×Xn+1 look like ((a1,a2, . . . ,an),an+1).

Hint for Exercise 2.3.29
This can be proved in a single sentence; if you find yourself writing a long proof, then
there is an easier way.

Hint for Exercise 2.3.32
The proof is almost identical to Exercise 2.3.29.

Hint for Exercise 2.3.40
For part (c), don’t try to write a formula for the inverse of h; instead, use the fundamental
theorem of arithmetic.

Hint for Exercise 2.3.46
Use Exercise 2.3.41.

Hint for Exercise 2.3.48
Define h : X ×Y → A×B by h(x,y) = ( f (x),g(y)) for all x ∈ X and all y ∈ Y ; find an
inverse for h in terms of the inverses of f and g.

Chapter 2 exercises

Hint for Question 2.7
The temptation is to write a long string of equations, but it is far less painful to prove this
by double containment, splitting into cases where needed. An even less painful approach
is to make a cunning use of truth tables.

Hint for Question 2.8
Given a function f : X →∅, we must have f (a) ∈∅ for each a ∈ X .

Hint for Question 2.11
Consider f (x)+ f (−x) and f (x)− f (−x) for x ∈ R.
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Hint for Question 2.12
Fix n ∈ N and consider how θn interacts with functions f : [1]→ [n].

Hint for Question 2.15
Avoid the temptation to prove either part of this question by contradiction. For (a), a
short proof is available directly from the definitions of ‘injection’ and ‘surjection’. For
(b), find as simple a counterexample as you can.

Hint for Question 2.18

Start by proving that
(

m
2

)
<

(
m+1

2

)
for all m> 1. Deduce that, for all n ∈ N, there is

a unique natural number k such that
(

k+1
2

)
6 n <

(
k+2

2

)
. Can you see what this has

to do with the function f ?

Section 3.1

Section 3.2

Hint for Exercise 3.2.8
Proving this by induction on x only demonstrates that it is true for integers x > −1,
not real numbers x > −1. Try proving a more general fact by induction on a different
variable, and deducing this as a special case. (Do you really think there is anything
special about the natural number 123 456 789?)

Hint for Exercise 3.2.14
Observe that 7n+1−2 ·4n+1 +1 = 4(7n−2 ·4n +1)+3(7n−1) for all n ∈ N.

Section 3.3

Hint for Exercise 3.3.10
Observe that if n dubloons can be obtained using only 3 and 5 dubloon coins, then so
can n+3. See how you might use this fact to exploit strong induction with multiple base
cases.

Hint for Exercise 3.3.15
Prove first that if a ∈ Z and a2 is divisible by 3, then a is divisible by 3.

Chapter 3 exercises

Hint for Question 3.6
For example, if there are exactly 3 elements of X making p(x) true, then that means that
there is some a ∈ X such that p(a) is true, and there are exactly two elements x ∈ X other
than a making p(x) true.
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Hint for Question 3.8
The number of trailing zeros in the base-b expansion of a natural number n is the greatest
natural number r such that br divides n. How many times does 10 go into 41!? How
many times does 2 go into 41!?

Hint for Question 3.11
Start by proving by induction on n ∈ N that f (n) = an for all n ∈ N. Then deduce that
f (n) = an for all n ∈ Z, and finally deduce that f (x) = ax for all x ∈Q.

Section 4.1

Section 4.2

Hint for Exercise 4.2.36
Given a partition U of a set X , find a surjection q : X →U . Then prove that, for every
surjection p : X→A, there is a unique partition Up of X and a unique bijection f : Up→A
such that, for all U ∈Up, we have p(x) = f (U) for all x ∈U . The structure of the proof
will be similar to that of Theorem 4.2.35.

Chapter 4 exercises

Section 5.1

Hint for Exercise 5.1.11
Remember that negative integers can be greatest common divisors too.

Hint for Exercise 5.1.13
Start by proving that d and d′ must divide each other.

Hint for Exercise 5.1.25
Example 5.1.22 would be a good starting point.

Hint for Exercise 5.1.39
This is essentially the same as Exercise 5.1.13.

Hint for Exercise 5.1.41
Define m =

ab
gcd(a,b)

and prove that m satisfies the definition of being a least common

multiple of a and b (Definition 5.1.38). Then apply Exercise 5.1.39.

Section 5.2

Hint for Exercise 5.2.5
Use the factorial formula for binomial coefficients (Theorem 3.2.17).

473



474 Appendix C. Hints to selected exercises

Hint for Exercise 5.2.9
Assume p = mn for some m,n ∈ Z. Prove that m or n is a unit.

Hint for Exercise 5.2.23
What are the prime factors of n!−1?

Section 5.3

Hint for Exercise 5.3.18
Consider the list a0,a1,a2, . . . . Since there are only finitely many remainders modulo n,
we must have ai ≡ a j mod n for some 06 i < j.

Hint for Exercise 5.3.25
First find the remainder of 244886 when divided by 12.

Hint for Exercise 5.3.28
Find a bijection [p]×Cn→Cpn, where Cn = {k ∈ [|n|] | k ⊥ n}. You will need to use the
techniques of Section 6.1 in your proof.

Hint for Exercise 5.3.29
Start by proving that k ∈ [pn] is not coprime to pn if and only if either p | k or k is not
coprime to n. You will need to use the techniques of Section 6.1 in your proof.

Hint for Exercise 5.3.34
Recall that ϕ(100) = 40—this was Example 5.3.30.

Hint for Exercise 5.3.38
You need to use the fact that p is prime at some point in your proof.

Hint for Exercise 5.3.39
Pair as many elements of [p−1] as you can into multiplicative inverse pairs modulo p.

Hint for Exercise 5.3.49
This generalisation will be tricky! You may need to generalise the definitions and results
about greatest common divisors and least common multiples that we have seen so far,
including Bézout’s lemma. You might want to try proving this first in the case that
ni ⊥ n j for all i 6= j.

Hint for Exercise 5.3.50
Observe that if a,k ∈ Z and k | a, then k | a+ k.

Chapter 5 exercises

Hint for Question 5.1
Start by proving that, for all n∈N and all k∈N, there are exactly

⌊
n/5k

⌋
natural numbers

6 n that are divisible by 5k. Then consider how many zeros are contributed by each factor
of n! to the decimal expansion of n!.
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Hint for Question 5.2
This will be similar to Question 5.1 in the end; to get started, consider the greatest prime
factor of b.

