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Preface

Hello, and thank you for taking the time to read this quick introduction to the book! I would like
to begin with an apology and a warning:

This book is still under development!

That is to say, there are some sections that are incomplete, as well as other sections which are
currently much more terse than I would like them to be.

The most recent version is freely available for download from the following website:
https://infinitedescent.xyz

As the book is undergoing constant changes, I advise that you do not print it in its entirety—if
you must print anything, then I suggest that you do it a few pages at a time, as required.

This book was designed with inquiry and communication in mind, as they are central to a good
mathematical education. One of the upshots of this is that there are many exercises throughout
the book, requiring a more active approach to learning, rather than passive reading. These ex-
ercises are a fundamental part of the book, and should be completed even if not required by the
course instructor. Another upshot of these design principles is that solutions to exercises are not
provided—a student seeking feedback on their solutions should speak to someone to get such
feedback, be it another student, a teaching assistant or a course instructor.

Navigating the book

This book need not be read from front to back, so if you are using it to teach a course or for
self-study, then a certain degree of customisation is possible. With that said, some of the content
in the book is fundamental to further study in pure mathematics and should be included in any
course serving as a first introduction to proof-based mathematics—at the very least, Chapter 0,
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Chapter 1, Chapter 2 and Section 3.1 should be covered, and Sections 5.1 and 6.1 are highly
recommended.

Within each chapter, subsequent sections depend on the sections before them—as such if you
want to learn about modular arithmetic (Section 4.3), then you should first cover division (Sec-
tion 4.1) and prime numbers (Section 4.2).

The following table indicates prerequisites between sections. If a section is listed as an essential
prerequisite, it means that concepts from that section are central; if it is listed as a recommended
prerequisite, it means that concepts from that section are required to fully understand several
of the proofs and examples; and if it is listed as a useful prerequisite, it means that concepts
from that section appear in some examples or provide useful background for understanding the
material.

Section | Essential Recommended Useful
1.1 0
2.1 1.3
3.1 1.3
3.2 2.3
4.1 1.3 3.1 2.1,2.2
5.1 2.2 4.3 3.2
6.1 3.2
6.3 5.3
7.1 1.3 5.2
7.2 2.2 6.1
8.1 3.3 6.1,7.3

Note that prerequisites are cumulative, so, for example, in order to cover the material in Sec-
tion 6.2, you should first work through Sections 1.1-1.3, 2.1-2.3, 3.1, 3.2 and 6.1.

What the numbers, colours and symbols mean

Much of the material in this book is broken into enumerated items which, broadly speaking, fall
into one of four categories: results (often followed by proofs), definitions, examples, exercises
and remarks. These items are colour-coded as indicated and are enumerated according to their
section—for example, Theorem 3.1.14 is in Section 3.1. Definitions and theorems (important

results) appear in a .

You will also encounter the symbols [J, <1 and %, whose meanings are as follows:
) End of proof. It is standard in mathematical documents to identify when a proof has ended
by drawing a small square or by writing ‘Q.E.D.” (The latter stands for quod erat demon-

strandum, which is Latin for what was to be shown.)

viii
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<1 End of item. This is not a standard usage, and is included only to help you to identify when
an item has finished and the main content of the book continues.

* Optional content. Sections, exercises, results and proofs marked with this symbol can be
skipped over. Usually this is because the content is very challenging, or is technical in a way
that is mathematically necessary but educationally not very important.

Licence

This book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
(CC BY-NC-SA 4.0) licence. This means you’re welcome to share this book, provided that you
give credit to the author, and that any copies or derivatives of this book are released under the
same licence, are freely available and are not for commercial use. The full licence is available at
the following link:

http://creativecommons.org/licenses/by-nc-sa/4.0/

Comments and corrections

Any feedback, be it from students, teaching assistants, instructors or any other readers, would be
very much appreciated. Particularly useful are corrections of typographical errors, suggestions
for alternative ways to describe concepts or prove theorems, and requests for new content (e.g. if
you know of a nice example that illustrates a concept, or if there is a relevant concept you wish
were included in the book).

Such feedback can be sent to me by email (cnewstead@northwestern.edu).

ix


http://creativecommons.org/licenses/by-nc-sa/4.0/
cnewstead@northwestern.edu

Preface



Acknowledgements

When I reflect on the time I have spent writing this book, I am overwhelmed by the number of
people who have had some kind of influence on their content.

This book would never have come to exist were it not for Chad Hershock’s course 38-801
Evidence-Based Teaching in the Sciences, which I took in Fall 2014 as a graduate student at
Carnegie Mellon University. His course heavily influenced my approach to teaching, and it mo-
tivated me to write this book in the first place. Many of the pedagogical decisions I made when
writing this book were informed by research that I was exposed to as a student in Chad’s class.

The legendary Carnegie Mellon professor, John Mackey, has been using this book (in various
forms) as course notes for 21-128 Mathematical Concepts and Proofs and 15-151 Mathematical
Foundations of Computer Science since Fall 2016. His influence can be felt throughout the
book: thanks to discussions with John, many proofs have been reworded, sections restructured,
and explanations improved. As a result, there is some overlap between the exercises in this book
and the questions on his problem sheets. I am extremely grateful for his ongoing support.

Steve Awodey, who was my doctoral thesis advisor, has for a long time been a source of inspira-
tion for me. Many of the choices I made when choosing how to present the material in this book
are grounded in my desire to do mathematics the right way—it was this desire that led me to
study category theory, and ultimately to become Steve’s PhD student. I learnt a great deal from
him and I greatly appreciated his patience and flexibility in helping direct my research despite
my busy teaching schedule and extracurricular interests (such as writing this book).

Perhaps unbeknownst to them, many insightful conversations with the following people have
helped shape the material in this book in one way or another: Jeremy Avigad, Deb Brandon,
Heather Dwyer, Thomas Forster, Will Gunther, Kate Hamilton, Jessica Harrell, Bob Harper,
Brian Kell, Marsha Lovett, Ben Millwood, David Offner, Ruth Poproski, Hilary Schuldt, Gareth
Taylor, Katie Walsh, Emily Weiss and Andy Zucker.

The Stack Exchange network has influenced the development of this book in two import-
ant ways. First, I have been an active member of Mathematics Stack Exchange (https:
//math.stackexchange.com/) since early 2012 and have learnt a great deal about how to
effectively explain mathematical concepts; occasionally, a question on Mathematics Stack Ex-

X1


https://math.stackexchange.com/
https://math.stackexchange.com/

Xii Acknowledgements

change inspires me to add a new example or exercise to the book. Second, I have made frequent
use of BIEX Stack Exchange (https://tex.stackexchange.com) for implementing some of
the more technical aspects of writing a book using ISTEX.

The Department of Mathematical Sciences at Carnegie Mellon University supported me aca-
demically, professionally and financially throughout my PhD and presented me with more op-
portunities than I could possibly have hoped for to develop as a teacher. This support is now
continued by the Department of Mathematics at Northwestern University, where I am currently
employed as a lecturer.

I would also like to thank everyone at Carnegie Mellon’s and Northwestern’s teaching centres,
the Eberly Center and the Searle Center, respectively. Through various workshops, programs
and fellowships at both teaching centres, I have learnt an incredible amount about how people
learn, and I have transformed as a teacher. Their student-centred, evidence-based approach to
the science of teaching and learning underlies everything I do as a teacher, including writing this
book—their influence cannot be understated.

Finally, and importantly, I am grateful to the 1000+ students who have already used this book to
learn mathematics. Every time a student contacts me to ask a question or point out an error, the
book gets better; this is reflected in the dozens of typographical errors that have been fixed as a
consequence.

Clive Newstead
March 2019
Evanston, Illinois

Xii


https://tex.stackexchange.com

Chapter 0

Getting started



2 Chapter 0. Getting started

Before we can start proving things, we need to eliminate certain kinds of statements that we
might try to prove. Consider the following statement:

This sentence is false.

Is it true or false? If you think about this for a couple of seconds then you’ll get into a bit of a
pickle.

Now consider the following statement:

The happiest donkey in the world.

Is it true or false? Well it’s not even a sentence; it doesn’t make sense to even ask if it’s true or
false!

Clearly we’ll be wasting our time trying to write proofs of statements like the two listed above—
we need to narrow our scope to statements that we might actually have a chance of proving (or
perhaps refuting)! This motivates the following (informal) definition.

Definition 0.1

A proposition is a statement to which it is possible to assign a truth value (‘true’ or ‘false’). If
a proposition is true, a proof of the proposition is a logically valid argument demonstrating that
it is true, which is pitched at such a level that a member of the intended audience can verify its
correctness.

Thus the statements given above are not propositions because there is no possible way of assign-
ing them a truth value. Note that, in Definition 0.1, all that matters is that it makes sense to say
that it is true or false, regardless of whether it actually is true or false—the truth value of many
propositions is unknown, even very simple ones.

Exercise 0.2
Think of an example of a true proposition, a false proposition, a proposition whose truth value
you don’t know, and a statement that is not a proposition. <

Results in mathematical papers and textbooks may be referred to as propositions, but they may
also be referred to as theorems, lemmas or corollaries depending on their intended usage.

e A proposition is an umbrella term which can be used for any result.
e A theorem is a key result which is particularly important.
e A lemma is a result which is proved for the purposes of being used in the proof of a theorem.

e A corollary is a result which follows from a theorem without much additional effort.

2



Chapter 0. Getting started 3

These are not precise definitions, and they are not meant to be—you could call every result a
proposition if you wanted to—but using these words appropriately helps readers work out how
to read a paper. For example, if you just want to skim a paper and find its key results, you’d look
for results labelled as theorems.

It is not much good trying to prove results if we don’t have anything to prove results about.
With this in mind, we will now introduce the number sets and prove some results about them
in the context of four topics, namely: division of integers, number bases, rational and irrational
numbers, and polynomials. These topics will provide context for the rest of the material in
Chapters 1 and 2.

We will not go into very much depth in this chapter. Rather, think of this as a warm-up exercise—
a quick, light introduction, with more proofs to be provided in the rest of the book.

Number sets

Later in this chapter, and then in much more detail in Section 2.1, we will encounter the notion
of a set; a set can be thought of as being a collection of objects. This seemingly simple notion is
fundamental to mathematics, and is so involved that we will not treat sets formally in this book.
For now, the following definition will suffice.

Definition 0.3 (to be revised in Definition 2.1.1)

A set is a collection of objects. The objects in the set are called elements of the set. If X is a set
and x is an object, then we write x € X (I4IX code: x \in X) to denote the assertion that x is
an element of X.

The sets of concern to us first and foremost are the number sets—that is, sets whose elements are
particular types of number. At this introductory level, many details will be temporarily swept
under the rug; we will work at a level of precision which is appropriate for our current stage, but
still allows us to develop a reasonable amount of intuition.

In order to define the number sets, we will need three things: an infinite line, a fixed point on
this line, and a fixed unit of length.

So here we go. Here is an infinite line:

The arrows indicate that it is supposed to extend in both directions without end. The points on
the line will represent numbers (specifically, real numbers, a misleading term that will be defined
in Definition 0.26). Now let’s fix a point on this line, and label it ‘0’:
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This point can be thought of as representing the number zero; it is the point against which all
other numbers will be measured. Finally, let’s fix a unit of length:

—

This unit of length will be used, amongst other things, to compare the extent to which the other
numbers differ from zero.

Definition 0.4
The above infinite line, together with its fixed zero point and fixed unit length, constitute the
(real) number line.

‘We will use the number line to construct five sets of numbers of interest to us:

e The set N of natural numbers—Definition 0.5;

e The set Z of integers—Definition 0.11;

e The set Q of rational numbers—Definition 0.25;
e The set R of real numbers—Definition 0.26; and

e The set C of complex numbers—Definition 0.32.

Each of these sets has a different character and is used for different purposes, as we will see both
later in this chapter and throughout this book.

Natural numbers (N)

The natural numbers are the numbers used for counting—they are the answers to questions of
the form ‘how many’—for example, I have three uncles, one dog and zero cats.

Counting is a skill humans have had for a very long time; we know this because there is evidence
of people using tally marks tens of thousands of years ago. Tally marks provide one method of
counting small numbers: starting with nothing, proceed through the objects you want to count
one by one, and make a mark for every object. When you are finished, there will be as many
marks as there are objects. We are taught from a young age to count with our fingers; this is
another instance of making tally marks, where now instead of making a mark we raise a finger.

Making a tally mark represents an increment in quantity—that is, adding one. On our number
line, we can represent an increment in quantity by moving to the right by the unit length. Then

4



Chapter 0. Getting started 5

the distance from zero we have moved, which is equal to the number of times we moved right
by the unit length, is therefore equal to the number of objects being counted.

Definition 0.5
The natural numbers are represented by the points on the number line which can be obtained
by starting at 0 and moving right by the unit length any number of times:

In more familiar terms, they are the non-negative whole numbers. We write N (IAIEX code:
\mathbb{N}) for the set of all natural numbers; thus, the notation ‘» € N’ means that n is a
natural number.

The natural numbers have very important and interesting mathematical structure, and are central
to the material in Chapter 3. A more precise characterisation of the natural numbers will be
provided in Section 3.1, and a mathematical construction of the set of natural numbers can be
found in Section B.1 (see Construction B.2.5). Central to these more precise characterisations
will be the notions of ‘zero’ and of ‘adding one’—just like making tally marks.

Aside

Some authors define the natural numbers to be the positive whole numbers, thus excluding zero.
We take 0 to be a natural number since our main use of the natural numbers will be for counting
finite sets, and a set with nothing in it is certainly finite! That said, as with any mathematical
definition, the choice about whether 0 € N or 0 ¢ N is a matter of taste or convenience, and is
merely a convention—it is not something that can be proved or refuted. <

Number bases

Writing numbers down is something that may seem easy to you now, but it likely took you
several years as a child to truly understand what was going on. Historically, there have been
many different systems for representing numbers symbolically, called numeral systems. First
came the most primitive of all, tally marks, appearing in the Stone Age and still being used
for some purposes today. Thousands of years and hundreds of numeral systems later, there is
one dominant numeral system, understood throughout the world: the Hindu—-Arabic numeral
system. This numeral system consists of ten symbols, called digits. It is a positional numeral
system, meaning that the position of a symbol in a string determines its numerical value.

In English, the Arabic numerals are used as the ten digits:

01 23 456 7289
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The right-most digit in a string is in the units place, and the value of each digit increases by a
factor of ten moving to the left. For example, when we write ‘2812’, the left-most ‘2’ represents
the number two thousand, whereas the last ‘2’ represents the number two.

The fact that there are ten digits, and that the numeral system is based on powers of ten, is a
biological accident corresponding with the fact that most humans have ten fingers. For many
purposes, this is inconvenient. For example, ten does not have many positive divisors (only
four)—this has implications for the ease of performing arithmetic; a system based on the num-
ber twelve, which has six positive divisors, might be more convenient. Another example is in
computing and digital electronics, where it is more convenient to work in a binary system, with
just two digits, which represent ‘off” and ‘on’ (or ‘low voltage’ and ‘high voltage’), respectively;
arithmetic can then be performed directly using sequences of logic gates in an electrical circuit.

It is therefore worthwhile to have some understanding of positional numeral systems based on
numbers other than ten. The mathematical abstraction we make leads to the definition of base-b
expansion.

Definition 0.6
Let b > 1. The base-b expansion of a natural number 7 is the? string d,d,_1 .. .dy such that

e n=d. b +d,_1- b+ +dy-b;
e 0 <d; <bforeachi; and

e If n > 0 then d, # 0—the base-b expansion of zero is 0 in all bases b.

Certain number bases have names; for instance, the base-2, 3, 8, 10 and 16 expansions are
respectively called binary, ternary, octal, decimal and hexadecimal.

“The use of the word ‘the’ is troublesome here, since it assumes that every natural number has only one base-b
expansion. This fact actually requires proof—see Theorem 4.3.56.

Example 0.7
Consider the number 1023. Its decimal (base-10) expansion is 1023, since

1023=1-10>+0-10>+2-10" +3-10°
Its binary (base-2) expansion is 1111111111, since
1023=1-2241-284+1.274+1-2041-294+1-2%+1-241.224+1.21 +1.2°

We can express numbers in base-36 by using the ten usual digits O through 9 and the twenty-six
letters A through Z; for instance, A represents 10, M represents 22 and Z represents 35. The
base-36 expansion of 1023 is SF, since

1023 =28-36' +15-36" =S -36! +F-36°
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Exercise 0.8

Find the binary, ternary, octal, decimal, hexadecimal and base-36 expansions of the number
21127, using the letters A—F as additional digits for the hexadecimal expansion and the letters
A-Z as additional digits for the base-36 expansion. <

We sometimes wish to specify a natural number in terms of its base-b expansion; we have some
notation for this.

Notation 0.9
Let b > 1. If the numbers dy,d\, . ..,d, are base-b digits (in the sense of Definition 0.6), then we

write
dedy...dogy =dp-b +dpy b ot do - D

for the natural number whose base-b expansion is d,d,_ .. .dy. If there is no subscript () and a
base is not specified explicitly, the expansion will be assumed to be in base-10.

Example 0.10
Using our new notation, we have

1023 = 1111111111y = 11012203y = 1777(g) = 1023 1) = 3FF 1) = SF(34)

Integers (Z)

The integers can be used for measuring the difference between two instances of counting. For
example, suppose I have five apples and five bananas. Another person, also holding apples and
bananas, wishes to trade. After our exchange, I have seven apples and only one banana. Thus I
have two more apples and four fewer bananas.

Since an increment in quantity can be represented by moving to the right on the number line by
the unit length, a decrement in quantity can therefore be represented by moving to the /eft by the
unit length. Doing so gives rise to the integers.

Definition 0.11
The integers are represented by the points on the number line which can be obtained by starting
at 0 and moving in either direction by the unit length any number of times:

We write Z (I&TgX code: \mathbb{Z}) for the set of all integers; thus, the notation ‘n € Z’
means that » is an integer.
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The integers have such a fascinating structure that a whole chapter of this book is devoted to
them—see Chapter 4. This is to do with the fact that, although you can add, subtract and multiply
two integers and obtain another integer, the same is not true of division. This ‘bad behaviour’
of division is what makes the integers interesting. We will now see some basic results about
division.

Division of integers

The motivation we will soon give for the definition of the rational numbers (Definition 0.25)
is that the result of dividing one integer by another integer is not necessarily another integer.
However, the result is sometimes another integer; for example, I can divide six apples between
three people, and each person will receive an integral number of apples. This makes division
interesting: how can we measure the failure of one integer’s divisibility by another? How can
we deduce when one integer is divisible by another? What is the structure of the set of integers
when viewed through the lens of division? This motivates Definition 0.12.

Definition 0.12 (to be repeated in Definition 4.1.4)
Leta,b € Z. We say b divides a if a = gb for some integer g. Other ways of saying that b divides
a are: b is a divisor of a, b is a factor of a, or a is a multiple of b.

Example 0.13
The integer 12 is divisible by 1, 2, 3, 4, 6 and 12, since

12=12-1=6-2=4-3=3.4=2-6=1-12

It is also divisible by the negatives of all of those numbers; for example, 12 is divisible by —3
since 12 = (—4)-(-3). <

Exercise 0.14
Prove that 1 divides every integer, and that every integer divides O. <

Using Definition 0.12, we can prove some general basic facts about divisibility.

Proposition 0.15
Leta,b,c € Z. If ¢ divides b and b divides a, then c divides a.

Proof
Suppose that ¢ divides b and b divides a. By Definition 0.12, it follows that

b=gc and a=rb

for some integers ¢ and r. Using the first equation, we may substitute gc for b in the second
equation, to obtain

a=r(qc)

But r(gc) = (rq)c, and rq is an integer, so it follows from Definition 0.12 that ¢ divides a. ~ [J

8
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Exercise 0.16
Let a,b,d € Z. Suppose that d divides a and d divides b. Given integers u and v, prove that d
divides au + bv. <

Some familiar concepts, such as evenness and oddness, can be characterised in terms of divisib-
ility.

Definition 0.17
An integer n is even if it is divisible by 2; otherwise, n is odd.

It is not just interesting to know when one integer does divide another; however, proving that
one integer doesn’t divide another is much harder. Indeed, to prove that an integer b does not
divide an integer a, we must prove that a # gb for any integer ¢ at all. We will look at methods
for doing this in Chapter 1; these methods use the following extremely important result, which
will underlie all of Chapter 4.

Theorem 0.18 (Division theorem, to be repeated in Theorem 4.1.1)
Let a,b € Z with b # 0. There is exactly one way to write

a=qb+r

such that ¢ and r are integers, and 0 <r < b (if b>0)or 0 < r < —b (if b < 0).

The number g in Theorem 0.18 is called the quotient of @ when divided by b, and the number r
is called the remainder.

Example 0.19
The number 12 leaves a remainder of 2 when divided by 5, since 12 =2-5+2. <

Here’s a slightly more involved example.

Proposition 0.20
Suppose an integer a leaves a remainder of r when divided by an integer b, and that » > 0. Then
—a leaves a remainder of b — r when divided by b.

Proof
Suppose a leaves a remainder of r when divided by ». Then

a=qgb+r
for some integer g. A bit of algebra yields
—a=—qgb—r=—gb—r+(b—b)=—(q+1)b+(b—r)

Since 0 < r < b, we have 0 < b —r < b. Hence —(g + 1) is the quotient of —a when divided by
b, and b — r is the remainder. O
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Exercise 0.21
Prove that if an integer a leaves a remainder of » when divided by an integer b, then a leaves a
remainder of » when divided by —b. <

We will finish this part on division of integers by connecting it with the material on number
bases—we can use the division theorem (Theorem 0.18) to find the base-b expansion of a given
natural number. It is based on the following observation: the natural number n whose base-b
expansion is d,d,_1 - - - ddp is equal to

do+b(dy+b(da+---+b(d—1+bd,)--))

Moreover, 0 < d; < b for all i. In particular # leaves a remainder of dy when divided by b. Hence

n—d()
b

=dy+dob+--+d b

The base-b expansion of % is therefore
drdr—l tee d]

In other words, the remainder of n when divided by b is the last base-b digit of n, and then
subtracting this number from # and dividing the result by b truncates the final digit. Repeating
this process gives us d;, and then d;, and so on, until we end up with 0.

This suggests the following algorithm for computing the base-b expansion of a number 7:

n—

e Step 1. Let dj be the remainder when n is divided by b, and let ng = bd" be the quotient. Fix
i=0.

e Step 2. Suppose n; and d; have been defined. If n; = 0, then proceed to Step 3. Otherwise,
define d;; to be the remainder when n; is divided by b, and define n; | = "";bd"“. Increment
i, and repeat Step 2.

e Step 3. The base-b expansion of n, is

didi—y---do

Example 0.22
We compute the base-17 expansion of 15213, using the letters A—G to represent the numbers 10
through 16.

e 15213 =894-17+15, sody =15 = F and ny = 894.
e 804 =52-174+10,s0d; =10= A and n; = 52.
e 52=3.17+1,s0d> =1 and n, = 3.

e 3=0-1743,s0d3 =3 and n3 =0.

10
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e The base-17 expansion of 15213 is therefore 31 AF.
A quick verification gives
31AF(7) =317+ 1-17*+10- 17+ 15 = 15213

as desired. <

Exercise 0.23
Find the base-17 expansion of 408735787 and the base-36 expansion of 1442151747. <

Exercise 0.24
The video-sharing website YouTube assigns to each video a unique identifier, which is a string
of 11 characters from the set

{A,B,....Z,a,b,...,2,0,1,2,3,4,5,6,7,8,9,-, _}

This string is actually a natural number expressed in base-64, where the characters in the above
set represent the numbers O through 63, in the same order—thus C represents 2, c represents
28, 3 represents 55, and _ represents 63. According to this schema, find the natural number
whose base-64 expansion is dQw4w9WgXcQ, and find the base-64 expansion of the natural number
7159047702620056984. <

Rational numbers (Q)

Bored of eating apples and bananas, I buy a pizza which is divided into eight slices. A friend
and I decide to share the pizza. I don’t have much of an appetite, so I eat three slices and my
friend eats five. Unfortunately, we cannot represent the proportion of the pizza each of us has
eaten using natural numbers or integers. However, we’re not far off: we can count the number
of equal parts the pizza was split into, and of those parts, we can count how many we had. On
the number line, this could be represented by splitting the unit line segment from O to 1 into
eight equal pieces, and proceeding from there. This kind of procedure gives rise to the rational
numbers.

Definition 0.25
The rational numbers are represented by the points at the number line which can be obtained
by dividing any of the unit line segments between integers into an equal number of parts.

The rational numbers are those of the form 7, where a,b € Z and b # 0. We write Q (IXTX
code: \mathbb{Q}) for the set of all rational numbers; thus, the notation ‘g € Q° means that ¢
is a rational number.

11
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The rational numbers are a very important example of a type of algebraic structure known as a
field—they are particularly central to algebraic number theory and algebraic geometry.

Real numbers (R)

Quantity and change can be measured in the abstract using real numbers.

Definition 0.26
The real numbers are the points on the number line. We write R (I£[EX code: \mathbb{R}) for
the set of all real numbers; thus, the notation ‘a € R’ means that a is a real number.

The real numbers are central to real analysis, a branch of mathematics introduced in Chapter 7.
They turn the rationals into a continuum by ‘filling in the gaps’—specifically, they have the prop-
erty of completeness, meaning that if a quantity can be approximated with arbitrary precision by
real numbers, then that quantity is itself a real number.

We can define the basic arithmetic operations (addition, subtraction, multiplication and division)
on the real numbers, and a notion of ordering of the real numbers, in terms of the infinite number
line.

e Ordering. A real number « is less than a real number b, written a < b, if a lies to the left of
b on the number line. The usual conventions for the symbols < (I&[EX code: \1le), > and >
(IXTEX code: \ge) apply, for instance ‘a < b’ means that either a < b or a = b.

e Addition. Suppose we want to add a real number a to a real number b. To do this, we translate
a by b units to the right—if b < 0 then this amounts to translating a by an equivalent number
of units to the left. Concretely, take two copies of the number line, one above the other, with
the same choice of unit length; move the 0 of the lower number line beneath the point a of the
upper number line. Then a + b is the point on the upper number line lying above the point b
of the lower number line.

Here is an illustration of the fact that (—3) 45 =2:

N +-—> @

e Multiplication. This one is fun. Suppose we want to multiply a real number a by a real
number b. To do this, we scale the number line, and perhaps reflect it. Concretely, take two
copies of the number line, one above the other; align the O points on both number lines, and

12



Chapter 0. Getting started 13

stretch the lower number line evenly until the point 1 on the lower number line is below the
point a on the upper number line—note that if a < 0 then the number line must be reflected in
order for this to happen. Then a - b is the point on the upper number line lying above b on the
lower number line.

Here is an illustration of the fact that 5-4 = 20.

2 -1

| |
T T

. . . . . . | | | |
T T T T

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

—— - - - @ W

AL

0
3
0

and here is an illustration of the fact that (—5) -4 = —20:

-22-21-20-19-18-17-16 -15-14-13 -12-11-10 -9 -8 -7 -6
] ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1

T

—_t---9&

o+---+o

~At—9

Exercise 0.27
Interpret the operations of subtraction and division as geometric transformations of the real
number line. <

We will take for granted the arithmetic properties of the real numbers in this chapter, waiting
until Section 7.1 to sink our teeth into the details. For example, we will take for granted the
basic properties of rational numbers, for instance

ac

d+b
:“7“ and

+C a ¢C
d bd b d bd

a
b
Rational and irrational numbers

Before we can talk about irrational numbers, we should say what they are.

Definition 0.28
An irrational number is a real number that is not rational.

Unlike N, Z,Q, R, C, there is no standard single letter expressing the irrational numbers. How-
ever, by the end of Section 2.1, we will be able to write the set of irrational numbers as R\ Q.

Note in particular that ‘irrational’ does not simply mean ‘not rational’—that would imply that
all complex numbers which are not real are irrational—rather, the term ‘irrational’ means ‘real
and not rational’.

13
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Proving that a real number is irrational is not particularly easy. We will get our foot in the door
by allowing ourselves to assume the following result, which is restated and proved in Proposi-
tion 3.1.48.

Proposition 0.29
The real number /2 is irrational. O

We can use the fact that v/2 is irrational to prove some facts about the relationship between
rational numbers and irrational numbers.

Proposition 0.30
Let a and b be irrational numbers. It is possible that ab be rational.

Proof
Let a = b = /2. Then a and b are irrational, and ab = 2 = %, which is rational. O

Exercise 0.31
Let r be a rational number and let a be an irrational number. Prove that it is possible that ra be
rational, and it is possible that ra be irrational. <

Complex numbers (C)

We have seen that multiplication by real numbers corresponds with scaling and reflection of the
number line—scaling alone when the multiplicand is positive, and scaling with reflection when
it is negative. We could alternatively interpret this reflection as a rotation by half a turn, since
the effect on the number line is the same. You might then wonder what happens if we rotate by
arbitrary angles, rather than only half turns.

What we end up with is a plane of numbers, not merely a line—see Figure 1. Moreover, it
happens that the rules that we expect arithmetic operations to satisfy still hold—addition corres-
ponds with translation, and multiplication corresponds with scaling and rotation. This resulting
number set is that of the complex numbers.

Definition 0.32

The complex numbers are those obtained by the non-negative real numbers upon rotation by
any angle about the point 0. We write C (I4TEX code: \mathbb{C}) for the set of all complex
numbers; thus, the notation ‘z € C’ means that z is a complex number.

There is a particularly important complex number, i, which is the point in the complex plane
exactly one unit above O—this is illustrated in Figure 1. Multiplication by i has the effect of
rotating the plane by a quarter turn anticlockwise. In particular, we have i> = i-i = —1; the
complex numbers have the astonishing property that square roots of all complex numbers exist
(including all the real numbers).

14
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Figure 1: Illustration of the complex plane, with some points labelled.

15
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In fact, every complex number can be written in the form a + bi, where a,b € R; this number
corresponds with the point on the complex plane obtained by moving a units to the right and b
units up, reversing directions as usual if a or b is negative. Arithmetic on the complex numbers
works just as with the real numbers; in particular, using the fact that ;> = —1, we obtain

(a+bi)+ (c+di)=(a+c)+ (b+d)i and (a+bi)-(c+di)= (ac—bd)+ (ad+ bc)i

We will discuss complex numbers further in the portion of this chapter on polynomials below.

Polynomials

The integers, rational numbers, real numbers and complex numbers are all examples of rings,
which means that they come equipped with nicely behaving notions of addition, subtraction and
multiplication.

Definition 0.33
Let A be one Z, Q, R or C. A (univariate) polynomial over A in the indeterminate x is an
expression of the form

ap+aix+---+apx"

where n € N and each a; € A. The numbers a; are called the coefficients of the polynomial. If
not all coefficients are zero, the largest value of k for which a; # 0 is called the degree of the
polynomial. By convention, the degree of the polynomial 0 is —oo.

Polynomials of degree 1, 2, 3, 4 and 5 are respectively called linear, quadratic, cubic, quartic
and quintic polynomials.

Example 0.34
The following expressions are all polynomials:

3 -1 (34’ —x

Their degrees are 0, 1 and 2, respectively. The first two are polynomials over Z, and the third is
a polynomial over C. <

Exercise 0.35
Write down a polynomial of degree 4 over R which is not a polynomial over Q. <

Notation 0.36

Instead of writing out the coefficients of a polynomial each time, we may write something like
p(x) or g(x). The “(x)’ indicates that x is the indeterminate of the polynomial. If ¢ is a number!?!
and p(x) is a polynomial in indeterminate x, we write p(o) for the result of substituting o for
x in the expression p(x).

[2lWhen dealing with polynomials, we will typically reserve the letter x for the indeterminate variable, and use the
Greek letters o, 8,7 (IZTgX code: \alpha, \beta, \gamma)for numbers to be substituted into a polynomial.

16
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Note that, if A is any of the sets N, Z, Q, R or C, and p(x) is a polynomial over A, then p(a) € A
forall a € A.

Example 0.37
Let p(x) = x> —3x? +3x — 1. Then p(x) is a polynomial over Z with indeterminate x. For any
integer @, the value p(a) will also be an integer. For example

p(0)=0°-3-0°+3-0-1=~1 and p(3)=3’-3-33+3-3-1=8

Definition 0.38
Let p(x) be a polynomial. A root of p(x) is a complex number & such that p(a) = 0.

The quadratic formula (Theorem 1.1.31) tells us that the roots of the polynomial x> + ax + b,
where a,b € C, are precisely the complex numbers

—a++Va*—4b —a—+a*—4b

> and >

Note our avoidance of the symbol ‘+’, which is commonly found in discussions of quadratic
polynomials. The symbol ‘+’ is dangerous because it may suppress the word ‘and’ or the word
‘or’, depending on context—this kind of ambiguity is not something that we will want to deal
with when discussing the logical structure of a proposition in Chapter 1!

Example 0.39
Let p(x) = x*> — 2x+5. The quadratic formula tells us that the roots of p are

=14++v/—4=1+2i and =1-v—4=1-2i

2+4—45 2—\A—45
2 2

The numbers 1+ 2i and 1 — 2i are related in that their real parts are equal and their imaginary
parts differ only by a sign. Exercise 0.40 generalises this observation. <

Exercise 0.40
Let oo = a+ bi be a complex number, where a,b € R. Prove that « is the root of a quadratic
polynomial over R, and find the other root of this polynomial. <

The following exercise proves the well-known result which classifies the number of real roots of
a polynomial over R in terms of its coefficients.

Exercise 0.41

Let a,b € C and let p(x) = x*> +ax+ b. The value A = a® — 4b is called the discriminant of p.
Prove that p has two roots if A # 0 and one root if A = 0. Moreover, if a,b € R, prove that p has
no real roots if A < 0, one real root if A = 0, and two real roots if A > 0. <

17



18 Chapter 0. Getting started

Example 0.42

Consider the polynomial x> —2x + 5. Its discriminant is equal to (—2)? —4-5 = —16, which is
negative. Exercise 0.41 tells us that it has two roots, neither of which are real. This was verified
by Example 0.39, where we found that the roots of x> —2x+ 5 are 1+ 2i and 1 — 2i.

Now consider the polynomial x> — 2x — 3. Its discriminant is equal to (—2)> —4-(—3) = 16,
which is positive. Exercise 0.41 tells us that it has two roots, both of which are real; and indeed

K —2x—3=(x+1)(x—3)

so the roots of x2 — 2x — 3 are —1 and 3. <

18



Chapter 1

Logical structure

The goal of this chapter is to develop a methodical way of breaking up a proposition into smaller
components and seeing how these components fit together—this is called the logical structure
of a proposition. The logical structure of a proposition is very informative: it tells us what we
need to do in order to prove it, what we need to write in order to communicate our proof, and
how to explore the consequences of the proposition after it has been proved.

logical structure of a

proposition
strategies for proving structure and wording consequences of
the proposition of the proof the proposition

Sections 1.1 and 1.2 are dedicated to developing a system of symbolic logic for reasoning about
propositions. We will be able to represent a proposition using a string of variables and sym-
bols, and this expression will guide how we can prove the proposition and explore its con-
sequences. In Section 1.3 we will develop techniques for manipulating these logical expressions
algebraically—this, in turn, will yield new proof techniques (some have fancy names like ‘proof
by contraposition’, but some do not).

Exploring how the logical structure of a proposition informs the structure and wording of its
proof is the content of Appendix A.2.
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20 Chapter 1. Logical structure

Section 1.1
Propositional logic

Every mathematical proof is written in the context of certain assumptions being made, and cer-
tain goals to be achieved.

e Assumptions are the propositions which are known to be true, or which we are assuming to
be true for the purposes of proving something. They include theorems that have already been
proved, prior knowledge which is assumed of the reader, and assumptions which are explicitly
made using words like ‘suppose’ or ‘assume’.

e Goals are the propositions we are trying to prove in order to complete the proof of a result, or
perhaps just a step in the proof.

With every phrase we write, our assumptions and goals change. This is perhaps best illustrated
by example. In Example 1.1.1 below, we will examine the proof of Proposition 0.15 in detail,
so that we can see how the words we wrote affected the assumptions and goals at each stage
in the proof. We will indicate our assumptions and goals at any given stage using tables—the
assumptions listed will only be those assumptions which are made explicitly; prior knowledge
and previously proved theorems will be left implicit.

Example 1.1.1
The statement of Proposition 0.15 was as follows:

Let a,b,c € Z. If ¢ divides b and b divides a, then c divides a.

The set-up of the proposition instantly gives us our initial assumptions and goals:

Assumptions ‘ Goals
If ¢ divides b and b divides a, then
a,b,ceZ .
¢ divides a

We will now proceed through the proof, line by line, to see what effect the words we wrote had
on the assumptions and goals.

Since our goal was an expression of the form ‘if...then...’, it made sense to start by assuming
the ‘if’ statement, and using that assumption to prove the ‘then’ statement. As such, the first
thing we wrote in our proof was:

Suppose that ¢ divides b and b divides a.

Our updated assumptions and goals are reflected in the following table.

20



Section 1.1. Propositional logic 21

Assumptions Goals
a,b,ceR ¢ divides a
c divides b
b divides a

Our next step in the proof was to unpack the definitions of ‘c divides b’ and ‘b divides a’, giving
us more to work with.

Suppose that ¢ divides b and b divides a. By Definition 0.12, it follows that
b=gc and a=rb
for some integers ¢ and r.

This introduces two new variables g, r and allows us to replace the assumptions ‘c divides b’ and
‘b divides a’ with their definitions.

Assumptions Goals
a,b,c,q,r € Z c divides a
b=gqc
a=rb

At this point we have pretty much exhausted all of the assumptions we can make, and so our
attention turns towards the goal—that is, we must prove that ¢ divides a. At this point, it helps
to ‘work backwards’ by unpacking the goal: what does it mean for ¢ to divide a? Well, by
Definition 0.12, we need to prove that a is equal to some integer multiplied by c—this will be
reflected in the following table of assumptions and goals.

Since we are now trying to express a in terms of ¢, it makes sense to use the equations we have
relating a with b, and b with c, to relate a with c.
Suppose that ¢ divides b and b divides a. By Definition 0.12, it follows that
b=gqc and a=rb

for some integers ¢ and r. Using the first equation, we may substitute gc for b in the
second equation, to obtain
a=r(qc)

We are now very close, as indicated in the following table.
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Assumptions Goals
a,b,c,q,r €7 a = [some integer| - ¢
b=gqc
a=rb
a=r(qc)

Our final step was to observe that the goal has at last been achieved:

Suppose that c divides b and b divides a. By Definition 0.12, it follows that
b=qgc and a=rb

for some integers g and r. Using the first equation, we may substitute gc for b in the
second equation, to obtain
a=r(gc)

But r(gc) = (rg)c, and rq is an integer,

Assumptions Goals
a,b,c,q,r € Z
b=gqc
a=rb
a=r(qe)
a=(rg)c
rq €7

Now that there is nothing left to prove, it is helpful to reiterate that point so that the reader has
some closure on the matter.

Suppose that c divides b and b divides a. By Definition 0.12, it follows that

b=qgc and a=rb

for some integers ¢ and r. Using the first equation, we may substitute gc for b in the
second equation, to obtain
a=r(qc)

But r(gc) = (rg)c, and rq is an integer, so it follows from Definition 0.12 that ¢
divides a.
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Symbolic logic
Consider again the proposition that we proved in Proposition 0.15 (for given integers a, b, c):
If ¢ divides b and b divides a, then c divides a.

The three statements ‘c divides b’, ‘b divides @’ and ‘c divides @’ are all propositions in their own
right, despite the fact that they all appear inside a more complex proposition. We can examine
the logical structure of the proposition by replacing these simpler propositions with symbols,
called propositional variables. Writing P to represent ‘c divides b’, Q to represent ‘b divides a’
and R to represent ‘c divides a’, we obtain:

If P and Q, then R.

Breaking down the proposition in this way makes it clear that a feasible assume P and Q, and then
derive R from these assumptions—this is exactly what we did in the proof, which we examined
in great detail in Example 1.1.1. But importantly, it suggests that the same proof strategy might
work for other propositions which are also of the form ‘if P and Q, then R’, such as the following
proposition (for a given integer n):

If n > 2 and n is prime, then # is odd.

Observe that the simpler propositions are joined together to form a more complex proposition
using language, namely the word ‘and’ and the construction ‘if... then... —we will represent
these constructions symbolically using logical operators, which will be introduced in Defini-
tion 1.1.3.

Zooming in even more closely, we can use Definition 0.12 to observe that ‘c divides b’ really
means ‘b = gc for some g € Z’. The expression ‘for some g € Z’ introduces a new variable
g, which we must deal with appropriately in our proof. Words which we attach to variables
in our proofs—such as ‘any’, ‘exists’, ‘all’, ‘some’, ‘unique’ and ‘only’—will be represented
symbolically using quantifiers, which we will study in Section 1.2.

By breaking down a complex proposition into simpler statements which are connected together
using logical operators and quantifiers, we can more precisely identify what assumptions we can
make at any given stage in a proof of the proposition, and what steps are needed in order to finish
the proof.

Propositional formulae

We begin our development of symbolic logic with some definitions to fix our terminology.
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24 Chapter 1. Logical structure

Definition 1.1.2
A propositional variable is a symbol that represents a proposition. Propositional variables may
be assigned truth values (‘true’ or ‘false’).

We will typically use the lower-case letters p, g, r and s as our propositional variables. It is
also common to use upper-case letters P,Q,R,..., like we did earlier, or even Greek letters

q’a%v‘llw"'

We will be able to form more complex expressions representing propositions by connecting
together simpler ones using logical operators such as A (which represents ‘and’), V (which
represents ‘or’), = (which represents ‘if...then...") and — (which represents ‘not’).

The definition of the notions of logical operator and propositional formula given below is a little
bit difficult to digest—it is very abstract and even appears circular—so it is best understood by
considering examples of propositional formulae and instances of logical operators. Fortunately
we will see plenty of these, since they are the central objects of study for the rest of this section.

Definition 1.1.3

A propositional formula is an expression that is either a propositional variable, or is built up
from simpler propositional formulae (‘subformulae’) using a logical operator. In the latter case,
the truth value of the propositional formula is determined by the truth values of the subformulae
according to the rules of the logical operator.

On first sight, Definition 1.1.3 seems circular—it defines the term ‘propositional formula’ in
terms of propositional formulae! But in fact it is not circular; it is an example of a recursive
definition (we avoid circularity with the word ‘simpler’). To illustrate, consider the following
example of a propositional formula:

(pNq)=r

This expression represents a proposition of the form ‘if p and g, then r’, where p, g, r are them-
selves propositions. It is built from the subformulae p A g and r using the logical operator =,
and p A q is itself built up from the subformulae p and g using the logical operator A.

The truth value of (p A q) = r is then determined by the truth values of the constituent proposi-
tional variables (p, g and r) according to the rules for the logical operators A and =-.

If this all seems a bit abstract, that is because it is abstract, and you are forgiven if it makes no
sense to you yet. From this point onwards, we will only study particular instances of logical
operators, which will make it all much easier to understand.

Conjunction (‘and’, A)

Conjunction is the logical operator which makes precise what we mean when we say ‘and’.
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Definition 1.1.4
The conjunction operator is the logical operator A (IXIEX code: \wedge), defined according to
the following rules:

e (AD If pis true and ¢ is true, then p A q is true;
e (AEp) If pAgqis true, then p is true;

e (AEp) If p A g is true, then g is true.

The expression p A g represents ‘p and q’.

It is not always obvious when conjunction is being used; sometimes it sneaks in without the
word ‘and’ ever being mentioned! Be on the look-out for occasions like this, such as in the
following exercise.

Example 1.1.5
We can express the proposition ‘7 is a prime factor of 28’ in the form p A g, by letting p represent
the proposition ‘7 is prime’ and letting g represent the proposition ‘7 divides 28’. <

Exercise 1.1.6
Express the proposition ‘Clive is a mathematician who lives in Pittsburgh’ in the form p A ¢, for
propositions p and q. <

The rules in Definition 1.1.4 are examples of rules of inference—they tell us how to deduce (or
‘infer’) the truth of one propositional formula from the truth of other propositional formulae. In
particular, rules of inference never directly tell us when a proposition is false—in order to prove
something is false, we will prove its negation is true (see Definition 1.1.37).

Rules of inference tell us how to use the logical structure of propositions in proofs:

e The rule (AI) is an introduction rule, meaning that it tells us how to prove a goal of the form
p N\ g—indeed, if we want to prove that p A g is true, (AI) tells us that it suffices to prove that
p is true and prove that g is true.

e The rules (AE;) and (AEy) are elimination rules, meaning that they tell us how to use an
assumption of the form p A g—indeed, if we are assuming that p A g is true, we are then free
to use the fact that p is true and the fact that ¢ is true.

Each logical operator will come equipped with some introduction and/or elimination rules,
which tell us how to prove goals or use assumptions which include the logical operator in ques-
tion. It is in this way that the logical structure of a proposition informs proof strategies, like the
following:
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26 Chapter 1. Logical structure

Strategy 1.1.7 (Proving conjunctions)
A proof of the proposition p /A g can be obtained by tying together two proofs, one being a proof
that p is true and one being a proof that g is true. <

Example 1.1.8

Suppose we are required to prove that 7 is a prime factor of 28. In Example 1.1.5 we expressed
“7 is a prime factor of 28’ as the conjunction of the propositions ‘7 is prime’ and ‘7 divides 28,
and so Strategy 1.1.7 breaks down the proof into two steps: first prove that 7 is prime, and then
prove that 7 divides 28. <

Much like Strategy 1.1.7 was informed by the introduction rule for A, the elimination rules
inform how we may make use of an assumption involving a conjunction.

Strategy 1.1.9 (Assuming conjunctions)
If an assumption in a proof has the form p A g, then we may assume p and assume ¢ in the
proof. <

Example 1.1.10

Suppose that, somewhere in the process of proving a proposition, we arrive at the fact that 7 is
a prime factor of 28. Strategy 1.1.9 then allows us to use the separate facts that 7 is prime and
that 7 divides 28. <

Strategies 1.1.7 and 1.1.9 seem almost obvious. To an extent they are obvious, and that is why
we are stating them first. But the real reason we are going through the process of precisely
defining logical operators, their introduction and elimination rules, and the corresponding proof
strategies, is that when you are in the middle of the proof of a complicated result, it is all too
easy to lose track of what you have already proved and what remains to be proved. Keeping
track of the assumptions and goals in a proof, and understanding what must be done in order to
complete the proof, is a difficult task.

To avoid drawing this process out too long, we need a compact way of expressing rules of
inference that allows us to simply read off corresponding proof strategies. We could use tables
of assumptions and goals like in Example 1.1.1, but this quickly becomes clunky—indeed, even
the very simple conjunction introduction rule (AI) doesn’t look very nice in this format:

Assumptions Goals Assumptions Goals
) 20X} ~ : p
q

Instead, we will represent rules of inference in the style of natural deduction. In this style, we
write the premises p1, pa, ..., pr of arule above a line, with a single conclusion g below the line,
representing the assertion that the truth of a proposition ¢ follows from the truth of (all of) the
premises pi, pa, ..., Pk
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P P2 Pk

For instance, the introduction and elimination rules for conjunction can be expressed concisely
follows:

p q PNg PNg
W (A1) D (AE7) q

(AE2)

In addition to its clean and compact nature, this way of writing rules of inference is useful
because we can combine them into proof trees in order to see how to prove more complicated
propositions. For example, consider the following proof tree, which combines two instances of
the conjunction introduction rule.

p q
PAg r
(pAq) N

From this proof tree, we obtain a strategy for proving a proposition of the form (p A g) Ar.
Namely, first prove p and prove g, to conclude p A g; and then prove r, to conclude (p Ag) Ar.
This illustrates that the logical structure of a proposition informs how we may structure a proof
of the proposition.

Exercise 1.1.11

Write a proof tree whose conclusion is the propositional formula (p Ag) A (r As), where p,q,r,s
are propositional variables. Express ‘2 is an even prime number and 3 is an odd prime number’
in the form (p A g) A (r A's), for appropriate propositions p, ¢, r and s, and describe how your
proof tree suggests what a proof might look like. <

Disjunction (‘or’, V)

Definition 1.1.12
The disjunction operator is the logical operator V (I£IEX code: \vee), defined according to the
following rules:

e (V1) If pis true, then pV q is true;
e (VD) If g is true, then p V q is true;

e (VE) If pV qis true, and if r can be derived from p and from g, then r is true.

The expression pV g represents ‘p or g’.
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28 Chapter 1. Logical structure

The introduction and elimination rules for disjunction are represented diagramatically as fol-
lows.

[P] [61]
p q ! !
pVq r r

pVq v pVq Vi) r (VE)

We will discuss what the notation [p] ~» r and [¢] ~~ r means momentarily. First, we zoom in on
how the disjunction introduction rules inform proofs of propositions of the form ‘p or q’.

Strategy 1.1.13 (Proving disjunctions)
In order to prove a proposition of the form pV g, it suffices to prove just one of p or g. <

Example 1.1.14

Suppose we want prove that 8192 is not divisible by 3. We know by the division theorem
(Theorem 0.18) that an integer is not divisible by 3 if and only if it leaves a remainder of 1 or 2
when divided by 3, and so it suffices to prove the following:

8192 leaves a remainder of 1 8192 leaves a remainder of 2
when divided by 3 when divided by 3

A quick computation reveals that 8192 = 2730 x 3 4 2, so that 8192 leaves a remainder of 2
when divided by 3. By Strategy 1.1.13, the proof is now complete, since the full disjunction
follows by (VIp). <

Example 1.1.15
Let p,q,r,s be propositional variables. The propositional formula (pV g) A (rV s) represents ‘p
or g, and r or s’. What follows are two examples of truth trees for this propositional formula.

(V1y)

(V1)

(VIz)

p r q
pVqg rvs D pVgq "

(PV@) A (rVs) (PVa)A(rvs)

The proof tree on the left suggests the following proof strategy for (pV ¢) A (rV's). First prove
p, and deduce pV g; then prove r, and deduce rV s; and finally deduce (pV g) A (rVs). The
proof tree on the right suggests a different strategy, where p V ¢ is deduced by proving ¢ instead
of p, and r Vs is deduced by proving s instead of r.

Selecting which (if any) of these to use in a proof might depend on what we are trying to prove.
For example, for a fixed natural number n, let p represent ‘n is even’, let g represent ‘n is
odd’, let r represent ‘n > 2’ and let s represent ‘n is a perfect square’. Proving (pV g) A (rVs)
when n = 2 would be most easily done using the left-hand proof tree above, since p and r
are evidently true when n = 2. However, the second proof tree would be more appropriate for
proving (pVq) A (rVs) whenn = 1. <
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Aside
If you haven’t already mixed up A and V, you probably will soon, so here’s a way of remember-
ing which is which:

fish n chips
If you forget whether it’s A or V that means ‘and’, just write it in place of the ‘n’ in ‘fish n chips’:
fish A chips fish V chips

Clearly the first looks more correct, so A means ‘and’. If you don’t eat fish (or chips), then worry
not, as this mnemonic can be modified to accommodate a wide variety of dietary restrictions;
for instance ‘mac n cheese’ or ‘quinoa n kale’. <

Recall the diagrammatic statement of the disjunction elimination rule:

pVgq e

The curious notation [p] ~~ r indicates that p is a temporary assumption. In the part of the proof
corresponding to [p] ~~ r, we would assume that p is true and derive r from that assumption, and
remove the assumption that p is true from that point onwards. Likewise for [g] ~~ r.

The proof strategy obtained from the disjunction elimination rule is called proof by cases.

Strategy 1.1.16 (Assuming disjunctions—proof by cases)

If an assumption in a proof has the form p V ¢, then we may derive a proposition r by splitting
into two cases: first, derive r from the temporary assumption that p is true, and then derive r
from the assumption that g is true. <

The following example illustrates how Strategies 1.1.13 and 1.1.16 can be used together in a
proof.

Example 1.1.17
Let n be a positive proper factor of 4, and suppose we want to prove that # is either even or a
perfect square.

e Our assumption that n is a positive proper factor of 4 can be expressed as the disjunction
n=1vn=2.

e Our goal is to prove the disjunction ‘n is even V n is a perfect square’.
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According to Strategy 1.1.9, we split into two cases, one in which n = 1 and one in which
n = 2. In each case, we must derive ‘n is even V n is a perfect square’, for which it suffices by
Strategy 1.1.13 to derive either that n is even or that n is a perfect square. Thus a proof might
look something like this:

Since n is a positive proper factor of 4, either n =1 or n = 2.

e Case 1. Suppose n = 1. Then since 12 = 1 we have n = 12, so that n is a perfect
square.

e Case 2. Suppose n = 2. Then since 2 = 2 x 1, we have that n is even.

Hence n is either even or a perfect square. <

Notice that in both Case 1 and Case 2, we did not explicitly mention that we had proved that
‘nis even V n is a perfect square’, leaving that deducgion to the reader—we only mentioned it
after the proofs in each case were complete. <

The proof of Proposition 1.1.18 below splits into three cases, rather than just two.

Proposition 1.1.18
Let n € Z. Then n? leaves a remainder of 0 or 1 when divided by 3.

Proof
Let n € Z. By the division theorem (Theorem 0.18), one of the following must be true for some
ke Z:

n=3k or n=3k+1 or n=3k+2

e Suppose n = 3k. Then
n? = (3k)* = 9k*> =3 - (3k?)

So n? leaves a remainder of 0 when divided by 3.
e Suppose n = 3k+ 1. Then
n? = (3k+1)* = 9k* +6k+1=3(3k* +2k) + 1
So n? leaves a remainder of 1 when divided by 3.
e Suppose n = 3k+2. Then
n? = (3k+2)? =92+ 12k+4 =3(3k> + 4k + 1)+ 1
So n? leaves a remainder of 1 when divided by 3.

In all cases, n? leaves a remainder of 0 or 1 when divided by 3. O
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Note that in the proof of Proposition 1.1.18, unlike in Example 1.1.17, we did not explictly use
the word ‘case’, even though we were using proof by cases. Whether or not to make your proof
strategies explicit is up to you—discussion of this kind of matter can be found in Appendix A.2.

When completing the following exercises, try to keep track of exactly where you use the intro-
duction and elimination rules that we have seen so far.

Exercise 1.1.19
Let n be an integer. Prove that n” leaves a remainder of 0, 1 or 4 when divided by 5. <

Exercise 1.1.20
Let a,b € R and suppose a®> —4b # 0. Let a and B be the (distinct) roots of the polyonomial
x? +ax+ b. Prove that there is a real number ¢ such that either & — 8 = c or o« — 8 = ci. <

Implication (‘if... then...’, =)

Definition 1.1.21
The implication operator is the logical operator = (I£IEX code: \Rightarrow), defined ac-
cording to the following rules:

e (=) If g can be derived from the assumption that p is true, then p = q is true;

e (=E)If p=- g s true and p is true, then q is true.

The expression p = g represents ‘if p, then g’.

]

$

q p=q p
=4 (=1 T (=E)

Strategy 1.1.22 (Proving implications)
In order to prove a proposition of the form p = ¢, it suffices to assume that p is true, and then
derive g from that assumption. <

The following proposition illustrates how Strategy 1.1.22 can be used in a proof.

Proposition 1.1.23
Let x and y be real numbers. If x and x + y are rational, then y is rational.

Proof
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Suppose x and x + y are rational. Then there exist integers a,b, c,d with b,d # 0 such that

=2 and x+y=°
b YT

It then follows that
_ ( n ) _ ¢ a _ bc —ad
Y T Ty T ba

Since bc — ad and bd are integers, and bd # 0, it follows that y is rational. |

The key phrase in the above proof was ‘Suppose x and x +y are rational.” This introduced the
assumptions x € Q and x+y € Q, and reduced our goal to that of deriving a proof that y is
rational—this was the content of the rest of the proof.

Exercise 1.1.24
Let p(x) be a polynomial over C. Prove that if & is a root of p(x), and a € C, then « is a root of

(x—a)p(x). <

The elimination rule for implication (=E) is more commonly known by the Latin name modus
ponens.

Strategy 1.1.25 (Assuming implications—modus ponens)
If an assumption in a proof has the form p = ¢, and p is also assumed to be true, then we may
also assume that ¢ is true. <

Strategy 1.1.16 is frequently used to reduce a more complicated goal to a simpler one. Indeed,
if we know that p = ¢ is true, and if p is easy to verify, then it allows us to prove g by proving
p instead.

Example 1.1.26
Let f(x) = x>+ ax+ b be a polynomial with a,b € R, and let A = a*> — 4b be its discriminant.
Part of Exercise 0.41 was to prove that:

(1) If A> 0, then f has two real roots;
(i) If A= 0, then f has one real root;
(iii) If A <0, then f has no real roots.

Given the polynomial f(x) = x> — 68 4 1156, it would be a pain to go through the process of
solving the equation f(x) = 0 in order to determine how many real roots f has. However, each of
the propositions (i), (ii) and (iii) take the form p = ¢, so Strategy 1.1.25 reduces the problem of
finding how many real roots f has to that of evaluating A and comparing it with 0. And indeed,
(—68)2 —4 x 1156 = 0, so the implication (ii) together with (=E) tell us that f has one real
root. <
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A common task faced by mathematicians is to prove that two conditions are equivalent. For
example, given a polynomial f(x) = x* +ax+ b with a,b € R, we know that if a*> —4b > 0 then
£ has two real roots, but is it also true that if f has two real roots then a> —4b > 0? (The answer
is ‘yes’.) The relationship between these two implications is that each is the converse of the
other.

Definition 1.1.27
The converse of a proposition of the form p = ¢ is the proposition g = p.

A quick remark on terminology is pertinent. The following table summarises some common
ways of referring to the propositions ‘p = ¢’ and ‘g = p’.

P=4q qg=7r
if p, then ¢ if g, then p
p only if g pifqg

p is sufficient for g | p is necessary for ¢q

We so often encounter the problem of proving both an implication and its converse that we
introduce a new logical operator that represents the conjunction of both.

Definition 1.1.28

The biconditional operator is the logical operator < (I£TX code: \Leftrightarrow), defined
by declaring p < ¢ to mean (p = g) A (¢ = p). The expression p < ¢ represents ‘p if and only
if g°.

Many examples of biconditional statements come from solving equations; indeed, to say that the
values o, ..., &, are the solutions to a particular equation is precisely to say that
xisasolution < Xx=0 orx=0por ---orx=oy

Example 1.1.29
We find all real solutions x to the equation

Vx—=3+vVx+4=17
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Let’s rearrange the equation to find out what the possible solutions may be.

Vx—3+Vx+4=17
= (x—=3)+2/(x=3)(x+4)+ (x+4) =49 squaring
= ZW =48 —2x rearranging
= 4(x—3)(x+4) = (48 —2x)? squaring
= 4x% +4x — 48 = 2304 — 192x + 4x? expanding
= 196x =2352 rearranging
=x=12 dividing by 196

You might be inclined to stop here. Unfortunately, all we have proved is that, given a real
number x, if x solves the equation v/x —3+4+/x+4 =7, then x = 12. This narrows down the set
of possible solutions to just one candidate—but we still need to check the converse, namely that
if x =12, then x is a solution to the equation.

As such, to finish off the proof, note that

VI2=3+V12+4=V9+V16=3+4=7

and so the value x = 12 is indeed a solution to the equation. <

The last step in Example 1.1.29 may have seemed a little bit silly; but Example 1.1.30 demon-
strates that proving the converse when solving equations truly is necessary.

Example 1.1.30
We find all real solutions x to the equation

x++v/x=0
We proceed as before, rearranging the equation to find all possible solutions.
x+v/x=0
=x=—Vx rearranging
= x> =x squaring
=x(x—1)=0 rearranging

=x=0o0rx=1
Now certainly 0 is a solution to the equation, since
0+v/0=0+0=0
However, 1 is not a solution, since

1+Vi=1+1=2
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Hence it is actually the case that, given a real number x, we have
x+vVx=0 & x=0

Checking the converse here was vital to our success in solving the equation! <

A slightly more involved example of a biconditional statement arising from the solution to an
equation—in fact, a class of equations—is the proof of the quadratic formula.

Theorem 1.1.31 (Quadratic formula)
Leta,b € C. A complex number « is a root of the polynomial x> + ax + b if and only if

_ —a+Va*—4b —a—+a?—4b

o= or o=
2 2
Proof
First we prove that if « is a root, then ¢ is one of the values given in the statement of the
proposition. So suppose o be a root of the polynomial x> + ax + b. Then

a’+aa+b=0

The algebraic technique of ‘completing the square’ tells us that

2

o’ +ao = (a+g)2—a—
N 2 4

and hence 5

a\?2 a
-] ——+b=0
(‘”2) i

Rearranging yields

(a+a)2_a2 b_a2—4b
2/ 4 7 4
Taking square roots gives
aploYe-4 L a_—vVae-4b
22 2 2

and, finally, subtracting 5 from both sides gives the desired result.

The proof of the converse is Exercise 1.1.32. O

Exercise 1.1.32
Complete the proof of the quadratic formula. That is, for fixed a,b € C, prove that if

_ —a+Va*—4b —a—+va?—4b

o= or o=
2 2

then « is a root of the polynomial x> + ax + b. <
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Another class of examples of biconditional propositions arise in finding necessary and sufficient
criteria for an integer n to be divisible by some number—for example, that an integer is divisible
by 10 if and only if its base-10 expansion ends with the digit 0.

Example 1.1.33
Let n € N. We will prove that # is divisible by 8 if and only if the number formed of the last
three digits of the base-10 expansion of 7 is divisible by 8.

First, we will do some ‘scratch work’. Let d,d,_1 ...ddy be the base-10 expansion of n. Then
n=d, 10" +d,_; - 107 '+ 4+d; - 10+d

Define
n' = d2d1d0 and n// =n-— n/ = d,d,,1 .. .d4d3000

Now n—n' =1000-d,d,_; ...dsds and 1000 = 8 - 125, so it follows that 8 divides n”.

Our goal is now to prove that 8 divides n if and only if 8 divides n’.

e (=) Suppose 8 divides n. Since 8 divides n”, it follows from Exercise 0.16 that 8 divides
an+bn" for all a,b € Z. But
n"=n—(n-n)=n-n"=1.-n+(-1)-n"

so indeed 8 divides 7/, as required.

e (<) Suppose 8 divides n’. Since 8 divides n”, it follows from Exercise 0.16 that 8 divides
an’ +bn" for all a,b € 7. But

n=n+n-n)=n"+n"=1.1"+1-n"

so indeed 8 divides n, as required.

Exercise 1.1.34
Prove that a natural number 7 is divisible by 3 if and only if the sum of its base-10 digits is
divisible by 3. <

Negation (‘not’, —)

So far we only officially know how to prove that true propositions are true. The negation operator
makes precise what we mean by ‘not’, which allows us to prove that false propositions are false.

Definition 1.1.35
A contradiction is a proposition that is known or assumed to be false. We will use the symbol
L (I5TgX code: \bot) to represent an arbitrary contradiction.
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Example 1.1.36

Some examples of contradictions include the assertion that O = 1, or that V/2 is rational, or that

the equation x> = —1 has a solution x € R. <

Definition 1.1.37
The negation operator is the logical operator — (I£IEX code: \neg), defined according to the
following rules:

e (1) If a contradiction can be derived from the assumption that p is true, then —p is true;

e (—E) If =p and p are both true, then a contradiction may be derived.

The expression —p represents ‘not p’ (or ‘p is false’).

[p]

§

_J‘;) (“I) y (—‘E)

Aside

The rules (—1) and (—E) closely resemble (=1) and (=E)—indeed, we could simply define —p
to mean ‘p = _L’, where | represents an arbitrary contradiction, but it will be easier later on to
have a primitive notion of negation. <

The introduction rule for negation (—I) gives rise to a proof strategy called proof by contradic-
tion, which turns out to be extremely useful.

Strategy 1.1.38 (Proving negations—proof by contradiction)
In order to prove a proposition p is false (that is, that —p is true), it suffices to assume that p is
true and derive a contradiction. <

The following proposition has a classic proof by contradiction.

Proposition 1.1.39
Let r be a rational number and let a be an irrational number. Then r + a is irrational.

Proof
By Definition 0.28, we need to prove that r 4-a is real and not rational. It is certainly real, since
r and a are real, so it remains to prove that r 4 a is not rational.

Suppose r+ a is rational. Since r is rational, it follows from Proposition 1.1.23 that a is rational,
since
a=(r+a)—r
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This contradicts the assumption that a is irrational. It follows that » 4 a is not rational, and is
therefore irrational. U

Now you can try proving some elementary facts by contradiction.

Exercise 1.1.40
Let x € R. Prove by contradiction that if x is irrational then —x and % are irrational. <

Exercise 1.1.41
Prove by contradiction that there is no least positive real number. That is, prove that there is not
a positive real number a such that a < b for all positive real numbers b. <

A proof need not be a ‘proof by contradiction’ in its entirety—indeed, it may be that only a
small portion of the proof uses contradiction. This is exhibited in the proof of the following
proposition.

