
An infinite descent into
pure mathematics

∞
∞
∞
∞
∞
∞
∞
...

by Clive Newstead

Version 0.1, revision 1
Last updated on Friday 7th September 2018



2

2



Note to readers

Hello, and thank you for taking the time to read this quick introduction to the book!
I would like to begin with an apology and a warning:

This book is still under development!

That is to say, there are some sections that are incomplete (notably Sections 6.2 and
6.3, and all of Chapter 8), as well as other sections which are currently much more
terse than I would like them to be.

An up-to-date version of this book is be available from the following web page:

http://infinitedescent.xyz

As the book is undergoing constant changes, I advise that you do not print the notes
in their entirety—if you must print them at all, then I suggest that you do it a few
pages at a time, as required.

This book was designed with inquiry and communication in mind, as they are central
to a good mathematical education. One of the upshots of this is that there are many
exercises throughout the book, requiring a more active approach to learning, rather
than passive reading. These exercises are a fundamental part of the book, and
should be completed even if not required by the course instructor. Another upshot
of these design principles is that solutions to exercises are not provided—a student
seeking feedback on their solutions should speak to someone to get such feedback,
be it another student, a teaching assistant or a course instructor.

Navigating the book

The material covered in Chapters 1 and 2 can be considered prerequisite for all sub-
sequent material in the book; any introductory course in pure mathematics should
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cover at least these two chapters. The remaining chapters are a preview of other
areas of pure mathematics. The dependencies between the sections in Chapters 3–8;
dashed arrows indicate that a section is a recommended, rather than required, for
another.

3.1 4.1 4.2 4.3 8.2

3.2 8.4 7.1 7.2 7.3

3.3 6.1 6.2 6.3 8.5

8.1 5.1 5.2 5.3 8.3

What the numbers, colours and symbols mean

Much of the material in this book is broken into enumerated items which, broadly
speaking, fall into one of four categories: results (often followed by proofs), defin-
itions, examples (including exercises for the reader), and remarks. These items
are colour-coded as indicated in the previous sentence, and are enumerated accord-
ing to their section—for example, Theorem 1.3.10 is in Section 1.3. Particularly
important theorems, definitions and so on, appear in a box .

You will also encounter the symbols �, C and ?, whose meanings are as follows:

� End of proof. It is standard in mathematical documents to identify when a
proof has ended by drawing a small square or by writing ‘Q.E.D.’ (The latter
stands for quod erat demonstrandum, which is Latin for what was to be shown.)

C End of item. This is not a standard usage, and is included only to help
you to identify when an item has finished and the main content of the book
continues.

? Optional content. Sections, exercises, results and proofs marked with this
symbol can be skipped over. Usually this is because the content is very chal-
lenging, or is technical in a way that is mathematically necessary but educa-
tionally not very important.

Licence

This book is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 (cc by-nc-sa 4.0) licence. This means you’re welcome to share this
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book, provided that you give credit to the author, and that any copies or derivatives
of this book are released under the same licence, are freely available and are not for
commercial use. The full licence is available at the following link:

http://creativecommons.org/licenses/by-nc-sa/4.0/

Comments and corrections

Any feedback, be it from students, teaching assistants, instructors or any other
readers, would be very much appreciated. Particularly useful are corrections of
typographical errors, suggestions for alternative ways to describe concepts or prove
theorems, and requests for new content (e.g. if you know of a nice example that
illustrates a concept, or if there is a relevant concept you wish were included in the
book). Such feedback can be sent to me by email (cnewstead@northwestern.edu).
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14 Chapter 1. Mathematical reasoning

Section 1.1

Getting started

Before we can start proving things, we need to eliminate certain kinds of statements
that we might try to prove. Consider the following statement:

This sentence is false.

Is it true or false? If you think about this for a couple of seconds then you’ll get
into a bit of a pickle.

Now consider the following statement:

The happiest donkey in the world.

Is it true or false? Well it’s not even a sentence; it doesn’t make sense to even ask
if it’s true or false!

Clearly we’ll be wasting our time trying to write proofs of statements like the two
listed above—we need to narrow our scope to statements that we might actually have
a chance of proving (or perhaps refuting)! This motivates the following (informal)
definition.

Definition 1.1.1
A proposition is a statement to which it is possible to assign a truth value (‘true’
or ‘false’). If a proposition is true, a proof of the proposition is a logically valid
argument demonstrating that it is true, which is pitched at such a level that a
member of the intended audience can verify its correctness.

Thus the statements given above are not propositions because there is no possible
way of assigning them a truth value. Note that, in Definition 1.1.1, all that matters
is that it makes sense to say that it is true or false, regardless of whether it actually
is true or false—the truth value of many propositions is unknown, even very simple
ones.

Exercise 1.1.2
Think of an example of a true proposition, a false proposition, a proposition whose
truth value you don’t know, and a statement that is not a proposition. C

Results in mathematical papers and textbooks may be referred to as propositions,
but they may also be referred to as theorems, lemmas or corollaries depending on
their intended usage.
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Section 1.1. Getting started 15

• A proposition is an umbrella term which can be used for any result.

• A theorem is a key result which is particularly important.

• A lemma is a result which is proved for the purposes of being used in the
proof of a theorem.

• A corollary is a result which follows from a theorem without much additional
effort.

These are not precise definitions, and they are not meant to be—you could call
every result a proposition if you wanted to—but using these words appropriately
helps readers work out how to read a paper. For example, if you just want to skim
a paper and find its key results, you’d look for results labelled as theorems.

It is not much good trying to prove results if we don’t have anything to prove results
about. With this in mind, we will now introduce the number sets and prove some
results about them in the context of four topics, namely: division of integers, number
bases, rational and irrational numbers, and polynomials. These topics will provide
context for the rest of the material in Chapters 1 and 2.

We will not go into very much depth in this section. Rather, think of this as a
warm-up exercise—a quick, light introduction, with more proofs to be provided in
Chapter 1 and in future chapters.

Number sets

Later in this section, and then in much more detail in Section 2.2, we will encounter
the notion of a set ; a set can be thought of as being a collection of objects. This
seemingly simple notion is fundamental to mathematics, and is so involved that we
will not treat sets formally in the main body of the text—see Section B.2 for a formal
viewpoint. For now, the following definition will suffice.

Definition 1.1.3 (to be revised in Definition 2.2.1)
A set is a collection of objects. The objects in the set are called elements of the
set. If X is a set and x is an object, then we write x ∈ X (LATEX code: x \in X) to
denote the assertion that x is an element of X.

The sets of concern to us first and foremost are the number sets—that is, sets whose
elements are particular types of number. At this introductory level, many details
will be temporarily swept under the rug; we will work at a level of precision which is
appropriate for our current stage, but still allows us to develop a reasonable amount
of intuition.

15



16 Chapter 1. Mathematical reasoning

In order to define the number sets, we will need three things: an infinite line, a fixed
point on this line, and a fixed unit of length.

So here we go. Here is an infinite line:

The arrows indicate that it is supposed to extend in both directions without end.
The points on the line will represent numbers (specifically, real numbers, a misleading
term that will be defined in Definition 1.1.24). Now let’s fix a point on this line, and
label it ‘0’:

0

This point can be thought of as representing the number zero; it is the point against
which all other numbers will be measured. Finally, let’s fix a unit of length:

This unit of length will be used, amongst other things, to compare the extent to
which the other numbers differ from zero.

Definition 1.1.4
The above infinite line, together with its fixed zero point and fixed unit length,
constitute the (real) number line.

We will use the number line to construct five sets of numbers of interest to us:

• The set N of natural numbers—Definition 1.1.5;

• The set Z of integers—Definition 1.1.11;

• The set Q of rational numbers—Definition 1.1.23;

• The set R of real numbers—Definition 1.1.24; and

• The set C of complex numbers—Definition 1.1.30.

Each of these sets has a different character and is used for different purposes, as we
will see both later in this section and throughout this book.

16



Section 1.1. Getting started 17

Natural numbers (N)

The natural numbers are the numbers used for counting—they are the answers to
questions of the form ‘how many’—for example, I have three uncles, one dog and
zero cats.

Counting is a skill humans have had for a very long time; we know this because there
is evidence of people using tally marks tens of thousands of years ago. Tally marks
provide one method of counting small numbers: starting with nothing, proceed
through the objects you want to count one by one, and make a mark for every
object. When you are finished, there will be as many marks as there are objects.
We are taught from a young age to count with our fingers; this is another instance
of making tally marks, where now instead of making a mark we raise a finger.

Making a tally mark represents an increment in quantity—that is, adding one. On
our number line, we can represent an increment in quantity by moving to the right
by the unit length. Then the distance from zero we have moved, which is equal to
the number of times we moved right by the unit length, is therefore equal to the
number of objects being counted.

Definition 1.1.5
The natural numbers are represented by the points on the number line which can
be obtained by starting at 0 and moving right by the unit length any number of
times:

0 1 2 3 4 5

In more familiar terms, they are the non-negative whole numbers. We write N for
the set of all natural numbers; thus, the notation ‘n ∈ N’ means that n is a natural
number.

The natural numbers have very important and interesting mathematical structure,
and are central to the material in Sections 1.3, 4.1 and 4.2. A more precise character-
isation of the natural numbers will be provided in Section 1.3, and a mathematical
construction of the set of natural numbers can be found in Definition B.2.3. Central
to these more precise characterisations will be the notions of ‘zero’ and of ‘adding
one’—just like making tally marks.

Aside
Some authors define the natural numbers to be the positive whole numbers (1, 2, 3, . . . ),
excluding zero. We take 0 to be a natural number since our main use of the natural
numbers will be for counting finite sets, and a set with nothing in it is certainly
finite! That said, as with any mathematical definition, the choice about whether
0 ∈ N or 0 6∈ N is a matter of taste or convenience, and is merely a convention—it
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18 Chapter 1. Mathematical reasoning

is not something that can be proved or refuted. C

Number bases

Writing numbers down is something that may seem easy to you now, but it likely
took you several years as a child to truly understand what was going on. Historically,
there have been many different systems for representing numbers symbolically, called
numeral systems. First came the most primitive of all, tally marks, appearing in
the Stone Age and still being used for some purposes today. Thousands of years
and hundreds of numeral systems later, there is one dominant numeral system,
understood throughout the world: the Hindu–Arabic numeral system. This
numeral system consists of ten symbols, called digits. It is a positional numeral
system, meaning that the position of a symbol in a string determines its numerical
value.

In English, the Arabic numerals are used as the ten digits:

0 1 2 3 4 5 6 7 8 9

The right-most digit in a string is in the units place, and the value of each digit
increases by a factor of ten moving to the left. For example, when we write ‘2812’,
the left-most ‘2’ represents the number two thousand, whereas the last ‘2’ represents
the number two.

The fact that there are ten digits, and that the numeral system is based on powers
of ten, is a biological accident corresponding with the fact that most humans have
ten fingers. For many purposes, this is inconvenient. For example, ten does not have
many positive divisors (only four)—this has implications for the ease of performing
arithmetic; a system based on the number twelve, which has six positive divisors,
might be more convenient. Another example is in computing and digital electronics,
where it is more convenient to work in a binary system, with just two digits, which
represent ‘off’ and ‘on’ (or ‘low voltage’ and ‘high voltage’), respectively; arithmetic
can then be performed directly using sequences of logic gates in an electrical circuit.

It is therefore worthwhile to have some understanding of positional numeral systems
based on numbers other than ten. The mathematical abstraction we make leads to
the definition of base-b expansion.

18



Section 1.1. Getting started 19

Definition 1.1.6
Let b > 1. The base-b expansion of a natural number n is thea string drdr−1 . . . d0

such that
• n = dr · br + dr−1 · br−1 + · · ·+ d0 · b0;

• 0 6 di < b for each i; and

• If n > 0 then dr 6= 0—the base-b expansion of zero is 0 in all bases b.
Certain number bases have names; for instance, the base-2, 3, 8, 10 and 16 expan-
sions are respectively called binary, ternary, octal, decimal and hexadecimal.

aThe use of the word ‘the’ is troublesome here, since it assumes that every natural number has only
one base-b expansion. This fact actually requires proof—see Theorem 3.3.51.

Example 1.1.7
Consider the number 1023. Its decimal (base-10) expansion is 1023, since

1023 = 1 · 103 + 0 · 102 + 2 · 101 + 3 · 100

Its binary (base-2) expansion is 1111111111, since

1023 = 1 · 29 + 1 · 28 + 1 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20

We can express numbers in base-36 by using the ten usual digits 0 through 9 and
the twenty-six letters A through Z; for instance, A represents 10, M represents 22
and Z represents 35. The base-36 expansion of 1023 is SF, since

1023 = 28 · 361 + 15 · 360 = S · 361 + F · 360

C

Exercise 1.1.8
Find the binary, ternary, octal, decimal, hexadecimal and base-36 expansions of
the number 21127, using the letters A–F as additional digits for the hexadecimal
expansion and the letters A–Z as additional digits for the base-36 expansion. C

We sometimes wish to specify a natural number in terms of its base-b expansion; we
have some notation for this.

Notation 1.1.9
Let b > 1. If the numbers d0, d1, . . . , dr are base-b digits (in the sense of Defini-
tion 1.1.6), then we write

drdr−1 . . . d0(b) = dr · br + dr−1 · br−1 + · · ·+ d0 · b0

for the natural number whose base-b expansion is drdr−1 . . . d0. If there is no sub-
script (b) and a base is not specified explicitly, the expansion will be assumed to be
in base-10.

19



20 Chapter 1. Mathematical reasoning

Example 1.1.10
Using our new notation, we have

1023 = 1111111111(2) = 1101220(3) = 1777(8) = 1023(10) = 3FF(16) = SF(36)

C

Integers (Z)

The integers can be used for measuring the difference between two instances of
counting. For example, suppose I have five apples and five bananas. Another person,
also holding apples and bananas, wishes to trade. After our exchange, I have seven
apples and only one banana. Thus I have two more apples and four fewer bananas.

Since an increment in quantity can be represented by moving to the right on the
number line by the unit length, a decrement in quantity can therefore be represented
by moving to the left by the unit length. Doing so gives rise to the integers.

Definition 1.1.11
The integers are represented by the points on the number line which can be obtained
by starting at 0 and moving in either direction by the unit length any number of
times:

−5 −4 −3 −2 −1 0 1 2 3 4 5

We write Z for the set of all integers; thus, the notation ‘n ∈ Z’ means that n is an
integer.

The integers have such a fascinating structure that a whole chapter of this book is
devoted to them—see Chapter 3. This is to do with the fact that, although you
can add, subtract and multiply two integers and obtain another integer, the same
is not true of division. This ‘bad behaviour’ of division is what makes the integers
interesting. We will now see some basic results about division.

Division of integers

The motivation we will soon give for the definition of the rational numbers (Defin-
ition 1.1.23) is that the result of dividing one integer by another integer is not
necessarily another integer. However, the result is sometimes another integer; for
example, I can divide six apples between three people, and each person will receive
an integral number of apples. This makes division interesting: how can we measure

20



Section 1.1. Getting started 21

the failure of one integer’s divisibility by another? How can we deduce when one
integer is divisible by another? What is the structure of the set of integers when
viewed through the lens of division? This motivates Definition 1.1.12.

Definition 1.1.12 (to be repeated in Definition 3.1.4)
Let a, b ∈ Z. We say b divides a, or that b is a divisor (or factor) of a, if a = qb
for some integer q.

Example 1.1.13
The integer 12 is divisible by 1, 2, 3, 4, 6 and 12, since

12 = 12 · 1 = 6 · 2 = 4 · 3 = 3 · 4 = 2 · 6 = 1 · 12

It is also divisible by the negatives of all of those numbers; for example, 12 is divisible
by −3 since 12 = (−4) · (−3). C

Exercise 1.1.14
Prove that 1 divides every integer, and that every integer divides 0. C

Using Definition 1.1.12, we can prove some general basic facts about divisibility.

Proposition 1.1.15
Let a, b, c ∈ Z. If b divides a and c divides b, then c divides a.

Proof. Suppose that b divides a and c divides b. By Definition 1.1.12, it follows that

a = qb and b = rc

for some integers q and r. Using the second equation, we may substitute rc for b in
the first equation, to obtain

a = q(rc)

But q(rc) = (qr)c, and qr is an integer, so it follows from Definition 1.1.12 that c
divides a.

Exercise 1.1.16
Let a, b ∈ Z. Suppose that d divides a and d divides b. Prove that d divides au+ bv,
where u and v are any integers. C

It is not just interesting to know when one integer does divide another; however,
proving that one integer doesn’t divide another is much harder. Indeed, to prove
that an integer b does not divide an integer a, we must prove that a 6= qb for any
integer q at all. We will look at methods for doing this in Section 1.2; these methods
use the following extremely important result, which will underlie all of Chapter 3.
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22 Chapter 1. Mathematical reasoning

Theorem 1.1.17 (Division theorem, to be repeated in Theorem 3.1.1)
Let a, b ∈ Z with b 6= 0. There is exactly one way to write

a = qb+ r

such that q and r are integers, and 0 6 r < b (if b > 0) or 0 6 r < −b (if b < 0).

The number q in Theorem 1.1.17 is called the quotient of a when divided by b, and
the number r is called the remainder.

Example 1.1.18
The number 12 leaves a remainder of 2 when divided by 5, since 12 = 2 · 5 + 2. C

Here’s a slightly more involved example.

Proposition 1.1.19
Suppose an integer a leaves a remainder of r when divided by an integer b, and that
r > 0. Then −a leaves a remainder of b− r when divided by b.

Proof. Suppose a leaves a remainder of r when divided by b. Then

a = qb+ r

for some integer q. A bit of algebra yields

−a = −qb− r = −qb− r + (b− b) = −(q + 1)b+ (b− r)

Since 0 < r < b, we have 0 < b− r < b. Hence −(q + 1) is the quotient of −a when
divided by b, and b− r is the remainder.

Exercise 1.1.20
Prove that if an integer a leaves a remainder of r when divided by an integer b, then
a leaves a remainder of r when divided by −b. C

We will finish this part on division of integers by connecting it with the material on
number bases—we can use the division theorem (Theorem 1.1.17) to find the base-b
expansion of a given natural number. It is based on the following observation: the
natural number n whose base-b expansion is drdr−1 · · · d1d0 is equal to

d0 + b(d1 + b(d2 + · · ·+ b(dr−1 + bdr) · · · ))

Moreover, 0 6 di < b for all i. In particular n leaves a remainder of d0 when divided
by b. Hence

n− d0

b
= d1 + d2b+ · · ·+ drb

r−1

22



Section 1.1. Getting started 23

The base-b expansion of n−d0
b is therefore

drdr−1 · · · d1

In other words, the remainder of n when divided by b is the last base-b digit of n,
and then subtracting this number from n and dividing the result by b truncates the
final digit. Repeating this process gives us d1, and then d2, and so on, until we end
up with 0.

This suggests the following algorithm for computing the base-b expansion of a num-
ber n:

• Step 1. Let d0 be the remainder when n is divided by b, and let n0 = n−d0
b

be the quotient. Fix i = 0.

• Step 2. Suppose ni and di have been defined. If ni = 0, then proceed to Step
3. Otherwise, define di+1 to be the remainder when ni is divided by b, and
define ni+1 = ni−di+1

b . Increment i, and repeat Step 2.

• Step 3. The base-b expansion of n, is

didi−1 · · · d0

Example 1.1.21
We compute the base-17 expansion of 15213, using the letters A–G to represent the
numbers 10 through 16.

• 15213 = 894 · 17 + 15, so d0 = 15 = F and n0 = 894.

• 894 = 52 · 17 + 10, so d1 = 10 = A and n1 = 52.

• 52 = 3 · 17 + 1, so d2 = 1 and n2 = 3.

• 3 = 0 · 17 + 3, so d3 = 3 and n3 = 0.

• The base-17 expansion of 15213 is therefore 31AF.

A quick verification gives

31AF(17) = 3 · 173 + 1 · 172 + 10 · 17 + 15 = 15213

as desired. C

Exercise 1.1.22
Find the base-17 expansion of 408 735 787 and the base-36 expansion of 1 442 151 747.

C
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24 Chapter 1. Mathematical reasoning

Rational numbers (Q)

Bored of eating apples and bananas, I buy a pizza which is divided into eight slices.
A friend and I decide to share the pizza. I don’t have much of an appetite, so I
eat three slices and my friend eats five. Unfortunately, we cannot represent the
proportion of the pizza each of us has eaten using natural numbers or integers.
However, we’re not far off: we can count the number of equal parts the pizza was
split into, and of those parts, we can count how many we had. On the number line,
this could be represented by splitting the unit line segment from 0 to 1 into eight
equal pieces, and proceeding from there. This kind of procedure gives rise to the
rational numbers.

Definition 1.1.23
The rational numbers are represented by the points at the number line which can
be obtained by dividing any of the unit line segments between integers into an equal
number of parts.

−5 −4 −3 −2 −1 0 1 2 3 4 5

The rational numbers are those of the form a
b , where a, b ∈ Z and b 6= 0. We write

Q for the set of all rational numbers; thus, the notation ‘q ∈ Q’ means that q is a
rational number.

The rational numbers are a very important example of a type of algebraic structure
known as a field—they are particularly central to algebraic number theory and
algebraic geometry.

Real numbers (R)

Quantity and change can be measured in the abstract using real numbers.

Definition 1.1.24
The real numbers are the points on the number line. We write R for the set of all
real numbers; thus, the notation ‘a ∈ R’ means that a is a real number.

The real numbers are central to real analysis, a branch of mathematics introduced
in Chapter 6. They turn the rationals into a continuum by ‘filling in the gaps’—
specifically, they have the property of completeness, meaning that if a quantity can
be approximated with arbitrary precision by real numbers, then that quantity is
itself a real number.

24
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We can define the basic arithmetic operations (addition, subtraction, multiplication
and division) on the real numbers, and a notion of ordering of the real numbers, in
terms of the infinite number line.

• Ordering. A real number a is less than a real number b, written a < b, if a
lies to the left of b on the number line. The usual conventions for the symbols
6 (LATEX code: \le), > and > (LATEX code: \ge) apply, for instance ‘a 6 b’
means that either a < b or a = b.

• Addition. Suppose we want to add a real number a to a real number b. To
do this, we translate a by b units to the right—if b < 0 then this amounts to
translating a by an equivalent number of units to the left. Concretely, take
two copies of the number line, one above the other, with the same choice of
unit length; move the 0 of the lower number line beneath the point a of the
upper number line. Then a + b is the point on the upper number line lying
above the point b of the lower number line.

Here is an illustration of the fact that (−3) + 5 = 2:

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

• Multiplication. This one is fun. Suppose we want to multiply a real number
a by a real number b. To do this, we scale the number line, and perhaps reflect
it. Concretely, take two copies of the number line, one above the other; align
the 0 points on both number lines, and stretch the lower number line evenly
until the point 1 on the lower number line is below the point a on the upper
number line—note that if a < 0 then the number line must be reflected in
order for this to happen. Then a ·b is the point on the upper number line lying
above b on the lower number line.

Here is an illustration of the fact that 5 · 4 = 20.

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4

and here is an illustration of the fact that (−5) · 4 = −20:

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

01234
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26 Chapter 1. Mathematical reasoning

Exercise 1.1.25
Interpret the operations of subtraction and division as geometric transformations of
the real number line. C

We will take for granted the arithmetic properties of the real numbers in this section,
waiting until Section 6.1 to sink our teeth into the details. For example, we will take
for granted the basic properties of rational numbers, for instance

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d

=
ac

bd

Rational and irrational numbers

Before we can talk about irrational numbers, we should say what they are.

Definition 1.1.26
An irrational number is a real number that is not rational.

Unlike N,Z,Q,R,C, there is no standard single letter expressing the irrational num-
bers. However, by the end of Section 2.2, we will be able to write the set of irrational
numbers as R \Q.

Note in particular that ‘irrational’ does not simply mean ‘not rational’—that would
imply that all complex numbers which are not real are irrational—rather, the term
‘irrational’ means ‘real and not rational’.

Proving that a real number is irrational is not particularly easy. We will get our
foot in the door by allowing ourselves to assume the following result, which is proved
in Proposition 1.3.38.

Proposition 1.1.27
The real number

√
2 is irrational.

We can use the fact that
√

2 is irrational to prove some facts about the relationship
between rational numbers and irrational numbers.

Proposition 1.1.28
Let a and b be irrational numbers. It is possible that ab be rational.

Proof. Let a = b =
√

2. Then a and b are irrational, and ab = 2 = 2
1 , which is

rational.