Section 6.1

Hint for Exercise 6.1.7
Part (b) has a proof by induction that looks much like the one in part (a). In the induction
step, given a surjection g : [m+1]→ [n], observe that we must have n> 1, and construct
a surjection g− : [m+ 1] \ {a} → [n− 1] for some suitable a ∈ [m+ 1]. Then invoke
Lemma 6.1.5, now using the fact that [m] = [m+1]\{m+1}.

Hint for Exercise 6.1.16
Given U ⊆ X , find an injection U → X and apply Theorem 6.1.13(a).

Hint for Exercise 6.1.17
Recall that X ∩Y ⊆ X for all sets X and Y .

Hint for Exercise 6.1.20
Apply Proposition 6.1.18 with Y =U .

Hint for Exercise 6.1.21
Prove by induction on n ∈ N that, for all m,n ∈ N, there is a bijection [mn]→ [m]× [n].

Section 6.2

Hint for Exercise 6.2.16
Any function f : X→Y with finite domain can be specified by listing its values. For each
x ∈ X , how many choices do you have for the value f (x)?

Hint for Exercise 6.2.23
The image (Definition 2.2.32) of an injection [3]→ [4] must be a subset of [4] of size
three.

Hint for Exercise 6.2.40
How many ways can you select k+1 animals from a set containing n cats and one dog?

Hint for Exercise 6.2.43
Find two procedures for counting the number of pairs (U,u), such that U ⊆ [n] is a
k-element subset and u ∈U . Equivalently, count the number of ways of forming a com-
mittee of size k from a population of size n, and then appointing one member of the
committee to be the chair.

Hint for Exercise 6.2.45
Find an expression for (a+b+c)! in terms of a!, b!, c! and

(a+b+c
a,b,c

)
, following the pattern

of Theorem 6.2.42.
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Section 6.3

Hint for Exercise 6.3.1
You will need to use the recursive definition of binomial coefficients

Hint for Exercise 6.3.27
Consider selecting a committee from a population of size n, with a subcommittee of
size exactly `; toggle whether the oldest member of the population that is not on the
subcommittee is or is not on the committee. If you prefer mathematical objects, consider
the set of pairs (A,B), where A⊆ B⊆ [n] and |A|= `; toggle the least element of [n]\A
in the set B.

Chapter 6 exercises

Hint for Question 6.7
Prove that |X/∼| · k = n using the multiplication principle: find a two-step procedure for
specifying an element of X by first considering its ∼-equivalence class.

Hint for Question 6.16
Find a way to apply Lemma 6.3.21.

Section 7.1

Section 7.2

Hint for Exercise 7.2.28
If (xn)→ a 6= 0, show that |xn− a| is eventually small enough that no xn can be equal
to zero after a certain point in the sequence. On the other hand, there are plenty of
sequences, all of whose terms are nonzero, which converge to zero—find one!

Hint for Exercise 7.2.40
Divide the numerator and denominator by nr and apply Theorem 7.2.34 and Ex-
ample 7.2.39.

Hint for Exercise 7.2.47
You might want to begin by solving Exercise 3.2.7.

Hint for Exercise 7.2.61
In the definition of a Cauchy sequence, observe that xm− xn = (xm− a)− (xn− a), and
apply the triangle inequality (Theorem 7.1.9).

Section 7.3
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Hint for Exercise 7.3.5

Begin by observing that
(

n
3

)−1

=
3

n−2
− 6

n−1
+

3
n

.

Hint for Exercise 7.3.13
Proceed by contraposition: suppose j ∈ N is least such that u j 6= v j—without loss of
generality u j < v j—then

0 = ∑
i>0

vi

bi −∑
i>0

ui

bi =
v j−u j

b j +∑
i> j

vi−ui

bi

Prove that this is nonsense. You will use condition (iii) in Theorem 7.3.12 somewhere in
your proof.

Hint for Exercise 7.3.32
Read the hypotheses of Theorem 7.3.29 very carefully.

Hint for Exercise 7.3.36
We’ve already proved that such a series exists—go find it!

Hint for Exercise 7.3.46
This exercise looks harder than it is. Write out the definitions of ∑

i∈I
a f (i) and ∑

j∈J
a j and

apply Theorem 7.3.42.

Hint for Exercise 7.3.50

We know that
1

(1− x)2 =

(
1

1− x

)2

=

(
∑
n>0

xn

)2

by Theorem 7.3.8. Multiply out this

sum and see what happens.

Chapter 7 exercises

Section 8.1

Hint for Exercise 8.1.6
The fundamental theorem of arithmetic (Theorem 5.2.12) implies that, for all n ∈ N, we
can express n+1 uniquely as a power of 2 multiplied by an odd number.

Hint for Exercise 8.1.8
Use Exercise 2.3.48, together with the definition of countably infinite sets, to construct a
bijection N×N→ X×Y . Then apply Exercise 8.1.6 and Proposition 8.1.7.

Hint for Exercise 8.1.11
For (ii)⇒(i), use the fact that the composite of two injections is injective. Likewise for
(iii)⇒(i).

Hint for Exercise 8.1.13
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Suppose X = N. By Proposition 8.1.9, the set Nk is countable. By Theorem 8.1.10(c), it
suffices to find an injection

(N
k

)
→ Nk.

Hint for Exercise 8.1.25
We have already proved this when X is finite. When X is countably infinite, use The-
orem 8.1.16. When X is uncountably infinite, find an injection X →P(X) and find a
way to apply Exercise 8.1.11.

Hint for Exercise 8.1.28
How many ‘÷’ symbols can a string from Σ∗ have if the string is to represent a rational
number? Where in a word over Σ can a ÷ symbol appear?

Hint for Exercise 8.1.29
Prove by induction that Σn is countable for all n ∈ N, and then apply Theorem 8.1.14.

Hint for Exercise 8.1.38
Is Σ really finite? Is D really well-defined?

Hint for Exercise 8.1.40
Start by proving that there is a finite description of the elements of N∗ over a finite
alphabet Φ. This defines an injection N∗→ Φ∗. Now given a countable alphabet Σ, use
the injection Σ→ N given by Theorem 8.1.10 to construct an injection Σ∗ → N∗, and
therefore an injection Σ∗ → Φ∗. Finally, use this to turn finite descriptions over Σ into
finite descriptions over Φ.

Section 8.2

Hint for Exercise 8.2.6
Start by finding a bijection (−1,1)→ (a,b) and apply Exercise 8.2.5.