Proposition 1.1.42

Let a be an integer. Then a is odd if and only if a = 2b + 1 for some integer b.

Proof

Suppose a is odd. By the division theorem (Theorem 0.18), either a = 2b or a = 2b + 1, for
some b € Z. If a = 2b, then 2 divides a, contradicting the assumption that a is odd; so it must be
the case that a = 2b+ 1.

Conversely, suppose a = 2b+ 1. Then a leaves a remainder of 1 when divided by 2. However,
by the division theorem, the even numbers are precisely those that leave a remainder of 0 when
divided by 2. It follows that a is not even, so is odd. |

The elimination rule for the negation operator (—E) simply says that a proposition can’t be true
and false at the same time.

Strategy 1.1.43 (Assuming negations)
If an assumption in a proof has the form —p, then any derivation of p leads to a contradiction. <

The main use of Strategy 1.1.43 is for obtaining the contradiction in a proof by contradiction—in
fact, we have already used it in our examples of proof by contradiction! As such, we will not
dwell on it further.

Logical axioms

We wrap up this section by introducing a couple of additional logical rules (axioms) that we will
use in our proofs.

The first is the so-called law of excluded middle, which appears so obvious that it is not even
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worth stating (let alone naming)—what it says is that every proposition is either true or false.
But beware, as looks can be deceiving; the law of excluded middle is a non-constructive axiom,
meaning that it should not be accepted in settings it is important to keep track of how a propos-
ition is proved—simply knowing that a proposition is either true or false tells us nothing about
how it might be proved or refuted. In most mathematical contexts, though, it is accepted without
a second’s thought.

Axiom 1.1.44 (Law of excluded middle)
Let p be a propositional formula. Then pV (—p) is true.

The law of excluded middle can be represented diagramatically as follows; there are no premises
above the line, since we are simply asserting that it is true.

———F—F  LEM
pV(=p)

Strategy 1.1.45 (Using the law of excluded middle)
In order to prove a proposition ¢ is true, it suffices to split into cases based on whether some
other proposition p is true or false, and prove that g is true in each case. <

The proof of Proposition 1.1.46 below makes use of the law of excluded middle—note that we
defined ‘odd’ to mean ‘not even’ (Definition 0.17).

Proposition 1.1.46
Let a,b € Z. If ab is even, then either a is even or b is even (or both).

Proof
Suppose a,b € Z with ab even.

e Suppose a is even—then we’re done.
e Suppose a is odd. If b is also odd, then by Proposition 1.1.42 can write
a=2k+1 and b=20+1
for some integers k,¢. This implies that

ab = (2k+1)(20+1) = 4kl + 2k +20+ 1 = 2(2kl + k+€) + 1
€z

so that ab is odd. This contradicts the assumption that ab is even, and so » must in fact be
even.

In both cases, either a or b is even. Ol
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Exercise 1.1.47

Reflect on the proof of Proposition 1.1.46. Where in the proof did we use the law of excluded
middle? Where in the proof did we use proof by contradiction? What was the contradiction in
this case? Prove Proposition 1.1.46 twice more, once using contradiction and not using the law
of excluded middle, and once using the law of excluded middle and not using contradiction. <

Exercise 1.1.48

Let a and b be irrational numbers. By considering the number ﬂ\[, prove that it is possible
that a® be rational. <

Another logical rule that we will use is the principle of explosion, which is also known by its
Latin name, ex falso sequitur quodlibet, which approximately translates to ‘from falsity follows
whatever you like’.

Axiom 1.1.49 (Principle of explosion)
If a contradiction is assumed, any consequence may be derived.

Expl

The principle of explosion is a bit confusing on first sight. To shed a tiny bit of intuition on it,
think of it as saying that both true and false propositions are consequences of a contradictory
assumption. For instance, suppose that —1 = 1. From this we can obtain consequences that are
false, such as 0 = 2 by adding 1 to both sides of the equation, and consequences that are true,
such as 1 = 1 by squaring both sides of the equation.

We will rarely use the principle of explosion directly in our mathematical proofs, but we will
use it in Section 1.3 for proving logical formulae are equivalent.
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Section 1.2

Variables and quantifiers

Free and bound variables

Everything we did in Section 1.1 concerned propositions and the logical rules concerning their
proofs. Unfortunately if all we have to work with is propositions then our ability to do mathem-
atical reasoning will be halted pretty quickly. For example, consider the following statement:

x is divisible by 7

This statement seems like the kind of thing we should probably be able to work with if we’re
doing mathematics. It makes sense if x is a integer, such as 28 or 41; but it doesn’t make sense
at all if x is a parrot called Alex.*) In any case, even when it does make sense, its truth value
depends on x; indeed, ‘28 is divisible by 7’ is a true proposition, but ‘41 is divisible by 7’ is a
false proposition.

This means that the statement ‘x is divisible by 7’ isn’t a proposition—quel horreur! But it
almost is a proposition: if we know that x refers somehow to an integer, then it becomes a
proposition as soon as a particular numerical value of x is specified. The symbol x is called a
free variable.

Definition 1.2.1

Let x be a variable that is understood to refer to an element of a set X. In a statement involving
x, we say x is free if it makes sense to substitute particular elements of X in the statement;
otherwise, we say x is bound.

To represent statements that have free variables in them abstractly, we generalise the notion of a
propositional variable (Definition 1.1.2) to that of a predicate.

Definition 1.2.2

A predicate is a symbol p together with a specified list of free variables x;,xp,...,x, (Where
n € N) and, for each free variable x;, a specification of a set X; called the domain of discourse
(or range) of x;. We will typically write p(xj,xz,...,x,) in order to make the variables explicit.

(2l Alex the parrot is the only non-human animal to have ever been observed to ask an existential question; he died
in September 2007 so we may never know if he was divisible by 7, but it is unlikely. According to Time, his
last words were ‘you be good, see you tomorrow, I love you’. The reader is advised to finish crying before they
continue reading about variables and quantifiers.
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The statements represented by predicates are those that become propositions when specific val-
ues are substituted for their free variables from their respective domains of discourse. For ex-
ample, ‘x is divisible by 7’ is not a proposition, but it becomes a proposition when specific
integers (such as 28 or 41) are substituted for x.

This is a lot to take in, so let’s look at some examples.

Example 1.2.3

(i) We can represent the statement ‘x is divisible by 7° discussed above by a predicate p(x)
whose only free variable x has Z as its domain of discourse. Then p(28) is the true
proposition ‘28 is divisible by 7’ and p(41) is the false proposition ‘41 is divisible by 7’.

(i) A predicate with no free variables is precisely a propositional variable. This means that
the notion of a predicate generalises that of a propositional variable.

(iii) The expression 2" — 1 is prime’ can be represented by a predicate p(n) with one free
variable n, whose domain of discourse is the set N of natural numbers. Then p(3) is the
true proposition ‘23 — 1 is prime’ and p(4) is the false proposition 2* — 1 is prime’.

(iv) The expression ‘x —y is rational’ can be represented by a predicate g(x,y) with free vari-
ables x and y, whose domain of discourse is the set R of real numbers.

(v) The expression ‘there exist integers a and b such that x = a> + b’ has free variable x and
bound variables a,b. It can be represented by a predicate r(x) with one free variable x,
whose domain of discourse is Z.

(vi) The expression ‘every even natural number n > 2 is divisible by £’ has free variable k and
bound variable n. It can be represented by a predicate s(k) with one free variable k, whose
domain of discourse is N.

Quantifiers

Look again at the statements in parts (v) and (vi) of Example 1.2.3. Both contained bound
variables, which were so because we used words like ‘there exists’ and ‘every’—had we not
used these words, those variables would be free, as in ‘x = a®> + b’ and ‘n is divisible by k’.

Expressions that refer to how many elements of a set make a statement true, such as ‘there
exists’ and ‘every’, turn free variables into bound variables. We represent such expressions
using symbols called guantifiers, which are the central objects of study of this section.

The two main quantifiers used throughout mathematics are the universal quantifier V and the
existential quantifier 3. We will define these quantifiers formally later in this section, but for
now, the following informal definitions suffice:
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’

e The expression ‘Vx € X,...” denotes ‘for all x € X, ...
Definition 1.2.9;

and will be defined formally in

e The expression ‘Jx € X, ...” denotes ‘there exists x € X such that ...’ and will be defined
formally in Definition 1.2.17.

Note that we always place the quantifier before the statement, so even though we might write
or say things like ‘n = 2k for some integer k£’ or ‘x“ > 0 for all x € R’, we would express these
statements symbolically as ‘3k € Z, n = 2k’ and “Vx € R, x> > 0, respectively.

We will define a third quantifier 3! in terms of V and d to say that there is exactly one element of
a set making a statement true. There are plenty of other quantifiers out there, but they tend to be
specific to particular fields—examples include ‘almost everywhere’ in measure theory, ‘almost
surely’ in probability theory, ‘for all but finitely many’ in set theory and related disciplines, and
‘for fresh’ in the theory of nominal sets.

Using predicates, logical formulae and quantifiers, we are able to build up more complicated ex-
pressions, called logical formulae. Logical formulae generalise propositional formulae (Defini-
tion 1.1.3) in by allowing (free and bound) variables and quantification to occur.

Definition 1.2.4

A logical formula is an expression that is built from predicates using logical operators and
quantifiers; it may have both free and bound variables. The truth value of a logical formula
depends on its free variables according to the rules for logical operators and quantifiers.

Translating between plain English statements and purely symbolic logical formulae is an im-
portant skill to obtain:

e The plain English statements are easier to understand and are the kinds of things you would
speak aloud or write down when discussing the mathematical ideas involved.

e The symbolic logical formulae are what provide the precision needed to guide a proof of the
statement being discussed—we will see strategies for proving statements involving quantifiers
soon.

The following examples and exercise concern translating between plain English statements and
purely symbolic logical formulae.

Example 1.2.5

Recall that an integer » is even if and only if it is divisible by 2. According to Definition 0.12,
that is to say that ‘n is even’ means ‘n = 2k for some integer k’. Using quantifiers, we can express
‘miseven’ as ‘dk € Z,n =2k’.

The (false) proposition ‘every integer is even’ can then be written symbolically as follows.
First introduce a variable n to refer to an integer; to say ‘every integer is even’ is to say
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‘Vn € Z,nis even’, and so using the symbolic representation of ‘n is even’, we can express
‘every integer is even’ as Vn € Z, 3k € Z,n = 2k’. <

Exercise 1.2.6
Find logical formulae that represent each of the following English statements.

(a) There is an integer that is divisible by every integer.
(b) There is no greatest odd integer.
(c) Between any two distinct rational numbers is a third distinct rational number.

(d) If an integer has a rational square root, then that root is an integer.

Example 1.2.7
Consider the following logical formula.

VacR,(a>0=3bheR, a=0b>
If we translate this expression symbol-for-symbol, what it says is:

For every real number g, if a is non-negative,
then there exists a real number b such that a = b2.

Read in this way, it is not a particularly enlightening statement. However, we can distill the
robotic nature of the symbol-for-symbol reading by thinking more carefully about what the
statement really means.

Indeed, to say ‘a = b* for some real number b’ is exactly to say that a has a real square root—
after all, what is a square root of a if not a real number whose square is equal to a? This
translation eliminates explicit reference to the bound variable b, so that the statement now reads:

For every real number a, if a is non-negative, then a has a real square root.

We’re getting closer. Next note that instead of the clunky expression ‘for every real number a, if
a is non-negative, then ... °, we could just say ‘for every non-negative real number a, ...’ .

For every non-negative real number a, a has a real square root.

Finally, we can eliminate the bound variable a by simply saying:
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Every non-negative real number has a real square root.

This is now a meaningful expression that is much easier to understand than the logical formula
we started with. <

Exercise 1.2.8

Find statements in plain English, involving as few variables as possible, that are represented
by each of the following logical formulae. (The domains of discourse of the free variables are
indicated in each case.)

(a) dg € Z, a = gb — free variables a,b € Z

(b) Ja€Z,3b e Z, (b+#0ANbx =a)— free variable x € R

(c) VdeN,[(3g € Z,n=qd) = (d =1Vd =n)| — free variable n € N
(d) VaeR,[a>0=3beR, (b>0Aa<b)] — no free variables

<

Now that we have a better understanding of how to translate between plain English statements
and logical formulae, we are ready to give a precise mathematical treatment of quantifiers. Just
like with logical operators in Section 1.1, quantifiers will be defined according to introduction
rules, which tell us how to prove a quantified formula, and elimination rules, which tell us how
to use an assumption that involves a quantifier.

Universal quantification (‘for all’, )

The universal quantifier makes precise what we mean when we say ‘for all’, or ‘p(x) is always
true no matter what value x takes’.

Definition 1.2.9

The universal quantifier is the quantifier V (ISIX code: \forall); if p(x) is a logical formula
with free variable x with range X, then Vx € X, p(x) is the logical formula defined according to
the following rules:

e (V1) If p(x) can be derived from the assumption that x is an arbitrary element of X, then
Vx € X, p(x);

e (VE)Ifa € X and Vx € X, p(x) is true, then p(a) is true.

The expression Vx € X, p(x) represents “for all x € X, p(x)’.
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46 Chapter 1. Logical structure

[x € X]
$
p(x) Vx e X, p(x) acX
Vx e X, p(x) p(a)

Strategy 1.2.10 (Proving universally quantified statements)

To prove a proposition of the form Vx € X, p(x), it suffices to prove p(x) for an arbitrary element
x € X—in other words, prove p(x) whilst assuming nothing about the variable x other than that
it is an element of X. <

Useful phrases for introducing an arbitrary variable of a set X in a proof include ‘fix x € X’ or
‘let x € X” or ‘take x € X’—more on this is discussed in Appendix A.2.

The proofs of the following propositions illustrate how a proof of a universally quantified state-
ment might look.

Proposition 1.2.11
The square of every odd integer is odd.

Proof
Let n be an odd integer. Then n = 2k + 1 for some k € Z by the division theorem (Theorem 0.18),
and so

n? = (2k+1)* = 4> +4k+1=2(2k* +2k) + 1

Since 2k? + 2k € Z, we have that n? is odd, as required. O

Note that in the proof of Proposition 1.2.11, we did not assume anything about » other than that
it is an odd integer.

Proposition 1.2.12
The base-10 expansion of the square of every natural number ends in one of the digits 0, 1, 4, 5,
6 or9.

Proof
Fix n € N, and let
n=d.d,_1...dy

be its base-10 expansion. Write
n=10m+dy

where m € N—that is, m is the natural number obtained by removing the final digit from n. Then
n* = 100m* + 20mdy + d3 = 10m(10m +2do) + dj
Hence the final digit of n? is equal to the final digit of dg. But the possible values of dg are
01 4 9 16 25 36 49 64 81
all of which end in one of the digits 0, 1,4, 5, 6 or 9. Ol
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Exercise 1.2.13

Prove that every integer is rational. <
Exercise 1.2.14
Prove that every linear polynomial over Q has a rational root. <

Exercise 1.2.15
Prove that, for all real numbers x and y, if x and y are irrational, then x4y and x — y are not both
rational. <

Before advancing too much further, beware of the following common error that arises when
dealing with universal quantifiers.

Common error
Consider the following (non-)proof of the proposition Vn € Z, n> > 0.

Let n be an arbitrary integer, say n = 17. Then 17> = 289 > 0, so the statement is
true.

The error made here is that the writer has picked an arbitrary value of n, not the reader. (In fact,
the above argument actually proves 3n € Z, n> > 0.)

The proof should make no assumptions about the value of n other than that it is an integer. Here
is a correct proof:

Let n be an arbitrary integer. Either n > 0 or n < 0. If n > 0 then n® > 0, since the
product of two nonnegative numbers is nonnegative; if n < 0 then n> > 0, since the
product of two negative numbers is positive.

<

The strategy suggested by the elimination rule for the universal quantifier is one that we use
almost without thinking about it.

Strategy 1.2.16 (Assuming universally quantified statements)
If an assumption in a proof has the form Vx € X, p(x), then we may assume that p(a) is true
whenever a is an element of X. <
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Existential quantification (‘there exists’, )

Definition 1.2.17

The existential quantifier is the quantifier 3 (I&TEX code: \exists)(I&TEX code: \exists)d;
if p(x) is a logical formula with free variable x with range X, then Jx € X, p(x) is the logical
formula defined according to the following rules:

e (3N Ifa € X and p(a) is true, then Ix € X, p(x);

e (JE) If dx € X, p(x) is true, and ¢ can be derived from the assumption that p(a) is true for
some fixed a € X, then ¢ is true.

The expression 3x € X, p(x) represents ‘there exists x € X such that p(x)’.

la € X], [p(a)]

$
acX r(a) @ dx € X, p(x) q
Ix € X, p(x) q

(JE)

Strategy 1.2.18 (Proving existentially quantified statements)
To prove a proposition of the form Jx € X, p(x), it suffices to prove p(a) for some specific
element a € X, which should be explicitly defined. <

Example 1.2.19
We prove that there is a natural number that is a perfect square and is one more than a perfect
cube. That is, we prove

IneEN,(FkEZ,n=K|A[FEL,n=1+1])

So define n =9. Then n = 3% and n = 2> + 1, so that n is a perfect square and is one more than
a perfect cube, as required. <

The following proposition involves an existentially quantified statement—indeed, to say that a
polynomial f(x) has a real root is to say 3x € R, f(x) = 0.

Proposition 1.2.20
Fix a € R. The cubic polynomial x* + (1 — a?)x — a has a real root.

Proof
Let f(x) = x* + (1 — a*)x — a. Define x = a; then

f)=fla)=a*+(1-d)a—a=a*+a—a*—a=0

Hence a is a root of f(x). Since a is real, f(x) has a real root. O

48



Section 1.2. Variables and quantifiers 49

The following exercises require you to prove existentially quantified statements.

Exercise 1.2.21

Prove that there is a real number which is irrational but whose square is rational. <
Exercise 1.2.22
Prove that there is an integer which is divisible by zero. <
Example 1.2.23
Prove that, for all x,y € Q, if x < y then there is some z € Q with x < z < y. <

The elimination rule for the existential quantifier gives rise to the following proof strategy.

Strategy 1.2.24 (Assuming existentially quantified statements)
If an assumption in the proof has the form Jx € X, p(x), then we may introduce a new variable
a € X and assume that p(a) is true. <

It ought to be said that when using existential elimination in a proof, the variable a used to denote
a particular element of X for which p(a) is true should not already be in use earlier in the proof.

Strategy 1.2.24 is very useful in proofs of divisibility, since the expression ‘a divides b’ is an
existentially quantified statement—this was Exercise 1.2.8(a).

Proposition 1.2.25
Let n € Z. If n® is divisible by 3, then (n+ 1) — 1 is divisible by 3.

Proof
Suppose 7 is divisible by 3. Take ¢ € Z such that n> = 3g. Then

(n+1)°—1
= (P +3n* +3n+1)—1 expanding
=n®+3n*+3n simplifying
=3q+3n*+3n since n® = 3¢
=3(q+n*+n) factorising
Since g +n® +n € Z, we have proved that (n+ 1)* — 1 is divisible by 3, as required. ]

Uniqueness

The concept of uniqueness arises whenever we want to use the word ‘the’. For example, in Defin-
ition 0.6 we defined the base-b expansion of a natural number » to be the string d,d,_ ...ddy
satisfying some properties. The issue with the word ‘the’ here is that we don’t know ahead of
time whether a natural number n may have base-b expansions other than d,d,_ ...ddy—this

49
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fact actually requires proof. To prove this fact, we would need to assume that eze;_ ... e1eg were
another base-b expansion of 7, and prove that the strings d,d,_|...d1do and eses_1 ...ejeq are
the same—this is done in Theorem 4.3.56.

Uniqueness is typically coupled with existence, since we usually want to know if there is exactly
one object satisfying a property. This motivates the definition of the unique existential quantifier,
which encodes what we mean when we say ‘there is exactly one x € X such that p(x) is true’.
The ‘existence’ part ensures that at least one x € X makes p(x) true; the ‘uniqueness’ part ensures
that x is the only element of X making p(x) true.

Definition 1.2.26
The unique existential quantifier is the quantifier 3! ((ITEX code: \exists!)) defined such
that 3!x € X, p(x) is shorthand for

(IxeX,px)) N (VaeX,VbeX,|[p(a)Ap(b)=a=Db])

existence uniqueness

Example 1.2.27
Every positive real number has a unique positive square root. We can write this symbolically as

VaeR,(a>0=3beR, (b>0Ab*=a))

Reading this from left to right, this says: for every real number g, if a is positive, then there
exists a unique real number b, which is positive and whose square is a. <

Discussion 1.2.28
Explain why Definition 1.2.26 captures the notion of there being ‘exactly one’ element x € X
making p(x) true. Can you think of any other ways that 3!x € X, p(x) could be defined? <

Strategy 1.2.29 (Proving unique-existentially quantified statements)
A proof of a statement of the form 3!x € X, p(x), consists of two parts:

¢ Existence — prove that Ix € X, p(x) is true (e.g. using Strategy 1.2.18);

e Uniqueness — let a,b € X, assume that p(a) and p(b) are true, and derive a = b.

Alternatively, prove existence to obtain a fixed a € X such that p(a) is true, and then prove
Vx e X, [px) =x=ada]. <

Example 1.2.30
We prove Example 1.2.27, namely that for each real a > 0 there is a unique b > 0 such that
b* = a. So first fix a > 0.

o (Existence) The real number +/a is positive and satisfies (1/a)?> = a by definition. Its existence
will be deferred to a later time, but an informal argument for its existence could be provided
using ‘number line’ arguments as in Chapter 0.
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o (Uniqueness) Let y,z > 0 be real numbers such that y> = a and z> = a. Then y> = 7. Re-
arranging and factorising yields

(—2)(y+2)=0

soeithery—z=0ory+z=0. If y+z =0 then z = —y, and since y > 0, this means that z < 0.
But this contradicts the assumption that z > 0. As such, it must be the case that y —z =0, and
hence y = z, as required.

Exercise 1.2.31
For each of the propositions, write it out as a logical formula involving the 3! quantifier and then
prove it, using the structure of the logical formula as a guide.

(a) For each real number a, the equation x* + 2ax +a* = 0 has exactly one real solution x.
(b) There is a unique real number a for which the equation x> + a? = 0 has a real solution x.
(c) There is a unique natural number with exactly one positive divisor.

<

The unique existential quantifier will play a large role when we study functions in Section 2.2.

Quantifier alternation

Compare the following two statements:
(1) For every door, there is a key that can unlock it.
(i) There is a key that can unlock every door.

Letting the variables x and y refer to doors and keys, respectively, and letting p(x,y) be the
statement ‘door x can be unlocked by key y’, we can formulate these statements as:

(i) Vx, 3y, p(x,y)
(i) 3y, Vx, p(x,y)

This is a typical ‘real-world’ example of what is known as quantifier alternation—the two state-
ments differ only by the order of the front-loaded quantifiers, and yet they say very different
things. Statement (i) requires every door to be unlockable, but the keys might be different for
different doors; statement (ii), however, implies the existence of some kind of ‘master key’ that
can unlock all the doors.

Here’s another example with a more mathematical nature:
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Exercise 1.2.32
Let p(x,y) be the statement ‘x +y is even’.

e Prove that Vx € Z, Jy € Z, p(x,y) is true.
e Prove that Jy € Z, Vx € Z, p(x,y) is false.

<

In both of the foregoing examples, you might have noticed that the V3’ statement says some-
thing weaker than the ‘3V’ statement—in some sense, it is easier to make a V3 statement true
than it is to make an 3V statement true.

This idea is formalised in Theorem 1.2.33 below, which despite its abstract nature, has an ex-
tremely simple proof.

Theorem 1.2.33
Let p(x,y) be a logical formula with free variables x € X and y € Y. Then

JyeY,VxeX, px,y)=VxeX,yey, px,y)

Proof
Suppose Jy € Y, Vx € X, p(x,y) is true. We need to prove Vx € X, Iy € Y, p(x,y), so fixa € X—
our goal is now to prove dy € Y, p(a,y).

Using our assumption Jy € Y, Vx € X, p(x,y), we may choose b € Y such that Vx, p(x,b) is true.
But then p(a,b) is true, so we have proved Jy € Y, p(a,y), as required. O

Statements of the form Jy € ¥, Vx € X, p(x,y) imply some kind of uniformity: a value of y
making Vx € X, p(x,y) true can be thought of as a ‘one size fits all’ solution to the problem of
proving p(x,y) for a given x € X. Later in your studies, it is likely that you will encounter the
word ‘uniform’ many times—it is precisely this notion of quantifier alternation that the word
‘uniform’ refers to.
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Section 1.3
Logical equivalence

We motivate the content of this section with an example.

Example 1.3.1
Consider the following two logical formulae, where P denotes the set of all prime numbers.

(1) VneP (n>2= [k e Z,n=2k+1));
(2) “IneP, (n>2N[Zk€Z,n="2k)).

The logical formula (1) translates to ‘every prime number greater than two is odd’, and the lo-
gical formula (2) translates to ‘there does not exist an even prime number greater than two’.
These statements are evidently equivalent—they mean the same thing—but they suggest differ-
ent proof strategies:

(1) Fix a prime number 7, assume that n > 2, and then prove that n = 2k + 1 for some k € Z.

(2) Assume that there is some prime number z such that n > 2 and n = 2k for some k € Z, and
derive a contradiction.

While statement (1) more directly translates the plain English statement ‘every prime number
greater than two is odd’, it is the proof strategy suggested by (2) that is easier to use. Indeed, if n
is a prime number such that n > 2 and n = 2k for some k € Z, then 2 is a divisor of n other than
1 and n (since 1 < 2 < n), contradicting the assumption that n is prime. <

The notion of logical equivalence, captures precisely the sense in which the logical formulae
in (1) and (2) in Example 1.3.1 ‘mean the same thing’. Being able to transform a logical for-
mula into a different (but equivalent) form allows us to identify a wider range of feasible proof
strategies.

Definition 1.3.2
Let p and g be logical formulae. We say that p and g are logically equivalent, and write p = ¢
(IATEX code: \equiv), if g can be derived from p and p can be derived from gq.

Logical equivalence of propositional formulae

While Definition 1.3.2 defines logical equivalence between arbitrary logical formulae, we will
start by focusing our attention on logical equivalence between propositional formulae, like those
we saw in Section 1.1.
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First, let’s look at a couple of examples of what proofs of logical equivalence might look like.
Be warned—they’re not very nice to read! But there is light at the end of the tunnel. After
struggling through Examples 1.3.3 and 1.3.4 and Exercise 1.3.5, we will introduce a very quick
and easy tool for proving propositional formulae are logically equivalent.

Example 1.3.3
We demonstrate that pA(gVr) = (pAq)V (pAr), where p, g and r are propositional variables.

e First assume that p A (¢ \/r) is true. Then p is true and gV r is true by definition of conjunction.
By definition of disjunction, either g is true or r is true.

o If g is true, then p A g is true by definition of conjunction.
o If ris true, then p A r is true by definition of conjunction.
In both cases we have that (p Aq) V (p Ar) is true by definition of disjunction.
e Now assume that (p Aq)V (pAr) is true. Then either p Aq is true or p Ar is true, by definition
of disjunction.
o If p Aqis true, then p is true and g is true by definition of conjunction.
o If p Aristrue, then p is true and r is true by definition of conjunction.

In both cases we have that p is true, and that ¢ V r is true by definition of disjunction. Hence
pA(gqVr)is true by definition of conjunction.

Since we can derive (p Aq) V (p A r) from p A (g V r) and vice versa, it follows that

pA(gvr)=(pAg)V(pAr)
as required. <

Example 1.3.4
We prove that p = g = (—p) V ¢, where p, g and r are propositional variables.

e First assume that p = ¢ is true. By the law of exluded middle (Axiom 1.1.44), either p is true
or —p is true—we derive (—p) V ¢ in each case.

o If p is true, then since p = ¢ is true, it follows from (=E) that g is true, and so (—p) V g is
true by (VI1p);

o If =p is true, then (—p) V ¢q is true by (V1}).
In both cases, we see that (—p) V g is true.
e Now assume that (—p) V ¢ is true. To prove that p = ¢ is true, it suffices by (=) to assume

that p is true and derive g. So assume p is true. Since (—p) V ¢ is true, we have that either —p
is true or q is true.

o If —p is true, then we obtain a contradiction from the assumption that p is true, and so q is
true by the principle of explosion (Axiom 1.1.49).

o If g is true... well, then g is true—there is nothing more to prove!
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In both cases we have that ¢ is true. Hence p = ¢ is true.

We have derived (—p) V g from p = ¢ and vice versa, and so the two formulae are logically
equivalent. <

Exercise 1.3.5
Let p, g and r be propositional variables. Prove that the propositional formula (pV q) = r is
logically equivalent to (p = r) A (g = r). 4

Working through the derivations each time we want to prove logical equivalence can become
cumbersome even for small examples like Examples 1.3.3 and 1.3.4 and Exercise 1.3.5.

The following theorem reduces the problem of proving logical equivalence between proposi-
tional formulae to the purely algorithmic task of checking when the formulae are true and when
they are false in a (relatively) small list of cases. We will streamline this process even further
using truth tables (Definition 1.3.7).

Theorem 1.3.6
Two propositional formulae are logically equivalent if and only if their truth values are the same
under any assignment of truth values to their constituent propositional variables.

Idea of proof
A formal proof of this fact is slightly beyond our reach at this point, although we will be able to
prove it formally by structural induction, introduced in Section 5.3.

The idea of the proof is that, since propositional formulae are built up from simpler propositional
formulae using logical operators, the truth value of a more complex propositional formula is de-
termined by the truth values of its simpler subformulae. If we keep ‘chasing’ these subformulae,
we end up with just propositional variables.

For example, the truth value of (p = r) A (¢ = r) is determined by the truth values of p = r and
q = r according to the rules for the conjunction operator A. In turn, the truth value of p = r is
determined by the truth values of p and r according to the implication operator =, and the truth
value of ¢ = r is determined by the truth values of ¢ and r according to the implication operator
again. It follows that the truth value of the whole propositional formula (p = r) A (¢ = r) is
determined by the truth values of p, g, r according to the rules for A and =.

If some assignment of truth values to propositional variables makes one propositional formula
true but another false, then it must be impossible to derive one from the other—otherwise we’d
obtain a contradiction. Hence both propositional formulae must have the same truth values no
matter what assignment of truth values is given to their constituent propositional variables. []

We now develop a systematic way of checking the truth values of a propositional formula under
each assignment of truth values to its constituent propositional variables.
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Definition 1.3.7

The truth table of a propositional formula is the table with one row for each possible assignment
of truth values to its constituent propositional variables, and one column for each subformula
(starting with the propositional variables themselves, and ending with the formula itself). The
entries of the truth table are the truth values of the subformulae.

Example 1.3.8
The following are the truth tables for —-p, pAgq, pVgand p = gq.

p|-p P q|prhg p q|pVvg P qlpr=gq
v | x V|V V| V7 v | v
X | v v X X v X v v X X
X v X X v v x v v
X X X X X X X X v

<

In Example 1.3.8 we have used the symbol v (IATEX code: \checkmark) to mean ‘true’ and X
(IATEX code: \times) to mean ‘false’. Some authors adopt other conventions, such as T, F or
T, L (I&TEX code: \top, \bot) or 1,0 or 0, 1—the possibilites are endless!

Exercise 1.3.9
Use the definitions of A, V and = to justify the truth tables in Example 1.3.8. <

The next example shows how the truth tables for the individual logical operators (as in Ex-
ample 1.3.8) may be combined to form a truth table for a more complicated propositional for-
mula that involves three propositional variables.

Example 1.3.10
The following is the truth table for (p Aq) V (p A r).

P g r | pAq pAr| (pAg)V(pAr)
v v Vv v v v
v v X v X v
v o x Vv X v v
v X X X X X
x v Vv X X X
X v X X X X
X X v X X X
X X X X X X
propositional subformulae main formula

variables
Some comments about the construction of this truth table are pertinent:
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e The propositional variables appear first. Since there are three of them, there are 2° = 8 rows.
The column for p contains four v's followed by four xs; the column for ¢ contains two v's,
two xs, and then repeats; and the column for r contains one v, one X, and then repeats.

e The next group of columns are the next-most complicated subformulae. Each is constructed
by looking at the relevant columns further to the left and comparing with the truth table for
conjunction.

e The final column is the main formula itself, which again is constructed by looking at the
relevant columns further to the left and comparing with the truth table for disjunction.

Our choices of where to put the vertical bars and what order to put the rows in were not the only
choices that could have been made, but when constructing truth tables for more complex logical
formulae, it is useful to develop a system and stick to it. <

Returning to Theorem 1.3.6, we obtain the following strategy for proving that two propositional
formulae are logically equivalent.

Strategy 1.3.11 (Logical equivalence using truth tables)
In order to prove that propositional formulae are logically equivalent, it suffices to show that
they have the identical columns in a truth table. <

Example 1.3.12
In Example 1.3.3 we proved that p A (gVr) = (pAq)V (p Ar). We prove this again using truth
tables. First we construct the truth table for p A (¢ V r):

p q 1 |qVr|pA(gVr)
v v Y v v
v v X v v
v x Vv v v
vV X X X X
x v Vv v X
x Vv X v X
X X Vv v X
X X X X X

Note that the column for p A (¢ V r) is identical to that of (p Ag)V (p Ar) in Example 1.3.10.
Hence the two formulae are logically equivalent. <

To avoid having to write out two truth tables, it can be helpful to combine them into one. For
example, the following truth table exhibits that p A (¢ V r) is logically equivalent to (p A gq) V

(pAr):
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p g r|qVvr|pAgVr) || pAg pAr | (pAgV(pAT)
v v Y v v v v v
v v X v v v X v
v x Vv v v X v v
v X X X X X X X
x v Vv v X X X X
x v X v X X X X
X X v X X X X
X X X X X X X X

In the following exercises, we use truth tables to repeat the proofs of logical equivalence from
Example 1.3.4 and Exercise 1.3.5.

Exercise 1.3.13
Use a truth table to prove that p = g = (—p) Vq. <

Exercise 1.3.14
Let p, g and r be propositional variables. Use a truth table to prove that the propositional formula
(pV q) = ris logically equivalent to (p = r) A (g = r). <

Some proof strategies

We are now in good shape to use logical equivalence to derive some more sophisticated proof
strategies.

Theorem 1.3.15 (Law of double negation)
Let p be a propositional variable. Then p = —~—p.

Proof
The proof is almost trivialised using truth tables. Indeed, consider the following truth table.

v | x v
X | v X
The columns for p and ——p are identical, and so p = ——p. O

The law of double negation is important because it suggests a second way that we can prove
statements by contradiction. Strategy 1.1.38 says that to prove that a proposition p is false, it
suffices to assume that p is true and derive a contradiction. Using Theorem 1.3.15, we obtain
the following similar (but fundamentally different) proof strategy.
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Strategy 1.3.16 (Proof by contradiction (indirect version))
In order to prove a proposition p is true, it suffices to assume that p is false and derive a contra-
diction. 4

Example 1.3.17
We prove that if a, b and c are non-negative real numbers satisfying a®> +b*> = c2, thena+b > c.

Indeed, let a,b,c € R with a,b,c > 0, and assume that a® + b? = ¢*. Towards a contradiction,
assume that it is not the case that a + b > c¢. Then we must have a + b < c¢. But then

(a+b)*=(a+b)(a+b)< (a+b)c<c-c=c’

and so
2> (a+b)? =a*+2ab+b*=c*+2ab >

This implies that ¢? > ¢2, which is a contradiction. So it must be the case that a+b > ¢, as
required. <

The next proof strategy we derive concerns proving implications.

Definition 1.3.18
The contrapositive of a proposition of the form p = ¢ is the proposition g = —p.

Theorem 1.3.19 (Law of contraposition)
Let p and g be propositional variables. Then p = ¢ = (—g) = (—p).

Proof
We build the truth tables for p = ¢ and (—q) = (—p).

p g |pr=ql-a -p| (9= (-p)
v v v X X v
v X X v X X
X v v X Y v
X X v v v
The columns for p = ¢ and (—q) = (—p) are identical, so they are logically equivalent. O

Theorem 1.3.19 suggests the following proof strategy.

Strategy 1.3.20 (Proof by contraposition)
In order to prove a proposition of the form p = ¢, it suffices to assume that g is false and derive
that p is false. <
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Example 1.3.21
Fix two natural numbers m and n. We will prove that if mn > 64, then either m > 8 or n > 8.

By contraposition, it suffices to assume that it is not the case that m > 8 or n > 8, and derive that
it is not the case that mn > 64.

So assume that neither m > 8 nor n > 8. Then m < 8 and n < 8, so that mn < 64, as required. <

Exercise 1.3.22

Use the law of contraposition to prove that p < g = (p = ¢) A ((—p) = (—q)), and use the proof
technique that this equivalence suggests to prove that an integer is even if and only if its square
is even. <

It feels good to invoke impressive-sounding results like proof by contraposition, but in practice,
the logical equivalence between any two different propositional formulae suggests a new proof
technique, and not all of these techniques have names. And indeed, the proof strategy in the
following exercise, while useful, has no slick-sounding name—at least, not one that would be
widely understood.

Exercise 1.3.23

Prove that pV g = (—p) = ¢. Use this logical equivalence to suggest a new strategy for proving
propositions of the form p V g, and use this strategy to prove that if two integers sum to an even
number, then either both integers are even or both are odd. <

Negation

In pure mathematics it is common to ask whether or not a certain property holds of a math-
ematical object. For example, in Section 7.2, we will look at convergence of sequences of real
numbers: to say that a sequence xg,x1,x3, ... of real numbers converges (Definition 7.2.15) is to
say

JaeR,VeeR, (e>0=3INeN,VneN, [n=>N = |x,—a| <¢g])

This is already a relatively complicated logical formula. But what if we wanted to prove that a
sequence does not converge? Simply assuming the logical formula above and deriving a contra-
diction might work sometimes, but it is not particularly enlightening.

Our next goal is to develop a systematic method for negating complicated logical formulae. With
this done, we will be able to negate the logical formula expressing ‘the sequence xg,x1,X2, ...
converges’ as follows

VacR,JecR, (e>0A\VNeN,IneN, [n>NAlx,—al > €]

Granted, this is still a complicated expression, but when broken down element by element, it
provides useful information about how it may be proved.
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The rules for negating conjunctions and disjunctions are instances of de Morgan’s laws, which
exhibit a kind of duality between A and V.

Theorem 1.3.24 (de Morgan’s laws for logical operators)
Let p and g be logical formulae. Then:

(@) =(pAg)=(=p)V(~q); and
() ~(pVq) = (=p) A (—q).

Proof of (a)
Consider the following truth table.

p q | prg|—(prg) || -p —q| (=p)V(-g)
v v v X X X X
v X X v X v v
X v X v v X v
X X X v v v v

The columns for =(p A¢q) and (—p) V (—q) are identical, so they are logically equivalent. O

Exercise 1.3.25

Prove Theorem 1.3.24(b) thrice, once using the definition of logical equivalence directly (like
we did in Examples 1.3.3 and 1.3.4 and Exercise 1.3.5), once using a truth table, and once using
part (a) together with the law of double negation. <

Example 1.3.26
We often use de Morgan’s laws for logical operators without thinking about it. For example to
say that ‘neither 3 nor 7 is even’ is equivalent to saying ‘3 is odd and 7 is odd’. The former
statement translates to

—[(3iseven) V (7 is even)]

while the second statement translates to
[—(3 is even)] A [=(7 is even)]

<

Exercise 1.3.27
Prove that ~(p = ¢q) = p A (—q) twice, once using a truth table, and once using Exercise 1.3.13
together with de Morgan’s laws and the law of double negation. <

De Morgan’s laws for logical operators generalise to statements about quantifiers, expressing a
similar duality between V and 3 as we have between A and V.
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Theorem 1.3.28 (de Morgan’s laws for quantifiers)
let p(x) be a logical formula with free variable x ranging over a set X. Then:

(a) “Vx € X, p(x) =3x € X, —p(x); and

(b) ~Ix e X, p(x) =Vx e X, -p(x).

Proof
Unfortunately, since these logical formulae involve quantifiers, we do not have truth tables at
our disposal, so we must assume each formula and derive the other.

We start by proving the equivalence in part (b), and then we derive (a) as a consequence.

e Assume —3dx € X, p(x). To prove Vx € X, —p(x), fix some x € X. If p(x) were true, then
we’d have 3x € X, p(x), which contradicts our main assumption; so we have —p(x). But then
Vx € X, —p(x) is true.

e Assume Vx € X, —p(x). For the sake of contradiction, assume 3x € X, p(x) were true. Then
we obtain some a € X for which p(a) is true. But —p(a) is true by the assumption that
Vx € X, —p(a), so we obtain a contradiction. Hence —3x € X, p(x) is true.

This proves that =3x € X, p(x) =Vx € X, —p(x).

Now (a) follows from (b) using the law of double negation (Theorem 1.3.15):

b
W eX, pkx)=-—IxeX, pk) (E) —Vx € X, mp(x) = Vx € X, p(x)

as required. U

The proof strategy suggested by the logical equivalence in Theorem 1.3.28(b) is so important
that it has its own name.

Strategy 1.3.29 (Proof by counterexample)

To prove that a proposition of the form Vx € X, p(x) is false, it suffices to find a single element
a € X such that p(a) is false. The element a is called a counterexample to the proposition
Vx e X, p(x). g

Example 1.3.30

We prove by counterexample that not every integer is divisible by a prime number. Indeed, let
x = 1. The only integral factors of 1 are 1 and —1, neither of which are prime, so that 1 is not
divisible by any primes. <

Exercise 1.3.31 4
Prove by counterexample that not every rational number can be expressed as — where a € Z is

even and b € Z is odd. <
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We have now seen how to negate the logical operators —, A, V and =, as well as the quantifiers
V and 4.

Definition 1.3.32

A logical formula is maximally negated if the only instances of the negation operator — appear
immediately before a predicate (or other proposition not involving logical operators or quantifi-
ers).

Example 1.3.33
The following propositional formula is maximally negated:

[P (g = (=) & (sA (=)
Indeed, all instances of — appear immediately before propositional variables.

However the following propositional formula is nor mmaximally negated:

(mq) =q

Here the subformula ——¢g contains a negation operator immediately before another negation
operator (——¢g). However by the law of double negation, this is equivalent to ¢ = ¢, which is
maximally negated trivially since there are no negation operators to speak of. <

Exercise 1.3.34
Determine which of the following logical formulae are maximally negated.

(@) VxeX, (-p(x)) = Vy € X, =(r(x,y) As(x,y));

(b) Vx € X, (mp(x)) = Vy € X, (=r(x,y)) V (—s(x,y));
© VxeR, x>1= FyeR, x<yr-(2<y);
(d) "IER, [x>1A(WER, x<y=x*<y]).

<

The following theorem allows us to replace logical formulae by maximally negated ones, which
in turn suggests proof strategies that we can use for proving that complicated-looking proposi-
tions are false.

Theorem 1.3.35
Every logical formula (built using only the logical operators and quantifiers we have seen so far)
is logically equivalent to a maximally negated logical formula.

Idea of proof
Much like Theorem 1.3.6, a precise proof of Theorem 1.3.35 requires some form of induction
argument, so instead we will give an idea of the proof.
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64 Chapter 1. Logical structure

Every logical formula we have seen so far is built from predicates using the logical operators
A, V,= and — and the quantifiers V and 3—indeed, the logical operator < was defined in terms
of A and =, and the quantifier 3 was defined in terms of the quantifiers V and 3 and the logical
operators A and =-.

But the results in this section allow us to push negations ‘inside’ each of these logical operators
and quantifiers, as summarised in the following table.

Negation outside Negation inside  Proof
=(pAq) = (-p)V(~q) Theorem 1.3.24(a)
-(pVq) = (=p)A(~q) Theorem 1.3.24(b)
-(p=¢q) = pA(q) Exercise 1.3.27
-(-p) = p Theorem 1.3.15
“VxeX,p(x) = IxeX,—-p(x) Theorem 1.3.28(a)
-IxeX,p(x) = VxeX,-p(x) Theorem 1.3.28(b)

Repeatedly applying these rules to a logical formula eventually yields a logically equivalent,
maximally negated logical formula. U

Example 1.3.36
Recall the logical formula expressing the assertion that a sequence xp,x1,x7, ... of real numbers
converges:

JaeR,VeeR, (e>0=3INeN,VneN,[n>N = |x,—a| <¢g])

We will maximally negate this to obtain a logical formula expressing the assertion that the se-
quence does not converge.

Let’s start at the beginning. The negation of the formula we started with is:
—dJaeR,VecR, (e>0=3INeN,VneN, [n>N = |x, —a| <¢g])

The key to maximally negating a logical formula is to ignore information that is not immediately
relevant. Here, the expression that we are negating takes the form —3a € R, (stuff). It doesn’t
matter what the ‘stuff’ is just yet; all that matters is that we are negating an existentially quan-
tified statement, and so de Morgan’s laws for quantifiers tells us that this is logically equivalent
to Va € R, —(stuff). We apply this rule and just re-write the ‘stuff’, to obtain:

VaeR,VeeR, (e>0=INeN,VneN,[n>N=|x,—a| <ég])

Now we are negating a universally quantified statement, —Ve € R, (stuff) which, by de Morgan’s
laws for quantifiers, is equivalent to 3¢ € R, (stuff):

VacR,JecR,~(e>0=>3INeN,VneN,[n>N=|x,—a| <ég])
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At this point, the statement being negated is of the form (stuff) = (junk), which by Exer-
cise 1.3.27 negates to (stuff) A —(junk). Here, ‘stuff” is € > 0 and ‘junk’ is IN e N,Vn e N, [n >
N = |x, —a| < €]. So performing this negation yields:

VaeR,Je € R, (e>0N-3INeN,VneN,[n>N=|x,—a| < g])

Now we are negating an existentially quantified formula again, so using de Morgan’s laws for
quantifiers gives:

VacR,Je € R, (e>0AVNeN, -VneN, [n>N=|x,—a| < g])

The formula being negated here is univerally quantified, so using de Morgan’s laws for quantifi-
ers again gives:

VaeR,Je R, (e>0AVNeN, IneN, - [n=>N=|x,—a| < g])

We’re almost there! The statement being negated here is an implication, so applying the rule
—(p = q) = p A (—q) again yields:

VacR,Je R, (e>0AVNeN,IneN, [n>NA-(|x, —a| <))

At this point, strictly speaking, the formula is maximally negated, since the statement being
negated does not involve any other logical opreators or quantifiers. However, since —(|x, —a| <
€) is equivalent to |x, —a| > €, we can go one step further to obtain:

VacR,Je€R, (e>0A\VNeN,IneN, [n>NA|x,—al >¢€])

This is as negated as we could ever dream of, and so we stop here. <
Exercise 1.3.37
Find a maximally negated propositional formula that is logically equivalent to =(p < ¢q). <

Exercise 1.3.38
Maximally negate the following logical formula, then prove that it is true or prove that it is false.

IEeR, x>1A(WeER, [x<y=x*<Y])]

Tautologies

The final concept that we introduce in this chapter is that of a fautology, which can be thought
of as the opposite of a contradiction. The word ‘tautology’ has other implications when used
colloquially, but in the context of symbolic logic it has a precise definition.

Definition 1.3.39
A tautology is a proposition or logical formula that is true, no matter how truth values are
assigned to its component propositional variables and predicates.
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The reason we are interested in tautologies is that tautologies can be used as assumptions at any
point in a proof, for any reason.

Strategy 1.3.40 (Assuming tautologies)
Let p be a proposition and let ¢ be a tautology. In order to prove p, it suffices to prove that p is
true from the assumption that ¢ is true. <

Example 1.3.41
The law of excluded middle (Axiom 1.1.44) says precisely that p\V (—p) is a tautology. <

Example 1.3.42
The formula p = (¢ = p) is a tautology.

A direct proof of this fact is as follows. In order to prove p = (¢ = p) is true, it suffices to
assume p and derive ¢ = p. So assume p. Now in order to prove g = p, it suffices to assume
q and derive p. So assume g. But we’re already assuming that p is true! So g = p is true, and
hence p = (¢ = p) is true.

A proof using truth tables is as follows:

P 4 |q9=p p=(g=p)
v v v
v X v v
X v X v
X X v v
We see that p = (¢ = p) is true regardless of the truth values of p and q. <

Exercise 1.3.43
Prove that each of the following is a tautology:

@ [(p=aAN(g=r]=(p=r1)

®) [p=(@=r)=[p=9=p=r);

(c) yeY,VxeX, px,y) =VxeX,IyeY, p(xy);
@ [~(pAg)l < [(=p)V (—g)l:

(e) (-vxeX, p(x)) < (IxeX, -pk)).

<

You may have noticed parallels between de Morgan’s laws for logical operators and quantifiers,
and parts (d) and (e) of Exercise 1.3.43, respectively. They almost seem to say the same thing,
except that in Exercise 1.3.43 we used ‘<’ and in Theorems 1.3.24 and 1.3.28 we used ‘=’.
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There is an important difference, though: if p and g are logical formulae, then p = ¢ is itself
a logical formula, which we may study as a mathematical object in its own right. However,
p = q is not a logical formula: it is an assertion about logical formulae, namely that the logical
formulae p and g are equivalent.

There is, nonetheless, a close relationship between < and =—this relationship is summarised
in the following theorem.

Theorem 1.3.44
Let p and ¢ be logical formulae.

(a) g can be derived from p if and only if p = ¢ is a tautology;
(b) p=gqifandonly if p & ¢ is a tautology.

Proof

For (a), note that a derivation of ¢ from p is sufficient to establish the truth of p = ¢ by the
introduction rule for conjunction (=-1), and so if ¢ can be derived from p, then p = g is a
tautology. Conversely, if p = ¢ is a tautology, then ¢ can be derived from p using the elimination
rule for conjunction (=E) together with the (tautological) assumption that p = ¢ is true.

Now (b) follows from (a), since logical equivalence is defined in terms of derivation in each
direction, and <> is simply the conjunction of two implications. (|

Aaand breathe! All this new notation can be overwhelming at first, but it will be worth it in the
end. This chapter was all about teaching you a new language—new symbols, new terminology—
because without it, our future pursuits will be impossible. If you’re stuck now, then don’t worry:
you’ll soon get the hang of it, especially when we start using this new language in context. You
can, of course, refer back to the results in this chapter for reference at any point in the future.
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Section 1.Q
Chapter 1 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

1. For fixed n € N, let p represent the proposition ‘n is even’, let g represent the proposition ‘n
is prime’ and let r represent the proposition ‘n = 2’. For each of the following propositional
formulae, translate it into plain English and determine whether it is true for all n € N, true for
some values of n and false for some values of n, or false for all n € N.

@@ (pAg)=r
() gA(=r)= (-p)
©) (=p)V(=q)V (=)

(d) pAgN(-r)

2. Find a statement in plain English, involving no variables at all, that is equivalent to the logical
formulaVa € Q,Vb € Q, (a<b=3c€R,[a<c<b A =(c € Q)]). Then prove this statement,
using the structure of the logical formula as a guide.

3. Find a purely symbolic logical formula that is equivalent to the following statement, and then
prove it: “No matter which integer you may choose, there will be an integer greater than it.”

4. Prove that

p=q=(p=q)A((=p)=(=9))
How might this logical equivalence help you to prove statements of the form ‘p if and only if
q?
5. Prove using truth tables that p = g # g = p. Give an example of propositions p and ¢ such
that p = ¢ is true but g = p is false.

6. A new logical operator 1 is defined by the following rules:
(i) If a contradiction can be derived from the assumption that p is true, then p 1 ¢q is true;
(ii) If a contradiction can be derived from the assumption that ¢ is true, then p 1 g is true;

(iii) If r is any proposition, and if p 1 ¢, p and q are all true, then r is true.

This question explores this curious new logical operator.

(a) Prove that p 1 p = —p, and deduce that ((p T p) 1T (p T p)) = p.
(b) Prove that pVg= (pTp) T (¢t g)andpAg=(pTq)T(pTq).
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(c) Find a propositional formula using only the logical operator 71 that is equivalent to p = gq.

7. Let X be Z or QQ, and define a logical formula p by:
VxeX,IyeX, (x<yA[VzeX,~(x<zAz<Y)])

Write out —p as a maximally negated logical formula. Prove that p is true when X = Z, and p is
false when X = Q.

8. Use Definition 1.2.26 to write out a maximally negated logical formula that is equivalent to
—3dlx € X, p(x). Describe the strategy that this equivalence suggests for proving that there is not
a unique x € X such that p(x) is true, and use this strategy to prove that, for alla € R, if a # —1
then there is not a unique x € R such that x* —2ax?> + a> — 1 = 0.
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Chapter 2

Sets and functions

Now that we have a precise way of reasoning mathematically, it’s time to start doing some
mathematics!

In Chapter O we gave a preliminary definition of a ‘set’ as a collection of objects (Definition 0.3),
but then we focused almost exclusively on the number sets N, Z, Q, R and C in Chapter 0 and
Chapter 1.

Our first task in this chapter, in Section 2.1, is to make the notion of a set slightly more precise,
and to get comfortable with reasoning about sets in the abstract—this is extremely important, as
sets are the building blocks of pure mathematics. We will study how different sets relate to one
another, and how to build new sets out of old.

Just as fundamental as sets, the concept of a function is central to almost every mathematical
field. We will use functions heavily throughout the book—they are so important that we have
devoted not one, but two sections to them. Our first exposure to functions in in Section 2.2,
where we will define the notion of a function and explore their basic properties.

In Section 2.3 we study two properties that functions might have: injectivity and surjectivity.
These conditions are used to compare sizes of sets, amongst other things, and they arise fre-
quently in areas of mathematics where functions are used.
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Section 2.1

Sets and set operations

We begin by redefining the notion of a set with a notch more precision than we provided in
Chapter 0. At their core, sets seem extremely simple—sets are just collections of objects—
except that if not kept in check, this characterisation of a set leads to logical inconsistencies,
such as the infamous Russell’s paradox.

These logical paradoxes can be overcome by restricting ourselves to working inside a universe
% , which we consider to be a set which is so big that it contains all of the mathematical objects
that we want to talk about. This is a subtle issue, which is well beyond the scope of this section,
but is discussed further in Section B.1.

Definition 2.1.1
A set is a collection of elements from a specified universe of discourse. The collection of

everything in the universe of discourse is called the universal set, denoted by % (IATEX code:
\mathcal{U}).

The expression x € X (IZIEX code: \in) denotes the statement that x is an element of X; we
write x ¢ X (I&TEX code: \not\in) to mean —(x € X), that is that x is not an element of X.

Example 2.1.2
In Chapter 0, we introduced five sets: the set N of natural numbers, the set Z of integers, the set
Q of rational numbers, the set R of real numbers and the set C of complex numbers. <

Exercise 2.1.3
Which of the following propositions are true, and which are false?

1 1 1
—cZ — Z Z —
26 26@ IS0) cU 26%

4

We will avoid referring explicitly to the universal set %7 whenever possible, but it will always
be there in the background. This is convenient because we no longer need to worry about the
domain of discourse of free variables (as we did in Definition 1.2.2), so that we can abbreviate
Vx €%, p(x) by ‘Vx, p(x)’, and ‘Ix € %, p(x)’ by ‘I, p(x)’.

Note that under this convention:
e Vx € X, p(x) is logically equivalent to Vx, (x € X = p(x)); and

e dx € X, p(x) is logically equivalent to 3x, (x € X A p(x)).
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Specifying a set

One way of defining a set is simply to describe it in words, like we have done up to now. There
are other, more concise ways of specifying sets, which also remove such ambiguity from the
process.

Lists. One way is simply to provide a list of the elements of the set. To specify that the list
denotes a set, we enclose the list with curly brackets {, } (IZ[EX code: \{,\}). For example, the
following is a specification of a set X, whose elements are the natural numbers between 0 and 5
(inclusive):

X ={0,1,2,3,4,5}

Implied lists. Sometimes a list might be too long to write out—maybe even infinite—or the
length of the list might depend on a variable. In these cases it will be convenient to use an
implied list, in which some elements of the list are written, and the rest are left implicit by
writing an ellipsis *..." (IZIEX code: \dots). For example, the statement

X ={1,4,9,....n%}

means that X is the set whose elements are all the square numbers from 1 to n?, where n is
some number. Implied lists can be ambiguous, since they rely on the reader’s ability to infer the
pattern being followed, so use with caution!

Set-builder notation. In general, implied lists can be ambiguous, so in practice they are avoided
unless the implied list is very simple, such as a set of consecutive numbers like {3,4,...,9}. In
fact, many sets can’t even be listed in this way.

To get around this, we can use set-builder notation, which is a means of specifying a set in terms
of the properties its elements satisfy. Given a set X, the set of elements of X satisfying some
property p(x) is denoted

{xeX|p)}

The bar ‘|” (IIEX code: \mid) separates the variable name from the formula that they make
true—some authors use a colon instead (as in {x € X : p(x)}).

The set {x € X | p(x)} is read aloud as ‘the set of x € X such that p(x)’, but beware—neither the
bar ‘|’ nor the colon ‘> mean ‘such that’ in other contexts.

Example 2.1.4
The set of all even integers can be written in set-builder notation as

{n€Z|niseven}
For comparison, the set of all even natural numbers can be written as

{neN|niseven} ={0,2,4,6,...}
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Note that —6 is an element of the former set but not of the latter set, since —6 is an integer but is
not a natural number.

Note moreover that the expression
{neQ|niseven}

is meaningless, since we have not defined a notion of ‘evenness’ for rational numbers. <

Strategy 2.1.5
Let X be a set and let p(x) be a logical formula with free variable x € X. In order to prove
a € {xeX|p(x)}, it suffices to prove a € X and that p(a) is true. <

Exercise 2.1.6
A dyadic rational is a rational number that can be expressed as an integer divided by a power
of 2. Express the set of all dyadic rationals using set-builder notation. <

An alternate form of set-builder notation uses an expression involving one or more variables to
the left of the vertical bar, and the range of the variable(s) to the right. The elements of the set
are then the values of the expression as the variable(s) vary as indicated—that is:

{expr(x) | x € X} is defined to mean {y | Ix € X, y = expr(x) }

where expr(x) is the expression in question.

Example 2.1.7

The expression {3k +2 | k € Z} denotes the set of all integers of the form 3k + 2, where k € Z.
It is shorthand for {n € Z | 3k € Z, n = 3k + 2}. In implied list notation, we could write this set
as{...,—4,—1,2,5,8,... }. <

Exercise 2.1.8
Express the set of dyadic rationals (defined in Exercise 2.1.6) in this alternate form of set-builder
notation. <

Set-builder notation is useful for defining sets based on the properties they satisfy, as in Defini-
tions 2.1.9 and 2.1.11 below.

Definition 2.1.9
Let n € N. The set [n] is defined by [n] = {k e N | 1 <k < n}.

Example 2.1.10

In implied list notation, [n] = {1,2,...,n}. For example, [4] = {1,2,3,4}. Note that [0] has no
elements (it is empty—see Definition 2.1.26), since there are no natural numbers k satisfying the
inequality 1 <k < 0. <
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While not particularly interesting yet, sets of the form [n] will be fundamental throughout
Chapter 3, as they are used to define the notion of a finite set, as well as the size of a finite
set.

Intervals are particular subsets of R that are ubiquitous in mathematics, particularly in analysis
and topology.

Definition 2.1.11 (Intervals of the real line)
Let a,b € R. The open interval (a,b), the closed interval [a,b], and the half-open intervals
[a,b) and (a,b] from a to b are defined by

(a,b)={xeR|a<x<b} (a,b) ={xeR|a<x<b}
[a,b) ={xeR|a<x<b} [a,b) ={xeR|a<x<b}

We further define the unbounded intervals (—c,a), (—o0,al, [a,o0) and (a,0) (IXTEX code:
\infty) by

(—o0,a) ={xeR|x<a} (a,00) ={x R |x>a}
(—oo,al ={xeR|x<a} [a,00) ={xeR|x>a}

Example 2.1.12
The following illustration depicts the open interval (—2,5).

-2 5

The hollow circles o indicate that the endpoints are not included in the interval. <

Be warned that the use of the symbol o is misleading, since it suggests that the symbol o on
its own has a specific meaning (or, worse, that it refers to a real number). It doesn’t—it is just
a symbol that suggests unboundedness of the interval in question. A less misleading way of
writing [a, ), for instance, might be [a, —) or R>%; however, [a,) is standard, so it is what we
will write.

Exercise 2.1.13

For each of the following illustrations, find the interval that it depicts. A filled circle e indicates
that an end-point is included in the interval, whereas a hollow circle o indicates that an end-point
is not included in the interval.

-2 5

(a) « . -
-2 5

(b) = ® ® >
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5
(c) <= -
-2
(d) = @ >
<
Subsets

It is often the case that everything that is also an element of one set is an element of another set.
For example, every integer is a rational number; that is

VneZ,neQ

We can say this more concisely by saying that Z is a subset of Q.

Definition 2.1.14
Let X be a set. A subset of X is a set U such that

Va,(acU =acX)

We write U C X (IXIEX code: \subseteq) for the assertion that U is a subset of X.

Additionally, the notation U ¢ X (I4IgX code: \nsubseteq) means that U is not a subset of X,
and the notation U g X (AEX code: \subsetneqq) means that U is a proper subset of X, that
is a subset of X that is not equal to X.

Strategy 2.1.15 (Proving a subset containment)
In order to prove that a set U is a subset of a set X, it suffices to take an arbitrary element a € U
and prove that a € X. <

Example 2.1.16

Every set is a subset of itself—that is, X C X for all sets X. The proof of this is extremely simple:
we must prove Vx € X, x € X. But then this is trivial: let x € X, then x € X by assumption.
Done! <

Example 2.1.17
Leta,b,c,d € R witha < ¢ <d < b. Then [c,d] C (a,b). Indeed, let x € [¢,d]. Then ¢ < x < d.
But then

a<c<x<d<b = a<x<b

so that [c,d] C (a,b), as required. <

Exercise 2.1.18
Leta,b,c,d € Rwitha < b and ¢ <d. Prove that [a,b) C (c,d] ifandonlyifa > cand b <d. <
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Example 2.1.19
The number sets from Chapter O are related by the following chain of subset inclusions.

NCZCQCRCC

<

The following proposition proves a property of subsethood known as transitivity—we’ll revisit
this property in Sections 5.1 and 5.2.

Proposition 2.1.20
LetX,Y,Zbesets. f X CYandY C Z,then X C Z.

Proof
Suppose that X C Y and ¥ C Z. We need to prove X C Z.

So let a € X. Since X CY, it follows from Definition 2.1.14 that a € Y; and since Y C Z, it
follows again from Definition 2.1.14 that a € Z.

Hence X C Z, as required. O]

Set equality

This section is all about defining sets, comparing sets, and building new sets from old, and so to
make much more progress, we first need to establish what we mean when we say that two sets
are equal.

Discussion 2.1.21
Let X and Y be sets. What should it mean to say that X and Y are equal? Try to provide a precise
definition of equality of sets before reading on. <

There are different possible notions of ‘sameness’ for sets: we might want to say that two sets
X and Y are equal when they have quite literally the same definition; or we might want to say
that X and Y are equal when they contain the same objects as elements. For instance, suppose
X is ‘the set of all odd natural numbers’ and Y is ‘the set of all integers that are differences of
consecutive perfect squares’—in this case, the first of these characterisations of equality might
lead us to say X # Y, whereas the second would lead us to say X =Y.

Clearly, we have to state our terms at some point. And that point is now.

Axiom 2.1.22 (Set extensionality)
Let X and Y be sets. Then X =Y if and only if Va, (a € X < a €Y), or equivalently, if X C Y
andY C X.
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This characterisation of set equality suggests the following strategy for proving that two sets are
equal.

Strategy 2.1.23 (Proof by double containment)
In order to prove that a set X is equal to a set Y, it suffices to:

e Prove X CY,i.e. leta € X be an arbitrary element, and derive a € Y; and then

e Prove X DY, i.e.leta €Y be an arbitrary element, and derive a € X.

We often write ‘(C)’ and ‘(2)’ to indicate the direction of the containment being proved. <

Example 2.1.24
We prove that {x € R | x> < 1} = [~1,1] by double containment.

o (O)Letac{xcR|x>*<1}. ThenacRanda® < 1,sothat (1 —a)(l+a)=1-a?>>0.1t
follows that either:
o 1—a>0and1+a

Z
o 1—a<0and 1+a<0,in which case a > 1 and a < —1, which is a contradiction since
-1 <1

0, in whichcasea <l anda > —1, sothata € [—1,1].

So we must have a € [—1, 1], as required.

e O)Letac[~1,1]. Then —1 <a < 1,50 |a| < 1, and hence @ = |a]*> < 1,so thata € {x €
R | x> < 1}, as required.