Exercise 1.1.29
Let r be a rational number and let a be an irrational number. Prove that it is
possible that ra be rational, and it is possible that ra be irrational. C

26
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Complex numbers (C)

We have seen that multiplication by real numbers corresponds with scaling and
reflection of the number line—scaling alone when the multiplicand is positive, and
scaling with reflection when it is negative. We could alternatively interpret this
reflection as a rotation by half a turn, since the effect on the number line is the
same. You might then wonder what happens if we rotate by arbitrary angles, rather
than only half turns.

What we end up with is a plane of numbers, not merely a line—see page 28.
Moreover, it happens that the rules that we expect arithmetic operations to satisfy
still hold—addition corresponds with translation, and multiplication corresponds
with scaling and rotation. This resulting number set is that of the complex numbers.

Definition 1.1.30
The complex numbers are those obtained by the non-negative real numbers upon
rotation by any angle about the point 0.

There is a particularly important complex number, i, which is the point in the com-
plex plane exactly one unit above 0—this is illustrated on page 28. Multiplication by
i has the effect of rotating the plane by a quarter turn anticlockwise. In particular,
we have i2 = i · i = −1; the complex numbers have the astonishing property that
square roots of all complex numbers exist (including all the real numbers).

In fact, every complex number can be written in the form a + bi, where a, b ∈ R;
this number corresponds with the point on the complex plane obtained by moving
a units to the right and b units up, reversing directions as usual if a or b is negat-
ive. Arithmetic on the complex numbers works just as with the real numbers; in
particular, using the fact that i2 = −1, we obtain

(a+ bi) + (c+di) = (a+ c) + (b+d)i and (a+ bi) · (c+di) = (ac− bd) + (ad+ bc)i

We will discuss complex numbers further in the portion of this section on polynomials
below, and in Sections B.2 and 8.4.

Polynomials

The integers, rational numbers, real numbers and complex numbers are all examples
of rings, which means that they come equipped with nicely behaving notions of
addition, subtraction and multiplication.

27
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-5 -4 -3 -2 -1 0 1 2 3 4 5

i

2i

3i

4i

5i

-2i

-3i

-4i

-5i

-i

Figure 1.1: Illustration of the complex plane, with some points labelled.
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Definition 1.1.31
Let A be one Z, Q, R or C. (More generally, A could be any ring—see Section 8.1.)
A (univariate) polynomial over A in the indeterminate x is an expression of
the form

a0 + a1x+ · · ·+ anx
n

where n ∈ N and each ak ∈ A. The numbers ak are called the coefficients of the
polynomial. If not all coefficients are zero, the largest value of k for which ak 6= 0 is
called the degree of the polynomial. By convention, the degree of the polynomial
0 is −∞.

Polynomials of degree 1, 2 and 3 are called linear, quadratic and cubic polynomials,
respectively.

Example 1.1.32
The following expressions are all polynomials:

3 2x− 1 (3 + i)x2 − x

Their degrees are 0, 1 and 2, respectively. The first two are polynomials over Z, and
the third is a polynomial over C. C

Exercise 1.1.33
Write down a polynomial of degree 4 over R which is not a polynomial over Q. C

Notation 1.1.34
Instead of writing out the coefficients of a polynomial each time, we may write
something like p(x) or q(x). The ‘(x)’ indicates that x is the indeterminate of the
polynomial. If α is a number[a] and p(x) is a polynomial in indeterminate x, we
write p(α) for the result of substituting α for x in the expression p(x).

Note that, if A is any of the sets Z,Q,R,C and p(x) is a polynomial over A, then
p(α) ∈ A for all α ∈ A.

Example 1.1.35
Let p(x) = x3 − 3x2 + 3x− 1. Then p(x) is a polynomial over Z with indeterminate
x. For any integer α, the value p(α) will also be an integer. For example

p(0) = 03 − 3 · 02 + 3 · 0− 1 = −1 and p(3) = 33 − 3 · 32 + 3 · 3− 1 = 8

C

Definition 1.1.36
Let p(x) be a polynomial. A root of p(x) is a complex number α such that p(α) = 0.

[a]When dealing with polynomials, we will typically reserve the letter x for the indeterminate vari-
able, and use the Greek letters α, β, γ (LATEX code: \alpha, \beta, \gamma) for numbers to be
substituted into a polynomial.
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30 Chapter 1. Mathematical reasoning

The quadratic formula (Theorem 1.2.6) tells us that the roots of the polynomial
x2 + ax+ b, where a, b ∈ C, are precisely the complex numbers

−a+
√
a2 − 4b

2
and

−a−
√
a2 − 4b

2

Note our avoidance of the symbol ‘±’, which is commonly found in discussions of
quadratic polynomials. The symbol ‘±’ is dangerous because it may suppress the
word ‘and’ or the word ‘or’, depending on context—this kind of ambiguity is not
something that we will want to deal with when discussing the logical structure of a
proposition in Sections 1.2 and 2.1.

Example 1.1.37
Let p(x) = x2 − 2x+ 5. The quadratic formula tells us that the roots of p are

2 +
√

4− 4 · 5
2

= 1 +
√
−4 = 1 + 2i and

2−
√

4− 4 · 5
2

= 1−
√
−4 = 1− 2i

The numbers 1+2i and 1−2i are related in that their real parts are equal and their
imaginary parts differ only by a sign. Exercise 1.1.38 generalises this observation. C

Exercise 1.1.38
Let α = a+ bi be a complex number, where a, b ∈ R. Prove that α is the root of a
quadratic polynomial over R, and find the other root of this polynomial. C

The following exercise proves the well-known result which classifies the number of
real roots of a polynomial over R in terms of its coefficients.

Exercise 1.1.39
Let a, b ∈ R and let p(x) = x2 + ax + b. The value ∆ = a2 − 4b is called the
discriminant of p. Prove that p has two roots if ∆ 6= 0 and one root if ∆ = 0.
Moreover, if a, b ∈ R, prove that p has no real roots if ∆ < 0, one real root if ∆ = 0,
and two real roots if ∆ > 0. C

Example 1.1.40
Consider the polynomial x2−2x+5. Its discriminant is equal to (−2)2−4 ·5 = −16,
which is negative. Exercise 1.1.39 tells us that it has two roots, neither of which
are real. This was verified by Example 1.1.37, where we found that the roots of
x2 − 2x+ 5 are 1 + 2i and 1− 2i.

Now consider the polynomial x2−2x−3. Its discriminant is equal to (−2)2−4·(−3) =
16, which is positive. Exercise 1.1.39 tells us that it has two roots, both of which
are real; and indeed

x2 − 2x− 3 = (x+ 1)(x− 3)

so the roots of x2 − 2x− 3 are −1 and 3. C
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Section 1.2. Elementary proof techniques 31

Section 1.2

Elementary proof techniques

There are many facets to mathematical proof, ranging from questions of how much
detail to provide and what assumptions can be made, to questions of how to go
about solving a particular problem and what steps are logically valid. This section
provides some tools for answering the latter issues, but the proof techniques we will
look at here are not exhaustive, by any means.

If this section is successful, then it will feel somewhat like all we are doing is stating
the obvious. However, when it comes to writing your own proofs, this feeling of
obviousness will likely disappear—it is when this happens that the usefulness of the
proof techniques in this section will become apparent.

Assumptions and goals

Every mathematical proof is written in the context of certain assumptions being
made, and certain goals to be achieved.

• Assumptions are the propositions which are known to be true, or which we
are assuming to be true for the purposes of proving something. They include
theorems that have already been proved, prior knowledge which is assumed
of the reader, and assumptions which are explicitly made using words like
‘suppose’ or ‘assume’.

• Goals are the propositions we are trying to prove in order to complete the
proof of a result, or perhaps just a step in the proof.

With every phrase we write, our assumptions and goals change. This is perhaps
best illustrated by example. In Example 1.2.1 below, we will examine the proof of
Proposition 1.1.15 in detail, so that we can see how the words we wrote affected
the assumptions and goals at each stage in the proof. We will indicate our assump-
tions and goals at any given stage using tables—the assumptions listed will only be
those assumptions which are made explicitly; prior knowledge and previously proved
theorems will be left implicit.

Example 1.2.1
The statement of Proposition 1.1.15 was as follows:

Let a, b, c ∈ Z. If b divides a and c divides b, then c divides a.

The set-up of the proposition instantly gives us our initial assumptions and goals:
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32 Chapter 1. Mathematical reasoning

Assumptions Goals

a, b, c ∈ Z If b divides a and c divides b,
then c divides a

We will now proceed through the proof, line by line, to see what effect the words we
wrote had on the assumptions and goals.

Since our goal was an expression of the form ‘if. . . then. . . ’, it made sense to start by
assuming the ‘if’ statement, and using that assumption to prove the ‘then’ statement.
As such, the first thing we wrote in our proof was:

Suppose that b divides a and c divides b.

Our updated assumptions and goals are reflected in the following table.

Assumptions Goals

a, b, c ∈ R c divides a
b divides a
c divides b

Our next step in the proof was to unpack the definitions of ‘b divides a’ and ‘c
divides b’, giving us more to work with.

Suppose that b divides a and c divides b. By Definition 1.1.12, it follows
that

a = qb and b = rc

for some integers q and r.

This introduces two new variables q, r and allows us to replace the assumptions ‘b
divides a’ and ‘c divides b’ with their definitions.

Assumptions Goals

a, b, c, q, r ∈ Z c divides a
a = qb
b = rc

At this point we have pretty much exhausted all of the assumptions we can make,
and so our attention turns towards the goal—that is, we must prove that c divides
a. At this point, it helps to ‘work backwards’ by unpacking the goal: what does
it mean for c to divide a? Well, by Definition 1.1.12, we need to prove that a is
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equal to some integer multiplied by c—this will be reflected in the following table of
assumptions and goals.

Since we are now trying to express a in terms of c, it makes sense to use the equations
we have relating a with b, and b with c, to relate a with c.

Suppose that b divides a and c divides b. By Definition 1.1.12, it follows
that

a = qb and b = rc

for some integers q and r. Using the second equation, we may substitute
rc for b in the first equation, to obtain

a = q(rc)

We are now very close, as indicated in the following table.

Assumptions Goals

a, b, c, q, r ∈ Z a = [some integer] · c
a = qb
b = rc

a = q(rc)

Our final step was to achieve the goal—namely, to express a as an integer multiplied
by c:

Suppose that b divides a and c divides b. By Definition 1.1.12, it follows
that

a = qb and b = rc

for some integers q and r. Using the second equation, we may substitute
rc for b in the first equation, to obtain

a = q(rc)

But q(rc) = (qr)c, and qr is an integer,

Assumptions Goals

a, b, c, q, r ∈ Z a = [some integer] · c
a = qb
b = rc

a = q(rc)
a = (qr)c and qr ∈ Z
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34 Chapter 1. Mathematical reasoning

It is helpful to the reader to declare when the goal has been achieved; this was the
content of the final sentence.

Suppose that b divides a and c divides b. By Definition 1.1.12, it follows
that

a = qb and b = rc

for some integers q and r. Using the second equation, we may substitute
rc for b in the first equation, to obtain

a = q(rc)

But q(rc) = (qr)c, and qr is an integer, so it follows from Definition 1.1.12
that c divides a.

C

For the rest of this section, we will examine various proof techniques in the context
of assumptions and goals. This will be made more precise when we study proof from
a symbolic perspective in Section 2.1.

Conditional statements

One of the most common kinds of proposition that you will encounter in mathematics
is that of a conditional statement—that is, one of the form ‘if. . . then. . . ’. As we saw
in Example 1.2.1, these can be proved by assuming the statement after the word
‘if’, and deriving a proof of the statement after the word ‘then’.

Proof tip
To prove a proposition of the form ‘if P , then Q’, assume the proposition P and
then derive a proof of the proposition Q.

Assumptions Goals

if P , then Q
 

Assumptions Goals

P Q

C

Proposition 1.1.15 was an example of a proposition containing a conditional state-
ment. Proposition 1.2.2 below contains another example.
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Proposition 1.2.2
Let x and y be real numbers. If x and x+ y are rational, then y is rational.

Proof of Proposition 1.2.2. Suppose x and x + y are rational. Then there exist
integers a, b, c, d with b, d 6= 0 such that

x =
a

b
and x+ y =

c

d

It then follows that

y = (x+ y)− x =
c

d
− a

b
=
bc− ad
bd

Since bc− ad and bd are integers, and bd 6= 0, it follows that y is rational.

The key phrase in the above proof was ‘Suppose x and x + y are rational.’ This
introduced the assumptions x ∈ Q and x + y ∈ Q, and reduced our goal to that of
deriving a proof that y is rational—this was the content of the rest of the proof.

Writing tip
A template for writing proofs of propositions of the form ‘if P , then Q’ is as follows:

Suppose [write out P here]. Then [prove Q here].

Words similar in meaning to ‘suppose’, such as ‘assume’, may also be used. C

The following exercises, based on the topics we introduced in Section 1.1, are an
opportunity for you to practise writing proofs of conditional statements.

Exercise 1.2.3
Let p(x) be a polynomial over C. Prove that if α is a root of p(x), and a ∈ C, then
α is a root of (x− a)p(x). C

Another common kind of proposition is that of a biconditional statement ; that is,
one of the form ‘P if and only if Q’ (sometimes abbreviated in writing to ‘P iff
Q’). This abbreviates the longer expression, ‘if P , then Q, and if Q, then P ’, and
indicates that P and Q are in some sense equivalent. The statement ‘if Q, then P ’
is called the converse of the statement ‘if P , then Q’.

Proof tip
To prove a propositions of the form ‘P if and only if Q’, provide separate proofs of
the propositions ‘if P , then Q’ and ‘if Q, then P ’.
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Assumptions Goals

P if and only if Q
 

Assumptions Goals

if P , then Q
if Q, then P

C

In writing, we may sometimes abbreviate ‘if P , then Q’ by writing ‘P ⇒ Q’ (LATEX
code: P \Rightarrow Q), and ‘P if and only if Q’ by ‘P ⇔ Q’ (LATEX code:
P \Leftrightarrow Q). These symbols will reappear from a formal point of view
in Section 2.1.

Many examples of biconditional statements come from solving equations; indeed, to
say that the values α1, . . . , αn are the solutions to a particular equation is precisely
to say that

x is a solution ⇔ x = α1 or x = α2 or · · · or x = αn

Example 1.2.4
We find all real solutions x to the equation

√
x− 3 +

√
x+ 4 = 7

Let’s rearrange the equation to find out what the possible solutions may be.
√
x− 3 +

√
x+ 4 = 7⇒ (x− 3) + 2

√
(x− 3)(x+ 4) + (x+ 4) = 49 squaring

⇒ 2
√

(x− 3)(x+ 4) = 48− 2x rearranging

⇒ 4(x− 3)(x+ 4) = (48− 2x)2 squaring

⇒ 4x2 + 4x− 48 = 2304− 192x+ 4x2 expanding

⇒ 196x = 2352 rearranging

⇒ x = 12 dividing by 196

You might be inclined to stop here. Unfortunately, all we have proved is that, given
a real number x, if x solves the equation

√
x− 3 +

√
x+ 4 = 7, then x = 12. This

narrows down the set of possible solutions to just one candidate—but we still need
to check the converse, namely that if x = 12, then x is a solution to the equation.

As such, to finish off the proof, note that
√

12− 3 +
√

12 + 4 =
√

9 +
√

16 = 3 + 4 = 7

and so the value x = 12 is indeed a solution to the equation. C

The last step in Example 1.2.4 may have seemed a little bit silly; but Example 1.2.5
demonstrates that proving the converse when solving equations truly is necessary.
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Example 1.2.5
We find all real solutions x to the equation

x+
√
x = 0

We proceed as before, rearranging the equation to find all possible solutions.

x+
√
x = 0⇒ x = −

√
x rearranging

⇒ x2 = x squaring

⇒ x(x− 1) = 0 rearranging

⇒ x = 0 or x = 1

Now certainly 0 is a solution to the equation, since

0 +
√

0 = 0 + 0 = 0

However, 1 is not a solution, since

1 +
√

1 = 1 + 1 = 2

Hence it is actually the case that, given a real number x, we have

x+
√
x = 0 ⇔ x = 0

Checking the converse here was vital to our success in solving the equation! C

A slightly more involved example of a biconditional statement arising from the solu-
tion to an equation—in fact, a class of equations—is the proof of the quadratic
formula.

Theorem 1.2.6 (Quadratic formula)
Let a, b ∈ C. A complex number α is a root of the polynomial x2 + ax + b if and
only if

α =
−a+

√
a2 − 4b

2
or α =

−a−
√
a2 − 4b

2

Proof. First we prove that if α is a root, then α is one of the values given in the
statement of the proposition. So suppose α be a root of the polynomial x2 + ax+ b.
Then

α2 + aα+ b = 0

The algebraic technique of ‘completing the square’ tells us that

α2 + aα =
(
α+

a

2

)2
− a2

4
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and hence (
α+

a

2

)2
− a2

4
+ b = 0

Rearranging yields (
α+

a

2

)2
=
a2

4
− b =

a2 − 4b

4

Taking square roots gives

α+
a

2
=

√
a2 − 4b

2
or α+

a

2
=
−
√
a2 − 4b

2

and, finally, subtracting a
2 from both sides gives the desired result.

The proof of the converse is Exercise 1.2.7.

Exercise 1.2.7
Complete the proof of the quadratic formula. That is, for fixed a, b ∈ C, prove that
if

α =
−a+

√
a2 − 4b

2
or α =

−a−
√
a2 − 4b

2

then α is a root of the polynomial x2 + ax+ b. C

Writing tip
A template for proving statements of the form ‘P if and only if Q’ is as follows.

Suppose [write out P here]. Then [prove Q here].

Conversely, suppose [write out Q here]. Then [prove P here].

Another template, which more clearly separates the two conditional statements, is
as follows.

• (⇒) Suppose [write out P here]. Then [prove Q here].

• (⇐) Suppose [write out Q here]. Then [prove P here].

C

Example 1.2.8
Let n ∈ N. We will prove that n is divisible by 8 if and only if the number formed
of the last three digits of the base-10 expansion of n is divisible by 8.

First, we will do some ‘scratch work’. Let drdr−1 . . . d0 be the base-10 expansion of
n. Then

n = dr · 10r + dr−1 · 10r−1 + · · ·+ d0
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Define
n′ = d2d1d0 and n′′ = n− n′ = drdr−1 . . . d4d3000

Now n − n′ = 1000 · drdr−1 . . . d4d3 and 1000 = 8 · 125, so it follows that 8 divides
n′′.

Our goal is now to prove that 8 divides n if and only if 8 divides n′.

• (⇒) Suppose 8 divides n. Since 8 divides n′′, it follows from Exercise 1.1.16
that 8 divides an+ bn′′ for all a, b ∈ Z. But

n′ = n− (n− n′) = n− n′′ = 1 · n+ (−1) · n′′

so indeed 8 divides n′, as required.

• (⇐) Suppose 8 divides n′. Since 8 divides n′′, it follows from Exercise 1.1.16
that 8 divides an′ + bn′′ for all a, b ∈ Z. But

n = n′ + (n− n′) = n′ + n′′ = 1 · n′ + 1 · n′′

so indeed 8 divides n, as required.

C

Exercise 1.2.9
Prove that a natural number n is divisible by 3 if and only if the sum of its base-10
digits is divisible by 3. C

Negation and contradiction

Frequently we are tasked with proving that a proposition is not true. For example,√
2 is not rational, there is not an integer solution x to the equation 3x = 5, and

so on. One way to prove that a proposition is false is to assume that it is true, and
use that assumption to derive nonsense. The nonsense we derive is more properly
called a contradiction.

Definition 1.2.10
A contradiction is a proposition which is known or assumed to be false.

Proof tip
To prove a proposition of the form ‘not P ’, assume that P is true and derive a
contradiction.

Assumptions Goals

not P
 

Assumptions Goals

P [contradiction]
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C

The following proposition has a classic proof by contradiction.

Proposition 1.2.11
Let r be a rational number and let a be an irrational number. Then r+a is irrational.

Proof. By Definition 1.1.26, we need to prove that r + a is real and not rational.
It is certainly real, since r and a are real, so it remains to prove that r + a is not
rational.

Suppose r + a is rational. Since r is rational, it follows from Proposition 1.2.2 that
a is rational, since

a = (r + a)− r

This contradicts the assumption that a is irrational. It follows that r + a is not
rational, and is therefore irrational.

Writing tip
A template for proving statements of the form ‘not P ’ (or, equivalently, ‘P is false’)
is as follows.

Suppose [write out P here]. Then [derive a contradiction here]. This
contradicts [write out the assumption or known fact that is contradicted ].
It follows that [write out the assertion that P is false here].

C

Now you can try proving some elementary facts by contradiction.

Exercise 1.2.12
Let x ∈ R. Prove by contradiction that if x is irrational then −x and 1

x are irrational.
C

Exercise 1.2.13
Prove by contradiction that there is no least positive real number. That is, prove
that there is not a real number a such that a 6 b for all positive real numbers b. C

A proof need not be a ‘proof by contradiction’ in its entirety—indeed, it may be
that only a small portion of the proof uses contradiction. This is exhibited in the
proof of the following proposition.

Proposition 1.2.14
Let a be an integer. Then a is odd[b] if and only if a = 2b+ 1 for some integer b.

[b]For clarity’s sake, we take ‘even’ to mean ‘divisible by 2’ and ‘odd’ to mean ‘not even’.
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Proof. Suppose a is odd. By the division theorem (Theorem 1.1.17), either a = 2b or
a = 2b+ 1, for some b ∈ Z. If a = 2b, then 2 divides a, contradicting the assumption
that a is odd; so it must be the case that a = 2b+ 1.

Conversely, suppose a = 2b+ 1. Then a leaves a remainder of 1 when divided by 2.
However, by the division theorem, the even numbers are precisely those that leave
a remainder of 0 when divided by 2. It follows that a is not even, so is odd.

Proofs involving cases

The situation often arises where you know that (at least) one of several facts is true,
but you don’t know which of the facts is true. The solution is to do whatever you’re
trying to do in all the possible cases—then it doesn’t matter which case you fall
into!

Proof tip
To use an assumption of the form ‘P or Q’ when proving a proposition R, split into
cases based on whether P is true or Q is true—in both cases, prove that P is true.

Assumptions Goals

P or Q R  

Assumptions Goals

if P , then R
if Q, then R

C

As you might guess, this proof technique generalises to more than two cases. The
proof of Proposition 1.2.15 below splits into three cases.

Proposition 1.2.15
Let n ∈ Z. Then n2 leaves a remainder of 0 or 1 when divided by 3.

Proof. Let n ∈ Z. By the division theorem, one of the following must be true for
some k ∈ Z:

n = 3k or n = 3k + 1 or n = 3k + 2

• Suppose n = 3k. Then

n2 = (3k)2 = 9k2 = 3 · (3k2)

So n2 leaves a remainder of 0 when divided by 3.
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• Suppose n = 3k + 1. Then

n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1

So n2 leaves a remainder of 1 when divided by 3.

• Suppose n = 3k + 2. Then

n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1

So n2 leaves a remainder of 1 when divided by 3.

In all cases, n2 leaves a remainder of 0 or 1 when divided by 3.

Writing tip
The following is a template for proving a proposition R by using an assumption of
the form ‘P or Q’.

There are two possible cases.

• Suppose [write out P here]. Then [prove R here].

• Suppose [write out Q here]. Then [prove R here].

In both cases, R is true.

A similar template can be used for proofs requiring more than two cases. C

Exercise 1.2.16
Let n be an integer. Prove that n2 leaves a remainder of 0, 1 or 4 when divided by
5. C

Exercise 1.2.17
Let a, b ∈ R and suppose a2 − 4b 6= 0. Let α and β be the (distinct) roots of
the polyonomial x2 + ax + b. Prove that there is a real number c such that either
α− β = c or α− β = ci. C

A particularly useful proof principle which allows us to prove propositions by split-
ting into cases is the law of excluded middle.

Definition 1.2.18
The law of excluded middle is the assertion that every proposition is either true
or it is false. Put otherwise, it says that if P is any proposition, then the proposition
‘P or not P ’ is true.

We can therefore use the law of excluded middle to prove facts by splitting into two
cases, based on whether a particular proposition is true or false. The law of excluded
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middle is an example of a nonconstructive proof technique—whilst this matter is not
an issue in mainstream mathematics, it can lead to issues in computer science when
not kept in check. This matter will not concern us in the main body of the text,
but will be discussed in Section B.3.

The proof of Proposition 1.2.19 below makes use of the law of excluded middle.

Proposition 1.2.19
Let a, b ∈ Z. If ab is even, then either a is even or b is even (or both).

Proof. Suppose a, b ∈ Z with ab even.

• Suppose a is even—then we’re done.