Section 8.3

Hint for Exercise 8.3.11
A nice trick is to construct an injection [0,1)× [0,1)→ [0,1) using decimal expansions,
and then invoke the Cantor–Schröder–Bernstein theorem.
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Chapter 8 exercises

Section 9.1

Section 9.2

Chapter 9 exercises

Hint for Exercise 10.1.25
Use the characterisation of gcd and lcm in terms of prime factorisation.

Hint for Exercise 10.1.28
Use distributivity, together with the fact that y = y∨⊥ and y = y∧>.

Hint for Exercise 10.1.38
This can be proved by swapping ∧ with ∨ and > with ⊥ in the proof of (a). But there is
a shorter proof which uses the result of part (a) together with Proposition 10.1.30.

Chapter 10 exercises

Section B.1

Hint for Exercise B.1.14
Let X be the set whose existence is asserted by the axiom of infinity, and take p(x) to be
the formula x 6= x in the axiom of separation.

Section B.2

Hint for Exercise B.2.22
Prove that x is an additive inverse for −x (in the sense of Axioms B.2.14(F4)) and use
uniqueness of additive inverses. Likewise for x−1.

Section B.3
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Appendix D

Typesetting mathematics with
LATEX

Being able to type up your mathematical writing is a beneficial skill to have, and is one
that is expected of anyone working in a mathematical field. Unfortunately, most Office-
style WYSIWYG (‘what you see is what you get’) text editors are not designed for this
task—it becomes quickly cumbersome to deal with complicated mathematical notation,
and fast alternations between notation and prose.

LATEX is a markup language that allows you to input both text and mathematical nota-
tion, inputting all mathematical notation, text formatting and document structure as code.
What follows is a brisk introduction to LATEX, that should suffice for the purposes of this
book.

The word LATEX is pronounced like ‘LAY-tek’ or ‘LAH-tek’, with a hard ‘k’ sound—the
‘X’ is meant to resemble the Greek letter chi (χ), so is pronounced by some people as
such. It doesn’t really matter how you say it, but do be warned that if you pronounce it
like ‘LAY-teks’ then people will think you’re talking about something somewhat differ-
ent.

Finding the software

You can use LATEX by installing it on your computer, or by using a web-based editor.
There are advantages and disadvantages to both.

• On a web-based editor, everything is set up and ready to go, but you have less control
over how everything compiles and you need an internet connection at all times when
editing your files.

• On a computer, you have more control over how your files compile, you have access
to all the logs and auxiliary files (I won’t go into this) and you don’t need an internet
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482 Appendix D. Typesetting mathematics with LATEX

connection—but it can be harder to use different packages, you’re at the mercy of your
own machine’s limitations, and it’s more technically involved.

There are many online and computer-based options available, and the reader is encour-
aged to research their options, but as a starting point, I present here the LATEX implement-
ations used for writing this book.

Much of the book was originally written using the online editor ShareLaTeX, which has
merged with Overleaf as of September 2018 and can be accessed at the following URL:

https://www.overleaf.com/

Installing LATEX on a computer is slightly more complicated. In order to make LATEX
documents on your computer, you need both a compiler, for turning the code into a
readable document, and an editor, for writing the code and facilitating the compilation
process.

The compiler used for this book is TeX Live:

https://www.tug.org/texlive/

and the editor is TeXstudio:

https://www.texstudio.org/

Both TeX Live and TeXstudio are free, cross-platform and open-source.

Getting started

When you have settled on an online LATEX editor or installed LATEX on your computer,
you can start editing. The files containing the LATEX code are plain-text files with the file
extension .tex and consists of two components: a header and a body. Worrying about
the details of what goes in the header and what goes in the body is not recommended
if you are new to LATEX so, with this in mind, a template can be downloaded from the
book’s website:

https://infinitedescent.xyz/latex/

The code is replicated at the end of this section, on page 492.

482

https://www.overleaf.com/
https://www.tug.org/texlive/
https://www.texstudio.org/
https://infinitedescent.xyz/latex/


Typesetting mathematics using LATEX 483

Text mode and math mode

Before we get into the nitty-gritty, I should mention the difference between ‘text mode’
and ‘math mode’.

• Text mode is the default mode: the stuff you type will appear as text, and this is the
mode you should use when writing anything that isn’t mathematical notation.

• You should use math mode when you’re typing anything which is mathematical nota-
tion, including variables, numbers, fractions, square roots, powers, sums, products,
binomial coefficients, and so on.

To enter math mode, enclose whatever mathematical notation you are writing with dollar
signs ($). For example, if I type $E=mc^{2}$ then LATEX shows E = mc2. Sometimes it
is convenient to put longer expressions on their own line, in which case you can enclose
it between \[ and \]; for example, if I type

\[ a^{2}+b^{2}+c^{2}=ab+bc+ca \]

then LATEX displays
a2 +b2 + c2 = ab+bc+ ca

on a line all of its own.

If you need to type text inside math mode (enclosed by $ signs), you can do that using
\text{...}, for example:

TEX code
\[ \sum_{i=1}^n i = \frac{n(n+1) }{2} \text{ for all } n \in
\mathbb{N} \]

Output

n

∑
i=1

i =
n(n+1)

2
for all n ∈ N

Note the spaces before and after ‘for all’; had I left those out of the code, they would not
appear because LATEX ignores spacing in math mode. You can force a space by putting a
backslash before a space, for example $a b$ gives ab but $a\ b$ gives a b.

All mathematical notation should be in math mode, including single variables. Notice
the difference between the following two lines:

If a and b are both even then so is a+b.

If a and b are both even then so is a+b.

While the first is written entirely in text mode, the second is written using math mode
for the variables and + sign. Although the differences may not seem big, spread over a
whole document it is much clearer when math mode is used (as in the second example).
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Sometimes ambiguities appear, and in any case LATEX does a much better job at displaying
mathematical notation when it is typed in math mode.
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Table of mathematical symbols

The following table is a quick reference for the most commonly-used symbols in this
book. A complete index of notation can be found at the end of the book.