Exercise 2.1.25
Prove that {x € R | x? < x} = (0,1). <

Inhabitation and emptiness

Another fundamental example of a set is the empty set, which is the set with no elements. But
we have to be slightly careful about how we use the word ‘the’, since it implies uniqueness, and
we don’t know (yet) that two sets with no elements are necessarily equal. So first we will define
what it means for a set to be empty, and then we’ll show that there is exactly one empty set.

Definition 2.1.26
A set X is inhabited (or nonempty) if it has at least one element; otherwise, it is empty.

The assertion that X is inhabited is equivalent to the logical formula Ja, a € X, and the assertion
that X is empty is equivalent to the logical formula —da, a € X. This suggests the following
strategy for proving that a set is inhabited, or that it is empty.
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Strategy 2.1.27 (Proving that a set is inhabited or empty)

In order to prove a set X is inhabited, it suffices to exhibit an element. In order to prove a set
X is empty, assume that X is inhabited—that is, that there is some element a € X—and derive a
contradiction. <

In other texts, the term nonempty is more common than inhabited, but there are reasons to prefer
latter. Indeed, the statement ‘X is non-empty’ translates more directly to —=(—3a, a € X), which
has an unnecessary double-negative and suggests a proof of inhabitation by contradiction. For
this reason, we use the term inhabited in this book.

Emptiness may seem like a trivial condition—and it is—but owing to its canonicity, it arises all
over the place.

Example 2.1.28

The set {x € R | x> = 2} is inhabited since, for example v/2 € R and V2" = 2. However, the set
{x € Q| x*> =2} is empty since, if it were inhabited, then there would be a rational number x
such that x> = 2, contrary to Proposition 0.29. <

Example 2.1.29

We observed in Example 2.1.10 that the set [0] is empty; here’s a more formal proof. Towards a
contradiction, suppose [0] is inhabited. Then there is some k € N such that 1 < k < 0. It follows
that 1 < 0, which contradicts the fact that 0 < 1. Hence [0] is empty, after all. <

Exercise 2.1.30
Let a,b € R. Prove that [a,b] is empty if and only if a > b, and that (a,b) is empty if and only if
a>b. <

The next exercise is a logical technicality, which is counterintuitive for the same reason that
makes the principle of explosion (Axiom 1.1.49) difficult to grasp. However, it is extremely
useful for proving facts about the empty set, as we will see soon in Theorem 2.1.32.

Exercise 2.1.31

Let E be an empty set and let p(x) be a predicate with one free variable x with domain of
discourse E. Show that the proposition Vx € E, p(x) is true, and that the proposition 3x € E, p(x)
is false. What does the proposition Vx € E, x # x mean in English? Is it true? <

Thanks to the axiom of extensionality (Axiom 2.1.22), any two empty sets must be equal since
they both contain the same elements—namely, no elements at all! This is made formal in the
following theorem.

Theorem 2.1.32
Let E and E’ be sets. If E and E’ are empty, then E = E’.
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Proof. Suppose that E and E’ are empty. The assertion that E = E’ is equivalent to
NVa€E,acE'YN(Na€E' acE)

ButVa € E,a € E' and Va € E', a € E are both true by Exercise 2.1.31 since E and E’ are empty.
So E = E’, as claimed. O

Knowing that there is one and only one empty set means that we may now make the following
definition, without worrying about whether the word ‘the’ is problematic.

Definition 2.1.33
The empty set (also known as the null set) is the set with no elements, and is denoted by &
(IATEX code: \varnothing).

Some authors write { } instead of &, since {} is simply the empty set expressed in list notation.

Exercise 2.1.34
Let X be a set. Prove that & C X. <

Set operations

In Example 2.1.24 we noted that [0,0) is the set of all non-negative real numbers. What if we
wanted to talk about the set of all non-negative rational numbers instead? It would be nice if
there was some expression in terms of [0,0) and Q to denote this set.

This is where set operations come in—they allow us to use previously defined sets to introduce
new sets.

Intersection (M)

The intersection of two sets is the set of things which are elements of both sets.

Definition 2.1.35
Let X and Y be sets. The (pairwise) intersection of X and Y, denoted X NY (I4TEX code: \cap),
is defined by

XNY={alaeXNa€eY}

Example 2.1.36

By definition of intersection, we have x € [0,00) N Q if and only if x € [0,e) and x € Q. Since
x € [0,0) if and only if x is a non-negative real number (see Example 2.1.24), it follows that
[0,00) NQ is the set of all non-negative rational numbers. <
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Exercise 2.1.37
Prove that [0,00) NZ = N. <

Exercise 2.1.38
Write down the elements of the set

{0,1,4,7}n{1,2,3,4,5}

Exercise 2.1.39
Express [—2,5) N [4,7) as a single interval. <

Proposition 2.1.40
Let X and Y be sets. Prove that X C Y if and only if X NY = X.

Proof
Suppose that X C Y. We prove X NY = X by double containment.

e (C) Suppose a € XNY. Then a € X and a € Y by definition of intersection, so in particular
we have a € X.

e (D) Suppose a € X. Thena €Y since X C Y, so that a € X NY by definition of intersection.

Conversely, suppose that X NY = X. To prove that X C Y, let a € X. Then a € XNY since

X =XNY,sothat a € Y by definition of intersection, as required. U
Exercise 2.1.41

Let X be a set. Prove that X N @ = &. <
Union (U)

The union of two sets is the set of things which are elements of at least one of the sets.

Definition 2.1.42
Let X and Y be sets. The (pairwise) union of X and Y, denoted X UY (IATX code: \cup), is
defined by

XUY={alaeXVacY}

Example 2.1.43

Let E be the set of even integers and O be the set of odd integers. Since every integer is either
even or odd, EUO = Z. Note that EN O = &, thus {E, O} is an example of a partition of Z—see
Definition 3.3.25. <

Exercise 2.1.44
Write down the elements of the set

{0,1,4,7}U{1,2,3,4,5}
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Exercise 2.1.45
Express [—2,5)U[4,7) as a single interval. <

The union operation allows us to define the following class of sets that will be particularly useful
for us when studying counting principles in Section 3.3.

Exercise 2.1.46
Let X and Y be sets. Prove that X C Y if and only if XUY =Y. <

Example 2.1.47
Let X,Y,Z be sets. We prove that XN (Y UZ) = (XNY)U(XNZ).

e (O)LetxeXN(YUZ). Thenx € X, and eitherx €Y orx € Z. If x €Y thenx € XNY, and
if x € Z then x € X N Z. In either case, we have x € (XNY)U (X NZ).

e O)Letxe (XNY)U(XNZ). Then either x € XNY or x € XNZ. In both cases we have
x € X by definition of intersection. In the first case we have x € Y, and in the second case we
have x € Z; in either case, we have x € Y UZ, so thatx € XN (Y UZ).

Exercise 2.1.48
Let X,Y,Z be sets. Prove that XU (Y NZ) = (XUY)N(XUZ). <

Indexed families of sets

We will often have occasion to take the intersection or union not of just two sets, but of an arbit-
rary collection of sets (even of infinitely many sets). For example, we might want to know which
real numbers are elements of [0, 1 + %) for each n > 1, and which real numbers are elements of
at least one of such sets.

Our task now is therefore to generalise our pairwise notions of intersection and union to arbitrary
collections of sets, called indexed families of sets.

Definition 2.1.49
An (indexed) family of sets is a specification of a set X; for each element i of some indexing
set I. We write {X; | i € I} for the indexed family of sets.

Example 2.1.50
The sets [0, 1 + %) mentioned above assemble into an indexed family of sets, whose indexing set
is {n € N|n > 1}. We can abbreviate this family of sets by

{[0,14;) [n>1}
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Observe that we have left implicit the fact that the variable n is ranging over the natural numbers
and just written ‘n > 1’ on the right of the vertical bar, rather than separately defining I = {n €
N|n> 1} and writing {[0,1+ 1) | n € I}. <

Definition 2.1.51
The (indexed) intersection of an indexed family {X; | i € I'} is defined by

(Xi={a|Viel,aeX;} (5TgX code: \bigcap_{i \in I})
i€l

The (indexed) union of {X; | i € I'} is defined by

UXi={a|Jiel,aeX;} (5TX code: \bigcup_{i \in I})
i€l

Example 2.1.52
We prove that the intersection of the half-open intervals [0,1+ 1) forn > 1 is [0, 1]. We will use

the notation ﬂ as shorthand for ﬂ

nz1 ne{xeN | x>1}

o (C)Letxe ﬂ[0,1+%).

n>1
Then x € [0,1+ 1) for all n > 1. In particular, x > 0.

To see that x < 1, assume that x > 1—we will derive a contradiction. Since x > 1, we have
x—1>0. Let N > 1 be some natural number greater or equal to )ﬁ, so that % < x—1. Then
x=21+ %, and hence x ¢ [0,1+ %), contradicting the assumption that x € [0,1+ %) for all
n>1.

So we must have x < 1 after all, and hence x € [0, 1].
e (O)Letxe[0,1].

1
To prove that x € ﬂ 0,1+ =), we need to show thatx € [0,1+1) foralln > 1. So fixn > 1.
n
n=>1
Since x € [0,1], we have x > O0andx < 1 < 1 + %, sothatx € [0,1+ %), as required.

1
Hence [][0,1+ =) = [0, 1] by double containment. <
n>1 n
Exercise 2.1.53
E - i .
Xpress U 0,1+ n) as an interval <
n>1
Exercise 2.1.54
Provethatﬂ[n]:zand U[n]:{k€N|k>l}. <
neN neN
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Indexed intersections and unions generalise their pairwise counterparts, as the following exercise
proves.

Exercise 2.1.55
Let X; and X, be sets. Prove that

XinXo=(]X% and X UX;=[J Xk

ke(2] ke(2]
<
Exercise 2.1.56
Find a family of sets {X,, | n € N} such that:
M X =N
neN
(ii) [)X.=2;and
neN
(iii) Xiij # g foralli,jeN.
<

Relative complement ()

Definition 2.1.57
Let X and Y be sets. The relative complement of ¥ in X, denoted X \ Y (IXTgX code:

\setminus), is defined by
X\Y={xeX|xgY}

Example 2.1.58
Let E be the set of all even integers. Then n € Z \ E if and only if 7 is an integer and 7 is not an
even integer; that is, if and only if n is odd. Thus Z \ E is the set of all odd integers.

Moreover, n € N\ E if and only if n is a natural number and » is not an even integer. Since
the even integers which are natural numbers are precisely the even natural numbers, N\ E is
precisely the set of all odd natural numbers. <

Exercise 2.1.59
Write down the elements of the set

{0,1,4,7}\{1,2,3,4,5}

Exercise 2.1.60
Express [—2,5)\ [4,7) and [4,7) \ [-2,5) as intervals. <
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Exercise 2.1.61
Let X and Y be sets. Prove that Y \ (Y \ X)
Y\(Y\X)=X.

85

=XNY, and deduce that X C Y if and only if
<

Comparison with logical operators and quantifiers

The astute reader will have noticed some similarities between set operations and the logical
operators and quantifiers that we saw in Chapter 1.

Indeed, this can be summarised in the following table. In each row, the expressions in both
columns are equivalent, where p denotes ‘a € X, g denotes ‘a € Y’, and r(i) denotes ‘a € X; .

sets logic

CZQX -p
aceXnNY pPAg
aeXUY pVq
a€NigXi | Viel, r(i)
a€ Ui Xi | Jiel, r(i)
a€X\Y | pA(—q)

This translation between logic and set theory does not stop there; in fact, as the following the-
orem shows, De Morgan’s laws for the logical operators (Theorem 1.3.24) and for quantifiers
(Theorem 1.3.28) also carry over to the set operations of union and intersection.

Theorem 2.1.62 (De Morgan’s laws for sets)
Given sets A, X,Y and a family {X; | i € I}, we have

(@ A\(XUY)=(A\X)N(A\Y);
(b) A\(XNY)=(A\X)U(A\Y);
© A\ X =NA\X);

iel iel

@ A\Xi=J@A\x).

icl iel

Proof of (a)
Let a be arbitrary. By definition of union and relative complement, the assertion that a € A\
(X UY) is equivalent to the logical formula

acAN—-(aeXVaeY)
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By de Morgan’s laws for logical operators, this is equivalent to
acAN(agXNady)
which, in turn, is equivalent to
(acAnagX)N(acANagY)
But then by definition of intersection and relative complement, this is equivalent to

ac(A\X)N(A\Y)

Hence A\ (XUY) = (A\X)N(A\Y), as required. O
Exercise 2.1.63

Complete the proof of de Morgan’s laws for sets. <
Power sets

Definition 2.1.64
Let X be a set. The power set of X, written Z2(X) (IATgX code: \mathcal{P}), is the set of all
subsets of X.

Example 2.1.65
There are four subsets of {1,2}, namely

o, {1}, {2} {12}

so 2(X) = {2, {1},{21,{1,2}}. <
Exercise 2.1.66
Write out the elements of Z2({1,2,3}). <
Exercise 2.1.67
Let X be a set. Show that @ € Z(X) and X € Z(X). <
Exercise 2.1.68
Write out the elements of 2 (@), Z(#(@)) and P (P (X (9))). <

Power sets are often a point of confusion because they bring the property of being a subset of
one set to that of being an element of another, in the sense that for all sets U and X we have

UCX & Ue2(X)

This distinction looks easy to grasp, but when the sets U and X look alike, it’s easy to fall into
various traps. Here’s a simple example.
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Example 2.1.69
It is true that @ C &, but false that & € @. Indeed,

e 0 C @ means Vx € &, x € &; but propositions of the form Vx € &, p(x) are always true, as
discussed in Exercise 2.1.31.

e The empty set has no elements; if & € & were true, it would mean that & had an element (that
element being &). So it must be the case that @ ¢ &.

<

The following exercise is intended to help you overcome similar potential kinds of confusion by
means of practice. Try to think precisely about what the definitions involved are.

Exercise 2.1.70
Determine, with proof, whether or not each of the following statements is true.

@) 2(2)e 2(2(2));

b) @€ {{o}}h

© {2} e{{a}}

@) 2(2(2)) e{o,{2.{2}}}.

Repeat the exercise with all instances of ‘€’ replaced by ‘C’. <

Product (x)

Definition 2.1.71
Let X and Y be sets. The (pairwise) cartesian product of X and Y is the set X x Y (I&[EX code:
\times) defined by

XxY={(a,b) | xeXNy€eY}

The elements (a,b) € X x Y are called ordered pairs, whose defining property is that, for all
a,x € X and all b,y € Y, we have (a,b) = (x,y) if and only if a = x and b = y.

Example 2.1.72
If you have ever taken calculus, you will probably be familiar with the set R x R.

RxR={(x,y) | x,y e R}

Formally, this is the set of ordered pairs of real numbers. Geometrically, if we interpret R as an
infinite line, the set R x R is the (real) plane: an element (x,y) € R x R describes the point in
the plane with coordinates (x,y).
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We can investigate this further. For example, the following set:
R > {0} ={(x,0) | xe R}

is precisely the x-axis. We can describe graphs as subsets of R x R. Indeed, the graph of y = x?
is given by
G={(x,y) ERxR|y=x*}={(x,x*) [ xc RYCRxR

4
Exercise 2.1.73
Write down the elements of the set {1,2} x {3,4,5}. <
Exercise 2.1.74
Let X be a set. Prove that X x @ = &. <

Exercise 2.1.75
Let X, Y and Z be sets. Under what conditions is it true that X x ¥ =Y x X? Under what
conditions is it true that (X xY) x Z=X x (Y x Z)? <

‘We might have occasion to take cartesian products of more than two sets. For example, whatever
the set R x R x R is, its elements should be ordered triples (a, b, ¢) consisting of elements a, b, ¢ €
R. This is where the following definition comes in handy.

Definition 2.1.76
Let n € N and let X,X5,...,X, be sets. The (n-fold) cartesian product of X;,X5,...,X, is the

n
set [ Xx (IXTgX code: \prod_{k=1}"{n}) defined by
k=1
n
HXk ={(ay,a2,...,a,) | ap € Xi forall 1 <k < n}
k=1

n
The elements (a;,az,...,a,) € [] X; are called ordered k-tuples, whose defining property is
k=1

that, for all 1 < k < n and all a, by € Xy, we have (ay,ay,...,a,) = (b1,ba,...,by,) if and only if
ar=by forall 1 <k <n.

n
Given a set X, write X" to denote the set [] X. We might on occasion also write
k=1

n
X1 xXp % --x Xy =[] X
k=1

Example 2.1.77

In Exercise 2.1.75 you might have noticed that the sets (X x Y) x Z and X x (Y x Z) are not
always equal—Definition 2.1.76 introduces a third potentially non-equal cartesian product of X,
Y and Z. For example, consider when X =Y =Z = R. Then
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e The elements of (R x R) x R are ordered pairs ((a,b),c), where (a,b) is itself an ordered pair
of real numbers and c is a real number.

e The elements of R x (R x R) are ordered pairs (a, (b, c)), where a is a real number and (b, c)
is an ordered pair of real numbers.

e The elements of R x R x R (= R?) are ordered triples (a,b,c), where a, b and c are real
numbers.

So, although these three sets appear to be the same, zooming in closely on the definitions reveals
that there are subtle differences between them. A sense in which they are the same is that there
are bijections between them—the notion of a bijection will be introduced in Section 2.3. <
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90 Chapter 2. Sets and functions

Section 2.2
Functions

One way of studying interactions between sets is by studying functions between them, which
we will define informally in Definition 2.2.1. Functions are mathematical objects which assign
to each element of one set exactly one element of another. Almost every branch of mathematics
studies functions, be it directly or indirectly, and almost every application of mathematics arises
from a translation of the abstract notion of a function to the real world. Just one example of this
is the theory of computation—functions provide precisely the language necessary to describe
the deterministic input-output behaviour of algorithms.

You might have come across the notion of a function before now. In schools, functions are often
introduced as being like machines—they have inputs and outputs, and on a given input they
always return the same output. For instance, there is a function which takes integers as inputs
and gives integers as outputs, which on the input x returns the integer x + 3.

This characterisation of functions, however, is clearly not precise enough for the purposes of
mathematical proof. A next approximation to a precise definition of a function might look
something like this:

Definition 2.2.1
A function f from a set X to a set Y is a specification of elements f(x) € Y for x € X, such that

VxeX,lyeY, y=f(x)

Given x € X, the (unique!) element f(x) € Y is called the value of f at x.

The set X is called the domain (or source) of f, and Y is called the codomain (or target) of f.
We write f: X — Y (I&EX code: £ : X \to Y)to denote the assertion that f is a function with
domain X and codomain Y.

This is better—we’re now talking about sets (and not mysterious ‘machines’), which we have
explored in Section 2.1.

Moreover, this definition establishes a close relationship between functions and the 3! quantifier:
indeed, to say that f assigns to each element of X a unique element of Y is to say precisely that

VxeX,lyeY, y=f(x)

Conversely, any true proposition of the form Vx € X, 3!y € Y, p(x,y) defines a function f: X —
Y: the function f assigns to each x € X the unique y € Y such that p(x,y) is true. In other words,
Vx € X, p(x, f(x)) is true!

We can use this to generate some examples of functions.
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Example 2.2.2
Example 1.2.27 said that every positive real number has a unique positive square root; we proved
this in Example 1.2.30. What this means is that there is a function

iR SR> where R = {xc R |x> 0}

defined by letting (x) be the (unique) positive square root of x, for each x € R>?. That is, we
have a function r defined by r(x) = /x. <

Exercise 2.2.3

Recall Exercise 1.2.31. Which of the statements (a), (b) or (¢) is of the form Vx € X, 3!y €
Y, p(x,y)? For each statement of this form, determine the domain and codomain of the corres-
ponding function, and write an expression defining this function. <

Specifying a function

Just like with sets, there are many ways to specify a function f : X — Y, but when we do so, we
must be careful that what we write really does define a function!

This correctness of specification is known as well-definedness, and ultimately amounts to verify-
ing that the condition Vx € X, 3!y € Y, f(x) =y holds for the specification of f. Namely totality,
existence and uniqueness:

e Totality. A value f(x) should be specified for each x € X—this corresponds to the ‘Vx € X’
quantifier in the definition of functions.

e Existence. For each x € X, the specified value f(x) should actually exist, and should be an
element of Y —this corresponds to the existence part of the ‘3!y € Y’ quantifier in the definition
of functions.

e Uniqueness. For each x € X, the specified value f(x) should refer to only one element of
Y—this corresponds to the uniqueness part of the ‘3ly € Y’ quantifier in the definition of
functions.

When specifying a function, you should justify each of these components of well-definedness
unless they are extremely obvious. You will probably find that, in most cases, the only compon-
ent in need of justification is uniqueness, but keep all three in mind.

Lists. If X is finite, then we can specify a function f : X — Y by simply listing the values of f
at all possible elements x € X. For example, we can define a function

f:{1,2,3} — {red,yellow, green, blue, purple}
by declaring
f(1)=red, f(2)=purple, f(3)=green
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92 Chapter 2. Sets and functions

Note that the function is at this point completely specified: we know its values at all elements
of the domain {1,2,3}. It doesn’t matter that some of the elements of the codomain (yellow and
blue) are unaccounted for—all that matters is that each element of the domain is associated with
exactly one element of the codomain.

Unfortunately, most of the sets that we work with will be infinite, or of an unspecified finite size;
in these cases, simply writing a list of values isn’t sufficient. Fortunately for us, there are other
ways of specifying functions.

Formulae. In many cases, particularly when the domain X and codomain Y are number sets, we
can define a function by giving a formula for the value of f(x) for each x € X. For example, we
can define a function f : R — R by letting

f(x) =x*+3forallx € R

By cases. It will at times be convenient to define a function using different specifications for
different elements of the domain. A very simple example is the absolute value function |—| :
R — R, defined for x € R

Here we have split into two cases based on the conditions x > 0 and x < 0.
When specifying a function f : X — Y by cases, it is important that the conditions be:
o exhaustive: given x € X, at least one of the conditions on X must hold; and

e compatible: if any x € X satisfies more than one condition, the specified value must be the
same no matter which condition is picked.

For the absolute value function defined above, these conditions are satisfied. Indeed, for x € R,
it is certainly the case that x > 0 or x < 0, so the conditions are exhaustive. Moreover, given
x € R, if both x > 0 and x < 0, then x = 0—so we need to check that the specification yields the
same value when x = 0 regardless of which condition we pick. The x > 0 condition yields the
value 0, and the x < 0 condition yields the value —0, which is equal to 0—so the conditions are
compatible. We could have used x < 0 instead of x < 0; in this case the conditions are mutually
exclusive, so certainly compatible because they do not overlap.

Algorithms. You might, on first exposure to functions, have been taught to think of a function as
a machine which, when given an input, produces an output. This ‘machine’ is defined by saying
what the possible inputs and outputs are, and then providing a list of instructions (an algorithm)
for the machine to follow, which on any input produces an output—and, moreover, if fed the
same input, the machine always produces the same output.

For example, we might instruct a machine to take rational numbers as inputs and give rational
numbers as outputs, and to follow the following sequence of steps on a given input
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multiply by 2 — add 5 — square the result — divide by 6

This ‘machine’ defines a function M : Q — Q which, in equation form, is specified by

(2x+5)?

M(x) = forallx € Q

In our more formal set-up, therefore, we can define a function M : I — O by specifying:
e aset / of all inputs;
e aset O of potential outputs; and

e a deterministic!?! algorithm which describes how an input x € I is transformed into an output
M(x) € 0.

That is, the domain is the set I of all possible ‘inputs’, the codomain is a set O containing all the
possible ‘outputs’, and the function M is a rule specifying how an input is associated with the
corresponding output.

For now, we will use algorithmic specifications of functions only sparingly—this is because it is
much harder to make formal what is meant by an ‘algorithm’, and it is important to check that a
given algorithm is deterministic.

Function equality

In Section 2.1 we discussed how there may be many different possible ways of characterising
equality of sets. This matter was resolved by declaring that two sets are equal if and only if they
have the same elements (this was Axiom 2.1.22).

A similar matter arises for functions. For example, consider the function f : R — R defined
by f(x) = 2x for all x € R, and the function g : R — R, defined by letting g(x) be the result of
taking x, multiplying it by three, dividing the result by four, dividing the result by six, and then
multiplying the result by sixteen. It so happens that g(x) = 2x for all x € R as well, but that is
not how g is defined; moreover, if f and g were implemented as algorithms, then it would take
longer to compute the values of g than it would take to compute the values of f.

Should we consider f and g to be equal? If we are only interested in whether f and g have
the same values on each argument, then the answer should be ‘yes’; if we are interested in the
algorithmic behaviour of f and g, then the answer should be ‘no’.

We resolve this dilemma with the following axiom. By adopting this axiom, we are stating that
the functions f and g discussed above are equal.

[41The word ‘deterministic’ just means that the algorithm always produces the same output on a single input.
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Axiom 2.2.4 (Function extensionality)
Let f:X — Y and g : A — B be functions. Then f = g if and only if f and g have the same
domain and codomain, and f(x) = g(x) for all x € X.

Strategy 2.2.5 (Proving two functions are equal)
Given functions f,g : X — Y with the same domain and codomain, in order to prove that f = g,
it suffices to prove that f(x) = g(x) for all x € X. <

A consequence of Axiom 2.2.4 is that, for fixed sets X and Y, a function X — Y is uniquely
determined by its input-output pairs. This set is called the graph of the function; the proof of the
equivalence between functions and their graphs is the content of Theorem 2.2.9.

Definition 2.2.6
Let f: X — Y be a function. The graph of f is the subset Gr(f) C X x Y (I4IgX code:
\mathrm{Gr}) defined by

Gr(f) = {(xf(x)) [x € X} ={(x,y) € X XY |y = f(x)}

Example 2.2.7
Given a (sufficiently well-behaved) function f : R — R, we can represent Gr(f) C R x R by
plotting it on a pair of axes using Cartesian coordinates in the usual way. For example, if f is
defined by f(x) = 3 for all x € R, then its graph

XGR}

o -{(:3)

can be represented by graph plot in Figure 2.1.

y
3/\

~

Figure 2.1: Graph of the function f : R — R defined by f(x) = 5 forallx € R
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Exercise 2.2.8
Find a function f : Z — Z whose graph is equal to the set

{...(=2,-5),(=1,-2),(0,1),(1,4),(2,7),(3,10),...}

<

Theorem 2.2.9 below provides a way of verifying that a function is well-defined by character-
ising their graphs.

Theorem 2.2.9
Let X and Y be sets. A subset G C X x Y is the graph of a function if and only if

VxeX,lyey, (x,y) €G

Proof

(=). Suppose G C X x Y is the graph of a function, say G = Gr(f) for some f : X — Y. Then
for each x € X, it follows from well-definedness of f that f(x) is the unique element y € Y for
which (x,y) € G. That is, (x, f(x)) € G, and if y € Y with (x,y) € G, then y = f(x).

(«<). Suppose G C X x Y satisfies Vx € X, 3ly € Y, (x,y) € G. Define a function f: X — Y
by, for each x € X, defining the value f(x) to be the unique element y € Y for which (x,y) € G.
Well-definedness of f is then immediate from our assumption of the existence and uniqueness
of such a value of y for each x € X. [

Example 2.2.10
The set G defined by
G= {(17 red): (27 red)? (37green)}

is the graph of a function f : {1,2,3} — {red,green, blue}. The function f is defined by
f(1)=red, f(2)=red, f(3)=green

However, G is not the graph of a function {1,2,3,4} — {red,green,blue}, since G contains no
elements of the form (4,y) for y € {red, green, blue}. Moreover, the set G’ defined by

G ={(1,red),(2,red), (2,blue),(3,green)}

does not define the graph of a function {1,2,3} — {red, green,blue}, since there is not a unique
element of the form (2,y) in G'—rather, there are two of them! <

Exercise 2.2.11
For each of the following specifications of sets X, Y, G, determine whether or not G is the graph
of a function from X to Y.

(@ X=R,Y=R,G={(a,a®)|acR};
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b) X=R,Y =R,G={(d?a)|acR};

(© X =R Y =R>°, G={(a%a) | ac R*’}, where R** = {x e R | x > 0};
D X=QY=0QG6={(xy) eQxQ[xy=1}.

) X=Q,Y=Q,G={(a,a) |a€Z};

Aside

In light of Theorem 2.2.9, some people choose to define functions X — Y as particular subsets
of X x Y—that is, they identify functions with their graphs. This is particularly useful when
studying the logical foundations of mathematics. We avoid this practice here, because it is not
conceptually necessary, and it would preclude other possible ways of encoding functions. <

We will now look at some more examples (and non-examples) of functions.

Example 2.2.12

Example 1.2.27 gives a prime example of a function: it says that for every positive real number a
there is a unique positive real number b such that 5> = a. This unique b is precisely the positive
square root y/a of a. Writing R>? for the set of positive real numbers, we have thus established
that taking the positive square root defines a function R*? — R>0, <

There is a class of functions called identity functions that, despite being very simple, are so
important that we will give them a numbered definition!

Definition 2.2.13
Let X be a set. The identity function on X is the function idy : X — X (I&EX code:
\mathrm{id}_X) defined by idx (x) = x for all x € X.

You should convince yourself that the specification of idy given in Definition 2.2.13 is well-
defined.

Another interesting example of a function is the empty function, which is useful in coming up
with counterexamples and proving combinatorial identities (see Section 3.3).

Definition 2.2.14
Let X be a set. The empty function with codomain X is the (unique!) function & — X. It has
no values, since there are no elements of its domain.

Again, you should convince yourself that this specification is well-defined. Conceptually, con-
vincing yourself of this is not easy; but writing down the proof of well-definedness is extremely
easy—you will find that there is simply nothing to prove!
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Example 2.2.15

Define f : R — R by the equation f(x)? = x for all x € R. This is not well-defined for a few
reasons. First, if x < 0 then there is no real number y such that y*> = x, so for x < 0 there are no
possible values of f(x) in the codomain of f, so existence fails. Second, if x > 0 then there are
in fact two real numbers y such that y?> = x, namely the positive square root /x and the negative
square root —/x. The specification of f does not indicate which of these values to take, so
uniqueness fails.

Notice that the function r : R>? — R>? from Example 2.2.2 is (well-)defined by the equation
r(x)? = x for all x € R>?. This illustrates why it is very important to specify the domain and
codomain when defining a function. <

Exercise 2.2.16
Which of the following specifications of functions are well-defined?

(a) g:Q — Q defined by the equation (x+ 1)g(x) = 1 for all x € Q;
(b) h:N— Q defined by (x+1)h(x) =1 forall x € N;

(c) k:N— Ndefined by (x+ 1)k(x) =1 forall x € N;

(d) ¢:N — N defined by ¢(x) = ¢(x) for all x € N.

Exercise 2.2.17
Find a condition on sets X and Y such that the specification of a functioni: X UY — {0, 1} given

by
) 0 ifzeX
i(z) = .
1 ifzeY

to be well-defined. <

Composition of functions

In our section on sets, we talked about various operations that can be performed on sets—union,
intersection, and so on. There are also operations on functions, by far the most important of
which is composition. To understand how composition works, let’s revisit the algorithmically
defined function M : Q — Q from page 93:

multiply by 2 — add 5 — square the result — divide by 6

The function M is, in some sense, a sequence of functions, performed one-by-one until the
desired result is reached. This is precisely composition of functions.
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Definition 2.2.18
Given functions f: X — Y and g : Y — Z, their composite go f (I4IgX code: g \circ f) (read
‘g composed with f~ or ‘g after f° or even just ‘g f’) is the function go f : X — Z defined by

(gof)(x) =g(f(x)) forallx e X

Intuitively, g o f is the function resulting from first applying f, and then applying g, to the given
input.

Common error

Function composition is in some sense written ‘backwards’: in the expression g o f, the function
which is applied first is written last—there is a good reason for this: the argument to the function
is written after the function! However, this mis-match often trips students up on their first
exposure to function composition, so be careful! <

Example 2.2.19
The function M from page 93 can be defined as the composite

M= ((koh)og)of
where
e f:Q— Qisdefined by f(x) = 2x for all x € Q;

e g:Q — Qis defined by g(x) =x+5 forall x € Q;

(
e /:Q — Qis defined by h(x) = x* for all x € Q;

e k:Q — Qis defined by k(x) = ¢ forall x € Q.

<

Exercise 2.2.20
Let f,g,h,k: Q — Q be as in Example 2.2.19. Compute equations defining the following com-
posites:

(@) fog;
(b) gof;
(©) ((fog)oh)ok;
(d) fo(go(hok));

(e) (gog)o(gog)-
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Example 2.2.21
Let f : X — Y be any function. Then

idyof=f=foidx

To see this, let x € X. Then

(idy o f)(x) =1idy (f(x)) by definition of composition
= f(x) by definition of idy
= f(idx (x)) by definition of idy
= (foidy)(x) by definition of composition
Equality of the three functions in question follows. <

Exercise 2.2.22
Prove that composition of functions is associative, thatis,if f: X =Y, g: Y =Zandh:Z—-W
are functions, then

ho(gof)=(hog)of: X —>W

As a consequence of associativity, when we want to compose more than two functions, it doesn’t
matter what order we compose the functions in. As such, we can just write hogo f. <

Exercise 2.2.23

Let f: X — Y and g : Z — W be functions, and suppose that Y ;Cé Z. Note that there is a function
h:X — W defined by h(x) = g(f(x)) for all x € X. Write & as a composite of functions involving
fandg. <

Images and preimages

Definition 2.2.24
Let f:X — Y be a function and let U C X. The image of U under f is the subset f[U] CY
(also written f,(U) (IATgX code: £_x) or even just f(U)) is defined by

flUI={fx) [xeU}={yeY |Iel,y=f(x)}
That is, f[U] is the set of values that the function f takes when given inputs from U.

The image of f is the image of the entire domain, i.e. the set f[X].

Example 2.2.25
Let f : R — R be defined by f(x) = x>. The image of f is the set R> of all nonnegative real
numbers. Let’s prove this:

e (f[R] CR?Y). Letyc f[R]. Then y = x? for some x € R. But x*> > 0, so we must have
y € R*Y, as required.
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e (R C f[R]). Lety € R*’. Then \/y €R, and y = (,/y)* = f(1/y). Hence y € f[R], as
required.

We have shown by double containment that f[R] = R>". <

Exercise 2.2.26

For each of the following functions f and subsets U of their domain, describe the image f[U].

(a) f:7Z — Z defined by f(n) =3n, withU = N;

(b) f:X — X x X (where X is any set) defined by f(x) = (x,x) with U = X;

(©) f:{a,b,c} — {1,2,3} defined by f(a) =1, f(b) =3 and f(c) = 1, with U = {a,b,c}.

Exercise 2.2.27
Prove that f[@] = @ for all functions f. <

Example 2.2.28

Let f: X — Y be a function and let U,V C X. Then f[UNV] C f[U]N f[V]. To see this, let
y € f[UNV]. Then y = f(x) for some x € UNV. By definition of intersection, x € U and x € V..
Since x € U and y = f(x), we have y € f[U]; likewise, since x € V, we have y € f[V]. But then
by definition of intersection, we have y € f[U] N f[V]. <

Exercise 2.2.29

Let f: X — Y be a function and let U,V C X. We saw in Example 2.2.28 that f[UNV] C f[U]N
fIV]. Determine which of the following is true, and for each, provide a proof of its truth or
falsity:

@ flulnsivic flunvy
(b) flUUV]C fUJUSfIV];
© flUlufVIC flULV].

Definition 2.2.30
Let f: X — Y be a function and let V C Y. The preimage of V under f is the subset f~![V]
(IATEX code: £7{-1}) (also written f*(V) (I&TEX code: £ %), or just f~1(V')) is defined by

fVI={xeX|f(x)eV}={xeX|IyeV, f(x) =y}

That is, f~![V] is the set of all the elements of its domain X that the function f sends to elements
of V.

Example 2.2.31
Let f : Z — Z be the function defined by f(x) = x* for all x € X. Then

100



Section 2.2. Functions 101

o [1[{1,4,9}]={-3,-2,-1,1,2,3};

e f11{1,2,3,4,5,6,7,8,9}] = {—3,-2,—1,1,2,3} too, since the other elements of [9] are not
perfect squares, and hence not of the form f(x) for x € Z;

e f![N] = Z, since for any x € Z we have f(x) > 0, so that f(x) € N.

<

Example 2.2.32
Let f: X — Y be a function, let U C X and let V C Y. Then f[U] CV ifand only if U C f~![V].
The proof is as follows.

(=). Suppose f[U] CV; we’ll prove U C f~![V]. So fix x € U. Then f(x) € f[U] by definition
of image. But then f(x) € V by our assumption that f[U] C V, and so x € f~![V] by definition
of preimage. Since x was arbitrarily chosen from U, it follows that U C f~![V].

(<). Suppose U C f~![V]; we’ll prove f[U] C V. So fix y € f[U]. Then y = f(x) for some
x € U by definition of image. But then x € f~![V] by our assumption that U C f~![V], and so
f(x) € V by definition of preimage. But y = f(x), so y € V, and since y was arbitrarily chosen,
it follows that f[U] C V. <

The following exercise demonstrates that preimages interact very nicely with the basic set oper-
ations (intersection, union and relative complement):

Exercise 2.2.33
Let f: X — Y be a function and let U,V C Y. Prove that:

@ funvi=fulnfv
(b) fHuuv]=fHulufVv]; and
© f'\Ul=x\f""[U].

Exercise 2.2.34
Let f: X — Y be a function. Prove that f~'[@] = @ and f~![Y] = X. N

Exercise 2.2.35
Let f: X — Y be a function. Provide a proof of the truth or falsity of each of the following
statements:

(a) U C fU[f[U]] forallU C X;
() fUfIU]) CU forall U C X;
(¢) VCflf'[v]forallV CY;
@ flf'V]]CVforallV CY.
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Section 2.3
Injections and surjections

To motivate some of the definitions to come, look at the dots (e) and stars (x) below. Are there
more dots or more stars?

Pause for a second and think about how you knew the answer to this question.
Indeed, there are more dots than stars. There are a couple of ways to arrive at this conclusion:

(i) You could count the number of dots, count the number of stars, and then compare the two
numbers; or

(i) You could notice that the dots and the stars are evenly spaced, but that the line of dots is
longer than the line of stars.

It is likely that you chose method (ii). In fact, it is likely that you haven’t even counted the
number of dots or the number of stars yet—and you don’t need to! We can conclude that there
are more dots than stars by simply pairing up dots with stars—we eventually run out of stars,
and there are still dots left over, so there must have been more dots than stars.

Injectivity

One way of formalising this act of pairing up stars with dots mathematically is to define a
function f : S — D from the set S of stars to the set D of dots, where the value of f at each star
is the dot that it is paired with. We of course must do this in such a way that each dot is paired
with at most one star:

> —> @
*—> 0
*—> 0
> —> @
*—> 0
*x—> 0
*— e
*—> 0
*—> 0
*—> 0
*—> 0
*—> 0
*—> 0
*x—> 0
—> @

It is a property of this function—called injectivity—that allows us to deduce that there are more
dots than stars.
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Intuitively, a function f : X — Y is injective if it puts the elements of X in one-to-one correspond-
ence with the elements of a subset of Y—just like how the stars are in one-to-one correspondence
with a subset of the dots in the example above.

Definition 2.3.1
A function f: X — Y is injective (or one-to-one) if

Va,b e X, f(a)=f(b) =a=0b

An injective function is said to be an injection.

Strategy 2.3.2 (Proving a function is injective)
In order to prove that a function f : X — Y is injective, it suffices to fix a,b € X, assume that
f(a) = f(b), and then derive a = b. <

By contraposition, f : X — Y being injective is equivalent to saying, for all a,b € X, if a # b,
then f(a) # f(b). This is usually less useful for proving that a function is injective, but it does
provide a good intuition—it says that f sends distinct inputs to distinct outputs.

The following is a very simple example from elementary arithmetic:

Example 2.3.3

Define f : Z — Z by letting f(x) = 2n+ 1 for all n € Z. We’ll prove that f is injective. Fix
m,n € 7, and assume that f(m) = f(n). By definition of f, we have 2m+ 1 =2n+ 1. Subtracting
1 yields 2m = 2n, and dividing by 2 yields m = n. Hence f is injective. <

The following example is slightly more sophisticated.

Proposition 2.3.4
Let f:X — Y and g:Y — Z be functions. If f and g are injective, then g o f is injective.

Proof
Suppose that f and g are injective and let a,b € X. We need to prove that

(gof)(a)=(gof)(b) = a=bh

So assume (go f)(a) = (go f)(b). By definition of function composition, this implies that
g(f(a)) = g(f(b)). By injectivity of g, we have f(a) = f(b); and by injectivity of f, we have
a=b. O
Exercise 2.3.5

Let f: X — Y and g : Y — Z be functions. Prove that if go f is injective, then f is injective. <

Exercise 2.3.6

Write out what it means to say a function f : X — Y is not injective, and say how you would
prove that a given function is not injective. Give an example of a function which is not injective,
and use your proof technique to write a proof that it is not injective. <
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Exercise 2.3.7
For each of the following functions, determine whether it is injective or not injective.

e f:N— Z, defined by f(n) = n? forall n € N.
e g:7 — N, defined by g(n) = n? forall n € Z.
e h:NxNxN— N, defined by h(x,y,z) =2%-3”-5% for all x,y,z € N.

Surjectivity

Let’s revisit the rows of dots and stars that we saw earlier. Beforehand, we made our idea that
there are more dots than stars formal by proving the existence of an injection f : § — D from the
set S of stars to the set D of dots.

However, we could have drawn the same conclusion instead from defining a function D — S,
which in some sense covers the stars with dots—that is, every star is paired up with at least one
dot.

*— e
*—— o
<—eo
*—— o
*— o
X<—eo
*éi&— o
*— o
<—eo
éi&—— o
X<—eo
X<— e
*— @
X<—eo

This property is called surjectivity—a function f : X — Y is surjective if every element of Y is a
value of f. This is made precise in Definition 2.3.8.

Definition 2.3.8
A function f: X — Y is surjective (or onto) if

VyeY, IxeX, f(x)=y
A surjective function is said to be a surjection.
Strategy 2.3.9

To prove that a function f : X — Y is surjective, it suffices to take an arbitrary element y € Y
and, in terms of y, find an element x € X such that f(x) = y.

In order to find x, it is often useful to start from the equation f(x) = y and derive some possible
values of x. But be careful—in order to complete the proof, it is necessary to verify that the
equation f(x) =y is true for the chosen value of x. <
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Example 2.3.10

Fix n € N with n > 0, and define a function r: Z — {0,1,...,n— 1} by letting r(a) be the
remainder of a when divided by n (see Theorem 0.18). This function is surjective, since for each
ke {0,1,...,n—1} we have r(k) = k. <

Exercise 2.3.11

For each of the following pairs of sets (X,Y), determine whether the function f : X — Y defined
by f(x) = 2x+ 1 is surjective.

(@) X=ZandY ={x€Z|xisodd};

(b) X=ZandY =7,

() X=QandY =Q;

(d) X=RandY =R.

Exercise 2.3.12
Let f: X — Y be a function. Find a subset V C Y and a surjection g : X — V agreeing with f
(that is, such that g(x) = f(x) for all x € X). <

Exercise 2.3.13
Let f: X — Y be a function. Prove that f is surjective if and only if Y = f[X] <

Exercise 2.3.14
Let f: X — Y be a function. Prove that there is a set Z and functions

p:X—Z7Z and i:Z—Y
such that p is surjective, i is injective, and f =io p. <

Exercise 2.3.15
Let f: X — Z2(X) be a function. By considering the set B= {x € X | x & f(x)}, prove that f is
not surjective. <

Bijectivity

Bijective functions formalise the idea of putting sets into one-to-one correspondence—each ele-
ment of one set is paired with exactly one element of another.

Definition 2.3.16
A function f : X — Y is bijective if it is injective and surjective. A bijective function is said to
be a bijection.

Proof tip
To prove that a function f is bijective, prove that it is injective and surjective. <
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Example 2.3.17
Let D C Q be the set of dyadic rational numbers, that is

D:{er

x:;forsomeaGZandneN}

Let k € N, and define f: D — D by f(x) = 5t We will prove that f is a bijection.

e (Injectivity) Fix x,y € D and suppose that f(x) = f(y). Then 5z = 3, so that x =y, as
required.

e (Surjectivity) Fix y € D. We need to find x € D such that f(x) = y. Well certainly if 2y € D

then we have L
2%y
k
f(2%) = ok y
so it suffices to prove that 2%y € D. Since y € D, we must have y = 4 for some n € N.

o If k <nthenn—k € Nandso 2y = 34 € D.

o Ifk>nthenk—n>0and2fy =2K"g € Z; but Z C D since if a € Z then a = %. So again

20
we have 2ky € D.
In any case we have 2fy € D and f (Zky) =1, so that f is surjective.
Since f is both injective and surjective, it is bijective. <
Exercise 2.3.18
Let X be a set. Prove that the identity function idy : X — X is a bijection. <

Exercise 2.3.19
Let n € N and let {X; | I <k < n} be a family of sets. Prove by induction on n that there is a

n+1 n
bijection HXk — HXk X Xj. <
k=1 k=1

Exercise 2.3.20
Let f: X — Y and g : Y — Z be bijections. Prove that g o f is a bijection. <

Inverses

Our next goal is to characterise injections, surjections and bijections in terms of other functions,
called inverses.

Recall Definition 2.3.1, which says that a function f : X — Y is injective if, for all a,b € X, if
f(a)=f(b) thena =b.

Exercise 2.3.21
Let f: X — Y be a function. Prove that f is injective if and only if

Vye fIX], Ix e X,y = f(x)
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<

Thinking back to Section 2.2, you might notice that this means that the logical formula ‘y = f(x)’
defines a function f[X] — X—specifically, if f is injective then there is a function g : f[X] — X
which is (well-)defined by specifying x = g(f(x)) for all x € X. Thinking of f as an encoding
function, we then have that g is the corresponding decoding function—decoding is possible
by injectivity of f. (If f were not injective then distinct elements of X might have the same
encoding, in which case we’re stuck if we try to decode them!)

Exercise 2.3.22

Define a function e : N x N — N by e(m,n) = 2" - 3". Prove that e is injective. We can think of
e as encoding pairs of natural numbers as single natural numbers—for example, the pair (4,1)
is encoded as 2*- 3! = 48. For each of the following natural numbers k, find the pairs of natural
numbers encoded by e as k:

1 24 7776 59049 396718580736

<

In Exercise 2.3.22, we were able to decode any natural number of the form 2™ - 3" for m,n € N.
This process of decoding yields a function

d:{keN|k=2"-3"for some mn € N} - NxN

What would happen if we tried to decode a natural number not of the form 2™ - 3" for m,n € N,
say 5 or 100? Well. .. it doesn’t really matter! All we need to be true is that d(e(m,n)) = (m,n)
for all (m,n) € N x N; the value of d on other natural numbers is irrelevant.

Definition 2.3.23
Let f: X — Y be a function. A left inverse (or post-inverse) for f is a function g : ¥ — X such
that go f = idy.

Example 2.3.24
Let e : Nx N — N be as in Exercise 2.3.22. Define a function d : N — N x N by

d(k) = (m,n) if k=2".3" for some m,n € N
B (0,0) otherwise

Note that d is well-defined by the fundamental theorem of arithmetic (Theorem 4.2.12).
Moreover, given m,n € N, we have

d(e(m,n)) =d(2™-3") = (m,n)

and so d is a left inverse for e. <
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Exercise 2.3.25
Let f: X — Y be a function. Prove that if f has a left inverse, then f is injective. <

Exercise 2.3.25 gives us a new strategy for proving that a function is injective.

Strategy 2.3.26 (Proving a function is injective by finding a left inverse)
In order to prove that a function f : X — Y is injective, it suffices to find a function g: ¥ — X
such that g(f(x)) = x for all x € X. <

It would be convenient if the converse to Exercise 2.3.25 were true—and it is, provided that we
impose the condition that the domain of the function be inhabited.

Proposition 2.3.27
Let f: X — Y be a function. If f is injective and X is inhabited, then f has a left inverse.

Proof
Suppose that f is injective and X is inhabited. Fix xo € X—note that this element exists since X
is inhabited—and define g : Y — X as follows.

x ify= f(x) for some x € X
g(y) = .
xo otherwise

The only part of the specification of g that might cause it to fail to be well-defined is the case
when y = f(x) for some x € X. The reason why g is well-defined is precisely injectivity of f: if
y = f(x) for some x € X, then the value of x € X for which y = f(x) is unique. (Indeed, if a € X
satisfied y = f(a), then we’d have a = x by injectivity of f.)

So g is indeed well-defined. To see that g is a left inverse for f, let x € X. Letting y = f(x), we
see that y falls into the first case in the specification of g, so that g(f(x)) = g(yv) = a for the value

of a € X for which y = f(a)—but as noted above, we have a = x by injectivity of f. ]
Exercise 2.3.28
Let f: X — Y be a function with left inverse g : ¥ — X. Prove that g is a surjection. <

We established a relationship between injections and left inverses in Exercise 2.3.25 and propos-
ition 2.3.27, so it might come as no surprise that there is a relationship between surjections and
right inverses.

Definition 2.3.29
Let f: X — Y be a function. A right inverse (or pre-inverse) for f is a function g : ¥ — X such
that fog =idy.

Example 2.3.30
Define f : R — R>? by f(x) = x>. Note that f is surjective, since for each y € R>? we have
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vy € Rand f(,/y) = y. However f is not injective; for instance
f(=1)=1=/(1)
Here are three right inverses for f:

e The positive square root function g : R** — R defined by g(y) = /y for all y € R*°. Indeed,
for each y € R we have

e The negative square root function #: R*? — R defined by h(y) = — Vyforallye R>Y. Indeed,
for each y € R*? we have

e The function k : R*? — R defined by

k(y) =

VY if2n<y<2n+1 forsomen € N
—4/y otherwise

Note that & is well-defined, and again f(k(y)) = y for all y € R>" since no matter what value
k(y) takes, it is equal to either ,/y or —,/y.
There are many more right inverses for f—in fact, there are infinitely many more! <

Exercise 2.3.31
Let f: X — Y be a function. Prove that if f has a right inverse, then f is surjective. <

Strategy 2.3.32 (Proving a function is surjective by finding a right inverse)
In order to prove that a function f : X — Y is surjective, it suffices to find a function g : ¥ — X
such that f(g(y)) =yforally Y. <

Interlude: the axiom of choice

It would be convenient if the converse to Exercise 2.3.31 were true—that is, if f: X — Y is
surjective, then it has a right inverse. Let’s examine what a proof of this fact would entail. The
fact that f : X — Y is surjective can be expressed as

VyeY,xeX, f(x)=y

A right inverse would be a function g : ¥ — X, so by Definition 2.2.1, it must satisfy the following
condition
VyeY,AxeX, g(y) =x
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The temptation is therefore to construct g : ¥ — X as follows. Let y € Y. By definition of
surjectivity, there exists some x € X such that f(x) = y—define g(y) to be such an element x.
Then we have f(g(y)) = f(x) =y, as required.

There is an extremely subtle—but important—issue with this construction.

By choosing g(y) to be a fixed element of X such that f(x) =y, we are assuming ahead of time
that there is a mechanism for choosing, for each y € Y, a unique element of f~![{y}] to be the
value of g(y). In other words we are assuming that some statement R(x,y) satisfies the property

VyeY,AxeX, [xe T H{yHARR,Y)

But by Definition 2.2.1, this assumption is saying exactly that there exists a function ¥ — X that
associates to each y € Y an element x € X such that f(x) = y.

To state this in plainer terms: we tried to prove that there exists a right inverse for f by assuming
that there exists a right inverse for f. Evidently, this is not a valid proof strategy.

Surprisingly, it turns out that neither the assumption that every surjection has a right inverse, nor
the assumption that there exists a surjection with no right inverse, leads to a contradiction. As
such, the assertion that every surjection has a right inverse is provably unprovable, although the
proof that it is unprovable is far beyond the scope of this textbook.

Nonetheless, the construction of a right inverse that we gave above didn’t feel like we were
abusing the fabric of mathematics and logic.

The essence of the proof is that if a statement of the form Va € A, 3b € B, p(a,b) is true, then
we should be able to define a function i : A — B such that p(a,h(a)) is true for all a € A: the
function /& ‘chooses’ for each a € A a particular element b = h(a) € B such that p(a,b) is true.

What makes this possible is to axiom of choice, stated precisely below.

Axiom 2.3.33 (Axiom of choice)

Let {X; | i € I} be a family of inhabited sets. Then there is a function /4 : I — |JX; such that
icl

h(i) € X; foreach i € I.

There are reasons to keep track of the axiom of choice:

e The axiom of choice is perhaps the strangest assumption that we make—most of the other
axioms that we have stated have been ‘evidently true’, but this is not the case for the axiom of
choice;

e There are fields of mathematics which require the translation of results about sets into results
about other kinds of objects—knowing whether the axiom of choice is necessary to prove a
result tells us whether this is possible;
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e The axiom of choice is highly non-constructive: if a proof of a result that does not use the
axiom of choice is available, it usually provides more information than a proof of the same
result that does use the axiom of choice.

With this in mind, when we need to invoke the axiom of choice to prove a result, we will mark
the result with the letters AC. This can be freely ignored on first reading, but readers may find it
useful when using this book as a reference at a later date.

Proposition”® 2.3.34

Let X and Y be sets and let p(x,y) be a logical formula with free variables x € X and y € Y. If
Vx € X,Vy €Y, p(x,y) is true, then there exists a function 4 : X — Y such that Vx € X, p(x,h(x))
is true.

Proof

For each a € X, define Y, = {b € Y | p(a,b)}. Note that ¥, is inhabited for each a € X by the
assumption that Vx € X, 3y € Y, p(x,y) is true. Since ¥, C Y for each a € X, by the axiom of
choice there exists a function 4 : X — Y such that h(a) € ¥, for all a € X. But then p(a,h(a)) is
true for each a € X by definition of the sets Y. U

In light of Proposition 2.3.34, the axiom of choice manifests itself in proofs as the following
proof strategy.

Strategy“ 2.3.35 (Making choices)
If an assumption in a proof has the form Vx € X, 3y € Y, p(x,y), then we may make a choice, for
each a € A, of a particular element b = b, € B for which p(a,b) is true. <

Back to inverses

‘We now return to the converse of Exercise 2.3.31.

Proposition”® 2.3.36
Every surjection has a right inverse.

Proof

Let f: X — Y be a surjection, and define g : Y — X as follows. Given y € Y, define g(y) to be a
particular choice of x € X such that f(x) = y—note that there exists such an element x € X since
f is surjective, so g exists by Strategy 2.3.35. But then by definition of g we have f(g(y)) =y
for all y € Y, so that g is a surjection. ]

It seems logical that we might be able to classify bijections as being those functions which have
a left inverse and a right inverse. We can actually say something stronger—the left and right
inverse can be taken to be the same function! (In fact, Proposition 2.3.42 establishes that they
are necessarily the same function.)
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Definition 2.3.37
Let f: X — Y be a function. A (two-sided) inverse for f is a function g : Y — X which is both
a left inverse and a right inverse for f.

It is customary to simply say ‘inverse’ rather than ‘two-sided inverse’.

Example 2.3.38

Let D be the set of dyadic rational numbers, as defined in Example 2.3.17. There, we defined a
function f : D — D defined by f(x) = 5 for all x € D, where k is some fixed natural number.
We find an inverse for f.

Define g : D — D by g(x) = 2€x. Then

e gisa left inverse for f. To see this, note that for all x € D we have

e gis arightinverse for f. To see this, note that for all y € D we have

k 2ty
fe0) =12%) =S¢ =y
Since g is a left inverse for f and a right inverse for f, it is a two-sided inverse for f. <

Exercise 2.3.39
The following functions have two-sided inverses. For each, find its inverse and prove that it is
indeed an inverse.

(@) f:R — Rdefined by f(x) = ZH.
(b) g: Z(N) —» Z(N) defined by g(X) = N\ X.
(¢) h:NxN — N defined by h(m,n) =2"(2n+1) — 1 for all m,n € N.

<

In light of the correspondences between injections and left inverses, and surjections and right
inverses, it may be unsurprising that there is a correspondence between bijections and two-sided
inverses.

Exercise 2.3.40
Let f: X — Y be a function. Then f is bijective if and only if f has an inverse. <

Strategy 2.3.41 (Proving a function is bijective by finding an inverse)
In order to prove that a function f : X — Y is bijective, it suffices to find a function g: ¥ — X
such that g(f(x)) =xforallx € X and f(g(y)) =yforallyeY. <
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When proving a function f : X — Y is bijective by finding an inverse g : ¥ — X, it is important
to check that g is both a left inverse and a right inverse for f. If you only prove that g is a left
inverse for f, for example, then you have only proved that f is injective!

It turns out that if a function has both a left and a right inverse, then they must be equal. This is
the content of the following proposition.

Proposition 2.3.42
Let f: X — Y be a function and suppose ¢ : Y — X is a left inverse for f and r: Y — X is a right
inverse for f. Then £ =r.

Proof
The proof is deceptively simple:

{=/Foidy by definition of identity functions
=/lo(for) since r is a right inverse for f
=(lof)or by Exercise 2.2.22
=idyor since £ is a left inverse for f
=r by definition of identity functions

OJ

There is some intuition behind why the left and right inverses of a function f : X — Y should be
equal if they both exist.

e Aleftinverse ¢ : Y — X exists only if f is injective. It looks at each element y € Y and, if it is
in the image of f, returns the (unique) value x € X for which f(x) =y.

e A right inverse r : Y — X exists only if f is surjective. It looks at each element y € Y and
picks out one of the (possibly many) values x € X for which f(x) = y.

When f is a bijection, every element of Y is in the image of f (by surjectivity), and is a value of
f at a unique element of X (by injectivity), and so the left and right inverses are forced to return
the same value on each input—hence they are equal.

It follows from Proposition 2.3.42 that, for any function f : X — Y, any two inverses for f are
equal—that is, every bijective function has a unique inverse!

Notation 2.3.43
Let f : X — Y be a function. Write f~!' : ¥ — X to denote the (unique) inverse for f, if it exists.

Proposition 2.3.44
Let f: X — Y be a bijection. A function g:Y — X is a left inverse for f if and only if itis a
right inverse for f.

Proof
We will prove the two directions separately.
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e (=) Suppose g:Y — X is a left inverse for f—that is, g(f(x)) = x for all x € X. We prove
that f(g(y)) =y for all y € Y, thus establishing that g is a right inverse for f. Solety €Y.
Since f is a bijection, it is in particular a surjection, so there exists x € X such that y = f(x).
But then

fle(y) = f(e(f(x))) since y = f(x)
= f(x) since g(f(x)) =x
=y since y = f(x)

So indeed g is a right inverse for f.

e (<) Suppose g: Y — X is a right inverse for f—that is, f(g(y)) =y for all y € Y. We prove
that g(f(x)) = x for all x € X, thus establishing that g is a left inverse for f. So let x € X.
Letting y = f(x), we have f(g(y)) =y since g is a right inverse for f. This says precisely that

flg(f(x)) = f(x), since y = f(x). By injectivity of f, we have g(f(x)) = x, as required.
UJ

Exercise 2.3.45
Let f: X — Y be a bijection. Prove that f~! : ¥ — X is a bijection. <

Exercise 2.3.46
Let f: X — Y and g : Y — Z be bijections. Prove that go f : X — Z is a bijection, and write an
expression for its inverse in terms of f~!' and g~ <

At the beginning of this section we motivated the definitions of injections, surjections and bijec-
tions by using them to compare two quantities (of dots and stars)—however, as you might have
noticed, we have not yet actually proved that thais intuition aligns with reality. For example,
how do we know that if there is an injection f : X — Y then Y has at least as many elements as
X?

Answering this seemingly simple question is surprisingly difficult and has different answers
depending on whether the sets involved are finite or infinite. In fact, the words ‘finite’, ‘infinite’
and ‘size’ are themselves defined in terms of injections, surjections and bijections! We therefore
leave this task to future sections.

In Section 3.2, we define what it means for a set to be finite and what the size of a finite set
is (Definition 3.2.1), and then prove that the sizes of finite sets can be compared by finding an
injection, surjection or bijection between them Theorem 3.2.6.

Comparing the sizes of infinite sets, and even defining what ‘size’ means for infinite sets, is an-
other can of worms entirely and leads to some fascinating mathematics. We begin this journey in
Section 6.1, where we prove some counterintuitive results, such as the set N of natural numbers
and the set Q of rational numbers have the same size (Theorem 6.1.8).
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Section 2.Q
Chapter 2 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Set notation

1. Express the following sets in the indicated form of notation.
(@) {n € Z |n® <20} in list notation;

(b) {4k+3 |k € N} in implied list notation;

(c) The set of all odd multiples of six in set-builder notation;

(d) Theset {1,2,5,10,17,...,n2 4+ 1,...} in set-builder notation.

Set operations

2. For each of the following statements, determine whether it is true for all sets X,Y, false for
all sets X,Y, or true for some choices of X and Y and false for others.

(@) 2(XUY)=2(X)U2(Y) © P(XxY)=P(X)x P(Y)
(b) 2(XNY)=P(X)NP(Y) @ 2(X\Y)=2(X)\ 2(Y)

Images and preimages

3.Let f: X — Y be a function. For each of the following statements, either prove it is true or
find a counterexample.

(@) U C f[f[U]] forall U C X; (c) VCfIf V] forallV CY;

(b) ff[U]] CU forallU C X; ) flf'[V]]CVforallV CY.

Injections, surjections and bijections

4. (a) Prove that, for all functions f: X — Y and g: Y — Z, if go f is bijective, then f is
injective and g is surjective.
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(b) Find an example of a function f : X — Y and a function g : Y — Z such that go f is bijective,
f is not surjective and g is not injective.

5. For each of the following pairs (U, V) of subsets of R, determine whether the specification
“f(x) = x*> —4x+7 for all x € U’ defines a function f: U — V and, if it does, determine whether
f is injective and whether f is surjective.

(a) U=RandV =R; (d) U= (3,4]and V = [4,7);
(b) U=(1,4)and V =[3,7); () U =[2,00) and V = [3,00);
(c) U=1[3,4)andV =[4,7); (f) U=1[2,o)and V =R.

6. For each of the following pairs of sets X and Y, find (with proof) a bijection f : X — Y.
(@) X=ZandY =N;

(b) X=RandY = (—1,1);

(c) X=10,1]and Y = (0,1);

(d) X =[a,b] and Y = (c,d), where a,b,c,d € R witha < b and ¢ < d.
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Chapter 3

Finite sets

We all have a sense of what the word ‘finite’ means, but when it comes to giving a precise
mathematical definition, it is not entirely obvious how to do it.

The definition that we will eventually give (Definition 3.2.1) amounts to saying that a set X is
finite if, for some natural number n, the elements of X can be paired up with the natural numbers
from 1 to n—this definition is useful because it tells us that the set X has n elements.

This close relationship between the natural numbers and finite sets means that, if we’re going to
get very far in proving propositions involving finite sets, we must first obtain a good understand-
ing of what the natural numbers are and how we can prove things about them.

In Section 3.1, we begin by isolating the fundamental properties that the natural numbers
satisfy—these properties are called Peano’s axioms. We then use Peano’s axioms to develop
several strategies for proving propositions about natural numbers. These strategies are all ex-
amples of a more general proof schema called induction, which is studied in more generality in
Section 5.3.

We get around to defining what a finite set is in Section 3.2, and we prove some useful strategies
for proving that a set is finite. What is often more useful than knowing that a set is finite, though,
is knowing how many elements it has—answering this question is the topic of Section 3.3.
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Section 3.1
The natural numbers

The purpose of this section is to forget everything we think we know about the natural numbers,
and reconstruct our former knowledge (and more!) using the following fundamental property:

Every natural number can be obtained in a unique way by
starting from zero and adding one some finite number of times.

This is slightly imprecise—it is not clear what is meant by ‘adding one some finite number of
times’, for example. Worse still, we are going to define what ‘finite’ means in terms of natural
numbers in Section 3.2, so we’d better not refer to finiteness in our definition of natural numbers!

The following definition captures precisely the properties that we need in order to characterise
the idea of N that we have in our minds. To begin with, N should be a set. Whatever the
elements of this set N actually are, we will think about them as being natural numbers. One of
the elements, in particular, should play the role of the natural number 0—this will be the zero
element z € N; and there should be a notion of ‘adding one’—this will be the successor function
s : N — N. Thus given an element n € N, though of as a natural number, we think about the
element s(n) as the natural number ‘n+ 1°. Note that this is strictly for the purposes of intuition:
we will define ‘4’ and ‘1’ in terms of z and s, not vice versa.

Definition 3.1.1
A notion of natural numbers is a set N, together with an element z € N, called a zero element,
and a function s : N — N called a successor function, satisfying the following properties:

(i) z ¢ s|NJ; that is, z # s(n) for any n € N.
(ii) s is injective; that is, for all m,n € N, if s(m) = s(n), then m = n.

(iii) N is generated by z and s; that is, for all sets X, if z € X and s(n) € X for all n € N, then
NCX.

The properties (i), (ii) and (iii) are called Peano’s axioms.