• Suppose a is odd. Suppose that b is also odd. Then we can write

a = 2k + 1 and b = 2`+ 1

for some integers k, `. This implies that

ab = (2k + 1)(2`+ 1) = 4k`+ 2k + 2`+ 1 = 2(2k`+ k + `︸ ︷︷ ︸
∈Z

) + 1

so that ab is odd. This contradicts the assumption that ab is even, and so b
must in fact be even.

In both cases, either a or b is even.

Exercise 1.2.20
Reflect on the proof of Proposition 1.2.19. Where in the proof did we use the law
of excluded middle? Where in the proof did we use proof by contradiction? What
was the contradiction in this case? Prove Proposition 1.2.19 twice more, once using
contradiction and not using the law of excluded middle, and once using the law of
excluded middle and not using contradiction. C

Exercise 1.2.21
Let a and b be irrational numbers. Prove that it is possible that ab be rational. C

Reducing a goal to another goal

As indicated above, a huge number of mathematical results take the form ‘if P , then
Q’. We’ve already seen a few, and there are dozens more to come! The reason why
we prove results of this form is because they are useful—any time we know P is
true, we also know that Q is true! In particular, if Q is what we’re trying to prove,
and we know that P implies Q, then we reduce the problem of proving Q to that of
proving P .
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Proof tip
To prove a proposition Q using an assumption of the form ‘if P , then Q’, simply
prove that P is true.

Assumptions Goals

if P , then Q Q
 

Assumptions Goals

if P , then Q P

C

The following is a very simple example of using a conditional statement in a proof.

Proposition 1.2.22
The number 1√

2
is irrational.

Proof. We proved in Exercise 1.2.12 that, for any real number x, if x is irrational,
then −x and 1

x are irrational. Since
√

2 is irrational, it follows that 1√
2

is irrational.

Writing tip
The following is a template for proving a proposition Q by using an assumption of
the form ‘if P , then Q’.

Since [write out P ⇒ Q here], in order to prove [write out Q here], it
suffices to prove [write out P here]. To this end, [prove P here].

C

Example 1.2.23
Section 1.3 is devoted to induction principles, which are proof techniques used to
prove that a given statement is true of all natural numbers. For example, induction
can be used to prove that

1 + 2 + · · ·+ n =
n(n+ 1)

2

is true for all natural numbers n. Induction principles reduce the problem of proving
a statement is true of all natural numbers to the problem of proving a base case and
an induction step (to be defined in Section 1.3).

Thus, from a mathematical perspective, induction principles are nothing more than
statements of the form

if [base case] and [induction step], then [statement is true for all natural numbers]
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We will not explore induction any further here, as it is on its way very soon! C

Dealing with variables

We have made heavy use of variables already in this book, and we will not stop any
time soon. The notion of a variable may seem like a simple concept, but it actually
has many technicalities associated with it—a whole field, called nominal theory, has
emerged within mathematical logic and theoretical computer science in order to deal
with variables in a systematic way. We won’t need to go into quite that amount of
detail; instead, we will just need to focus on two aspects:

• the range of a variable, which tells us what kind of thing it refers to; and

• the quantification of a variable, which tells us how many things it refers to.

Definition 1.2.24
Let x be a variable. The range (or domain of discourse) of x is the set of objects
which x refers to.

In mathematical writing, all variables should have a range, which is either explicitly
mentioned or is clear from context.

Example 1.2.25
Consider the following statement.

If x2 is rational, then x is rational.

As stated, this statement looks like it is false; for example, letting x =
√

2, we
can see that x2 = 2, which is rational, but x is irrational. However, this is poorly
written, since the range of x is not indicated—indeed, if we’re told in advance that
x refers to an integer, then the statement is automatically true, since all integers
are rational; the counterexample above doesn’t work in this case, since

√
2 is not an

integer.

Here is a better way of writing it.

Let x be a real number. If x2 is rational, then x is rational.

The first sentence here indicates to the reader what kind of object the variable x
refers to. As we expected in the first place, this is now a false statement—but it’s
a well-written false statement! C
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Exercise 1.2.26
Consider the following statement:

Let x be an integer. If x = 2k + 1, then x is odd.

Re-word the statement to specify the range of k. With the range of k that you
specified, is the statement true or is it false? Would a different choice of range
change its truth or falsity? C

Unfortunately simply specifying the range of a variable is not sufficient to give
statements mathematical meaning and can lead to ambiguity.

Example 1.2.27
Consider the following statement:

x+ y is even, x, y ∈ Z

The range of the variables x and y is specified—namely, they refer to integers—but
we’re left wondering whether the statement ‘x + y is even’ is true. It’s certainly
sometimes true, but it can also be false—specifically, it’s true if x and y are both
even or both odd, and false otherwise. C

As Example 1.2.27 demonstrates, simply stating the range of variables is not suffi-
cient. This is where quantification comes in. We will focus on two kinds of quanti-
fication, namely universal and existential quantification.

Universal quantification is a means of saying that the variable can take any value
in its range—typically, we universally quantify a variable by using the words ‘all’ or
‘every’. In Section 2.1 we will describe universal quantification more precisely.

Proof tip
To prove a proposition of the form ‘for all x ∈ X, P ’, take an element x ∈ X, and
prove P for that value of x, knowing nothing about x, other than the assumption
that x is an element of X.

Assumptions Goals

for all x ∈ X, P
 

Assumptions Goals

x ∈ X P

C

Proposition 1.2.28
Every integer greater than one has at least four divisors.
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Proof. Let n ∈ Z, and suppose n > 1. Then the numbers −n, −1, 1 and n are all
distinct, and moreover

n = (−1) · (−n) = (−n) · (−1) = n · 1 = 1 · n

so they all divide n.

Writing tip
A template for proving statements of the form ‘for all x, P ’ is as follows.

Let x ∈ X. Then [prove P for x here, using no assumptions about x
other than the fact that x is an element of X].

Other words can be used instead of ‘let’, such as ‘take’ or ‘fix’, or even ‘suppose’. C

Proposition 1.2.29
The base-10 expansion of the square of every natural number ends in one of the
digits 0, 1, 4, 5, 6 or 9.

Proof. Fix n ∈ N, and let
n = drdr−1 . . . d0

be its base-10 expansion. Write

n = 10m+ d0

where m ∈ N—that is, m is the natural number obtained by removing the final digit
from n. Then

n2 = 100m2 + 20md0 + d2
0 = 10m(10m+ 2d0) + d2

0

Hence the final digit of n2 is equal to the final digit of d2
0. But the possible values

of d2
0 are

0 1 4 9 25 36 49 64 81

all of which end in one of the digits 0, 1, 4, 5, 6 or 9.

Exercise 1.2.30
Prove that every linear polynomial over Q has a rational root. C

Exercise 1.2.31
Prove that, for all real numbers x and y, if x and y are irrational, then x + y and
x− y are not both rational. C

Sometimes we seek to prove results about existence in mathematics—this just re-
quires us to find one thing making a statement true. Existential quantification is a
means of expressing that there is at least one value a variable can take which makes
a statement true. We typically existentially quantify a variable using words like
‘there exist’ or ‘there is’.
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Proof tip
To prove a proposition of the form ‘there exists x ∈ X such that P ’, find a value of
x ∈ X making P true, specify such a value of x, and then prove that P is true for
the specified value of x.

Assumptions Goals

there exists x ∈ X
such that P

 

Assumptions Goals

x = [specified value] P

C

Proposition 1.2.32
Let a ∈ R. The cubic polynomial

x3 + (1− a2)x− a

has a real root.

Proof. Let p(x) = x3 + (1− a2)x− a. Define x = a; then

p(x) = p(a) = a3 + (1− a2)a− a = a3 + a− a3 − a = 0

Hence a is a root of p(x). Since a is real, p(x) has a real root.

Writing tip
A template for proving statements of the form ‘there exists x such that P ’ is as
follows.

Define x by [define x here]. Then [prove P for the specified value of x
here].

Other words can be used instead of ‘let’, such as ‘take’ or ‘fix’, or even ‘suppose’. C

Exercise 1.2.33
Prove that there is a real number which is irrational but whose square is rational. C

Exercise 1.2.34
Prove that there is an integer which is divisible by zero. C

Statements may involve many variables, which could be universally or existentially
quantified, or any combination of the above. In these cases, variables appearing
later in a statement can depend on variables appearing earlier in the statement.
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We now revisit Example 1.2.27, this time with quantified variables, and look at how
the choice of quantifier affects its truth values.

Example 1.2.35
Consider the statement ‘x+ y is even’, where x and y are variables ranging over the
integers. There are four ways of quantifying x and y, each yielding a statement with
a different meaning:

(a) For all integers x, and all integers y, x+ y is even;

(b) For all integers x, there exists an integer y such that x+ y is even;

(c) There exists an integer x such that, for all integers y, x+ y is even;

(d) There exists an integer x and an integer y such that x+ y is even.

Statement (a) is false. If it were true, then it would imply that 0 + 1 is even; but
that is nonsense!

Statement (b) is true. To see this, let x ∈ Z. We split into cases based on whether
x is even or odd.

• If x is even, then by letting y = 0, we see that x+ y = x is even.

• If x is odd, then by letting y = 1, we see that x+ y = x+ 1 is even.

In any case, there is an integer y such that x+ y is even, as required. C

Exercise 1.2.36
Prove that (c) is false and (d) is true in Example 1.2.35. C

Exercise 1.2.37
Prove that, for all real numbers x, there exists a real number y such that x + y ∈
Q. C
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Section 1.3

Induction on the natural numbers

We defined the natural numbers in Definition 1.1.5; to reiterate, they are the non-
negative whole numbers

0, 1, 2, 3, . . .

and we denote the set of natural numbers by N. This was an informal definition:
it assumed that we have an inherent notion in our minds of what a number line
is, what 0 is, and so on. And we probably do have such an inherent notion in our
minds; it’s so ingrained that you wouldn’t think twice about what I mean when I
write 3 + 15 or 7 × 12, even though I haven’t defined what + or × mean (or even
what 3, 15, 7 and 12 mean).

This informal approach gets us into some trouble if we really want to be precise
about what we’re doing, and so Definition 1.1.5 won’t suffice. However, we can
pin down what it is that the natural numbers ‘should be’ by writing down some
basic properties that they should satisfy—these properties are called axioms. The
approach we take is to characterise the natural numbers in terms of the number 0
and the operation of ‘adding 1’, which we call the successor operation. A set with
a notion of zero and a notion of successor can be thought of as a set of natural
numbers provided it satisfies following five axioms, called the Peano axioms.

Axioms 1.3.1 (Peano axioms)

(a) N contains a zero element, denoted 0;

(b) If n ∈ N then there is an element n+ ∈ N, called the successor of n;

(c) Zero is not a successor; that is, n+ 6= 0 for all n ∈ N;

(d) For all m,n ∈ N, if m+ = n+, then m = n;

(e) If X is a set such that

(i) 0 ∈ X; and

(ii) for all n ∈ N, if n ∈ X, then n+ ∈ X;

then every natural number is an element of X.

Most of these properties are reasonably self-explanatory. For example, we can inter-
pret (c) as saying that there isn’t a natural number n such that n+ 1 = 0. . . if there
were, then we’d have n = −1 but −1 isn’t a natural number. And (d) says that if
m+ 1 = n+ 1 then m = n; this makes sense because we should be able to ‘subtract
1’ from both sides of the equation.
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The property that requires some discussion is (e). In slightly more human terms, it
says: if a set X contains 0 and the successors of all its elements, then it contains
all the natural numbers. Why should this be so? Well, we know 0 ∈ X. Since X
contains successors of all its elements, it contains 0+1, which is 1; and so it contains
1 + 1, which is 2; and so it contains 2 + 1, which is 3; . . . and so on.

From the five Peano axioms, we can recover everything we know about the natural
numbers. For instance:

• Numerals. Define 1 = 0+, 2 = 1+ (= 0++), 3 = 2+ (= 0+++), and so
on. Thus the symbols 0, 1, 2, 3, 4, . . . (called numerals) are given meaning by
saying that n is the nth iterated successor of 0.

• Addition. We can define addition by declaring m + 0 = m and m + (n+) =
(m+ n)+. Thus, for instance,

m+ 1 = m+ (0+) = (m+ 0)+ = m+

and, then

m+ 2 = m+ (1+) = (m+ 1)+ = m++

and so on.

• Multiplication. We can define multiplication as iterated addition. Precisely,
define m× 0 = 0 and m× (n+) = (m× n) +m (LATEX code: \times).

• Exponentiation. We can define exponentiation as iterated multiplication.
Precisely, define m0 = 1 and mn+

= (mn)×m.

• Order. If you think about it, m 6 n (LATEX code: \le) really just means that
there is some non-negative number you can add to m to obtain n. Thus we
can define ‘m 6 n’ to mean

m+ k = n for some k ∈ N

and then we can define ‘m < n’ to mean ‘m 6 n and m 6= n’.

The way we defined addition and multiplication is called recursion: we defined how
they act on zero, and how they act on a successor n+ 1 in terms of how they act on
n.

Example 1.3.2
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We prove that 2×2 = 4 using the recursive definitions of addition and multiplication.

2× 2 = (2× 1) + 2 by definition of ×, since 2 = 1+

= ((2× 0) + 2) + 2 by definition of ×, since 1 = 0+

= (0 + 2) + 2 by definition of ×
= ((0 + 1) + 1) + 2 by definition of +, since 2 = 1+

= (1 + 1) + 2 since 0 + 1 = 0+ = 1

= 2 + 2 since 1 + 1 = 1+ = 2

= (2 + 1) + 1 by definition of +, since 2 = 1+

= 3 + 1 since 2 + 1 = 2+ = 3

= 4 since 3 + 1 = 3+ = 4

Note that, in order to shorten the proof, we used the fact proved earlier, that
m+ 1 = m+ for all m, on the fifth, sixth, eighth and ninth lines. C

Exercise 1.3.3
Using the recursive definitions of addition, multiplication and exponentiation, prove
that 22 = 4. C

We will not go through the long, arduous process of proving everything we need
from the Peano axioms, as that would take a long time, and would not be very
enlightening. Before moving on, we will make some more recursive definitions that
will be useful to us as we progress through the book.

Definition 1.3.4
For each i ∈ N let xi be a real number.

• The indexed sum
n∑

i=1
xi is defined recursively for n ∈ N by

0∑
i=1

xi = 0 and

n+1∑
i=1

xi =

(
n∑

i=1

xi

)
+ xn+1

• The indexed product
n∏

i=1
xi is defined recursively for n ∈ N by

0∏
i=1

xi = 1 and
n+1∏
i=1

xi =

(
n∏

i=1

xi

)
· xn+1

Example 1.3.5
Let xi = i2 for each i ∈ N. Then

5∑
i=1

xi = 1 + 4 + 9 + 16 + 25 = 55
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and
5∏

i=1

xi = 1 · 4 · 9 · 16 · 25 = 14400

C

Exercise 1.3.6
Let x1, x2 ∈ R. Working strictly from the definitions of indexed sum and indexed
product, prove that

2∑
i=1

xi = x1 + x2 and

2∏
i=1

xi = x1 · x2

C

The remainder of this section concerns induction on the natural numbers. This
is a class of proof techniques which are used for proving statements about natural
numbers—Definition 1.3.7 makes this notion slightly more precise, and is a particular
instance of a logical formula, which will be introduced in Definition 2.1.37 (and again
formally in Definition B.1.3).

Definition 1.3.7
A statement about natural numbers is an expression involving a variable, such
that when a natural number is substituted for the variable in the expression, it
becomes a proposition (in the sense of Definition 1.1.1). We will denote statements
about natural numbers as p(n), q(m), and so on; the letter in parentheses denotes
the variable.

Example 1.3.8
Let p(n) be the statement

2n+ 1 is divisible by 3

This is a statement about natural numbers. The proposition p(1) says

2 · 1 + 1 is divisible by 3

which is true, since 2 · 1 + 1 = 3 = 1 · 3. The proposition p(2) says

2 · 2 + 1 is divisible by 3

which is false, since 2 · 2 + 1 = 5 = 1 · 3 + 2, which leaves a remainder of 2 when
divided by 3. For a given natural number n, the proposition p(3n) says

2 · (3n) + 1 is divisible by 3

which will be seen to be false in the following exercise. C

Exercise 1.3.9
Letting p(n) be the statement as in Example 1.3.8. Prove that p(3n+ 1) is true for
all n ∈ N, and that p(3n) and p(3n+ 2) are both false for all n ∈ N. C

53



54 Chapter 1. Mathematical reasoning

Weak induction

The first induction principle we encounter says that natural numbers behave like
dominoes. Imagine an infinitely long line of dominoes—one for each natural number—
and suppose we want to prove a statement about natural numbers, say p(n). Proving
p(n) will correspond to the nth domino falling; hence proving p(n) for all n ∈ N cor-
responds to all the dominoes falling.

How do we make all the dominoes fall? Well we knock down domino 0, and from
there everything is taken care of: domino 0 knocks down domino 1; then domino 1
knocks down domino 2; and so on. For n ∈ N, domino n knocks down domino n+ 1.

From a more mathematical perspective, what this means is: we prove p(0); then
p(1) will follow from the fact that p(0) is true; and p(2) will follow from the fact
that p(1) is true; and so on. For n ∈ N, p(n+1) will follow from the fact that p(n) is
true. In other words, provided we can prove p(0) is true, and that p(n)⇒ p(n+ 1)
for each n, we’ve made all the dominos fall over and hence proved the proposition
for all natural numbers.

Sometimes a statement might be false for a few natural numbers, but true after a
certain point. For example 3n < 2n is true when n = 0, false when n = 1, 2, 3, and
then true for all n > 4. This isn’t a problem—if all we want to do is prove that it
is true for n > 4, we just knock over domino 4 first instead of domino 0!

Now let’s be more precise about what we mean, and prove that we’re correct.

Theorem 1.3.10 (Weak induction principle)
Let p(n) be a statement about natural numbers, and let b ∈ N. If

(i) p(b) is true; and

(ii) For all n > b, if p(n) is true, then p(n+ 1) is true;
then p(n) is true for all n > b.

Proof. First suppose b = 0. Let X be the set of all natural numbers n for which
p(n) is true. For a natural number n, the proposition n ∈ X is equivalent to the
proposition p(n). Thus, respectively, the hypotheses of the theorem state:

(i) 0 ∈ X; and

(ii) For all n ∈ N, if n ∈ X, then n+ 1 ∈ X;

So by Axiom 1.3.1(e), every natural number is an element of X. Hence p(n) is true
for all n ∈ N.

The case when b > 0 is left for the reader in Exercise 1.3.13.
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Proof tip
To prove a statement p(n) is true for all natural numbers n > b, you can:

• (Base case) Prove p(b) is true;

• (Induction step) Fix n > b, and assume that p(n) is true; from this assump-
tion alone, derive p(n+ 1).

The assumption p(n) is called the induction hypothesis.

This whole process is called proof by (weak) induction (on n). We won’t usually
use the word ‘weak’ unless we really need to specify it. Usually we’ll also omit ‘on
n’ unless there is more than one variable at play, in which case we will specify. C

Example 1.3.11
We will prove that 0 + 1 + 2 + · · · + n = n(n+1)

2 for all natural numbers n, by

induction.[c] Note that since we’re proving it for all natural numbers, our base case
has b = 0.

Let p(n) be the assertion that 0 + 1 + · · ·+ n = n(n+1)
2 .

• (BC) We prove p(0) is true. Now, p(0) is the expression 0 = 0(0+1)
2 . Since the

right-hand side evaluates to 0, p(0) is true.

• (IS) Let n ∈ N and suppose p(n) is true, i.e. assume

0 + 1 + · · ·+ n = n(n+1)
2 —(IH)

We prove that this implies p(n+ 1), which is the formula

0 + 1 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2

We proceed by calculation:

0 + 1 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1) by (IH)

= (n+ 1)
(n

2
+ 1
)

by factorisation

= (n+ 1)

(
n

2
+

2

2

)
since

2

2
= 1

=
(n+ 1)(n+ 2)

2
combining fractions

Hence p(n) implies p(n+ 1). By induction, we’re done. C

Writing tip
Proofs by induction all follow the same format, so it is good to get into some good

[c]The LATEX code for a
b

is \frac{a}{b}.
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habits. These good habits make your proof more readable and better structured,
and they help you to avoid silly mistakes. With reference to Example 1.3.11, here
are some tips for writing proofs by induction of your own:

• Labelling the steps. Clearly labelling the base case and induction step helps
the reader identify what part of the proof is being done. I used BC and IS
to signify which is which; you are of course welcome to develop your own
convention.

• Writing down the induction hypothesis. Writing down the induction
hypothesis p(n) explicitly—which I labelled by IH—makes it very clear what
it is you are assuming. You can then refer back to it later in your proof—as I
did in the first line of the calculation—to specify when you have used it.

• Writing down the goal of the induction step. When proving the induc-
tion step, it is common to fall down the trap of forgetting what you are actually
trying to prove. Writing down p(n + 1) explicitly, prefixed by something like
‘we need to prove . . . ’, gives you something to look back on as you complete
your proof.

• Saying when you’re done. When you have proved p(n + 1) is true, it is
a good idea to conclude the proof by summarising what you did. A quick
statement like ‘hence p(n) implies p(n + 1), so by induction, we’re done’ will
suffice.

C

Example 1.3.12
We’ll prove that n3 − n is divisible by 3 for all n ∈ N. Thus, the statement p(n) to
be proved is n3 − n, and the base case is when n = 0.

• (BC) We need to prove that 03 − 0 is divisible by 3. Well 03 − 0 = 0 = 3× 0,
so 03 − 0 is divisible by 3.

• (IS) Let n ∈ N and suppose that n3 − n is divisible by 3. Specifically, the
induction hypothesis is:

n3 − n = 3k for some k ∈ N —(IH)

We need to prove that (n+ 1)3 − (n+ 1) is divisible by 3; in other words, we
need to find some natural number ` such that

(n+ 1)3 − (n+ 1) = 3`
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Expanding the brackets, we obtain:

(n+ 1)3 − (n+ 1) = (n3 + 3n2 + 3n+ 1)− n− 1 expand brackets

= n3 − n+ 3n2 + 3n+ 1− 1 rearrange terms

= n3 − n+ 3n2 + 3n since 1− 1 = 0

= 3k + 3n2 + 3n by (IH)

= 3(k + n2 + n) factorise

Thus we have expressed (n + 1)3 − (n + 1) in the form 3` for a natural number `;
specifically, ` = k + n2 + n. By induction, we’re done. C

The following exercise completes the proof of the weak induction principle, where
the base case is allowed to be nonzero.

Exercise 1.3.13
Prove the weak induction principle (Theorem 1.3.10) in the case when b > 0. C

Example 1.3.14
Let p(n) be the statement 3n < 2n. We prove p(n) is true for all n > 4 by induction.

• (BC) p(4) is the statement 3 · 4 < 24. This is true, since 12 < 16.

• (IS) Suppose n > 4 and that p(n) is true, i.e. that 3n < 2n (IH). We want to
prove 3(n+ 1) < 2n+1. Well

3(n+ 1) = 3n+ 3 expand brackets

< 2n + 3 by (IH)

< 2n + 16 since 3 < 16

= 2n + 24 since 24 = 16

6 2n + 2n since n > 4

= 2 · 2n since x+ x = 2x

= 2n+1 using laws of indices

So we have proved 3(n+ 1) < 2n+1, as required.

Hence p(n) implies p(n+ 1), so by induction, we’re done. C

Note that the proof in Example 1.3.14 says nothing about the truth or falsity of
p(n) for n = 0, 1, 2, 3. In order to assert that these cases are false, you need to show
them individually; indeed:

• 3× 0 = 0 and 20 = 1, hence p(0) is true;
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• 3× 1 = 3 and 21 = 2, hence p(1) is false;

• 3× 2 = 6 and 22 = 4, hence p(2) is false;

• 3× 3 = 9 and 23 = 9, hence p(3) is false.

So we deduce that p(n) is true when n = 0 or n > 4, and false otherwise.

Exercise 1.3.15
Use weak induction to prove that

n∑
k=0

2k = 2n+1 − 1

for all n ∈ N. C

Sometimes a ‘proof’ by induction might appear to be complete nonsense. The fol-
lowing is a classic example of a ‘fail by induction’:

Example 1.3.16
The following argument supposedly proves that every horse is the same colour.

• (BC) Suppose there is just one horse. This horse is the same colour as itself,
so the base case is immediate.

• (IS) Suppose that every collection of n horses is the same colour (IH). Let X
be a set of n+ 1 horses. Removing the first horse from X, we see that the last
n horses are the same colour by (IH). Removing the last horse from X, we see
that the first n horses are the same colour. Hence all the horses in X are the
same colour.