Logic
conjunction, disjunction ∧, ∨ \wedge, \vee

negation ¬ \neg
implication, biconditional ⇒,⇔ \Rightarrow, \Leftrightarrow

exclusive disjunction ⊕ \oplus
true, false (in truth table) X, × \checkmark, \times

quantifiers (universal, existential) ∀, ∃ \forall, \exists
Set theory

element, subset ∈, ⊆ \in, \subseteq
not equal, proper subset 6=, $ \ne, \subsetneqq

intersection, (indexed) ∩,
n⋂

i=1

\cap, \bigcap_{i=1}ˆ{n}

union, (indexed) ∪,
n⋃

i=1

\cup, \bigcup_{i=1}ˆ{n}

relative complement, complement X \Y , Xc \setminus, Xˆc

product, (indexed) ×,
n

∏
i=1

\times, \prod_{i=1}ˆ{n}

implied lists {1, . . . ,n} \{ 1, \dots, n \}
indexed sets {xi | i ∈ I} \{ x_i \mid i \in I \}

set-builder notation {x | p(x)} \{ x \mid p(x) \}
empty, universal set ∅, U \varnothing, \mathcal{U}

number sets N,Z,Q,R \mathbb{N}, \mathbb{Z}, etc.
Numbers and combinatorics

multiplication m×n, m ·n \times, \cdot
fractions, exponents m

n , mn \frac{m}{n}, mˆ{n}
order relations 6, > \le, \ge

divisibility, (non-) m | n, m - n \mid, \nmid
binomial coefficient

(n
k

)
\binom{n}{k}

indexed sum, product
n

∑
i=1

ai,
n

∏
i=1

ai \sum_{i=1}ˆ{n} a_i, \prod

modular arithmetic a≡ b mod n a \equiv b \bmod{n}
Functions and relations

functions f : X → Y f : X \to Y
composition g◦ f \circ
isomorphism ∼= \cong

equivalence relations ∼, ≈ \sim, \approx
Structured sets

order relation 4, ≺ \preceq, \prec
group operations ·, ?, ◦ \cdot, \star, \circ
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Organisation and formatting

When typing up solutions to problem, organisation can be the difference between a mas-
terpiece and an unreadable heap of notation. Here are some tips to help you organise
your work:

Sections and paragraphs

You can split your work up into sections, subsections, subsubsections, and even sub-
subsubsections. To do this, use \section{Section title} or \section*{Section
title}; the former includes a section number, and the latter omits it. To start a new

paragraph, simply make two new lines in the code.

Bulleted and enumerated lists

Sometimes it is useful to use bullet points or give an enumerated list. For example, in
these notes, I separate the base case from the induction step in proofs by induction by
using bullet points.

For a bulleted list you can use the itemize environment:

TEX code
\begin{itemize}
\item Something here\dots
\item You can also make a list
inside another list:

\begin{itemize}
\item Like this.
\item Isn ’t it fun?
\end{itemize}

\item Well , not that fun.
\end{itemize}

Output

• Something here. . .

• You can also make a list inside an-
other list:

� Like this.

� Isn’t it fun?

• Well, not that fun.

For an enumerated list, you can use the enumerate environment. You can play around
with different methods of enumeration, which you specify in square brackets [...]; this
book most frequently uses (i), (a) and (1):

TEX code
\begin{enumerate }[(a)]
\item Here ’s the first thing;
\item Here ’s the second thing;
\item Here ’s the third thing.
\end{enumerate}

Output

(a) Here’s the first thing;

(b) Here’s the second thing;

(c) Here’s the third thing.
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Definitions, results and proofs

If you use the provided templates, you can make definitions, and state and prove results,
using the following environments:

definition, example, proposition, theorem, lemma, corollary, proof

They are given a number, such as Definition 3 or Theorem 2.11, depending on how your
document is set up.

Here’s an example of a theorem appearing in the third section of a document, in which
five definitions, results or examples come before it:

TEX code
\begin{theorem}
Let $a, b \in \mathbb{Z}$. Then
$a^2+b^2 \ge 0$.
\end{theorem}

\begin{proof}
Exercise to the reader.
\end{proof}

Output

Theorem 3.6. Let a,b ∈ Z. Then a2 +
b2 > 0.
Proof. Exercise to the reader.

Note that the box (�) designating the end of the proof is inserted automatically when you
close the proof environment.

Labels

As you change the contents of a document, the numbering of the definitions, examples
and results might change. To refer to a specific result, instead of typing the number and
having to change it each time the number changes, you can use the \label) and \ref)
commands.

An example of this in action is as follows:

TEX code
\begin{definition}
\label{defDivides}
Say $a$ \textbf{divides} $b$ if
there exists $k \in \mathbb{Z}$
such that $ka = b$.
\end{definition}

We will use Definition
\ref{defDivides} for absolutely
nothing.

Output

Definition 2.11. Say a divides b if there
exists k ∈ Z such that ka = b.

We will use Definition 2.11 for abso-
lutely nothing.
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Formatting

In text mode. To put the icing on the cake, you might want to make some words
bold or italicised. This is simple: for bold text type \textbf{text here} and
for italic text type \textit{text here}. In TeXstudio and Overleaf you can press
Ctrl+B and Ctrl+I to avoid having to type all this out. Other useful fonts in-
clude monospace (\texttt{text here}), sans-serif (\textsf{text here}) and
underlined (\underline{text here}).

In math mode. There are also various fonts or font styles that you can use inside math
mode, including:

• Roman (i.e. not italic): AaBbCc, \mathrm{AaBbCc};

• Bold: AaBbCc, \mathbf{AaBbCc};

• Sans-serif: AaBbCc, \mathsf{AaBbCc};

• Blackboard bold: ABCDE, \mathbb{ABCDE} — only capital letters;

• Fraktur: AaBbCc, \mathfrak{AaBbCc};

• Calligraphic: A BC DE , \mathcal{ABCDE} — only capital letters;

Tables

Tables can be created using the tabular environment. You can specify how columns are
aligned and separated as an argument to the command \begin{tabular}: write l or c
or r to specify that a column should be aligned left, centre or right, respectively. If you
want columns to be separated by a single or double line, enter a single or double bar (|
or ||), respectively.

Columns are then separated by ampersands (\&) and you can move to a new row by
entering a double-backslash (\\). To insert a horizontal line between two rows, simply
enter \hline.

Here’s an example:

TEX code
\begin{tabular }{c|ccc}
$\times$ & 1 & 2 & 3 \\ \hline
1 & 1 & 2 & 3 \\
2 & 2 & 4 & 6 \\
3 & 3 & 6 & 9
\end{tabular}

Output

× 1 2 3
1 1 2 3
2 2 4 6
3 3 6 9
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Aligned equations

Occasionally a proof may require you to demonstrate that two terms are equal by proving
a sequence of intermediate equations. This can be done using the align* environment,
which behaves much like the tabular environment.

New lines are introduced by inserting a double-backslash (\\), and alignment points are
introduced with an ampersand (&). For example:

TEX code
\begin{align *}
(n+1)! - n!