Note that Definition 3.1.1 does not specify what N, z and s actually are; it just specifies the
properties that they must satisfy. It turns out that it doesn’t really matter what notion of natural
numbers we use, since any two notions are essentially the same. We will not worry about the
specifics here—that task is left to Section B.2: a particular notion of natural numbers is defined
in Construction B.2.5, and the fact that all notions of natural numbers are ‘essentially the same’
is made precise and proved in Theorem B.2.8.
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We can define all the concepts involving natural numbers that we are familiar with, and prove all
the properties that we take for granted, just from the element z € N and the successor function
s:N—N.

For instance, we define ‘0’ to mean z, define ‘1’ to mean s(z), define 2’ to mean s(s(z)), and so
on. For instance, ‘12’ is defined to mean

s(s(s(s(s(s(s(s(s(s(s(s())))))))))))

From now on, then, let’s write O instead of z for the zero element of N. It would be nice if we
could write ‘n+ 1’ instead of s(n), but we must first define what ‘+’ means. In order to do this,
we need a way of defining expressions involving natural numbers; this is what the recursion
theorem allows us to do.

Theorem 3.1.2 (Recursion theorem)
Let X be a set. For all @ € X and all 4 : N x X — X, there is a unique function f : N — X such
that £(0) =a and f(s(n)) = h(n, f(n)) for all n € N.

Proof
Leta e X and h: N x X — X. We prove existence and uniqueness of f separately.

e Define f: N — X by specifying f(0) = a and f(s(n)) = h(n, f(n)). Since h is a function and
s is injective, existence and uniqueness of x € X such that f(n) = x is guaranteed, provided
that f(n) is defined, so we need only verify totality.

Solet D= {n € N| f(n) is defined}. Then:

o 0 € D, since f(0) is defined to be equal to a.

o Letn € Nand suppose n € D. Then f(n) is defined and f(s(n)) = h(n, f(n)), so that f(s(n))
is defined, and hence s(n) € D.

By condition (iii) of Definition 3.1.1, we have N C D, so that f(n) is defined for all n € N, as
required.

e To see that f is unique, suppose g : N — X were another function such that g(0) = a and
g(s(n)) = h(n,g(n)) for all n € N.
To see that f = g, let E = {n € N| f(n) = g(n)}. Then
o 0 € E,since f(0) =a = g(0).
o Letn € N and suppose that n € E. Then f(n) = g(n), and so

f(s(n)) = h(n, f(n)) = h(n,g(n)) = g(s(n))
and so s(n) € E.

Again, condition (iii) of Definition 3.1.1 is satisfied, so that N C E. It follows that f(n) = g(n)
foralln € N,and so f = g.
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Thus we have established the existence and uniqueness of a function f : N — X such that f(0) =
a and f(s(n)) = h(n, f(n)) forall n € N. O

The recursion theorem allows us to define expressions involving natural numbers by recursion;
this is Strategy 3.1.3.

Strategy 3.1.3 (Definition by recursion)
In order to specify a function f : N — X, it suffices to define f(0) and, for given n € N, assume
that f(n) has been defined, and define f(s(n)) in terms of n and f(n). <

Example 3.1.4
We can use recursion to define addition on the natural numbers as follows.

For fixed m € N, we can define a function add,, : N — N by recursion by:
add,(0) =m and add,(s(n)) =s(add,,(n)) foralln € N

In more familiar notation, for m,n € N, define the expression ‘m+n’ to mean add,, (n). Another
way of expressing the recursive definition of add,,(n) is to say that, for each m € N, we are
defining m + n by recursion on n as follows:

m+0=m and m+s(n)=s(m+n)forallneN

<

We can use the recursive definition of addition to prove familiar equations between numbers.
The following proposition is a proof that 2+ 2 = 4. This may seem silly, but notice that the
expression ‘242 =4’ is actually shorthand for the following:

add (o)) (s(s(0))) = s(s(s(s(0))))
We must therefore be careful to apply the definitions in its proof.

Proposition 3.1.5

242=4

Proof

We use the recursive definition of addition.

242=2+s(1) since 2 = s(1)

=s5(2+1) by definition of +
=1s5(2+s5(0)) since 1 = 5(0)
=s(s(2+0)) by definition of +
=s(s(2)) by definition of +
=15(3) since 3 = 5(2)
=4 since 4 = 5(3)

as required. OJ

122



Section 3.1. The natural numbers 123

The following result allows us to drop the notation ‘s(n)’ and just write ‘n+ 1" instead.

Proposition 3.1.6
For all n € N, we have s(n) =n+1.

Proof
Let n € N. Then by the recursive definition of addition we have

n+1=n+s(0)=s(n+0)=s(n)

as required. (]

In light of Proposition 3.1.6, we will now abandon the notation s(n), and write n+ 1 instead.

We can define the arithmetic operations of multiplication and exponentiation by recursion, too.

Example 3.1.7
Fix m € N. Define m - n for all n € N by recursion on n as follows:

m-0=0 and m-(n+1)=(m-n)+mforallneN

Formally, what we have done is define a function mult,, : N — N recursively by mult,,(z) = z
and mult,,(s(n)) = addpy,,(»)(m) for all n € N. But the definition we provided is easier to
understand. <

Proposition 3.1.8

2.2=4
Proof
We use the recursive definitions of addition and recursion.
2-2= Z(I—I—l) since2=1+1
=2-1)+ by definition of -
=(2 (0+1)) +2 since 1 =0+1
=((2-0)0+2)+2 by definition of -
=(0+42)+2 by definition of -
=0+ (1+1))+2 since2=1+1
=((0+1)+1)+2 by definition of +
=(1+1)+2 since 1 =0+1
=242 since2=1+41
=4 by Proposition 3.1.5

as required. (|

Exercise 3.1.9
Given m € N, define m" for all n € N by recursion on n, and prove that 2> = 4 using the recursive
definitions of exponentiation, multiplication and addition. <
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124 Chapter 3. Finite sets

We could spend the rest of our lives doing long computations involving recursively defined
arithmetic operations, so at this point we will stop, and return to taking for granted the facts that
we know about arithmetic operations.

There are, however, a few more notions that we need to define by recursion so that we can use
them in our proofs later.

Definition 3.1.10 .
The sum of real numbers ay,as,...,a, is the real number Y a; defined by recursion on n € N

k=1
by

n

0 n+1
Zak:O and Zak: (Zak> +apy; foralln e N
k=1 k=1

k=0

Definition 3.1.11

n
The product of real numbers aj,an,...,a, is the real number [] a; defined by recursion on
k=1
n € N by
n+1

0 n
Hakzl and H“k: ay | -apyr foralln e N
k=1 k=1 k=0
Example 3.1.12
Let x; = i* for each i € N. Then

xi=14+4+9+16+25=155

5
=1

i
and

xi=1-4-9-16-25 = 14400

5
=1

1

Exercise 3.1.13
Let x1,x, € R. Working strictly from the definitions of indexed sum and indexed product, prove
that

2 2
Zx,-:xl—i—xz and Hx,-:xl - Xp
i=1 i=1

Proof by induction

Just as recursion exploited the structure of the natural numbers to define expressions involving
natural numbers, induction exploits the very same structure to prove results about natural num-
bers.
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Theorem 3.1.14 (Weak induction principle)
Let p(n) be logical formula with free variable n € N, and let ny € N. If

(i) p(no) is true; and
(ii) For all n > ny, if p(n) is true, then p(n+ 1) is true;
then p(n) is true for all n > ny.

Proof
Define X = {n € N | p(ng + n) is true}; that is, given a natural number n, we have n € X if and
only if p(ng+n) is true. Then

e 0 € X, since ny+0 = ngy and p(np) is true by (i).

e Letn € Nand assume n € X. Then p(ng+ n) is true. Since ng+n > ng and p(ng + n) is true,
we have p(ng+n-+ 1) is true by (ii). Butthenng+n+1 € X.

So by Definition 3.1.1(iii) we have N C X. Hence p(ng + n) is true for all n € N. But this is

equivalent to saying that p(n) is true for all n > ny. O

Strategy 3.1.15 (Proof by (weak) induction)
In order to prove a proposition of the form Vn € N, p(n), it suffices to prove that p(0) is true and
that, for all n € N, if p(n) is true, then p(n+ 1) is true. <

Some terminology has evolved for proofs by induction, which we mention now:

The proof of p(ng) is called the base case;

The proof of Vn > ng, (p(n) = p(n+ 1)) is called the induction step;

In the induction step, the assumption p(n) is called the induction hypothesis;

In the induction step, the proposition p(n+ 1) is called the induction goal.

The following diagram illustrates the weak induction principle.

// \\
/ \
— n+1 |
‘. !

To interpret this diagram:

e The shaded diamond represents the base case p(np);
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126 Chapter 3. Finite sets

e The square represents the induction hypothesis p(n);
e The dashed circle represents the induction goal p(n+1);
e The arrow represents the implication we must prove in the induction step.

We will use analogous diagrams to illustrate the other induction principles in this section.
Proposition 3.1.16
n

Let n € N. Then Zk:
k=1

n(n+1)
2

Proof
We proceed by induction on n > 0.

0
0(0+1
o (Base case) We need to prove Z k= ( 2+ ) .

k=1

0(0+1 0
This is true, since ( 2+ ) =0, and Z k = 0 by Definition 3.1.10.
k=1

; this is the induction hypothesis.

n(n+1)
2

n
¢ (Induction step) Let n > 0 and suppose that Z k=
k=1

ntl (n+1)(n+2)

We need to prove that Z k= ; this is the induction goal.

k=1 2
We proceed by calculation:
n+1 n
Y k=Y k]|+(n+1) by Definition 3.1.10
k=1 k=1
1
= n(n; ) +(n+1) by induction hypothesis
=(n+1) g + 1) factorising
1 2
= (n+)2(n+) rearranging
The result follows by induction. O

Before moving on, let’s reflect on the proof of Proposition 3.1.16 to highlight some effective
ways of writing a proof by induction.

e We began the proof by indicating that it was a proof by induction. While it is clear in this

section that most proofs will be by induction, that will not always be the case, so it is good
practice to indicate the proof strategy at hand.
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e The base case and induction step are clearly labelled in the proof. This is not strictly necessary
from a mathematical perspective, but it helps the reader to navigate the proof and to identify
what the goal is at each step.

e We began the induction step by writing, ‘Let n > ng and suppose that [. . . induction hypothesis
goes here. ... This is typically how your induction step should begin, since the proposition
being proved in the induction step is of the form Vn > ng, (p(n) = ---).

e Before proving anything in the base case or induction step, we wrote out what it was that we
were trying to prove in that part of the proof. This is helpful because it helps to remind us
(and the person reading the proof) what we are aiming to achieve.

Look out for these features in the proof of the next proposition, which is also by induction on
n>=0.

Proposition 3.1.17
The natural number n° — n is divisible by 3 for all n € N.

Proof
We proceed by induction on n > 0.

e (Base case) We need to prove that 03 — 0 is divisible by 3. Well
0°-0=0=3x0
so 03 — 0 is divisible by 3.

e (Induction step) Let n € N and suppose that n*> — n is divisible by 3. Then n* —n = 3k for
some k € Z.

We need to prove that (n+ 1)* — (n+ 1) is divisible by 3; in other words, we need to find
some natural number ¢ such that

(n4+1)° —(n+1) =3¢
We proceed by computation.

(n+1)* = (n+1)

= (P43 +3n+1)—n—1 expand brackets
=n’—n+3n*+3n+1-1 rearrange terms

=n’ —n+3n*+3n since 1 —1=0

= 3k+3n*+3n by induction hypothesis
=3(k+n*+n) factorise

Thus we have expressed (n+ 1) — (n+ 1) in the form 3/ for some ¢ € Z; specifically, £ = k +
n*+n.
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The result follows by induction. O

Exercise 3.1.18 .

Prove by induction that Z 2k =21 _ 1 forall n € N. <
k=0

The following proposition has a proof by induction in which the base case is not zero.

Proposition 3.1.19
For all n > 4, we have 3n < 2".

Proof
We proceed by induction on n > 4.

e (Base case) p(4) is the statement 3 -4 < 2%, This is true, since 12 < 16.

e (Induction step) Suppose n > 4 and that 3n < 2". We want to prove 3(n+ 1) < 2""!. Well,

3(n+1)=3n+3 expanding
<2"+43 by induction hypothesis
<2 42* since 3 < 16 = 2*
L2842 since n > 4
=2.2" simplifying
=l simplifying

So we have proved 3(n+1) < 2""!, as required.

The result follows by induction. U

Note that the proof in Proposition 3.1.19 says nothing about the truth or falsity of p(n) for
n=20,1,2,3. In order to assert that these cases are false, you need to show them individually;
indeed:

e 3x0=0and?2° =1, hence p(0) is true;
e 3x1=3and?2' =2, hence p(1) is false;
e 3x2=6and?2? =4, hence p(2) is false;
e 3x3=09and 23 =8, hence p(3) is false.
So we deduce that p(n) is true when n =0 or n > 4, and false when n € {1,2,3}.

Exercise 3.1.20
Find all natural numbers n such that n°> < 5". <

Sometimes a ‘proof’ by induction might appear to be complete nonsense. The following is a
classic example of a ‘fail by induction’:
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Example 3.1.21
The following argument supposedly proves that every horse is the same colour.

o (Base case) Suppose there is just one horse. This horse is the same colour as itself, so the
base case is immediate.

¢ (Induction step) Suppose that every collection of n horses is the same colour. Let X be a set
of n+ 1 horses. Removing the first horse from X, we see that the last n horses are the same
colour by the induction hypothesis. Removing the last horse from X, we see that the first n
horses are the same colour. Hence all the horses in X are the same colour.

By induction, we’re done. <

Exercise 3.1.22

Write down the statement p(n) that Example 3.1.21 attempted to prove for all n > 1. Convince
yourself that the proof of the base case is correct, then write down—with quantifiers—exactly
the proposition that the induction step is meant to prove. Explain why the argument in the
induction step failed to prove this proposition. <

There are several ways to avoid situations like that of Example 3.1.21 by simply putting more
thought into writing the proof. Some tips are:

e State p(n) explicitly. In the statement ‘all horses are the same colour’ it is not clear exactly
what the induction variable is. However, we could have said:

Let p(n) be the statement ‘every set of n horses has the same colour’.

e Refer explicitly to the base case ng in the induction step. In Example 3.1.21, our induction
hypothesis simply stated ‘assume every set of # horses has the same colour’. Had we instead
said:

Let n > 1 and assume every set of n horses has the same colour.

We may have spotted the error in what was to come.

What follows are a couple more examples of proofs by weak induction.

Proposition 3.1.23

2
n n
ForallneN,wehaveZk3: Zk .
k=0 k=0
Proof

n
1
We proved in Proposition 3.1.19 that Z k= @
k=0

for all n € N, thus it suffices to prove that
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for all n € N.

We proceed by induction on n > 0.

0?(0+1)?

o (Base case) We need to prove that 0’ = . This is true since both sides of the

equation are equal to 0.

. . oo n?(n+1)?
e (Induction step) Fix n € N and suppose that Z k= — We need to prove that
k=0
n+1 1 2 2 2
Z K= w This is true since:
k=0 4
n+1 n
) k= Y B+ (n+1)3 by definition of sum
i=0 i=0
2 1 2
= n(n:—) +(n+1)° by induction hypothesis
2 2 3
1 4 1
- (n+1) I (n+1) (algebra)
1)?(n?+4(n+1
= (n+1)°(n 4+ (n+1)) (algebra)
1)%(n+2)?
_ (n+1)"(n+2)° (algebra)
4
By induction, the result follows. O

In the next proposition, we prove the correctness of a well-known formula for the sum of an
arithmetic progression of real numbers.

Proposition 3.1.24
Leta,d € R. Then

“ n+1)(2a+nd
Z(a+kd) = ( )(2 )
k=0
forall n € N.
Proof
We proceed by induction on n > 0.
0
0+1)(2a+0d
e (Base case) We need to prove that Z (a+kd)= 0+ )(2(1 +0d) . This is true, since
k=0
0 2a  1-(2 0+1)(2a+0d
Y (a+kd) =a+0d=a= = (2“) ks )(2” )

k=0

130



Section 3.1. The natural numbers 131

w 1)(2 d
e (Induction step) Fix n € N and suppose that Z (a+kd) = (n+1)( 2a+n ) We need to
prove: =0
o 2)(2 1)d
5 (0 k) = (1Dt (4 D)
k=0 2
This is true, since
n+1
Z (a+kd)
k=0
n
=Y (a+kd)+(a+(n+1)d) by definition of sum
k=0
1)(2 d
(n i )(2a +nd) +(a+(n+1)d) by induction hypothesis
_ (n+1)(2a+nd)+2a+2(n+1)d (algebra)
(n+1)-2a+(n+1)-nd+2a+2(n+1)d (algebra)
N 2
~ 2a(n+1+1)+(n+1)(nd +2d) (algebra)
2 2 1 2)d
= a(n+2)+ (;+ )(n+2) (algebra)
_ (n+2)(2a+ (n+1)d) (algebra)
2
By induction, the result follows. O

The following exercises generalises Exercise 3.1.18 to prove the correctness of a formula for the
sum of a geometric progression of real numbers.

Exercise 3.1.25

Let a,r € R with r # 1. Then
n a(l—r’Hl)

Zar": 1—r

for all n € N. <

When attempting the following exercise, you might find that your induction step requires an
auxiliary result, which itself has a proof by induction.

Exercise 3.1.26
Prove by induction that 7" — 2 -4" 41 is divisible by 18 for all n € N. <
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A first look at binomials and factorials

In Section 3.3, two kinds of natural number will turn out to be extremely useful, namely factori-
als and binomial coefficients. These numbers allow us to count the number of elements of
certain kinds of sets, and correspond with the ‘real-world’ processes of permutation and selec-
tion, respectively. Everything we do here will be re-defined and re-proved combinatorially in
Section 3.3. In this section, we will overlook the combinatorial nature, and instead characterise
them recursively. We will prove that the combinatorial and recursive definitions of binomial
coefficients and factorials are equivalent in Section 3.3.

Definition 3.1.27 (to be redefined in Definition 3.3.10)
Let n € N. The factorial of n, written n!, is defined recursively by

0!=1 and (n+1)!=(n+1)-n!foralln>0

Put another way, we have
n
n! = Hi
i=1

for all n € N—recall Definition 3.1.11 to see why these definitions are really just two ways of
wording the same thing.

Definition 3.1.28 (to be redefined in Definition 3.3.4)
Let n,k € N. The binomial coefficient (}) (I5TEX code: \binom{n}{k}) (read ‘n choose k’) is
defined by recursion on n and on k by

@ -h (kil) -0 (ZE) - <Z> " <k11>

This definition gives rise to an algorithm for computing binomial coefficients: they fit into a
diagram known as Pascal’s triangle, with each binomial coefficient computed as the sum of the
two lying above it (with zeroes omitted):
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Exercise 3.1.29
Write down the next two rows of Pascal’s triangle. <

We can prove lots of identities concerning binomial coefficients and factorials by induction.
Example 3.1.30
n
We prove that ¥ () = 2" by induction on n.
i=0

o (Base case) We need to prove () = 1 and 2° = 1. These are both true by the definitions of
binomial coefficients and exponents.

e (Induction step) Fix n > 0 and suppose that

5 (i) -

niél <l’l+1> :2n+1

i=0 l

We need to prove

This is true, since

i=0 i
1 n+1 1
= (n—(i)— )4-; (,Hz_ > splitting the sum
2 n+1 .
=1 letting j=i—1
+J§)<j+1> etting j =1
1+Z(">+(")> by Definition 3.1.28
= efinition 3.1.
=\ U Y
i n i n
=1+ ( > + ( . ) separating the sums
== A

n
Now Y, (;’) = 2" by the induction hypothesis. Moreover, reindexing the sum using k = j+ 1
j=0

Jgo(fil) :kii@ :,;<Z)+<nil>

By the induction hypothesis, we have

3 -5 0)-6) ==
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and (nil) =0, so that jio (jil) —on_1.

Putting this together, we have

1+J§)(';>+Z (J,L) S 14228 1)

j=0
=2.2"
— 2n+1

so the induction step is finished.

By induction, we’re done.

Exercise 3.1.31
Prove by induction on n > 1 that

Theorem 3.1.32
Let n,k € N. Then

<n>: Mgy k<n
k 0 ifk>n

Proof
We proceed by induction on .

Chapter 3. Finite sets

o (Base case) When n = 0, we need to prove that (2) = ﬁ for all £ <0, and that (2) =0 for

all k > 0.
If £ < 0 then k = 0, since k € N. Hence we need to prove

0\ o
0/ 00!
0

But this is true since (J) = 1 and 0§ = i = 1.
If k > 0 then (})) = 0 by Definition 3.1.28.

n!

e (Induction step) Fix n € N and suppose that (}) = iy for all k < n and (}) =0 for all

k > n.
We need to prove that, for all k < n+ 1, we have

<anr 1) - k!(i(an—:_llz!k)!
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and that ("}') = Oforall k > n+1.

So fix k € N. There are four possible cases: either (i) k =0, or (ii)) 0 < k < n,or (i) k =n+1,
or (iv) k > n+ 1. In cases (i), (ii) and (iii), we need to prove the factorial formula for ("Zl);
in case (iv), we need to prove that ("Zl) =0.

(i) Suppose k=0. Then ("{') = 1 by Definition 3.1.28, and

(n+1)! (n+1)!
K(n+1—k)! O'(n+1)!

since 0! = 1. So (ngl) _ %

(ii) If 0 < k < nthen k = £+ 1 for some natural number ¢ < n. Then £+ 1 < n, so we can

use the induction hypothesis to apply factorial formula to both (Z) and ( ‘ -tl) Hence
n+1
k
1
_ (" sincek =/0+1
(+1
= <Z) + < fi 1) by Definition 3.1.28
n! n! . . .
= =0 + (T D)= 0=1)! by induction hypothesis
Now note that
n! n! {+1 n!
= : = (041
Tn—01 00 t+1 - @aDim—m Y
and
n! n! n—~{ n!

(n=1)

C+DIn—t—1)! C+)n—C—1)! n—€ ({+D(n—10)
Piecing this together, we have

n! n!
A= T D n—t=1)!
n!
= @rnim_g D+ =0
_ nl(n+1)
(D) (n—0)!
_ (n+1)!
(D) (n—0)!
so that (ZI:) = % Now we’re done; indeed,
(n+1)! (1)
C+D)!(n—0)! kl(n+1—k)
since k =0+ 1.
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(iii)) If k=n+1, then

ntl = ntl sincek=n+1
k n+1

_ <”> i ( " > by Definition 3.1.28
n n+1
!
= +0 by induction hypothesis
n!0!
and (1)} 1, so again the two quantities are equal
(wrntor — 1> 80ag q quat.

(iv) If k > n+1, then k = £+ 1 for some ¢ > n, and so by Definition 3.1.28 and the induction
hypothesis we have

n+1 n+1\ 1 /n n
( k >_<£+1>_(£>+<€+1>_0+0_0
O

On first reading, this proof is long and confusing, especially in the induction step where we
are required to split into four cases. We will give a much simpler proof in Section 3.3 (see
Theorem 3.3.40), where we prove the statement combinatorially by putting the elements of two
sets in one-to-one correspondence.

We can use Theorem 3.1.32 to prove useful identities involving binomial coefficients.

Example 3.1.33
Let n,k, £ € N with £ < k < n then
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Indeed:

()(2)

n! k!
- ' 3.1.
Kl(n—k)! 0(k— e by Theorem 3.1.32
nlk! . .
K On—k)!(k—20)! combine fractions
n! "
_6!(n—k)!(k—£)! cancel k!
n!(n—1¢)! . (n—0)!
- Itiply b
O(n—k)!(k—0)!(n—10)! multiply by (n—0)!
& n =)t separate fractions
An—11) k=0)(n—h)! P
S (n=0)! rearrangin
S 0= (k=0 (n—0) ~ (k—10))! ging
n\ (n—4¢
- Th .1.32
(g) (k—€> by Theorem 3.1.3
<
Exercise 3.1.34
Prove that (Z) = (nfk) for all n,k € N with k < n. 4

A very useful application of binomial coefficients in elementary algebra is to the binomial the-
orem.

Theorem 3.1.35 (Binomial theorem)
Letn € Nand x,y € R. Then

Proof
In the case when y = 0 we have y" ¥ = 0 for all k < n, and so the equation reduces to

xl’l — xnyn—n
which is true, since y° = 1. So for the rest of the proof, we will assume that y # 0.

We will now reduce to the case when y = 1; and extend to arbitrary y # 0 afterwards.

n
We prove (1+x)" = kgo (7)x* by induction on n.

e (Base case) (1 +x)° =1 and (8)x0 =1-1=1, so the statement is true when n = 0.
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e (Induction step) Fix n € N and suppose that

(11x"=Y (Z)xk

k=0
n+1
We need to show that (14 x)"+! = D XK Well,
k
k=0
(1 +x>n+1
=(1+x)(1+x)" by laws of indices
n
=(14x)- Z (Z) XK by induction hypothesis
k=0
n A .
= Z (k>x]‘ +x- Z <k)x by expanding (x+ 1)
k=0 k=0
S EAWEER SN AW g
= Z I X"+ Z I X distributing x
k=0 k=0
n n n+1 n
= Z (k)xk+ (k l)xk k — k— 1 in second sum
k=0 k=1 \" 7
= 8) x4+ Z <(Z> + <k " 1) > X+ <n> Xl splitting the sums
k=1 - n
u 1
= (g) x4+ Z <n—]1€— )xk + <n>x”+1 by Definition 3.1.28
k=1 n
n+1\ o n+1\  (n+1\ .
= O+) X+ X" see (x) below
=\ k n+1

+
0
n+1 1
_ (I’l+ )Xk
o\ Kk
The step labelled () holds because
n n+1 n n+1
() =1=C37) e () =1=(0)
n
By induction, we’ve shown that (14x)" = Y. (})x* forall n € N.
i=0

When y = 0 is not necessarily equal to 1, we have that

wrar = (15) = B (1) () = ()

The middle equation follows by what we just proved; the leftmost and rightmost equations are
simple algebraic rearrangements. U
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Example 3.1.36
In Example 3.1.30 we saw that

()=

This follows quickly from the binomial theorem, since
" n " n
=g () =5 )

Likewise, in Exercise 3.1.31 you proved that the alternating sum of binomial coefficients is zero;

that is, for n € N, we have
4 n
Y (-1, ) =0

The proof is greatly simplified by applying the binomial theorem. Indeed, by the binomial
theorem, we have

0=0"=(—141)" =kio (Z)(—l)"l"k =§<—1>k(z>

Both of these identities can be proved much more elegantly, quickly and easily using enumerat-
ive combinatorics. This will be the topic covered in Section 3.3. <

Strong induction

Consider the following example, which we will attempt to prove by induction.

Example 3.1.37
Define a sequence recursively by

n
bo=1 and b1 =1+Y biforallneN
k=0

We will attempt to prove by induction that b, = 2" for all n € N.
e (Base case) By definition of the sequence we have by = 1 = 2°. So far so good.
e (Induction step) Fix n € N, and suppose that b, = 2". We need to show that b, | = 2"

n
Well, b,+1 =14 Y by =...uhoh.
k=0

Here’s what went wrong. If we could replace each by by 2% in the sum, then we’d be able to
complete the proof. However we cannot justify this substitution: our induction hypothesis only
gives us information about b,,, not about a general term by, for k < n. <
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The strong induction principle looks much like the weak induction principle, except that its
induction hypothesis is more powerful. Despite its name, strong induction is no stronger than
weak induction; the two principles are equivalent. In fact, we’ll prove the strong induction
principle by weak induction!

Theorem 3.1.38 (Strong induction principle)
Let p(x) be a statement about natural numbers and let ny € N. If

(i) p(np) is true; and

(ii) For all n € N, if p(k) is true for all ny < k < n, then p(n+ 1) is true;

then p(n) is true for all n > ny.

Proof
For each n > ny, let g(n) be the assertion that p(k) is true for all ny < k < n.

Notice that g(n) implies p(n) for all n > ny, since given n > ny, if p(k) is true for all nop < k < n,
then in particular p(k) is true when k = n.

So it suffices to prove ¢(n) is true for all n > ny. We do so by weak induction.
e (Base case) g(np) is equivalent to p(ny), since the only natural number k with ny < k < ng is
ny itself; hence g(no) is true by condition (i).

e (Induction step) Let n > ng and suppose g(n) is true. Then p(k) is true for all np <k < n.

We need to prove that g(n+ 1) is true—that is, that p(k) is true for all np < k < n+ 1. But we
know p(k) is true for all ny < k < n—this is the induction hypothesis—and then p(n+ 1) is
true by condition (ii). So we have that p(k) is true for all nop < k < n+ 1 after all.

By induction, g(n) is true for all n > ny. Hence p(n) is true for all n > ny. O

Strategy 3.1.39 (Proof by strong induction)
In order to prove a proposition of the form Vn > ng, p(n), it suffices to prove that p(no) is true
and that, for all n > ny, if p(k) is true for all ngp < k < n, then p(n+ 1) is true. <

Like with weak induction, we can illustrate how strong induction works diagrammatically. The
induction hypothesis, represented by the large square, now encompasses p(k) for all nop < k <n,
where p(np) is the base case.

//F\\\
4 \
&) - ) O
\ /
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Observe that the only difference from weak induction is the induction hypothesis.

e Weak induction step: Fix n > ny, ‘ assume p(n) is true |, derive p(n+1);

e Strong induction step: Fix n > ny, ‘ assume p(k) is true for all ng < k < n ‘ , derive p(n+1).

We now use strong induction to complete the proof of Example 3.1.37.

Example 3.1.40 (Example 3.1.37 revisited)
Define a sequence recursively by

n
bo=1 and by =1+) biforallneN
k=0

We will prove by strong induction that b, = 2" for all n € N.

e (Base case) By definition of the sequence we have by = 1 = 2°.

e (Induction step) Fix n € N, and suppose that b; = 2* for all k < n. We need to show that
bp1 = 2!, This is true, since

n
by =1+ Z by by the recursive formula for b,
k=0
n
=1+ Z 2k by the induction hypothesis
k=0
=1+(2"-1) by Exercise 3.1.18
— 2n+1
By induction, it follows that b, = 2" for all n € N. <

The following theorem adapts the strong induction principle to proofs where we need to refer to
a fixed number of previous steps in our induction step.

Theorem 3.1.41 (Strong induction principle (multiple base cases))
Let p(n) be a logical formula with free variable n € N and let ng < n; € N. If

(i) p(no),p(no+1),...,p(ny) are all true; and
(i) Forall n > ny, if p(k) is true for all ny < k < n, then p(n+ 1) is true;
then p(n) is true for all n > ny.

Proof
The fact that p(n) is true for all n > n; follows from strong induction. Indeed:
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e p(ny) is true by (i);

e Fix n > n; and assume p(k) is true for all n; < k < n. Then in fact p(k) is true for all
no < k < n,since p(ng),p(no+1),...p(n; — 1) are true by (i). So p(n+ 1) is true by (ii)

So p(n) is true for all n > ny. But then p(n) is true for all n > ng, again by (i). O
Strategy 3.1.42 (Proof by strong induction with multiple base cases)

In order to prove a statement of the form Vn > ng, p(n), it suffices to prove p(k) for all k €
{no,no+1,...,n1}, where n; > ng, and then given n > n;, assuming p(k) is true for all ny < k <
n, prove that p(n+ 1) is true. <

This kind of strong induction differs from the usual kind in two main ways:

e There are multiple base cases p(ng),p(no+1),...,p(n), not just one.

e The induction step refers to both the least base case np and the greatest base case n;: the
variable n in the induction step is taken to be greater than or equal to n;, while the induction
hypothesis assumes p(k) for all no < k < n.

The following diagram illustrates how strong induction with multiple base cases works.

/ \\
h @ @ - @ 4>: n+1 }
\ /

Note the difference in quantification of variables in the induction step between regular strong
induction and strong induction with multiple base cases:

e One base case. Fix n > and assume p(k) is true for all <k<n.
e Multiple base cases. Fix n > and assume p(k) is true for all <k<n.

Getting the quantification of the variables n and & in the strong induction step is crucial, since
the quantification affects what may be assumed about n and k.

The need for multiple base cases often arises when proving results about recursively defined
sequences, where the definition of a general term depends on the values of a fixed number of
previous terms.

Example 3.1.43
Define the sequence

ap=0, a =1, a,=3a,1—2a, ,foralln>2
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We find and prove a general formula for a, in terms of n. Writing out the first few terms in the
sequence establishes a pattern that we might attempt to prove:

3 4 5 6 7 8
7 15 31 63 127 255

n|0 1 2
a, |0 1 3

It appears that a, = 2" — 1 for all n > 0. We prove this by strong induction, taking the cases
n=0and n =1 as our base cases.

o (Base cases) By definition of the sequence, we have:
o ap=0=2%—1;and
oar=1=2-1;
so the claim is true when n =0 and n = 1.
e (Induction step) Fix n > 1 and assume that a; = 2% — 1 for all 0 < k < n. We need to prove
that @, = 2" — 1.

Well since n > 1, we have n+ 1 > 2, so we can apply the recursive formula to @, ;. Thus

ap+1 = 3a, —2a,— by definition of @,
=3(2"—1)—202"'—1) by induction hypothesis
=3.2"-3-2.2""142 expanding
=3.2"-3-2"42 using laws of indices
=2-2"—1 simplifying
=2 using laws of indices
So the result follows by induction. <

The following exercises have proofs by strong induction with multiple base cases.

Exercise 3.1.44
Define a sequence recursively by ap =4, a; =9 and a,, = 5a,_| — 6a,_; for all n > 2. Prove
that a, =3-2"+4+3" foralln € N. <

Exercise 3.1.45
The Tribonacci sequence is the sequence fg,t;,t, ... defined by
=0, 1=0, =1, t,=t,_ 1+t, r+t, 3foralln>3
Prove that ¢, < 2" 3 for all n > 3. <

Exercise 3.1.46

The Frobenius coin problem asks when a given amount of money can be obtained from coins
of given denominations. For example, a value of 7 dubloons cannot be obtained using only 3
dubloon and 5 dubloon coins, but for all n > 8, a value of n dubloons can be obtained using only
3 dubloon and 5 dubloon coins. Prove this. <
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144 Chapter 3. Finite sets

Well-ordering principle

In a way that we will make precise in Section 5.2, the underlying reason why we can perform
induction and recursion on the natural numbers is because of the way they are ordered. Specific-
ally, the natural numbers satisfy the well-ordering principle: if a set of natural numbers has at
least one element, then it has a least element. This sets the natural numbers apart from the other
number sets; for example, Z has no least element, since ifa € Zthena—1 € Zanda—1 < a.

Theorem 3.1.47 (Well-ordering principle)
Let X be a set of natural numbers. If X is inhabited, then X has a least element.

Idea of proof
Under the assumption that X is a set of natural numbers, the proposition we want to prove has
the form p = g. Namely

X isinhabited = X has a least element
Assuming X is inhabited doesn’t really give us much to work with, so let’s try the contrapositive:
X has no least element = X is empty

The assumption that X has no least element does give us something to work with. Under this
assumption we need to deduce that X is empty.

We will do this by ‘forcing X up’ by strong induction. Certainly 0 ¢ X, otherwise it would be

the least element. If none of the numbers 0, 1,...,n are elements of X then neither can n+ 1 be,
since if it were then if would be the least element of X. Let’s make this argument formal. O
Proof

Let X be a set of natural numbers containing no least element. We prove by strong induction
thatn ¢ X for alln € N.

e (BC) 0 ¢ X since if 0 € X then 0 must be the least element of X, as it is the least natural
number.

e (IS) Suppose k ¢ X for all 0 < k< n. If n+1 € X then n+ 1 is the least element of X;
indeed, if £ < n+ 1 then 0 < £ < n, so £ ¢ X by the induction hypothesis. This contradicts the
assumption that X has no least element, son+1 ¢ X.

By strong induction, n ¢ X for each n € N. Since X is a set of natural numbers, and it contains
no natural numbers, it follows that X is empty. O

Aside

In Section 5.2 we will encounter more general sets with a notion of ‘less than’, for which any
inhabited subset has a ‘least’ element. Any such set has an induction principle, the proof of
which is more or less identical to the proof of Theorem 3.1.38. This has powerful applications
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in computer science, where it can be used to formally verify that a computer program containing
various loops will terminate: termination of a program corresponds to a particular set having a
‘least’ element. <

The following proof that v/2 is irrational is a classic application of the well-ordering principle.

Proposition 3.1.48
The number /2 is irrational.

To prove Proposition 3.1.48 we will use the following lemma, which uses the well-ordering
principle to prove that fractions can be ‘cancelled to lowest terms’.

Lemma 3.1.49
Let g be a positive rational number. There is a pair of nonzero natural numbers a,b such that
g =} and such that the only natural number which divides both a and b is 1.

Proof

First note that we can express g as the ratio of two nonzero natural numbers, since g is a positive
rational number. By the well-ordering principle, there is a least natural number a such that g = 7
for some positive b € N.

Suppose that some natural number d other than 1 divides both a and b. Note that d # 0, since if
d = 0 then that would imply a = 0. Since d # 1, it follows that d > 2.

Since d divides a and b, there exist natural numbers a’,b’ such that a = d'd and b = b'd.
Moreover, a’,b’ > 0 since a,b,d > 0. It follows that

ad d

— a — —
b " vd" ¥
But d > 2, and hence
d = 4 < a <a
d 2
contradicting minimality of a. Hence our assumption that some natural number d other than 1
divides both a and b was false—it follows that the only natural number dividing both a and b is

1. 0J

We are now ready to prove that v/2 is irrational.
Proof of Proposition 3.1.48
Suppose /2 is rational. Since v/2 > 0, this means that we can write

a
2="°
V2=

where a and b are both positive natural numbers. By Lemma 3.1.49, we may assume that the
only natural number dividing a and b is 1.
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Multiplying the equation v/2 = 5 and squaring yields

a* =2b*
Hence a is even. By Proposition 1.1.46, a is even, so we can write a = 2c¢ for some ¢ > 0. Then
a*> = (2¢)? = 4¢?, and hence

4c* =2b*
Dividing by 2 yields

2t =b*

and hence b? is even. By Proposition 1.1.46 again, b is even.

But if a and b are both even, the natural number 2 divides both a and b. This contradicts the
fact that the only natural number dividing both a and b is 1. Hence our assumption that v/2 is
rational is incorrect, and /2 is irrational. O
Writing tip

In the proof of Proposition 3.1.48 we could have separately proved that a*> being even implies
a is even, and that b being even implies b is even. This would have required us to repeat
the same proof twice, which is somewhat tedious! Proving auxiliary results separately (as in
Lemma 3.1.49) and then quoting them in later theorems can improve the readability of the main
proof, particularly when the auxiliary results are particularly technical. Doing so also helps
emphasise the important steps. <

Exercise 3.1.50
What goes wrong in the proof of Proposition 3.1.48 if we try instead to prove that v/4 is irra-
tional? <

Exercise 3.1.51
Prove that /3 is irrational. <
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Section 3.2
Finite sets

As its title suggests, this section is all about exploring the properties of finite sets, and to do
this we must first define what we mean by ‘finite’. We certainly know a finite set when we see
one—for example:

e The set {red,orange, yellow, green, blue, purple} is finite.

The set [0, 1] is infinite, but it has finite length.

The set [0,0) is infinite and has infinite length.

The set #7(N) is infinite, but has no notion of ‘length’ to speak of.

The empty set @ is finite.

If we are to make a definition of ‘finite set’, we must first figure out what the finite sets above
have in common but the infinite sets do not.

It is difficult to define ‘finite’ without being imprecise. A first attempt at a definition might be
something like the following:

A set X is finite if the elements of X don’t go on forever.

This is good intuition, but isn’t good enough as a mathematical definition, because ‘go on’ and
‘forever’ are not precise terms (unless they themselves are defined). So let’s try to make this
more precise:

A set X is finite if the elements of X can be listed one by one
in such a way that the list has both a start and an end.

This is better but is still not entirely precise—it is not entirely clear what is meant by ‘listed one
by one’. But we can make this precise: to list the elements of X one-by-one means that we are
specifying a ‘first element’, a ‘second element’, a ‘third element’, and so on. To say that this
list has an end means that we eventually reach the ‘n'h element’, for some n € N, and there is no
‘(n+1)% element’. In other words, for some natural number n, we are pairing up the elements
of X with the natural numbers from 1 to n.

Recall that, for each n € N, the set of natural numbers from 1 up to » has its own notation:

Definition 2.1.9
Let n € N. The set [n] is defined by [n] = {k € N |1 <k < n}.
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Since ‘pairing up’ really means ‘finding a bijection’, we are now ready to define what it means
for a set to be finite.

Definition 3.2.1
A set X is finite if there exists a bijection f : [n] — X for some n € N. The function f is called
an enumeration of X. If X is not finite we say it is infinite.

This definition suggests the following strategy for proving that a set is finite.

Strategy 3.2.2 (Proving that a set is finite)
In order to prove that a set X is finite, it suffices to find a bijection [n] — X forsomen € N. <

Example 3.2.3
Let X = {red,orange, yellow, green, blue, purple}. We said above that X is finite; now we can
prove it. Define f: [6] — X by

f(1)=red f(2) =orange f(3)=yellow
f(4)=green f(5)=>blue f(6)=purple

The function f is evidently a bijection, since each element of X can be expressed uniquely as
f(k) for some k € [6]. So X is finite. <

Exercise 3.2.4
Prove that [n] is finite for each n € N. <

Note that Exercise 3.2.4 implies, in particular, that & is finite, since @ = [0].

The size of a finite set

Whilst it might sometimes be useful just to know rhat set is finite, it will be even more useful to
know how many elements it has. This quantity is called the size of the set. Intuitively, the size
of the set should be the length of the list of its elements, but for this to be well-defined, we first
need to know that the number of elements in the list is independent of the order in which we list
them.

The ‘list of elements’ of a finite set X is the bijection [n] — X given by Definition 3.2.1, and n is
the length of the list, this means that we need to prove that if [m] — X and [n] — X are bijections,
then m = n. This will be Theorem 3.2.8.

To be able to prove this, we must first prove some technical results that we will use in the proof.

Lemma 3.2.5
Let X be an inhabited set. There is a bijection X \ {a} — X \ {b} forall a,b € X.
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Proof
Leta,b € X. First note that if @ = b then X \ {a} = X\ {b}, and so the identity function idy\ {4
is the desired bijection.

So assume a # b, and define f: X \ {a} — X \ {b} by

) = {a ifx=b

x otherwise
Note that f is well-defined since it ensures that f(x) # b for any x € X \ {a}.
We prove that f is a bijection by finding an inverse.

So define g: X \ {b} — X\ {a} by

o) = {b ifx=a

x  otherwise
Again, g is well-defined since we have ensured that g(x) # a for any x € X \ {b}.
Given x € X, if x # a and x # b, then f(x) # a and g(x) # b, so that

g(f(x)) =g(x)=x and f(g(x)) = f(x) =x
Moreover g(f(b)) = g(a) = b and f(g(a)) = f(b) = a.

This proves that go f = idy () and f og = idx\ (5}, so that g is an inverse for f, as required. [

Theorem 3.2.6
Let m,n € N.

(a) If there exists an injection f : [m] — [n], then m < n.
(b) If there exists a surjection g : [m] — [n], then m > n.

(c) If there exists a bijection A : [m] — [n], then m = n.

Proof of (a)
For fixed m € N, let p(m) be the assertion that, for all n € N, if there exists an injection [m] — [n],
then m < n. We prove that p(m) is true for all m € N by induction.

e (Base case) We need to prove that, for all n € N if there exists an injection [0] — [n], then
0 < n. This is automatically true, since 0 < n for all n € N.

¢ (Induction step) Fix m € N and suppose that, for all n € N, if there exists an injection [m] —
[n], then m < n.

149



150 Chapter 3. Finite sets

Now let n € N and suppose that there is an injection f : [m+ 1] — [n]. We need to prove that
m+1<n.

First note that n > 1. Indeed, since m+1 > 1, we have 1 € [m+ 1], and so f(1) € [n]. This
means that [n] is inhabited, and so n > 1. In particular, n — 1 € N and so the set [n — 1] is
well-defined. It suffices to prove that m < n— 1.

Leta= f(m+1) € [n] and define f~ : [m] — [n] \ {a} by f~ (k) = f(k) for all k € [m]. Note
that f~ is well-defined; indeed, f(k) # a for all k € [m] since a = f(m+ 1) and f is injective.
The function f~ is injective. To see this, let k,¢ € [m] and suppose f~ (k) = f~(¢). Then
f(k) = f(£) by definition of f~, and so k = ¢ by injectivity of f.

Since [n — 1] = [n] \ {n}, there is a bijection s : [n]\ {a} — [n— 1] by Lemma 3.2.5. In
particular, s is injective, and so so f~ is an injection [m] — [n — 1] by Proposition 2.3.4.

By the induction hypothesis, we have m < n—1, and so m+ 1 < n as required.

The result now follows by induction. O

Exercise 3.2.7
Prove parts (b) and (c) of Theorem 3.2.6. <

Phew! That was fun. With these technical results proved, we can now prove the theorem we
needed for the size of a finite set to be well-defined.

Theorem 3.2.8 (Uniqueness of size)
Let X be a finite set and let f : [m| — X and g : [n] — X be enumerations of X, where m,n € N.
Then m = n.

Proof
Since f: [m] — X and g : [n] — X are bijections, the function g~ o f : [m] — [n] is a bijection
by Exercises 2.3.20 and 2.3.45. Hence m = n by Theorem 3.2.6(c). O

As we mentioned above, Theorem 3.2.8 tells us that any two ways of listing (enumerating) the
elements of a finite set yield the same number of elements. We may now make the following
definition.

Definition 3.2.9
Let X be a finite set. The size of X, written |X
exists a bijection [n] — X.

, is the unique natural number n for which there

Example 3.2.10
Example 3.2.3 showed that |{red,orange,yellow, green,blue, purple}| = 6, and provided the
proof was correct, Exercise 3.2.4 showed that |[n]| = n for all n € N; in particular, || =0. <

Example 3.2.11
FixneNandlet X = {a € Z | —n < a < n}. There is a bijection f : [2n+ 1] — X defined by
f(k) =k—n—1. Indeed:
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o fis well-defined. Given k € [2n+ 1], we have 1 <k
—n=1-(n+1)< k—(n+1) <2n+1)—(n+1)=n
(k)
=

< 2n+1, and so

so that f(k) € X as claimed.

e fisinjective. Let k,/ € [2n+ 1] and assume f(k) = f(¢). Thenk—n—1=/¢—n—1, and so
k=2¢.

e fissurjective. Let a € X and define k = a+n+ 1. Then

l=(-n)+n+1< a+n+1 <n+n+1=2n+1
~——
=k
and so k € [2n+ 1], and moreover f(k) = (a+n+1)—n—1=a.

Since f is a bijection, we have |X| = 2n+ 1 by Definition 3.2.9. <

Exercise 3.2.12
Let X be a finite set with |X| =n > 1. Leta € X and let b ¢ X. Prove that

(a) X\ {a} is finite and |X \ {a}| =n—1; and
(b) X U{b} is finite and | X U {b}| =n—+1.

Identify where in your proofs you make use the hypotheses that a € X and b ¢ X. <

Comparing the sizes of finite sets

When we used dots and stars to motivate the definitions of injective and surjective functions at
the beginning of Section 2.3, we suggested the following intuition:

e [f there is an injection f : X — Y, then X has ‘at most as many elements as Y’; and

e [f there is a surjection g : X — Y, then X has ‘at least as many elements as Y.

We are now in a position to prove this, at least when X and Y are finite. The following theorem
is a generalisation of Theorem 3.2.6.

Theorem 3.2.13
Let X and Y be sets.

(a) IfY is finite and there is an injection f : X — Y, then X is finite and |X| < |Y].
(b) If X is finite and there is a surjection f : X — Y, then Y is finite and |X| > |Y|.

(c) If one of X orY is finite and there is a bijection f : X — Y, then X and Y are both finite and
1X|=1x|.
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Proof of (a)

We prove by induction that, for all n € N, if Y is a finite set of size n and there is an injection
f:X — Y, then X is finite and |X| < n.

o (Base case) Let Y be a finite set of size O—that is, Y is empty. Suppose there is an injection
f:X — Y. If X is inhabited, then there exists an element a € X, so that f(a) € Y. This
contradicts emptiness of Y, so that X must be empty. Hence |X| =0 < 0, as required.

e (Induction step) Fix n € N and assume that, if Y is a finite set of size n and there is an
injection f : X — Y, then X is finite and |X| < n.

Fix a finite set Y of size n+ 1 and an injection f : X — Y. We need to prove that X is finite
and |X|<n+1.

If X is empty, then |[X| =0 < n+ 1 as required. So assume that X is inhabited, and fix an
elementa € X.

Define fV: X\ {a} = Y\ {f(a)} by fV(x) = f(x) for all x € X \ {a}. Note that fV is well-
defined since f(x) # f(a) for any x € X \ {a} by injectivity of f. Moreover f" is injective;
indeed, let x,y € X \ {a} and assume fV(x) = fV(y). Then

fRO == 0=,0) = x=y
by injectivity of f. So fV is an injection.

By Exercise 3.2.12, Y \ {f(a)} is finite and |Y \ {f(a)}| = (n+1)— 1 =n.

By the induction hypothesis, X \ {a} is finite and |X \ {a}| < (n+1) — 1. But [X \ {a}| =
|X| — 1 by Exercise 3.2.12, and so |X| < n+ 1, as required.

The result now follows by induction. O
Exercise 3.2.14
Prove parts (b) and (c) of Theorem 3.2.13. <

Theorem 3.2.13 suggests the following strategies for comparing the sizes of finite sets:

Strategy 3.2.15 (Comparing the sizes of finite sets)
Let X and Y be finite sets.

(a) In order to prove that |X| < |Y|, it suffices to find an injection X — Y.
(b) In order to prove that |X| > |Y|, it suffices to find a surjection X — Y.

(c) In order to prove that |X| = |Y|, it suffices to find a bijection X — Y.
Strategy (c) is commonly known as bijective proof. <
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Closure properties of finite sets

We now use Strategy 3.2.15 to prove some closure properties of finite sets—that is, operations
we can perform on finite sets to ensure that the result remains finite.

Exercise 3.2.16

Let X be a finite set. Prove that every subset U C X is finite and |U| < |X]. <
Exercise 3.2.17
Let X and Y be finite sets. Prove that X NY is finite. <

Proposition 3.2.18
Let X and Y be finite sets. Then X UY is finite, and moreover

XUY|=[X|+|Y|—-|XNY]|

Proof
We will prove this in the case when X and Y are disjoint. The general case, when X and Y are
not assumed to be disjoint, will be Exercise 3.2.19.

Letm = |X|andn=|Y|,and let f : [m] — X and g : [n] — Y be bijections.

Since X and Y are disjoint, we have X NY = @&. Define A : [m+n] — X UY as follows; given
k € [m+n], let

h(k):{f(k) itk <m
glk—m) ifk>m

Note that & is well-defined: the cases k < m and k > m are mutually exclusive, they cover all
possible cases, and k —m € [n] for all m+ 1 < k < n so that g(k —m) is defined. It is then
straightforward to check that 4 has an inverse A~! : X UY — [m +n| defined by

. ) ifzeX
h™ (z) = {gl(z)-i-m ifzeY

Well-definedness of 4~! relies fundamentally on the assumption that X NY = @, as this is what
ensures that the cases x € X and x € Y are mutually exclusive.

Hence [ XUY|=m+n=|X|+|Y

Exercise 3.2.19
The following steps complete the proof of Proposition 3.2.18:

, which is as required since (X NY| =0. O

(a) Given sets A and B, prove that the sets A x {0} and B x {1} are disjoint, and find bijections
A — Ax {0} and B— B x {1}. Write ALl B (I5IgX code: \sqcup) to denote the set (A x
{0})U (B x {1}). The set ALIB is called the disjoint union of A and B.

(b) Prove that, if A and B are finite then A LI B is finite and

AUB| = |A| +|B]
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(c) Let X and Y be sets. Find a bijection

(XUY)U(XNY) = XUY

(d) Complete the proof of Proposition 3.2.18—that is, prove that if X and Y are finite sets, not
necessarily disjoint, then X UY is finite and

XUY|=|X|+1Y|—|XNY]|

Exercise 3.2.20
Let X be a finite set and let U C X. Prove that X \ U is finite, and moreover |X \ U| = |X| — |U].
<

Exercise 3.2.21
Let m,n € N. Prove that |[m] X [n]| = mn. <

Proposition 3.2.22
Let X and Y be finite sets. Then X x Y is finite, and moreover

X x¥|=[x]-Jy|

Proof
Let X and Y be finite sets, let m = |X| and n = |Y|, and let f: [m] — X and g: [n] — Y be
bijections. Define a function 4 : [m] x [n] — X x Y by

h(k,€) = (f(k),g(£))

for each k € [m] and ¢ € [n]. It is easy to see that this is a bijection, with inverse defined by

W y) = (1,871 ()

for all x € X and y € Y. By Exercise 3.2.21 there is a bijection p : [mn| — [m] x [n], and by
Exercise 2.3.20 the composite ho p : [mn] — X x Y is a bijection. Hence |X x Y| = mn. O

In summary, we have proved that the property of finiteness is preserved by taking subsets, pair-
wise unions, pairwise intersections, pairwise cartesian products, and relative complements.

Infinite sets

We conclude this section by proving that not all sets are finite—specifically, we’ll prove that N
is infinite. Intuitively this seems extremely easy: of course N is infinite! But in mathematical
practice, this isn’t good enough: we need to use our definition of ‘infinite’ to prove that N is
infinite. Namely, we need to prove that there is no bijection [n] — N for any n € N. We will use
Lemma 3.2.23 below in our proof.
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Lemma 3.2.23
Every inhabited finite set of natural numbers has a greatest element.

Proof
We’ll prove by induction on n > 1 that every subset U C N of size n has a greatest element.

e (Base case) Take U C N with |U| = 1. then U = {m} for some m € N. Since m is the only
element of U, it is certainly the greatest element of U'!

e (Induction step) Fix n > 1 and suppose that every set of natural numbers of size n has a
greatest element (IH).
Let U C N with |U| = n+ 1. We wish to show that U has a greatest element.

Since |U| = n+ 1, we may write U = {m;,ma, ... ,m,,my,} for distinct natural numbers my.
But then |U \ {my,+1 }| = n by Exercise 3.2.12, and so by the induction hypothesis, U \ {m,1}
has a greatest element, say m;. Now:

o If my < myy1, then m, | is the greatest element of U.
o If my > my,1, then my is the greatest element of U.

In any case, U has a greatest element. This completes the induction step.

Theorem 3.2.24
The set N is infinite.

Proof

We proceed by contradiction. Suppose N is finite. Then |N| = n for some n € N, and hence
N is either empty (nonsense, since 0 € N) or, by Lemma 3.2.23, it has a greatest element g.
But g+ 1 € N since every natural number has a successor, and g+ 1 > g, so this contradicts
maximality of g. Hence N is infinite. O
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Section 3.3
Counting principles

In Section 3.2 we were interested in establishing conditions under which a set is finite, and
proving that we may perform certain operations on finite sets—such as unions and cartesian
products—without losing the property of finiteness.

In this section, our attention turns to the task of finding the size of a set that is known to be finite.
This process is called counting and is at the core of the mathematical field of combinatorics.

Binomials and factorials revisited

We defined binomial coefficients (Z) and factorials n! recursively in Section 3.1, and proved ele-
mentary facts about them by induction. We will now re-define them combinatorially—that is,
we give them meaning in terms of sizes of particular finite sets. We will prove that the combin-
atorial and recursive definitions are equivalent, and prove facts about them using combinatorial
arguments.

The reasons for doing so are manifold. The combinatorial definitions allow us to reason about
binomials and factorials with direct reference to descriptions of finite sets, which will be par-
ticularly useful when we prove identities about them using double counting. Moreover, the
combinatorial definitions remove the seemingly arbitrary nature of the recursive definitions—
for example, they provide a reason why it makes sense to define 0! = 1 and (8) =1.

Definition 3.3.1
Let X be asetand let k € N. A k-element subset of X is a subset U C X such that |[U| = k. The set
of all k-element subsets of X is denoted ()lg) (read: ‘X choose k”) (IATEX code: \binom{X}{k}).

Intuitively, (),f ) is the set of ways of picking k elements from X, without repetitions, in such a
way that order doesn’t matter. (If order mattered, the elements would be sequences instead of
subsets.)

Example 3.3.2
We find ([2]) for all k € N.
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o (4)={{1.23.4});

o If £k > 5 then ([2]) = ¢, since by Exercise 3.2.16, no subset of [4] can have more than 4
elements.

Proposition 3.3.3
If X is a finite set, then (X) = Uq|x| ()]i)

Proof
Let U C X. By Exercise 3.2.16, U is finite and |U| < |X|. Thus U € (X ), and hence U €

U]
Uk<|x‘ ()lg) This proves that (X ) C Uk<|x\ ()lg)

The fact that U< x| (}/f ) C Z(X) is immediate, since elements of ()]f ) are defined to be subsets
of X, and hence elements of & (X). OJ

Definition 3.3.4
Let n,k € N. Denote by (Z) (read: ‘n choose k’) (I5TgX code: \binom{n}{k}) the number of

k-element subsets of [n]. That is, we define (*) = |(“))|. The numbers (%) are called binomial

coefficients.”

“Some authors use the notation ,,Cy or "Cy, instead of (Z) We avoid this, as it is unnecessarily clunky.

Intuitively, (Z) is the number of ways of selecting k things from n, without repetitions, in such a
way that order doesn’t matter.

The value behind this notation is that it allows us to express huge numbers in a concise and
meaningful way. For example,

(4000

1 ) =103 640 000 280 154 258 645 590 429 564 000

Although these two numbers are equal, their expressions are very different; the expression on
the left is meaningful, but the expression on the right is completely meaningless out of context.
Writing tip

When expressing the sizes of finite sets described combinatorially, it is best to avoid evaluating
the expression; that is, leave in the powers, products, sums, binomial coefficients and factori-
als! The reason for this is that performing the calculations takes the meaning away from the
expressions. <

Example 3.3.5
In Example 3.3.2 we proved that:

(1) ()0 () -+ () -
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and that () = 0 for all k > 5. <

Exercise 3.3.6
Fix n € N. Prove that (8) =1, ('1’) =n and (Z) =1. 8q

Definition 3.3.7
Let X be a set. A permutation of X is a bijection X — X. Denote the set of all permutations of
X by Sx (I5TEX code: S_X),” and write S}, = S, forn € N.

%The ‘S’ comes from ‘symmetry’. The set Sy comes with the natural structure of a group.

Example 3.3.8
There are six permutations of the set [3]. Representing each f € S[3 by the ordered triple
(f(1),£(2),f(3)), these permutations are thus given by

(17273)’ (17372)7 (27173)7 (27371)7 (37172)? (37271)

For example, (2,3, 1) represents the permutation f : [3] — [3] defined by f(1) =2, f(2) =3 and

f3)=1. q
Exercise 3.3.9
List all the permutations of the set [4]. <

Definition 3.3.10
Let n € N. Denote by n! (read: ‘n factorial’) the number of permutations of a set of size n. That
is, n! = [S,|. The numbers n! are called factorials.

Example 3.3.11
Example 3.3.8 shows that 3! = 6. <

Products and partitions

We saw in Proposition 3.2.22 and Proposition 3.2.18 that, given two finite sets X and Y, the
product X x Y and the union X UY are finite. We also found formulae for their size. The
multiplication principle (Strategy 3.3.21) and addition principle (Strategy 3.3.28) generalise
these formulae, extending to products and (disjoint) unions of any finite number of finite sets.

Lemma 3.3.12

n
Let {X,...,X,} be a family of finite sets, with n > 1. Then [] X; is finite, and
i=1

= |X1| . |X2| ..... |Xn|

n
[
i=1
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Proof
We proceed by induction on 7.

1
e (BC) When n = 1, an element of [] X; is ‘officially’ a sequence (x;) with x; € X;. This is the
i=1
same as an element of X, in the sense that the assignments (x;) — x; and x; — (x;) define

1
mutually inverse (hence bijective) functions between [] X; and X;, and so

e (IS) Fix n € N, and suppose that

. :|X1|.|X2| ..... ’Xn‘

for all sets X; for i € [n]. This is our induction hypothesis.
Now let Xi,...,X,,X,+1 be sets. We define a function

n+1
F:]]x— HX X Xpi1
i=1 i=1

by letting F((x1,...,%,Xn+1)) = ((X1,...,%n),Xs+1). It is again easy to check that F is a

bijection, and hence
n+1

n
[1%| = [1x
i=1 i=1

by Proposition 3.2.22. Applying the induction hypothesis, we obtain the desired result,
namely

’ ’Xn—&-l‘

n+1

[1x

i=1

=X [Xa| - [ Xl X

By induction, we’re done. |

Lemma 3.3.12 gives rise to a useful strategy for computing the size of a finite set X—see
Strategy 3.3.13. Intuitively, by devising a step-by-step procedure for specifying an element of
n

X, we are constructing a cartesian product [] X, where X} is the set of choices to be made in the
k=1

k™ step. This establishes a bijection H X — X, which by bijective proof (Strategy 3.2.15(c))

lets us compute |X| as the product of the numbers of choices that can be made in each step.
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Strategy 3.3.13 (Multiplication principle (independent version))

Let X be a finite set. In order to compute |X|, it suffices to find a step-by-step procedure for
specifying elements of X, such that:

e Each element is specified by a unique sequence of choices;

e Each step in the procedure is independent of the previous step;

e There are finitely many choices to be made at each step.

n
If there are n € N steps and ny; € N possible choices in the k'™ step, then |X| = [T my. <
k=1

Example 3.3.14
You go to an ice cream stand selling the following flavours:

vanilla, strawberry, chocolate, rum and raisin, mint choc chip, toffee crunch

You can have your ice cream in a tub, a regular cone or a choco-cone. You can have one, two or
three scoops. We will compute how many options you have.

To select an ice cream, you follow the following procedure:

e Step 1. Choose a flavour. There are 6 ways to do this.

e Step 2. Choose whether you’d like it in a tub, regular cone or choco-cone. There are 3 ways
to do this.

e Step 3. Choose how many scoops you’d like. There are 3 ways to do this.

Hence there are 6 x 3 x 3 = 54 options in total. <
This may feel informal, but really what we are doing is establishing a bijection. Letting X be the
set of options, the above procedure defines a bijection

FxCxS—=X

where F is the set of flavours, C = {tub,regular cone,choco-cone} and S = [3] is the set of
possible numbers of scoops.

Example 3.3.15
We will prove that | 22(X)| = 2/X| for all finite sets X.%!

Let X be a finite set and let n = |X|. Write

X={x|ken}={x1,x,...,x}

[2lSome authors write 2% to refer to the power set of a set X. This is justified by Example 3.3.15.
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Intuitively, specifying an element of &?(X)—that is, a subset U C X—is equivalent to deciding,
for each k € [n], whether x;, € U or x; € U (‘in or out’), which in turn is equivalent to specifying
an element of {in,out}".

For example, taking X = [7], the subset U = {1,2,6} corresponds with the choices
1 in, 2 in, 3 out, 4 out, 5 out, 6 in, 7 out
and hence the element (in,in,out, out, out,in,out) € {in,out}’.

This defines a function i : Z(X) — {in,out}". This function is injective, since different subsets
determine different sequences; and it is surjective, since each sequence determines a subset.

The above argument is sufficient for most purposes, but since this is the first bijective proof we
have come across, we now give a more formal presentation of the details.

Define a function
i: Z(X)— {in,out}"

by letting the k™ component of i(U) be ‘in’ if x; € U or ‘out’ if x; & U, for each k € [n].
We prove that i is a bijection.

e i is injective. To see this, take U,V C X and suppose i(U) = i(V). We prove that U = V. So
fix x € X and let k € [n] be such that x = x;. Then

x € U < the k™ component of i(U) is “in’ by definition of i
& the k™ component of (V) is ‘in’ since i(U) = i(V)
SxeV by definition of i

so indeed we have U =V, as required.
e i is surjective. To see this, let v € {in,out}", and let
U = {x; | the k™ component of v is ‘in’}

Then i(U) = v, since for each k € [n] we have x; € U if and only if the k™ component of v is
‘in’, which is precisely the definition of i(U).

Hence
|2 (X)| = |{in,out}|" =2"
as required. <

Exercise 3.3.16
Let X and Y be finite sets, and recall that YX denotes the set of functions from X to Y. Prove that
YX| = |y, <
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Example 3.3.17
We count the number of ways we can shuffle a standard deck of cards in such a way that the
colour of the cards alternate between red and black.

A procedure for choosing the order of the cards is as follows:

(i) Choose the colour of the first card. There are 2 such choices. This then determines the
colours of the remaining cards, since they have to alternate.