By induction, we’re done. C

Exercise 1.3.17
Write down the statement p(n) that Example 1.3.16 attempted to prove for all
n > 1. Convince yourself that the proof of the base case is correct, then write
down—with quantifiers—exactly the proposition that the induction step is meant
to prove. Explain why the argument in the induction step failed to prove this
proposition. C

Writing tip
There are several ways to avoid situations like that of Example 1.3.16 by simply
putting more thought into writing the proof. Some tips are:

• State p(n) explicitly. In the statement ‘all horses are the same colour’ it is
not clear exactly what the induction variable is. However, we could have said:

Let p(n) be the statement ‘every set of n horses has the same colour’.
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• Refer to the base case b in the induction step. In Example 1.3.16, our
induction hypothesis simply stated ‘assume every set of n horses has the same
colour’. Had we instead said:

Let n > 1 and assume every set of n horses has the same colour.

We may have spotted the error in what was to come.

C

What follows are a couple more examples of proofs by weak induction.

Example 1.3.18
Given any n ∈ N,

n∑
k=0

k3 =

(
n∑

k=0

k

)2

We proved in Example 1.3.11 that
n∑

k=0

k = n(n+1)
2 for all n ∈ N, thus it suffices to

prove that
n∑

k=0

k3 =
n2(n+ 1)2

4

for all n ∈ N.

We proceed by induction.

• (BC) We need to prove that 03 = 02(0+1)2

4 . This is true since both sides of the
equation are equal to 0.

• (IS) Fix n ∈ N and suppose that
n∑

k=0

k3 = n2(n+1)2

4 . We need to prove that

n+1∑
k=0

k3 = (n+1)2(n+2)2

4 . This is true since:

n+1∑
i=0

k3 =
n∑

i=0

k3 + (n+ 1)3 by definition of sum

=
n2(n+ 1)2

4
+ (n+ 1)3 by (IH)

=
n2(n+ 1)2 + 4(n+ 1)3

4
(algebra)

=
(n+ 1)2(n2 + 4(n+ 1))

4
(algebra)

=
(n+ 1)2(n+ 2)2

4
(algebra)
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By induction, the result follows. C

Example 1.3.19
We will prove the correctness of the following formula for the sum of an arithmetic
progression, that is a sequence of finite length such that the difference between
consecutive terms is constant.

Specifically, let a, d ∈ R. We will prove that

n∑
k=0

(a+ kd) =
(n+ 1)(2a+ nd)

2

for all n ∈ N.

We proceed by induction.

• (BC) We need to prove that
0∑

k=0

(a+ kd) = (0+1)(2a+0d)
2 . This is true, since

0∑
k=0

(a+ kd) = a+ 0d = a =
2a

2
=

1 · (2a)

2
=

(0 + 1)(2a+ 0d)

2

• (IS) Fix n ∈ N and suppose that
n∑

k=0

(a + kd) = (n+1)(2a+nd)
2 . We need to

prove:
n+1∑
k=0

(a+ kd) =
(n+ 2)(2a+ (n+ 1)d)

2

This is true, since

n+1∑
k=0

(a+ kd)

=

n∑
k=0

(a+ kd) + (a+ (n+ 1)d) by definition of sum

=
(n+ 1)(2a+ nd)

2
+ (a+ (n+ 1)d) by (IH)

=
(n+ 1)(2a+ nd) + 2a+ 2(n+ 1)d

2
(algebra)

=
(n+ 1) · 2a+ (n+ 1) · nd+ 2a+ 2(n+ 1)d

2
(algebra)

=
2a(n+ 1 + 1) + (n+ 1)(nd+ 2d)

2
(algebra)

=
2a(n+ 2) + (n+ 1)(n+ 2)d

2
(algebra)

=
(n+ 2)(2a+ (n+ 1)d)

2
(algebra)
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By induction, the result follows. C

Strong induction

Sometimes it is clear that a statement can almost be proved by induction, but a
snag appears; for example, in the following example, the truth of p(n+ 1) seems to
depend not on just p(n), but also on p(n− 1):

Example 1.3.20
Define a sequence of numbers (an)n∈N recursively by:

a0 = 0, a1 = 1, an = 3an−1 − 2an−2 for all n > 2

Thus, continuing the sequence, we have

a2 = 3 · 1− 2 · 0 = 3, a3 = 3 · 3− 2 · 1 = 7, a4 = 15, . . .

Looking at the sequence (0, 1, 3, 7, 15, . . . ), you might hypothesise that an = 2n − 1
for all n ∈ N. And you would be correct! So let’s try and prove that an = 2n − 1
for all n ∈ N by induction.

The statement is demonstrably true for n = 0, 1, since

a0 = 0 = 1− 1 = 20 − 1 and a1 = 1 = 2− 1 = 21 − 1

Fix n > 1 and suppose an = 2n − 1. If this implies that an+1 = 2n+1 − 1, we’ll be
done by induction: indeed, induction gives that p(n) is true for all n > 1, and we
checked the case n = 0 separately.

So let’s see what happens. Since n > 1, we have n + 1 > 2, so we can apply the
recursive formula for an+1:

an+1 = 3an − 2an−1

Here’s where we get stuck: our induction hypothesis only tells us that an = 2n − 1,
so that

an+1 = 3(2n − 1)− 2an−1

but it doesn’t tell us anything at all about an−1. We need to express an−1 in terms
of n in order to get a reasonable formula for an+1. � C

This example illustrates why weak induction is called ‘weak’. But all is not lost:
using the technique of weak induction, we can prove a principle of strong induction.
The induction step in strong induction assumes not just the truth of the proposition
for one prior step, but its truth of all prior steps.

Despite its name, strong induction is no stronger than weak induction; the two
principles are equivalent. In fact, we’ll prove the strong induction principle by weak
induction!
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Corollary 1.3.21 (Strong induction principle)
Let p(x) be a statement about natural numbers and let b ∈ N. If

(i) p(b) is true; and

(ii) For all n ∈ N, if p(k) is true for all b 6 k 6 n, then p(n+ 1) is true;
then p(n) is true for all n > b.

Proof. We’ll prove this using weak induction. For each n, let q(n) be the statement

‘p(k) is true for all b 6 k 6 n’

Notice that q(n) implies p(n) for all n > b—to see this, let k = n in the statement
of q(n). Thus if we can prove that q(n) is true for all n, then we’ve proved that p(n)
is true for all n.

• (BC) q(b) is equivalent to p(b), since the only natural number k with b 6 k 6 b
is b itself; hence q(b) is true by (i);

• (IS) Let n > b and suppose q(n) is true. By (ii), p(n + 1) is true. Since q(n)
is true, p(k) is true for all b 6 k 6 n. Combining these facts, p(k) is true for
all b 6 k 6 n+ 1, which is precisely the statement that q(n+ 1) is true.

By induction, q(n) is true for all n > b. Hence p(n) is true for all n > b.

Proof tip
To prove a statement p(n) is true for all natural numbers n > b (where b is some
fixed natural number):

• (Base case) Prove p(b) is true;

• (Induction step) Fix n > b, and assume that p(k) is true for all b 6 k 6 n;
from this assumption alone, derive p(n+ 1).

The assumption that p(k) is true for all b 6 k 6 n is called the induction hypo-
thesis.

This whole process is called proof by (strong) induction (on n). We won’t usually
use the word ‘strong’ unless we really need to specify it. Usually we’ll also omit ‘on
n’ unless there is more than one variable at play, in which case we will specify. C

Strong induction is very well suited to proving formulae for sequences where sub-
sequent terms are defined in terms of more than one previous term, as the next few
examples demonstrate.

Example 1.3.22
Recall from Example 1.3.20 that we defined the sequence

a0 = 0, a1 = 1, an = 3an−1 − 2an−2 for all n > 2

62
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and we wished to prove that an = 2n − 1 for all n ∈ N. We have proved that it’s
true when n = 0, and will show that it’s true for n > 1 by strong induction on n.

• (BC) We have already proved that a1 = 21 − 1.

• (IS) Let n ∈ N, and assume that ak = 2k − 1 for all 1 6 k 6 n. Since
a0 = 20 − 1, this in fact holds for all k 6 n.

We need to prove that this assumption implies that an+1 = 2n+1 − 1. Well,
n > 1, so n+ 1 > 2 and we can apply the recursive formula to an+1. Thus

an+1 = 3an − 2an−1 by definition of an+1

= 3(2n − 1)− 2(2n−1 − 1) since p(k) holds for all k 6 n

= 3 · 2n − 3− 2 · 2n−1 + 2 expand brackets

= 3 · 2n − 3− 2n + 2 laws of indices

= 2 · 2n − 1 simplifying

= 2n+1 − 1 laws of indices

So we’re done by strong induction. C

Example 1.3.23
Define a sequence recursively by a0 = 4, a1 = 9 and an = 5an−1 − 6an−2 for all
n > 2.

We will prove that an = 3 · 2n + 3n for all n ∈ N.

We proceed by strong induction for n > 1, treating the n = 0 case as a second base
case.

• (BC) The result holds when n = 0 and when n = 1, since

a0 = 4 = 3 · 20 + 30 and a1 = 9 = 3 · 21 + 31

• (IS) Fix n > 1 and suppose that ak = 3 · 2k + 3k for all k 6 n. We need to
prove that an+1 = 3 · 2n+1 + 3n+1. Well,

an+1 = 5an − 6an−1 by definition of the sequence

= 5(3 · 2n + 3n)− 6(3 · 2n−1 + 3n−1) by the induction hypothesis

= (5 · 3 · 2− 6 · 3)2n−1 + (5 · 3− 6)3n−1 (algebra)

= 12 · 2n−1 + 9 · 3n−1 (algebra)

= 3 · 22 · 2n−1 + 32 · 3n−1 (algebra)

= 3 · 2n+1 + 3n+1 (algebra)

Hence the result we sought to prove is true.
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By induction, it follows that an = 3 · 2n + 3n for all n ∈ N. C

Example 1.3.24
Define a sequence recursively by

b0 = 1 and bn+1 = 1 +
n∑

k=0

bk for all n ∈ N

We will prove by strong induction that bn = 2n for all n ∈ N.

• (BC) By definition of the sequence we have b0 = 1 = 20.

• (IS) Fix n ∈ N, and suppose that bk = 2k for all k 6 n. We need to show that
bn+1 = 2n+1. This is true, since

bn+1 = 1 +
n∑

k=0

bk by the recursive formula for bn+1

= 1 +
n∑

k=0

2k by the induction hypothesis

= 1 + (2n+1 − 1) by Exercise 1.3.15

= 2n+1

By induction, it follows that bn = 2n for all n ∈ N. C

A first look at binomials and factorials

In Section 4.2, two kinds of natural number will turn out to be extremely useful,
namely factorials and binomial coefficients. These numbers allow us to count the
number of elements of certain kinds of sets, and correspond with the ‘real-world’
processes of permutation and selection, respectively. Everything we do here will
be re-defined and re-proved combinatorially in Section 3.2. In this section, we will
overlook the combinatorial nature, and instead characterise them recursively. We
will prove that the combinatorial and recursive definitions of binomial coefficients
and factorials are equivalent in Section 4.2.

Definition 1.3.25 (to be redefined in Definition 4.2.24)
Let n ∈ N. The factorial of n, written n!, is defined recursively by

0! = 1 and (n+ 1)! = (n+ 1) · n! for all n > 0

Put another way, we have

n! =
n∏

i=1

i
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for all n ∈ N—recall 1.3.4 to see why these definitions are really just two ways of
wording the same thing.

Exercise 1.3.26
Prove that

n−1∏
i=0

(3i+ 1)(3i+ 2) =
(3n)!

3nn!

for all n ∈ N. C

Definition 1.3.27 (to be redefined in Definition 4.2.18)
Let n, k ∈ N. The binomial coefficient

(
n
k

)
(LATEX code: \binom{n}{k}) (read ‘n

choose k’) is defined recursively for n, k ∈ N by(
k

0

)
= 1,

(
0

k + 1

)
= 0,

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)

This definition gives rise to an algorithm for computing binomial coefficients: they fit
into a diagram known as Pascal’s triangle, with each binomial coefficient computed
as the sum of the two lying above it (with zeroes omitted):

(
0
0

)
1(

1
0

) (
1
1

)
1 1(

2
0

) (
2
1

) (
2
2

)
= 1 2 1(

3
0

) (
3
1

) (
3
2

) (
3
3

)
1 3 3 1(

4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
1 4 6 4 1(

5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
1 5 10 10 5 1

...
...

...
...

...
...

...
...

...

Exercise 1.3.28
Write down the next two rows of Pascal’s triangle. C

We can prove lots of identities concerning binomial coefficients and factorials by
induction.

Example 1.3.29

We prove that
n∑

i=0

(
n
i

)
= 2n by induction on n.

• (BC) We need to prove
(

0
0

)
= 1 and 20 = 1. These are both true by the

definitions of binomial coefficients and exponents.

• (IS) Fix n > 0 and suppose that

n∑
i=0

(
n

i

)
= 2n
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We need to prove
n+1∑
i=0

(
n+ 1

i

)
= 2n+1

This is true, since

n+1∑
i=0

(
n+ 1

i

)

=

(
n+ 1

0

)
+

n+1∑
i=1

(
n+ 1

i

)
splitting the sum

= 1 +
n∑

j=0

(
n+ 1

j + 1

)
letting j = i− 1

= 1 +

n∑
j=0

((
n

j

)
+

(
n

j + 1

))
by Definition 1.3.27

= 1 +

n∑
j=0

(
n

j

)
+

n∑
j=0

(
n

j + 1

)
separating the sums

Now
n∑

j=0

(
n
j

)
= 2n by the induction hypothesis. Moreover, reindexing the sum

using k = j + 1 yields

n∑
j=0

(
n

j + 1

)
=

n+1∑
k=1

(
n

k

)
=

n∑
k=1

(
n

k

)
+

(
n

n+ 1

)
By the induction hypothesis, we have

n∑
k=1

(
n

k

)
=

n∑
k=0

(
n

k

)
−
(
n

0

)
= 2n − 1

and
(

n
n+1

)
= 0, so that

n∑
j=0

(
n

j+1

)
= 2n − 1.

Putting this together, we have

1 +
n∑

j=0

(
n

j

)
+

n∑
j=0

(
n

j + 1

)
= 1 + 2n + (2n − 1)

= 2 · 2n

= 2n+1

so the induction step is finished.
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By induction, we’re done. C

Exercise 1.3.30
Prove by induction on n > 1 that

n∑
i=0

(−1)i
(
n

i

)
= 0

C

Theorem 1.3.31
Let n, k ∈ N. Then (

n

k

)
=

{
n!

k!(n−k)! if k 6 n

0 if k > n

Proof. We proceed by induction on n.

• (BC) When n = 0, we need to prove that
(

0
k

)
= 0!

k!(−k)! for all k 6 0, and that(
0
k

)
= 0 for all k > 0.

If k 6 0 then k = 0, since k ∈ N. Hence we need to prove(
0

0

)
=

0!

0!0!

But this is true since
(

0
0

)
= 1 and 0!

0!0! = 1
1×1 = 1.

If k > 0 then
(

0
k

)
= 0 by Definition 1.3.27.

• (IS) Fix n ∈ N and suppose that
(
n
k

)
= n!

k!(n−k)! for all k 6 n and
(
n
k

)
= 0 for

all k > n.

We need to prove that, for all k 6 n+ 1, we have(
n+ 1

k

)
=

(n+ 1)!

k!(n+ 1− k)!

and that
(
n+1
k

)
= 0 for all k > n+ 1.

So fix k ∈ N. There are four possible cases: either (i) k = 0, or (ii) 0 < k 6 n,
or (iii) k = n+ 1, or (iv) k > n+ 1. In cases (i), (ii) and (iii), we need to prove
the factorial formula for

(
n+1
k

)
; in case (iv), we need to prove that

(
n+1
k

)
= 0.

(i) Suppose k = 0. Then
(
n+1

0

)
= 1 by Definition 1.3.27, and

(n+ 1)!

k!(n+ 1− k)!
=

(n+ 1)!

0!(n+ 1)!
= 1

since 0! = 1. So
(
n+1

0

)
= (n+1)!

0!(n+1)! .
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(ii) If 0 < k 6 n then k = ` + 1 for some natural number ` < n. Then
` + 1 6 n, so we can use the induction hypothesis to apply factorial
formula to both

(
n
`

)
and

(
n

`+1

)
. Hence

(
n+ 1

k

)
=

(
n+ 1

`+ 1

)
since k = `+ 1

=

(
n

`

)
+

(
n

`+ 1

)
by Definition 1.3.27

=
n!

`!(n− `)!
+

n!

(`+ 1)!(n− `− 1)!
by induction hypothesis

Now note that

n!

`!(n− `)!
=

n!

`!(n− `)!
· `+ 1

`+ 1
=

n!

(`+ 1)!(n− `)!
· (`+ 1)

and

n!

(`+ 1)!(n− `− 1)!
=

n!

(`+ 1)!(n− `− 1)!
· n− `
n− `

=
n!

(`+ 1)!(n− `)!
· (n− `)

Piecing this together, we have

n!

`!(n− `)!
+

n!

(`+ 1)!(n− `− 1)!

=
n!

(`+ 1)!(n− `)!
· [(`+ 1) + (n− `)]

=
n!(n+ 1)

(`+ 1)!(n− `)!

=
(n+ 1)!

(`+ 1)!(n− `)!

so that
(

n
`+1

)
= (n+1)!

(`+1)!(n−`)! . Now we’re done; indeed,

(n+ 1)!

(`+ 1)!(n− `)!
=

(n+ 1)!

k!(n+ 1− k)!

since k = `+ 1.
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(iii) If k = n+ 1, then

(
n+ 1

k

)
=

(
n+ 1

n+ 1

)
since k = n+ 1

=

(
n

n

)
+

(
n

n+ 1

)
by Definition 1.3.27

=
n!

n!0!
+ 0 by induction hypothesis

= 1

and (n+1)!
(n+1)!0! = 1, so again the two quantities are equal.

(iv) If k > n + 1, then k = ` + 1 for some ` > n, and so by Definition 1.3.27
and the induction hypothesis we have

(
n+ 1

k

)
=

(
n+ 1

`+ 1

)
IH
=

(
n

`

)
+

(
n

`+ 1

)
= 0 + 0 = 0

On first reading, this proof is long and confusing, especially in the induction step
where we are required to split into four cases. We will give a much simpler proof in
Section 4.2 (see Theorem 1.3.31), where we prove the statement combinatorially by
putting the elements of two sets in one-to-one correspondence.

We can use 1.3.31 to prove useful identities involving binomial coefficients.

Example 1.3.32
Let n, k, ` ∈ N with ` 6 k 6 n then

(
n

k

)(
k

`

)
=

(
n

`

)(
n− `
k − `

)
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Indeed:(
n

k

)(
k

`

)
=

n!

k!(n− k)!
· k!

`!(k − `!)
by Theorem 1.3.31

=
n!k!

k!`!(n− k)!(k − `)!
combine fractions

=
n!

`!(n− k)!(k − `)!
cancel k!

=
n!(n− `)!

`!(n− k)!(k − `)!(n− `)!
multiply by

(n− `)!
(n− `)!

=
n!

`!(n− `!)
· (n− `)!

(k − `)!(n− k)!
separate fractions

=
n!

`!(n− `!)
· (n− `)!

(k − `)!((n− `)− (k − `))!
rearranging

=

(
n

`

)(
n− `
k − `

)
by Theorem 1.3.31

C

Exercise 1.3.33
Proof that

(
n
k

)
=
(

n
n−k
)

for all n, k ∈ N with k 6 n. C

A very useful application of binomial coefficients in elementary algebra is to the
binomial theorem.

Theorem 1.3.34 (Binomial theorem)
Let n ∈ N and x, y ∈ R. Then

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k

Proof. In the case when y = 0 we have yn−k = 0 for all k < n, and so the equation
reduces to

xn = xnyn−n

which is true, since y0 = 1. So for the rest of the proof, we will assume that y 6= 0.

We will now reduce to the case when y = 1; and extend to arbitrary y 6= 0 afterwards.

We prove (1 + x)n =
n∑

k=0

(
n
k

)
xk by induction on n.
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• (BC) (1 + x)0 = 1 and
(

0
0

)
x0 = 1 · 1 = 1, so the statement is true when n = 0.

• (IS) Fix n ∈ N and suppose that

(1 + x)n =

n∑
k=0

(
n

k

)
xk —(IH)

We need to show that (1 + x)n+1 =
n+1∑
k=0

(
n+1
k

)
xk. Well,

(1 + x)n+1

= (1 + x)(1 + x)n by laws of indices

= (1 + x) ·
n∑

k=0

(
n

k

)
xk by (IH)

=
n∑

k=0

(
n

k

)
xk + x ·

n∑
k=0

(
n

k

)
xk by expanding (x+ 1)

=
n∑

k=0

(
n

k

)
xk +

n∑
k=0

(
n

k

)
xk+1 distributing x

=

n∑
k=0

(
n

k

)
xk +

n+1∑
k=1

(
n

k − 1

)
xk k → k − 1 in second sum

=

(
n

0

)
x0 +

n∑
k=1

((
n

k

)
+

(
n

k − 1

))
xk +

(
n

n

)
xn+1 splitting the sums

=

(
n

0

)
x0 +

n∑
k=1

(
n+ 1

k

)
xk +

(
n

n

)
xn+1 by Definition 1.3.27

=

(
n+ 1

0

)
x0 +

n∑
k=1

(
n+ 1

k

)
xk +

(
n+ 1

n+ 1

)
xn+1 see (∗) below

=
n+1∑
k=0

(
n+ 1

k

)
xk

The step labelled (∗) holds because(
n

0

)
= 1 =

(
n+ 1

0

)
and

(
n

n

)
= 1 =

(
n+ 1

n+ 1

)

By induction, we’ve shown that (1 + x)n =
n∑

i=0

(
n
k

)
xk for all n ∈ N.

When y 6= 0 is not necessarily equal to 1, we have that

(x+ y)n = yn ·
(

1 +
x

y

)n

= yn ·
n∑

k=0

(
n

k

)(
x

y

)k

=

n∑
k=0

(
n

k

)
xkyn−k
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The middle equation follows by what we just proved; the leftmost and rightmost
equations are simple algebraic rearrangements.

Example 1.3.35
In Example 1.3.29 we saw that

n∑
k=0

(
n

k

)
= 2n

This follows quickly from the binomial theorem, since

2n = (1 + 1)n =
n∑

k=0

(
n

k

)
· 1k · 1n−k =

n∑
k=0

(
n

k

)

Likewise, in Exercise 1.3.30 you proved that the alternating sum of binomial coeffi-
cients is zero; that is, for n ∈ N, we have

n∑
k=0

(−1)k
(
n

k

)
= 0

The proof is greatly simplified by applying the binomial theorem. Indeed, by the
binomial theorem, we have

0 = 0n = (−1 + 1)n =
n∑

k=0

(
n

k

)
(−1)k1n−k =

n∑
k=0

(−1)k
(
n

k

)

Both of these identities can be proved much more elegantly, quickly and easily using
enumerative combinatorics. This will be the topic covered in Section 4.2. C

Well-ordering principle

In a way that we will make precise in Section 5.2, the underlying reason why we can
perform induction and recursion on the natural numbers is because of the way they
are ordered. Specifically, the natural numbers satisfy the well-ordering principle: if
a set of natural numbers has at least one element, then it has a least element. This
sets the natural numbers apart from the other number sets; for example, Z has no
least element, since if a ∈ Z then a− 1 ∈ Z and a− 1 < a.

Definition 1.3.36
Let X be a set. If X has at least one element, then we say X is inhabited (or
nonempty); otherwise, we say X is empty.
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Aside
The term nonempty is more common than inhabited in the mathematical community
for referring to sets which have elements, but there are reasons to prefer latter—in
particular, it avoids a double negative (‘has at least one element’ vs. ‘doesn’t have
no elements’)—so in this book we will typically use the word inhabited. C

Theorem 1.3.37 (Well-ordering principle)
Let X be a set of natural numbers. If X is inhabited, then X has a least element.

Strategy. Under the assumption that X is a set of natural numbers, the proposition
we want to prove has the form p⇒ q. Namely

X is inhabited ⇒ X has a least element

Assuming X is inhabited doesn’t really give us much to work with, so let’s try the
contrapositive:

X has no least element ⇒ X is empty

The assumption that X has no least element does give us something to work with.
Under this assumption we need to deduce that X is empty.

We will do this by ‘forcing X up’ by strong induction. Certainly 0 6∈ X, otherwise
it would be the least element. If none of the numbers 0, 1, . . . , n are elements of X
then neither can n+ 1 be, since if it were then it would be the least element of X.
Let’s make this argument formal.