&= (n+1)n! - n! \\
&= n \cdot n! + n! - n! \\
&= n \cdot n!

\end{align*}

Output

(n+1)!−n! = (n+1)n!−n!
= n ·n!+n!−n!
= n ·n!

Note that the align* environment automatically enters into math mode, so no dollar
signs ($) are needed.

Entering more ampersands will create more columns, whose alignment alternates (right,
left, right, left, and so on). For example, to add annotations to each line, you can enter a
double ampersand (&&). For example:

TEX code
\begin{align *}
(n+1)! - n!

& = (n+1)n! - n! && \text{by recursive def of factorials} \\
& = n \cdot n! + n! - n! && \text{by distributivity} \\
& = n \cdot n! && \text{by cancellation}

\end{align*}

Output

(n+1)!−n! = (n+1)n!−n! by recursive def of factorials
= n ·n!+n!−n! by distributivity
= n ·n! by cancellation

Note again that, because the align* environment automatically enters math mode, any
annotations must be made within the \text{...} command.

Graphics

Images can then be inserted using the \includegraphics command. The format is
\includegraphics[parameters]{filename} where parameters denotes informa-
tion telling LATEX how large you want the image to be, and filename is the name of the
image file, which includes the path relative to the main .tex file. For example if don-
key.png is stored in a directory called images, you would enter ‘images/donkey.png’
instead of ‘donkey.png’.
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The simplest way to control the size of the image is to enter [width=k\textwidth],
where k is a scaling factor between 0 and 1.

For example:

TEX code
\begin{center}
\includegraphics[width =0.3\ textwidth ]{media/donkey.png}
\end{center}

Output

More advanced techniques

I should take a moment to emphasise that what really matters is your ability to commu-
nicate mathematical arguments clearly and correctly. The LATEX tools discussed so far in
this section are more than sufficient for our purposes.

However, if you are interested in pushing your LATEX skills further or there is a feature
you’re unsure about how to implement, then I recommend browsing or searching one of
the following websites:

• http://tex.stackexchange.com — Q&A website about LATEX

• https://en.wikibooks.org/wiki/LaTeX — online LATEX manual

490

http://tex.stackexchange.com
https://en.wikibooks.org/wiki/LaTeX


Typesetting mathematics using LATEX 491

Practice page

Try to recreate the following page, remembering to use \label and \ref to refer to
enumerated items (such as ‘Proposition 1.2’).

Squarefree integers
Carl Friedrich Gauss, Wednesday 14th September 1831

Introduction

When you’ve written this page, you will be unstoppable, at least as far as typesetting mathematics
is concerned. You will need to implement:

• Text mode stuff: sections, paragraphs, text formatting, labels and references, lists;

• Math mode stuff: definitions and results, aligned equations, etc.

So let’s get on with it!

1 Squarefree integers

1.1 Definition and an elementary result

Definition 1.1. An integer a is squarefree if it is divisible by no perfect square other than 1.
That is, if n2 divides a then n2 = 1.

Proposition 1.2. A non-zero non-unit a is squarefree if and only if

a = p1 × p2 × · · · × pn

for distinct primes p1, p2, . . . , pn.

Proof. We leave the proof as an exercise to the reader.

1.2 Some examples

Example 1.3. Some concrete examples include:

(i) 5610 is squarefree by Proposition 1.2, since

5610 = 10× 561

= (2× 5)× (11× 17)

(ii) 12 is not squarefree since 4 | 12 and 4 = 22.

1
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Template file

What follows is a template .tex file to get you started; it can be downloaded from
https://infinitedescent.xyz/latex/.

1 \documentclass [11pt]{ article}
2
3 % Edit the following to change the title , author name and date
4 \title{A \LaTeX {} document}
5 \author{Firstnametina McLastnamerson}
6 \date{Someday 0th Jantember 3000}
7
8 % Packages
9 \usepackage{amsmath}

10 \usepackage{amsfonts}
11 \usepackage{amssymb}
12 \usepackage{amsthm}
13 \usepackage{enumerate}
14 \usepackage{geometry}
15 \usepackage{graphicx}
16 \usepackage{hyperref}
17 \usepackage{xcolor}
18
19 % Page setup
20 \setlength {\ parskip }{10pt}
21 \setlength {\ parindent }{0pt}
22 \geometry{
23 paper ={ letterpaper}, % Change to ’a4paper ’ for A4 size
24 marginratio ={1:1} ,
25 margin ={1.25 in}
26 }
27
28 % Theorem environments
29 \theoremstyle{definition}
30 \newtheorem{theorem }{ Theorem}
31 \newtheorem{lemma}[ theorem ]{Lemma}
32 \newtheorem{corollary }[ theorem ]{ Corollary}
33 \newtheorem{proposition }[ theorem ]{ Proposition}
34 \newtheorem{definition }[ theorem ]{ Definition}
35 \newtheorem{example }[ theorem ]{ Example}
36
37 \begin{document}
38 \maketitle
39
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 %% Start of document body %%
42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
43
44 Hello world! Did you know that $3^2 + 4^2 = 5^2$?
45
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
47 %% End of document body %%
48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
49 \end{document}
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Index of topics

absolute convergence, 314
addition principle, 239
alphabet, 335
alternating series test, 313
alternating sum, 247–260
AM–GM inequality, 273
antisymmetric relation, 153
axiom of choice, 111

base-b expansion, 5, 211
of a real number, 309

basic element, 412
Bayes’s theorem, 375
Bernoulli distribution, 386
biconditional, 34
bijection, 103–115
binary expansion, 211
binomial coefficient, 125, 230
binomial distribution, 386
Boolean algebra, 403
bound variable, 42

canonical prime factorisation, 190
Cantor’s diagonal argument, 332
Cantor–Schröder–Bernstein theorem,

343
cardinal number, 339
cardinal sum, 348
cardinality, 339
Cauchy sequence, 301
Cauchy–Schwarz inequality, 269
characteristic function, 98
closed

interval, 75
codomain, 89

of a relation, 148

comparison test, 311
complement

of event, 368
relative, 84

complete ordered field, 462
completeness axiom, 462
component, 265
conditional probability, 372
congruence, 157, 194
congruence class, 160
conjunction, 26
constructor, 411
contradiction, 37