(i) Choose the order of the red cards. There are 26! such choices.
(iii)) Choose the order of the black cards. There are 26! such choices.

By the multiplication principle, there are 2 - (26!)? such rearrangements. This number is huge,
and in general there is no reason to write it out. Just for fun, though:

325288 005 235 264 929 014 077 766 819 257 214 042 112 000 000 000 000

Exercise 3.3.18

Since September 2001, car number plates on the island of Great Britain have taken the form
XX NN XXX, where each X can be any letter of the alphabet except for ‘I’, ‘Q’ or “Z’, and NN is
the last two digits of the year.”) How many possible number plates are there? Number plates
of vehicles registered in the region of Yorkshire begin with the letter “Y’. How many Yorkshire
number plates can be issued in a given year? <

The multiplication principle in the form of Strategy 3.3.13 does not allow for steps later in a
procedure to depend on those earlier in the procedure. To see why this is a problem, suppose we
want to count the size of the set X = {(a,b) € [n] x [n] | a # b}. A step-by-step procedure for
specifying such an element is as follows:

e Step 1. Select an element a € [n]. There are n choices.
e Step 2. Select an element b € [n] with b # a. There are n — 1 choices.

We would like to use Strategy 3.3.13 to deduce that |X| = n(n— 1). Unfortunately, this is not
valid because the possible choices available to us in Step 2 depend on the choice made in Step
1. Elements of cartesian products do not depend on one another, and so the set of sequences
of choices made cannot necessarily be expressed as a cartesian product of two sets. Thus we
cannot apply Lemma 3.3.12. Oh no!

However, provided that the number of choices in each step remains constant, in spite of the
choices themselves changing, it turns out that we can still compute the size of the set in question
by multiplying together the numbers of choices.

[*1This is a slight simplification of what is really the case, but let’s not concern ourselves with foo many details!
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This is what we prove next. We begin with a pairwise version (analogous to Exercise 3.2.21)
and then prove the general version by induction (like in Lemma 3.3.12).

Lemma 3.3.19
Fix m,n € N. Let X be a finite set with |X| = m, and for each a € X, let ¥, be a finite set with
|Y,| = n. Then the set

P={(a,b)|acXandbecY,}

is finite and |P| =
Proof

Fix bijections f : [m] — X and g, : [n] — Y, for each a € X. Define h : [m] x [n] — P by letting
h(i, j) = (f(i): & (Jj)) for each (i, j) € [m] x [n]. Then:

e 1 is well-defined, since for all i € [m] and j € [n] we have f(i) € X and g ;) (/) € Yy

e h is injective. To see this, fix (i, j), (k,¢) € [m] X [n] and assume that h(i, j) = h(k,£). Then

(f(0),870) (1) = (f(k), 8 (£)), s0 that f() f(k) and g (j) = g(x)(€). Since f is in-
Jectlve we have i = k—therefore g ;) (J ( ), and then since g #(i) 1s injective, we have
= /(. Thus (i, j) = (k,¢), as required.

e his surjective. To see this, let (a,b) € P. Since f is surjective and a € X, we have a = f(i) for
some i € [m]. Since g, is surjective and b € Y,, we have b = g,(j) for some j € [n]. But then

(a,b) = (f(i),8a())) = (f(0), 87 (/) = h(i, ])

so that / is surjective.

Since h is a bijection, we have |P| = |[m] X [n]| by Theorem 3.2.13(iii), which is equal to mn by
Proposition 3.2.22. 0

We are now ready to state and prove the theorem giving rise to the multiplication principle in its
full generality.

Theorem 3.3.20

Letn > 1 and my,my,...,m, € N. Suppose for each i € [n] that we are given finite sets Xéf),m,ai_l
with ’Xa17...7a,~,1‘ =mj, where a; € thi%---,aﬂ for each j < i. Define
P = {((11,(12, SO 7aVl) ’ a € X(1)7 as € thlz)v ceey Qp € thl7)--~7an—l}

Then P is finite and |P| = mj X my X -+ X my,.

Proof
We proceed by induction on n > 1.

e (Base case) When n = 1, the statement says that given m; € N and a finite set X(!) with
IX(M| =my, then P = {(ay) | a; € XV} is finite and |P| = m,. This is true, since the function
X — P defined by a — (a) is evidently a bijection.
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164 Chapter 3. Finite sets

(Induction step) Fix n > 1 and assume that the statement is true for this value of n.

Let my,mp,...,m,,m,11 € N and suppose that we are given finite sets Xéf),,._,aifl for each
i € [n+ 1] just as in the statement of the theorem, and let

2 1
P={(aj,ay,...,an+1) | a1 GX(I), ar GXLSI), ey Gy GXéﬁ.yzn_han}

We need to prove that |P| = mj X my X «++ X my X M4 1.
So define

0={(ay,az,...,a,) | a1 EX(l), a GXCS?), el Gy GXa(ﬁ)“_’an_,}

and, given g = (ay,...,a,) € Q, define ¥, = XCETH()M Observe that there is an evident bijection

{(‘17an+1) ’ qe€Q, any € Yq} — P

defined by ((aj,az,...,an),an41) — (a1,az,...,ay,an41).

Now |Q] = my X my X -+ x my, and |Yy| = m,41 for each ¢ € Q, so it follows from
Lemma 3.3.19 that

‘P|:(m1XmZX"'an)an+l:mlmeX"'ananJrl

as required.

Strategy 3.3.21 summarises how Theorem 3.3.20 is useful in our proofs.

Strategy 3.3.21 (Multiplication principle)
Let X be a finite set. In order to compute |X|, it suffices to find a step-by-step procedure for
specifying elements of X, such that:

Each element is specified by a unique sequence of choices;
The choices available in each step depend only on choices made in previous steps;
There are finitely many choices available in each step;

The number of choices available in each step does not depend on choices made in previous
steps;

n
If there are n € N steps and ny; € N possible choices in the k™ step, then |X| = [T my. <
k=1

Example 3.3.22
We prove that there are six bijections [3] — [3]. We can specify a bijection f : [3] — [3] according
to the following procedure.
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Section 3.3. Counting principles 165

e Step 1. Choose the value of f(1). There are 3 choices.

e Step 2. Choose the value of f(2). The values f(2) can take depend on the chosen value of

fQD).

o If f(1) =1, then f(2) can be equal to 2 or 3.
o If f(1) =2, then f(2) can be equal to 1 or 3.
o If f(1) =3, then f(2) can be equal to 1 or 2.

In each case, there are 2 choices for the value of f(2).

e Step 3. Choose the value of f(3). The values f(3) can take depend on the values of f(1) and
f(2). We could split into the (six!) cases based on the values of f(1) and f(2) chosen in Steps
1 and 2; but we won’t. Instead, note that {f(1),f(2)} has two elements, and by injectivity
f(3) must have a distinct value, so that [3]\ {f(1), f(2)} has one element. This element must
be the value of f(3). Hence there is only possible choice of f(3).

By the multiplication principle, there are 3 x 2 x 1 = 6 bijections [3] — [3]. <
Exercise 3.3.23
Count the number of injections [3] — [4]. <

The addition principle says that if we can partition a set into smaller chunks, then the size of the
set is the sum of the sizes of the chunks. We will first make this notion of ‘partition’ precise.

Definition 3.3.24
Sets X and Y are disjoint if X NY = &. More generally, given n € N, a collection of sets
X1,X>,...,X, is pairwise disjoint if X; N X; = @ for all i, j € [n] with i # j.

Definition 3.3.25
A (finite) partition of a set X is, for some n € N, a collection {U; | i € [n]} of subsets of X such
that:

(a) Each U; is inhabited;
(b) The sets Uy, Us,,...,U, are pairwise disjoint; and

(©) U?:l U =X.

For the purposes of proving Theorem 3.3.26 and stating the addition principle (Strategy 3.3.28),
we may dispense with the requirement that the sets U; in the partition be inhabited, since if any
of them are empty, they contribute a value of 0 to the sum. Thus when we say ‘partition’ in this
section, we will secretly allow the sets in the partition to be empty. Be warned, though—when
we discuss partitions in contexts other than the addition principle (for example in Section 5.1),
we will require the sets in the partition to be inhabited.
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166 Chapter 3. Finite sets

Theorem 3.3.26
Let X be a set and let {Uj,...,U,} be a partition of X for some n € N, such that each set U; is
finite. Then X is finite, and

X = [U1| +|U2| + -+ |Un|

Exercise 3.3.27
Prove Theorem 3.3.26. The proof follows the same pattern as that of Lemma 3.3.12. Be careful
to make sure you identify where you use the hypothesis that the sets U; are pairwise disjoint! <

Strategy 3.3.28 (Addition principle)
Let X be a finite set. In order to compute |X|, it suffices to find a partition U;,Us,...,U, of X it

then follows that [X| = f‘, |1 X;|. <
k=1

Example 3.3.29
We will count the number of inhabited subsets of [7] which either contain only even numbers, or
contain only odd numbers.

Let O denote the set of inhabited subsets of [7] containing only odd numbers, and let E denote the
set of inhabited subsets of [7] containing only even numbers. Note that {O, E'} forms a partition
of the set we are counting, and so our set has |O| + |E| elements.

e An element of O must be a subset of {1,3,5,7}. By Example 3.3.15 there are 2% =16 such
subsets. Thus the number of inhabited subsets of [7] containing only odd numbers is 15, since
we must exclude the empty set. That is, |O] = 15.

e A subset containing only even numbers must be a subset of {2,4,6}. Again by Example 3.3.15
there are 2° = 8 such subsets. Hence there are 7 inhabited subsets of [7] containing only even
numbers. That is, |E| = 7.

Hence there are 15+ 7 = 22 inhabited subsets of [7] containing only even or only odd numbers.
And here they are:

{1} {3} {5} {7} {1,3} {2y {4 {6}
{153 {7y {35} {37} {57} {2,4}  {2,6} {4,6}
{1,3,5} {1,3,7} {1,5,7} {3,577} {1,3,577} {2.4,6}

<

Exercise 3.3.30
Pick your favourite integer n > 1000. For this value of n, how many inhabited subsets of [r]
contain either only even or only odd numbers? (You need not evaluate exponents.) <

We now consider some examples of finite sets which use both the multiplication principle and
the addition principle.
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Section 3.3. Counting principles 167

Example 3.3.31

A city has 6n inhabitants. The favourite colour of n of the inhabitants is orange, the favourite
colour of 2n of the inhabitants is pink, and the favourite colour of 3n of the inhabitants is tur-
quoise. The city government wishes to form a committee with equal representation from the
three colour preference groups to decide how the new city hall should be painted. We count the
number of ways this can be done.

Let X be the set of possible committees. First note that
n
X=JX
k=0

where Xj, is the set of committees with exactly k people from each colour preference group.
Indeed, we must have k < n, since it is impossible to have a committee with more than n people
from the orange preference group.

Moreover, if k # £ then X; N Xy = &, since if k # ¢ then a committee cannot simultaneously have
exactly k people and exactly ¢ people from each preference group.

By the addition principle, we have
n

X =} 1Xi

k=0

We count X; for fixed k using the following procedure:

e Step 1. Choose k people from the orange preference group to be on the committee. There are
" .
(7) choices.

e Step 2. Choose k people from the pink preference group to be on the committee. There are
2n :
(7') choices.
e Step 3. Choose k people from the turquoise preference group to be on the committee. There
are (3:) choices.

By the multiplication principle, it follows that [X| = (7) (Zk") (%k”) Hence

=1 (000

Exercise 3.3.32

In Example 3.3.31, how many ways could a committee be formed with a representative number
of people from each colour preference group? That is, the proportion of people on the committee
which prefer any of the three colours should be equal to the corresponding proportion of the
population of the city. <
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168 Chapter 3. Finite sets

Double counting

Double counting (also known as counting in two ways) is a proof technique that allows us to
prove that two natural numbers are equal by establishing they are two expressions for the size
of the same set. (More generally, by Theorem 3.2.13(iii), we can relate them to the sizes of two
sets which are in bijection.)

The proof of Proposition 3.3.33 illustrates this proof very nicely. We proved it already by induc-
tion in Example 3.1.30; the combinatorial proof we now provide is much shorter and cleaner.

Proposition 3.3.33
" n
Let . Then 2" = .
et n € N. Then kg(’) ( k>
Proof
We know that |2 ([n])| = 2" by Example 3.3.15 and that 2([n]) = Uj_o () by Proposi-
tion 3.3.3. Moreover, the sets ([Z}) are pairwise disjoint, so by the addition principle it follows

that
O)-£/)-£6)

k=0 k=0

2" =[2(n)| =

Strategy 3.3.34 (Double counting)
In order to prove that two expressions involving natural numbers are equal, it suffices to define
a set X and devise two counting arguments to show that |X| is equal to both expressions. <

The next example counts elements of different sets and puts them in bijection to establish an
identity.

Proposition 3.3.35
Let n,k € N with n > k. Then

(=)

([Z}) and (") = ‘(n[f]k) ’, so it suffices to find a bijection f : ([Z]) — (n[f]k).
Intuitively, this bijection arises because choosing k elements from [n] to put into a subset is
equivalent to choosing n — k elements from [n] to leave out of the subset. Specifically, we define

Proof
First note that () =

f(U)=[n\U forallU € ([Z]>

Note first that f is well-defined, since if U C [n] with |U| =k, then [n]\U C [n] and |[n]\U| =
|[n]| — |U| = n—k by Exercise 3.2.20. We now prove f is a bijection:
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Section 3.3. Counting principles 169

e fisinjective. Let U,V C [n] and suppose [n]\ U = [n] \ V. Then for all k € [n], we have

keU<k¢gn\U by definition of set difference
S k& [n)\V since [n]\U = [n]\V
SkeV by definition of set difference

so U =V, as required.

e f is surjective. Let V € (n[fk). Then |[n] \ V| = n— (n— k) = k by Exercise 3.2.20, so that
] \V € ([Z]). But then
(I \V) =[]\ ([ \V) =V
by Exercise 2.1.61.

Since f is a bijection, we have

as required. O

We put a lot of detail into this proof. A slightly less formal proof might simply say that (}) =
(nf k) since choosing k elements from [r] to put into a subset is equivalent to choosing n — k
elements from [n] to leave out of the subset. This would be fine as long as the members of
the intended audience of your proof could reasonably be expected to construct the bijection by
themselves.

The proof of Proposition 3.3.36 follows this more informal format.

Proposition 3.3.36
Let n,k,f € Nwithn >k > £. Then

proos () ()= (G=)

Let’s home in on the left-hand side of the equation. By the multiplication principle, (Z) (lg)
is the number of ways of selecting a k-element subset of [1] and an /-element subset of [k].
Equivalently, it’s the number of ways of selecting a k-element subset of [1] and then an ¢-element
subset of the k-element subset that we just selected. To make this slightly more concrete, let’s
put it this way:

(2) (]2) is the number of ways of painting k balls red from a bag of n balls, and
painting £ of the red balls blue. This leaves us with £ blue balls and k — ¢ red balls.
Now we need to find an equivalent interpretation of () (?=%). Well, suppose we pick the ¢
elements to be coloured blue first. To make up the rest of the k-element subset, we now have to
select k — ¢ elements, and there are now n — £ to choose from. Thus
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170 Chapter 3. Finite sets

(}) (1=4) is the number of ways of painting ¢ balls from a bag of n balls blue, and
painting k — ¢ of the remaining balls red.

Thus, both numbers represent the number of ways of painting ¢ balls blue and k — ¢ balls red
from a bag of n balls. Hence they are equal. O

Exercise 3.3.37
Make the proof of Proposition 3.3.36 more formal by defining a bijection between sets of the
appropriate sizes. <

Exercise 3.3.38
Provide a combinatorial proof that if n,k € N with n > £, then

(ZE) N (Z> ! <kil)

Deduce that the combinatorial definition of binomial coefficients (Definition 3.3.4) is equivalent
to the recursive definition (Definition 3.1.28). <

The following proposition demonstrates that the combinatorial definition of factorials (Defini-
tion 3.3.10) is equivalent to the recursive definition (Definition 3.1.27).

Theorem 3.3.39
0!=1andifn € Nthen (n+1)! = (n+1)-n!

Proof
The only permutation of & is the empty function e : & — @. Hence Sy = {e} and 0! = |Sp| = 1.

Let n € N. A permutation of [n+ 1] is a bijection f : [n+ 1] — [n+ 1]. Specifying such a bijection
is equivalent to carrying out the following procedure:

e Choose the (unique!) element k € [n+ 1] such that f(k) = n+ 1. There are n+ 1 choices for
k.

e Choose the values of f at each ¢ € [n+ 1] with £ # k. This is equivalent to finding a bijection
[n+ 1]\ {k} — [n]. Since |[n+ 1]\ {k}| = |[n]| = n, there are n! such choices.

By the multiplication principle, we have
(n+ 1! =[Spp1] = (n+1)-n!

so we’re done. |

We now revisit Theorem 3.1.32; this time, our proof will be combinatorial, rather than inductive.
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Theorem 3.3.40

Let n,k € N. Then
!

n!
M kg
<”>: Kn—kyr O
. 0 if k> n

Proof

Suppose k > n. By Exercise 3.2.16, if U C [n] then |U| < n. Hence if k > n, then ([Z]) = @, and
so (}) =0, as required.

Now suppose k < n. We will prove that n! = (Z) -k!- (n—k)!; the result then follows by dividing
through by k!(n — k)!. We prove this equation by counting the number of elements of S,,.

A procedure for defining an element of S, is as follows:

(i) Choose which elements will appear in the first k positions of the list. There are (Z) such
choices.

(i1) Choose the order of these k elements. There are k! such choices.

(iii) Choose the order of the remaining n — k elements. There are (n — k)! such choices.

By the multiplication principle, n! = (’,:) k- (n—k)!. O

Note that the proof of Theorem 3.3.40 relied only on the combinatorial definitions of binomial
coefficients and factorials; we didn’t need to know how to compute them at all! The proof was
much shorter, cleaner and, in some sense, more meaningful, than the inductive proof we gave in
Section 3.1—see Theorem 3.1.32.

We conclude this section with some more examples and exercises in which double counting can
be used.

Exercise 3.3.41
Let n,k € N with k < n+ 1. Prove that

k(Z) —(n—k+1)<kﬁ1)

Example 3.3.42
Let m,n,k € N. We prove that

(1))
= \L) \k—1{ k
by finding a procedure for counting the number of k-element subsets of an appropriate (m+ n)-

element set. Specifically, let X be a set containing m cats and n dogs. Then } (mZ") | is the number

of k-element subsets U C X. We can specify such a subset according to the following procedure.
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172 Chapter 3. Finite sets

e Step 1. Split into cases based on the number ¢ of cats in U. Note that we must have 0 < ¢ <k,
since the number of cats must be a natural number and cannot exceed k as |U| = k. Moreover,
these cases are mutually exclusive. Hence by the addition principle we have

m—+n k
(") =5
(=0
where ay is the number of subsets of X containing ¢ cats and k — ¢ dogs.

e Step 2. Choose /£ cats from the m cats in X to be elements of U. There are (['Z]) such choices.

e Step 3. Choose k — ¢ dogs from the n dogs in X to be elements of U. There are (k[ﬁ]é) such
choices.

The multiplication principle shows that a; = (}) (" ,). Hence

()5 ()2

as required. <
Exercise 3.3.43
Given natural numbers n,a, b, c with a+ b+ ¢ = n, define the trinomial coefficient ( " > to

be the number of ways of partitioning [n] into three sets of sizes a, b and c, respectively. That is,

n . .
is the size of the set
a,b,c

ACIn], BC[n], CClnl,
(A,B,C) | |A|=a, |B|=b, |C|=c,
and AUBUC = [n]

By considering trinomial coefficients, prove that if a,b,c € N, then (a+ b+ ¢)! is divisible by
al-b!-cl. <

Inclusion—exclusion principle

The addition principle is useful only for counting unions of pairwise disjoint sets, i.e. sets that
do not overlap. We saw in Proposition 3.2.18 how to compute the size of a union of two sets
which do overlap:

XUY|= X[+ V|- |XNY|

So far so good. But what if we have three or four sets instead of just two?

Exercise 3.3.44
Let X,Y,Z be sets. Show that

XUYUZ|=|X|+|Y|+]|Z]|—|XNY|=|XNZ|—|YNZ|+|XNYNZ|
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Let W be another set. Derive a similar formula for [WUX UY UZ]|. <

The inclusion—exclusion principle is a generalisation of Exercise 3.3.44 to arbitary finite collec-
tions of finite sets, but it is stated in a slightly different way in order to make the proof more
convenient.

Theorem 3.3.45 (Inclusion—exclusion principle)
Let n € N, let X; be a finite set for each i € [n], and let X = X; UX, U---UX,. Then

Y -nllx|=0

IC[n]

where X; = {a € X |a € X; foralli € I}.

The statement of Theorem 3.3.45 looks fairly abstract, so before we prove it, let’s examine its
content. The sum is over all subsets I C [n], and then the power (—1)l is equal to 1 if 7 has an
even number of elements, and —1 if 7 has an odd number of elements. Moreover, if  is inhabited
then Xj is the intersection of the sets X; for i € [—for example X235 = X2NX3NXs; on the
other hand, a careful examination of the definition of X; reveals that X, = X.

Thus when n = 3, the sum Y, (—1)/"!|X;| can be evaluated as
(3]

’X‘ — ’X] ’ — ‘Xg‘ — ’Xg’ + ‘X] ﬂXz‘ + ’X] ﬂX3\ + ’Xz ﬂXg’ — ‘X] NX, ﬂX3’

The theorem says that this sum is equal to zero, and solving for |X| = |X; UX, UXj3| yields an
equivalent equation to that in Exercise 3.3.44.

Proof of Theorem 3.3.45
Define sets & and & as follows:

o &={(I,x)|IC[n],x€X,|l|iseven};
o O ={(I,x)|1C [n],x€ Xy, |I|is odd}.
We first prove that |&| = |0].

Given x € X, define i, = min{i € [n] | x € X;}. Note that i, is well-defined since X = X; UX, U
L UX,.

Now define f: & — O by
1U{i},x) ifiy &1
fla) = g 0
(I\{ix},x) ifiyel
To see that f is well-defined, note that f(,x) € & for each (I,x) € &; indeed:
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o If |I| is even, then [[U{iy}| = [I|+ 1 if iy & I, and |I\ {ix}| = |I| — 1 if iy € I, and both |I| + 1
and |I| — 1 are odd.

e Suppose (I,x) € &. Then x € X;, which is to say that Vi € I, x € X;. Thus x € X forall J C I—
in particular, for J = I'\ {i;}. Moreover, Xjugi,y = X1 N X,,. Since x € X; and x € X;, we do
indeed have x € Xj(; ).

To see that f is a bijection, note that it has an inverse g : & — & defined just like f:

o ol iticgl
8(l,%) {(1\{ix},x) ifipel

Well-definedness of g follows from the same argument as that of f, and the fact that go f = ids
and f o g =idy can be checked by using the respective definitions of f and g.

Hence |&| = |0)|.
For each I C [n], define .7 = {(I,x) | x € X;}. Observe that:

e For each I C [n], we have |.#;| = |X;|, since the function X; — .} defined by x — (I,x) is a
bijection.

e The sets .7 with || even form a partition of &, and the sets .#; with |I| odd form a partition
of 0.

Therefore by the addition principle we have

&= Y x| and |O|= ) |X]

IC[n],|I| even IC[n],|1| odd
Also observe that (—1)I/l = 1 if |/] is even, and (— 1)/l = —1 if |I] is odd.

Putting this all together, we have

Y (—1x|

1Cn]

= Z (—Dx;) + Z (-1 x| splitting up the sum
IC[n], |1| even IC|n], |1] odd

= Z 1X;| — Z 1X;| evaluating (—1)""! in each sum
IC[n],|I| even IC[n], |1] odd

=|&|—1|0] by the addition principle

=0 since |&| = |0

as required. ]

It is more common to see the inclusion—exclusion principle stated in one two equivalent forms,
stated here as Corollaries 3.3.46 and 3.3.47.
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Corollary 3.3.46
Let X1,X>,...,X, be sets. Then

= Z < Z (_1)k71|Xi1 NXi, ﬂ---ﬂXM)
k=1

1<i|<ip<--<ix<n

n

Uxi

i=1

Proof
Moving all terms to the left-hand side of the equation and observing that —(—1)¥~1 = (—1)k,
the statement is equivalent to

n

U

i=1

n
( Z (—l)kX,-lﬁXizﬂ-~-ﬂXik\) =0

k=1 \1<ij<ip<---<ix<n
But using the notation of Theorem 3.3.45, we have
n

Ux;

i=1

= x| = (-1)|Xo|

and forall 1 <ij <ip <--- <ip <n,wehave
(=DM, NXy NN | = (=Dedlx o)

and so we see that this is just a restatement of Theorem 3.3.45. (]

Corollary 3.3.47
Let X be a set and let Uy,U,,...,U, C X. Then

X\ UUi
i—1

:|X‘ + Z < Z (—1)k|U[lﬂU,-2ﬂ"-ﬂU,'k|>
k

=1 1<ii<ip<--<ir<n

Proof
Since U, U; C X, we have

n n
x\Ju| =x1-{JUu
i=1 i=1
The result then follows immediately from Corollary 3.3.46. |

Proof tip
To find the size of a union of [J\_; X:

e Add the sizes of the individual sets X;;
e Subtract the sizes of the double-intersections X; N.X;
e Add the sizes of the triple-intersections X; N.X; N Xj;

e Subtract the sizes of the quadruple-intersections X; N X; N X N X;
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e ...andsoon...

Keep alternating until the intersection of all the sets is covered. <

Example 3.3.48
We count how many subsets of [12] contain a multiple of 3. Precisely, we count the number of

elements of the set
X3UXgUXoUX) 2

where X; = {S C [12] | k € S}. We will apply the inclusion—exclusion principle:

(i) An element S € X3 is precisely a set of the form {3} US’, where §' C [12]\ {3}. Since
[12]\ {3} has 11 elements, there are 2!! such subsets. So |X3| = 2!!, and likewise |X5| =
Xo| = |X1o| =2

(i) Anelement S € X3NX; is a set of the form {3,6} US’, where §' C [12]\ {3,6}. Thus there
are 2'0 such subsets, so |X3 N Xs| = 2'°. And likewise

’X3 ﬂX9| = |X3 ﬂX]z’ = |X6 ﬁX9| = |X6 ﬂX12| = |X9 ﬂX]z’ =210

(iii)) Reasoning as in the last two cases, we see that

’Xg NXe ﬂX9| = ‘X3 NXe ﬂX]z‘ = ‘X3 N Xg ﬂX]Q‘ = ‘X6 N Xg ﬂX]z‘ =27

@iv) ...and ’X3 M Xe N Xg ﬁXu’ =28,

Thus the number of subsets of [12] which contain a multiple of 3 is

4x2" — 6x20 4 4x2? - 28
—— —— —— ~—
by () by (i) by (iii) by (iv)
which is equal to 3840. <
Exercise 3.3.49
How many natural numbers less than 1000 are multiples of 2, 3, 5 or 7? <
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Section 3.Q
Chapter 3 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

Finite sets

1.Let n € N and let f : [n] — [n] be a function. Prove that f is injective if and only if f is
surjective.

Double counting

2. Leta,b,m,n € N. Prove each of the following by double counting.

(a) a(m+n) =am+an (c) (@")'=d™
(b) a"" =a™-a" d) (ab)"=a"-D"
n\ > 2n
3. Prove that Z ( > = ( ) foralln e N
= \k n
L (n\ [k nem [ 1 .
4. Prove that Z =2 for all m,n € N with m < n.
= \k/) \m m
ko /pn— j n+1
5. Prove that Z = for all n,k € N.
120 k—j k
6 Provethatiik n\(n—k =n-3"'forallneN
- oz \k ¢ - '
= (k-1 —k
7. Prove that " = Z " for all n,r,s € N.
r+s+1 e\ T s

8. Letay,az,...,ar € Nandletn =aj; +ay +--- +a,. Prove that

k

( X ) ﬁ (n_ Z ai>
= =1
a,az,...,dar k=0 ak+1

where ( > is the number of ordered r-tuples (Uy,Us,...,U,) such that U;,Us, ..., U,

ap,ay,...,ay
is a partition of [n] and |Uy| = a; for all k € [r].bi
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Inclusion—exclusion principle

9. Find the number of subsets of [100] that do not contain a multiple of 8.
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Section 4.1
Division

This section introduces the notion of divisibility. As we have already mentioned, it is not always
the case that one integer can divide another. As you read through this section, note that we never
use fractions; everything we do is infernal to Z, and does not require that we ‘spill over’ to Q at
any point. This will help you when you study ring theory in the future, and is a good practice to
mimic in your own work.

The following theorem, called the division theorem, is the crux of everything that is to follow.

Theorem 4.1.1 (Division theorem)
Let a,b € Z with b #£ 0. There exist unique ¢, r € Z such that

a=gb+r and 0<r<|b|

Strategy
Let’s look at the simple case when a > 0 and b > 0. We can always find ¢, r such thata = gb+r,
for example ¢ = 0 and r = a. Moreover, by increasing ¢ we can reduce r, since

gb+r=(q+1)b+(r—>)

We will keep doing this until the ‘remainder’ is as small as it can be without being negative. As
an example, consider the case when a = 14 and b = 5. This procedure gives

14=0x5+14
=1x5+9
=2x5+4 + least nonnegative remainder
=3x5+(—1)

This procedure shows that in this case we should take ¢ = 2 and r = 4, since 14 =2 x 5+ 4 and
0<4 <3|

We can show that such a descending sequence of remainders terminates using the well-ordering
principle, and then we must argue that the quotient and remainder that we obtain are unique. <

Proof x Proof
We may assume that b > 0: if not, replace b by —b and g by —g. We may also assume that a > 0.
Otherwise, replace a by —a, ¢ by —(¢+ 1) and r by b —r.

Thus, what follows assumes that ¢ > 0 and b > 0.
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o Existence. We prove that such integers g, r exist by the well-ordering principle. Namely, we
define a sequence (r,,),cn such that a = nb+r, and ro > r; > rp > ---, and use this sequence
to find the values of ¢, r.

o Let rp = a. Then a = 0b + ry, as required.

© Suppose r, has been defined, and let r,,1 | = r,, — b. Then

(n+1)b+ryp1=0m+1)b+r,—b
=nb+b+r,—b
=nb+r=a

Since b > 0, we must have r,, | < r,, for all n.

Let R=NnN{r,|n € N}. Thatis, R is the set of terms of the sequence which are non-negative.
Since ryp = a > 0, we have that ry € R and hence R is inhabited. By the well-ordering principle,
R has a least element ry, for some k € N.

Define ¢ = k and r = r;. By construction we have a = gb+r and r > 0, so it remains to show
that r < b. Well, if r > b then r —b > 0, but r — b = ry., so this would imply 1 € R,
contradicting minimality of r. Hence r < b, so g, r are as required.

e Uniqueness. Suppose ¢/, 1’ also satisfy a = ¢’b+ 7+ and 0 < ¥ < b. If we can show that ¥/ = r
then this proves that ¢ = ¢': indeed, if gb + r = ¢'b + r then we can subtract r and then divide
by b, since b > 0.

First note that ¢’ > 0. If ¢ <0 then ¢’ < —1, so
a=qgb+r <—b+7

and hence ' > a+b > b since a > 0. This contradicts the assumption that r < b. So ¢’ > 0.

Since ¢’ > 0, we also know that a = ¢'b +ry, and hence ' = r,; € R. By minimality of r we
have r < . It remains to show that r = /. If not then r < r’. Thus

gp+r=¢b+7v >qgb+r = gb>4gdb = g>¢q
and hence ¢ = ¢’ +¢ for some 7 > 1. But then
qdb+r =a=qb+r= (4 +t)b+r=qb+(th+r)

so ¥’ =tb+r > b, contradicting ' < b. So r = r/ as desired, and hence ¢ = ¢'.

At long last, we are done. L

Definition 4.1.2
Let a,b € Z with b # 0, and let g, r be the unique integers such that

a=qgb+r and 0<r<|b|
We say ¢ is the quotient and r is the remainder of a divided by b.
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Example 4.1.3
Some examples of division include:

14=2x544, —14=-3x5+1, 15=3%x5+40

Definition 4.1.4

Let a,b € Z. We say b divides a, or that b is a divisor (or factor) of a, if there exists ¢ € Z
such that a = gb. To denote the fact that b divides a we write b | a (IXTgX code: \mid). For the
negation —(b | a) write b1 a (IKTEX code: \nmid).

Thus, when b # 0, saying b | a is equivalent to saying that the remainder of a divided by b is 0.

Example 4.1.5

5 divides 15 since 15 = 3 x 5. However, 5 does not divide 14: we know that the remainder of
14 divided by 5 is 4, not 0—and it can’t be both since we proved in the division theorem that
remainders are unique! <

Exercise 4.1.6
Show thatif a € Z then 1 | a, —1 | a and a | 0. For which integers a does a | 1? For which integers
a does 0 | a? <

We now introduce the very basic notion of a unit. This notion is introduced to rule out trivialities.
Units become interesting when talking about general rings, but in Z, the units are very familiar.

Definition 4.1.7
Let u € Z. We say u is a unit if u | 1; that is, u is a unit if there exists v € Z such that uv = 1.

Proposition 4.1.8
The only units in Z are 1 and —1.

Proof

First note that 1 and —1 are units, since 1 -1 =1and (—1)-(—1) = 1. Now suppose that u € Z
is a unit, and let v € Z be such that uv = 1. Certainly u # 0, sinceOv =0z 1. If u > 1 oru < —1
thenv =1 ¢ 7. So we must have u € {—1,1}. O

Exercise 4.1.6 shows that —1, 0 and 1 are, from the point of view of divisibility, fairly trivial. For
this reason, most of the results we discuss regarding divisibility will concern nonzero nonunits,
i.e. all integers except —1, 0 or 1.
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Greatest common divisors

Definition 4.1.9
Let a,b € Z. An integer d is a greatest common divisor of a and b if:

(a) d|aandd | b;
(b) If g is another integer such that ¢ | @ and ¢q | b, then ¢ | d.

Example 4.1.10
2 is a greatest common divisor of 4 and 6; indeed:

() 4=2x2,and6=3x%x2,s02|4and 2 |6;

(b) Suppose ¢ | 4 and g | 6. The divisors of 4 are =1, 42, +-4 and the divisors of 6 are £1, +2,
+3, +6. Since g divides both, it must be the case that ¢ € {—2,—1,1,2}; in any case, ¢ | 2.

Likewise, —2 is a greatest common divisor of 4 and 6. <
Exercise 4.1.11
There are two greatest common divisors of 6 and 15; find both. <

We will now prove that greatest common divisors exist—that is, any two integers have a greatest
common divisor—and that they are unique up to sign.

Theorem 4.1.12
Every pair of integers a, b has a greatest common divisor.

Proof

First note that if a = b = 0, then 0 is a greatest common divisor for @ and b. Moreover, we may
take a, b to be non-negative, since divisibility is insensitive to sign. So suppose that a,b > 0 and
that a, b are not both zero.

Define a set X C Z by
X ={au+bv|uyveZ, au+bv>0}

That is, X is the set of positive integers of the form au + bv.

X is inhabited. To see this, note that a®> > 0 or b> > 0 since a # 0 or b # 0, so letting u = a and
v = b in the expression au + bv, we see that

au+bv=a*+b0*>0 = a+b*eX

By the well-ordering principle, X has a least element d, and by definition of X there exist u,v € Z
such that d = au + bv.

We will prove that d is a greatest common divisor for a and b.
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e d|a.If a =0, then this is immediate, so suppose that a > 0. Let ¢, r € Z be such that
a=gqd+r and 0<r<d
Nowa=a-1+b-0,soac X, and hence d < a. Moreover
r=a—qd=a—q(au+bv) =a(l —qu)+b(—qv)

If r > O then this implies that » € X; but this would contradict minimality of d, since r < d.
So we must have r = 0 after all.

e d | b. The proof of this is identical to the proof that d | a.

e Suppose ¢ is an integer dividing both @ and b. Then g | au+ bv by Exercise 0.16. Since
au—+bv=d, we have g | d.

So d is a greatest common divisor of a and b after all. |

Exercise 4.1.13
Let a,b € 7Z. If d and d’ are two greatest common divisors of a and b, then either d = d’ or
d=—d. <

Aside
A consequence of Theorem 4.1.12 and Exercise 4.1.13 is that every pair of integers has a unique
non-negative greatest common divisor! Written symbolically, we can say

S .
Y(a,b) € Zx Z,3\d € Z, < d >0 and d is a greatest )

common divisor for a and b

As discussed in Section 2.2, since this is a formula of the form ‘for all ... there exists a unique
... , this defines a function ged : Z x Z — 7Z. We won’t explicitly refer to the fact that gcd is a
function; rather, we’ll just concern ourselves with its values, as in Notation 4.1.14. <

Exercise 4.1.13 justifies our use of the following notation to refer to greatest common divisors.

Notation 4.1.14
Let a,b € Z. Denote by gcd(a,b) (ISTEX code: \mathrm{gcd}) the (unique!) non-negative
greatest common divisor of @ and b.

Example 4.1.15
In Example 4.1.10, we saw that both 2 and —2 are greatest common divisors of 4 and 6. Using
Notation 4.1.14, we can now write gcd(4,6) = 2. <

Exercise 4.1.16
For each n € Z, let D, C Z be the set of divisors of n. Prove that D, N Dp = Dgeq(a,p) for all
a,be’. <

Our goal for the rest of this subsection is to investigate the behaviour of greatest common di-
visors, find out how to compute them, and look into the implications they have for solutions to
certain kinds of equations.

184



Section 4.1. Division 185

Theorem 4.1.17
Leta,b,q,r € Z, and suppose that a = gb+ r. Then

ged(a,b) = ged(b,r)

Proof
Let d = ged(a,b). We check that d satisfies the conditions required to be a greatest common
divisor of b and r.

Note thatd | a and d | b, so let s,¢ € Z be such that a = sd and b =1td.
e d | b by definition, and d | r since
r=a—qgb=sd—qtd=(s—qt)d
e Suppose d’' | b and d’ | r; say b = ud' and r = vd' with u,v € Z. Then d’ | a, since
a=qb+r=qud +vd = (qu+v)d
sod' | d since d = gcd(a,b).
So d is a greatest common divisor of b and r. Since d > 0, the result is shown. ]
Combined with the division theorem (Theorem 4.1.1), Theorem 4.1.17 gives a relatively fast

algorithm for computing the greatest common divisor of two integers, known as the Euclidean
algorithm.

Proof tip
Euclidean algorithm. Let a,b € Z. To find gcd(a, b), proceed as follows.

e Setrg=|a| and r; = |D|.
e Given r,_; and r,,_1, define r, to be the remainder of r,,_, divided by r,_;.

e Stop when r, = 0; then r,,_; = ged(a,b).

<
Example 4.1.18
We will find the greatest common divisor of 148 and 28.
148 =5x%x28+8
28=3x8+4
8:2><+0 < Stop!
Hence gcd(148,28) = 4. Here the sequence of remainders is given by:
ro=148, r =28, rn=8, r=4 r=0
<
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Example 4.1.19
The Euclidean algorithm works surprisingly quickly, even for relatively large numbers. Consider
the problem of computing ged(1311,5757) for example:
5757 =4 x 13114513
1311 =2 x 513 +285
513 =1x285+228
285 =1x228+457

228 =4 x[57]+0 + Stop!

Hence ged(1311,5757) = 57. Here the sequence of remainders is given by:
ro=>5757, r1=1311, rp =513, r3=285, r4=228, rs=57, re=0

Example 4.1.20
Here’s an example where one of the numbers is negative: we compute the value of
gcd(—420,76):

—420 = (—6) x 76+ 36

76 =2x36+4
36 =9x[4]+0 « Stop!
Hence ged(—420,76) = 4. <

Example 4.1.21
Use the Euclidean algorithm to compute the greatest common divisors of the following pairs of
integers

(12,9), (100,35), (7125,1300), (1010,101010), (—4,14)

4

The following theorem will be useful when we study modular arithmetic in Section 4.3; it is
called a ‘lemma’ for historical reasons, and is really an important result in its own right.

Theorem 4.1.22 (Bézout’s lemma)

Let a,b,c € Z, and let d = gcd(a,b). The equation
ax+by=c

has a solution (x,y) € Z x Z if and only if d | c.

Proof
(=) Write a =d'd and b = b'd, for d’,b’ € 7. If there exist x,y € Z such that ax + by = c, then

c=ax+by=ddx+bdy=(dx+b'y)d
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andsod | c.
(<) Suppose d | ¢, and let ¢ = kd for some k € Z.

If ¢ =0, then a solution is x =y =0. If ¢ < 0, then ax+ by = c if and only if a(—x) + b(—y) = —c;
so we may assume that ¢ > 0.

We proved in Theorem 4.1.12 that a greatest common divisor of a and b is a least element of the
set
X ={au+bv|uyveZ, au+bv>0}

So let u,v € Z be such that au+ bv = d. Then
a(ku) +b(kv) = k(au+bv) =kd = ¢
and so letting x = ku and y = kv, we see that the equation ax+ by = ¢ has a solution (x,y) € Z x

Z. O

Bézout’s lemma completely characterises when the equation ax + by = ¢ has a solution. An
easy generalisation of Bézout’s lemma provides a complete characterisation of when solutions
to linear Diophantine equations exist, that is equations of the form

ax+by=c

where a,b,c € Z. We will soon develop an algorithm for computing all solutions to these equa-
tions.

Example 4.1.23
Here are some examples of applications of Bézout’s lemma.

e Consider the equation 1311x + 5757y = 12963. We computed in Example 4.1.19 that
ged(1311,5757) = 57. But 57 112963 since 12963 = 227 x 57 + 24. By Bézout’s lemma,
the equation 1311x 45757y = 12963 has no integer solutions.

e For fixed z, the equation 4u + 6v = z has solutions exactly when z is even, since gcd(4,6) = 2.

e For fixed a, b, the equation au + bv = 0 always has solution. Indeed, setting u = b and v = —a
gives a solution; but we knew one had to exist since by Exercise 4.1.6 we know that d | O for
alld € Z.

Exercise 4.1.24
Which of the following equations have solutions?

(@) 12u+9v=—-18

(b) 12u+9v=1

187



188 Chapter 4. Number theory

(c) 100u—+35v =125
(d) 7125u+1300v =0
(e) 1010u+101010v =1010101010101010

® 14u—4v=12

Coprimality

Definition 4.1.25
Let a,b € Z. We say a and b are coprime (or relatively prime), and write a 1 b (I&TEX code:
\perp) (read ‘a is coprime to b’), if ged(a,b) = 1.

Example 4.1.26
4 1 9. To see this, note that if d | 4 then d € {—4,—-2,—1,1,2,4}, and if d | 9 then
de{-9,-3,—1,1,3,9}. Henceifd |4 and d |9, thend =1 or d = —1. It follows that

gcd(4,9) = 1. <
Exercise 4.1.27
Which integers in the set [15] are coprime to 15? <

Proposition 4.1.28
Let a,b € Z. The following are equivalent:

(1) a and b are coprime;

(2) Ifd € Z withd | aand d | b, then d is a unit.
Proof

We prove that condition (1) implies condition (2), and vice versa.

e (1)=-(2). Suppose a and b are coprime, and fix d € Z withd | a and d | b. Then d | ged(a,b) =
1, so d is a unit.

e (2)=(1). Suppose condition (2) above holds. We prove that 1 satisfies the conditions required
to be a greatest common divisor of a and b. The fact that 1 | @ and 1 | b is automatic; and the
fact that if d | @ and d | b implies d | 1 is precisely the condition (2) that we are assuming.

Hence the two conditions are equivalent. O

Exercise 4.1.29
Let a and b be integers, not both zero, and let d = gcd(a, b). The integers § and % are coprime.
<
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The following corollary is a specialisation of Bézout’s lemma to the case when a and b are
coprime.

Corollary 4.1.30
Let a,b € Z. The equation au + bv = 1 has a solution if and only if a and b are coprime.
Moreover, if a and b are coprime, then the equation au + bv = z has a solution for all z € Z.

Proof

By Bézout’s lemma (Theorem 4.1.22), the equation au + bv = 1 has a solution if and only if
gcd(a,b) | 1. But the only positive divisor of 1 is 1, so a solution exists if and only if gcd(a,b) =
1, which is precisely the assertion that a and b are coprime.

If @ and b are coprime, then 1 = gcd(a,b) | z for all z € Z. So by Bézout’s lemma again, the
equation au + bv = z has a solution for all z € Z. U

A useful consequence of Bézout’s lemma is the following result:

Proposition 4.1.31
Let a,b,c € Z. If a and b are coprime and a | bc, then a | c.

Proof
By Bézout’s lemma (Theorem 4.1.22) there exist integers u# and v such that au+ bv = 1. Mul-
tiplying by ¢ gives acu + bcv = c. Since a | be, we can write be = ka for some k € Z, and so
acu+ kav = c. But then

(cu+kv)a=c

which proves that a | c. 0

Linear Diophantine equations

We have now seen two important results:

e The Euclidean algorithm, which was a procedure for computing the greatest common divisor
of two integers.

e Bézout’s lemma, which provides a necessary and sufficient condition for equations of the
form ax + by = ¢ to have an integer solution.

We will now develop the reverse Euclidean algorithm, which provides a method for computing
a solutions to (bivariate) linear Diophantine equations, when such a solution exists. Then we will
prove a theorem that characterises all integer solutions in terms of a given solution.

Example 4.1.32
Suppose we want to find integers x and y such that 327x + 114y = 18. Running the Euclidean
algorithm yields that ged(327,114) = 3 — see below. For reasons soon to become apparent, we

189



190 Chapter 4. Number theory

rearrange each equation to express the remainder on its own.

327 =2 x 114499 = 99 =327 -2 x 114 (1)

114=1%x99+15 = 15=114—1x99 )
99 =6 x 1549 = 9=99—6x 15 3)
15=1x946 = 6=15—1x9 4)
9=1x6+3 = 3=9-1x6 5)
6=2x3+0

We can then express 3 in the form 327u + 114v by successively substituting the equations into
each other:

e Equation (5) expresses 3 as a linear combination of 6 and 9. Substituting equation (4) yields:

3=9-1x(15-1x9) = 3=2x9-1x15

e This now expresses 3 as a linear combination of 9 and 15. Substituting equation (3) yields:

3=2x(99-6x15)—1x15 = 3=(—13)x15+2x99

e This now expresses 3 as a linear combination of 15 and 99. Substituting equation (2) yields:

3=(—13)x (114—1x99)+2x99 = 3=15x99—13x114

o This now expresses 3 as a linear combination of 99 and 114. Substituting equation (1) yields:

=15x(327-2x114)—13x 114 = 3= (—43)x114+15x327

Now that we’ve expressed 3 as a linear combination of 114 and 327, we’re nearly done: we
know that 18 = 6 x 3, so multiplying through by 6 gives

18 = (—258) x 114490 x 327

Hence (x,y) = (90, —258) is a solution to the equation 327x+ 114y = 18. <

Proof tip
Let a,b € Z and let d = gcd(a,b). To find integers x,y such that ax+ by = d:

(i) Run the Euclidean algorithm on the pair (a,b), keeping track of all quotients and remain-
ders.

(i) Rearrange each equation of the form r,_» = g,r,—1 + r, to isolate r,,.
(iii) Substitute for the remainders ry in reverse order until gcd(a,b) is expressed in the form

ax + by for some x,y € Z.
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This process is called the reverse Euclidean algorithm. <
Exercise 4.1.33
Find a solution (x,y) € Z X Z to the equation 630x + 385y = 4340. <

Now that we have a procedure for computing one solution to the equation ax + by = ¢, we need
to come up with a procedure for computing all solutions. This can be done by proving the
following theorem.

Theorem 4.1.34
Let a,b,c € Z, where a and b are not both zero. Suppose that xo and yq are integers such that
axo+byy = c. Then, (x,y) € Z x Z is another solution to the equation ax + by = c if and only if

b

xX=xo+k ——— and y=yo—k-

a
gcd(a,b) gcd(a,b)

for some k € Z.

Thus, as soon as we’ve found one solution (x,y) = (xp,yo) to the equation ax + by = ¢, this
theorem tells us what all other solutions must look like.

Proof of Theorem 4.1.34
We prove the two directions separately.

(=). First suppose that (xq,yp) is an integer solution to the equation ax + by = c. Let k € Z and

let
b

a
= ke ———— d =yo—k —————
X =Xot ged(a,b) an Y= gcd(a,b)
Then
ax+ by
the— )b (ke —2 by definition of x and
=a|x — -k —— efinition of x an
0 gcd(a,b) Y0 ged(a,b) Y Y
b a
= b k- —kb- i
(axo+byo) +a acd(a,b) ocd(a,b) rearranging
kab — kab
= (axo +byo) + M combining the fractions
= axy + byg since kab — kab =0
=c since (xo,yo) is a solution

so (x,y) is indeed a solution to the equation.

(«<). First suppose that @ L b. Fix a solution (xp,yo) to the equation ax + by = ¢, and let (x,y)
be another solution. Then

a(x—xo)+b(y—yo) = (axo +byo) — (ax+by) =c—c=0
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so that

a(x—x9) =b(yo—y)
Now a and b are coprime, so by Proposition 4.1.31, we have a | yo —y and b | x — xo. Letk,l € Z
be such that x — xy = kb and yg — y = £a. Then substituting into the above equation yields

a-kb=>b-la
and hence (k — ¢)ab = 0. Since ab # 0, we have k = /, so that
x=xo+kb and y=yy—ka

Now we drop the assumption that a L b. Let gcd(a,b) =d > 1. We know that d | ¢, by Bézout’s

lemma (Theorem 4.1.22), and so

a bo_c¢
A Td T

is another linear Diophantine equations, and moreover § L g by Exercise 4.1.29. By what we

proved above, we have

b
x:xo+k-g and y:yo—k-g

for some k € Z. But this is exactly what we sought to prove! 0J

Example 4.1.35
We know that (x,y) = (90, —258) is a solution to the equation 327x+ 114y = 18, and
327 327 114 114

——— = — =109 d - —__ =138
ecd(327,114) 3 M ecd(327,114) 3

so this theorem tells us that (x,y) € Z X Z is a solution to the equation 327x + 114y = 18 if and
only if
x =90+ 38k and y=—258 — 109k

for some k € Z. <

Exercise 4.1.36
Find all integers x,y such that
630x + 385y = 4340

Least common multiples

You would be forgiven for wondering why so much of the foregoing section was devoted to
greatest common divisors, with no mention of least common multiples. We will now give the
latter some attention.
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Definition 4.1.37
Leta,b € Z. An integer m is a least common multiple of ¢ and b if:

(a) a|mand b | m;

(b) If n is another integer such that a | n and b | n, then m | n.

In a sense that can be made precise, the definition of least common multiple is dual to that
of greatest common divisor (Definition 4.1.9).% This means that many properties of greatest
common divisors have corresponding ‘dual’ properties, which hold of least common multiples.
As such, we will not say much here about least common multiples, and that which we do say is
in the form of exercises.

Exercise 4.1.38

Let a,b € Z. Prove that a and b have a least common multiple. Furthermore, prove that least
common multiples are unique up to sign, in the sense that if m,m’ are two least common mul-
tiples of @ and b, then m = m’ orm = —m’. <

As with greatest common divisors, Exercise 4.1.38 justifies the following definition.

Definition 4.1.39
Given a,b € Z, denote by lcm(a,b) (I5TEX code: \mathrm{1lcm}) the non-negative least com-
mon multiple of @ and b.

Exercise 4.1.40
Let a,b € Z. Prove that gcd(a,b) - lem(a,b) = |ab|. <

[alSpecifically, we refer here to the dual of a preorder, i.e. a reflexive, transitive relation—see Chapter 5 for more on
this!
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Section 4.2
Prime numbers

Thinking of divisibility as a way of breaking down an integer, for example 12 =2 x 2 x 3, our
goal now is to show that:

e There are numbers which are atomic, in the sense that they can’t be broken down any further
by division;
e ...and every nonzero nonunit can be written as a product of these atomic numbers;

e ...and this product is essentially unique.

There are a couple of fairly vague terms used here: ‘atomic’ and ‘essentially unique’. We
will soon make these precise; the atomic numbers will be the irreducible and prime numbers
(two notions which coincide for the integers), and ‘essentially unique’ will mean unique up to
reordering and multiplication by units.

Primes and irreducibles

Definition 4.2.1
Let p be a nonzero nonunit. We say p is prime if for all a,b € Z, if p | ab then p |a or p | b.

Example 4.2.2
Here are some examples of prime and non-prime numbers:

e 2 is prime. Suppose not; then there exist a,b € Z such that 2 | ab but 2 divides neither a nor
b. Thus a and b are both odd, meaning that ab is odd... but this contradicts the assumption
that 2 | ab.

e 6 is not prime. Indeed, 6 | 2 x 3 but 6 divides neither 2 nor 3.

Exercise 4.2.3
Using Definition 4.2.1, prove that 3 and 5 are prime and that 4 is not prime. <

For the following example and exercise, you will need to recall the definitions of binomial coeffi-
cients (Z) and factorials n!, which we studied from the point of view of induction in Section 3.1,
and then redefined and studied from the point of view of combinatorics in Section 3.3. In case
you skipped over Section 3.3, we provide references to the relevant results in both sections.

Example 4.2.4
Let k € Z with 0 < k < 5. We’ll show that 5| (7).
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Well, by Theorems 3.1.32 and 3.3.40 we know that

51= (Z)k!(S—k)!

By Definition 3.1.27 and Theorem 3.3.39, we have

5x4!= (5> XX xkx1x---x(5—k)
- k) T
=51 =k! =(5-k)!

Since 5 is prime, it must divide one of the factors on the right-hand side of this equation. Thus,
either 5 divides (3), or it divides ¢ for some 1 < ¢ <kor 1 </ <S5—k Butk<Sand5—k<35,
so it cannot divide any of these values of /—if it did, it would imply 5 < £ < kor5 < £ <5k,

which is nonsense. Hence 5 must divide (2) <
Exercise 4.2.5

Let p € Z be a positive prime and let 0 < k < p. Show that p | (7). <
Aside

Most people are introduced to primes with a definition along the lines of ‘p is prime if p has
exactly two positive divisors’. We have avoided this to elucidate the fact that the integers together
with their arithmetic structure are the canonical example of a mathematical object called a ring.
The notion of a prime element can be defined in any ring as in Definition 4.2.1. Secondly, these
two definitions are equivalent in Z, but not in all rings. <

Definition 4.2.6
Let a be a nonzero nonunit. We say a is reducible if a = mn for some nonunits m, n; otherwise
it is irreducible.

Proposition 4.2.7
A nonzero nonunit p is irreducible if and only if the only divisors of p are p, —p, 1 and —1.

Proof

Suppose p is irreducible and that a | p. Then p = ab for some b € Z. Since p is irreducible,
either a or b is a unit. If a is a unit then b = +p, and if b is a unit then a = +p. So the only
divisors of p are +1 and +p.

Conversely, suppose that the only divisors of p are =1 and £p, and let a,b € Z with p = ab. We
want to prove that a or b is a unit. Since a | p, we have a € {1,—1,p,—p}. Ifa=+1, then a is
a unit; if a = £p, then b = +£1, so that b is a unit. In any case, either @ or b is a unit, and hence
p is irreducible. O

Example 4.2.8

A couple of examples of reducible and irreducible numbers are:

e 2 is irreducible: if 2 = mn then either m or n is even, otherwise we’d be expressing an even
number as the product of two odd numbers. We may assume m is even, say m = 2k; then
2 = 2kn, so kn = 1 and hence n is a unit.
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e 6 1s reducible since 6 = 2 x 3 and both 2 and 3 are nonzero nonunits.

<
Exercise 4.2.9
Prove that if p € Z is prime then p is irreducible. <
Lemma 4.2.10
Let a € Z be a nonzero nonunit. Then there are irreducibles py,..., p, suchthata= p; x--- X pj,.
Proof

We may assume a > 0, since if a < 0 we can just multiply by —1.

We proceed by strong induction on a > 2. The base case has @ = 2 since we consider only
nonunits.

e (BC) We have shown that 2 is irreducible, so setting p; = 2 yields a product of primes.

e (IS) Let a > 2 and suppose that each integer k with 2 < k < a has an expression as a product of
irreducibles. If a4 1 is irreducible then we’re done; otherwise we can write a 4 1 = st, where
s,t € Z are nonzero nonunits. We may assume further that s and ¢ are positive. Moreover,
s<a+landt <a+1sinces,t > 2.

By the induction hypothesis, s and ¢ have expressions as products of irreducibles. Write
§=p1 XX Pm, t=q) X+ Xqp
This gives rise to an expression of a as a product of irreducibles:

a=st=p; X - XppXqLX-Xqy

=S =t

By induction, we’re done. U

Theorem 4.2.11
Let p € Z. Then p is prime if and only if p is irreducible.

Proof
We prove the two directions separately.

e Prime = irreducible. This was Exercise 4.2.9.

e Irreducible = prime. Suppose p is irreducible. Let a,b € Z and suppose p | ab. We need to
show that p | a or p | b. It suffices to show that if p { a then p | b.

So suppose p ta. Let d = ged(p,a). Since d | p and p is irreducible, we must have d = 1 or
d = p by Proposition 4.2.7. Since p ta and d | a, we must therefore have d = 1.
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By Bézout’s lemma (Theorem 4.1.22), there exist u,v € Z such that au + pv = 1. Multiplying
by b gives abu+ pbv = b. Since p | ab, there exists k € Z such that pk = ab. Then

b = abu+ pbv = pku+ pbv = p(ku+ bv)
so p | b, as required.

So we’re done. O

Since primes and irreducibles are the same thing in Z, we will refer to them as ‘primes’, unless
we need to emphasise a particular aspect of them.

Prime factorisation

Having described prime numbers in two ways, each of which emphasises their nature of being
‘unbreakable’ by multiplication, we will extend Lemma 4.2.10 to prove that every integer can
be expressed as a product of primes in an essentially unique way.

Theorem 4.2.12 (Fundamental theorem of arithmetic)
Let a € Z be a nonzero nonunit. There exist primes p1, ..., pr € Z such that

Moreover, this expression is essentially unique: if a = g; X - - - X gy is another expression of a as
a product of primes, then k = ¢ and, re-ordering the g; if necessary, for each i there is a unit u;
such that ¢; = u;p;.

Proof
We showed that such a factorisation exists in Lemma 4.2.10, with the word ‘prime’ replaced by
the word ‘irreducible’. It remains to prove (essential) uniqueness.

Let k be least such that there is an expression of a as a product of k primes, namely a = p; X
-+ X pr. Let a=gq; x --- X gy be any other such expression. We prove by induction on k that
¢ = k and, after re-ordering if necessary, for each i there is a unit u; such that g; = u; p;.

e (BC) If k =1 then a = p; is itself prime. Then we have p; = g; X --- X gy. Since pj is prime,
p1 | g; for some j; by relabelling ¢; and ¢; we may assume that j = 1, so that p; | g;. By
irreducibility of g; we have g; = u; p; for some unit u;.

e (IS) Let £ > 1 and suppose that any integer which can be expressed as a product of k primes
is (essentially) uniquely expressible in such a way. Suppose a has an expression as a product
of k+ 1 primes, and that £+ 1 is the least such number. Suppose also that

aAa=p1 X X P X Pr+1 =q1 X Xy
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Note that £ > k+ 1. Since pyy is prime we must have p. 1 | g; for some j; by relabelling g;
and gy if necessary, we may assume that j = ¢, so that py. | g¢. As before, gy = ug11pr+1 for
some unit uy 1. Dividing through by py gives

P1 X X P =4q1 X X gp—1 X U]

Replacing gy— by ge—1ux+1, which is still prime, we can apply the induction hypothesis to
obtain k = ¢ — 1, so k+ 1 = ¢, and, after reordering if necessary ¢; = u;p; for all i < k. Since
this also holds for i = k+ 1, we’re done.

By induction, we’re done. ]

Example 4.2.13
Here are some examples of numbers written as products of primes:

e 12 =2x2x3. We could also write this as 2 x 3 x 2 or (—2) x (—3) x 2, and so on.
e 53 =53 is an expression of 53 as a product of primes.
e —1000=2x5x(—2)x5x%x2x5.

e We can view any unit as a product of no primes. (Don’t dwell on this point for too long as it
will not arise very often!)

Exercise 4.2.14
Express the following numbers as products of primes:

16 —240 5050 111111 —123456789

<

To make things slightly more concise, we introduce a standard way of expressing a number as a
product of primes:
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Definition 4.2.15
The canonical prime factorisation of a nonzero integer a is the expression in the form

— ] j
a_upl pir

where r > 0 and:

e u=1ifa>0,andu=—1ifa <0;
e The numbers p; are all positive primes;
e p1<p2<-<DPDr

e ji > 1foralli
We call j; the multiplicity of p; in a, and we call u the sign of a.

Typically we omit u if u = 1 (unless a = 1), and just write a minus sign (—) if u = —1.

Example 4.2.16
The canonical prime factorisations of the integers given in Example 4.2.13 are:

o 12=22.3,
e 53 =153,
—1000 = —23.53,

o 1 =1.

Exercise 4.2.17
Write out the canonical prime factorisations of the numbers from Exercise 4.2.14, which were:

16 —240 5050 111111 —123456789
<

The following exercise provides another tool for computing greatest common divisors of pairs
of integers by looking at their prime factorisations.

Exercise 4.2.18
Let p1, p2,..., p, be distinct primes, and let k;, ¢; € N for all 1 < i < r. Define

m:plf‘ ngzx---xp’r" and n:pf‘ xpﬁzx---xpf'
Prove that

ged(m,n) = pi' X p5* x -+ X pr
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where u; = min{k;,¢;} forall 1 <i<r. <

Example 4.2.19
We use Exercise 4.2.18 to compute the greatest common divisor of 17640 and 6468.

First we compute the prime factorisations of 17640 and 6468:
17640 =2°.3%.5.7> and 6468 =2>-3.7>-11
It now follows from Exercise 4.2.18 that

gcd(17640,6468) =22.31.50.72.11°

=4.3-1-49-1
=588
<
Exercise 4.2.18 allows us to provide a concise proof of the following result.
Corollary 4.2.20
Let p € Z be prime, let a € Z be nonzero, and let k > 1. Then a L p* if and only if p { a.
Proof
By the fundamental theorem of arithmetic, we can write
a=plxpl x-xpl
where py,..., p, are the primes other than p appearing in the prime factorisation of a, and j, j; €
N for all 1 < i< r. Note that p | a if and only if j > 1.
Furthermore we have
P =P xplx o x )
By Exercise 4.2.18 it follows that
ged(a, p*) = pmiMk x pd x - x pl = pmintik)
Now:
e If min{j k} = 0 then j = 0, in which case p ta, and ged(a, p*) = p* = 1;
e If min{j,k} > O then j > 1, in which case p | a, and p | gcd(a, p*), so ged(a, p*) # 1.
In particular, p { a if and only if a L p¥. |
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Distribution of primes

So far we have seen several examples of prime numbers; to name a few, we’ve seen 2, 3, 5 and
53. It might seem like the prime numbers go on forever, but proving this is less than obvious.

Exercise 4.2.21
Let P be an inhabited finite set of positive prime numbers and let m be the product of all the
elements of P. That is, for some n > 1 let

P={pi1,....,pn} and m=p;x---Xp,

where each py € P is a positive prime. Using the fundamental theorem of arithmetic, show that
m+1 has a positive prime divisor which is not an element of P. <

Theorem 4.2.22
There are infinitely many primes.

Proof

We prove that there are infinitely many positive prime numbers—the result then follows imme-
diately. Let P be the set of all positive prime numbers. Then P is inhabited, since 2 € P, for
example. If P were finite, then by Exercise 4.2.21, there would be a positive prime which is
not an element of P—but P contains all positive primes, so that is impossible. Hence there are
infinitely many positive primes. 0J

This is one proof of many and is attributed to Euclid, who lived around 2300 years ago. We
might hope that a proof of the infinitude of primes gives some insight into how the primes are
distributed. That is, we might ask questions like: how frequently do primes occur? How fast
does the sequence of primes grow? How likely is there to be a prime number in a given set of
integers?

As a starting point, Euclid’s proof gives an algorithm for writing an infinite list of primes:
e Let p; = 2; we know that 2 is prime;

e Given py,...,py, let p,| be the smallest positive prime factor of p; X --- X p, + 1.
The first few terms produced would be:

e p; =2 by definition;

e 241 =3, which is prime, so p, = 3;

e 2x341=7, which is prime, so p3 =7,

2 x 3 x 741 =43, which is prime, so ps = 43;
e 2x3x7x43+1=1807=13x 139, so p5s =13;
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e 2xX3xT7x43x13+1=23479 =53 x 443, s0 pg = 53;

e ...and so on.

The sequence obtained, called the Euclid—Mullin sequence, is a bit bizarre:
2,3,7,43,13,53,5,6221671,38709183810571,139,2801,11,17,5471, ...