Proof. Let X be a set of natural numbers containing no least element. We prove by
strong induction that n 6∈ X for all n ∈ N.

• (BC) 0 6∈ X since if 0 ∈ X then 0 must be the least element of X, as it is the
least natural number.

• (IS) Suppose k 6∈ X for all 0 6 k 6 n. If n + 1 ∈ X then n + 1 is the least
element of X; indeed, if ` < n+ 1 then 0 6 ` 6 n, so ` 6∈ X by the induction
hypothesis. This contradicts the assumption that X has no least element, so
n+ 1 6∈ X.

By strong induction, n 6∈ X for each n ∈ N. Since X is a set of natural numbers,
and it contains no natural numbers, it follows that X is empty.

Aside
In Section 5.2 we will encounter more general sets with a notion of ‘less than’,
for which any inhabited subset has a ‘least’ element. Any such set has an induction
principle, the proof of which is more or less identical to the proof of Corollary 1.3.21.
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This has powerful applications in computer science, where it can be used to formally
verify that a computer program containing various loops will terminate: termination
of a program corresponds to a particular set having a ‘least’ element. C

The following proof that
√

2 is irrational is a classic application of the well-ordering
principle.

Proposition 1.3.38
The number

√
2 is irrational.

To prove Proposition 1.3.38 we will use the following two lemmas. The first lemma
we prove uses the well-ordering principle to prove that fractions can be ‘cancelled
to lowest terms’.

Lemma 1.3.39
Let q be a positive rational number. There is a pair of nonzero natural numbers a, b
such that q = a

b and such that the only natural number which divides both a and b
is 1.

Proof. First note that we can express q as the ratio of two nonzero natural numbers,
since q is a positive rational number. By the well-ordering principle, there is a least
natural number a such that q = a

b for some positive b ∈ N.

Suppose that some natural number d other than 1 divides both a and b. Note that
d 6= 0, since if d = 0 then that would imply a = 0. Since d 6= 1, it follows that d > 2.

Since d divides a and b, there exist natural numbers a′, b′ such that a = a′d and
b = b′d. Moreover, a′, b′ > 0 since a, b, d > 0. It follows that

q =
a

b
=
a′d

b′d
=
a′

b′

But d > 2, and hence

a′ =
a

d
6
a

2
< a

contradicting minimality of a. Hence our assumption that some natural number d
other than 1 divides both a and b was false—it follows that the only natural number
dividing both a and b is 1.

The next lemma is a technical result that will allow us to derive a contradiction in
our proof that

√
2 is irrational.

Lemma 1.3.40
Let a ∈ Z. If a2 is even then a is even.
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Proof. We prove the contrapositive; that is, we prove that if a is odd then a2 is odd.

Odd numbers are precisely those of the form 2k + 1, where k ∈ Z. So suppose
a = 2k + 1 for some k ∈ Z. Then

a2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

Letting ` = 2k2 + 2k we see that a2 = 2` + 1, and since ` ∈ Z, it follows that a2 is
odd.

By contraposition, if a2 is even then a is even.

We are now ready to prove that
√

2 is irrational.

Proof of Proposition 1.3.38. Suppose
√

2 is rational. Since
√

2 > 0, this means that
we can write √

2 =
a

b

where a and b are both positive natural numbers. By Lemma 1.3.39, we may assume
that the only natural number dividing a and b is 1.

Multiplying the equation
√

2 = a
b and squaring yields

a2 = 2b2

Hence a2 is even. By Lemma 1.3.40, a is even, so we can write a = 2c for some
c > 0. Then a2 = (2c)2 = 4c2, and hence

4c2 = 2b2

Dividing by 2 yields

2c2 = b2

and hence b2 is even. By Lemma 1.3.40 again, b is even.

But if a and b are both even, the natural number 2 divides both a and b. This
contradicts the fact that the only natural number dividing both a and b is 1. Hence
our assumption that

√
2 is rational is incorrect, and

√
2 is irrational.

Writing tip
In the proof of Proposition 1.3.38 we could have separately proven that a2 being even
implies a is even, and that b2 being even implies b is even. This would have required
us to repeat the same proof twice, which is somewhat tedious! Proving auxiliary
results (lemmas) separately and then applying them in theorems can improve the
readability of the main proof, particularly when the auxiliary results are particularly
technical. Doing so also helps emphasise the important steps. C
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Exercise 1.3.41
What goes wrong in the proof of Proposition 1.3.38 if we try instead to prove that√

4 is irrational? C

Exercise 1.3.42
Prove that

√
3 is irrational. C
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Logic, sets and functions
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Section 2.1

Symbolic logic

Symbolic logic arises from the observation that propositions—that is, results about
mathematical objects—can themselves be treated as mathematical objects. So that
we can study propositions in an abstract setting, we will represent propositions by
symbols, typically the letters p, q, r and s. (It is rare that we will speak about more
than four propositions at the same time; if we need to, we’ll just use more letters!)
We call these propositional variables: they are ‘propositional’ because they rep-
resent propositions, and they are ‘variables’ because we will make no assumptions
about their truth value (unless explicitly stated).

This symbolic approach will allow us to decompose complex propositions into simpler
ones and investigate their logical structure, which in turn will help us work out how
to structure our proofs.

For example, consider the following:

Let n be an integer. If n is prime and n > 2 then n is odd.

The three statements ‘n is prime’, ‘n > 2’ and ‘n is odd’ are all propositions in their
own right, despite the fact that they all appear in a more complex proposition. We
can really examine the logical structure of the proposition by replacing these simpler
propositions with symbols. Referring to ‘n is prime’ as p, ‘n > 2’ as q, and ‘n is
odd’ as r, the structure of the second proposition is:

If p and q, then r.

Thus the propositions p, q, r are tied together by language, namely the word ‘and’
and the construction ‘if–then’. Soon we will give precise definitions of what these
words mean; in the abstract setting they are called logical operators.

Looking at the logical structure of complex propositions allows us to make an edu-
cated guess about how to proceed with a proof of the statement if it is true. Indeed,
it is a safe bet that in order to prove ‘if p and q, then r’, you should derive r from
the assumption that p and q are both true.

The value of reducing statements to symbolic expressions is that it forces us to
remove ambiguity and gives a clear-cut and precise way of knowing when we’ve
done what we set out to do.
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Section 2.1. Symbolic logic 79

Logical operators

A logical operator, intuitively speaking, is a rule that constructs a new proposition
out of other propositions. For example, as we saw in Section 1.2, from propositions
p, q we can construct several new propositions off the bat:

‘p and q’ ‘p or q’ ‘if p, then q’ ‘p is false’

These constructions correspond with the logical operators of conjunction, disjunc-
tion, implication and negation, respectively—and there are many more where they
came from!

Relying on our understanding of the English language to interpret what these logical
operators mean will cause us some trouble; the next few pages introduce the most
commonly used logical operators, together with their precise definitions. To get us
started, we will need the definition of a propositional formula; these are the symbolic
expressions which represent propositions built from smaller propositions using logical
operators.

Definition 2.1.1
A propositional formula is an expression built from propositional variables
p, q, r, s, . . . and logical operators (to be defined individually below).

Intuitively, propositional variables will refer to basic propositions, such as ‘3 is odd’,
and propositional formulae will refer to more complex propositions, such as ‘3 is odd
and 6 is not a perfect square’.

Conjunction (‘and’, ∧)

Conjunction is the logical operator which makes precise what we mean when we say
‘and’.

Definition 2.1.2
Let p and q be propositions. The conjunction of p and q, denoted p ∧ q (read: ‘p
and q’) (LATEX code: \wedge) is a proposition which is true if both p and q are true,
and false otherwise.

Aside
Strictly speaking, the definitions of logical operators should be given in terms of
propositional variables, rather than propositions themselves; these truth values then
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extend inductively to general propositional formulae, in a sense to be made pre-
cise in Section 5.3. These propositional formulae only represent propositions—the
latter cannot be treated formally because they are statements in natural language,
not mathematical objects. This perspective is confusing on first exposure, so we
will simplify matters by blurring the distinction between propositional variables,
propositional formulae and propositions. C

It is not always obvious when conjunction is being used; sometimes it sneaks in
without the word ‘and’ ever being mentioned! Be on the look-out for occasions like
this, such as in the following exercise.

Example 2.1.3
We can express the proposition ‘7 is an integer greater than 5’ in the form p∧ q, by
letting p represent the proposition ‘7 is an integer’ and let q represent the proposition
‘7 is greater than 5’. In order to prove that 7 is an integer greater than 5, we would
need to give a proof that 7 is an integer, and a proof that 7 is greater than 5. C

Exercise 2.1.4
Express the proposition ‘Clive is a mathematician who lives in Pittsburgh’ in the
form p ∧ q, for propositions p and q. C

The truth value of a propositional formula is determined by the truth values of the
propositional variables it contains. As such, the truth value of p∧q is defined in terms
of the truth values of p and of q. An easy way to specify this information isusing a
truth table, which tells us the truth value of p ∧ q for all possible assignments of
truth values to p and q:

p q p ∧ q
X X X ← p ∧ q is true when p is true and q is true
X × × ← p ∧ q is false when p is true and q is false
× X × ← p ∧ q is false when p is false and q is true
× × × ← p ∧ q is false when p is false and q is false

Here X (LATEX code: \checkmark) denotes ‘true’ and × (LATEX code: \times)
denotes ‘false’.[a] There is a row for each possible assignment of ‘true’ (X) or ‘false’
(×) to the propositional variables, and a column for each variable and the proposition
we’re interested in.

Disjunction (‘or’, ∨)

Disjunction is the logical operator that makes precise what we mean by ‘or’.

[a]Instead of X,×, some authors use >,⊥ (LATEX code: \top,\bot) or T, F or 1, 0.
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The word ‘or’ is especially context-dependent in English: if you say to me, ‘you can
have a slice of cake or you can have a chocolate bar,’ does that mean I can have
both, or not? We remove this ambiguity with the following definition; and to clarify,
with this definition of ‘or’, I can have both the cake and the chocolate bar. Yummy.

Definition 2.1.5
Let p and q represent propositions. The disjunction of p and q, denoted p∨q (read:
‘p or q’) (LATEX code: \vee) is the proposition which is true if at least one of p or q
is true, and false otherwise.

Exercise 2.1.6
Using Definition 2.1.5, write down a truth table for p∨ q (see page 80 for how it was
done for p ∧ q). C

The real power of truth tables comes when investigating how logical operators in-
teract with each other.

Example 2.1.7
Given propositions p, q, r, when is (p∧q)∨(p∧r) true? It’s not immediately obvious,
but we can work it out by breaking it down into its component parts, namely the
propositions p ∧ q and p ∧ r; we’ll call these auxiliary propositions. We can
then make a column for each variable, each auxiliary proposition, and the main
proposition, to find its truth values.

p q r p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)
X X X X X X
X X × X × X
X × X × X X
X × × × × ×
× X X × × ×
× X × × × ×
× × X × × ×
× × × × × ×︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

variables auxiliary propns main proposition

We can then read off the table precisely when (p∧ q)∨ (p∧ r) is true, by comparing
the entries in its column with the corresponding truth values of p, q, r. C

Aside
If you haven’t already mixed up ∧ and ∨, you probably will soon, so here’s a way
of remembering which is which:

mac n cheese
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If you forget whether it’s ∧ or ∨ that means ‘and’, just write it in place of the ‘n’ in
‘mac n cheese’:

mac ∧ cheese mac ∨ cheese

Clearly the first looks more correct, so ∧ means ‘and’. (For any Brits among you,
the mnemonic ‘fish n chips’ works just as well.) C

Exercise 2.1.8
Write a truth table for the proposition p ∧ (q ∨ r). Compare it with the truth table
for (p ∧ q) ∨ (p ∧ r). What do you notice? C

Hopefully, if you did the previous exercise correctly, you’ll have noticed that the
column for p ∧ (q ∨ r) is identical to the column for (p ∧ q) ∨ (p ∧ r). So in some
sense, these two propositions are ‘the same’.

Definition 2.1.9
Two propositional formulae depending on the same propositional variables are lo-
gically equivalent if they have the same truth value as each other, no matter what
the assignment of truth values to their propositional variables.

Proof tip
To prove that two propositions are logically equivalent, you can draw a truth table
containing both propositions; if their columns are identical, then they are logically
equivalent. C

Example 2.1.10
The propositional formulae p ∧ (q ∧ r) and (p ∧ q) ∧ r are equivalent. To prove this,
we’ll combine the truth tables for both propositions, with auxiliary columns for the
propositions q ∧ r and p ∧ q.

p q r q ∧ r p ∧ (q ∧ r) p ∧ q (p ∧ q) ∧ r
X X X X X X X
X X × × × X ×
X × X × × × ×
X × × × × × ×
× X X X × × ×
× X × × × × ×
× × X × × × ×
× × × × × × ×

Evidently the two propositional formulae are equivalent since their columns are
identical. Indeed, p ∧ (q ∧ r) and (p ∧ q) ∧ r are both true if all three of p, q and r
are true, and they’re both false if one or more of p, q or r is false. C
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Negation (‘not’, ¬)

So far we only officially know how to prove that true propositions are true. The
negation operator makes precise what we mean by ‘not’, which allows us to prove
that false propositions are false.

Definition 2.1.11
Let p be a proposition. The negation of p, denoted ¬p (read: ‘not p’) (LATEX code:
\neg) is the proposition which is true if p is false, and false if p is true.

The truth table for the negation operator is very simple, since it is defined in terms
of only one propositional variable:

p ¬p
X ×
× X

Example 2.1.12
What follows is the truth table for p∧(¬q) (read ‘p and not q’); we include a column
for ¬q because it appears inside the proposition.

p q ¬q p ∧ (¬q)
X X × ×
X × X X
× X × ×
× × X ×

C

Theoretically we could stop here: the three operators we’ve seen, ∧, ∨ and ¬, can
be used to give any combination of truth values to a compound proposition, in any
number of variables![b] For example, try the following exercise:

Exercise 2.1.13
Using only two variables p, q and the operators ∧,∨,¬, write down a propositional
formula whose truth table column is:

p q ???

X X ×
X × X
× X X
× × ×

[b]Proving this claim and investigating other ‘complete sets’ of operators would make a nice final
project!
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Did you use all three of the permitted logical operators? If so, find another equivalent
propositional formula defined using only two of the operators. We will encounter
this later as the exclusive disjunction operator, see Definition 2.1.21. C

The following theorem is our first big result of the course. It is a pair of dual results
which relate conjunction, disjunction and negation. Informally the result says:

• Saying ‘neither p nor q is true’ is the same as saying ‘both p and q are false’;

• Saying ‘p and q are not both true’ is the same as saying ‘at least one of p and
q is false’.

Let’s make this precise:

Theorem 2.1.14 (De Morgan’s laws for logical operators)
Let p and q be propositions. Then

(a) ¬(p ∨ q) is logically equivalent to (¬p) ∧ (¬q);

(b) ¬(p ∧ q) is logically equivalent to (¬p) ∨ (¬q).

Proof. (a) The following truth table demonstrates that ¬(p∨q) and (¬p)∧(¬q) have
the same truth value for any assignment of truth values to p and q; hence they are
logically equivalent.

p q p ∨ q ¬(p ∨ q) ¬p ¬q (¬p) ∧ (¬q)
X X X × × × ×
X × X × × X ×
× X X × X × ×
× × × X X X X

The proof of (b) mimics the proof of (a) and is left as an exercise.

Corollary 2.1.15

(a) The operator ∧ can be expressed in terms of ∨ and ¬;

(b) The operator ∨ can be expressed in terms of ∧ and ¬.

Proof. (a) First note that, if p is any proposition, then p is equivalent to ¬(¬p),
which we’ll write simply ¬¬p. This is demonstrated by the following truth table
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p ¬p ¬¬p
X × X
× X ×

Therefore, given any propositions p and q,

• p ∧ q is equivalent to (¬¬p) ∧ (¬¬q);

• ...which is equivalent to ¬((¬p) ∨ (¬q)) by De Morgan’s laws applied to the
propositions ¬p and ¬q.

Since p∧ q is equivalent to ¬((¬p)∨ (¬q)), which contains only the operators ¬ and
∨, the result has been shown.

The proof of (b) mimics the proof of (a) and is left as an exercise.

This means that just two operators, say ∧ and ¬, suffice for expressing all other pos-
sible operators! However, there is no real virtue in being stingy with our operators;
after all, the whole point of everything we’re doing is to communicate mathematical
ideas. The propositional formula

¬((¬p) ∨ (¬q))

is a lot harder to read and much harder to understand than the expression

p ∧ q

So we’ll keep ∧ for now, and we’ll go one step further: there is one especially crucial
operator that we have not yet defined, namely implication.

Implication (‘if. . . then. . . ’, ⇒)

The implication operator makes precise what we mean when we say ‘if p, then q’ or
‘p implies q’. The definition of the implication operator might seem unnatural at
first, but this will be discussed as an aside after the definition has been given.

Definition 2.1.16
Let p and q be propositions. The proposition p⇒ q (read: ‘if p then q’, or ‘p implies
q’) (LATEX code: \Rightarrow) is false if p is true and q is false, and true otherwise.

The truth table for the implication operator is as follows:
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p q p⇒ q

X X X
X × ×
× X X
× × X

Exercise 2.1.17
Use a truth table to show that p⇒ q is equivalent to (¬p) ∨ q. C

Exercise 2.1.18
Let p and q be propositional variables. Find a propositional formula which is equi-
valent to ¬(p ⇒ q), using only the operators ∧, ∨ and ¬. How could you use this
equivalence to prove that an implication p⇒ q is false? C

Aside
The biggest source of confusion for most people about the implication operator is
why p⇒ q is true whenever p is false, even if q is also false.

The reason behind this confusion is that people tend to think of implication in terms
of causation, i.e. that p⇒ q is a statement asserting ‘q is true because of p’. This is
not what ‘implies’ means here! The statement p ⇒ q says nothing about the truth
value of q unless we know that p is true.

Think of it this way: p ⇒ q means that I can give you a proof of q so long as you
can give me a proof of p. If p has no proofs, my job is done before I even started!
The only way I can fail is if you have a proof of p but I have no proof of q. C

Other operators (⇔, ⊕ ...)

There are many other operators we can define, but we will focus on just two more.

Definition 2.1.19
Let p and q be propositions. The proposition p⇔ q (read ‘p if and only if q’) (LATEX
code: \Leftrightarrow) is true when p and q have the same truth value, and false
otherwise. The operator ⇔ is called the biconditional operator.

Exercise 2.1.20
Show that p⇔ q is logically equivalent to (p⇒ q) ∧ (q ⇒ p). C

Definition 2.1.21
Let p and q be propositions. The proposition p ⊕ q (read ‘p or q but not both’)
(LATEX code: \oplus) is true when p and q have different truth values, and false
otherwise. The operator ⊕ is called the exclusive disjunction operator.
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Computer scientists and logicians often refer to ⊕ as ‘xor’ or ‘exclusive or’.

Proof principles

In Section 1.2, we saw how to prove statements using the techniques of proof by
contradiction and the law of excluded middle. We are now in a position to make
these proof techniques precise from a symbolic perspective. For good measure, we
will now also introduce another useful technique, called proof by contraposition.

Definition 2.1.22
The law of excluded middle is the assertion that p∨(¬p) is true for all propositions
p.

In Section 1.2, we attributed the usefulness of the law of excluded middle to the
fact that we can prove a proposition is true by splitting into cases based on whether
another proposition is true.

Exercise 2.1.23
Let p, q, r be propositions. Prove that (p ∨ q) ⇒ r is logically equivalent to (p ⇒
r) ∧ (q ⇒ r). C

The following corollary is the technical result underpinning the reason why the law
of excluded middle is so useful in proofs.

Corollary 2.1.24
Let p and q be propositions. If p⇒ q and ¬p⇒ q are true, then q is true.

Proof. By Exercise 2.1.23, it suffices to show that if (p ∨ ¬p) ⇒ q is true, then q is
true. By the law of the excluded middle, p ∨ ¬p is true, and hence (p ∨ ¬p) ⇒ q is
true if and only if q is true. But this is precisely what we wanted to prove.

Proof by contradiction can also be proved to be a valid proof technique by considering
truth tables.

Theorem 2.1.25 (Principle of contradiction)
Let p and q be propositions, and suppose that q is false. If p⇒ q is true, then p is
false.

Proof. Consider the truth table of the proposition p⇒ q:
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p q p⇒ q

X X X
X × ×
× X X
× × X

The only row in which q is false and p ⇒ q is true is the fourth row, in which p is
false.

We won’t dwell on these proof techniques, since we already saw them in Section
1.1. However, there is a very useful proof technique that we haven’t seen yet, called
proof by contraposition. This is particularly useful for when you’re trying to prove
an implication and can’t quite get it to work.

Definition 2.1.26
Let p and q be propositions. The contrapositive of the proposition p ⇒ q is the
proposition (¬q)⇒ (¬p).

Theorem 2.1.27 (Principle of contraposition)
Let p and q be propositions. Then p⇒ q is logically equivalent to (¬q)⇒ (¬p).

Proof. Consider the following truth table:

p q p⇒ q ¬q ¬p (¬q)⇒ (¬p)
X X X × × X
X × × X × ×
× X X × X X
× × X X X X

Since the third and sixth columns are identical, the two propositions are logically
equivalent.

Proof tip
To prove an implication p ⇒ q, you can instead prove the implication ¬q ⇒ ¬p;
that is, assuming that q is false, show that p must be false. We then say p ⇒ q is
true ‘by contraposition’. C

Example 2.1.28
Fix two natural numbers m and n. We will prove that if mn > 64, then either m > 8
or n > 8. Letting p be the proposition ‘mn > 64’, q be the proposition ‘m > 8’ and
r be the proposition ‘n > 8’, the statement ‘if mn > 64, then either m > 8 or n > 8’
becomes

p⇒ (q ∨ r)
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By contraposition, this is equivalent to

¬(q ∨ r)⇒ ¬p

By de Morgan’s laws, this is equivalent to

((¬q) ∧ (¬r))⇒ ¬p

Let’s spell this out. The proposition ¬p means mn 6 64, and the proposition
(¬q) ∧ (¬r) means that m 6 8 and n 6 8. So what we need to prove is:

If m 6 8 and n 6 8 then mn 6 64.

Well this is certainly true! If you multiply two natural numbers which are less than
or equal to 8, then their product must be less than or equal to 82, which is equal to
64. C

Corollary 2.1.29
Let p and q be propositions. Then p⇔ q is equivalent to

(p⇒ q) ∧ ((¬p)⇒ (¬q))

Proof. Left as an exercise. You can prove it directly, or apply reasoning you’ve
already acquired to the result of Theorem 2.1.27.

The logical equivalence set up by Corollary 2.1.29 is useful in proofs of some bicon-
ditional statements.

Whilst the contrapositive of an implication p⇒ q is equivalent to p⇒ q, its converse
is not.

Definition 2.1.30
Let p and q be propositions. The converse of the proposition p⇒ q is the propos-
ition q ⇒ p.

Exercise 2.1.31
Demonstrate by truth table that, for propositional variables p and q, the propositions
p⇒ q and q ⇒ p are not logically equivalent. Provide an example of an implication
and its converse that demonstrate this. C

? Tautologies

There are many instances when a proposition expressed in terms of propositional
variables is true no matter what truth values are assigned to the variables.
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Example 2.1.32
Let p be a proposition. The following propositions are all true, regardless of whether
p is true or false:

p⇒ p, p⇔ (p ∧ p), p⇔ (p ∨ p)
C

Definition 2.1.33
A tautology is a propositional formula which is true regardless of the truth values
assigned to its variables.

Example 2.1.34
Let p and q be propositions. We’ll prove that

p⇒ (q ⇒ p)

is a tautology by looking at its truth table:

p q q ⇒ p p⇒ (q ⇒ p)

X X X X
X × X X
× X × X
× × X X

The column for p⇒ (q ⇒ p) has Xin every row, so is a tautology.

An alternative proof is as follows. The only way that p⇒ (q ⇒ p) can be false is if
p is true and q ⇒ p is false. But if p is true then q ⇒ p is necessarily true, so this is
impossible. C

Exercise 2.1.35
How might fact proved in Exercise 2.1.34, that p ⇒ (q ⇒ p) is a tautology, be
useful in a proof of a conditional statement? Where did we use this in the proof of
Proposition 1.2.19? C

Exercise 2.1.36
Let p, q, r be propositions. Prove that

[p⇒ (q ⇒ r)]⇒ [(p⇒ q)⇒ (p⇒ r)]

is a tautology. C

Free and bound variables

If all we have to work with is propositions then our ability to do mathematical reas-
oning will be halted pretty quickly. For example, consider the following statement:
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x is divisible by 7

This statement seems like the kind of thing we should probably be able to work with
if we’re doing mathematics. It makes sense if x is a whole number, such as 28 or
41; but it doesn’t make sense at all if x is a parrot called Alex.[c] In any case, even
when it does make sense, its truth depends on the value of x; indeed, ‘28 is divisible
by 7’ is a true proposition, but ‘41 is divisible by 7’ is a false proposition.