(direct) proof by, 38
(indirect) proof by, 59

contraposition
proof by, 60

contrapositive, 60
convergence

absolute, 314
of a sequence, 286

converse, 34
coprime, 179
countable additivity, 363
countable set, 327
counterexample, 63
counting, 229–246
counting principle

addition principle, 239
multiplication principle, 231, 236

de Morgan’s laws
for logical operators, 62
for quantifiers, 62
for sets, 85

decimal expansion, 211
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decreasing sequence, 297
diagonal subset, 151
Diophantine equation

linear, 179, 181
discrete relation, 150
discriminant, 16
disjoint

pairwise, 161, 238
disjoint union, 226
disjunction, 29
distance, 265
divergence, 286
division, 7, 174
division theorem, 8, 172
divisor, 7, 174
domain, 89

of a relation, 148
domain of discourse, 42
dot product, 268
double counting, 242

e, 321
element, 72

basic, 412
empty function, 95
empty relation, 150
empty set, 78, 79
empty word, 335
enumeration

of a countably infinite set, 327
of a finite set, 221

equivalence
logical, 54

equivalence class, 159
equivalence relation, 156–166

generated by a relation, 167
Euclidean algorithm, 177

reverse, 181
Euler’s constant, 321
Euler’s theorem, 203
even

function, 117
integer, 8
parity, 251

event, 363
that p(X), 380
that X = e, 380

eventually, 290

existential quantifier, 48
expectation, 390
expected value, 390
exponential function, 320
extended real number line, 279
extensionality, 77, 450

factor, 7, 174
factorial, 124, 231
family of sets, 82
Fermat’s little theorem, 201
field, 458
finite description, 336
finite set, 221
free variable, 42
function, 89–102

bijective, 106
characteristic, 98
empty, 95
exponential, 320
identity, 95
injective (one-to-one), 104
quotient, 164
surjective, 105

fundamental theorem of arithmetic, 188

generated
equivalence relation, 167

geometric distribution
on N, 388
on N+, 388

geometric series, 305
GM–HM inequality, 277
graph

of a function, 93
of a relation, 149

greatest common divisor, 174
greatest element of a poset, 398

harmonic series, 312
homogeneous relation, 148

identity function, 95
implication, 32
implied list notation, 73
inclusion–exclusion principle, 257
increasing sequence, 297
independent

events, 370
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random variables, 383
indexed family, 82
indicator function, 368
induction

on N (weak), 126, 447
on N (strong), 139
on an inductively defined set, 418
rule, 409
strong, 139–145
structural, 407–423
weak, 126–138

inductively defined set, 411
inequality

Cauchy–Schwarz, 269
of arithmetic and harmonic means,

273
of generalised means, 280
of geometric and harmonic means,

277
of quadratic and arithmetic means,

278
triangle, 271
triangle (one-dimensional), 267

infimum, 399
of subset of R, 281

infinite set, 221
inhabited set, 78
injection, 103–115
intersection, 82

indexed, 82
pairwise, 80

interval
closed, 75
half-open, 75
open, 75

inverse
left inverse, 108
right inverse, 109
two-sided, 112

involution, 250
involution principle, 254
irrational number, 12
irreducible number, 186

Kleene star, 335

lattice
complemented, 403
distributive, 402

law of excluded middle, 39
least common multiple, 184
least element of a poset, 398
left inverse, 108
length

of a word, 335
limit

of a function, 465
of a sequence, 286

Lindenbaum–Tarski algebra, 404
linear Deiophantine equation, 181
linear Diophantine equation, 179
list notation, 73
logical equivalence, 54
logical formula, 44

maximally negated, 63
logical operator, 26
lower bound

of subset of R, 281

magnitude, 265
mean

arithmetic, 273
generalised, 279
geometric, 273
harmonic, 276
quadratic, 277

model
probablistic, 362

modular arithmetic, 196
modulo, 157, 194
modus ponens, 33
monotone convergence theorem, 298
monotone sequence, 297
multiple, 7
multiplication principle, 231, 236
multiplicity

of a prime, 190
mutually independent

random variables, 383

natural number, 454
von Neumann, 454

natural numbers
notion of, 120

negation, 38
maximal, 63

nonzero nonunit, 174
number
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cardinal, 339
natural, 454

number base, 5
numeral system, 4

Hindu–Arabic, 5

odd
function, 117
integer, 8
parity, 251

open
interval, 75

ordered n-tuple, 88
ordered pair, 87
origin, 265
outcome, 363

pairwise disjoint, 161, 238
parity, 251
partial order, 396
partial sum, 304
Pascal’s triangle, 125
Peano’s axioms, 120
permutation, 231
pigeonhole principle, 241
polynomial, 13
poset, 396
power set, 86
predicate, 42
prime, 185

canonical prime factorisation, 190
probability, 363

conditional, 372
probability distribtion

Bernoulli, 386
probability distribution, 384

binomial, 386
geometric (on N), 388
geometric (on N+), 388
uniform, 385

probability mass function, 381
probability measure

discrete, 363
pushforward, 383

probability space
discrete, 363

product of sets
n-fold, 88
pairwise, 87

proof, 1
by cases, 31
by contradiction (direct), 38
by contradiction (indirect), 59
by contraposition, 60
by counterexample, 63
by strong induction, 140
by strong induction with multiple

base cases, 141
by structural induction, 418
by weak induction, 126

proposition, 1
propositional formula, 26
propositional variable, 25
pushforward measure, 383
pushforward probability measure, 383

QM–AM inequality, 278
quantifier

existential, 48
unique existential, 50
universal, 46

quantifier alternation, 51
quotient, 8

of a set by an equivalence relation,
159

of numbers, 173
quotient function, 164

random variable, 380
range

of a variable, 42
rank, 416
ratio test, 315
rational number

dyadic, 74
recursion

definition by recursion, 122
recursion theorem, 121

reducible number, 186
reflexive relation, 152
relation, 148–155

antisymmetric, 153
discrete, 150
empty, 150
equivalence relation, 156–166
left-total, 167
partial order, 396
reflexive, 152
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symmetric, 153
transitive, 154

relative complement, 84
relatively prime, 179
remainder, 8, 173
reverse Euclidean algorithm, 181
right inverse, 109
root, 15
root-mean-square, 277
RSA encryption, 213
rule, 409
rule of product, 231, 236
rule of sum, 239

sample space, 363
scalar product, 268
sequence, 284

Cauchy, 301
constant, 284
decreasing, 297
increasing, 297
monotone, 297

series, 303
geometric, 305
harmonic, 312
indexed by a countably infinite

set, 318
set, 72–88

empty, 78, 79
indexed family of, 82
inductively defined, 411
inhabited, 78
universal, 72