Big primes like 38709183810571 often appear before small primes like 11. It remains unknown
whether or not every positive prime number appears in this list!

The chaotic nature of this sequence makes it difficult to extract information about how the primes
are distributed: the numbers p; X --- X p, + 1 grow very quickly—indeed, it must be the case that
p1 X -+ X pp+1>2"for all n—so the upper bounds for the sequence grow at least exponentially.

Another proof of the infinitude of primes that gives a (slightly) tighter bound can be obtained
using the following exercise.

Exercise 4.2.23
Let n € Z with n > 2. Prove that the set {k € Z | n < k < n!} contains a prime number. <
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Section 4.3
Modular arithmetic

It turns out that much arithmetic can be done by considering only the remainders of integers
when divided by a fixed integer. Here is a simple example:

Example 4.3.1
Suppose a; has remainder r; and a; has remainder r, when divided by 7. That is, there exist
q1,q2 € Z such that

ay =Tq1+n and ar="Tqx+r;

Then a; + a; has the same remainder as r; + r, when divided by 7. Indeed, suppose a; +a, =
7q+r, where 0 < r < 7. Then

ri+r = (a1 —7q1)+ (a2 —7q2)
=(a1+a2)+7(—q1 —q2)
=(q+r)+7(—q1 —q1)
=Tqg—q1—q)+r

An example of this in action: 41 =5 x 7+ 6 and 240 = 34 x 7+ 2, so the remainders of 41 and
240 when divided by 7 are 6 and 2, respectively. Now

41+240=281=40x7+1 and 64+2=8=1x7+1

which demonstrates that 41 + 240 and 6 4 2 have the same remainder when divided by 7. <

In this section we will study the extent to which we can do arithmetic with integers knowing
only their remainders upon division by a given integer.

Definition 4.3.2
Fix n € Z. Given integers a,b € Z, we say a is congruent to b modulo », and write
a=bmod n (ILIgX code: a \equiv b \bmod{n})
if n | a— b. If a is not congruent to b modulo n, write
a Z b mod n (IKTX code: \not\equiv)
The number 7 is called the modulus of the congruence.

Convention 4.3.3
When talking about modular arithmetic, we will restrict our attention to positive integers. This
is because for any integers a,b,n we have

a=bmodn < a=bmod (—n)
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and a = b mod O if and only if a = b. Thus, whenever we write ‘modn’ or specify that a
variable » is a ‘modulus’, it is implicit that # is an integer and n > 0. This will shorten some of
our proofs. <

Example 4.3.4
Some examples of congruence modulo 7 are as follows:

e 16 =30 mod 2 since 30 — 16 = 14, which is a multiple of 2.

e 44 =720 mod 6 since 20 — 44 = —24, which is a multiple of 6.

Exercise 4.3.5
Show that if a,b € Z with a,b > 0 then a = b mod 10 if and only if the decimal expressions of
a and b end in the same digit. What happens when a and b are allowed to be negative? <

It is important from the outset to point out that, although congruence is written with a symbol that
looks like that of equality (‘=" vs. ‘="), we can only treat congruence like equality inasmuch as
we have proved we can. Specifically, the ways in which congruence can be treated like equality
will be proved in two theorems:

e Theorem 4.3.6 tells us that congruence satisfies three extremely basic properties of equality.®!
One useful consequence of this is that it is valid to use strings of congruences, for example

—5=18=41=64mod23 = —-5=64mod?23

e Theorem 4.3.9 tells us that we can treat congruence like equality for the purposes of addition,
multiplication and subtraction. Thus it will be valid to write things like

x=7mod 12 = 2x+5=19 mod 12

and we’ll be able to replace values by congruent values in congruences, provided they’re only
being added, subtracted or multiplied. For example, from the knowledge that 26° = 1 mod 61
and 60! = —1 mod 61, we will be able to deduce

200.3=60! - xmod 61 = 3= —xmod 6l

Don’t let these properties shared by congruence and equality lull you into a false sense of se-
curity! We will soon see that for other purposes, such as division and various other algebraic
operations, congruence does not behave like equality.

[b]Using the language of Definition 5.1.30, Theorem 4.3.6 says precisely that congruence is an equivalence relation.
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Theorem 4.3.6
Let a,b,c € Z and let n be a modulus. Then

(a) a =a mod n;
(b) If a = b mod n, then b = a mod n;

(¢) If a=b mod n and b = ¢ mod n, then a = ¢ mod n.

Proof

(a) Note that @ —a = 0, which is divisible by n since 0 = 0 X n, and hence a = a mod n.

(b) Suppose a =b mod n. Then n | a— b, so that a— b = kn for some k € Z. Hence b —a = —kn,
and so n | b—a, so that b = a mod n as required.

(c) Suppose a=b mod nand b =c mod n. Thenn | a—b and n | b —c, so there exist k,/ € Z
such that
a—b=kn and b—c=/In

Hence a—c=(a—b)+ (b—c) = (k+{)n, so thatn | a— c. Hence a = ¢ mod n, as required.

O

There is a slightly simpler characterisation of congruence modulo 7, as seen in Proposition 4.3.7
below.

Proposition 4.3.7
Fix a modulus n and let a,b € Z. The following are equivalent:

(1) a and b leave the same remainder when divided by #;
(i1) a = b+ kn for some k € Z;

(iii)) a = b mod n.

Proof
We prove (i) < (iii) and (i1) < (iii).

e (i) = (iii). Suppose a and b leave the same remainder when divided by n, and let q,q>,r € Z
be such that
a=qn+r, b=gn+r and 0<r<n

Then a — b = (g1 — g2)n, which proves that n | a — b, and so a = b mod n.

e (iii) = (i). Suppose that a = b mod n, so that b — a = gn for some g € Z. Write

a=qn+ry, b=gn+r, and 0<r,n<n

205



206 Chapter 4. Number theory

We may further assume that r; < r,. (If not, swap the roles of a and b—this is fine, since
n|b—aif and only if n | @ — b.) Now we have

b—a=qn= (gn+r)—(qn+r)=qn
= (@—q—q)n+(r2—r1)=0 rearranging

since 0 < ry < rp <n we have 0 < rp —ry <n, so that r, — r is the remainder of 0 when
divided by n. That is, r, —r; =0, so r; = r,. Hence a and b have the same remainder when
divided by n.

e (ii) < (iii). We unpack the definitions of (ii) and (iii) to see that they are equivalent. Indeed

(i) & a= b+ kn for some k € Z

& a—b = knfor some k € Z rearranging

<nla—b by definition of divisibility
S a=bmodn by definition of congruence
< (iii)

OJ

Discussion 4.3.8
Where in the proof of Proposition 4.3.7 did we rely on the convention that the modulus » is
positive? Is the result still true if n is negative? <

The following theorem tells us that, in a very limited sense, the = symbol can be treated as a =
symbol for the purposes of doing addition, subtraction and multiplication. Emphatically, it does
not say that we can treat ‘=" like ‘=" for the purposes of doing division.

Theorem 4.3.9 (Modular arithmetic)
Fix a modulus n, and let a;,a,,b1,b, € Z be such that
a; =b; mod n and ar = by, mod n
Then the following congruences hold:
(a) a; +ar = by + by mod n;
(b) ayap; = b1by mod n;
(¢) a1 —ar, = by — by mod n.

Proof
By Definition 4.3.2 that n | a; — by and n | a; — by, so there exist ¢1,g» € Z such that

ai—by=qn and a» — by = qon
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This implies that

(a1 +az)— (b1 +b2) = (a1 —b1)+ (a2 —b2) = qin+gan = (q1 + q2)n
son | (a1 +az) — (by +by). This proves (a).
The algebra for (b) is slightly more involved:

aja, —biby = (qin+b1)(gan+by) —b1by
= 6]1612712 +bigon+brqin+biby—b1by
= q1q2n* +bigon+byqin
= (q1q2n+b1g2 +b2g1)n

This shows that n | aja; — by by, thus proving (b).

Now (a) and (b) together imply (c). Indeed, we know that —1 = —1 mod n and b; = b, mod n,
so by (b) we have —b; = —b, mod n. We also know that a; = a, mod n, and hence a; —b| =
ap — by mod n by (a). O

Theorem 4.3.9 allows us to perform algebraic manipulations with congruences as if they were
equations, provided all we’re doing is adding, multiplying and subtracting.

Example 4.3.10
We will solve the congruence 3x —5 = 2x+ 3 mod 7 for x:

3x—5=2x+3mod 7

< x—5=3mod7 (=) subtract 2x (<) add 2x
& x=8mod 7 (=)add 5 (<) subtract 5
< x=1mod?7 since 8 = 1 mod 7

So the integers x for which 3x — 5 and 2x + 3 leave the same remainder when divided by 7, are
precisely the integers x which leave a remainder of 1 when divided by 7:

3x—5=2x+3mod 7 & x="Tg+ 1 for some g € Z

Exercise 4.3.11
For which integers x does the congruence 5x+ 1 = x+ 8 mod 3 hold? Characterise such integers
x in terms of their remainder when divided by 3. <

So far this all feels like we haven’t done very much: we’ve just introduced a new symbol =
which behaves just like equality. .. but does it really? The following exercises should expose
some more ways in which congruence does behave like equality, and some in which it doesn ’t.
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Exercise 4.3.12
Fix a modulus #. Is it true that

a=bmodn = d"'=b"modn
for all a,b € Z and k € N? If so, prove it; if not, provide a counterexample. <

Exercise 4.3.13
Fix a modulus 7. Is it true that

k=fmodn = d'=a'modn

for all k,/ € N and a € Z? If so, prove it; if not, provide a counterexample. <

Exercise 4.3.14
Fix a modulus 7. Is it true that

ga=gbmodn = a=bmodn
for all a,b,q € Z with g £ 0 mod n? If so, prove it; if not, provide a counterexample. <

Common error

The false sense of security that Theorem 4.3.9 induces often leads students new to all this to
the belief that = and = are interchangeable concepts. This is emphatically not the case. In
particular:

e Fractions don’t make sense in modular arithmetic; for instance, it is invalid to say 2x = 1 mod
5 implies x = % mod 5.

e Square roots don’t make sense in modular arithmetic; for instance, it is invalid to say 2=
3 mod 4 implies x = ++/3 mod 4.

e Numbers in exponents cannot be replaced by congruent numbers; for instance, it is invalid to
say x° = 2° mod 4 implies x = 2 mod 4.

Multiplicative inverses

We made a big deal about the fact that fractions don’t make sense in modular arithmetic. That
is, it is invalid to say

2x=1mod5 = xz%modS

Despite this, we can still make sense of ‘division’, provided we change what we mean when we
say ‘division’. Indeed, the congruence 2x = 1 mod 5 has a solution:

2x=1mod 5
<& 6x=3mod>5S (=) multiply by 3 (<) subtract 3
< x=3mod>5 since 6=1 mod 5
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Here we didn’t divide by 2, but we still managed to cancel the 2 by instead multiplying through
by 3. For the purposes of solving the equation this had the same effect as division by 2 would
have had if we were allowed to divide. The key here was that 2 x 3 =1 mod 5.

Definition 4.3.15
Fix a modulus n. Given a € Z, a multiplicative inverse for ¢ modulo r is an integer u such that
au =1 mod n.

Example 4.3.16
Some examples of multiplicative inverses are as follows:

2 is a multiplicative inverse of itself modulo 3, since 2 x2 =4 =1 mod 3.

2 is a multiplicative inverse of 3 modulo 5, since 2 x3 =6 =1 mod 5.

7 is also a multiplicative inverse of 3 modulo 5, since 3 x 7=21 =1 mod 5.

3 has no multiplicative inverse modulo 6. Indeed, suppose u € Z with 3u = 1 mod 6. Then
6| 3u—1,s03u— 1= 6q for some ¢g € Z. But then

1 =3u—6qg=3(u—2q)
which implies that 3 | 1, which is nonsense.

<

Knowing when multiplicative inverses exist is very important for solving congruences: if u is
a multiplicative inverse for a modulo n, then we can solve equations of the form ax = b mod n
extremely easily:

ax=bmodn = x=ubmodn

Exercise 4.3.17
For n =7,8,9,10,11, 12, either find a multiplicative inverse for 6 modulo n, or show that no
multiplicative inverse exists. Can you spot a pattern? <

Some authors write a~! to denote multiplicative inverses. We refrain from this, since it suggests
that multiplicative inverses are unique—but they’re not, as you’ll see in the following exercise.

Exercise 4.3.18
Let n be a modulus and let a € Z. Suppose that u is a multiplicative inverse for a modulo n.
Prove that, for all k € Z, u+ kn is a multiplicative inverse for a modulo n. <

Proposition 4.3.19
Let a € Z and let n be a modulus. Then a has a multiplicative inverse modulo # if and only if
aln.
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Proof

Note that a has a multiplicative inverse # modulo 7 if and only if there is a solution (u,v) to the
equation au +nv = 1. Indeed, au = 1 mod n if and only if n | au — 1, which occurs if and only
if there is some g € 7Z such that au — 1 = nq. Setting ¢ = —v and rearranging yields the desired
equivalence.

By Bézout’s lemma (Theorem 4.1.22), such a solution (u,v) exists if and only if gcd(a,n) | 1.
This occurs if and only if ged(a,n) = 1, i.e. if and only if a L n.

Proof tip
To solve a congruence of the form ax = b mod n when a L n, first find a multiplicative inverse u
for @ modulo n, and then simply multiply through by u to obtain x = ub mod n. <

Corollary 4.3.20
Let a, p € Z, where p is a positive prime. If p { a then a has a multiplicative inverse modulo p.

Proof

Suppose p t a, and let d = ged(a, p). Since d | p and p is prime we have d = 1 or d = p. Since
d|aand ptawe can’t have d = p; therefore d = 1. By Proposition 4.3.19, a has a multiplicative
inverse modulo p. O

Example 4.3.21
11 is prime, so each of the integers a with 1 < a < 10 should have a multiplicative inverse
modulo 11. And indeed, the following are all congruent to 1 modulo 11:

IxI=1 2x6=12 3x4=12 4x3=12 5x9=45
6x2=12 7x8=56 8x7=56 9x5=45 10x10=100

Exercise 4.3.22
Find all integers x such that 25x —4 = 4x4-3 mod 13. <

Orders and totients

For any modulus n, there are only finitely many possible remainders modulo n. A nice con-
sequence of this finiteness is that, when a L n, we can choose some power of a to be its multi-
plicative inverse, as proved in the following exercise.

Exercise 4.3.23
Let n be a modulus and let a € Z with a L n. Prove that there exists k > 1 such that a* = 1 mod
n. <

Exercise 4.3.23, together with the well-ordering principle, justify the following definition.
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Definition 4.3.24
Let n be a modulus and let a € Z with a L n. The order of a modulo # is the least k > 1 such
that ¢ = 1 mod n.

Note that this definition makes sense by Exercise 4.3.23 and the well-ordering principle.

Example 4.3.25
The powers of 7 modulo 100 are:

e 7' =7,507! =7 mod 100;

e 7> =49, 50 7% =49 mod 100;

e 7° =343, 50 7° = 43 mod 100;

e 74 =2401, 0 7* = 1 mod 100.

Hence the order of 7 modulo 100 is 4, and 73 and 43 are multiplicative inverses of 7 modulo

100. <

Our focus turns to computing specific values of k such that ¢ = 1 mod n, whenever a € Z and
a L n. We first focus on the case when n is prime; then we develop the machinery of totients to
study the case when # is not prime.

Lemma 4.3.26
Let a,b € 7Z and let p € Z be a positive prime. Then (a+ b)” = a” + b? mod p.

Proof
By the binomial theorem (Theorem 3.1.35), we have

(a+b)’ = i (’;) akbPk

k=0

By Exercise 4.2.5, p | (£) for all 0 < k < p, and hence (i)akbpfk =0mod p forall 0 < k < p.
Thus

(a+b)P = <€> a®pP0 4 (i) aPb? P =aP 4+ b” mod p

as desired. |

Theorem 4.3.27 (Fermat’s little theorem)
Let a, p € Z with p a positive prime. Then ¢ = a mod p.

Proof
We may assume that @ > 0, otherwise replace a by its remainder modulo p.

We will prove that a” = a mod p by induction on a.
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e (BC) Since p > 0 we have 0”7 = 0, hence 0” = 0 mod p.

e (IS) Fix a > 0 and suppose a” = a mod p. Then (a+ 1)? = a” + 17 mod p by Lemma 4.3.26.
Now a” = a mod p by the induction hypothesis, and 17 = 1, so we have (a+1)? =a+ 1 mod
p.

By induction, we’re done. U

The following consequence of Theorem 4.3.27 is often also referred to as ‘Fermat’s little the-
orem’, but is slightly less general since it requires an additional hypothesis. In keeping with the
wider mathematical community, we will refer to both Theorem 4.3.27 and Corollary 4.3.28 as
‘Fermat’s little theorem’.

Corollary 4.3.28 (Fermat’s little theorem — alternative version)
Let a, p € Z with p a positive prime and p { a. Then a?~! = 1 mod p.

Proof
Since p 1 a, it follows that @ 1 p. Theorem 4.3.27 tells us that @’ = a mod p. By Proposi-
tion 4.3.19, a has a multiplicative inverse b modulo p. Hence

a’b = ab mod p
But a’b = a?~'ab mod p, and ab = 1 mod p, so we get
a”'=1mod p

as required. (|

Corollary 4.3.28 can be useful for computing remainders of humongous numbers when divided
by smaller primes.

Example 4.3.29
We compute the remainder of 2'°° when divided by 7. Since 712, it follows from Fermat’s
little theorem (Corollary 4.3.28) that 2° = 1 mod 7. Now 1000 = 166 x 6 +4, so

21000 = 2166><6+4 = (26)166 . 24 = 24 = 16 = 2 mOd 7

so the remainder of 2!%% when divided by 7 is 2. <
Exercise 4.3.30
Find the remainder of 3244836 when divided by 13. <

Unfortunately, the hypothesis that p is prime in Fermat’s little theorem cannot be disposed of.
For example, 6 is not prime, and 50-1 =55 =3125 =520 x 6+ 5, s0 5° = 5 mod 6. Our next
order of business is to generalise Corollary 4.3.28 by removing the requirement that the modulus
p be prime, and replacing p — 1 by the totient of the modulus.
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Definition 4.3.31
Let n € Z. The totient of 7 is the natural number ¢ (n) (IZTgX code: \varphi (n)) defined by

¢(n) = [{k € lnl] | k L n}|

That is, ¢(n) is the number of integers from 1 up to |n| which are coprime to n. The function
¢ : Z — N is called Euler’s totient function.

Example 4.3.32
Here are some examples of totients:

e The elements of [6] which are coprime to 6 are 1 and 5, so ¢(6) = 2.

e If p is a positive prime, then by Corollary 4.2.20, every element of [p] is coprime to p except
for p itself. Hence if p is a positive prime then ¢(p) = p — 1. More generally, if p is prime
then ¢(p) = [p[— 1.

Exercise 4.3.33
Let n € Z and let p > 0 be prime. Prove that if p | n, then ¢(pn) = p- ¢(n). Deduce that

o(p*) = p* — p*~! for all prime p > O and all k > 1. <
Exercise 4.3.34
Let p and ¢ be distinct positive primes. Prove that ¢(pg) = (p—1)(¢g—1). <

Together, Exercises 4.3.33 and 4.3.34 allow us to compute the totient of any integer with up to
two primes in its prime factorisation.

Example 4.3.35
We compute ¢(100). The prime factorisation of 100 is 2> x 52. Applying Exercise 4.3.33 twice

P22 x5%) =2x5x @(2x5) = 109(10)

Finally, Exercise 4.3.34 tells us that ¢(10) = ¢(2 x 5) = 1 x4 = 4. Hence ¢(100) = 40. <

Exercise 4.3.36
Prove that ¢(100) = 40, this time using the inclusion—exclusion principle. <

Euler’s theorem uses totients to generalise Fermat’s little theorem (Theorem 4.3.27) to arbitrary
moduli, not just prime ones.

Theorem 4.3.37 (Euler’s theorem)
Let n be a modulus and let a € Z with a 1 n. Then

a®™ =1 mod n

213



214 Chapter 4. Number theory

Proof
By definition of totient, the set X defined by

X={ke[n]|kLn}
has ¢ (n) elements. List the elements as
X = {x1,xz,...,x(p(n)}
Note that ax; 1 n for all i, so let y; be the (unique) element of X such that ax; = y; mod n.

Note that if i # j then y; # y;. We prove this by contraposition; indeed, since a L n, by Proposi-
tion 4.3.19, a has a multiplicative inverse, say b. Then

yi=yjmodn = ax;=ax; modn = bax; =bax; modn = x; =x; mod n
and x; = x; mod n if and only if i = j. Thus

X ={x1,%2, ., Xpm) } = {1,325 Vo) }

This means that the product of the ‘x;’s is equal to the product of the ‘y;’s, and hence

X1t Xo(n)
=Yl Vo) mod n since {x1,...} ={y1,... }
= (ax1)-...-(axy(,) mod n since y; = ax; mod n
=a®" .x ... “Xg(n) Mod n rearranging

Since each x; is coprime to n, we can cancel the x; terms (by multiplying by their multiplicative
inverses) to obtain
a®™ =1 mod n

as required. U

Example 4.3.38
Some examples of Euler’s theorem in action are as follows:

e We have seen that ¢ (6) = 2, and we know that 5 | 6. And, indeed,
59000 =52 =25 =4x6+1
50 52 =1 mod 6.
e By Exercise 4.3.33, we have
e(121) = (11 =112—11' =121 -11 =110

Moreover, given a € Z, a | 121 if and only if 11 {a by Corollary 4.2.20. Hence a''® = 1 mod
121 whenever 11 1 a.
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Exercise 4.3.39
Use Euler’s theorem to prove that the last two digits of 37 are ‘67, <

Example 4.3.40
Let n be amodulus and let @ € Z with a L n. Prove that the order of @ modulo n divides @(n). <

A formula for the totient of an arbitrary nonzero integer is proved in Theorem 4.3.64—its proof
is an application of the Chinese remainder theorem Theorem 4.3.51, and uses the techniques for
counting finite sets discussed in Section 3.3.

Wilson’s theorem

We conclude this chapter on number theory with Wilson’s theorem, which is a nice result that
completely characterises prime numbers in the sense that we can tell when a number is prime by
computing the remainder of (n— 1)! when divided by n.

Let’s test a few numbers first:

n | (n—1)! | remainder

2 1 1

3 2

4 6 2

5 24 4

6 120 0

7 720 6

8 5040 0
n (n—1)! remainder
9 40320 0
10 362880 0
11 3628800 10
12 39916800 0
13 479001600 12
14 | 6227020800 0
15 | 87178291200 0

It’s tempting to say that an integer n > 1 is prime if and only if n{ (n — 1)!, but this isn’t true
since it fails when n = 4. But it’s extremely close to being true.

Theorem 4.3.41 (Wilson’s theorem)
Let n > 1 be a modulus. Then n is prime if and only if (n —1)! = —1 mod n.
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The following sequence of exercises will piece together into a proof of Wilson’s theorem.

Exercise 4.3.42
Let n € Z be composite. Prove thatif n > 4, thenn | (n—1)!. <

Exercise 4.3.43
Let p be a positive prime and let a € Z. Prove that, if a> = 1 mod p, then ¢ = 1 mod p or
a=—1mod p. <

Exercise 4.3.43 implies that the only elements of [p — 1] that are their own multiplicative inverses
are 1 and p — 1; this morsel of information allows us to deduce result in the following exercise.

Exercise 4.3.44
Let p be a positive prime. Prove that (p —1)! = —1 mod p. <

Proof of Wilson’s theorem (Theorem 4.3.41)
Let n > 1 be a modulus.

e If nis prime, then (n—1)! = —1 mod n by Exercise 4.3.44.
e If n is composite, then either n =4 or n > 4. If n =4 then
(n—1)!'=3'=6=2mod 4
and so (n—1)! # —1 mod n. If n > 4, then
(n—1)!'=0mod n
by Exercise 4.3.42.

Hence (n—1)! = —1 mod n if and only if n is prime, as desired. O

Since Wilson’s theorem completely characterises the positive prime numbers, we could have
defined ‘n is prime’, for n > 1, to mean that (n — 1)! = —1 mod n. We don’t do this because,
although this is an interesting result, it is not particularly useful in applications. We might
even hope that Wilson’s theorem gives us an easy way to test whether a number is prime, but
unfortunately even this is a bust: computing the remainder (n — 1)! on division by n is not
particularly efficient.

However, there are some nice applications of Wilson’s theorem, which we will explore now.

Example 4.3.45
We’ll compute the remainder of 3* - 44! when divided by 47. Note that 3* - 44! is equal to a
monstrous number with 76 digits; I don’t recommend doing the long division! Anyway...

e 47 is prime, so we can apply both Fermat’s little theorem (Theorem 4.3.27) and Wilson’s
theorem (Theorem 4.3.41).
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e By Fermat’s little theorem, we know that 3*6 = 1 mod 47. Since 3-16 = 48 = 1 mod 47, we

have
3% =3%.(3.16) = 3% .16 = 16 mod 47
e By Wilson’s theorem, we have 46! = —1 mod 47. Now
© 46 = —1 mod 47, so 46 is its own multiplicative inverse modulo 47.
¢ The extended Euclidean algorithm yields 45-23 = 1 mod 47.

So we have

441 =441.(45-23)- (46-46) = 46!-23-46 = (—1)-23- (—1) = 23 mod 47

Putting this information together yields
3%.441=16-23 = 368 = 39 mod 47

So the remainder left when 3% - 44! is divided by 47 is 39.

Exercise 4.3.46
Let p be an odd positive prime. Prove that

() = o

Chinese remainder theorem

We introduce the Chinese remainder theorem with an example.

Example 4.3.47
We find all integer solutions x to the system of congruences

x=2mod5 and x=4 mod 8

Note that x = 4 mod 8 if and only if x = 4 4 8k for some k € Z. Now, for all kK € Z we have

x=2mod5

< 448k=2mod 5 since x =4+ 8k

< 8k=—-2mod 5 subtracting 4

< 3k=3mod 5 since § = —-2=3mod 5

& k=1mod5 multiplying by a multiplicative inverse for 3 modulo 5

So 4+ 8k =2 mod 5 if and only if k = 1 4 5¢ for some ¢ € Z.
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Combining this, we see that x satisfies both congruences if and only if
x=4+8(14+50) =12+40¢
for some ¢ € Z.

Hence the integers x for which both congruences are satisfied are precisely those integers x such
that x = 12 mod 40. <

Exercise 4.3.48
Find all integer solutions x to the system of congruences:

x=—1mod 4
x=1mod9
x=5mod 11
Express your solution in the form x = @ mod 7 for suitable n > 0 and 0 < a < n. <

Exercise 4.3.49
Let m,n be coprime moduli and let a,b € Z. Let u,v € Z be such that

mu=1modn and nv=1 modm
In terms of a,b,m,n,u,v, find an integer x such that

x=amodm and x=bmodn

Exercise 4.3.50
Let m,n be coprime moduli and let x,y € Z. Prove that if x =y mod m and x = y mod 7, then
x =y mod mn. <

Theorem 4.3.51 (Chinese remainder theorem)
Let m,n be moduli and let a,b € Z. If m and n are coprime, then there exists an integer solution
x to the simultaneous congruences

x=amodm and x=b modn
Moreover, if x,y € Z are two such solutions, then x =y mod mn.

Proof
Existence of a solution x is precisely the content of Exercise 4.3.49.

Now let x,y € Z be two solutions to the two congruences. Then

{xzamodm

y=amodm = x=ymodm
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x=bmodn
y=bmodn = x=ymodn

so by Exercise 4.3.50, we have x =y mod mn, as required. OJ

We now generalise the Chinese remainder theorem to the case when the moduli m,n are not
assumed to be coprime. There are two ways we could make this generalisation: either we could
reduce the more general version of the theorem to the version we proved in Theorem 4.3.51, or
we could prove the more general version from scratch. We opt for the latter approach, but you
might want to consider what a ‘reductive’ proof would look like.

Theorem 4.3.52
Let m,n be moduli and let a,b € Z. There exists an integer solution x to the system of congru-
ences

x=amodm and x=bmodn

if and only if @ = b mod ged(m,n).
Moreover, if x,y € Z are two such solutions, then x =y mod lem(m, n)

Proof
Let d = ged(m,n), and write m = m'd and n = n’d for some m’,n’ € Z.

We prove that an integer solution x to the system of congruences exists if and only if a = b mod
d.

e (=) Suppose an integer solution x to the system of congruences exists. Then there exist
integers k, ¢ such that
x=a+mk=>b+nl

But m = m’'d and n = n'd, so we have a+m'dk = b+n'dl, and so
a—b=(n"t—m'k)d
so that a = b mod d, as required.

e (<) Suppose a = b mod d, and let ¢ € Z be such that a —b = td. Let u,v € Z be solutions to
the congruence mu + nv = d, which exists by Bézout’s lemma (Theorem 4.1.22). Note also
that, since m = m'd and n = n'd, dividing through by d yields m'u+n'v = 1.

Define
x=an'v+bm'u
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Now we have

x=an'v+bm'u
=an'v+ (a—td)m'u
=a(mu+n"v)—tdm'u
=a—tdm'u

=a—tum

so x = a mod m. Likewise

x=an'v+bm'u
= (b+td)n'v+bm'u
=b(m'u+n"v)+tdn'v
=b+tdn'v
=b+tvn

so x = b mod n.

Chapter 4. Number theory

by definition of x
sincea—b =td
rearranging

since m'u+n'v=1

since m = m'd

by definition of x
sincea—b =td
rearranging

since m'u+n'v=1

since n =n'd

Hence x = an'v + bm'u is a solution to the system of congruences.

We now prove that if x,y are two integer solutions to the system of congruences, then they are

congruent modulo Icm(a, b). First note that we must have

x=ymodm and x=ymodn

so that x = y+ km and x = y+ ¢n for some k, ¢ € Z. But then

x—y=km=/In

Writing m = m'd and n = n’d, we see that km'd = ¢n'd, so that km’ = ¢n’. But m’,n’ are coprime
by Exercise 4.1.29, and hence m' | £ by Proposition 4.1.31. Write £ = ¢'m’ for some ¢’ € Z. Then

we have

x—y=~In="{0mn

and hence x =y mod m'n. But m'n = lem(m,n) by Exercise 4.1.40. O

This theorem is in fact constructive, in that it provides an algorithm for finding all integer solu-

tions x to a system of congruences

x=amodm and x=bmodn

as follows:

e Use the Euclidean algorithm to compute d = ged(m, n).
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e If d { a— b then there are no solutions, so stop. If d | a — b, then proceed to the next step.
e Use the extended Euclidean algorithm to compute u,v € Z such that mu +nv = d.
e The integer solutions x to the system of congruences are precisely those of the form

b k
x:anv+ rZu+ mn for some k € Z

Exercise 4.3.53
Verify that the algorithm outlined above is correct. Use it to compute the solutions to the system

of congruences
x=3mod 12 and x=15mod 20

* Exercise 4.3.54
Generalise the Chinese remainder theorem to systems of arbitrarily (finitely) many congru-

ences. That is, given r € N, find precisely the conditions on moduli ny,n2,...,n, and integers
ai,ay,...,a, such that an integer solution exists to the congruences
x=aj;modn;, x=ap; modny, X, =a, mod n,

Find an explicit formula for such a value of x, and find a suitable modulus 7 in terms of
ni,ny,...,n, such that any two solutions to the system of congruences are congruent modulo
n. <

Exercise 4.3.55
Prove that gaps between consecutive primes can be made arbitrarily large. That is, prove that for
all n € N, there exists an integer a such that the numbers

a,a+1,a+2,...,a+n

are all composite. <

Application: tests for divisibility

The language of modular arithmetic provides a practical setting for proving tests for divisibility
using number bases. Number bases were introduced in Chapter 0, and we gave a preliminary
definition in Definition 0.6 of what a number base is. Our first job will be to justify why this
definition makes sense at all—that is, we need to prove that every natural number has a base-b
expansion, and moreover, that it only has one of them. Theorem 4.3.56 says exactly this.
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Theorem 4.3.56
Let n € N and let b € N with b > 2. Then there exist unique r € N and
do,dy,...,d, €{0,1,...,b— 1} such that

n= id,-b"
i=0

and such that d, # 0, except n = 0, in which case » =0 and dp = 0.

Proof
We proceed by strong induction on .

e (BC) We imposed the requirement that if » = 0 then r = 0 and dp = 0; and this evidently

r .
satisfies the requirement that n = ) d;b".
i=0

e (IS) Fix n > 0 and suppose that the requirements of the theorem are satisfied for all the natural
numbers up to and including n.

By the division theorem (Theorem 4.1.1), there exist unique u,v € N such that
n+1=ub+v and ve{0,1,....b—1}

Since b > 2, we have u <n+1,and sou < n. It follows from the induction hypothesis that
there exist unique r € Nand dy,...,d, € {0,1,...,b— 1} such that

.
u= Zd,urlbl
i=0
and d, # 0. Writing dy = v yields
n=ub+v= Zd+1b’“+do Zdb’
i=0

Since d, # 0, this proves existence.

For uniqueness, suppose that there exists s € N and ey, ...,e; € {0,1,...,b— 1} such that
)
n+1= Z e;b’
j=0
and e; #~ 0. Then

N
n+1= <Zejbj_l> b+eg

j=1
so by the division theorem we have ey = dy = v. Hence

ZS: b = Zr:dibj*I

n+1—v

so by the induction hypothesis, it follows that r = s and d; = ¢; for all 1 < i < r. This proves
uniqueness.
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By induction, we’re done. O

We now re-state the definition of base-b expansion, confident in the knowledge that this defini-
tion makes sense.

Definition 4.3.57

Let n € N. The base-b expansion of 7 is the unique string d,d,_ .. .dp such that the conditions
in Theorem 4.3.56 are satisfied. The base-2 expansion is also known as the binary expansion,
and the base-10 expansion is called the decimal expansion.

Example 4.3.58

Let n € N. Then # is divisible by 3 if and only if the sum of the digits in the decimal expansion
of n is divisible by 3. Likewise, n is divisible by 9 if and only if the sum of the digits in the
decimal expansion 7 is divisible by 9.

We prove this for divisibility by 3. Let

n=d.d,_---didy

be the decimal expansion of n, and let s = _Z d; be the sum of the digits of n.

i=0
Then we have
r . .
n=Y di10' mod 3 since n =Y d;10’
i=0 i
r .
=) d;1'mod 3 since 10 = 1 mod 3
i=0
r .
=) d since 1' =1 for all i
i=0
=5 by definition of s
Since n = s mod 3, it follows that # is divisible by 3 if and only if s is divisible by 3. <

Exercise 4.3.59
Let n € N. Prove that n is divisible by 5 if and only if the final digit in the decimal expansion of
nisSor0.

More generally, fix k > 1 and let m be the number whose decimal expansion is given by the last k
digits of that of n. Prove that 7 is divisible by 5% if and only if m is divisible by 5. For example,
we have

125]9550828230495875 <« 125|875
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Exercise 4.3.60
Let n € N. Prove that n is divisible by 11 if and only if the alternating sum of the digits of n is
divisible by 11. That is, prove that if the decimal expansion of n is d,d,_; - - - dp, then

1|n < 1|do—dy+dy—-+(=1)d,

Exercise 4.3.61
Let n € N. Find a method for testing if n is divisible by 7 based on the decimal expansion of
n. <

Application: public-key cryptography

Public-key cryptography is a method of encryption and decryption that works according to the
following principles:

e Encryption is done using a public key that is available to anyone.
e Decryption is done using a private key that is only known to the recipient.

e Knowledge of the private key should be extremely difficult to derive from knowledge of the
public key.

Specifically, suppose that Alice wants to securely send Bob a message. As the recipient of the
message, Bob has a public key and a private key. So:

e Bob sends the public key to Alice.
e Alice uses the public key to encrypt the message.

e Alice sends the encrypted message, which is visible (but encrypted) to anyone who intercepts
it.

e Bob keeps the private key secret, and uses it upon receipt of the message to decrypt the
message.

Notice that, since the public key can only be used to encrypt messages, a hacker has no useful
information upon intercepting the message or the public key.

RSA encryption is an algorithm which provides one means of doing public-key cryptography
using the theory of modular arithmetic. It works as follows.

Step 1. Let p and g be distinct positive prime numbers, and let n = pg. Then ¢@(n) = (p —
Dig—1).

Step 2. Choose e € Z such that 1 < e < ¢(n) and e L @(n). The pair (n,e) is called the public
key.
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Step 3. Choose d € Z such that de = 1 mod ¢(n). The pair (n,d) is called the private key.

Step 4. To encrypt a message M (which is encoded as an integer), compute K € [n] such that
K = M° mod n. Then K is the encrypted message.

Step 5. The original message M can be recovered since M = K¢ mod n.

Computing the private key (n,d) from the knowledge of (n,e) would allow a hacker to decrypt
an encrypted message. However, doing so is typically very difficult when the prime factors of
n are large. So if we choose p and ¢ to be very large primes—which we can do without much
hassle at all—then it becomes computationally infeasible for a hacker to compute the private
key.

Example. Suppose I want to encrypt the message M, which I have encoded as the integer 32.
Let p =13 and g = 17. Then n =221 and ¢(n) = 192. Let e = 7, and note that 7 L 192. Now
7 x 55 =1 mod 192, so we can define d = 55.

e The public key is (221,7), which Bob sends to Alice. Now Alice can encrypt the message:
327 =59 mod 221
Alice then sends Bob the encrypted message 59.
e The private key is (221,55), so Bob can decrypt the message:
59%° =32 mod 221

so Bob has received Alice’s message 32.

Exercise 4.3.62
Prove that the RSA algorithm is correct. Specifically, prove:

(a) If n = pq, for distinct positive primes p and ¢, then ¢(n) = (p—1)(¢g—1);
(b) Given 1 < e < ¢(n) with e L ¢(n), there exists d € Z with de = 1 mod ¢(n).

(c) Given M,K € Z with K = M° mod n, it is indeed the case that K¢ = M mod n.

Application: Euler’s totient function

We now derive a formula for computing the totient of an arbitrary integer using the tools from
Section 3.3—in particular, if you chose to read this section before learning about the multiplic-
ation principle, you should skip over this material.
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Theorem 4.3.63 (Multiplicativity of Euler’s totient function)
Let m,n € Z and let ¢ : Z — N be Euler’s totient function (see Definition 4.3.31). If m and n are
coprime, then @ (mn) = @(m)@(n).

Proof

Since @(—k) = @ (k) for all k € Z, we may assume that m > 0 and n > 0. Moreover, if m =0 or
n =0, then (m)@(n) =0 and @(mn) = 0, so the result is immediate. Hence we may assume
that m > 0 and n > 0.

Given k € Z, define
Cr={aclk]|aLlk}
By definition of Euler’s totient function, we thus have |Cy| = ¢@(k) for all k € Z. We will define
a bijection
£ Cp X Cp — Com

using the Chinese remainder theorem (Theorem 4.3.51).

Given a € Cy, and b € Cp, let f(a,b) be the element x € [mn] such that

{xzamodm

x=bmodn

o fis well-defined. We check the properties of totality, existence and uniqueness.

< Totality. We have accounted for all the elements of C,,, X C, in our specification of f.

o Existence. By the Chinese remainder theorem, there exists x € Z such that x = a mod m

and x = b mod n. By adding an appropriate integer multiple of mn to x, we may additionally
require x € [mn]. It remains to check that x L mn.
So let d = ged(x,mn). If d > 1, then there is a positive prime p such that p | x and p | mn.
But then p | m or p | n, meaning that either p | ged(x,m) or p | gcd(x,n). But x = a mod
m, so ged(x,m) = ged(a,m); and likewise ged(x,n) = ged(b,n). So this contradicts the
assumption that a 1 m and » 1 n. Hence x L mn after all.

o Uniqueness. Suppose x,y € C,,, both satisfy the two congruences in question. By the
Chinese remainder theorem, we have x =y mod mn, and hence x = y+ kmn for some k € Z.
Since x,y € [mn], we have

|k|mn = |kmn| =[x —y| <mn—1<mn
This implies |k| < 1, so that k =0 and x = y.
so f is well-defined.
e [ is injective. Let a,d’ € C,, and b,b’ € C,, and suppose that f(a,b) = f(a’,b’). Then there

is an element x € C,,, such that
x=amod m

x=d mod m
x=bmodn

x=b'modn
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Hence a = @’ mod m and b = b’ mod n. Since a,d’ € [m] and b,b’ € [n], we must have a = d’
andb=1"".

e f is surjective. Let x € Cy,. Let a € [m] and b € [n] be the (unique) elements such that
x =a mod m and x = b mod n, respectively. If a € C,, and b € C,, then we’ll have f(a,b) = x
by construction, so it remains to check thata | m and b 1L n.

Suppose d € Z with d | a and d | m. We prove that d = 1. Since x = a mod m, we have d | x
by Theorem 4.1.17. Since m | mn, we have d | mn. By definition of greatest common divisors,
it follows that d | gcd(x, mn). But ged(x,mn) = 1, so that d is a unit, and so @ L. m as required.

The proof that b | n is similar.

It was a lot of work to check that it worked, but we have defined a bijection f : C,, X C,, = Cypp.
By the multiplication principle, we have

@(m)@(n) = |Cyl - |Co| = [Cy X Cy| = |Can| = @(mn)

as required. O

It turns out that Theorem 4.3.63 and Exercise 4.3.33 are precisely the ingredients we need to
find a general formula for the totient of a nonzero integer.

Theorem 4.3.64 (Formula for Euler’s totient function)
Let n be a nonzero integer. Then

o) =l I] (1-1)

where the product is indexed over positive primes p dividing n

Proof
Since @(n) = @(—n) for all n € Z, we may assume that n > 0. Moreover

¢(1):1:1-H<1—1>

pll p

Note that the product here is empty, and hence equal to 1, since there are no positive primes p
which divide 1. So now suppose n > 1.

Using the fundamental theorem of arithmetic (Theorem 4.2.12), we can write

_ ki ko k,
n=p\'py-p’

for primes 0 < p; < pp < --- < p, and natural numbers ki, ks, ...,k > 1.

227



228

By repeated application of Theorem 4.3.63, we have
r A
o(n)=[Te(r)
i=1

By Exercise 4.3.33, we have

ki

L 1
Q(pi) = pii —pi~! = pfi <1 — >

Combining these two results, it follows that

Chapter 4. Number theory

o(n) = qp" (1 - ;) = (HP") (1 (1 B ;)) ‘ (1 ) ;)

which is as required.
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Section 4.Q
Chapter 4 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

229



230 Chapter 4. Number theory

230



Chapter 5

Relations

231



232 Chapter 5. Relations

Section 5.1
Relations

When studying a kind of mathematical object, such as numbers, sets or propositions, the most
interesting results arise from observing how the objects in question relate to one another, or to
other objects. For example:

e The most powerful proof techniques that we derived in Chapter 1 arose from studying logical
equivalence, which exploited what happens when two logical formulae can be derived from
one another.

e Although Section 3.2 was dedicated to studying finite sets, we were not even able to define
what it means for a set X to be finite until we were comfortable with the notion of a bijection
between sets.

e All of Chapter 4 concerned divisibility between integers, rather than studying integers in
isolation—for example, we cannot define what it means for 5 to be prime without saying
how the number 5 interacts with other integers.

The notion of a relation is the mathematical abstraction of these ideas.

Definition 5.1.1

Let X and Y be sets. A (binary) relation from X to Y is a logical formula R(x,y) with two free
variables x,y, where x has range X and y has range Y. We call X the domain of R and Y the
codomain of R.

Given x € X and y € Y, if R(x,y) is true then we say ‘x is related to y by R’, and write x R y
(I&TEX code: x \mathbin{R} y).

In more human terms, a relation from X to Y is a statement about a generic element x € X and a
generic element y € Y, which is either true or false depending on the values of x and y.

Example 5.1.2
We have seen many examples of relations so far. For example:

e Every function f : X — Y defines a relation Ry from X to Y by letting
XRpy & fx)=y

e Given a set X, equality between elements of X (‘x =y’) is a relation from X to X.
e Divisibility (‘x| y”) is a relation from Z to Z.

e For fixed n € Z, congruence modulo n (‘x =y mod »’) is a relation from Z to Z.
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e Order (‘x < y’) is arelation from N to N, or from Z to Z, or from Q to Q, and so on.

e Given sets X and Y, there is an empty relation @y y from X to Y, which is defined simply by
declaring @x y(x,y) to be false forallx € X and y € Y.

Exercise 5.1.3
Define a relation R from Z to Z which is not on the list given in Example 5.1.2. <

It is possible, and extremely useful, to represent relations as sets. We do this by defining the
graph of a relation, which is the set of all pairs of elements which are related by the relation.
You might recognise this as being similar to the graph of a function (Definition 2.2.6).

Definition 5.1.4
Let X and Y be sets, and let R be a relation from X to Y. The graph of R is the set Gr(R) (ITEX
code: \mathrm{Gr}{R}) of pairs (x,y) € X x Y for which x R y. That is

Gr(R) ={(x,y) e X xY |xRy} CX XY

Example 5.1.5

Consider the relation of divisibility from Z to Z, that is R(x,y) is the statement x | y. The graph
Gr(R) of R is the set whose elements are all pairs (m,n) where m,n € Z and m | n. For example,
(2,6) € Gr(R) since 2 | 6, but (2,7) & Gr(R) since 217.

Since m | n if and only if n = gm for some ¢ € Z, we thus have

Gr(R) = {(m,qm) |m,qe Z} CZ X Z

Exercise 5.1.6
Let X and Y be sets. What is the graph of the empty relation from X to Y? <

Exercise 5.1.7
Let f: X — Y be a function, and define the relation Ry from X to Y as in Example 5.1.2. Prove
that Gr(Ry) = Gr(f)—that is, the graph of the relation Ry is equal to the graph of the function

f. q

As with functions, the graph of a relation R from a set X to a set Y can often be represented
graphically: draw a pair of axes, with the horizontal axis representing the elements of X and the
vertical axis representing the elements of Y, and plot the point (x,y) if and only if R(x,y) is true.

Example 5.1.8
Consider the relation S from R to R defined by x S y < x*> +y*> = 1. Then

Gr(S) = {(x,y) ERxR | x> +y* =1}

233



234 Chapter 5. Relations

Plotting Gr(S) on a standard pair of axes yields a circle with radius 1 centred at the point (0,0).
Note that Gr(S) is not the graph of a function s : [0, 1] — R. Indeed, since for example both 0 S 1
and 0 S —1, the value s(0) would not be uniquely defined. <

Example 5.1.9
Let X be a set. The graph of the equality relation from X to X is very simple:

Gr(=)={(x,y) eXxX |x=y} ={(x,x) [ xeX} CX xX

This set is often denoted Ay (IZTEX code: \Delta_{X}), and called the diagonal subset of
X x X. The reason for the word ‘diagonal’ is because—provided the horizontal and vertical
axes have the same ordering of the elements of X—the points plotted are precisely those on the
diagonal line. <

Since we defined relations as particular logical formulae, and we have not defined a notion of
equality between logical formulae, if we want to say that two relations are equal then first we
need to define what we mean by equal. As with sets, this raises some subtleties: should two re-
lations be equal when they’re described by the same formula? Or should two relations be equal
when they relate the same elements, even if their underlying descriptions are somewhat differ-
ent? As with equality between sets (Axiom 2.1.22), our notion of equality between relations
will be extensional: for the purposes of deciding whether two relations are equal, we forget their
descriptions and look only at whether or not they relate the same pairs elements.

Axiom 5.1.10 (Relation extensionality)

Let X and Y be sets, and let R and § be relations from X to Y. Then R = S if and only if
VxeX,VyeY, (xRy<xSy)

That is, R = § if they relate exactly the same pairs of elements.

Note that two relations R and S from a set X to a set ¥ are equal as relations if and only if their

graphs Gr(R) and Gr(S) are equal as sets. This fact, together with the correspondence between

relations from X to Y and subsets of X x Y (Theorem 5.1.11 below) is incredibly convenient,
because it makes the notion of a relation more concrete.

Theorem 5.1.11
Let X and Y be sets. Any subset G C X X Y is the graph of exactly one relation R from X to Y.

Proof
Fix G C X x Y. Define a relation R by

VxeX,VyeY,xRy< (x,y) €G

Then certainly G = Gr(R).
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Moreover, if S is a relation from X to Y such that G = Gr(S), then, forallx e X andy € Y
xSy« (x,y) €Gr(S) < (x,y) € Gr(R) < xRy

so S = R. Hence there is exactly one relation from X to ¥ whose graph is G. O

Theorem 5.1.11 allows us to use the counting principles from Section 3.3 to find the number of
relations from one finite set to another.

Exercise 5.1.12
Let X and Y be finite sets with |X| = m and |Y| = n. Prove that there are 2" relations from X to
Y. <

Aside

It is very common to identify a relation with its graph, saying that a relation from a set X to a set
Y “is’ a subset of X x Y. This practice is justified by Theorem 5.1.11, which says precisely that
there is a correspondence between relations from X to Y and subsets of X x Y. <

Relations on a set

In most of the examples of relations we’ve seen so far, the domain of the relation is equal to its
codomain. The remainder of this section—in fact, the remainder of this chapter—is dedicated
to such relations. So let’s simplify the terminology slightly.

Definition 5.1.13
Let X be a set. A relation on X is a relation from X to X.

We have seen many such relations so far, such as: equality on any set, congruence modulo # on
Z, divisibility on Z, inclusion of subsets (C) on & (X), and comparison of size (<) on N, Z, Q
or R. Remarkably, each of these relations can be characterised in one of two ways: either as an
equivalence relation or as a partial order.

Equivalence relations are those that behave in some sense like equality, and partial orders are
those that behave in some way like <.
e Equality. If X is any set, then equality on X satisfies:

o Given x € X, we have x = x;

o Givenx,y € X, if x =y, then y = x;

o Givenx,y,z € X,if x=yand y =z, then x = z.

Note that these are all true if we replace X by Z and - = - by - = - mod »n for some fixed n > 0.

e Order. If X = N (or Z or QQ or R), then the order relation < on X satisfies:
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o Given x € X, we have x < x;

o Givenx,y € X, if x <yand y < x, then x = y;

o Givenx,y,z € X, if x <yand y <z, then x < z.

Note that these are all true if we replace (X, <) by (Z(X),C) or (N, | ).

For both equality and order, the first condition states that every element is related to itself, and the
third condition states that in some sense we can cut out intermediate steps. These conditions are
known as reflexivity and transitivity. The second condition for equality states that the direction
of the relation doesn’t matter; this condition is called symmetry. The second condition for the
order relation states that the only way two objects can be related to each other in both directions
is if they are equal; this condition is called antisymmetry.

The remainder of this section will develop the language needed to talk about equivalence rela-
tions and partial orders. We will finish the section with a discussion of equivalence relations,
and then study partial orders in depth in Section 5.2.

Reflexive relations are those that relate everything to itself.

Definition 5.1.14
Let X be a set. A relation R on X is reflexive if x R x for all x € X.

Example 5.1.15
Given a set X, the equality relation on X is reflexive since x = x for all x € X. <

Example 5.1.16
The divisibility relation on N, or on Z, is reflexive. Given n € Z we have n = 1 X n, and so
n|n. <

The following exercise demonstrates the importance of specifying the (co)domain of a relation:
it shows that a logical formula may define a reflexive relation on one set, but not on another.

Exercise 5.1.17
Prove that coprimality (‘x L y’) is not a reflexive relation on Z, but that it is a reflexive relation
on the set {—1,1}.

As such, it doesn’t make sense to say ‘coprimality is a reflexive relation’ or ‘coprimality is not a
reflexive relation’: we must specify on which set we are considering the coprimality relation. <

The result of the next exercise characterises reflexive relations in terms of their graph.

Exercise 5.1.18

Let X be a set and let R be a relation on X. Prove that R is reflexive if and only if Ay C Gr(R),
where Ay is the diagonal subset of X x X (see Example 5.1.9). Deduce that if X is finite and
|X| = n, then there are 2"~ reflexive relations on X. <
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Symmetric relations are those for which the direction of the relation doesn’t matter.

Definition 5.1.19
Let X be a set. A relation R on X is symmetric if, for all x,y € X, x Ry implies y R x.

Example 5.1.20
Some examples of symmetric relations include:

e Equality is a symmetric relation on any set X. Indeed, if x,y € X and x =y, then y = x.
e Coprimality is a symmetric relation on Z, since if a,b € Z thena L b if and only if b L a.

e Divisibility is not a symmetric relation on Z, since for instance 1 | 2 but 2 1 1. However,
divisibility is a symmetric relation on {—1,1}, since 1 | —1 and —1 | 1.

Exercise 5.1.21
Let X be a finite set with |X| = n. Prove that there are 2() . on symmetric relations on X. <

A related condition a relation may possess is antisymmetry.

Definition 5.1.22
Let X be a set. A relation R on X is antisymmetric if, for all x,y € X, if x R y and y R x, then

xX=y.

A word of warning here is that ‘antisymmetric’ does not mean the same thing as ‘not
symmetric’—indeed, we we will see, equality is both symmetric and antisymmetric, and many
relations are neither symmetric nor antisymmetric.'?!

Example 5.1.23
Some examples of antisymmetric relations include are as follows.

e Let X be a set. The equality relation on X is antisymmetric: it is immediate that if x,y € X
and x =y and y = x, then x = y.

e The relation < on the set N (or Z or Q or R) is antisymmetric: if m,n € N and m < n and
n<m,thenm=n.

e The divisibility relation on N is antisymmetric. Indeed, let m,n € N and suppose m | n and
n | m. Then n = km for some k € Z and m = ¢n for some ¢ € Z. It follows that n = kfn. If
n = 0 then m = n trivially; otherwise, we have k/ = 1. Hence k is a unit; moreover, since
m,n > 0 and n = km, we must have k = 1. Hence m = n.

[/ Even more confusingly, there is a notion of asymmetric relation, which also does not mean ‘not symmetric’.
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Exercise 5.1.24
Show that the divisibility relation on Z is not antisymmetric. <

Exercise 5.1.25

Let X be a set and let R be a relation on X. Prove that R is both symmetric and antisymmetric if
and only if Gr(R) C Ay, where Ay is the diagonal subset of X x X (see Example 5.1.9). Deduce
that the only reflexive, symmetric and antisymmetric relation on a set X is the equality relation
onX. <

Exercise 5.1.26
Let X be a finite set with |X| = n. Prove that there are 3(2) .on antisymmetric relations on X. <

Transitivity is the property of < that allows us to deduce, for example, that 0 < 4, from the
information that 0 <1 <2 <3 <4.

Definition 5.1.27
Let X be a set. A relation R on X is transitive if, for all x,y,z € X,if x Ryand yR z, then x R z.

Example 5.1.28
Some examples of transitive relations include:

e Equality is a transitive relation on any set X, since it is immediate that if x,y,z € X withx =1y
and y = z, then x = z.

e Divisibility is a transitive relation on N, or on Z. Indeed, if a,b,c € N with a | b and b | ¢, then
there exist k, ¢ € Z such that b = ka and ¢ = ¢b. Then ¢ = (kl)a, so a | c.

e Inclusion is a transitive relation on &?(X), for any set X. Indeed, Proposition 2.1.20 implies
thatif U,V W C X withU CVandV CW,thenU CW.

<

A fundamental property of transitive relations is that we can prove two elements a and b are
related by finding a chain of related elements starting at a and finishing at b. This is the content
of the following proposition.

Proposition 5.1.29
Let R be a relation on a set X. Then R is transitive if and only if, for any finite sequence

X0,X1,-..,%, of elements of X such that x;_; R x; for all i € [n], we have xo R x,,.

Proof

For the sake of abbreviation, let p(n) be the assertion that, for any n > 1 and any sequence
X0,X1,-..,%, of elements of X such that x;_; R x; for all i € [n], we have xo R x,,.

We prove the two directions of the proposition separately.
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e (=) Suppose R is transitive. For n > 1. We prove p(n) is true for all n > 1 by induction.
¢ (BC) When n = 1 this is immediate, since we assume that xy R x;.

o (IS) Fix n > 1 and suppose p(n) is true. Let xo, ..., X,,X,+1 is a sequence such that x;_| R x;
for all i € [n+ 1]. We need to prove that xo R x4 1.
By the induction hypothesis we know that xy R x,,. By definition of the sequence we have
Xn R xp41. By transitivity, we have xg R x;,4 1.

So by induction, we have proved the = direction.

e (<) Suppose p(n) is true for all n > 1. Then in particular p(2) is true, which is precisely the
assertion that R is transitive.

So we’re done. OJ
That is, Proposition 5.1.29 states that for a transitive relation R on a set X, if xo,x1,...,x, € X,
then

xoRx1R---Rx, = x9Rux,

where ‘xg Rx; R --- R x,,’” abbreviates the assertion that x; R x; | for each i < n.

Equivalence relations

We will now study what it is for a relation to be equality-like.

Definition 5.1.30
A relation R on a set X is an equivalence relation if R is reflexive, symmetric and transitive.

When we talk about arbitrary equivalence relations, we usually use a symbol like ‘~’ (I£[EX
code: \sim) or ‘=" (I4TEX code: \equiv) or ‘=’ (I&TEX code: \approx) instead of ‘R’.

Example 5.1.31
Recall Theorem 4.3.6. With our new language of relations, we could succinctly re-state it as
follows:

Let n be a modulus. Congruence modulo 7 is an equivalence relation on Z.

Indeed, part (a) of Theorem 4.3.6 proved reflexivity, part (b) proved symmetry, and part (c)
proved transitivity. <

Exercise 5.1.32
Prove that equality of sets (Axiom 2.1.22) is an equivalence relation on the universe of discourse

U . <
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Exercise 5.1.33
Given a function f : X — Y, define a relation ~¢ on X by

ar~pb & fla)=f(b)

for all a,b € X. Prove that ~ is an equivalence relation on X. <

In the following exercise, we construct a particular equivalence relation ~g out of an arbitrary
relation R and prove that ~p is, in a suitable sense, the ‘smallest’ equivalence relation extending
R.

Exercise 5.1.34

Let R be any relation on a set X. Define a new relation ~¢ on X as follows. Given x,y € X, say
x ~p y if and only if for some k € N there is a sequence (ag,ay,...,a;) of elements of X such
that ap = x, a;y = y and, for all 0 < i < k, either a;Ra; 1 or a;+1 Ra;.

First we’ll work out a couple of examples.

(a) Fix a modulus n and let R be the relation on Z defined by xRy if and only if y = x+n. Prove
that ~ is the relation of congruence modulo r.

(b) LetX be a set and let R be the subset relation on Z?(X). Prove that U ~gV forall U,V C X.

(c) Let X be a set, fix two distinct elements a,b € X, and define a relation R on X by declaring
aRb only—that is, for all x,y € X, we have xRy if and only if x = @ and y = b. Prove that
the relation ~ is defined by x ~g y if and only if either x =y or {x,y} = {a,b}. (Intuitively,
~g ‘glues’ the elements a and b together.)

Next we prove the fundamental facts about ~ that we mentioned before the statement of this
exercise.

(d) Prove that ~p is an equivalence relation on X
(e) Prove that xRy = x ~g y forall x,y € X.

(f) Prove that, furthermore, if ~ is any equivalence relation on X and xRy = x ~ y for all
x,y€X,thenx ~gy=x~yforall x,y € X.

(g) Use parts (e) and (f) to prove that if R is already an equivalence relation, then the relation
~p is equal to R.

We say that the relation ~p is the equivalence relation on X generated by R. <

Equivalence relations are useful because they allow us to ignore irrelevant information about
elements of a set. As an example, suppose we want to prove that, for a € Z, if 31 a then a® leaves
a remainder of 1 when divided by 3. Before we learnt about modular arithmetic in Section 4.3,
in order to prove this, we would have written a = 3k + 1 for some k € Z and done some tedious
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algebra to deduce that a> = 3(3k*> 4 2k) + 1. This required us to use more information than
we need: the value of k doesn’t make any difference to the truth of the result, the expression
3(3k% 4 2k) + 1 is ugly and, more importantly, keeping track of k made the proof longer and
more difficult than it has to be. When we learnt modular arithmetic, everything was simplified:
if 31 a then a = +1 mod 3, so that a> = (£1)? = 1 mod 3. This proof was shorter and simpler
because we didn’t need to keep track of exactly which integer a was—all we cared about was its
value modulo 3. We could just as well have replaced a with any other integer which leaves the
same remainder modulo 3.

This motivates the following definition, which provides a means of identifying two elements of
a set that are related by an equivalence relation.

Definition 5.1.35
Let X be a set and let ~ be an equivalence relation on X. The ~-equivalence class of x € X is
the set [x]. (IZTEX code: [x]_{\sim}) defined by

He={yeX|x~y}

The quotient of X by ~ is the set X /~ (I&TEX code: X/{\sim}) of all ~-equivalence classes of
elements of X; that is
X/~={~[xeX}

BIEX tip
Putting braces ({ and }) around a symbol like ~ tells IATEX to consider the symbol as a symbol,
rather than as a connective. Compare:

IATEX code: output:
Without braces: ~ X/\sim = Y X/ ~=Y

With braces: X/{\sim} = Y X/~=Y

This is because, without braces, IATEX thinks you’re saying ‘X-forward-slash is related to is
equal to Y’, which clearly makes no sense; putting braces around \sim signifies to I&TzX that
the ~ symbol is being considered as an object in its own right, rather than as a connective. <

Example 5.1.36
Let f: X — Y be a function, and let ~ be the equivalence relation on X that we defined in
Exercise 5.1.33. Given a € X, we have

@], ={xeX a~x}={xeX|fla) = f(x)}

Thus we have [a], = f~'[{f(a)}]. <

Exercise 5.1.37
Let f: X — Y be a function. Prove that f is injective if and only if [[a] | = 1 foralla€ X. <
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Example 5.1.38
Let ~ be the relation of congruence modulo 5 on the set of integers. Then

Ol.={a€Z]|a~0}
Now, a ~ 0 if and only if 5 | a, so we can also write
0].={...,—10,-5,0,5,10,...} = {5k |k € Z}
So in fact [0]. = [5k|~. for any k € Z. And likewise
[rl~ = [r+5k]~

for all r,k € Z. It follows that Z/~ = {[0] -, [1]~, [2]~, [3]~, [4]~}. <

Definition 5.1.39

Consider the relation of congruence modulo 7 on the set Z of integers. We call the equivalence
class of a € Z the congruence class of ¢ modulo n, denoted [a],, and we write Z /nZ to denote
the quotient of Z by the relation of congruence modulo 7.

Example 5.1.40
The set Z /57 has five elements:

252 = {[0]s, [1]s, 2], 3]s, [4]s}

Example 5.1.38 demonstrates that for all n € Z and all 0 < r < 5, we have [n]s = [r]s if and only

if n leaves a remainder of  when divided by 5. For example, [7]5 = [2]s. <
Exercise 5.1.41
Let n be a modulus. Prove that Z/nZ is finite and |Z/nZ| = n. <

Exercise 5.1.41 doesn’t tell us much more than we already know: namely, that there are only
finitely many possible remainders modulo n. But it makes our lives significantly easier for doing
modular arithmetic, because now there are only finitely many objects to work with.

One last word on equivalence relations is that they are essentially the same thing as partitions
(see Definition 3.3.25).

Exercise 5.1.42
If ~ be an equivalence relation on X, then X/~ is a partition X. Deduce that, for x,y € X, we
have x ~ y if and only if [x]. = [y]~. <

In fact, the converse of Exercise 5.1.42 is also true, as we prove next.

Proposition 5.1.43
Let X be a set and let % be a partition of X. Then % = X/~ for exactly one equivalence relation
~onX.

242



Section 5.1. Relations 243

Proof
Define a relation ~ by
x~y & WUeWU,xeUandyeU

for all x,y € X. That is, x ~ y if and only if x and y are elements of the same set of the partition.
We check that ~ is an equivalence relation.

o Reflexivity. Let x € X. Then x € U for some U € % since ;<4 U = X. Hence x ~ x.

e Symmetry. Let x,y € X and suppose x ~ y. Then there is some U € % withx € U andy € U.
But then it is immediate that y ~ x.

e Transitivity. Let x,y,z € X and suppose that x ~ y and y ~ z. Then there exist U,V € % with
x,yeUandy,zeV. Thusy € UNV. Since % is a partition of X, its elements are pairwise
disjoint; thus if U #V then UNV = @. Hence U =V. Thusx € U and z € U, s0 x ~ 2.

The definition of ~ makes it immediate that X /~ = % .

To prove that ~ is the only such relation, suppose = is another equivalence relation on X for
which X /~ = % . Then, given x,y € X, we have:

x~ys Ve, xeUNyelU by definition of ~
S eX, xeZaNy €[~ since Z =X/~
SJzeX,xrzAyRz by definition of [z]~
Sy by symmetry and transitivity
So~=~r. O
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Section 5.2
Orders and lattices

3

We saw in Section 5.1 how equivalence relations behave like ‘=’, in the sense that they are
reflexive, symmetric and transitive.