This means that the statement ‘x is divisible by 7’ isn’t a proposition—quel horreur !
But it almost is a proposition: if we know that x refers somehow to a whole number,
then it becomes a proposition as soon as a particular numerical value of x is specified.
Such a symbol x is called a free variable or parameter. To indicate that a
statement p contains x as a free variable, we will write p(x). When we replace x by
a specific value, say 28, we write p(28); this is called substitution of a value for a
variable.

Some statements might have several free variables. For example, the statement
‘y = x+ 3’ is a true proposition when x = 3 and y = 6, but it’s a false proposition
when x = 1 and y = 2. What really matters is that we have a notion of what it is
appropriate to use as values of x and y—namely, they should be numbers—and that
whenever we use such values, what comes out is a proposition. To indicate that a
statement p contains x and y as free variables, we will write p(x, y).

Definition 2.1.37
A logical formula is a statement containing some number of free variables, each
with a specified range, such that the statement becomes a proposition when values
for all the variables are substituted from their respective ranges.

Example 2.1.38
As mentioned before, the statement p(x) defined by ‘x is divisible by 7’ is a logical
formula with one free variable x, whose range is the set Z of integers. Then, for
example, p(28) is a true proposition and p(41) is a false proposition. C

Exercise 2.1.39
Write down a logical formula p(x, y) with two free variables x, y with range Z. Is
the proposition p(3, 7) true or false? For what values of y ∈ Z is p(0, y) true? C

We can obtain propositions from logical formulae in ways other than simply sub-
stituting for a variable. For example, the assertion that every substitution for a
variable makes the formula true, is in itself a proposition. This can be done using
quantifiers.

[c]Alex the parrot is the only non-human animal to have ever been observed to ask an existential
question; he died in September 2007. It is unlikely that Alex was divisible by 7, even when he
was alive.
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Universal quantifier (∀)

The universal quantifier makes precise what we mean when we say ‘for all’, or ‘p(x)
is always true no matter what value x takes’.

Definition 2.1.40
Let p(x) be a logical formula with free variable x, whose range is a set X. The
proposition ‘∀x ∈ X, p(x)’ (read ‘for all x in X, p(x)’) (LATEX code: \forall) is
true if p(x) is true no matter what value of x is substituted from X, and false
otherwise. The symbol ∀ is called the universal quantifier.

Note that the fact that the variable x ranges over the set X is built into the notation
‘∀x ∈ X’.

Exercise 2.1.41
Let p(x) be the formula ‘x is divisible by 7’, where x ranges over the integers. Write
out the propositions ∀x ∈ Z, p(x) and ∀x ∈ Z, ¬p(x) in English. C

Example 2.1.42
Consider the proposition

For all integers n, if n is even then n+ 1 is odd.

This proposition takes the form

∀n ∈ Z, (p(n)⇒ q(n))

where p(n) is the statement ‘n is even’ and q(n) is the statement ‘n+ 1 is odd’.

A proof would proceed as follows:

(i) Let n be an (arbitrary) integer.

(ii) Assume that n is even.

(iii) From the above two assumptions, derive the fact that n+ 1 is odd.

Step (i) is introduction of the variable n. For the rest of the proof we may treat n
as if it’s any old integer, but whatever we say about n must be true no matter what
value n takes. Having introduced n, we now need to prove p(n)⇒ q(n).

Step (ii) uses our proof strategy for proving implications: prove the proposition to
the right of the ⇒ symbol from the assumption that what is to the left of the ⇒
symbol is true. This means that for the remainder of the proof, we may assume that
n is even.

Step (iii) finishes off the proof. C
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Common error
Consider the following (non-)proof of the proposition ∀n ∈ Z, n2 > 0.

Let n be an arbitrary integer, say n = 17. Then 172 = 289 > 0, so the
statement is true.

The error made here is that the writer has picked an arbitrary value of n, not the
reader. (In fact, the above argument actually proves ∃n ∈ Z, n2 > 0; see below.)

Your proof should make no assumptions about the value of n other than its range.
Here is a correct proof:

Let n be an arbitrary integer. Either n > 0 or n < 0. If n > 0 then
n2 > 0, since the product of two nonnegative numbers is nonnegative; if
n < 0 then n2 > 0, since the product of two negative numbers is positive.

C

Existential quantifier (∃)

The existential quantifier makes precise what we mean when we say ‘there exists’,
or ‘p(x) is true for some value of x in its range’.

Definition 2.1.43
Let p(x) be a logical formula with free variable x, ranging over a set X. The
proposition ‘∃x ∈ X, p(x)’ (read ‘there exists x in X such that p(x)’) (LATEX code:
\exists) is true if p(x) is true for at least one substitution of the variable x from
X. The symbol ∃ is called the existential quantifier.

Exercise 2.1.44
Let p(x) be the formula ‘x is divisible by 7’, where x ranges over the integers. Write
out the propositions ∃x, p(x) and ∃x, ¬p(x) in English. For each, either prove that
it is true, or prove that it is false. C

Example 2.1.45
Consider the proposition

There exists a natural number which is odd and greater than 3.

This proposition takes the form ∃n ∈ N, (p(n) ∧ q(n)), where p(n) is the statement
‘n is odd’ and q(n) is the statement ‘n is greater than 3’.
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A proof would proceed by finding a particular value of n such that p(n) and q(n)
are both true. Well, we know that 5 is odd, and 5 is certainly greater than 3! This
means that p(5) ∧ q(5) is true. Since we’ve proved the proposition for a value of n,
we now know that ∃n ∈ N, (p(n) ∧ q(n)) is true. C

From now on, if a variable’s range is irrelevant or is clear from context, we will
simply omit reference to its range. For example, if it is clear that the variable n
refers to an integer, we will write ∀n, p(n) and ∃n, p(n) instead of ∀n ∈ Z, p(n) and
∃n ∈ Z, p(n), respectively.

Quantifiers behave in an interesting way with the negation operator. Intuitively this
makes sense: for example, to show ‘x is even’ isn’t true for all x, it suffices to find
a single x for which ‘x is even’ is false. Thus, we can disprove ∀x, (x is even) by
proving ∃x, (x is not even). This will be useful when cooking up proof strategies.

Theorem 2.1.46 (De Morgan’s laws for quantifiers)
Let p(x) be a logical formula. Then

(a) ¬(∃x, p(x)) is logically equivalent to ∀x, (¬p(x));

(b) ¬(∀x, p(x)) is logically equivalent to ∃x, (¬p(x)).

Proof. (a) We need to show that ∀x, (¬p(x)) is true when ¬(∃x, p(x)) is true, and
false when it is false.

Suppose ¬(∃x, p(x)) is true. Then ∃x, p(x) is false, which means it is not the case
that at least one value of x makes p(x) true. Since no values of x make p(x) true,
this must mean that all values of x make ¬p(x) true. So from the assumption that x
takes any value whatsoever, we know that ¬p(x) is true. Hence ∀x, (¬p(x)) is true.

Conversely, suppose ¬(∃x, p(x)) is false. Then ∃x, p(x) is true, so there is some
fixed value of x making p(x) true. Therefore it is not the case that ¬p(x) is true
for all values of x: if x takes this special value then p(x) is true, so ¬p(x) is false!
Hence ∀x, (¬p(x)) is false.

The proof of (b) mimics the proof of (a) and is left to the reader.

Bound variables

When a variable is quantified, we say it is bound. Bound variables behave differently
from free variables in a number of ways, for example

• Propositions cannot have free variables, but they can have bound variables.
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• It is possible to substitute a value for a free variable, but not for a bound
variable.

Example 2.1.47
Consider the following formula, in which the variables x, y, z all have range Z:

∀x ∈ Z, ∃y ∈ Z, x2 + y2 + z2 = 1

In this formula, the variables x and y are bound, but the variable z is free. To see
this, note that we can substitute for z; substituting 2 for z yields:

∀x, ∃y, x2 + y2 + 22 = 1

which is a false proposition. However we cannot substitute for x or y; trying to
substitute 2 for x yields:

∀2, ∃y, 22 + y2 + z2 = 1

which must be nonsense: the phrase ‘for all 2, . . . ’ doesn’t even make sense! C

Exercise 2.1.48
For each of the following formulae, where all variables range over the integers, write
down the formula using quantifiers and specify which variables are free and which
are bound:

(a) If n is prime and n > 2 then n is odd.

(b) There exist x and y such that ax+ by = 1.

(c) No integer value of x satisfies 0x = 1.

C

Quantifier alternation

Compare the following two statements:

(i) For every door, there is a key that can unlock it.

(ii) There is a key that can unlock every door.

Letting the variables x and y refer to doors and keys, respectively, and letting
p(x, y) be the statement ‘door x can be unlocked by key y’, we can formulate these
statements as:

(i) ∀x, ∃y, p(x, y)

(ii) ∃y, ∀x, p(x, y)
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This is a typical ‘real-world’ example of what is known as quantifier alternation—
the two statements differ only by the order of the front-loaded quantifiers, and yet
they say very different things. Statement (i) requires every door to be unlockable,
but the keys might be different for different doors; statement (ii), however, implies
the existence of some kind of ‘master key’ that can unlock all the doors.

Here’s another example with a more mathematical nature:

Exercise 2.1.49
Let p(x, y) be the statement ‘x+ y is even’.

• Prove that ∀x ∈ Z, ∃y ∈ Z, p(x, y) is true.

• Prove that ∃y ∈ Z, ∀x ∈ Z, p(x, y) is false.

C

In both of the foregoing examples, you might have noticed that the ‘∀∃’ statement
says something weaker than the ‘∃∀’ statement—in some sense, it is easier to make
a ∀∃ statement true than it is to make an ∃∀ statement true.

This idea is formalised in Theorem 2.1.50 below, which despite its abstract nature,
has an extremely simple proof.

Theorem 2.1.50
Let p(x, y) be a logical formula. Then

∃y, ∀x, p(x, y)⇒ ∀x, ∃y, p(x, y)

Proof. Suppose ∃y, ∀x, p(x, y) is true. We need to prove that ∀x, ∃y, p(x, y) is true.

Using our assumption ∃y, ∀x, p(x, y), we may choose y∗ such that ∀x, p(x, y∗) is
true.

Now to prove ∀x, ∃y, p(x, y), fix x. We need to find y such that p(x, y) is true. But
p(x, y∗) is true by our above assumption! So we’re done.

Statements of the form ∃y, ∀x, p(x, y) imply some kind of uniformity : a value of
y making ∀x, p(x, y) true can be thought of as a ‘one size fits all’ solution to the
problem of proving p(x, y) for a given x. Later in your studies, it is likely that
you will encounter the word ‘uniform’ many times—it is precisely this notion of
quantifier alternation that the word ‘uniform’ refers to.
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Section 2.2

Sets and set operations

With a system of logical notation under our belt, we’re now ready to introduce the
notion of a set with a notch more precision than in Section 1.1. At their core, sets
seem extremely simple—a set is just collections of objects—except this characterisa-
tion of a set leads to logical inconsistencies.[d] We overcome these inconsistencies by
restricting ourselves to working inside a universe U , which we consider to be a set
which is so big that it contains all of the mathematical objects that we want to talk
about. This definition seems circular—Section B.2 aims to clear up this confusion.

Definition 2.2.1
A set is a collection of elements from a specified universe of discourse. The
collection of everything in the universe of discourse is called the universal set (or
just universe), denoted U (LATEX code: \mathcal{U}).
The formula x ∈ X (LATEX code: \in) denotes the statement that x is an element of
X, where the range of x is the universe of discourse. We write x 6∈ X (LATEX code:
\not\in) to mean ¬(x ∈ X), i.e. that x is not an element of X.

This definition seems a bit weird—and it is—so if you’re confused, then don’t worry,
as we will avoid reference to it as much as possible. The only property of U that
we’ll need is that if we speak about any mathematical object at all, except for U
itself, then this mathematical object is an element of U (rather than just floating
around in space without being an element of anything).

Example 2.2.2
In Section 1.1, we introduced five sets: the empty set ∅, the set N of natural numbers,
the set Z of integers, the set Q of rational numbers, the set R of real numbers and
the set C of complex numbers. C

Exercise 2.2.3
Which of the following propositions are true, and which are false?

1

2
∈ Z

1

2
∈ Q Z ∈ Q Z ∈ U 1

2
∈ U

C

Another fundamental example of a set is the empty set.

Definition 2.2.4
The empty set, denoted ∅ (LATEX code: \varnothing), is the set with no elements.

[d]Read about Russell’s paradox for more information.
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The empty set may seem trivial—and it is—but owing to its canonicity, it arises
all over the place, and will be especially important when we come to talk about
functions and cardinality in Section 4.3.

Exercise 2.2.5
Let p(x) be any formula. Show that the proposition ∀x, (x ∈ ∅ ⇒ p(x)) is true.
What does the proposition ∀x, (x ∈ ∅⇒ x 6= x) mean in English? Is it true? C

Specifying a set

One way of defining a set is simply to describe it in words, like we have done up to
now. There are other, more concise ways, of specifying sets, which also remove such
ambiguity from the process.

Lists. One way is simply to provide a list the elements of the set. To specify
that the list denotes a set, we enclose the list with curly brackets {, } (LATEX code:
\{,\}). For example, the following is a specification of a set X, whose elements are
the natural numbers between 0 and 5 (inclusive):

X = {0, 1, 2, 3, 4, 5}

Implied lists. Sometimes a list might be too long to write out—maybe even
infinite—or the length of the list might depend on a variable. In these cases it
will be convenient to use an implied list, in which some elements of the list are
written, and the rest are left implicit by writing an ellipsis ‘. . . ’ (LATEX code: \dots).
For example, the statement

X = {1, 4, 9, . . . , n2}

means that X is the set whose elements are all the square numbers from 1 to n2,
where n is some number. Implied lists can be ambiguous, since they rely on the
reader’s ability to infer the pattern being followed, so use with caution!

Set-builder notation. In general, implied lists can be ambiguous, so in practice
they are avoided unless the implied list is very simple, such as a set of consecutive
numbers like {3, 4, . . . , 9}. In fact, many sets can’t even be listed in this way.

To get around this, we can use set-builder notation, which is a means of specifying a
set in terms of the properties its elements satisfy. Given a set X, the set of elements
of X satisfying some property p(x) is denoted

{x ∈ X | p(x)}

The bar ‘|’ (LATEX code: \mid) separates the variable name from the formula that
they make true. Some authors use a colon ‘{x ∈ X : p(x)}’ or semicolon ‘{x ∈
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X; p(x)}’ instead.[e]

Example 2.2.6
The set of all even integers can be written as

{n ∈ Z | n is even} = {. . . ,−4,−2, 0, 2, 4, 6, . . . }

For comparison, the set of all even natural numbers can be written as

{n ∈ N | n is even} = {0, 2, 4, 6, . . . }

C

Proof tip
When a set X is expressed in set-builder notation, say X = {x | p(x)}, then the
statement x ∈ X is true precisely when p(x) is true. In other words, to prove x ∈ X,
you can prove p(x). Likewise, to prove x 6∈ X, you can prove ¬p(x). C

Exercise 2.2.7
Express the set of all integers which are perfect squares in set-builder notation and
as an implied list. C

You’re probably tired of worrying about ranges and universes—and so am I. We can
use the language of set theory to avoid them completely by specifying the ranges of
the variables we use as soon as they appear. For example, given a set X:

• The proposition ∀x ∈ X, p(x) means that x has range X and ∀x, p(x). It is
equivalent to ∀x, x ∈ X ⇒ p(x), so long as the range of x contains all the
elements of X.

• The proposition ∃x ∈ X, p(x) means that x has range X and ∃x, p(x). It
is equivalent to ∃x, x ∈ X ∧ p(x), so long as the range of x contains all the
elements of X.

• The set {x ∈ X | p(x)} denotes the set {x | p(x)}, where the range of x is X.

From now on, this is the style that we will use, and the universe U will be assumed
to include all the mathematical objects that we define or need.

We can also use set-builder notation to specify the form of the elements of a set.
For example, the set

Z = {3x+ 2 | x is an integer}

denotes the set of things of the form 3x+ 2 where x is an integer. Thus

Z = {. . . ,−7,−4,−1, 2, 5, 8, 11, . . . }
[e]When X = U , we abbreviate this by simply writing {x | p(x)} instead of {x ∈ U | p(x)}.
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From now on our universe of discourse will, unless otherwise specified, include all
mathematical objects that we define. With this in mind, there are some very im-
portant sets to be defined.

Subsets and set equality

Much of the discussion above concerned when an element of one set is or is not an
element of another. For example, every integer is a rational number; that is

∀n, (n ∈ Z⇒ n ∈ Q)

We can say this more concisely by saying that Z is a subset of Q.

Definition 2.2.8
Let X and Y be sets. We say X is a subset of Y if ∀x ∈ X, x ∈ Y , or equivalently,
if

∀x, (x ∈ X ⇒ x ∈ Y )

We abbreviate this proposition by writing X ⊆ Y (LATEX code: \subseteq), and we
write X * Y (LATEX code: \nsubseteq) for its negation.

Note that we could also

Proof tip
A proof that X is a subset of Y typically proceeds as follows. Let x ∈ X be arbitrary;
then knowing nothing about x other than the fact that x ∈ X, prove that x ∈ Y . C

Exercise 2.2.9
Let X be a set. Prove that ∅ ⊆ X and that X ⊆ X. C

Example 2.2.10
We know from Section 1.1 that there is a chain of subsets given by:

∅ ⊆ N ⊆ Z ⊆ Q ⊆ R

C

The following proposition proves a property of subsethood known as transitivity—
we’ll revisit this property in Sections 5.1 and 5.2.

Proposition 2.2.11
Let X,Y, Z be sets. If X ⊆ Y and Y ⊆ Z, then X ⊆ Z.

Strategy. The result we want to prove is an implication. Thus we assume X ⊆ Y
and Y ⊆ Z, and our goal is to derive that X ⊆ Z. Spelling this out slightly more,
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the goal is to derive ∀x, x ∈ X ⇒ x ∈ Z; so we can introduce a variable x and
assume that x ∈ X. Then our goal is to use our assumptions to prove that x ∈ Z.
Well, X ⊆ Y means ∀x, x ∈ X ⇒ x ∈ Y . Since we’re assuming x ∈ X, substituting
it into this assumption yields that x ∈ Y . Likewise, the assumption that Y ⊆ Z
yields that x ∈ Z.

Proof. Suppose that X ⊆ Y and Y ⊆ Z. We need to prove that every element of
X is an element of Z. So let x ∈ X. Since X ⊆ Y , it follows that x ∈ Y ; and since
Y ⊆ Z, it follows that x ∈ Z. Hence X ⊆ Z.

Aside
Notice how in the proof of Proposition 2.2.11 we omitted many of the details of the
thought process that went into coming up with the proof: decomposing the logical
structure of the proposition to be proved, spelling out what our goal is at every step,
and so on. We left enough of an argument to convince a mathematically literate
reader that we’re correct, but kept it concise enough that attention is drawn to the
important steps. C

Definition 2.2.12
Let X be a set. The power set of X, denoted P(X) (LATEX code: \mathcal{P}),
is the set of all subsets of X.

Example 2.2.13
There are four subsets of {1, 2}, namely

∅, {1}, {2}, {1, 2}

so P(X) = {∅, {1}, {2}, {1, 2}}. C

Exercise 2.2.14
Write out the elements of P({1, 2, 3}). C

Exercise 2.2.15
Let X be a set. Show that ∅ ∈ P(X) and X ∈ P(X). C

Exercise 2.2.16
Write out the elements of P(∅), P(P(∅)) and P(P(P(∅))). C

Power sets are often a point of confusion because they bring the property of being
a subset of one set to that of being an element of another, in the sense that for all
sets U and X we have

U ⊆ X ⇔ U ∈ P(X)

This distinction looks easy to grasp, but when the sets U and X look alike, it’s easy
to fall into various traps. Here’s a simple example.
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102 Chapter 2. Logic, sets and functions

Example 2.2.17
It is true that ∅ ⊆ ∅, but false that ∅ ∈ ∅. Indeed,

• ∅ ⊆ ∅ means ∀x ∈ ∅, x ∈ ∅; but propositions of the form ∀x ∈ ∅, p(x) are
always true, as discussed in Exercise 2.2.5.

• The empty set has no elements; if ∅ ∈ ∅ were true, it would mean that ∅ had
an element (that element being ∅). So it must be the case that ∅ 6∈ ∅.

C

The following exercise is intended to help you overcome similar potential kinds of
confusion by means of practice. Try to think precisely about what the definitions
involved are.

Exercise 2.2.18
Write out the elements of P(∅) and of P(P(∅)). Determine, with proof, whether
or not each of the following statements is true:

P(∅) ∈ P(P(∅)), P(∅) ⊆ P(P(∅)), ∅ ∈ {{∅}}, ∅ ⊆ {{∅}}, {∅} ∈ {{∅}}

C

Set equality

Discussion 2.2.19
Let X and Y be sets. What should it mean to say that X and Y are equal? Try to
provide a precise definition of equality of sets before reading on. C

There are different possible notions of ‘sameness’ for sets: maybe X = Y when X
and Y have the same elements (this is called extensional equality), or maybe X = Y
when they’re described by the same criteria (this is called intensional equality).
In mathematics, it is more useful to know when two sets have the same elements,
regardless of how they are described; so we take extensional equality as our notion
of sameness for sets. This doesn’t mean intensional equality should be ignored—if
you want to implement mathematics in a computer, the sets’ descriptions have a
much more important role to play.

Definition 2.2.20
Let X and Y be sets. We say X is equal to Y if X ⊆ Y and Y ⊆ X, and we write
X = Y . If X ⊆ Y and X 6= Y then we say X is a proper subset of Y and write
X $ Y (LATEX code: \subsetneqq).

Example 2.2.21
Let E = {n ∈ Z | n is even}. Then:
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• E $ Z. Indeed, E ⊆ Z since every element of E is an element of Z by
definition; but E 6= Z since, for instance, 1 ∈ Z but 1 6∈ E.

• N * E since, for instance, 1 ∈ N but 1 6∈ E.

• E * N since, for instance, −2 ∈ E but −2 6∈ N.

C

Exercise 2.2.22
Define a set X such that:

N $ X ∧ X $ Q ∧ X * Z ∧ Z * X

C

Proof tip
To prove X = Y , you can prove that X ⊆ Y and Y ⊆ X. This proof strategy is
called double-containment. More specifically, such a proof is split into two parts:

(i) Let x ∈ X; from this assumption alone, prove that x ∈ Y .

(ii) Let x ∈ Y ; from this assumption alone, prove that x ∈ X.

C

Set operations

In Example 2.2.21 we defined E to be the set of all even integers. What if we wanted
to talk about the set of all even natural numbers instead? It would be nice if there
was some expression in terms of E and N to denote this set. This is where set
operations come in.

Intersection (∩)

The intersection of two sets is the set of things which are elements of both sets.

Definition 2.2.23
Let X and Y be sets. The (pairwise) intersection of X and Y , denoted X ∩ Y
(LATEX code: \cap), is defined by

X ∩ Y = {x | x ∈ X ∧ x ∈ Y }

Example 2.2.24
Let E be the set of all even integers. Then E ∩ N refers to the set of things which
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are both even integers and natural numbers. . . in other words, it is the set of even
natural numbers. C

Exercise 2.2.25
Write down the elements of the set

{0, 1, 4, 7} ∩ {1, 2, 3, 4, 5}

C

Proof tip
To prove x ∈ X∩Y you can give two proofs: one that x ∈ X and one that x ∈ Y . For
example, if X = {x | p(x)} and Y = {x | q(x)}, then X ∩ Y = {x | p(x)∧ q(x)}. C

Example 2.2.26
Let X = {x ∈ Z | x > 5} and Y = {x ∈ N | x 6 10}. Then

X ∩ Y = {x ∈ Z | 5 6 x 6 10} = {5, 6, 7, 8, 9, 10}

C

Exercise 2.2.27
Let X and Y be sets. Prove that X ⊆ Y if and only if X ∩ Y = X. C

Union (∪)

The union of two sets is the set of things which are elements of at least one of the
sets.