set equality, 77
set-builder notation, 73
sign, 190
size, 223
squeeze theorem, 294
strong induction principle, 139
subformula, 26
subsequence, 299
subset, 76

k-element subset, 229
diagonal, 151

sum

alternating, 247–260
of a series, 304
of cardinal numbers, 348

supremum, 399
of subset of R, 281

surjection, 103–115
symmetric difference, 116
symmetric relation, 153

tautology, 66
term

of a sequence, 284
toggle, 250
totient, 202
transitive relation, 154
triangle inequality, 271

in one dimension, 267
trinomial coefficient, 246
truth table, 56
truth value, 25
two-sided inverse, 112

uniform distribution, 385
union, 82

indexed, 82
pairwise, 81

unit, 174
universal quantifier, 46
universal set, 72
universe

Grothendieck, 453
of discourse, 72

universe of discourse, 72
upper bound

of subset of R, 281

value
of a function, 89

variable
bound, 42
free, 42

von Neumann natural number, 454

weak induction principle, 126, 447
well-ordering principle, 143
word, 335

499



500 Index

500



Index of vocabulary

absurd, 442
arbitrary, 443
assume, 439, 442

by, 437

case, 441
contradiction, 442
contrary to, 442

define, 444

fix, 443
it follows that, 437, 446

given, 443
goal, 446

hence, 437, 446

impossible, 442

we know that, 437

let, 443, 444

nonsense, 442

to see that, 446
so, 437
step, 440
it suffices to show that, 438
suppose, 439

take, 443
therefore, 446

we want, 446
without loss of generality, 445
wlog, 445
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Index of notation

(a,b) — open interval, 75
[a,b] — closed interval, 75
(a,b] — half-open interval, 75
[a,b) — half-open interval, 75
(−∞,a) — unbounded interval, 75
(a,∞) — unbounded interval, 75
ℵ0 — aleph naught, 340
[a]n — congruence class, 160
⇔— biconditional, 34
Card — set of cardinal numbers, 339
×— cartesian product, 87
Xn — cartesian product (n-fold), 88
Πn

k=1 — cartesian product (n-fold), 88
Ac — complement of event, 368
\— relative complement, 84
◦— composition, 96
∧— conjunction, 26
c — cardinality of the continuum, 340
⊥— contradiction, 37
(xn)→ a — convergence of a

sequence, 286
⊥— coprime, 179
∨— disjunction, 29
a | b — division, 174
∆X — diagonal subset, 261
e — Euler’s constant, 321
ε — epsilon, 286
4, v— partial order, 396
∼, ≡, ≈— equivalence relation, 156
[a]∼ — equivalence class, 159
∼R — equivalence relation generated

by R, 167
E[X ] — expectation, 390
exp — exponential function, 320
�· · ·≮— floor operator, 217

f : X → Y — function, 89
f (x) — value of a function, 89
f [U ] — image, 100
f−1 — inverse function, 114
f−1[V ] — preimage, 101
gcd — greatest common divisor, 176
Gr( f ) — graph of a function, 93
Gr(R) — graph of a relation, 149
iA — indicator function, 368
idX — identity function, 95
⇒— implication, 32
∈— element, 72
inf(A) — infimum, 282
∩— intersection, 80
lcm — least common multiple, 184
≡— logical equivalence, 54
a≡ b mod n — congruence, 157, 194
mod — congruence, 157, 194(n
k

)
— binomial coefficient, 125, 230( n

a,b,c

)
— trinomial coefficient, 246

¬— negation, 38
n! — factorial, 124, 231
nvN — von Neumann natural number,

454
∅— empty set, 79
(Ω,P) — probability space, 363
∅X ,Y — empty relation, 150
P— probability, 363
P(A | B) — conditional probability,

372
P(X) — power set, 86
X/∼— quotient, 159
rk(a) — rank, 416
{· · ·}— set notation, 73
Σ∗ — Kleene star, 335
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⊆— subset, 76
sup(A) — supremum, 282
Sym(X) — set of permutations, 231
4— symmetric difference, 116
⊕— toggle, 250
ϕ(n) — totient, 202
U — universal set, 72
∪— union, 81
t— disjoint union, 226(X

k

)
— k-element subsets, 229

~x ·~y — scalar product, 268
‖~x‖— magnitude, 265
(xn)n>0 — sequence, 284
X− — set of odd-parity elements, 251
X+ — set of even-parity elements, 251
~x — vector, 265
{X = e}— event that X = e, 380
Z/nZ— set of congruence classes

modulo n, 160
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Index of LATEX commands

Math mode commands
\{...\}, {. . .}, 73
\aleph, ℵ, 340
\approx, ≈, 156
\binom,

(n
k

)
, 125, 229

\bmod, mod , 157, 194
\bot, ⊥, 37, 57, 398
\cap, ∩, 80
\cdot, ·, 268
\circ, ◦, 96
\cong, ∼=, 156
\cup, ∪, 81
\dots, . . . , 73
\equiv, ≡, 54, 156
\forall, ∀, 46
\ge, >, 11
\in, ∈, 2, 72
\infty, ∞, 75
\le, 6, 11
\Leftrightarrow,⇔, 34
\lVert...\rVert, ‖. . .‖, 265
\mathbb, A,B, . . . , 4, 6, 10, 13, 363, 390, 488
\mathbf, Aa,Bb, . . . , 488
\mathcal, A ,B, . . . , 72, 86, 488
\mathfrak, Aa,Bb, . . . , 340, 488
\mathrel, R, . . . , 148
\mathrm, Aa,Bb,Cc, . . . , 409
\mathrm, Aa,Bb,Cc, . . ., 416
\mathrm, Aa,Bb, . . . , 93, 95, 149, 176, 184, 282, 488
\mathsf, Aa,Bb, . . . , 339, 488
\mid, |, 73, 174, 372
\neg, ¬, 38
\nmid, -, 174
\not, 6∈, 6≡, . . . , 72, 157, 194
\nsubseteq, *, 76
\oplus, ⊕, 250
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\perp, ⊥, 179
\prec, ≺, 398
\preceq, 4, 396
\prod, Πn

k=1, 88
\Rightarrow,⇒, 32
\setminus, \, 84
\sim, ∼, 156, 385
\sqcup, t, 226
\sqsubset, @, 398
\sqsubseteq, v, 396
\subseteq, ⊆, 76
\subsetneqq, $, 76
\text, access text mode within math mode, 489
\times, ×, 57, 87
\to,→, 89, 286
\top, >, 57, 398
\triangle,4, 116
\varepsilon, ε , 286
\varnothing, ∅, 79
\varphi, ϕ , 202
\vec,~a,~b, . . . , 265
\vee, ∨, 29, 400
\wedge, ∧, 26, 400