This section explores a new kind of relation which behaves like ‘<’. This kind of relation
proves to be extremely useful for making sense of mathematical structures, and has powerful
applications throughout mathematics, computer science and even linguistics.

Definition 5.2.1
A relation R on a set X is a partial order if R is reflexive, antisymmetric and transitive. That is,
if:

o (Reflexivity) x R x for all x € X;;
e (Antisymmetry) For all x,y € X, if x Ry and y R x, then x = y;
o (Transitivity) For all x,y,z € X,if xRy and y R z, then x R z.

A set X together with a partial order R on X is called a partially ordered set, or poset for short,
and is denoted (X,R).

When we talk about partial orders, we usually use a suggestive symbol like ‘<’ (IATEX code:
\preceq) or ‘C’ (I£IEX code: \sqsubseteq).

Example 5.2.2
We have seen many examples of posets so far:

Any of the sets N, Z, Q or R, with the usual order relation <.

e Given a set X, its power set &7 (X) is partially ordered by C. Indeed:
o Reflexivity. If U € (X ) thenU C U.

o Antisymmetry. If U,V € &(X) with U CV and V C U, then U =V by definition of set
equality.
o Transitivity. IfU,V,W € Z(X) withU CV and V C W, then U C W by Proposition 2.1.20.

The set N of natural numbers is partially ordered by the divisibility relation—see Ex-
amples 5.1.16, 5.1.23 and 5.1.28. However, by Exercise 5.1.24, the set Z of integers is not
partially ordered by divisibility, since divisibility is not antisymmetric on Z.

Any set X is partially ordered by its equality relation. This is called the discrete order on X.

<
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Much like the difference between the relations < and < on N, or between C and G on Z(X),
every partial order can be strictified, in a precise sense outlined in the following definition and
proposition.

Definition 5.2.3
A relation R on a set X is a strict partial order if it is irreflexive, asymmetric and transitive.
That is, if:

o (Irreflexivity) —(x R x) for all x € X;
e (Asymmetry) For all x,y € X, if x Ry, then =(y R x);

o (Transitivity) For all x,y,z € X,if xRy and y R z, then x R z.

Proposition 5.2.4
Let X be a set. Partial orders < on X are in natural correspondence with strict partial orders <
on X, according to the rule:

x=xy < (x<yVx=y) and x<y & (xxyAx#Yy)

Proof
Let P be the set of all partial orders on X and let S be the set of all strict partial orders on X.
Define functions

f:P—S and g:S—P

as in the statement of the proposition, namely:

e Given a partial order <, let f(<) be the relation < defined for x,y € X by letting x < y be true
if and only if x < y and x # y;

e Given a strict partial order <, let g(<) be the relation < defined for x,y € X by letting x <y
be true if and only if x < y or x = y.

We’ll prove that f and g are mutually inverse functions. Indeed:

e f is well-defined. To see this, fix < and < = f(<) and note that:
o < is irreflexive, since for x € X if x < x then x # x, which is a contradiction.

¢ < is asymmetric. To see this, let x,y € X and suppose x < y. Then x < y and x # y. If also
y < x, then we’d have y < x, so that x = y by antisymmetry of <. But x # y, so this is a
contradiction.

© =< 1is transitive. To see this, let x,y,z € X and suppose x < yandy < z. Thenx < yandy < z,
so that x < z. Moreover, if x = z then we’d also have z < x by reflexivity of <, so z <y by
transitivity of <, and hence y = z by antisymmetry of <. But this contradicts y < z.

So < is a strict partial order on X.

245



246 Chapter 5. Relations

e gis well-defined. To see this, fix < and < = g(<) and note that:

¢ = is reflexive. This is built into the definition of <.

¢ =< is symmetric. To see this, fix x,y € X and suppose x < y and y < x. Now if x # y then
x <y and y < x, but this contradicts asymmetry of <. Hence x = y.

¢ = is transitive. To see this, fix x,y,z € X and suppose x < y and y < z. Then one of the
following four cases must be true:
* x=y =z Inthiscase,x=2z,s0x < z.
* x =7y < z. Inthis case, x <z, sox < z.
* x <y=z. In this case, x <z, 50 x <X z.
* x <y < z. In this case, x < z by transitivity of <, so x < z.
In any case, we have that x < z.

So < is a partial order on X.

e gof=idp. To see this, let < = f(<) and C = g(=<). For x,y € X, we have x C y if and only
if x <y or x =y, which in turn occurs if and only if x =y or both x < y and x # y. This is
equivalent to x < y, since if x =y then x <y by reflexivity. Hence C and < are equal relations,
so go f =1idp.

e fog=ids. To see this, let < = g(<) and C = f(<). For x,y € X, we have x C_ y if and only if
x <y and x # y, which in turn occurs if and only if x # y and either x < y orx =y. Since x # y
precludes x =y, this is equivalent to x < y. Hence < and [C are equal relations, so fog = ids.

So f and g are mutually inverse functions, and we have established the required bijection. [
In light of Proposition 5.2.4, we will freely translate between partial orders and strict partial

orders wherever necessary. When we do so, we will use < (I4I5X code: \prec) to denote the
‘strict’ version, and < to denote the ‘weak’ version. (Likewise for = (I&TEX code: \sgsubet).)

Definition 5.2.5

Let (X, <) be a poset. A <-least element of X (or a least element of X with respect to <) is
an element | € X (I4IX code: \bot) such that 1 < x for all x € X. A <-greatest element of
X (or a greatest element of X with respect to <) is an element T € X (I4T5X code: \top) such
that x < T forall x € X.

Example 5.2.6
Some examples of least and greatest elements that we have already seen are:

e In (N, <), 0is a least element; there is no greatest element.
e Letn € N withn > 0. Then 1 is a least element of ([n],<), and n is a greatest element.

e (Z,<) has no greatest or least elements.
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Proposition 5.2.7 says that least and greatest elements of posets are unique, if they exist. This
allows us to talk about ‘the’ least or ‘the’ greatest element of a poset.

Proposition 5.2.7
Let (X, <) be a poset. If X has a least element, then it is unique; and if X has a greatest element,
then it is unique.

Proof
Suppose X has a least element £. We prove that if ¢’ is another least element, then ¢/ = /.

So take another least element #'. Since ¢ is a least element, we have ¢ < ¢'. Since ¢ is a least
element, we have ¢ < /. By antisymmetry of <, it follows that £ = ¢'.

Hence least elements are unique. The proof for greatest elements is similar, and is left as an
exercise. ]

Exercise 5.2.8
Let X be a set. The poset (Z?(X),C) has a least element and a greatest element; find both. <

Exercise 5.2.9
Prove that the least element of N with respect to divisibility is 1, and the greatest element is
0. <

Definition 5.2.10 (Supremum)
Let (X, <) be a poset and let A C X. A <-supremum of A is an element s € X such that

e a=<sforeacha € A; and

o Ifsy e X witha<s' foralla€cA,thens<ys.
A <-infimum of A is an element i € X such that

e | <aforeacha € A; and
o Ifi/ ¢ X withi’ <Xaforalla€A,theni <i.

Example 5.2.11
The well-ordering principle states that if U C N is inhabited then U has a <-infimum, and
moreover the infinum of U is an element of U. <

Exercise 5.2.12
Let X be a set, and let U,V € Z(X). Prove that the C-supremum of {U,V} is U UV, and the
C-infimum of {U,V}isUNV. <

Exercise 5.2.13
Let a,b € N. Show that gcd(a,b) is an infimum of {a,b} and that Icm(a,b) is a supremum of
{a,b} with respect to divisbility. <

Example 5.2.14
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Define U = [0,1) = {x € R| 0 < x < 1}. We prove that U has both an infimum and a supremum
in the poset (R, <).

o Infimum. O is an infimum for U. Indeed:
(i) Letx € U. Then 0 < x by definition of U.
(i) Lety € R and suppose that y < x forall x € U. Then y < 0, since 0 € U.

so 0 is as required.

e Supremum. 1 is a supremum for U. Indeed:
(1) Letx € U. Then x < 1 by definition of U, so certainly x < 1.

(i1) Let y € R and suppose that x < y for all x € U. We prove that 1 < y by contradiction.
So suppose it is not the case that 1 <y. Then y < 1. Since x < y for all x € U, we have
0 <y. But then . -
y+y y+ +
2 S 2 S T
But then % €Uandy< % This contradicts the assumption that x < y forallx € U.
So it must in fact have been the case that 1 < y.

0y 1

so 1 is as required.

<

The following proposition proves that suprema and infima are unique, provided they exist.
Proposition 5.2.15
Let (X, <) is a poset, and let A C X.

(i) If 5,5’ € X are suprema of A, then s = 5;

(ii) Ifi,7/ € X are infima of A, then i = 7.
Proof
Suppose s,s” are suprema of A. Then:
e a< s foralla €A, sos' < s since s is a supremum of A;
e a=<sforalla€A,sos<s sinces is asupremum of A.
Since < is antisymmetric, it follows that s = s". This proves (i).
The proof of (ii) is almost identical and is left as an exercise to the reader. ]

Notation 5.2.16

Let (X, <) be aposet and let U C X. Denote the <-infimum of U, if it exists, by A U (I5TX code:
\bigwedge); and denote the <-supremum of U, if it exists, by VU (I£IgX code: \bigvee).
Moreover, for x,y € X, write

/\{x,y} =x Ay (IX code: \wedge), \/{x,y} =xVy (IATEX code: \vee)
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Example 5.2.17
Some examples of Notation 5.2.16 are as follows.

e LetXbeaset. In(Z(X),C)wehave UANV=UNVandUVV =UUV forallU,V € Z(X).

e We have seen that, in (N,

), we have a Ab = ged(a,b) and aV b = lem(a, b) for all a,b € N.

e In (R, <), we have a Ab = min{a,b} and a Vb = max{a,b}.

Definition 5.2.18
A lattice is a poset (X, <) such that every pair of elements of X has a <-supremum and a <-
infimum.

Example 5.2.19
We have seen that (£ (X),C), (R, <) and (N, |) are lattices. <

Proposition 5.2.20 (Associativity laws for lattices)
Let (X, <) be alattice, and let x,y,z € X. Then

xA(yAz)=(xAy)Az and  xV(yVz)=(xVy)Vz

Proof

We prove x A (y Az) = (x Ay) Az; the other equation is dual and is left as an exercise. We prove
that the sets {x,y Az} and {x Ay,z} have the same sets of lower bounds, and hence the same
infima. So let

Li={ieX|igxandigyAz} and Ly={ieX|ixgxAyandi<z}
We prove L; = L = L, where
L={ieX|igx igyandi<z}
First we prove L; = L. Indeed:

e [ C L. To see this, suppose i € L;. Then i < x by definition of L;. Since i < y Az, and
yAz=<yand yAz <z, we have i < y and i < z by transitivity of <.

e [ C L. To see this, suppose i € L. Then i < x by definition of L. Moreover, i < y and i < z by
definition of L, so that i < y A z by definition of A. Hence i € L.

The proof that L, = L is similar. Hence L; = L,. But x A (y A z) is, by definition of A, the
<-greatest element of L;, which exists since (X, <) is a lattice. Likewise, (x Ay) Az is the
<-greatest element of L,.

Since L; = Ly, it follows that x A (y Az) = (x Ay) Az, as required. O
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Exercise 5.2.21 (Commutativity laws for lattices)
Let (X, <) be alattice. Prove that, for all x,y € X, we have

xANy=yAx and xVy=yVx

Exercise 5.2.22 (Absorption laws for lattices)
Let (X, <) be alattice. Prove that, for all x,y € X, we have

xV(xAy)=x and XA (xVy)=x

Example 5.2.23
It follows from what we’ve proved that if a,b,c € Z then

ged(a, ged(b,c)) = ged(ged(a,b),c)
For example, take a = 882, b = 588 and ¢ = 252. Then
e gcd(b,c) = 84, so ged(a, ged(b,c)) = ged(882,84) = 42;
e gcd(a,b) =294, so ged(ged(a,b),c) = ged(294,252) = 42.

These are indeed equal. <

Distributive lattices and Boolean algebras

One particularly important class of lattice is that of a distributive lattice, in which suprema
and infima interact in a particularly convenient way. This makes algebraic manipulations of
expressions involving suprema and infima particularly simple.

Definition 5.2.24
A lattice (X, <) is distributive if

xA(yVz)=(xAy)V(xAz) and xV(yAz)=(xVy)A(xVz)
for all x,y,z € X.

Example 5.2.25
For any set X, the power set lattice (Z?(X), C) is distributive. That is to say that for all U,V,W C
X we have

UN(VUW)=UNV)U(UNW) and UUVNAW)=(UUV)N(UUW)

This was the content of Example 2.1.47 and Exercise 2.1.48. <
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Exercise 5.2.26
Prove that (N, |) is a distributive lattice. <

Definition 5.2.27
Let (X,<) be a lattice with a greatest element T and a least element |, and let x € X. A
complement for x is an element y such that

xANy=1 and xVy=T

Example 5.2.28
Let X be a set. We show that every element U € &?(X) has a complement. <

Exercise 5.2.29

Let (X,<) be a distributive lattice with a greatest element and a least element, and let x € X.
Prove that, if a complement for x exists, then it is unique; that is, prove that if y,y’ € X are
complements for X, then y = y'. <

Exercise 5.2.29 justifies the following notation.

Notation 5.2.30
Let (X, <) be a distributive lattice with greatest and least elements. If x € X has a complement,
denote it by —ux.

Definition 5.2.31
A lattice (X, <) is complemented if every element x € X has a complement. A Boolean algebra
is a complemented distributive lattice with a greatest element and a least element.

The many preceding examples and exercises concerning (Z(X), C) piece together to provide a
proof of the following theorem.

Theorem 5.2.32
Let X be a set. Then (Z?(X),C) is a Boolean algebra.

Another extremely important example of a Boolean algebra is known as the Lindenbaum—Tarski
algebra, which we define in Definition 5.2.35. In order to define it, we need to prove that the
definition will make sense. First of all, we fix some notation.

Definition 5.2.33

Let P be a set, thought of as a set of propositional variables. Write L(P) to denote the set
of propositional formulae with propositional variables in P—that is, the elements of L(P) are
strings built from the elements of P, using the operations of conjunction (A), disjunction (V) and
negation (—).
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Lemma 5.2.34
Logical equivalence = is an equivalence relation on L(P).

Proof

This is immediate from definition of equivalence relation, since for s,7 € L(P), s =t is defined
to mean that s and ¢ have the same truth values for all assignments of truth values to their
propositional variables. O

In what follows, the set P of propositional variables is fixed; we may moreover take it to be
countably infinite, since all strings in L(P) are finite.

Definition 5.2.35
The Lindenbaum-Tarski algebra (for propositional logic) over P is the pair (A,F), where
A = L(P)/= and I- is the relation on A defined by [s]= |- [¢]= if and only if s = ¢ is a tautology.

In what follows, we will simply write [—] for [—]=.

Theorem 5.2.36
The Lindenbaum-Tarski algebra is a Boolean algebra.

Proof Sketch proof
There is lots to prove here! Indeed, we must prove:

e  is a well-defined relation on A; that is, if s = s’ and r = ¢’ then we must have [s] - [¢] if and
only if [s'] - [¢].

e |- is a partial order on A; that is, it is reflexive, antisymmetric and transitive.
e The poset (A,F) is a lattice; that is, it has suprema and infima.

e The lattice (A,F) is distributive, has a greatest element and a least element, and is comple-
mented.

We will omit most of the details, which are left as an exercise; instead, we outline what the
components involved are.

The fact that I is a partial order can be proved as follows.

e Reflexivity of - follows from the fact that s = s is a tautology for all propositional formulae
s.

e Symmetry of - follows from the fact that, for all propositional formulae s,z, if s < ¢ is a
tautology then s and ¢ are logically equivalent.

e Transitivity of - follows immediately from transitivity of =.
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The fact that (A,F) is a lattice can be proved by verifying that:
e Given [s], [t] € A, the infimum [s] A [t] is given by conjunction, namely [s] A [t] = [s At].
e Given [s],[t] € A, the supremum [s] V [¢] is given by disjunction, namely [s] V [t] = [s V1].

Finally, distributivity of suprema and infima in (A, ) follows from the corresponding properties
of conjunction and disjunction; (A,F) has greatest element [p = p] and least element [—(p =
p)], where p is some fixed propositional variable; and the complement of [s] € A is given by
[—s]. O

We finish this section on orders and lattices with a general version of de Morgan’s laws for
Boolean algebras, which by Theorems Theorems 5.2.32 and 5.2.36 implies the versions we
proved for logical formulae (Theorem 1.3.24) and for sets (Theorem 2.1.62(a)—(b)).

Theorem 5.2.37 (De Morgan’s laws)
Let (X, =) be a Boolean algebra, and let x,y € X. Then

—(xAy)=(x)V(-y) and —(xVy)=(-x)A(-y)

Proof
To do: O
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Section 5.3
Well-foundedness and structural induction

Warning!
This section is not yet finished—do not rely on its correctness or completeness.

Section 3.1 introduced induction as a technique for proving statements which are true of all
natural numbers. We saw induction in three flavours: weak induction, strong induction and the
well-ordering principle.

The weak induction principle (Theorem 3.1.14) exploited the inductively defined structure
of N. Every natural number can be obtained from 0 by repeatedly applying the successor
(‘plus one’) operation, so if a statement p(n) is true of 0, and its truth is preserved by the
successor operation (i.e. if p(n) = p(n+1) is true for all n € N), then it must be true of all
natural numbers

The well-ordering principle (Theorem 3.1.47) exploited the well-founded nature of the order
relation < on N. It says that every inhabited subset of N, so that any proposition p(n) which is
not true of all natural numbers n must have a least counterexample—this led to the technique
of proof by infinite descent.

In this section, we will generalise these techniques to other sets with an inductively defined or a
well-founded structure.

An inductively defined set will, intuitively, be a set X built from some set of basic elements
(like zero) using a set of constructors (like the successor operation). We will be able to per-
form induction on these sets to prove that a statement p(x) is true for all x € X by proving that
it is true for the basic elements, and then proving that its truth is preserved by the constructors.
This proof technique generalises weak induction and is called structural induction.

A set X with a well-founded relation R will allow us to generalise proof by infinite descent: if
there is a counterexample to a logical formula p(x), then there must be one which is ‘minimal’
with respect to R. This leads to a proof technique called well-founded induction, which has
similarities with strong induction.

Structural induction is conceptually easier to comprehend than well-founded induction, so we
will introduce it first. However, we will not be able to prove that it is a valid proof technique
until after we have introduced well-founded induction.
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Inductively defined sets

In Section 3.1, we formalised the idea that the set of natural numbers should be what is obtained
by starting with zero and repeating the successor (‘plus one’) operation. In a sense, zero was a
basic element—we posited its existence from the outset—and the successor operation construc-
ted the remaining elements.

Although hidden beneath the surface, this method of defining a set was implicitly used in
Chapter 1 when defining propositional formulae. Here, our basic elements were propositional
variables p,q,r,s,..., and the remaining propositional formulae could be constructed by re-
peatedly applying the logical connectives A, V, - and =-.

To do:

Definition 5.3.1
An inductively defined set is a set A together with a set C4 of functions

G:A"%) A
where n(o) € N for each ¢ € Cy, such that:

(1) For each a € A, there exists a unique 0 € C4 and unique elements aj,az,...,a,) € A
such that a = 6 (ay,az, . ..,a,)); and

(ii) For all sets X, if o(ay,az,...,a,) € A for all ¢ € C4 and all ai,az,...,ay) € A, then
ACX.

The elements ¢ € Cy4 are called the constructors of A, and the natural number n(0) is called the
arity of o € Cy.

A quick note on terminology: a constructor of arity n € N is called an n-ary constructor. For
n=20,1,2, we may say nullary, unary and binary, respectively.

Note that A = {()}, where () is the empty list of elements of A. Since A® only has one element,
specifying a function ¢ : A’ — A is equivalent to specifying an element a = 6(()) € A. With
this in mind, instead of thinking of a constructor ¢ : A° — A as being a function, we think of &
as being an element of A.

Definition 5.3.2
Given an inductive set (A,Cy), a nullary constructor 6 € C4—considered as an element of A as
mentioned above—is called a basic element of A.

Example 5.3.3
The set N of natural numbers is an inductively defined set. The set Ciy of constructors is given
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by Cy = {0, s}, where 0 € N is a basic element s : N — N is a constructor of arity 1 defined by
s(n)=n+1foralln e N.

To see this, we will verify the conditions of Definition 5.3.1 by observing that they are essentially
just restatements of the Peano axioms (Definition 3.1.1). Indeed:

(i) Letn € N.

e If n =0, then n # s(m) for any m € N by Definition 3.1.1(i), so ‘0’ is the unique
expression for 0 as a constructor applied to elements of N.

o If n>0,thenn—1€ Nandn=s(n—1). To see that this expression is unique, note
that if m € N and s(m) = n, then m = n — 1 by Definition 3.1.1(ii).

(ii) We need to prove that if X is a set such that 0 € X and s(n) € X foralln € N, then N C X.
But this is exactly Definition 3.1.1(iii).

Hence N is indeed an inductively defined set. <

Exercise 5.3.4
Prove that the set A = {1,2,4,8,16...} of (natural number) powers of 2 is inductively defined
by taking C4 = {1,d}, where 1 is basic and d : A — A is defined by d(n) =2nforalln e N. <

The next exercise gives a different way of inductively defining N—it demonstrates that we can
consider a set to be inductively defined in more than one way.

Exercise 5.3.5
Prove that N is inductively defined by taking Cyy = {0, 0}, where ¢ : N — N is defined by

n+2 ifn=0o0r1 mod?3
o(n) = .
n—1 ifn=2mod3

for all n € N. <

To do: Example: propositional formulae

Theorem 5.3.6 (Principle of structural induction)
Let X be an inductively defined set, and let p(x) be a logical formula concerning elements of X.
Suppose that

e p(b) is true for all basic elements b € X; and

e For all constructors f of arity n and all xy,xp,...,x, € X, if p(x1), p(x2),..., p(x,) are all true,
then p(f(x1,x2,...,%,)) is true.

Then p(x) is true for all x € X.
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We will prove Theorem 5.3.6 on page 264.

Example 5.3.7
To do: Structural induction on N is weak induction. <

To do: Disjunctive normal form

To do: Generalise to quotients of inductive structures ~» induction on Z using 0 and +, — and
on Z~Y using 1 and p x (—).

We saw in Proposition 5.3.14 that the relation R on the set Z>° of positive integers defined for
m,n € 79 by
mRn <& n= pmfor some prime p >0

is well-founded. We can use well-founded induction to prove a general formula for the totient
of an integer n.

Theorem 5.3.8 (Formula for Euler’s totient function)
Let n € Z be nonzero, and let ¢ : Z — N be Euler’s totient function (see Definition 4.3.31). Then

1
ot =lil- T (1-7)
p|n prime p
where the product is indexed over the distinct positive prime factors p of n.

Proof
If n < 0 then @(n) = ¢(—n), |n| = —n and p | n if and only if p | —n, so the theorem holds for
negative integers if and only if it holds for positive integers.

We prove the formula for n > 0 by well-founded induction on Z>? with respect to the relation R
defined in Proposition 5.3.14.

e (BC) ¢(1) =1 and, since no prime p divides 1, we have [] (1 - %) = 1. Hence
p|1 prime

1
p|1 prime p

e (IS) Fix n > 1 and suppose that

o) =n- T] (1—1)

pln prime p

as erquired.

Let g > 0 be prime. We prove that

o =an- I (1—1)

plgn prime p
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© Suppose ¢ | n. Then by we have

¢(gqn) = qo(n)

o 11 (1))

pln prime p
1
)
plgn prime p

Chapter 5. Relations

by Exercise 4.3.33

by induction hypothesis

The last equation holds because the fact that ¢ | n implies that, for all positive primes p, we

have p | n if and only if p | gn.
© Suppose g {n. Then g L n, so we have

¢(qn) = ¢(q)(n)

= 9(q) 'n~pn1;rlime <1 —;)
_ <q—1>-n-pln1p1me(1—;)

“o(p)n JL0)
= 11(-5))(-3)

1
en ()
plgn p
In both cases, we have shown that the formula holds.
By induction, we’re done.

Well-founded relations

First, we introduce the notion of a well-founded relation.

Definition 5.3.9

by Theorem 4.3.63

by induction hypothesis

by Example 4.3.32

rearranging

rearranging

reindexing the product

Let X be a set. A relation R on X is well-founded if every inhabited subset of X has an R-
minimal element, in the following sense: for each inhabited U C X, there exists m € U such that
—(x Rm) for all x € U. A relation that is not well-founded is called ill-founded.
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Example 5.3.10

The relation < on N is well-founded—this is just a fancy way of stating the well-ordering prin-
ciple (Theorem 3.1.47). Indeed, let U C N be an inhabited subset. By the well-ordering prin-
ciple, there exists an element m € U such that m < x for all x € U. But this says precisely that
—(x <m) forall x e U. <

Example 5.3.11
However, the relation < on Z is not well-founded—indeed, Z is an inhabited subset of Z with
no <-least element. <

Exercise 5.3.12
Let <! be the relation on N defined for m,n € N by

m<'n & n=m+1

Prove that <! is a well-founded relation on N. <

Proposition 5.3.13

Let X be a set and let R be a relation on X. R is well-founded if and only if there is no infinite
R-descending chains; that is, there does not exist a sequence (x;,),en of elements of X such that
Xpa1 Rx, foralln € N,

Proof
We prove the contrapositives of the two directions; that is, R is ill-founded if and only if R has
an infinite descending R-chain.

e (=) Suppose that R is ill-founded, and let U C X be an inhabited subset with no R-minimal
element. Define a sequence (x,),en of elements of X—in fact, of U—recursively as follows:

¢ Let xp € U be arbitrarily chosen.

¢ Fix n € N and suppose xg,x1,...,X, € U have been defined. Since U has no R-minimal
element, it contains an element which is related to x, by R; define x,4; to be such an
element.

Then (x,)nen is an infinite R-descending chain

e (<) Suppose there is an infinite R-descending chain (x,),cn. Define U = {x, | n € N} to be
the set of elements in this sequence. Then U has no R-minimal element. Indeed, given m € U,
we must have m = x,, for some n € N; but then x,,; € U and x,4; R m. Hence R is ill-founded.

O

Proposition 5.3.14
Let Z>° be the set of positive integers and define a relation R on Z~° by

mRn <& n= pm for some prime p > 0

for all m,n > 0. Then R is a well-founded relation on Z>°.
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Proof

Suppose that (x,),cn is an infinite R-descending chain in Z>9. Since Xpt1 Rx, foralln € N, we
have x,, = px,+1 for some positive prime p for all n € N. Since all positive primes are greater
than or equal to 2, this implies that x,, >> 2x,, for all n € N.

We prove by strong induction on n € N that xg > 2"x,, ;| for all n € N.

e (BC) We proved above that xy > 2x;. Hence xg > x| = 20x,, as required.

e (IS) Fix n € N and suppose xg > 2"x,,1. We want to show x¢ > 2”+1xn+2. Well x,,+1 > 2x,12,
as proved above, and hence

H
X0 > 21 > 2" 2240 = 2" o
as required.

By induction, we’ve shown that xg > 2"x,. for all n € N. But x,,;; > 0forall n € N, so xyp > 2"
for all n € N. This implies that xj is greater than every integer, which is a contradiction.

So such a sequence (x,),en cannot exist, and by Proposition 5.3.13, the relation R is well-
founded. Il

Exercise 5.3.15
Let X be a set and let R be a well-founded relation on X. Given x,y € X, prove that not both
xR yandyR x are true. <

Theorem 5.3.16 (Principle of well-founded induction)
Let X be a set, let R be a well-founded relation on X, and let p(x) be a logical formula concerning
elements of X. Suppose that for each x € X, the following is true:

If p(y) is true for all R-predecessors y of x, then p(x) is true.

That is, suppose for each x € X that
[y € X, (yRx= p(y)] = p(x)
Then p(x) is true for all x € X.

Proof
Suppose that, for each x € X, if p(y) is true for all R-predecessors y of x, then p(x) is true. Let

U={xeX|-px)}

Towards a contradiction, suppose that p(x) is false for some x € X. Then U is inhabited. Since
R is well-founded, U has an R-minimal element m € U. Now

260



Section 5.3. Well-foundedness and structural induction 261

(i) p(m) is false, since m € U.

(i) p(x) is true for all x € X with x R m. To see this, note that if p(x) is false and x R m,
then x € U, so that m R x by R-minimality of m in U. Since also x R m, this contradicts
Exercise 5.3.15.

Since p(x) is true for all x € X with x R m, by assumption we also have that p(m) is true. But
this contradicts our assumption that m € U.

So it must in fact be the case that U = &, so that p(x) is true for all x € X. O

Exercise 5.3.17
Prove that the principle of <-induction on N is precisely strong induction. Specifically, prove
that the following two statements are equivalent:

(i) p(0) is true and, for all n € N, if p(k) is true for all k < n, then p(n+ 1) is true;
(ii) Forall n € N, if p(k) is true for all k < n, then p(n) is true.

Strong induction says that we can deduce that p(n) is true for all n € N from the knowledge
that (i) is true for all n € N; and <-induction tells us that p(n) is true for all n € N from the
knowledge that (ii) is true for all n € N. You should prove that (i) and (ii) are equivalent. <

Example 5.3.18

Let <! be the relation on N defined in Exercise 5.3.12. We prove that the principle of <!'-
induction on N is precisely strong induction. Specifically, prove that the following two state-
ments are equivalent:

(i) p(0) is true and, for all n € N, if p(n) is true then p(n+ 1) is true;
(ii) Foralln € N, if p(k) is true for all k € N with k+ 1 = n, then p(n) is true.

Weak induction says that we can deduce that p(n) is true for all n € N from the knowledge
that (i) is true for all n € N; and <'-induction tells us that p(n) is true for all n € N from the
knowledge that (ii) is true for all n» € N. We prove that (i) and (ii) are equivalent.

e (i) = (ii). Suppose that p(0) and, for all n € N, if p(n) is true then p(n+ 1) is true. We will
prove that
VmeN, (n=m+1= p(m))] = p(n)
is true for all n € N.
So fix n € N, and assume Vm € N, (n =m+ 1 = p(m)). We prove p(n) is true.
o If n = 0 then we’re done, since p(0) is true by assumption.

o If n> 0 then n =m+ 1 for some m € N. By our assumption, we have Vm € N, (n =
m+ 1= p(m)), and so in particular, p(m) is true. By the weak induction step, we have
p(m) = p(m+1) is true. But then p(m+ 1) is true. Since n = m+ 1, we have that p(n) is
true.
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In any case, we’ve proved that p(n) is true, as required.

e (ii) = (i). For n € N, denote the following statement by H (n)
[Vm €N, (n=m+1= p(m))] = p(n)

Assume H (n) is true for all n € N. We prove that p(0) is true and, for all n € N, if p(n) is true
then p(n+1) is true.

o p(0) is true. Indeed, for any m € N we have that 0 = m+ 1 is false, so the statement
0=m+1= p(m) is true. Hence Vm € N, (0 =m+ 1= p(m)) is true. Since H(0) is true,
it follows that p(0) is true.

o Fix n € N and suppose p(n) is true. By H(n+ 1), we have that if p(n+ 1) is true for all
m e Nwithm+1=n+1, then p(n+1) is true. But the only m € Nsuch thatm+1=n+1
is n itself, and p(n) is true by assumption; so by H(n+ 1), we have p(n+ 1), as required.

Hence the two induction principles are equivalent. <

Example 5.3.19

Structural induction from well-founded induction

We will now derive the principle of structural induction in terms of the principle of well-founded
induction. To do this, we need to associate to each inductively defined set X a corresponding
well-founded relation Ry, such that well-founded induction on Ry corresponds with structural
induction on X.

Definition 5.3.20
Let X be an inductively defined set. Define a relation Ry on X as follows: for all x,y € X, x Rx y
if and only if

y=f(x1,x2,...,%)

for some constructor f of arity n and elements x;, x5, .. .,X,, such that x; = x for some i € [n].

Example 5.3.21
Let N be the set of natural numbers, taken to be inductively defined in the usual way. Since the
only constructor is the successor operation, we must have for m,n € N that

mRyn < n=m+1

This is precisely the relation <! from Exercise 5.3.12. We already established that structural
induction on N is precisely weak induction (Example 5.3.7), and that well-founded induction on
<!is also precisely weak induction (Example 5.3.18). <
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Section 5.3. Well-foundedness and structural induction 263

Example 5.3.22
Let P be a set of propositional variables and let L(P) be the set of propositional formulae built
from variables in P and the logical operators A, V, = and —.

Then R = Ry (p) is the relation defined for 5,7 € L(P) by letting s R¢ if and only if
te{sAu, uNs, sNu, uVs, s=u, u=s, -s}

for some u € L(P). <

The plan for the rest of this section is to demonstrate that structural induction follows from
well-founded induction. To do this, we prove that the relation Ry associated with an inductively
defined set X is well-founded, and then we prove that structural induction on X is equivalent to
well-founded induction on Ry.

To simplify our proofs, we introduce the notion of rank. The rank of an element x of an induct-
ively defined set X is a natural number which says how many constructors need to be applied in
order to obtain x.

Definition 5.3.23
Let X be an inductively defined set. The function rank : X — N is defined recursively as follows:

e If b is a basic element of X, then rank(b) = 0.

e Let f be a constructor of arity n and let x1,x;,...,x, € X. Then

rank(f(x1,x2,...,%,)) = max{rank(x),rank(x;),...,rank(x,)} + 1

Note that rank : X — N is a well-defined function, since by the conditions listed in Defin-
ition 5.3.1, every element of X is either basic or has a unique representation in the form
f(x1,x2,...,x,) for some constructor f and elements xj,x3,...,x, € X.

Example 5.3.24
The rank function on the inductively defined set of natural numbers is fairly boring. Indeed, it
tells us that

e rank(0) =0; and
e rank(n+ 1) =rank(n)+ 1 forall n € N.

It can easily be seen that rank(n) = n for all n € N. This makes sense, since n can be obtained
from 0 by iterating the successor operation n times. <

Lemma 5.3.25
Let X be an inductively defined set. The relation Ry defined in Definition 5.3.20 is well-founded.
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Proof

O
Proof of Theorem 5.3.6
To do: Write proof O

To do: Examples and exercises
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Section 5.Q
Chapter 5 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.

1. For each of the eight subsets
P C {reflexive, symmetric, transitive }

find a relation satisfying (only) the properties in P.

2. Prove that if R is a symmetric, antisymmetric relation on a set X, then it is a subrelation of
the equality relation—that is, Gr(R) C Gr(=).

3. A relation R on a set X is left-total if for all x € X, there exists some y € X such that xR y.
Prove that every left-total, symmetric, transitive relation is reflexive.
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Chapter 6

Infinite sets

In Section 3.2 we characterised finiteness, and defined a notion of size for finite sets, in terms of
bijections of the form [n] — X. This turned out to be extremely fruitful, as we were then able to
compare sizes of finite sets by finding injections, surjections and bijections between them. For
example, we showed that for any two finite sets X and Y, then |X| < |Y| if and only if there is an
injection X — Y.

This chapter is dedicated to removing the requirement that the sets in question be finite, and then
seeing what happens.

Our first step will be to characterise what can be thought of as the smallest size of infinity—
countable infinity—in Section 6.1. Countable sets behave particularly nicely and satisfy some
useful closure properties; we will also develop some techniques for finding when a set has too
many elements to be countable.

Section 6.2 introduces the general concept of cardinality for comparing the sizes of infinite
sets. This allows us to make finer distinctions between infinite sets than just ‘countable’ and
‘uncountable’.

Finally, in Section 6.3, we study the interactions between the concept of infinity and the axiom
of choice (see Axiom 2.3.33).
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Section 6.1
Countable and uncountable sets

To do:

Definition 6.1.1
A set X is countably infinite if there exists a bijection f : N — X. The bijection f is called an
enumeration of X. We say X is countable if it is finite or countably infinite.

Thus a set X is countably infinite if its elements can be listed, with one entry in the list for each
natural number.

Example 6.1.2
We have already seen many examples of countably infinite sets.

e The set N is countably infinite, since by Exercise 2.3.18, idy : N — N is a bijection.

e The function f : Z — N defined for x € Z by

2x ifx>0
fx) = .
—(2x+1) ifx<0

is a bijection. Indeed, it has an inverse is given by

ffl (x) = {é if x is even

—=Lif x is odd

Hence the set of integers Z is countably infinite. The corresponding list of integers is given
by
0,—-1,1,-2,2,-3,3 —4,4, ...

The fact that f~! is a bijection means that each integer appears on this list exactly once.

Exercise 6.1.3
Let f: X — Y be a bijection. Prove that X is countably infinite if and only if Y is countably
infinite. <

Exercise 6.1.4
Prove that the function p : N x N — N defined by p(x,y) =2*(2y+ 1) — 1 is a bijection. Deduce
that if X and Y are countably infinite sets, then X X Y is countably infinite. <

Exercise 6.1.4 allows us to prove that the product of finitely many countably infinite sets are
countably infinite.
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Proposition 6.1.5
n

Let n > 1 and let Xi,...,X, be countably infinite sets. Then the product HX,- is countably
i=1

infinite.

Proof
We proceed by induction on #.

e (BC) When n = 1 the assertion is trivial: if X; is countably infinite then X; is countably
infinite.

n
e (IS) Fix n > 1 and suppose that for any sets X1, ...,X,, the product [] X; is countably infinite.
i=1

n
Fix sets X1,...,X,+1. Then [] X; is countably infinite by the induction hypothesis, and X,
i=1
is countably infinite by assumption, so by Exercise 6.1.4, the set

n
HXi X Xn+1
i=1

is countably infinite. But by Exercise 2.3.19 there is a bijection

n+1 n
HXi — Xi | X Xut1
i=1 i=1

n+1
and so by Exercise 6.1.3 we have that [] X; is countably infinite, as required.
i=1

By induction, we’re done. O

Finding a bijection N — X, or equivalently X — N, can be a bit of a hassle. However, in order
to prove that a set X is countable, it suffices to find either a surjection N — X or an injection
X —N.

Theorem 6.1.6
Let X be an inhabited set. The following are equivalent:

(i) X is countable;
(i) There exists a surjection f: N — X;
(iii) There exists an injection f : X — N.

Proof
We’ll prove (i)<>(ii) and (i)<(iii).
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e (i)=-(ii). Suppose X is countable. If X is countably infinite, then there exists a bijection
f N — X, which is a surjection. If X is finite then there exists a bijection g : [m] — X, where
m=|X| > 1. Define f : N — X by

f(n)_{g(n) ifl<n<m

“lg(1) ifn=0o0rn>m

Then f is surjective: if x € X then there exists n € [m] such that g(n) = x, and then f(n) =
g(n) =x.
e (ii)=-(i). Suppose there exists a surjection f : N — X. To prove that X is countable, it suffices

to prove that if X is infinite then it is countably infinite. So suppose X is infinite, and define a
sequence recursively by

o ag=0;

o Fix n € N and suppose ay, . ..,a, have been defined. Define a,; to be the least natural
number for which f(a,+1) € {f(ao), f(a1),...,f(a)}.

Define g : N — X by g(n) = f(a,) for all n € N. Then

© g isinjective, since if m < n then f(a,,) # f(a,) by construction of the sequence (a,)nen-

¢ g is surjective. Indeed, given x € X, by surjectivity there exists m € N which is least such
that f(m) = x, and we must have a, = m for some n < m by construction of the sequence
(an)nen- So x = f(a,) = g(n), and hence g is surjective.

So g is a bijection, and X is countable.

e (i)=-(iii). Suppose X is countable. If X is countably infinite, then there exists a bijection
f:N—=X,s0 f~': X — Nis bijective and hence injective. If X is finite then there exists a
bijection g : [m] — X, where m = |X| > 1. Then g~! : X — [m] is injective. Let i : [m] — N be
defined by i(k) = k for all k € [m]. Then iog™! is injective; indeed, for x,x' € X we have

i(g7' () =i(g”' () =g () =g () mx=4
The first implication is by definition of #, and the second is by injectivity of g~!. So there

exists an injection X — N.

e (iii)=-(i). Suppose there exists an injection f : X — N. To prove that X is countable, it suffices
to prove that if X is infinite then it is countably infinite. Define a sequence (a,),cn recursively
as follows:

o Let ap be the least element of f[X];

o Fix n € N and suppose ay,...,a, have been defined. Let a,1 be the least element of
fIX]\ {ao,-..,a,}. This exists since f is injective, so f[X] is infinite.

Define g : N — X by, for each n € N, letting g(n) be the unique value of x for which f(x) = a,,.
Then

o gisinjective. By construction a,, # a, whenever m # n. Let x,y € X be such that f(x) = ay,
and f(y) = a,. Since f is injective, we must have x # y, and so g(m) = x # y = g(n).

270



Section 6.1. Countable and uncountable sets 271

o g is surjective. Fix x € X. Then f(x) € f[X], so there exists m € N such that f(x) = a,,.
Hence g(m) = x.

So g is a bijection, and X is countably infinite.

Hence the equivalences have been proved. ]

In fact, we needn’t even use N as the domain of the surjection or the codomain of the injection;
we can in fact use any countable set C.

Exercise 6.1.7
Let X be an inhabited set. The following are equivalent:

(a) X is countable;
(b) There exists a surjection f : C — X for some countable set C;
(c) There exists an injection f : X — C for some countable set C.

<

Exercise 6.1.7 is useful for proving the countability of many other sets: as we build up our
repertoire of countable sets, all we need to do in order to prove a set X is countable is find a
surjection from a set we already know is countable to X, or an injection from X into a set we
already know is countable.

This proof technique yields an incredibly short proof of the following counterintuitive result,
which can be interpreted to mean that there are exactly as many rational numbers as there are
natural numbers.

Theorem 6.1.8
The set Q of rational numbers is countable.

Proof

Define a function ¢ : Z x (Z\ {0}) — Q by letting g(a,b) = § for all a,b € Z with b # 0. By
Example 6.1.2 and Exercise 6.1.4, the set Z x (Z\ {0}) is countable. The function ¢ is surjective
by definition of Q. By Exercise 6.1.7, it follows that Q is countable. O

Exercise 6.1.9
Let X be a countable set. Prove that (),f ) is countable for each k € N. <4
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Theorem 6.1.10
A countable union of countable sets is countable. More precisely, let {X,, | n € N} be a family
of countable sets. Then the set X defined by

X=X

neN
is countable.

Proof
We may assume that the sets X, are all inhabited, since the empty set does not contribute to the
union.

For each n € N there is a surjection f,, : N — X,,. Define f : Nx N — X by f(m,n) = f(n) for
all m,n € N. Then f is surjective: if x € X then x € X,,, for some m € N. Since f,, is surjective,
it follows that x = f;,,(n) for some n € N. But then x = f(m,n). Since N x N is countable, it
follows from Exercise 6.1.7 that X is countable. U

Example 6.1.11
Let X be a countable set. The set of all finite subsets of X is countable. Indeed, the set of all

X
finite subsets of X is equal to U ) which is a union of countably many countable sets by
keN
Exercise 6.1.9, so is countable by Theorem 6.1.10. <

We can also use some clever trickery to prove that certain sets are uncountable. The proof of the
following theorem is known as Cantor’s diagonal argument.

Theorem 6.1.12
The set {0, 1}" is uncountable.

Proof
Let f: N — {0,1}" be a function. We will prove that f is not surjective by constructing a
sequence which is not contained in the image of N under f.

Define an element b € {0,1}", i.e. a function b : N — {0, 1}, by

b(n) = 1= f(n)(n)

Then b(n) # f(n)(n) for all n € N. If b = f(m) for some m, then by definition of function
equality we must have b(m) = f(m)(m); but we just saw that this is necessarily false. Hence
b & f[N], so f is not surjective.

Hence there does not exist a surjective function N — {0, 1}Y. By Theorem 6.1.6, the set {0, 1}
is uncountable. L]

This result can be used to show that the set R of all real numbers is uncountable, though this
relies on features of the real numbers that we have not developed so far in this course.

272



Section 6.1. Countable and uncountable sets 273

Exercise 6.1.13
Let X be a set. Prove that &7(X) is either finite or uncountable. <
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Section 6.2
Cardinal arithmetic

Relative cardinality

To do: Relate to size for finite sets

Definition 6.2.1

Let X and Y be sets. We say X and Y are equinumerous, and write |X| = |Y| or X =Y (IXTzX
code: \cong), if there exists a bijection X — Y. Write |X| < |Y] if there is an injection X — Y.
The notation |X| denotes the cardinality of X.

To do: Examples, etc

To do:

Exercise 6.2.2
Prove that [R| = [(0,1)| = [0, 1)[ = [(0,1]| = [[0, 1]]. <

To do:

Theorem 6.2.3 (Cantor’s theorem)
Let X be a set. Then [X| < |2 (X)|.

Proof

The function x — {x} evidently defines an injection X — Z(X), so |X| < |Z?(X)|. The fact that
|X| # |22(X)| is then immediate from Exercise 2.3.15. O
To do:

Lemma 6.2.4

Let X be a set and /2 : X — X be an injection. The relation < on X defined for a,b € X by
axb < h"(a)=0>bforsomeneN

is a partial order relation (Definition 5.2.1), where h° = idy (Definition 2.2.13) and where #* =
hoho---ohforalln > 0.
—_—

n copies

Proof
We need to prove that < is reflexive, antisymmetric and transitive.

e < is reflexive. To see this, let @ € X. Then a = h°(a), and so a < a.
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e =< is antisymmetric. To see this, let a,b € X and suppose a < b and b < a. Then there exist
m,n € N such that b = #"(a) and a = h"(b), and so

W™ (a) = h"(b)

Using the well-ordering principle (Theorem 3.1.47), take m € N to be least such that A" (a) =
1¥(b) for some k € N. We show that m = 0.

So suppose m > 0. Note that n > m > 0 by minimality of m. Since £ is injective, we have
h(h" Y (a)) = H"(a) = 1" (b) = h(K""" (b))

and so /! (a) = K"~ (b). But then this contradicts minimality of m.
So we must have m = 0, so that b = h°(a) = a.

Hence < is antisymmetric.

e =< is transitive. To see this, let a,b,c € X and suppose a < b and b < c. Then there exist
m,n € N such that b = h"'(a) and ¢ = k™ (b). But then

¢ = " (b) = H"(I"(a)) = (W" o ") (@) = K"*"(a)
and so a < ¢, as required.

So < is a partial order. O

Theorem 6.2.5 (Cantor-Schroder—Bernstein theorem)
Let X and Y be sets. If | X| < |Y| and |Y| < |X], then |X| = |Y].

Idea of proof
To do: |

Proof
Fix injections f: X — Y and g : Y — X; we will construct a bijection 4 : X — Y.

Define a relation < on X by

axb < b=(gof)"(a)forsomeneN

Note that < is a partial order relation by Lemma 6.2.4, since g o f is injective.
Now given a € X, we define h(a) according to which of the following scenarios holds.
e Scenario 1. There is no <-minimal m € X such that m < a. In this case, let h(a) = f(a).

e Scenario 2. There is some <-minimal m € X such that m < a and m # g(y) forany y € Y. In
this case, let h(a) = f(a).
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e Scenario 3. There is some <-minimal m € X such that m < a and m = g(y) for some y € Y.
In this case, we must have a = g(c) for some ¢ € Y—otherwise we’d be in Scenario 2 with
m = a—and the element ¢ € Y for which a = g(c) is unique since g is injective. So let h(a) = ¢
for this uniquely determined ¢ € Y.

Note also that if a,b € X with a < b, then a and b are in the same scenario.
It remains to prove that / is a bijection.

e hisinjective. To see this, let a,b € X and assume that h(a) = h(b).

If @ and b both fall in Scenario 1 or 2, then h(a) = f(a) and h(b) = f(b), so that a = b since f
is injective. Likewise, if @ and b both fall in Scenario 3, then a = g(c) and b = g(d) for some
c,d €Y;butthen c =h(a) = h(b) =d, and so a = g(c) = g(d) = b.

The only other possibility is that a falls in Scenario 1 or 2, and b falls in Scenario 3; or
vice versa. We prove that this is impossible. Without loss of generality, assume that a falls in
Scenario 1 or 2 and b falls in Scenario 3—otherwise swap the roles of a and b in what follows.
Then h(a) = f(a), and h(b) is the unique element of Y such that g(h(b)) = b. Therefore

8(f(a)) = g(h(a)) = g(n(b)) = b

so that a < b. But then a and b are in the same scenario—this contradicts the assumption that
a and b are in different scenarios.

Thus in the only possible cases, we have proved that a = b, so that # is injective.

e his surjective. To see this, let ¢ € Y and define a = g(c).

o If a falls in Scenario 1, then ¢ = f(b) for some b € X, and b also falls in Scenario 1, so that
h(b) = f(b) =c.

¢ If a falls in Scenario 2, then a is not <-minimal—if it were, then we’d be in Scenario 3
since a = g(c). So let b € X be such that f(b) = c¢. Then h(b) = f(b) = c.

o If a falls in Scenario 3, then since c is the unique element of ¥ with a = g(c), we have
h(a) =c.

In each case, we have found some x € X such that 4(x) = ¢. So h is surjective.

Since A is a bijection, we have |X| = |Y|, as required. O

To do:

Absolute cardinality

To do: Introduce, return to notion of universe, refer to appendix

Exercise 6.2.6
Prove that the relation = (Definition 6.2.1) is an equivalence relation on the universe %/ . <
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Definition 6.2.7
A cardinal number is an element of the set Card = % /=~ (IXIgX code: \mathsf{Card}).
Given a set X, the cardinality of X is the cardinal number |X| = [X]|~ € Card.

We will identify the cardinal number |[n]| € Card with the natural number n € N, so that we
can view N as a subset of Card. Thus cardinality generalises the notion of size defined in
Definition 3.2.9. This is a dangerous thing to do, though: we will soon be defining arithmetic
operations for cardinal numbers, so we must be careful that the operations we define generalise
those for natural numbers.

Cardinal numbers will usually be denoted by lower-case Greek letters k,A,,... (see Ap-
pendix A.1).

To do:

Definition 6.2.8
The cardinal number |N] is called aleph naught and is written X (I&EX code: \aleph_0).

The symbol X is the Hebrew letter aleph. It is the first in a hierarchy of cardinal numbers
No, X, NXo,....

To do:

Definition 6.2.9
The cardinality of the continuum is the cardinal number ¢ defined by ¢ = |R| (IATgX code:
\mathfrak{c}).

To do:

Arithmetic with cardinal numbers
To do:

Definition 6.2.10
Let k¥ and A be cardinal numbers. The (cardinal) sum k + A is defined by

K+A=|XUY|
where X and Y are disjoint sets with |X| = x and |Y| = 4.
To do:
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Theorem”® 6.2.1
Let x and A be cardinal numbers. If k,A > X, then x + A = max{k,A}.

Proof
To do: O

To do:

Definition 6.2.11
Let k and A be cardinal numbers. The (cardinal) product k- A (IZTizX code: \cdot) of k¥ and
A is defined by

K-A=|X-Y|

where X and Y are sets with [X| =k and [Y| = A.
To do:

Theorem”® 6.2.2
Let x and A be cardinal numbers. If k,A > Yo, then k- A = max{k,A}.

Proof
To do: O

To do:

Definition 6.2.12
Let k¥ and A be cardinal numbers. The (cardinal) exponential A ¥ is defined by

A% =|r¥|

where X and Y are sets with |[X| = x and |Y| = A.

To do:

Example 6.2.13
We have | 22(N)| = 2%0. Indeed, there is a bijection 2(N) — {0, 1} defined by U + iy, where
iy : N— {0, 1} is defined by

iU (I’l) =

0 ifn€U
1 ifnelU

More generally, | 2 (X)| = 2X! for all sets X. <
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In light of Example 6.2.13, we can interpret Cantor’s theorem (Theorem 6.2.3) as saying that
K < 2% for all cardinal numbers k.

Exercise 6.2.14

Prove that

WA g% and (n-A)K =t AR
for all cardinal numbers K, A, 1. <
Exercise 6.2.15
Prove that for all cardinal numbers u, v, k, if 4 < v, then u* < v¥. N
To do:

Example 6.2.16
We prove that k* = 2¥ for all k > X. Indeed:

e Kk < 2% by Cantor’s theorem (Theorem 6.2.3), so that by Exercise 6.2.15 and Theorem 6.2.2

we have
K" (21(')1( — KK _ zmax{K',K} — oK

N

e Since 2 < X < k, we have 2% < k¥ by Exercise 6.2.15.

By the Cantor—Schréder—Bernstein theorem (Theorem 6.2.5), it follows that k¥ = 2. <

To do:
Theorem 6.2.17
¢ =2%0

Proof

We have |[0,1)| = ¢ by Exercise 6.2.2 and |2 (N)| = 2¥0 by Example 6.2.13, so by the Cantor—
Schroder-Bernstein theorem (Theorem 6.2.5), it suffices to find injections f : [0,1) — Z(N)
and g: Z(N) = R.

Define f: [0,1) — Z?(N) as follows. Given a real number x € [0, 1) let (d,),>1 be the (unique)
sequence of Os and 1s defined by:

Q) x=0.dydads--- = ¥ dy-27"; and
n=1

(i1) For all n > 1, there exists » > n such that d, = 0.

This sequence is uniquely defined by (To do: Prove this in Chapter 7), so that f is well-defined.
Define

fx)={neN|d, =1}
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To do: Injectivity of f

Define g : Z(N) — R by

gU)=13 3"
nel
To do: Injectivity of g
Since f and g are injective, we have To do: Finish O
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Section 6.3
Ordinal numbers and the axiom of choice

To do:

Axiom 6.3.1 (Axiom of choice)
For any family of inhabited sets {X; | i € I'}, there is a function f : I — J;; X; such that f(i) € X;
for each i € I. The function f is called a choice function for {X; | i € I'}.

To do:

Well-ordered sets

Definition 6.3.2
Let X be a set. A well-order on X is a well-founded total order relation <.

Theorem 6.3.3 (Well-ordering principle)
To do:

Ordinal numbers

To do:

Ordinal arithmetic

To do:

Cardinal numbers as ordinal numbers
To do:

Definition 6.3.4
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Section 6.Q
Chapter 6 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.
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The real numbers
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Section 7.1
Inequalities and means

We first encountered the real numbers in Chapter O, when the real numbers were introduced
using a vague (but intuitive) notion of an infinite number line (Definition 0.26):

A
A

This section will scrutinise the set of real numbers in its capacity as a complete ordered field.
Decomposing what this means:

e A field is a set with a notion of ‘zero’ and ‘one’, in which it makes sense to talk about addition,
subtraction, multiplication, and division by everything except zero. Examples are Q, R, and
Z/pZ when p is a prime number (but not when p is composite). However, Z is not a field,
since we can’t freely divide by nonzero elements—for example, 1 € Z and 2 € Z, but no
integer n satisfies 2n = 1.

e An ordered field is a field which is equipped with a well-behaved notion of order. Both QQ and
R are ordered fields, but Z/pZ is not. We’ll see why soon.

o A complete ordered field is an ordered field in which every set with an upper bound has a least
upper bound. As we will see, Q is not a complete ordered field, but R is.

This is made (extremely) precise in Section B.2.

Magnitude and scalar product

In this part of the section, we home in on sets of the form R", for n € N. Elements of R” are
sequences of the form (xj,xz,...,x,), where each x; € R. With our interpretation of the reals R
as a line, we can interpret a sequence (x,x2,...,X,) as a point in n-dimensional space:

e 0-dimensional space is a single point. The set R” has one element, namely the empty sequence
(), so this makes sense.

e 1-dimensional space is a line. This matches our intuition that R = R! forms a line.

e 2-dimensional space is a plane. The elements of R? are pairs (x,y), where x and y are both
real numbers. We can interpret the pair (x,y) as coordinates for a point which is situated x
units to the right of (0,0) and y units above (0,0) (where negative values of x or y reverse this
direction)—see Figure 7.1.

With this intuition in mind, we set up the following notation.
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Figure 7.1: Some points in R?

Notation 7.1.1
Let n € N. Elements of R” will be denoted X,¥,7,... (I&[EX code: \vec) and called (n-
dimensional) vectors. Given a vector ¥ € R”, we write x; for the i component of X, so that

X=(X1,X2, .- ,Xn)
The element (0,0,...,0) € R”" is called the origin or zero vector of R”, and is denoted by 0.
Moreover, if X,y € R"” and a € R we write
X+¥=(1+y,%+y2,....xn+yy) and aX = (axj,axy,...,ax,)

Example 7.1.2
For all ¥ € R", we have

Definition 7.1.3
Let X € R". The magnitude of X is the real number ||X|| (IXTEX code: \1Vert \vec x \rVert)

defined by
n
R = /Y = B+ 22
i=1

Given vectors X,y € R”, the distance from X to y is defined to be ||y — X||. Thus the magnitude of
a vector can be thought of as the distance from that vector to the origin.
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Example 7.1.4
In R?, Definition 7.1.3 says that

1)l = Va2 42

This matches the intuition obtained from the Pythagorean theorem on the sides of right-hand
triangles. For example, consider the triangle with vertices (0,0), (4,0) and (4,3):

(4,3)

(0,0) (4,0)

The hypotenuse of the triangle has magnitude

1(4,3)| = V42432 =V25=5

<

Exercise 7.1.5
Let ¥,y € R". Prove that ||¥—¥|| = ||y — ¥||. That is, the distance from ¥ to ¥ is equal to the
distance from y to X. <

Exercise 7.1.6
Prove that if x € R then the magnitude ||(x)|| is equal to the absolute value |x|. <

Exercise 7.1.7
Let X € R™. Prove that ||X|| = 0 if and only if X = 0. <

The triangle inequality and the Cauchy-Schwarz inequality

The first, and simplest, inequality that we investigate is the (one-dimensional version of the)
triangle inequality (Theorem 7.1.9). It is so named because of a generalisation to higher dimen-
sions (Theorem 7.1.19), which can be interpreted geometrically as saying that the sum of two
side lengths of a triangle is greater than or equal to the third side length.

The triangle inequality is used very frequently in mathematical proofs—you will encounter it
repeatedly in this chapter—yet its proof is surprisingly simple.

Before we can prove the triangle inequality, we need the following fact about square roots of
real numbers.
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Lemma 7.1.8
Let x,y € R. If 0 <x <y, then /x < /Y.

Proof
Suppose 0 < x < y. Note that, by definition of the square root symbol, we have /x > 0 and

VY =0.
Suppose /x > /y. By two applications of Theorem B.2.30(d), we have

so that y < x. But this contradicts the assumption that x < y. Hence /x </, as required. ~ [J

Theorem 7.1.9 (Triangle inequality in one dimension)
Let x,y € R. Then |x+y| < |x| 4 |y|. Moreover, |x+y| = |x| + |y| if and only if x and y have the
same sign.

Proof
Note first that xy < |xy|; indeed, xy and |xy| are equal if xy is non-negative, and otherwise we
have xy < 0 < |xy|. Also x* = |x|? and y* = |y|*>. Hence

(x+)? =2+ 2xy+y* < [+ 20y + [y = (Ix] + y])?

Taking (nonnegative) square roots yields
ey < lxl + Iyl
by Lemma 7.1.8. But |x| 4 |y| > 0, so |[x| + |y|| = x| + |y|. This completes the first part of the

proof.

Equality holds in the above if and only if xy = |xy|, which occurs if and only if xy > 0. But this
is true if and only if x and y are both non-negative or both non-positive—that is, they have the
same sign. O

Example 7.1.10
Let x,y € R. We prove that

eyl I |
Tx+y] 14+ x 14+
First note that, if 0 < s <1, then

S ot
I4+s " 14t
To see this, note that
s<t=14+s< 141 rearranging
1 1
— < since 1 +s5,14+¢>0
14+t = 1+s
1 1
=1- <1- rearrangin
1 +s 141 gine
N t
= — < — rearrangin
I+s S 1+t gine
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Now letting s = |x+y| and ¢ = |x| 4 |y|, we have s < 7 by the triangle inequality, and hence

iyl b, bl b
Trhey] S Tl DT T T +bT S T T+

as required. <

Exercise 7.1.11
Let n € N and let x; € R for each i € [n]. Prove that

<Y |l

i=1

n
2 i
i=1

with equality if and only if the numbers x; are either all non-positive or all non-negative. <

Exercise 7.1.12
Let x,y € R. Prove that

[l = Iyl < e =]
<

We will generalise the triangle inequality to arbitrary dimensions in Theorem 7.1.19. Our proof
will go via the Cauchy—Schwarz inequality (Theorem 7.1.16). To motivate the Cauchy—Schwarz
inequality, we introduce another geometric notion called the scalar product of two vectors.

Definition 7.1.13
Let X,y € R". The scalar product (or dot product) of X with ¥ is the real number X - ¥ (I5TgX
code: \cdot) defined by

n
X-y= inyi =X1y1+X2y2+ + XnYn
i=1

Example 7.1.14
Let ¥ € R". Then XX = ||¥||. Indeed

<
Exercise 7.1.15
Let X,y,Z,w € R" and let a,b, c,d € R. Prove that
(aX+Dby) - (cZ+dw) = ac(X-7) +ad(X-w)+bc(¥-Z) +bd(y-w)
<
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Intuitively, the scalar product of two vectors X and ¥ measures the extent to which X and y fail
to be orthogonal. In fact, if 0 is the acute angle formed between the lines ¢; and ¢,, where ¢,
passes through 0 and X and (> passes through 0 and ¥, then a formula for the scalar product of X
and y is given by

xX-¥ =[xyl cos 6

<l

||lx|| cos 6

Evidently, X and ¥ are orthogonal if and only if cos @ = 0, in which case X-y = 0 as well. We
cannot prove this yet, though, as we have not yet defined trigonometric functions or explored
their properties, but hopefully this provides some useful intuition.

The Cauchy—Schwarz inequality provides a useful comparison of the size of a scalar product of

two vectors with the magnitudes of the vectors.

Theorem 7.1.16 (Cauchy—Schwarz inequality)
Let n € N and let x;,y; € R for each i € [n]. Then

1% 51 < IX]I15]
with equality if and only if ax = by for some a,b € R which are not both zero.

Proof
If ¥ = 0, then this is trivial: both sides of the equation are equal to zero! So assume that ¥ # 0.
In particular, by Exercise 7.1.7, we have ||y|| > 0.

Define k = 56_'? . Then
15112
0 < ||X—ky|? since squares are nonnegative
= (X—ky) - (X —ky) by Example 7.1.14
= (X-X) = 2k(X-5) + K*(F-5) by Exercise 7.1.15
= |I%|> - (x-3)° by definition of k

IylI?
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Multiplying through by ||||?, which is non-negative and therefore doesn’t change the sign of the
inequality, yields

0 < [I#751* — (&-5)°
which is equivalent to what was to be proved.

Evidently, equality holds if and only if |X — k¥|| = 0, which by Exercise 7.1.7 occurs if and only
if X — ky = 0. Now:

e If X—ky =0, then we have

X—ky=0
L Xy ..
& X— ||szy:O by definition of k

- =\ =

& |[71°% = (%-5)y rearranging

If ¥ # 0 then let a = ||| and b = % ¥; otherwise, let @ = 0 and b = 1. In both cases, we have
aX = by and a, b are not both zero.

If ax = by for some a,b € R not both zero, then either:

¢ a=0and b # 0, in which case ¥ = 0 and we have equality in the Cauchy—Schwarz inequal-
ity; or

¢ a # 0, in which case y = %)_c’. Write ¢ = %. Then

[%- 5] =[x+ (cX)]

= le(X-X)] by Exercise 7.1.15
= \CHWHZ by Example 7.1.14
= [|%H{|cx] rearranging

= |1X]/1|¥]]

In either case, we have equality in the Cauchy—Schwarz inequality.

So equality holds if and only if ax = by for some a,b € R not both zero. (|

Example 7.1.17
Let a,b,c € R. We’ll prove that

ab+bc+ca < a* +b* + ¢
and examine when equality holds.
Letting X = (a,b,c) and y = (b, c,a) yields
X-y=ab+bc+ca

and

5] = Va2 + 02+ = Vi + 2 +a? = ]
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Hence ||¥||||¥|| = a® + b + c2. By the Cauchy—Schwarz inequality, it follows that
X-¥=ab+bc+ca < a*+b*+c* = |7y

as required. Equality holds if and only if k(a,b,c) = ¢(b,c,a) for some k,¢ € R not both zero.
We may assume k # O—otherwise, swap the vectors X and y in what follows. Then, letting r = %,
we have

k(a,b,c) ={(b,c,a)

< (a,b,c) = (tb,tc,ta) by definition of

& (a,b,c) = (f*c,*a,t*b) substituting a = tb etc.