Definition 2.2.28
Let X and Y be sets. The (pairwise) union of X and Y , denoted X ∪ Y (LATEX
code: \cup), is defined by

X ∪ Y = {x | x ∈ X ∨ x ∈ Y }

Example 2.2.29
Let E be the set of even integers and O be the set of odd integers. Since every
integer is either even or odd, E ∪ O = Z. Note that E ∩ O = ∅, thus {E,O} is an
example of a partition of Z; see Definition 4.2.36. C

Exercise 2.2.30
Write down the elements of the set

{0, 1, 4, 7} ∪ {1, 2, 3, 4, 5}

C
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The union operation allows us to define the following class of sets that will be
particularly useful for us when studying counting principles in Section 4.2.

Definition 2.2.31
Define [n] recursively for n ∈ N by

[0] = ∅ and [n+ 1] = [n] ∪ {n+ 1} for all n ∈ N

Exercise 2.2.32
Prove that if n > 0 then the elements of [n] are the natural numbers from 1 up to
n (inclusive). In implied list notation, this is to say that

[n] = {1, 2, . . . , n}

whenever n > 1. C

Exercise 2.2.33
Let X and Y be sets. Prove that X ⊆ Y if and only if X ∪ Y = Y . C

Example 2.2.34
Let X,Y, Z be sets. We prove that X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z).

• (⊆) Let x ∈ X ∩ (Y ∪ Z). Then x ∈ X, and either x ∈ Y or x ∈ Z. If
x ∈ Y then x ∈ X ∩ Y , and if x ∈ Z then x ∈ X ∩ Z. In either case, we have
x ∈ (X ∩ Y ) ∪ (X ∩ Z).

• (⊇) Let x ∈ (X ∩ Y ) ∪ (X ∩ Z). Then either x ∈ X ∩ Y or x ∈ X ∩ Z. In
both cases we have x ∈ X by definition of intersection. In the first case we
have x ∈ Y , and in the second case we have x ∈ Z; in either case, we have
x ∈ Y ∪ Z, so that x ∈ X ∩ (Y ∪ Z).

C

Exercise 2.2.35
Let X,Y, Z be sets. Prove that X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z). C

Relative complement (\) and complement (−c)

Definition 2.2.36
Let X and Y be sets. The relative complement of Y in X, denoted X \Y (LATEX
code: \setminus), is defined by

X \ Y = {x ∈ X | x 6∈ Y }

If X is a set then the complement of X, denoted Xc (LATEX code: X^c), is simply
the relative complement of X in the universal set: Xc = U \X.
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Example 2.2.37
Let E be the set of all even integers. Then n ∈ Z \ E if and only if n is an integer
and n is not an even integer; that is, if and only if n is odd. Thus Z \ E is the set
of all odd integers.

Moreover, n ∈ N \ E if and only if n is a natural number and n is not an even
integer. Since the even integers which are natural numbers are precisely the even
natural numbers, N \ E is precisely the set of all odd natural numbers. C

Exercise 2.2.38
Write down the elements of the set

{0, 1, 4, 7} \ {1, 2, 3, 4, 5}

C

Exercise 2.2.39
Let X and Y be sets. Prove that X ⊆ Y if and only if Y \ (Y \X) = X. C

Comparison with logical operators and quantifiers

The astute reader will have noticed some similarities between set operations and
the logical operators and quantifiers that we saw in Section 2.1. Indeed, this can be
summarised in the following table. In each row, the expressions in both columns are
equivalent, where p denotes ‘x ∈ X’, q denotes ‘x ∈ Y ’, and r(i) denotes ‘x ∈ Xi’:

sets logic

x ∈ X ∩ Y p ∧ q
x ∈ X ∪ Y p ∨ q
x ∈ Xc ¬p

x ∈ X \ Y p ∧ (¬q)

This translation between logic and set theory does not stop there; in fact, as the
following theorem shows, De Morgan’s laws for the logical operators ∧ and ∨ also
carry over to the set operations ∩ and ∪.

Theorem 2.2.40 (De Morgan’s laws for sets—pairwise version)
Let X,Y, Z be sets. Then

(a) Z \ (X ∪ Y ) = (Z \X) ∩ (Z \ Y );

(b) Z \ (X ∩ Y ) = (Z \X) ∪ (Z \ Y ).

Proof of (a). Let x ∈ Z \ (X ∪ Y ). Then x ∈ Z and x 6∈ X ∪ Y . The formula
x 6∈ X ∪ Y says precisely

¬(x ∈ X ∨ x ∈ Y )
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By de Morgan’s laws for logical operators (Theorem 2.1.14), this is equivalent to

x 6∈ X ∧ x 6∈ Y

Since x ∈ Z and x 6∈ X, we have x ∈ Z \ X. Since x ∈ Z and x 6∈ Y , we have
x ∈ Z \Y . Hence, by definition of intersection, it follows that x ∈ (Z \X)∩ (Z \Y ).

Hence Z \ (X ∪ Y ) ⊆ (Z \X) ∩ (Z \ Y ).

The proof of (Z \X) ∩ (Z \ Y ) ⊆ Z \ (X ∪ Y ) is similar, and is left as an exercise,
as is the proof of (b).

The following exercise derives perhaps a more familiar statement of de Morgan’s
laws for sets.

Exercise 2.2.41
Let X and Y be sets. Prove that

(X ∪ Y )c = Xc ∩ Y c and (X ∩ Y )c = Xc ∪ Y c

C

Product (×)

Definition 2.2.42
Let X and Y be sets. The (Cartesian) product of X and Y , denoted X×Y (LATEX
code: \times), is the set of all ordered pairs (x, y), where x ∈ X and y ∈ Y . That
is,

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y }

Example 2.2.43
If you have ever taken calculus, you will probably be familiar with the set R× R.

R× R = {(x, y) | x, y ∈ R}

Formally, this is the set of ordered pairs of real numbers. Geometrically, if we
interpret R as an infinite line, the set R×R is the (real) plane: an element (x, y) ∈
R× R describes the point in the plane with coordinates (x, y).

We can investigate this further. For example, the following set:

R× {0} = {(x, 0) | x ∈ R}

is precisely the x-axis. We can describe graphs as subsets of R × R. Indeed, the
graph of y = x2 is given by

G = {(x, y) ∈ R× R | y = x2} = {(x, x2) | x ∈ R} ⊆ R× R

C
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Exercise 2.2.44
Write down the elements of the set {1, 2} × {1, 3, 4}. C

Exercise 2.2.45
Let X be a set. Prove that X ×∅ = ∅. C

Exercise 2.2.46
Let X, Y and Z be sets. Is it true that X×Y = Y ×X? Is it true that (X×Y )×Z =
X × (Y × Z)? C

Aside
Aaand breathe! All this new notation can be overwhelming at first, but it will be
worth it in the end. This chapter was all about teaching you a new language—
new symbols, new terminology—because without it, our future pursuits will be
impossible. If you’re stuck now, then don’t worry: you’ll soon get the hang of
it, especially when we start using this new language in context. You can, of course,
refer back to the results in this chapter for reference at any point in the future. C

108



Section 2.3. Functions 109

Section 2.3

Functions

One way of studying interactions between sets is by studying functions between
them, which we will define informally in Definition 2.3.9. Functions are mathemat-
ical objects which assign, to each element of one set, exactly one element of another.
Almost every branch of mathematics studies functions, be it directly or indirectly,
and almost every application of mathematics arises from a translation of the ab-
stract notion of a function to the real world. Just one example of this is the theory
of computation—functions provide precisely the language necessary to describe the
deterministic input-output behaviour of algorithms.

Existence and uniqueness

When discussing functions, it is useful to isolate the logical principles at work. To
do so, it will help us to introduce a new quantifier ‘∃!’.

Definition 2.3.1
Let p(x) be a logical formula. The proposition ‘∃!x, p(x)’ (read ‘there exists a unique
x such that p(x)’) (LATEX code: \exists!) is true if p(x) is true for exactly one
value of x. The symbol ∃! is called the unique existential quantifier.

Example 2.3.2
There is only one set with no elements, namely the empty set. Symbolically, we
could write

∃!X ∈ U , (X is a set ∧ ∀x ∈ U , x 6∈ X)

C

Example 2.3.3
Every positive real number has a unique positive square root. We can write this
symbolically as

∀a ∈ R, (a > 0⇒ ∃!b ∈ R, (b > 0 ∧ b2 = a))

Reading this from left to right, this says: for every real number a, if a is positive,
then there exists a unique real number b, which is positive and whose square is a. C

Exercise 2.3.4
The following propositions are all true. For each of the propositions, write it out
using the ∃! quantifier, and consider how you might prove it. Do you notice any
patterns in your proof techniques?

(a) For each real number a, the equation x2 + 2ax + a2 = 0 has exactly one real
solution x.
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(b) There is a unique real number a for which the equation x2 + a2 = 0 has a real
solution x.

(c) There is a unique natural number with exactly one positive divisor.

C

The following exercise shows that the ∃! quantifier is really just shorthand for a more
complicated expression.

Exercise 2.3.5
Let p(x) be a logical formula. Prove that the following are equivalent:

(a) ∃!x, p(x)

(b) [∃x, p(x)] ∧ [∀y, ∀z, (p(y) ∧ p(z)⇒ y = z)]

(c) ∃x, (p(x) ∧ ∀y, (p(y)⇒ y = x))

C

The expressions (b) and (c) in Exercise 2.3.5 is particularly informative, as they
breaks down a proof of existence and uniqueness into two chunks.

Proof tip
A proof of a statement of the form ∃!x, p(x) can be split into two proofs:

• Existence. Prove ∃x, p(x). That is, find a value of x making p(x) true.

• Uniqueness. Either. . .

� . . . prove ∀y, ∀z, (p(y) ∧ p(z)⇒ y = z). That is, fix y, z and assume that
p(y) and p(z) are true. Derive that it must be the case that y = z.

. . . or. . .

� . . . prove ∀y, (p(y)⇒ y = x). That is, fix y and assume that p(y) is true.
Derive that it must be the case that y = x, where x is as in your proof of
existence.

From these two parts, you can conclude that ∃!x, p(x) is true.

Note that you only need to use one of the above techniques for proving uniqueness;
the first corresponds to (b) in Exercise 2.3.5, and the second corresponds to (c). C

Example 2.3.6
An example of this proof structure in action is in a proof of the statement in part
(a) of Exercise 2.3.4, that is, for each real number a there exists a unique x such
that x2 + 2ax+ a2 = 0.
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Fix a ∈ R. We prove existence and uniqueness of an element x ∈ R for which
x2 + 2ax+ a2 = 0 separately.

• (Existence) Let x = −a. Then

x2 + 2ax+ a2 = (−a)2 + 2a(−a) + a2 = a2 − 2a2 + a2 = 0

so a solution exists.

• (Uniqueness) Fix y ∈ R and suppose that y2 + 2ay + a2 = 0. We will prove
that is must be the case that y = −a. Well, factorising the expression yields
(y + a)2 = 0. If y + a were nonzero then its square would also be nonzero,
hence y + a = 0. Therefore, y = −a, as required.

Hence x = −a is the unique solution to the equation x2 + 2ax+ a2 = 0. C

This followed pattern (c) from Exercise 2.3.5. The following follows pattern (b).

Example 2.3.7
We prove Exercise 2.3.3, namely that for each real a > 0 there is a unique b > 0
such that b2 = a. So first fix a > 0.

• (Existence) The real number
√
a is positive and satisfies (

√
a)2 = a by defin-

ition. Its existence will be deferred to a later time, but an informal argument
for its existence could be provided using ‘number line’ arguments as in Section
1.1.

• (Uniqueness) Let y, z > 0 be real numbers such that y2 = a and z2 = a.
Then y2 = z2. Rearranging and factorising yields

(y − z)(y + z) = 0

so either y − z = 0 or y + z = 0. If y + z = 0 then z = −y, and since y > 0,
this means that z < 0. But this contradicts the assumption that z > 0. As
such, it must be the case that y − z = 0, and hence y = z, as required.

C

Exercise 2.3.8
Prove the statements in parts (b) and (c) of Exercise 2.3.4. C

The unique existence quantifier clarifies the process of solving equations: when
solving equations, there are typically two steps:

• Step 1. Start with the equation, and derive some set of potential solutions.

• Step 2. For each of the potential solutions, check whether each solves the
equation—the set of those that do is precisely the set of all solutions to the
equation.
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In the case when an equation has a unique solution, and this solution is the only
one which is derived algebraically from the equation, we recognise ‘Step 1’ as being
a proof of uniqueness of a solution, and ‘Step 2’ as a proof of existence of a solution.

To wit, let’s revisit the equation

x2 + 2ax+ a2 = 0

from Example 2.3.6, where a and x refer to real numbers. We established that,
for a given real number a, there is a unique real solution x. Instead of proving
existence and uniqueness seprately, we could have instead solved this equation using
a sequence of reversible steps:

x2 + 2ax+ a2 = 0⇔ (x+ a)2 = 0 by factorising

⇔ x+ a = 0 since 0 is the only square root of 0

⇔ x = −a rearranging

Working from top to bottom, this says if there is a solution x, then it is equal to −a.
Working from bottom to top, this says that −a is a solution. Thus the ‘bottom to
top’ direction proves existence, and the ‘top to bottom’ direction proves uniqueness.

Functions

You might have come across the notion of a function before now. In schools, func-
tions are often introduced as being like machines—they have inputs and outputs,
and on a given input they always return the same output. For instance, there is a
function which takes integers as inputs and gives integers as outputs, which on the
input x returns the integer x+ 3.

This, however, is clearly not a precise definition. A next approximation to a precise
definition of a function might look something like this:

Definition 2.3.9
Let X and Y be sets. A function f from X to Y is a mathematical object which
assigns to each element of X exactly one element of Y . Given x ∈ X, the element
of Y associated with x by f is denoted f(x), and is called the value of f at x. We
write

f : X → Y (LATEX code: f : X \to Y)
to denote that f is a function from X to Y . We say X is the domain (or source)
of f and Y is the codomain (or target) of f .

This is better—for instance, we’re now talking about sets (and not mysterious ‘ma-
chines’), which we have explored with in Section 2.2. Moreover, this definition
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establishes the relationship between functions and the ∃! quantifier: indeed, to say
that f assigns to each element of X a unique element of Y is to say precisely that

∀x ∈ X, ∃!y ∈ Y, y = f(x)

Functions arise whenever there is a true proposition of the form ∀x ∈ X, ∃!y ∈
Y, p(x, y)—this defines a function f : X → Y which assigns to each x ∈ X the
unique y ∈ Y such that p(x, y) is true. In other words, ∀x ∈ X, p(x, f(x)) is true!
We can use this to generate some examples.

Example 2.3.10
Example 2.3.3 said that every positive real number has a unique positive square
root; we proved this in Example 2.3.7. What this means is that there is a function

r : R>0 → R>0 where R>0 = {x ∈ R | x > 0}

defined by letting r(x) be the (unique) positive square root of x, for each x ∈ R>0.
That is, we have a function r defined by r(x) =

√
x. C

Exercise 2.3.11
Recall Exercise 2.3.4. Which of the statements (a), (b) or (c) is of the form
∀x ∈ X, ∃!y ∈ Y, p(x, y)? For each statement of this form, determine the domain
and codomain of the corresponding function, and write an expression defining this
function. C

There are many ways to specify a function f : X → Y . Before we move too far in
this direction, it is worth noting a very important point regarding what should be
written in the specification of a function.

Writing tip
When specifying a function, make sure that you specify its domain and its codo-
main and, if you use any variables, make sure they’re all quantified! C

With this in mind, let’s look at a few ways of specifying a function.

• Lists. If X is finite, then we can specify a function f : X → Y by simply
listing the values of f at all possible elements x ∈ X. For example, we can
define a function

f : {1, 2, 3} → {red, yellow, green, blue, purple}

by declaring
f(1) = red, f(2) = purple, f(3) = green

Note that the function is at this point completely specified: we know its values
at all elements of the domain {1, 2, 3}. It doesn’t matter that some of the ele-
ments of the codomain (yellow and blue) are unaccounted for—all that matters
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is that each element of the domain is associated with exactly one element of
the codomain.

Unfortunately, most of the sets that we work with will be infinite, or of an un-
specified finite size; in these cases, simply writing a list of values isn’t sufficient.
Fortunately for us, there are other ways of specifying functions.

• Formulae. In many cases, particularly when the domain X and codomain Y
are number sets, we can define a function by giving a formula for the value of
f(x) for each x ∈ X. For example, we can define a function f : R → R by
letting

f(x) = x2 + 3 for all x ∈ R

• By cases. It will at times be convenient to define a function using different
specifications for different elements of the domain. A very simple example is
the absolute value function |−| : R→ R, defined for x ∈ R

|x| =

{
x if x > 0

−x if x 6 0

Here we have split into two cases based on the conditions x > 0 and x 6 0.

When specifying a function f : X → Y by cases, it is important that the
conditions be:

� exhaustive: given x ∈ X, at least one of the conditions on X must hold;
and

� compatible: if any x ∈ X satisfies more than one condition, the specified
value must be the same no matter which condition is picked.

For the absolute value function defined above, these conditions are satisfied.
Indeed, for x ∈ R, it is certainly the case that x > 0 or x 6 0, so the conditions
are exhaustive. Moreover, given x ∈ R, if both x > 0 and x 6 0, then x = 0—
so we need to check that the specification yields the same value when x = 0
regardless of which condition we pick. The x > 0 condition yields the value
0, and the x 6 0 condition yields the value −0, which is equal to 0—so the
conditions are compatible. We could have used x < 0 instead of x 6 0; in this
case the conditions are mutually exclusive, so certainly compatible because
they do not overlap.

• Algorithms. You might, on first exposure to functions, have been taught
to think of a function as a machine which, when given an input, produces
an output. This ‘machine’ is defined by saying what the possible inputs and
outputs are, and then providing a list of instructions (an algorithm) for the
machine to follow, which on any input produces an output—and, moreover, if
fed the same input, the machine always produces the same output.
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For example, we might instruct a machine to take rational numbers as inputs
and give rational numbers as outputs, and to follow the following sequence of
steps on a given input

multiply by 2 → add 5 → square the result → divide by 6

This ‘machine’ defines a function M : Q → Q which, in equation form, is
specified by

M(x) =
(2x+ 5)2

6
for all x ∈ Q

In our more formal set-up, therefore, we can define a function M : I → O by
specifying:

� a set I of all inputs;

� a set O of potential outputs; and

� a deterministic[f] algorithm which describes how an input x ∈ I is trans-
formed into an output M(x) ∈ O.

That is, the domain is the set I of all possible ‘inputs’, the codomain is a set
O containing all the possible ‘outputs’, and the function M is a rule specifying
how an input is associated with the corresponding output.

For now, we will use algorithmic specifications of functions only sparingly—this
is because it is much harder to make formal what is meant by an ‘algorithm’,
and it is important to check that a given algorithm is deterministic.

• Graphs. Given sets X and Y , each function X → Y is uniquely determined by
its graph (see Definition 2.3.12), which is a particular subset of X×Y , thought
of as the set of all ‘input-output’ pairs of the function—this equivalence will
be the content of Theorem 2.3.15. The elements of the graph G of a function
f are pairs (x, y), with x ∈ X and y ∈ Y , and the assertion that (x, y) ∈ G
will be equivalent to the assertion that f(x) = y.

Definition 2.3.12
Let f : X → Y be a function. The graph of f is the subset Gr(f) ⊆ X × Y
(LATEX code: \mathrm{Gr}) defined by

Gr(f) = {(x, f(x)) | x ∈ X} = {(x, y) ∈ X × Y | y = f(x)}

Example 2.3.13
Given a (sufficiently well-behaved) function f : R → R, we can represent
Gr(f) ⊆ R×R by plotting it on a pair of axes using Cartesian coordinates in

[f]The word ‘deterministic’ just means that the algorithm always produces the same output on a
single input.
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the usual way. For example, if f is defined by f(x) = x
2 for all x ∈ R, then its

graph

Gr(f) =

{(
x,
x

2

) ∣∣∣∣ x ∈ R
}

can be represented by graph plot in Figure 2.1.

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6
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−2

−1

1

2

3

Figure 2.1: Graph (in blue) of the function f : R → R defined by f(x) = x
2 for all

x ∈ R

C

Exercise 2.3.14
Find a function f : Z→ Z whose graph is equal to the set

{. . . , (−2,−5), (−1,−2), (0, 1), (1, 4), (2, 7), (3, 10), . . . }

C

Well-definedness

We must be careful when specifying functions that what we write really does define
a function! This correctness of specification is known as well-definedness.

There are three things to check when it comes to well-definedness of a function
f : X → Y , namely totality, existence and uniqueness:

• Totality. A value f(x) should be specified for each x ∈ X.

• Existence. For each x ∈ X, the specified value f(x) should actually exist,
and should be an element of Y .
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• Uniqueness. For each x ∈ X, the specified value f(x) should refer to only one
element of Y . That is, if x = x′ ∈ X then we should have f(x) = f(x′). This
issue usually arises when elements of X can be described in different ways.

When specifying a function, you should justify each of these components of well-
definedness unless they are extremely obvious. You will probably find that, in most
cases, the only component in need of justification is uniqueness, but keep all three
in mind.

Theorem 2.3.15 below provides a way of verifying that a function is well-defined by
characterising their graphs.

Theorem 2.3.15
Let X and Y be sets. A subset G ⊆ X × Y is the graph of a function if and only if

∀x ∈ X, ∃!y ∈ Y, (x, y) ∈ G

Proof. (⇒). Suppose G ⊆ X×Y is the graph of a function, say G = Gr(f) for some
f : X → Y . Then for each x ∈ X, it follows from well-definedness of f that f(x) is
the unique element y ∈ Y for which (x, y) ∈ G. That is, (x, f(x)) ∈ G, and if y ∈ Y
with (x, y) ∈ G, then y = f(x).

(⇐). Suppose G ⊆ X ×Y is satisfies ∀x ∈ X, ∃!y ∈ Y, (x, y) ∈ G. Define a function
f : X → Y by, for each x ∈ X, defining the value f(x) to be the unique element
y ∈ Y for which (x, y) ∈ G. Well-definedness of f is then immediate from our
assumption of the existence and uniqueness of such a value of y for each x ∈ X.

Example 2.3.16
The set G defined by

G = {(1, red), (2, red), (3, green)}

is the graph of a function f : {1, 2, 3} → {red, green, blue}. The function f is defined
by

f(1) = red, f(2) = red, f(3) = green

However, G is not the graph of a function {1, 2, 3, 4} → {red, green, blue}, since G
contains no elements of the form (4, y) for y ∈ {red, green, blue}. Moreover, the set
G′ defined by

G′ = {(1, red), (2, red), (2, blue), (3, green)}

does not define the graph of a function {1, 2, 3} → {red, green, blue}, since there is
not a unique element of the form (2, y) in G′—rather, there are two of them! C

Exercise 2.3.17
For each of the following specifications of sets X, Y , G, determine whether or not
G is the graph of a function from X to Y .
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(a) X = R, Y = R, G = {(a, a2) | a ∈ R};

(b) X = R, Y = R, G = {(a2, a) | a ∈ R};

(c) X = R>0, Y = R>0, G = {(a2, a) | a ∈ R}, where R>0 = {x ∈ R | x > 0};

(d) X = Q, Y = Q, G = {(x, y) ∈ Q×Q | xy = 1}.

(e) X = Q, Y = Q, G = {(a, a) | a ∈ Z};

C

Aside
In light of Theorem 2.3.15, some people choose to define functions X → Y as
particular subsets of X × Y—that is, they identify functions with their graphs.
This is particularly useful when studying the logical foundations of mathematics.
We avoid this practice here, because it is not conceptually necessary, and it would
preclude other possible ways of encoding functions. C

We will now look at some more examples (and non-examples) of functions.

Example 2.3.18
Example 2.3.3 gives a prime example of a function: it says that for every positive
real number a there is a unique positive real number b such that b2 = a. This unique
b is precisely the positive square root

√
a of a. Writing R>0 for the set of positive

real numbers, we have thus established that taking the positive square root defines
a function R>0 → R>0. C

There is a class of functions called identity functions that, despite being very simple,
are so important that we will give them a numbered definition!

Definition 2.3.19
Let X be a set. The identity function on X is the function idX : X → X (LATEX
code: \mathrm{id} X) defined by idX(x) = x for all x ∈ X.

You should convince yourself that the specification of idX given in Definition 2.3.19
is well-defined.

Another interesting example of a function is the empty function, which is useful in
coming up with counterexamples and proving combinatorial identities (see Section
4.2).

Definition 2.3.20
Let X be a set. The empty function with codomain X is the (unique!) function
∅→ X. It has no values, since there are no elements of its domain.
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Again, you should convince yourself that this specification is well-defined. Con-
ceptually, convincing yourself of this is not easy; but writing down the proof of
well-definedness is extremely easy—you will find that there is simply nothing to
prove!