Math mode environments
align*, aligned equation, 489

Text mode commands
\includegraphics, insert image, 489
\label, label (for use with \ref), 487
\ref, reference (for use with \label), 487
\section, section title with number, 486
\section*, section title without number, 486
\textbf, bold, 488
\textit, italic, 488
\textsf, sans-serif, 488
\texttt, monospace, 488
\underline, underlined, 488

Text mode environments
corollary, corollary environment, 487
definition, definition environment, 487
enumerate, enumerated list, 486
example, example environment, 487
itemize, bulleted list, 486
lemma, lemma environment, 487
proof, proof environment, 487
proposition, proposition environment, 487
tabular, table, 488
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theorem, theorem environment, 487
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Licence

This book, in both physical and electronic form, is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International Public License. The licence is replicated below
from the Creative Commons website:

https://creativecommons.org/licenses/by-sa/4.0/legalcode

Please read the content of this licence carefully if you intend to share or adapt the material
in this book.

If you have questions or would like to request permissions not granted by this licence,
then contact the author (Clive Newstead, clive@infinitedescent.xyz).

Creative Commons Attribution-ShareAlike 4.0 International Public
License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution-ShareAlike 4.0 International Public License
(“Public License”). To the extent this Public License may be interpreted as a contract, You are
granted the Licensed Rights in consideration of Your acceptance of these terms and conditions,
and the Licensor grants You such rights in consideration of benefits the Licensor receives from
making the Licensed Material available under these terms and conditions.

Section 1 — Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated,
altered, arranged, transformed, or otherwise modified in a manner requiring permission under
the Copyright and Similar Rights held by the Licensor. For purposes of this Public License,
where the Licensed Material is a musical work, performance, or sound recording, Adapted
Material is always produced where the Licensed Material is synched in timed relation with a
moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in Your
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https://creativecommons.org/licenses/by-sa/4.0/legalcode
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contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. BY-SA Compatible License means a license listed at
creativecommons.org/compatiblelicenses, approved by Creative Commons as essentially the
equivalent of this Public License.

d. Copyright and Similar Rights means copyright and/or similar rights closely related to copy-
right including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of
this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.

e. Effective Technological Measures means those measures that, in the absence of proper au-
thority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

f. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limit-
ation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

g. License Elements means the license attributes listed in the name of a Creative Commons
Public License. The License Elements of this Public License are Attribution and ShareAlike.

h. Licensed Material means the artistic or literary work, database, or other material to which the
Licensor applied this Public License.

i. Licensed Rights means the rights granted to You subject to the terms and conditions of this
Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

j. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

k. Share means to provide material to the public by any means or process that requires per-
mission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to
the public including in ways that members of the public may access the material from a place
and at a time individually chosen by them.

l. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protec-
tion of databases, as amended and/or succeeded, as well as other essentially equivalent rights
anywhere in the world.

m. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You
a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise
the Licensed Rights in the Licensed Material to:
A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with
its terms and conditions.

https://creativecommons.org/compatiblelicenses


3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exer-
cise the Licensed Rights in all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The Licensor waives and/or agrees
not to assert any right or authority to forbid You from making technical modifications ne-
cessary to exercise the Licensed Rights, including technical modifications necessary to cir-
cumvent Effective Technological Measures. For purposes of this Public License, simply
making modifications authorized by this Section 2(a)(4) never produces Adapted Material.

5. Downstream recipients.
A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material

automatically receives an offer from the Licensor to exercise the Licensed Rights under
the terms and conditions of this Public License.

B. Additional offer from the Licensor – Adapted Material. Every recipient of Adapted
Material from You automatically receives an offer from the Licensor to exercise the
Licensed Rights in the Adapted Material under the conditions of the Adapter’s License
You apply.

C. No downstream restrictions. You may not offer or impose any additional or different
terms or conditions on, or apply any Effective Technological Measures to, the Licensed
Material if doing so restricts exercise of the Licensed Rights by any recipient of the
Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permis-
sion to assert or imply that You are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by, the Licensor or others designated
to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are
publicity, privacy, and/or other similar personality rights; however, to the extent possible,
the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the
limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any
voluntary or waivable statutory or compulsory licensing scheme. In all other cases the
Licensor expressly reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material: identi-
fication of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseud-
onym if designated); a copyright notice;

i. a notice that refers to this Public License;
ii. a notice that refers to the disclaimer of warranties;



iii. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
B. indicate if You modified the Licensed Material and retain an indication of any previous

modifications; and
C. indicate the Licensed Material is licensed under this Public License, and include the

text of, or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it
may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource
that includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

b. ShareAlike.
In addition to the conditions in Section 3(a), if You Share Adapted Material You produce, the
following conditions also apply.

1. The Adapter’s License You apply must be a Creative Commons license with the same Li-
cense Elements, this version or later, or a BY-SA Compatible License.

2. You must include the text of, or the URI or hyperlink to, the Adapter’s License You apply.
You may satisfy this condition in any reasonable manner based on the medium, means, and
context in which You Share Adapted Material.

3. You may not offer or impose any additional or different terms or conditions on, or apply any
Effective Technological Measures to, Adapted Material that restrict exercise of the rights
granted under the Adapter’s License You apply.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which You
have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material, including for purposes of Section
3(b); and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under
this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Li-
censor offers the Licensed Material as-is and as-available, and makes no representations
or warranties of any kind concerning the Licensed Material, whether express, implied,



statutory, or other. This includes, without limitation, warranties of title, merchantabil-
ity, fitness for a particular purpose, non-infringement, absence of latent or other defects,
accuracy, or the presence or absence of errors, whether or not known or discoverable.
Where disclaimers of warranties are not allowed in full or in part, this disclaimer may
not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect,
incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or dam-
ages arising out of this Public License or use of the Licensed Material, even if the Licensor
has been advised of the possibility of such losses, costs, expenses, or damages. Where a
limitation of liability is not allowed in full or in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and
waiver of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public
License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of
Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have
to seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communic-
ated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce,
limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be
made without permission under this Public License.



b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the
provision cannot be reformed, it shall be severed from this Public License without affecting
the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver
of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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