& (a,b,¢) = (FPa,i’b,rc) substituting a = b etc. again
ei=r%

This occurs if and only if either (a,b,c) = (0,0,0), or t = 1, in which case
(a,b,c) = (tb,tc,ta) = (b,c,a)

So equality holds if and only if a = b = c. <

Exercise 7.1.18
Letr € Nand let aj,ay,...,a, € R be such that a? +a3 + - - - +a2 = 6. Prove that

(a1 +2ay +---+nay)* <n(n+1)(2n+1)

and determine when equality holds. <

We now use the Cauchy—Schwarz inequality to generalise the one-dimensional version of the
triangle inequality (Theorem 7.1.9) to arbitrary (finite) dimensions.

Theorem 7.1.19 (Triangle inequality)
Let X,y € R". Then
1%+ 3| < [1%]] -+ 151

with equality if and only if ax = by for some real numbers a,b > 0.

Proof
We proceed by calculation:
1X4]> = X+7) - @F+) by Example 7.1.14
=X-X)+2(X-¥)+GY) by Exercise 7.1.15
< (X-X) 2%y + (V- y) since a < |a| foralla € R
< IEI1 + 2|1 [l + 117117 by Example 7.1.14 and Cauchy—Schwarz
= (|1 + 17])? rearranging
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Taking (nonnegative) square roots of both sides yields
1%+ 31 < (1% + 1151
by Lemma 7.1.8, as required.
Equality holds if and only if the two ‘<’ symbols in the above derivation are in fact ‘=" symbols.

e The first inequality is equality if and only if Xy = |¥- ¥

, which holds if and only if X- ¥ > 0.

e The second inequality is equality if and only if equality holds in the Cauchy—Schwarz inequal-
ity. In turn, this occurs if and only if ax = by for some a,b € R. We may, moreover, assume
that a > 0—if not, replace a and b by their negatives.

If a = 0 then we can take b = 0. If a > 0, then by Example 7.1.14 and Exercise 7.1.15, we have

b b
- (27) = 2
a a

which is non-negative if and only if b > 0, since we are assuming that a > 0.

Thus, equality holds in the triangle inequality if and only if aX = by for some a,b > 0. |

This general version of the triangle inequality has a geometric interpretation in terms of—you
guessed it—triangles. Any three points d,b,c¢ € R" form a (potentially flat) triangle:

ol

QL

S

The side lengths u, v, w are given by the following equations:

u=|b—dl, v=|c=bl, w=la-¢|
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The triangle inequality says tells us that # < v+ w. Indeed:

u=||b—a by definition of u
=|(b-2)+(@—a)| rearranging
<|[b—2| +|¢—dl by the triangle inequality
= |2—b|+||a—2| by Exercise 7.1.5
=v+w by definition of v and w

That is, the triangle inequality says that the sum of two side lengths of a triangle is greater than or
equal to the third side length. Moreover, it tells us u = v+ w precisely when k(d —¢) = (¢ —b)
for some k,¢ > 0. If k = 0 then

—

¢ = b = 0a+(1-0)b
if k > 0, then k+ /¢ > 0, so we have

P S S R Y
k+¢ " k+0 k+/ k40

Examining this a bit more closely yields that u = v+ w if and only if

—

-

c=td+(1—1)b

for some 0 < ¢ < 1, which is to say precisely that ¢ lies on the line segment between d and b. In
other words, equality holds in the triangle inequality only if the three vertices of the triangle are
collinear, which is to say that the triangle whose vertices are the points d, b and ¢, is flat.

Inequalities of means

Our goal now is to explore different kinds of average—specifically, means—of finite sets of
non-negative real numbers. We will compare the relative sizes of these means with respect to
one-another, with emphasis on three particular kinds of mean: the arithmetic mean (Defini-
tion 7.1.20), the geometric mean (Definition 7.1.21) and the harmonic mean (Definition 7.1.29).
These means in fact assemble into a continuum of means, called generalised means (Defini-
tion 7.1.37), all of which can be compared with one another.

Definition 7.1.20
Let n > 1. The (arithmetic) mean of real numbers xi,...,x, is

li Xrt+x2+-+x,
- .=

n n

i=1
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Definition 7.1.21

Let n > 1. The geometric mean of non-negative real numbers xy,...,x, is
n
n Hxl: "/xl.xZ ..... xn

The following theorem is commonly known as the AM-GM inequality.

Theorem 7.1.22 (Inequality of arithmetic and geometric means)
Letn € Nand xy,x;,...,x, > 0. Then

X1+ 4%
Y xl .. .xn < —_—
——— n
g —_———
geometric mean

arithmetic mean
with equality if and only if x| = --- = x,,.

Proof when n=2

We need to show that, if x,y € R with x,y > 0, then

Vo

with equality if and only if x = y.

First note that the square roots of x and y exist since they are non-negative. Now

0< (Vx—9y)? since squares are nonnegative
= (VA = 2V 5+ (V) expanding
=x—2yxy+y rearranging

Rearranging the inequality 0 < x —2,/xy +y yields the desired result.

If /xy= % then we can rearrange the equation as follows:

Xy = % =2\ /xy=x+Yy multiplying by 2
= dxy = x>+ 2xy+y° squaring both sides
= x> —2xy+y* =0 rearranging
= (x—y)?=0 factorising
=x—y=0 sincea> =0=a=0foraeR
=>x=y rearranging
So we have proved both parts of the theorem. U
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Example 7.1.23
We use the AM-GM inequality to prove that the area of a rectangle with fixed perimeter is
maximised when the rectangle is a square.

Indeed, fix a perimeter p > 0, and let x,y > 0 be side lengths of a rectangle with perimeter p—
that is, x and y satisfy the equation 2x + 2y = p. The area a of the rectangle satisfies a = xy. By

the AM—GM inequality, we have
2 2

2 ) 16
Equality holds if and only if x =y, in other words, if and only if the rectangle is a square. <

Exercise 7.1.24
a*+ b?

Let a,b > 0 be real numbers. Prove that > ab. <

Example 7.1.25
Let x > 0. We find the minimum possible value of x 4 %. By the AM-GM inequality, we have

x+222\/x-2:2\[9=6
X X

with equality if and only if x = %, which occurs if and only if x = 3. Hence the minimum value
ofx+%whenx>0is6. <
Exercise 7.1.26
n
Letx > 0 and let n € N. Find the minimum possible value of Z i, <
k=—n

Exercises 7.1.27 and 7.1.28 complete the proof of the AM—GM inequality (Theorem 7.1.22).
Before proceeding with the exercises, let’s fix some notation: for each n € N, let pam_gm(n) be
the assertion that the AM-GM inequality holds for collections of n numbers; that is, pam_gm (1)
is the assertion:

For all x;,x5,...,x, > 0, we have
n 1 n
Y Hxi <= th
i=1 niz
with equality if and only if x| =xp = -+ - = x;,.

Note that we already proved pam-cm(2).

Exercise 7.1.27
Let » € Nand let xq,x,...,x, € R. Write
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for the arithmetic and geometric means, respectively, of the numbers x1,...,x,; write

a =
for the arithmetic and geometric means, respectively, of the numbers x, 1, ...,x,; and write
1 2r 2r
A=—Yx and G=7{/[]x
2r ; ! ,11 l
for the arithmetic and geometric means, respectively, of all the numbers x1, ..., x,.
Prove that ,
a+a
A= > and G=+/gg
Deduce that, for each r € N, if pam_gm(r) is true then pam_gm(2r) is true. Deduce further than
paM-_cM(2™) is true for all m € N. <

Exercise 7.1.28
Let r > 2 and let xq,...,x,_1 € N. Define

1 r—1

- r—1 in

i=1

Xy

Prove that
1 r
DR
r L=
i=1

Assuming pam-gm(r), deduce that

1

r r—1
X, = Hxi = <Hx,~> - Xp
=1 i=1

with equality if and only if x; = x, = - -+ = x,. Deduce that pam_gm(r) implies pamgm(r — 1).
Use Exercise 7.1.27 to deduce further that pav_gm(n) is true for all n > 1. <

‘We now introduce another kind of mean, called the harmonic mean.

Definition 7.1.29

Let n € N. The harmonic mean of nonzero real numbers x,x», ..., X, is
=il
1 & n
o JET =11 I
n:= E‘FE—F“'—FE
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The harmonic mean of two nonzero real numbers x and y has a simpler expression:
_ 1 -1
x T+ y ! _ 2xy
2 x+y
The harmonic mean arises naturally when considering

Example 7.1.30

The cities of York and Leeds are located d > 0 miles apart. Two cars drive from York to Leeds,
then immediately turn around and drive back. The two cars depart from York at the same time
and arrive back in York at the same time.

e The first car drives from York to Leeds at a constant speed of u miles per hour, and drives
back to York at a constant speed of v miles per hour.

e The second car drives from York to Leeds and back again at the same constant speed of w
miles per hour.

According to the following formula from physics:

speed x time = distance
d

the time spent driving by the first car is 7
2d

w

+ %, and the time spent driving by the second car is

Since the cars spend the same amount of time driving, it follows that
2d d d 2uy
w u v u+v

That is, the second car’s speed is the harmonic mean of the two speeds driven by the firstcar. <

As might be expected, we now prove a theorem relating the harmonic means with the other
means we have established so far—this theorem is known as the GM-HM inequality.

Theorem 7.1.31 (Inequality of geometric and harmonic means)
Letn € Nand x1,x3,...,x, > 0. Then

n
1 1
e+t

< YA
——

1
Xn g
geometric mean

harmonic mean
with equality if and only if x; = --- = x,,.

Proof when n =2
We need to prove that if x,y > 0, then

N
3

==
==
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This is almost immediate from the AM—GM inequality (Theorem 7.1.22). Indeed, since all
numbers in sight are positive, we can take reciprocals to see that this inequality is equivalent to
the assertion that

1 < x gyt
N
But \/177 = /x~ly~1, so this is immediate from the AM—GM inequality. O
Exercise 7.1.32
Prove the GM—HM inequality for general values of n € N. <

Another example of a mean that has applications in probability theory and statistics is that of the
quadratic mean.

Definition 7.1.33
Let n € N. The quadratic mean (or root-mean-square) of real numbers xj,xp, ..., X, is

1
lix? T [dtg+ 4
B n

The following theorem is, predictably, known as the QM-AM inequality (or RMS-AM in-
equality); it is a nice application of the Cauchy—Schwarz inequality.

Theorem 7.1.34 (Inequality of quadratic and arithmetic means)
Letn > 0 and x1,xp,...,x, > 0. Then

n
| S S—

arithmetic mean

x1+---+xn<\/x%+x§+---+x%
= n

quadratic mean

with equality if and only if x| = --- = x,,.

Proof

Define

X=(x1,x2,...,x,) and y=(1,1,...,1)
Then
X1+x+-+x, =Xy by definition of scalar product

< |1xY by Cauchy—Schwarz
=\/X+x5+-+x2-/n evaluating the magnitudes
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Dividing through by n yields

X

n

x1+x2+---+xn<\/x%+x§+---+x,%
n

as required. Equality holds if and only if equality holds in the Cauchy—Schwarz inequality,
which occurs if and only if

(axy,axy,...,ax,) = (b,b,...,D)
for some a,b € R not both zero. If @ = 0 then b = 0, so we must have a # 0. Hence equality
holds if and only if x; = g for all i € [n]—in particular, if and only if x; =x; = -+ = x,,. O
To summarise, what we have proved so far is

harmonic geometric arithmetic quadratic

(7.1.31)
< ~ ~
mean mean mean mean

(7.1.22) (7.1.34)
< <

with equality in each case if and only if the real numbers whose means we are taking are all
equal.

The following exercise allows us to bookend our chain of inequalities with the minimum and
maximum of the collections of numbers.

Exercise 7.1.35
Let n > 0 and let x1,xy,...,x, be positive real numbers. Prove that

] 1
, 1 13 L)
min{xj,x2,...,x,} < (nle. 1) and max{x;,x2,...,X%,} > (n Zx%)
i=1 i=1

with equality in each case if and only if x; =x2 = -+ = x;,. <

+ Generalised means

We conclude this section by mentioning a generalisation of the results we have proved about
means. We are not yet ready to prove the results that we mention; they are only here for the sake
of interest.

Definition 7.1.36
The extended real number line is the (ordered) set [—oo, ], defined by

[_ooa °°] =RU {_°°a °°}

where R is the set of real numbers with its usual ordering, and —oo, oo are new elements ordered
in such a way that —oo < x < oo for all x € R.
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Note that the extended real line does not form a field—the arithmetic operations are not defined
on —oo or oo, and we will at no point treat —eo and oo as real numbers; they are merely elements
which extend the reals to add a least element and a greatest element.

Definition 7.1.37
Let p € [—o0,o0],letn € N, and let x;,xa, ..., x, be positive real numbers. The generalised mean
with exponent p (or simply p-mean) xi,x»,...,x, is the real number M),(x1,x2,...,x,) defined
by
1
12 P
My (x1,x2,...,%,) = - fo’
i=1

if p & {—o0,0,0}, and by

M, (x1,x2,...,X,) = (}iir;)Mq(xl,xg, ey Xp)

if p € {—0,0,0}, where the notation lim refers to the limit as ¢ tends to p. (We have not yet
q—p
defined this notion.)

We can see immediately that the harmonic, arithmetic and quadratic means of a finite set of
positive real numbers are the p-means for a suitable value of p: the harmonic mean is the (—1)-
mean, the arithmetic mean is the 1-mean, and the quadratic mean is the 2-mean. Furthermore,
Proposition 7.1.38 exhibits the minimum as the (—eo)-mean, the geometric mean as the 0-mean,
and the maximum as the co-mean.

Proposition 7.1.38
Let n > 0 and let x;,x3,...,x, > 0. Then

o M_oo(x1,X2,...,%,) = min{xy,x2,...,X,};
o Mo(x1,x2,...,X,) = /X1 X2 Xp; and
 Mo(x1,x2,...,%,) = min{x;,x2,...,X,}. O

All of the inequalities of means we have seen so far will be subsumed by Theorem 7.1.39, which
compares the p-mean and g-mean of a set of numbers for all values of p,q € [—o0, o).

Theorem 7.1.39
Letn >0, let x;,x2,...,x, > 0and let p,q € [—e0, 0| with p < q. Then

My(x1,%x2,. .., %) < My(x1,X2,...,%)
with equality if and only if x| =xp = --- = x,,. 0
Theorem 7.1.39 implies each of the following:
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e HM-min inequality (Exercise 7.1.35): take p = —oc and ¢ = —1;

GM-HM inequality (Theorem 7.1.31): take p = —1 and ¢ = 0;

e AM-GM inequality (Theorem 7.1.22): take p=0and g = 1;

QM-AM inequality (Theorem 7.1.34): take p =1 and g = 2;

max—QM inequality (Exercise 7.1.35): take p =2 and g = oo.
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Section 7.2
Completeness and convergence

For most of the results that we proved in Section 7.1, it did not matter that we were talking about
real numbers. We could just as well have been working with any other ordered field, such as the
rational numbers—that is, most of the results in Section 7.1 remain true by replacing R by Q (or
any other ordered field) throughout.

From here onwards, we isolate the property of R that separates it from Q—namely, complete-
ness. It is completeness that will allow us to define and explore the fundamental concepts of
mathematical analysis: sequences, functions, convergence, limits, continuity, differentiability,
and so on.

We first need to recall the definition of a supremum from Section 5.2.

Definition 7.2.1 (instance of Definition 5.2.10)
Let A C R. A real number m is an upper bound for A if a < m for all a € A. A supremum of A
is a least upper bound of A; that is, a real number m such that:

(i) m is an upper bound of A—that is, a < m for all a € A; and

(i1) m is least amongst all upper bounds for A—that is, for all x € R, if a < x for all a € A,
then x < m.

Example 7.2.2
We prove that 1 is a supremum of the open interval (0, 1).

(i) Leta € (0,1). Then a < 1, so that 1 is an upper bound of (0, 1).

(ii) Letx € R be another upper bound of (0, 1). If x < 1, then we have

xtx x+1 1+1_

1
2<2<2

X

1
and so x < % € (0,1). This contradicts the assumption that x is an upper bound of

(0,1). It follows that x > 1, as required.
Hence 1 is indeed a supremum of (0, 1). <

Exercise 7.2.3
Write down the definitions of lower bound and infimum, and find the infimum of the open interval
(0,1). <

The following proposition provides a convenient way of testing whether a real number is a
supremum of a subset.
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Proposition 7.2.4

Let A C R and suppose m € R is an upper bound of A. Then m is a supremum of A if and only
if, for all € > 0, there exists a € A such thata > m — €.

Proof

e (=). Suppose m is a supremum of A, and let € > 0. If there is no a € A such thata > m — &€,
then a < m — € for all a € A. But this contradicts the assumption that m is a supremum of a,
since m — € is an upper bound of A that is less than m. So there exists a € A witha > m —¢€,
as required.

e (<). Suppose that, for all € > 0, there exists a € A with a > m — €, and let x € R be an upper
bound of A. In order to prove that m is a supremum of A, we must prove that m < x.

Suppose x < m, and define € = m —x. Then € > 0, so there exists a € A such that
a>m—e=m—(m—x)=x

But this contradicts the assumption that x is an upper bound of A. So we must have m < x, as
required.

O

Theorem 7.2.5 (Uniqueness of suprema)
Let A be a subset of R. If m; and my are suprema of A, then m; = my.

Proof

Since m; is an upper bound of A and m; is a supremum of A, we have my > m; by Defini-
tion 7.2.1(ii). Likewise, since m; is an upper bound of A and m; is a supremum of A, we have
my = my by Definition 7.2.1(ii) again. But this implies that m; = m,. Il

Definition 7.2.6
Let A C R. The supremum of A, if it exists is denoted by sup(A) (IXTEX code: \mathrm{supl});
the infimum of A, if it exists, is denoted by inf(A) (I&TEX code: \mathrm{inf}).

Now that we are more familiar with suprema, here is the completeness axiom in its full glory.

Axiom 7.2.7 (Completeness axiom)
Let A C R be inhabited. If A has an upper bound, then A has a supremum.

The true power of the completeness axiom will become apparent later in the section when we
discuss the existence of limits of sequences of real numbers.

Before we embark on that adventure, we first prove that the rational numbers are not complete,
by exhibiting a subset of (Q that has no rational supremum.

303



304 Chapter 7. The real numbers

Proposition 7.2.8
Let A = {x € Q| x*> < 2}. Then A does not have a rational supremum.

A quick proof of Proposition 7.2.8 would be to verify that v/2, which is irrational, is a supremum
of A, and use uniqueness of suprema to deduce that there can be no rational supremum. However,
this is cheating. Failure of completeness is an intrinsic property—we should be able to prove
Proposition 7.2.8 without venturing outside of the realm of rational numbers at all. That is,
we cannot use irrational numbers in our proof. This makes the proof significantly longer, but
significantly more satisfying.

Proof of Proposition 7.2.8
Towards a contradiction, suppose that A has a supremum g.

First note that g > 0. Indeed, 12 < 2,sothat 1 € A, and so qg=1>0.
Next, we prove that g*> = 2. Indeed:

o Assume ¢°> < 2, so that 2 — g > 0. For each n > 1, we have

1\? 20 1
<q+> =+ s
n n n

- 1 2-4
Choose n sufficiently large that % < 275’2 and — < q
n

that

. Then by the above, we observe

1\? 2—¢* 2—¢?
<q+n) <t =2 =2

and so g+ % €A. Butg+ % > ¢, so this contradicts the assumption that ¢ is an upper bound
of A.

e Assume q2 > 2, so that q2 —2>0. Foreachn > 1, we have

1\? 1 1
)i
n n n

Choose n sufficiently large that % < g (< 2¢q) and Zn—" < ¢* —2. Then by the above work, we
observe that

1\? 2g

(q—) >q - =>q (¢ -2)=2
n n

Moreover g — % > 0 since % <q.

Suppose that g — % is not an upper bound for A. Then there is some x € A with x > g — % > 0.

But then (¢ — %)2 < x? < 2, contradicting the fact that (q - %)2 > 2.

Soq— % is an upper bound for A, contradicing the fact that g is a supremum of A.
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So we must have ¢> = 2. But this is impossible—the proof is identical to that of Proposi-
tion 3.1.48, but with all instances of ‘v/2” replaced by ‘¢’ in the proof.

So {x € Q| x* < 2} has no rational supremum. O

Sequences of real numbers

The rest of this chapter is dedicated to studying convergence of sequences of real numbers. We
will use the completeness axiom to find sufficient conditions for a sequence to converge.

Definition 7.2.9

A sequence of real numbers is a function x : N — R. Given a sequence x, we write x,, instead
of x(n) and write (x,),>0, or even just (x,), instead of x : N — R. The values x, are called the
terms of the sequence, and the variable # is called the index of the term x,,.

Example 7.2.10
Some very basic but very boring examples of sequences are constant sequences. For example,
the constant sequence with value O is

(0,0,0,0,0,0,...)

More generally, for fixed a € R, the constant sequence with value a is defined by x, = a for all
neN. <

Example 7.2.11
Sequences can be defined just like functions. For example, there is a sequence defined by x, = 2"
for all n € N. Writing out the first few terms, this sequence is

(1,2,4,8,16,...)

<

Sometimes it will be convenient to start the indexing of our sequence from numbers other than
0, particularly when an expression involving a variable n isn’t defined when n = 0. We’ll denote
such sequences by (x),>1 or (x,),>2, and so on.

Example 7.2.12

Let (z,)n>2 be the sequence defined by z, = % foralln > 2:

10 5 21
<673,27]()7...>

The indexing of this sequence begins at 2, rather than 0, since when n =0 or n = 1, the expression
(E1)(42) ¢ undefined. We could reindex the sequence: by letting z), = z,4 for all n > 0,

(n—1)n
we obtain a new sequence (z,),>0 defined by z), = % whose indexing starts from 0.

Fortunately for us, such matters won’t cause any problems—it’s just important to make sure that
whenever we define a sequence, we make sure the terms make sense for all of the indices. <
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Convergence of sequences

Of particular interest to us will be sequences whose terms get closer and closer to a fixed real
number. This phenomenon is called convergence.

Example 7.2.13
Consider the sequence (y,),>; defined by y, = % foralln > 1:

It is fairly clear that the terms y, become closer and closer to 0 as n grows; the following diagram
is a plot of y, against n for a few values of n. <
Example 7.2.14

Define a sequence (7,),>0 by r, = % for all n € N. Some of the values of this sequence are
illustrated in the following table:

n r, | decimal expansion
0 0 |0

1 1 1

2 3 ] 1.333...

3 % 1.5

. 2.0 .

10 | 2 | 1.818...
e |y

100 | 300 | 1.980...

1000 | 2000 | 1.998. ..

As n increases, the values of r,, become closer and closer to 2. <

The precise sense in which the terms of the sequences in Examples 7.2.13 and 7.2.14 ‘get closer’
to 0 and 2, respectively, is called convergence, which we will define momentarily in Defini-
tion 7.2.15.

First, let’s try to work out what the definition should be for a sequence (x,) to converge to a real
number a.

A naive answer might be to say that the sequence is ‘eventually equal to a’—that is, after some
point in the sequence, all terms are equal to a. Unfortunately, this isn’t quite good enough: if it
were, then the values r, = % from Example 7.2.14 would be equal to 2 for sufficiently large
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n. However, if for some n € N we have nzﬁ =2, then it follows that 2n = 2(n+ 1); rearranging
this gives 1 = 0, which is a contradiction.

However, this answer isn’t too far from giving us what we need. Instead of saying that the terms
X, are eventually equal to a, we might want to say that they become infinitely close to a, whatever
that means.

We can’t really make sense of an ‘infinitely small positive distance’ (e.g. Exercise 1.1.41), so
we might instead make sense of ‘infinitely close’ by saying that the terms x,, eventually become
as close to a as we could possibly want them to be. Spelling this out, this means that for any
positive distance € (IATzX code: \varepsilon) (read: ‘epsilon’)!*! no matter how small, the
terms x,, are eventually within distance € of a. In summary:

Definition 7.2.15
Let (x,) be a sequence and let a € R. We say that (x,) converges to a, and write (x,) — a (I&TEX
code: \to), if the following condition holds:

Ve>0,INeN,Vn >N, |x,—a| <€

The value a is called a limit of (x,). Moreover, we say that a sequence (x,) converges if it has
a limit, and diverges otherwise.

Before we move onto some examples, let’s quickly digest the definition of the expression (x,) —
a. The following table presents a suggestion of how you might read the expression ‘Ve >0, IN €
N,Vn > N, |x, —a| < € in English.

Symbols English

Ve >0... For any positive distance € (no matter how small). ..
...ANeN... ... thereis a stage in the sequence...

...Yn2N... ... after which all terms in the sequence. ..

...|xn —a|] < €. ...are within distance € of a.

Thus, a sequence (x,) converges to a if ‘for any positive distance € (no matter how small), there
is a stage in the sequence after which all terms in the sequence are within € of a’. After reading
this a few times, you should hopefully be content that this definition captures what is meant by
saying that the terms in the sequence are eventually as close to a as we could possibly want them
to be.

We are now ready to see some examples of convergent (and divergent) sequences. When read-
ing the following proofs, keep in mind the logical structure—that is, the alternating quantifiers
Ve...3N...Vn...—in the definition of (x,) — a.

[21The lower case Greek letter epsilon (€) is traditionally used in analysis to denote a positive quantity whose value
can be made arbitrarily small. We will encounter this letter frequently in this section and the next when discussing
convergence.
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Example 7.2.16
The sequence (y,) defined by y, = % for all n > 1 converges to 0. To see this, by Defini-
tion 7.2.15, we need to prove

Ve>0,ANeN,Vn >N,

n

1
—0’<8

So fix € > 0. Our goal is to find N € N such that ‘%! < ¢eforalln > N.

Let N be any natural number which is greater than é Then for all n > N, we have

1 1 1
—|=- since — > O foralln > 1
n| n n
< ! | >N
v since n >
N
< ! ince N > !
— since -
1/e €
=&
Hence |y,| < € for all n > N. Thus we have proved that (y,) — 0. <

Remark 7.2.17

The value of N you need to find in the proof of convergence will usually depend on the parameter
€. (For instance, in Example 7.2.16, we defined N to be some natural number greater than é.)
This is to be expected—remember that € is the distance away from the limit that the terms are
allowed to vary after the N term. If you make this distance smaller, you’ll probably have to go
further into the sequence before your terms are all close enough to a. In particular, the value of
N will usually grow as the value of € gets smaller. This was the case in Example 7.2.16: note
that % increases as € decreases. <

Example 7.2.18
Let (r,) be the sequence from Example 7.2.14 defined by r, = % for all n € N. We’ll prove
that (r,) — 2. So fix € > 0. We need to find N € N such that

2n
n+1

—2‘ <eforalln >N

To find such a value of n, we’ll first do some algebra. Note first that for all n € N we have

n+1 n+1

2
n 2':
n+1

2n—2(n+1)
n+1

-2 ‘ 2
n+1

Rearranging the inequality % < € gives = > é, and hence n > % —1.

To be clear, what we’ve shown so far is that a necessary condition for |r, — 2| < € to hold is that
n> % — 1. This informs us what the desired value of N might look like—we will then verify that
the desired inequality holds.
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So define N = % — 1. For all n > N, we have

2 2
A | by the above work
n+1 n+1
2 .
< — since n > N
N+1
2 . 2
<3 since N > — —1
(2-1)+1 £
= % rearranging
=€ rearranging

Thus, as claimed, we have |r, — 2| < € for all n > N. It follows that (r,) — 2, as required. <

Exercise 7.2.19
Let (x,) be the constant sequence with value a € R. Prove that (x,) — a. g

Exercise 7.2.20

Prove that the sequence (z,) defined by z, = % converges to 1. <
The following proposition is a technical tool, which proves that convergence of sequences is
unaffected by changing finitely many terms at the beginning of a sequence.

Proposition 7.2.21
Let (x,) be a sequence and suppose that (x,) — a. Let (y,) be another sequence and suppose
that there is some k € N such that x,, = y, for all n > k. Prove that (y,) — a.

Proof
Fix € > 0. We need to find N € N such that |y, —a| < € foralln > N.

Since (x,) — a, there is some M € N such that |x, —a| < € for all n > M. Let N be the greater
of M and k. Then for all n > N, we have y, = x,, since n > k, and hence |y, —a| = |x, —a| < €,
since n > M.

Hence (y,) — a, as required. O

Before we go too much further, let’s see some examples of sequences which diverge. Recall
(Definition 7.2.15) that a sequence (x,) converges if (x,) — a for some a € R. Spelling this out
symbolically, to say ‘(x,) converges’ is to say the following:

JaeR,Ve>0,INEN, VR =N, |x,—a| < €

We can negate this using the tools of Section 1.3: to say that a sequence (x,) diverges is to say
the following:
VacR,3e>0,YNeN,In=N, |x,—a| > €
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In more intuitive terms: for all possible candidates for a limit a € R, there is a positive distance
€ such that, no matter how far down the sequence you go (say xy), you can find a term x,, beyond
that point which is at distance > € away from a.

Example 7.2.22
Let (x,) be the sequence defined by x, = (—1)" for all n € N:

(1,-1,1,-1,1,—1,...)

We’ll prove that (x,) diverges. Fix a € R. Intuitively, if @ is non-negative, then it must be at
distance > 1 away from —1, and if a is negative, then it must be at distance > 1 away from 1.
We’ll now make this precise.

Solet € = 1, and fix N € N. We need to find n > N such that |(—1)" —a| > 1. We’ll split into
cases based on whether a is non-negative or negative.

e Suppose a > 0. Then —1 —a < —1 <0, so that we have
|-1—a|=a—(-1)=a+12>1
Soletn =2N+1. Then n > N and n is odd, so that
pon—al = [(=1)"—a| =[-1-a[ > 1
e Suppose a < 0. Then 1 —a > 1 > 0, so that we have
[1—al=1—a>1
Soletn =2N. Then n > N and » is even, so that
pon—al =[(=1)"—a| = |l —a| > 1

In both cases, we’ve found n > N such that |x, —a| > 1. It follows that (x,) diverges. <

Example 7.2.22 is an example of a periodic sequence—that is, it’s a sequence that repeats itself.
It is difficult for such sequences to converge since, intuitively speaking, they jump up and down
a lot. (In fact, the only way that a period sequence can converge is if it is a constant sequence!)

Exercise 7.2.23
Let (y,) be the sequence defined by y, = n for all n € N:

0,1,2,3,...)
Prove that (y,) diverges. <
Finding limits of sequences can be tricky. Theorem 7.2.25 makes it slightly easier by saying that
if a sequence is built up using arithmetic operations—addition, subtraction, multiplication and

division—from sequences whose limits you know, then you can simply apply those arithmetic
operations to the limits.

In order to prove part of Theorem 7.2.25, however, the following lemma will be useful.
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Lemma 7.2.24
Let (x,) be a sequence of real numbers. If (x,) converges, then (x,) is bounded—that is, there is
some real number k such that |x,| < k for all n € N.

Proof

Let a € R be such that (x,) — a. Letting € = 1 in the definition of convergence, it follows that
there exists some N € N such that |x, —a| < 1 for all n > N. It follows that —1 < x,, —a < 1 for
alln > N, and hence —(1 —a) < x, < l+aforalln > N.

Now define
k =max{|xo|, |x1],...,|[xn_1],]1 —al,|1 +a|} +1

For all n < N, we have
—k < —|xa] <xp < x| <k

so that |x,| < k. For all n > N, we have
—k<—|1—a<—(1—-a)<x,<l14+a<|l+a|l<k
so that |x,| < k.

Hence |x,| < k for all n € N, as required. O

Theorem 7.2.25

Let (x,) and (y,) be sequences of real numbers, let a,b € R, and suppose that (x,) — a and
(yn) — b. Then

@) (Xn+yn) = a+b;
(b) (Xn—yn) = a—b;
(
(3

(¢) (xnyn) — ab; and

(d) () — §.solongasy, #0 foralln € Nand b #O0.

Proof of (a) and (c)
(a). Fix € > 0. We need to prove that there is some N € N such that |(x, +y,) — (a+b)| < € for
alln > N.

e Since (x,) — a, there is some N; € N such that |x, —a| < § for all n > Ny;
e Since (y,) — b, there is some N, € N such that |x, —b| < § foralln > N;.

Let N be the greatest of N; and N>. Then for all n > N, we have n > N| and n > Ny; it follows
from the triangle inequality (Theorem 7.1.9), that

£

8
|+ yn) = (@+b)| = [(tn —a) + (n = b)| < pin —al +]yn —b| < 5 + 5
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as required.

(c). This one is a little harder. Fix € > 0. Since (x,) converges, it follows from Lemma 7.2.24
that there is some real number k with |x,| < k for all n € N.

e Since (x,) — a, there is some N; € N such that |x, —a| < ﬁ forall n > Ny;
e Since (y,) — b, there is some N, € N such that |x, —b| < &7 forall n > N,.

Let N be the greatest of N; and N,. Then for all n > N, we have

|Xuyn — ab| = |x,(yn — b) + b(x, — a)| rearranging
< %0 (yn — b)|+ |b(x, — a)| by the triangle inequality
= [xn|[yn — b| + |D||xn — 4 rearranging
< klyn —b|+1b||x, —a| since |x,| < k for all n
€ €
<kﬂ+|b|m sincen > Njandn > N,
=€ rearranging
Hence (x,y,) — ab, as required. O
Exercise 7.2.26
Prove parts (b) and (d) of Theorem 7.2.25. <

Theorem 7.2.25 appears obvious, but as you can see in the proof, it is more complicated than
perhaps expected. It was worth the hard work, though, because we can now compute more
complicated limits formed in terms of arithmetic operations by taking the limits of the individual
components.

The following example uses Theorem 7.2.25 to prove that (;2%) — 2 in a much simpler way
than we saw in Example 7.2.18.

Example 7.2.27
We provide another proof that the sequence (r,) of Example 7.2.14, defined by r, = % for all
n € N, converges to 2.

For all n > 1, dividing by the top and bottom gives

2

r,=—

The constant sequences (2) and (1) converge to 2 and 1, respectively; and by Example 7.2.16,
we know that (1) — 0. It follows that

as required. <
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Exercise 7.2.28
Let (x,) be a sequence of real numbers converging to a real number a, and let p(x) = ap + alx +

)"

The so-called squeeze theorem provides another means of computing limits. It says that if we
can eventually ‘squeeze’ the terms of a sequence (y, ) between terms of two other sequences that
converge to the same limit, then we can deduce that (y,) converges to the same limit.

.-+ ayx? be a polynomial function. Prove that (p(x,)) — p(a), and that (

pla) #0.

Theorem 7.2.29 (Squeeze theorem)
Let (x,), (y») and (z,) be sequences of real numbers such that:

(i) (x,) — aand (z,) — a; and

(i) There is some k € N such that x,, <y, < z, forall n > k.
Then (y,) — a

Proof
Fix € > 0. We need to find N € N such that |y, —a| < € foralln > N.

Since (x,) — a and (z,) — a, there exist N, N, € N such that

o |x,—a| <eforalln> Ny

e |z,—a|l <eforalln > Ny.

Let N = max{N;,N,k}. Then for all n > N, we have:

o |x,—a| <esincen>=N > Ni;

® |z,—a| < esincen >N > N,; and

o x, <y,<zpsincen>N =k.

We will prove that |y, —a| < € for all n > N. To see this let n > N. Either y, > a or y, <

e Ify, > a, then we have a <y, < z,,. It follows that
yn—al=yn—a<z—a=|m—al <e
e Ify, < a, then we have x,, < y, < a. It follows that
vw—al=a—y, <a—x,=|x,—a| <&
Since in both cases we have proved |y, —a| < €, we may conclude that (y,) — a. O
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Example 7.2.30

. 1
Fix k > 1. We prove that the sequence (—k) n>1 converges to zero.
n

Note that n¥ > n, so that we have 0 < ,le < % for all n € N. We know that (%) — 0 by Ex-
ample 7.2.13, and (0) — O since it is a constant sequence, so the squeeze theorem implies that

(&) —0. <
Exercise 7.2.31
Use the squeeze theorem, together with Example 7.2.30, to prove that (27") — 0. <

Exercise 7.2.32
Fix d € N, and let p(x) = ap+ayx+--- +agx? and g(x) = bo +b1x+ - - - + byx? be polynomials

with real coefficients. Prove that if b; # 0, then (p (n)) — dd

qn)) by’ -

Uniqueness of limits

We now prove that a sequence can have at most one limit. This will allow us to talk about ‘the’
limit of a sequence, and introduce notation for the limit of a sequence.

Theorem 7.2.33 (Uniqueness of limits)
Let (x,) be a sequence and let a,b € R. If (x,,) — a and (x,) — b, then a = b.

Proof

We’ll prove that |a — b| = 0, which will imply that @ = b. To do this, we’ll prove that |a — b| is
not positive: we already know it’s non-negative, so this will imply that it is equal to zero. To
prove that |a — b| is not positive, we’ll prove that it is less than every positive number.

So fix € > 0. Then also % > 0. The definition of convergence (Definition 7.2.15) tells us that:

e There exists N1 € N such that |x, —a| < § forall n > N; and
e There exists N, € N such that |x, —b| < § forall n > N;.
Let n be the greatest of Ny and N,. Then n > Ny and n > N,, and hence
£ €
X, —a| < 3 and |x,—b| < 3
By the triangle inequality (Theorem 7.1.9), it follows that

la—b| =|(a—xn)+ (x, — b)| by cancelling the x, terms
< |la—xq|+ %, — b by the triangle inequality
= |xy —a| + |x, — b by Exercise 7.1.5
E &£
<§+§:8 sincen>Nyandn > N,
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Since |a —b| < € for all € > 0, it follows that |a — b| is a non-negative real number that is less
than every positive real number, so that it is equal to zero.

Since |a —b| =0, we have a —b = 0, and so a = b. O

Theorem 7.2.33 justifies the following notation.

Definition 7.2.34
Let (x,) be a convergent sequence. The limit of (x,) is denoted by lim (x,) (IZ[EX code:
n—yoo

\lim_{n \to \infty}).

Take heed of the fact that the symbol ‘e’ in Definition 7.2.34 does not have meaning on its
own—it is simply a means of suggesting that as the index n gets greater, the values x, of the
terms in the sequence get closer to the limit.

Example 7.2.35
Examples 7.2.16 and 7.2.18 tell us that

2n

limlzo and lim —2

n—oon n—eo 11+

Existence of limits

It is often useful to know that a sequence converges, but not necessary to go to the arduous
lengths of computing its limit. However, as it currently stands, we don’t really have any tools
for proving that a sequence converges other than finding a limit for it! The remainder of this
section is dedicated to deriving tools for finding out when a sequence does or does not converge,
without needing to know exactly what the limit is.

Perhaps the most fundamental result is the monotone convergence theorem (Theorem 7.2.40),
since it underlies the proofs of all the other results that we will prove. What it says is that if the
terms in a sequence always increase, or always decrease, and the set of terms in the sequence is
bounded, then the sequence converges to a limit.

The sequence (r,,) from Example 7.2.14, defined by r, = % forall n € N, is an example of such
a sequence. We proved that it converged by computing its limit in Example 7.2.18 and again in
Example 7.2.27. We will soon (Example 7.2.43) use the monotone convergence theorem to give
yet another proof that it converges, but this time without going to the trouble of first finding its
limit.

Before we can state the monotone convergence theorem, we must first define what we mean by
a monotonic sequence.
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Definition 7.2.36
A sequence of real numbers (x,,) is. . .

e ...increasing if m < n implies x,, < x, for all m,n € N;

e ...decreasing if m < n implies x,, > x,, for all m,n € N.
If a sequence is either increasing or decreasing, we say it is monotonic.

Example 7.2.37
The sequence (x,) defined by x, = n® foralln € Nis increasing, since for all m,n € N, it m < n,
then m2 < n?. To see this, note that if m < n, then n —m > 0 and n+m > 0, so that

n?—m*=(n—m)(n+m)=0-0=0

and hence n> > m?, as required. <

Example 7.2.38
The sequence (r,) from Examples 7.2.14 and 7.2.27, defined by r, = % for all n € N, is
increasing. To see this, suppose m < n. Then n = m+ k for some k > 0. Now

0<k by assumption
s m’+km+m<m® +km+m+k adding m? + km + m to both sides
smm+k+1)< (m+1)(m+k) factorising
Smn+1)< (m+1)n since n =m-+k
= miﬂ < nil dividing both sides by (m+ 1)(n+1)

S S T by definition of (r,)

Note that the step where we divided through by (m+ 1)(n+ 1) is justified since this quantity is
positive.

It is perhaps useful to add that to come up with this proof, it is more likely that you would
start with the assumption r,, < r,, and derive that kK > 0—noting that all steps are reversible then
allows us to write it in the ‘correct’ order. <

Exercise 7.2.39
Prove that the sequence (5" — n°),0 is eventually increasing—that is, there is some k € N such
that (5" — n>),> is an increasing sequence. <

The monotone convergence theorem underlies all of the other tools for proving convergence of
sequences that are to follow. It makes essential use of the completeness axiom.
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Theorem 7.2.40 (Monotone convergence theorem)
Let (x,) be a sequence of real numbers.

(a) If (x,) is increasing and has an upper bound, then it converges;

(b) If (x,) is decreasing and has a lower bound, then it converges.

Proof of (a)
We prove (a) here—part (b) is Exercise 7.2.41.

So suppose (x,) is increasing and has an upper bound. Then:
(1) x, < x, forall m < n;and
(i) There is some real number u such that u > x, for all n € N.

Condition (ii) tells us that the set {x, | » € N} C R has an upper bound. By the completeness
axiom, it has a supremum a. We prove that (x,,) — a.

So let € > 0. We need to find N € N such that |x, —a| < € foralln > N.
Since a is a supremum of {x, | n € N}, there is some N € N such that xy > a — €.

Since (x,) is increasing, by (i) we have xy < x, for all n > N. Moreover, since a is an upper
bound of the sequence, we actually have xy < x, <aforalln > N.

Putting this together, for all n > N, we have

Xy —al =a—x, since x, —a <0
<a—xy since xy < x, foralln > N
<€ since xy > a— €
It follows that (x,) — a, as required. O

Exercise 7.2.41
Prove part (b) of the monotone convergence theorem (Theorem 7.2.40). That is, prove that if a
sequence (x,) is decreasing and has a lower bound, then it converges. <

Example 7.2.42
The monotone convergence theorem can be used to show that many of the sequences that we
have already seen converge, although it doesn’t tell us what their limit is. For example, (%)

converges since it is a decreasing sequence that is bounded below by 0. <

Example 7.2.43
Let (r,) be our recurring example sequence from Examples 7.2.14, 7.2.27 and 7.2.38, defined
by r, = nz% for all n € N. We proved in Example 7.2.38 that (r,) is increasing. Moreover, for

all n € N we have
2n <2(n—|—1) )
r, = =
" n+1 n+1
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and so (r,) is bounded above by 2. By the monotone convergence theorem, the sequence ()
converges. Unfortunately, the monotone convergence theorem does not tell us what the limit of

(ry) is, but we have already computed it twice! <
Exercise 7.2.44
Use the monotone convergence theorem to prove that the sequence () converges. <

Exercise 7.2.45
A sequence (x,) is defined recursively by xo = 0 and x,,+1 = /2 + x, for all n > 0. That is,

xn:\/2+\/2+\/---+f2

n2’s

Prove that (x,) converges. <

We now define the notion of a subsequence of a sequence. A subsequence of a sequence is just
like a subset of a set, except we can only pick out terms in a sequence in the order they appear.

Definition 7.2.46
Let (x,) be a sequence of real numbers. A subsequence of (x,) is a sequence of the form
(Xn;)i=0, Wwhere n; < nj forall 0 <i < j.

In Definition 7.2.46 we were careful to write (x,,);>0 rather than just (x,,), because we wanted
to emphasise that the indexing variable is i, rather than n. This is good practice in any situation
where confusion might arise over which variable is the indexing variable.

Example 7.2.47
Define a sequence (x,) by x, = (—1)" for all n > 0.

(xn)ns0=(1,—1,1,—1,1,—1,...)

The subsequence (x;) is the constant sequence with value 1, since for each i > 0 we have
x2i = (—1)% = 1, and the subsequence (x2;41) is the constant sequence with value — 1, since for
each i > 0 we have xp; 1| = (—1)%*+! = —1. 4

Theorem 7.2.48
Let (x,) be a sequence, let a € R, and suppose (x,) — a. Then every subsequence of (x,)
converges to a.

Proof
Let (xy,)i>0 be a subsequence of (x,). We need to prove that (x,,) — a as i — co. To this end, fix
€ > 0. We need to find 7 > 0 such that |x,, —a| < € forall i > 1.
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Since (x,,) — a as n — oo, there exists some N > 0 such that |x, —a| < € foralln > N. LetI >0
be least such that n; > N. We know that I exists since we have 0 <ng <n; <np <....

But then for all i > I, we have n; > n; > N, and hence |x,, — a| < € by definition of N.

Hence the subsequence (x,,) converges to a, as required. O

Exercise 7.2.49
Prove that a subsequence of an increasing sequence is increasing, that a subsequence of a de-
creasing sequence is decreasing, and that a subsequence of a constant sequence is constant. <

We can use the monotone convergence theorem and the squeeze theorem to prove the following
very powerful result, which is related to a notion in the field of topology known as sequential
compactness.

Theorem 7.2.50 (Bolzano-Weierstrass theorem)
Every bounded sequence of real numbers has a convergent subsequence.

Proof
Let (x,) be a sequence of real numbers and let a,b € R be such that a < x, < b for each n > 0—
the numbers a and b exist since the sequence (x,) is bounded.

Our strategy is as follows. The sequence (x,) is entirely contained inside the interval [a,b],
which has length £ = b —a. Letting ¢ = # be the (arithmetic) mean of a and b, we see that
one of the intervals [a,c| or [c,b], or possibly both, must contain infinitely many terms of the
sequence (x,)—but then this defines a subsequence of (x,) which is entirely contained inside
a sub-interval of [a,b] whose length is % We iterate this process inductively, obtaining smaller
and smaller intervals that contain infinitely many terms in the sequence (x,). The end-points
of these intervals are then bounded monotone sequences—the sequence of lower end-points is
increasing, and the sequence of upper end-points is decreasing. The monotone convergence
theorem implies that both sequences converge. We will prove that they converge to the same

limit, thereby ‘trapping’ a subsequence of (x,), which will converge by the squeeze theorem.

Now let’s put our strategy into action. We will define the terms n;, a; and b; by induction on i,
and then verify that the resulting subsequence (x,,);>o converges.

First, define ng =0, ag = a and by = b.
Now fix i > 0 and suppose that the numbers 7;, a; and b; have been defined in such a way that:
(i) X, € [ai, bil;
(ii) x, € [a;,b;] for infinitely many n > n;;
(i) aj < a; <b; < bjforall j<i;and
(iv) bi—a; = %.
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Write ¢; = %b’ By condition (ii), it must be case that infinitely many of the terms x,,, for
n > n;, are contained in either [a;,¢;] or in [c;,b;]. In the former case, define a;.; = a; and
bi+1 = ¢;; and in the latter case define a;11 = ¢; and b;+; = b;; and then define n;;; > n; such
that x,,,, € [aj+1,biy1].

Note that conditions (i)—(iv) are satisfied, with i now replaced by i+ 1. Indeed, (i) and (ii) are
satisfied by definition of a;;1,b;+| and n;;;. Condition (iii) is satisfied since either a;+| = a; or
ajr1 = % > a;, and likewise for b; ;. Condition (iv) is satisfied since

a,--f—b,- _bi—ai_€/2i_ {
2 YT Ty Ty T o

Ci—a; =

and likewise b; — ¢; = %

Since by construction we have n; < n;4; for each i > 0, we have defined a subsequence (xy,)i>0
of (x,).

Now the sequence (a;) is increasing and is bounded above by b, and the sequence (b;) is decreas-
ing and is bounded below by a. By the monotone convergence theorem (a;) — a* and (b;) — b*
for some a*,b* € R. But moreover we have

14
E :b,-fa,- — b —a*
Since % — 0, we have b* — a* = 0 by uniqueness of limits, and so a* = b*. Write x* for the
common value of @* and b*.

Finally, we have a; < x,,, < b; for all i > 0, so that x,, — x* by the squeeze theorem. O]

The Bolzano—Weierstrass theorem can be used to prove that a sequence converges by verifying
that its terms get arbitrarily close together. Such sequences are called Cauchy sequences, and
the fact that all Cauchy sequences converge is proved in Theorem 7.2.54.

Definition 7.2.51
A Cauchy sequence is a sequence (x,) of real numbers such that, for all € > 0, there exists
N € N such that |x,, —x,| < € for all m,n > N.

Example 7.2.52
Let (r,) be our favourite recurring example sequence from Examples 7.2.14, 7.2.27, 7.2.38

2
and 7.2.43, defined by r, = —
n+1

for all n € N. We prove that (r,) is Cauchy.

First note that, given m,n > 1, we have

| | 2m 2n 2|m—n| 2i -1
Tm—1Tn| = - = =
T mt T a1 m D) 1+ D+
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Now fix € > 0, and let N € N be such that i < % and % < % for all m,n > N. Note that such a
value of N exists by Example 7.2.13.

Now let m,n > N. Then |1 — L < £ since both L and ! are elements of (0,5). Moreover

1—1—% > 1 and 1—1—% > 1. It follows that, for all m,n > N, we have

Hence (r,) is Cauchy, as claimed. <

The following exercise generalises the previous example.

Exercise 7.2.53
Prove that every convergent sequence is a Cauchy sequence. <

Theorem 7.2.54
Every Cauchy sequence of real numbers converges.

Proof
Let (x,) be a Cauchy sequence of real numbers.

First note that (x,) is bounded. To see this, note that by definition of Cauchy sequences, there is
some N € N such that |x,, —x,| < 1 for all m,n > N. In particular, |x,, —xy| < 1 for all m > N.
This means that the sequence (x,) is bounded below by

a =min{xg,xy,...,Xny—1,Xv — 1}

and is bounded above by
b = max{xg,xp,...,Xxy_1,xy + 1}

By the Bolzano—Weierstrass theorem (Theorem 7.2.50), the sequence (x,) has a convergent
subsequence (x,,). Let x* = lim;_,.(x,,). We prove that (x,) — x*.

So let € > 0. Fix M sufficiently large that:
o |x,, —x*| < £ forall n; > M; and
® |x, —x,| < 5 forallm,n> M.

Such a value of M exists by convergence of (x,,) and the Cauchy property of (x;,).
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Fix n > M, and let i € N be arbitrary such that n; > M. Then we have

[on — 7|

= |(xn — xa1) + (Xpr — X)) + (x5, — x7)| rearranging

< X0 — xp| 4 [xm — 2, |+ |2, — X by the triangle inequality
) £ )

<z+tz+t3 by the above properties
3 3 3

=g

Hence (x,) — x*, as required.
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Section 7.3
Series and sums

Warning!
This section is not yet finished—do not rely on its correctness or completeness.

To do:
Proposmon 7 3.1
The series Z diverges.

Idea of proof
By rounding up denominators to the next power of 2, we get

1+1+1+1+1+1+1+1+ SRR I PIR R IV

17273745767 12448 8'8'8
—— N——
=1/2 =1/2

This provides a lower bound on the sum, which is infinite since we are adding infinitely many

multiples of % The following proof makes this idea precise. O
Proof
For each k € N and each 2¢ < r < 2¢!, we have 1 > 2¢*1. Therefore
2k+1 2k+1 k
1 1 1 2 1
L > Lo =@ g = gm=
r=2k+1 r=2k+1

It follows that

[ 1 [ 2k+l 1 [ 1

Yo =1+ Z Y ozl+) s=e

r=0 =0 r=2k+1 k=0
and so the series diverges. ]
To do:
Proposition 7.3.2

1
Letx € R with —1 < x < 1. Then Zx”: .
1—x
neN
Proof
Given N € N, the N™ partial sum Sy of the series is given by by
N
Sv=Y " =1+x+x"+ - +x"
n=0
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Note that .
xSy = Zx”“ =x4 20N =5y — 1
n=0

and hence
(1 —x)SN = SN—XSN = SN— (SN+1 — 1) =1- (SN+1 —SN) =1 —XN+1

and hence dividing by 1 —x, which is permissible since x # 1, yields

1 _xNJrl
Sy=——
1—x
To do: Finish proof O

Proposition 7.3.3

Let x € R with —1 < x < 1. Then Z " =
neN

(1-x)
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Section 7.4
Continuous functions

Warning!
This section is not yet finished—do not rely on its correctness or completeness.

To do:

Open sets

To do:

Definition 7.4.1
A subset U C R is open if, for all a € U, there exists some 6 > 0 such that (a —6,a+9) CU.

Example 7.4.2
The subset R of R is open, since for all a € R, we have (a — 1,a+1) CR. <

Example 7.4.3
The subset Z C R is not open. To see this, let a € Z. Fix 6 > 0 and define 8’ = min{4, 1}. Then

!/

1)
a—5<a<a+3<a—|—5’<a+5

soa—i—%/ € (a—5,a+5).However,a<a+%, ga—i—% <a—|—1,andsoa+%/ & 7.

We have shown that there is no § > 0 such that (a — §,a+ &) C Z, so that Z is not open. <

Exercise 7.4.4
Prove that @ and (0,c0) are open subsets of R, and that [0,0) and Q are not open subsets of
R. <

Open sets are very closely related to open intervals, as we shall see in Theorem 7.4.7.

Proposition 7.4.5
Let a,b € R with a < b. Then the open interval (a,b) is open.

Proof
Let x € (a,b), and define § = min{x — a,b —x}. Note that § > 0 since a < x < b.

To see that (x— 0,x+8) C (a,b),lety € (x— ,x+ ). Then since § < x — a, we have
y>x—0=2x—(x—a)=a
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and since 6 < b —x we have
y<x+0<x+(b—x)=b

Hence a <y < b, soy € (a,b), as required. O

Exercise 7.4.6 (Arbitrary unions of open sets are open)
Let {U; | i € I} be a family of open subsets of R. Prove that [ J;; U; is open. <

Theorem 7.4.7
A subset U C R is open if and only if it is a union of open intervals.

Proof
Since open intervals are open (Proposition 7.4.5) and unions of open sets are open (Exer-
cise 7.4.6), it follows that if a subset U C R is a union of open intervals then it is open.

Conversely, suppose U C R is open. For each a € U, let §, > 0 be such that (a — 5,,a+6,) CU.
We prove that U = ey (@ — 64,a+ 6,).

e (O)Letxe U. Thenx € (x — &y, x+ &), 50 x € Uyep(a— 8,a+ 6,).
o (O)Letx € Uycy(a—8a,a+6,). Thenx € (a— 84,a+ 6,) for some a € U, and so x € U by
our assumption that (a — &,,a+9,) CU.

Hence U is a union of open intervals, as required. O

To do:

Proposition 7.4.8 (Finite intersections of open sets are open)
Letn € N and let U;,Us, ..., U, be open subsets of R. Then the intersection ();_; Uy is open.

Proof
Define U =(;_; Ux and let a € U. Then a € U, for each k € [n].

Since each set Uy, is open, there exist positive real numbers & > 0 such that (a — &, a+ &) C Uy.
for each k € [n].

Now define 6 = min{& | k € [n]}. Then & > 0. To see that (a—6,a+0) CU,letx € (a—8,a+
0). Then for each k € [n] we have

a—O <a—0<x<a+d6<a+od
so that x € (a — &8,a+ &). But then x € Uy since (a — &,a+ &) C Uy.

Since x € Uy, for each k € [n], we have x € U. So (a — 6,a+ &) C U, as required. O
Exercise 7.4.9

Find a family {U, | n € N} of open subsets of R whose intersection is not open. <
To do:
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Continuous functions

To do:

Convention 7.4.10

When discussing functions f : D — R in this section, we assume that the domain D is an in-
habited interval in R. Thus either D = R, or D is one of the subsets of the kind defined in
Definition 2.1.11. <

Definition 7.4.11
Let f: D — R be a function and let @ € D. Then f is continuous at « if, for all € > 0, there
exists 0 > 0 such that, for all x € D, if [x — a| < &, then |f(a) — f(x)| < €. That is:

Ve>0,30 >0,VxeD, (x—a| <8 =|f(x)— f(a)] < &)

We say f is continuous if f is continuous at a for all @ € D.
To do: Examples, etc.

Theorem 7.4.12
Let f: D — R be a function. Then f is continuous if and only if, for all open subsets U C R, we
have f~!'[U] = VN D for some open V C R.

Proof

e (=) Suppose f is continuous, and let U C R be open. If f~![U] = @, then we can take V = @.
So assume that f~![(a,b)] is inhabited and fix p € f~[U].

Since f(p) € U and U is open, there exists £, > 0 such that

(f(p) —&p, f(p)+&)CU
By continuity of f, there exists J, > 0 such that, for all x € D, if |x — p| < §,, then |f(x) —
f(p)l <.
But this says precisely that if x € (p — 8,, p+ 0,) N D, then f(x) € (f(p) — €&y, f(p) +&p).
Since (f(p) — €y, f(p) +€,) C U, it follows that (p — 8,,p+8,)ND C f~[U].

Define V C R by
Vv="J (p—=8,p+8))

pef'U]
Then V is open by Theorem 7.4.7, and VN D C f~[U] since each (p — 8,,p+8,) C f[U].

To see that f~'{U] CVND,let pe f{U]. Then p€ D and p € (p—§,,p+ 6,), so that
p € VN D as required.

So we have f~![U] = VN D, with V C R open, as required.
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e (<=) Suppose that for all open subsets U C R, we have f~!'[U] =V ND for some open V C R.
Leta € Dandlet € > 0. Let V C R be an open set such that

S (@)~ e, fla)+ )] =vND
In particular, we have a € VN D, so a € V, and so there is some § > 0 such that (a — §,a +
d)CV.

Now let x € D with |x —a| < 8. Thenx € VND, and so f(x) € (f(a) — &€, f(a) + €). But then
|f(x)— f(a)| < &, as required.

So f is continuous.
O

Exercise 7.4.13
Prove that a function f : D — R is continuous if and only if, for all sequences (x,) in D such that
(x,) — a € D, we have (f(x,)) — f(a). <

To do:

Limit of a function
To do:

Definition 7.4.14

Let D C R. An interior point of D is an element a € D such that (a — §,a+ §) C D for some
0 > 0. Write D° (I&TEX code: D™ {\circ}) for the set of all interior points of D, called the
interior of D.

Example 7.4.15
Consider the half-open interval [0, 1). The element 3 € [0, 1) is an interior point of [0, 1), since

(3—3,3+3)=1(0,1) C[0,1). However, the element 0 is not a limit point of [0, 1), since for all
0 > 0 we have —ge(—é,é) but —g [0,1). <
Exercise 7.4.16

Prove that a subset U C R is open if and only if U° = U. <
To do:

Definition 7.4.17
Let f: D — R be a function, let a € D°. A limit of f(x) as x tends to a is a real number ¢ such
that

Ve>0,36 >0,VxeD,(0< |x—a|<d=|f(x)— ¢ <¢€)

We write ‘f(x) — £ as x — a’ to denote the assertion that f(x) tends to £ as x tends to a.
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To do:

Exercise 7.4.18
Let f: D —R,a € D°and ¢,¢, € R. Prove that if f(x) — ¢; as x — a, and f(x) — ¢, asx — a,

then ¢ = 4. <
To do:

Boundedness

To do:
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Section 7.Q
Chapter 7 exercises

Under construction!
The end-of-chapter exercise sections are new and in an incomplete state.
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Probability and measure
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Section 8.1

Discrete probability spaces

Probability theory is a field of mathematics which attempts to model randomness and uncertainty
in the ‘real world’. The mathematical machinery it develops allows us to understand how this
randomness behaves and to extract information which is useful for making predictions.

Discrete probability theory, in particular, concerns situations in which the possible outcomes
form a countable set. This simplifies matters considerably: if there are only countably many
outcomes, then the probability that any event occurs is determined entirely by the probabilities
that the individual outcomes comprised by the event occur.

For example, the number N of words spoken by a child over the course of a year takes values in
N, sois discrete. To each n € N, we may assign a probability that N = n, which can take positive
values in a meaningful way, and from these probabilities we can compute the probabilities of
more general events occurring (e.g. the probability that the child says under a million words).
However, the height H grown by the child over the same period takes values in [0,0), which is
uncountable; for each h € [0,o0), the probability that H = h is zero, so these probabilities give
us no information. We must study the behaviour of H through some other means.

In this chapter, we will concern ourselves only with the discrete setting.

It is important to understand from the outset that, although we use language like outcome, event,
probability and random, and although we use real-world examples, everything we do concerns
mathematical objects: sets, elements of sets, and functions. If we say, for example, “the probab-
ility that a roll of a fair six-sided die shows 3 or 4 is 3,” we are actually interpreting the situation
mathematically—the outcomes of the die rolls are interpreted as the elements of the set [6]; the
event that the die shows 3 or 4 is interpreted as the subset {3,4} C [6]; and the probability that
this event occurs is the value of a particular function P : &2([6]) — [0, 1] on input {3,4}. The
mathematical interpretation is called a model of the real-world situation.
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Definition 8.1.1
A discrete probability space is a pair (Q,P) (IXTgX code: (\Omega, \mathbb{P})), consist-
ing of a countable set Q and a function P : 22(Q) — |0, 1], such that

(i) P(Q)=1;and

(ii) (Countable additivity) If {A; | i € I} is any family of pairwise disjoint subsets of Q,
indexed by a countable set /, then

P (UAi> = Z;P(Ai)
icl ic

The set Q is called the sample space; the elements @ € Q are called outcomes;” the subsets
A C Q are called events; and the function IP is called the probability measure. Given an event
A, the value IP(A) is called the probability of A.

“The symbols Q, ® (I£TEX code: \Omega, \omega) are the upper- and lower-case forms, respectively, of the Greek
letter omega.

There is a general notion of a probability space, which does not require the sample space Q to
be countable. This definition is significantly more technical (Definition 8.3.10), so we restrict
our attention in this section to discrete probability spaces. Thus, whenever we say ‘probability
space’ in this section, the probability space can be assumed to be discrete. However, when our
proofs do not specifically use countability of €, they typically are true of arbitrary probability
spaces. As such, we will specify discreteness in the statement of results only when countability
of the sample space is required.

Example 8.1.2
We model the roll of a fair six-sided die.

The possible outcomes of the roll are 1, 2, 3, 4, 5 and 6, so we can take Q = [6] to be the sample
space.

The events correspond with subsets of [6]. For example:

{4} is the event that the die roll shows 4. This event occurs with probability %.

{1,3,5} is the event that the die roll is odd. This event occurs with probability %

{1,4,6} is the event that the die roll is not prime. This event occurs with probability %

{3,4,5,6} is the event that the die roll shows a number greater than 2. This event occurs with
probability %

{1,2,3,4,5,6} is the event that anything happens. This event occurs with probability 1.

& is the event that nothing happens. This event occurs with probability 0.
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More generally, since each outcome occurs with equal probability %, we can define

A
P(A) = u for all events A

We will verify that P defines a probability measure on [6] in Example 8.1.6. <

Example 8.1.3
Let (Q,P) be a probability space. We prove that P(&) = 0.

Note that Q and @ are disjoint, so by countable additivity, we have
1=P(Q)=PQUZ)=P(Q)+P(2)=1+P(2)

Subtracting 1 throughout yields P(2) = 0, as required. <

Exercise 8.1.4
Let (Q,P) be a probability space. Prove that

P(Q\A) =1 —P(A)

for all events A. <

Countable additivity of probability measures—that is, condition (ii) in Definition 8.1.1—implies
that probabilities of events are determined by probabilities of individual outcomes. This is made
precise in Proposition 8.1.5.

Proposition 8.1.5
Let Q be a countable set and let P : &(Q) — [0, 1] be a function such that P(Q) = 1. The
following are equivalent:

(i) P is a probability measure on Q;
() Y P{w})=P(A)forallA C Q.
WEA

Proof
Since P(Q) = 1, it suffices to prove that condition (ii) of Proposition 8.1.5 is equivalent to
countable additivity of P.

e (i)=-(ii). Suppose PP is a probability measure on Q. Let A C Q.

Note that since A C Q and Q is countably infinite, it follows that {{®} | @ € A} is a countable
family of pairwise disjoint sets. By countable additivity, we have

P(A) =P ( U {w}> =) P({o})
WEA weA
as required. Hence condition (ii) of the proposition is satisfied.

334



Section 8.1. Discrete probability spaces 335

e (ii)=-(i). Suppose that Y P({w}) =P(A) for all A C Q. We prove that [P is a probability
WEA
measure on £.
Solet {A; | i € I} be a family of pairwise disjoint events, indexed by a countable set /. Define
A ={J;c;A;. Since the sets A; partition A, summing over elements of A is the same as summing
over each of the sets A; individually, and then adding those results together; specifically, for
each A-tuple (py)wea, we have

Y ro=Y Y ro

WEA i€l meA;
Hence
P(A) = Z P{w}) by condition (ii) of 