Example 2.3.21
Define f : R→ R by the equation f(x)2 = x for all x ∈ R. This is not well-defined
for a few reasons. First, if x < 0 then there is no real number y such that y2 = x, so
for x < 0 there are no possible values of f(x) in the codomain of f , so existence fails.
Second, if x > 0 then there are in fact two real numbers y such that y2 = x, namely
the positive square root

√
x and the negative square root −

√
x. The specification of

f does not indicate which of these values to take, so uniqueness fails.

Notice that the function r : R>0 → R>0 from Example 2.3.10 is (well-)defined by
the equation r(x)2 = x for all x ∈ R>0. This illustrates why it is very important to
specify the domain and codomain when defining a function. C

Exercise 2.3.22
Which of the following specifications of functions are well-defined?

(a) g : Q→ Q defined by the equation (x+ 1)g(x) = 1 for all x ∈ Q;

(b) h : N→ Q defined by (x+ 1)h(x) = 1 for all x ∈ N;

(c) k : N→ N defined by (x+ 1)k(x) = 1 for all x ∈ N;

(d) ` : N→ N defined by `(x) = `(x) for all x ∈ N.

Under what conditions on sets X and Y is a function i : X ∪ Y → {0, 1} defined by

i(z) =

{
0 if z ∈ X
1 if z ∈ Y

well-defined? C

Composition of functions

In our section on sets, we talked about various operations that can be performed on
sets—union, intersection, and so on. There are also operations on functions, by far
the most important of which is composition. To understand how composition works,
let’s revisit the algorithmically defined function M : Q→ Q from page 115:

multiply by 2 → add 5 → square the result → divide by 6

The function M is, in some sense, a sequence of functions, performed one-by-one
until the desired result is reached. This is precisely composition of functions.
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Definition 2.3.23
Given functions f : X → Y and g : Y → Z, their composite g ◦ f (LATEX code: g

\circ f) (read ‘g composed with f ’ or ‘g after f ’ or even just ‘g f ’) is the function
g ◦ f : X → Z defined by

(g ◦ f)(x) = g(f(x)) for all x ∈ X

Intuitively, g ◦ f is the function resulting from first applying f , and then applying
g, to the given input.

Common error
Function composition is in some sense written ‘backwards’: in the expression g ◦ f ,
the function which is applied first is written last—there is a good reason for this: the
argument to the function is written after the function! However, this mis-match often
trips students up on their first exposure to function composition, so be careful! C

Example 2.3.24
The function M from page 115 can be defined as the composite

M = ((k ◦ h) ◦ g) ◦ f

where

• f : Q→ Q is defined by f(x) = 2x for all x ∈ Q;

• g : Q→ Q is defined by g(x) = x+ 5 for all x ∈ Q;

• h : Q→ Q is defined by h(x) = x2 for all x ∈ Q;

• k : Q→ Q is defined by k(x) = x
6 for all x ∈ Q.

C

Exercise 2.3.25
Let f, g, h, k : Q → Q be as in Exercise 2.3.24. Compute equations defining the
following composites:

(a) f ◦ g;

(b) g ◦ f ;

(c) ((f ◦ g) ◦ h) ◦ k;

(d) f ◦ (g ◦ (h ◦ k));

(e) (g ◦ g) ◦ (g ◦ g).

C
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Example 2.3.26
Let f : X → Y be any function. Then

idY ◦ f = f = f ◦ idX

To see this, let x ∈ X. Then

(idY ◦ f)(x) = idY (f(x)) by definition of composition

= f(x) by definition of idY

= f(idX(x)) by definition of idX

= (f ◦ idX)(x) by definition of composition

Equality of the three functions in question follows. C

Exercise 2.3.27
Prove that composition of functions is associative, that is, if f : X → Y , g : Y → Z
and h : Z →W are functions, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f : X →W

As a consequence of associativity, when we want to compose more than two functions,
it doesn’t matter what order we compose the functions in. As such, we can just write
h ◦ g ◦ f . C

Exercise 2.3.28
Let f : X → Y and g : Z → W be functions, and suppose that Y $ Z. Note that
there is a function h : X → W defined by h(x) = g(f(x)) for all x ∈ X. Write h as
a composite of functions involving f and g. C

Images and preimages

Definition 2.3.29
Let f : X → Y be a function and let U ⊆ X. The image of U under f is the
subset f [U ] ⊆ Y (also written f∗(U) (LATEX code: f *) or even just f(U)) is defined
by

f [U ] = {f(x) | x ∈ U} = {y ∈ Y | ∃x ∈ U, y = f(x)}

That is, f [U ] is the set of values that the function f takes when given inputs from
U .
The image of f is the image of the entire domain, i.e. the set f [X].

Example 2.3.30
Let f : R → R be defined by f(x) = x2. The image of f is the set R>0 of all
nonnegative real numbers. Let’s prove this:
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• (f [R] ⊆ R>0). Let y ∈ f [R]. Then y = x2 for some x ∈ R. But x2 > 0, so we
must have y ∈ R>0, as required.

• (R>0 ⊆ f [R]). Let y ∈ R>0. Then
√
y ∈ R, and y = (

√
y)2 = f(

√
y). Hence

y ∈ f [R], as required.

We have shown by double containment that f [R] = R>0. C

Exercise 2.3.31
For each of the following functions f and subsets U of their domain, describe the
image f [U ].

(a) f : Z→ Z defined by f(n) = 3n, with U = N;

(b) f : X → X ×X (where X is any set) defined by f(x) = (x, x) with U = X;

(c) f : {a, b, c} → {1, 2, 3} defined by f(a) = 1, f(b) = 3 and f(c) = 1, with
U = {a, b, c}.

C

Exercise 2.3.32
Prove that f [∅] = ∅ for all functions f . C

Example 2.3.33
Let f : X → Y be a function and let U, V ⊆ X. Then f [U ∩ V ] ⊆ f [U ] ∩ f [V ].
To see this, let y ∈ f [U ∩ V ]. Then y = f(x) for some x ∈ U ∩ V . By definition
of intersection, x ∈ U and x ∈ V . Since x ∈ U and y = f(x), we have y ∈ f [U ];
likewise, since x ∈ V , we have y ∈ f [V ]. But then by definition of intersection, we
have y ∈ f [U ] ∩ f [V ]. C

Exercise 2.3.34
Let f : X → Y be a function and let U, V ⊆ X. We saw in Example 2.3.33 that
f [U ∩ V ] ⊆ f [U ] ∩ f [V ]. Determine which of the following is true, and for each,
provide a proof of its truth or falsity:

(a) f [U ] ∩ f [V ] ⊆ f [U ∩ V ];

(b) f [U ∪ V ] ⊆ f [U ] ∪ f [V ];

(c) f [U ] ∪ f [V ] ⊆ f [U ∪ V ].

C
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Definition 2.3.35
Let f : X → Y be a function and let V ⊆ Y . The preimage of V under f is
the subset f−1[V ] (LATEX code: f^{-1}) (also written f∗(V ) (LATEX code: f^*)) is
defined by

f−1[V ] = {x ∈ X | f(x) ∈ V } = {x ∈ X | ∃y ∈ V, f(x) = y}

That is, f−1[V ] is the set of all the elements of its domain X that the function f
sends to elements of V .

Example 2.3.36
Let f : Z→ Z be the function defined by f(x) = x2 for all x ∈ X. Then

• f−1[{1, 4, 9}] = {−3,−2,−1, 1, 2, 3};

• f−1[{1, 2, 3, 4, 5, 6, 7, 8, 9}] = {−3,−2,−1, 1, 2, 3} too, since the other elements
of [9] are not perfect squares, and hence not of the form f(x) for x ∈ Z;

• f−1[N] = Z, since for any x ∈ Z we have f(x) > 0, so that f(x) ∈ N.

C

Example 2.3.37
Let f : X → Y be a function, let U ⊆ X and let V ⊆ Y . Then f [U ] ⊆ V if and only
if U ⊆ f−1[V ]. The proof is as follows.

(⇒). Suppose f [U ] ⊆ V ; we’ll prove U ⊆ f−1[V ]. So fix x ∈ U . Then f(x) ∈ f [U ]
by definition of image. But then f(x) ∈ V by our assumption that f [U ] ⊆ V , and
so x ∈ f−1[V ] by definition of preimage. Since x was arbitrarily chosen from U , it
follows that U ⊆ f−1[V ].

(⇐). Suppose U ⊆ f−1[V ]; we’ll prove f [U ] ⊆ V . So fix y ∈ f [U ]. Then y = f(x)
for some x ∈ U by definition of image. But then x ∈ f−1[V ] by our assumption that
U ⊆ f−1[V ], and so f(x) ∈ V by definition of preimage. But y = f(x), so y ∈ V ,
and since y was arbitrarily chosen, it follows that f [U ] ⊆ V . C

The following exercise demonstrates that preimages interact very nicely with the
basic set operations (intersection, union and relative complement):

Exercise 2.3.38
Let f : X → Y be a function and let U, V ⊆ Y . Prove that

f−1[U∩V ] = f−1[U ]∩f−1[V ] and f−1[U∪V ] = f−1[U ]∪f−1[V ] and f−1[Y \U ] = X\f−1[U ]

C

Exercise 2.3.39
Let f : X → Y be a function. Prove that f−1[∅] = ∅ and f−1[Y ] = X. C
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Exercise 2.3.40
Let f : X → Y be a function. Provide a proof of the truth or falsity of each of the
following statements:

• U ⊆ f−1[f [U ]] for all U ⊆ X;

• f−1[f [U ]] ⊆ U for all U ⊆ X;

• V ⊆ f [f−1[V ]] for all V ⊆ Y ;

• f [f−1[V ]] ⊆ V for all V ⊆ Y .

C
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Section 3.1

Division

This section introduces the notion of divisibility. As we have already mentioned, it
is not always the case that one integer can divide another. As you read through
this section, note that we never use fractions; everything we do is internal to Z, and
does not require that we ‘spill over’ to Q at any point. This will help you when you
study ring theory in the future, and is a good practice to mimic in your own work.

The following theorem, called the division theorem, is the crux of everything that is
to follow.

Theorem 3.1.1 (Division theorem)
Let a, b ∈ Z with b 6= 0. There exist unique q, r ∈ Z such that

a = qb+ r and 0 6 r < |b|

Strategy. Let’s look at the simple case when a > 0 and b > 0. We can always find
q, r such that a = qb + r, for example q = 0 and r = a. Moreover, by increasing q
we can reduce r, since

qb+ r = (q + 1)b+ (r − b)

We will keep doing this until the ‘remainder’ is as small as it can be without being
negative. As an example, consider the case when a = 14 and b = 5. This procedure
gives

14 = 0× 5 + 14

= 1× 5 + 9

= 2× 5 + 4 ← least nonnegative remainder

= 3× 5 + (−1)

= · · ·

This procedure shows that in this case we should take q = 2 and r = 4, since
14 = 2× 5 + 4 and 0 6 4 < |5|.

We can show that such a descending sequence of remainders terminates using the
well-ordering principle, and then we must argue that the quotient and remainder
that we obtain are unique.

? Proof. We may assume that b > 0: if not, replace b by −b and q by −q. We may
also assume that a > 0. Otherwise, replace a by −a, q by −(q + 1) and r by b− r.

Thus, what follows assumes that a > 0 and b > 0.
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• Existence. We prove that such integers q, r exist by the well-ordering prin-
ciple. Namely, we define a sequence (rn)n∈N such that a = nb + rn and
r0 > r1 > r2 > · · · , and use this sequence to find the values of q, r.

� Let r0 = a. Then a = 0b+ r0, as required.

� Suppose rn has been defined, and let rn+1 = rn − b. Then

(n+ 1)b+ rn+1 = (n+ 1)b+ rn − b
= nb+ b+ rn − b
= nb+ r = a

Since b > 0, we must have rn+1 < rn for all n.

Let R = N ∩ {rn | n ∈ N}. That is, R is the set of terms of the sequence
which are non-negative. Since r0 = a > 0, we have that r0 ∈ R and hence R
is inhabited. By the well-ordering principle, R has a least element rk for some
k ∈ N.

Define q = k and r = rk. By construction we have a = qb+ r and r > 0, so it
remains to show that r < b. Well, if r > b then r− b > 0, but r− b = rk+1, so
this would imply rk+1 ∈ R, contradicting minimality of r. Hence r < b, so q, r
are as required.

• Uniqueness. Suppose q′, r′ also satisfy a = q′b+ r′ and 0 6 r′ < b. If we can
show that r′ = r then this proves that q = q′: indeed, if qb+ r = q′b+ r then
we can subtract r and then divide by b, since b > 0.

First note that q′ > 0. If q′ < 0 then q′ 6 −1, so

a = q′b+ r′ 6 −b+ r′

and hence r′ > a + b > b since a > 0. This contradicts the assumption that
r < b. So q′ > 0.

Since q′ > 0, we also know that a = q′b + rq′ , and hence r′ = rq′ ∈ R. By
minimality of r we have r 6 r′. It remains to show that r = r′. If not then
r < r′. Thus

qb+ r = q′b+ r′ > q′b+ r ⇒ qb > q′b ⇒ q > q′

and hence q = q′ + t for some t > 1. But then

q′b+ r′ = a = qb+ r = (q′ + t)b+ r = q′b+ (tb+ r)

so r′ = tb+ r > b, contradicting r′ < b. So r = r′ as desired, and hence q = q′.

At long last, we are done.
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Definition 3.1.2
Let a, b ∈ Z with b 6= 0, and let q, r be the unique integers such that

a = qb+ r and 0 6 r < |b|

We say q is the quotient and r is the remainder of a divided by b.

Example 3.1.3
Some examples of division include:

14 = 2× 5 + 4, −14 = −3× 5 + 1, 15 = 3× 5 + 0

C

Definition 3.1.4
Let a, b ∈ Z. We say b divides a, or that b is a divisor (or factor) of a, if there
exists q ∈ Z such that a = qb. To denote the fact that b divides a we write b | a
(LATEX code: \mid). For the negation ¬(b | a) write b - a (LATEX code: \nmid).

Thus, when b 6= 0, saying b | a is equivalent to saying that the remainder of a divided
by b is 0.

Example 3.1.5
5 divides 15 since 15 = 3 × 5. However, 5 does not divide 14: we know that the
remainder of 14 divided by 5 is 4, not 0—and it can’t be both since we proved in
the division theorem that remainders are unique! C

Exercise 3.1.6
Show that if a ∈ Z then 1 | a, −1 | a and a | 0. For which integers a does a | 1? For
which integers a does 0 | a? C

We now introduce the very basic notion of a unit. This notion is introduced to rule
out trivialities. Units become interesting when talking about general rings, but in
Z, the units are very familiar.

Definition 3.1.7
Let u ∈ Z. We say u is a unit if u | 1; that is, u is a unit if there exists v ∈ Z such
that uv = 1.

Proposition 3.1.8
The only units in Z are 1 and −1.

Proof. First note that 1 and −1 are units, since 1 · 1 = 1 and (−1) · (−1) = 1.
Now suppose that u ∈ Z is a unit, and let v ∈ Z be such that uv = 1. Certainly
u 6= 0, since 0v = 0 6= 1. If u > 1 or u < −1 then v = 1

u 6∈ Z. So we must have
u ∈ {−1, 1}.
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Exercise 3.1.6 shows that −1, 0 and 1 are, from the point of view of divisibility,
fairly trivial. For this reason, most of the results we discuss regarding divisibility
will concern non-zero non-units, i.e. all integers except −1, 0 or 1.

Greatest common divisors

Definition 3.1.9
Let a, b ∈ Z. An integer d is a greatest common divisor of a and b if:

(a) d | a and d | b;

(b) If q is another integer such that q | a and q | b, then q | d.

Example 3.1.10
2 is a greatest common divisor of 4 and 6; indeed:

(a) 4 = 2× 2, and 6 = 3× 2, so 2 | 4 and 2 | 6;

(b) Suppose q | 4 and q | 6. The divisors of 4 are ±1,±2,±4 and the divisors
of 6 are ±1, ±2, ±3, ±6. Since q divides both, it must be the case that
q ∈ {−2,−1, 1, 2}; in any case, q | 2.

Likewise, −2 is a greatest common divisor of 4 and 6. C

Exercise 3.1.11
There are two greatest common divisors of 6 and 15; find both. C

We will now prove that greatest common divisors exist—that is, any two integers
have a greatest common divisor—and that they are unique up to sign.

Theorem 3.1.12
Every pair of integers a, b has a greatest common divisor.

Proof. First note that if a = b = 0, then 0 is a greatest common divisor for a and
b. Moreover, we may take a, b to be non-negative, since divisibility is insensitive to
sign. So suppose that a, b > 0 and that a, b are not both zero.

Define a set X ⊆ Z by

X = {au+ bv | u, v ∈ Z, au+ bv > 0}

That is, X is the set of positive integers of the form au+ bv.

X is inhabited. To see this, note that a2 > 0 or b2 > 0 since a 6= 0 or b 6= 0, so
letting u = a and v = b in the expression au+ bv, we see that

au+ bv = a2 + b2 > 0 ⇒ a2 + b2 ∈ X
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By the well-ordering principle, X has a least element d, and by definition of X there
exist u, v ∈ Z such that d = au+ bv.

We will prove that d is a greatest common divisor for a and b.

• d | a. If a = 0, then this is immediate, so suppose that a > 0. Let q, r ∈ Z be
such that

a = qd+ r and 0 6 r < d

Now a = a · 1 + b · 0, so a ∈ X, and hence d 6 a.

r = a− qd = a− q(au+ bv) = a(1− qu) + b(−qv)

If r > 0 then this implies that r ∈ X; but this would contradict minimality of
d, since r < d. So we must have r = 0 after all.

• d | b. The proof of this is identical to the proof that d | a.

• Suppose q is an integer dividing both a and b. Then q | au + bv by Exercise
1.1.16. Since au+ bv = d, we have q | d.

So d is a greatest common divisor of a and b after all.

Exercise 3.1.13
Let a, b ∈ Z. If d and d′ are two greatest common divisors of a and b, then either
d = d′ or d = −d′. C

Aside
A consequence of Theorem 3.1.12 and Exercise 3.1.13 is that every pair of integers
has a unique non-negative greatest common divisor! Written symbolically, we can
say

∀(a, b) ∈ Z× Z, ∃!d ∈ Z,
(

d > 0 and d is a greatest
common divisor for a and b

)
As discussed in Section 2.3, since this is a formula of the form ‘for all . . . there
exists a unique . . . ’, this defines a function gcd : Z × Z → Z. We won’t explicitly
refer to the fact that gcd is a function; rather, we’ll just concern ourselves with its
values, as in Notation 3.1.14. C

Exercise 3.1.13 justifies our use of the following notation to refer to greatest common
divisors.

Notation 3.1.14
Let a, b ∈ Z. Denote by gcd(a, b) (LATEX code: \mathrm{gcd}) the (unique!) non-
negative greatest common divisor of a and b.

Example 3.1.15
In Example 3.1.10, we saw that both 2 and −2 are greatest common divisors of 4
and 6. Using Notation 3.1.14, we can now write gcd(4, 6) = 2. C
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Exercise 3.1.16
For each n ∈ Z, let Dn ⊆ Z be the set of divisors of n. Prove that Da∩Db = Dgcd(a,b)

for all a, b ∈ Z. C

Our goal for the rest of this subsection is to investigate the behaviour of greatest
common divisors, find out how to compute them, and look into the implications
they have for solutions to certain kinds of equations.

Theorem 3.1.17
Let a, b, q, r ∈ Z, and suppose that a = qb+ r. Then

gcd(a, b) = gcd(b, r)

Proof. Let d = gcd(a, b). We check that d satisfies the conditions required to be a
greatest common divisor of b and r.

Note that d | a and d | b, so let s, t ∈ Z be such that a = sd and b = td.

• d | b by definition, and d | r since

r = a− qb = sd− qtd = (s− qt)d

• Suppose d′ | b and d′ | r; say b = ud′ and r = vd′ with u, v ∈ Z. Then d′ | a,
since

a = qb+ r = qud′ + vd′ = (qu+ v)d′

so d′ | d since d = gcd(a, b).

So d is a greatest common divisor of b and r. Since d > 0, the result is shown.

Combined with the division theorem (Theorem 3.1.1), Theorem 3.1.17 gives a rel-
atively fast algorithm for computing the greatest common divisor of two integers,
known as the Euclidean algorithm.

Proof tip
Euclidean algorithm. Let a, b ∈ Z. To find gcd(a, b), proceed as follows.

• Set r0 = |a| and r1 = |b|.

• Given rn−2 and rn−1, define rn to be the remainder of rn−2 divided by rn−1.

• Stop when rn = 0; then rn−1 = gcd(a, b).

C
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Example 3.1.18
We will find the greatest common divisor of 148 and 28.

148 = 5× 28 + 8

28 = 3× 8 + 4

8 = 2× 4 + 0 ← Stop!

Hence gcd(148, 28) = 4. Here the sequence of remainders is given by:

r0 = 148, r1 = 28, r2 = 8, r3 = 4, r4 = 0

C

Example 3.1.19
The Euclidean algorithm works surprisingly quickly, even for relatively large num-
bers. Consider the problem of computing gcd(1311, 5757) for example:

5757 = 4× 1311 + 513

1311 = 2× 513 + 285

513 = 1× 285 + 228

285 = 1× 228 + 57

228 = 4× 57 + 0 ← Stop!

Hence gcd(1311, 5757) = 57. Here the sequence of remainders is given by:

r0 = 5757, r1 = 1311, r2 = 513, r3 = 285, r4 = 228, r5 = 57, r6 = 0

C

Example 3.1.20
Here’s an example where one of the numbers is negative: we compute the value of
gcd(−420, 76):

−420 = (−6)× 76 + 36

76 = 2× 36 + 4

36 = 9× 4 + 0 ← Stop!

Hence gcd(−420, 76) = 4. C

Exercise 3.1.21
Use the Euclidean algorithm to compute the greatest common divisors of the fol-
lowing pairs of integers

(12, 9), (100, 35), (7125, 1300), (1010, 101010), (−4, 14)

C
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The following theorem will be useful when we study modular arithmetic in Section
3.3; it is called a ‘lemma’ for historical reasons, and is really an important result in
its own right.

Theorem 3.1.22 (Bézout’s lemma)
Let a, b, c ∈ Z, and let d = gcd(a, b). The equation

ax+ by = c

has a solution (x, y) ∈ Z× Z if and only if d | c.

Proof. (⇒) Write a = a′d and b = b′d, for a′, b′ ∈ Z. If there exist x, y ∈ Z such
that ax+ by = c, then

c = ax+ by = a′dx+ b′dy = (a′x+ b′y)d

and so d | c.

(⇐) Suppose d | c, and let c = kd for some k ∈ Z.

If c = 0, then a solution is x = y = 0. If c < 0, then ax + by = c if and only if
a(−x) + b(−y) = −c; so we may assume that c > 0.

We proved in Theorem 3.1.12 that a greatest common divisor of a and b is a least
element of the set

X = {au+ bv | u, v ∈ Z, au+ bv > 0}

So let u, v ∈ Z be such that au+ bv = d. Then

a(ku) + b(kv) = k(au+ bv) = kd = c

and so letting x = ku and y = kv, we see that the equation ax + by = c has a
solution (x, y) ∈ Z× Z.

Bézout’s lemma completely characterises when the equation ax+ by = c has a solu-
tion. An easy generalisation of Bézout’s lemma provides a complete characterisation
of when solutions to linear Diophantine equations exist, that is equations of the
form

ax+ by = c

where a, b, c ∈ Z. We will soon develop an algorithm for computing all solutions to
these equations.

Example 3.1.23
Here are some examples of applications of Bézout’s lemma.
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• Consider the equation 1311x+5757y = 12963. We computed in Example 3.1.19
that gcd(1311, 5757) = 57. But 57 - 12963 since 12963 = 227 × 57 + 24. By
Bézout’s lemma, the equation 1311x+5757y = 12963 has no integer solutions.

• For fixed z, the equation 4u + 6v = z has solutions exactly when z is even,
since gcd(4, 6) = 2.

• For fixed a, b, the equation au + bv = 0 always has solution. Indeed, setting
u = b and v = −a gives a solution; but we knew one had to exist since by
Exercise 3.1.6 we know that d | 0 for all d ∈ Z.

C

Exercise 3.1.24
Which of the following equations have solutions?

(a) 12u+ 9v = −18

(b) 12u+ 9v = 1

(c) 100u+ 35v = 125

(d) 7125u+ 1300v = 0

(e) 1010u+ 101010v = 1010101010101010

(f) 14u− 4v = 12

C

Coprimality

Definition 3.1.25
Let a, b ∈ Z. We say a and b are coprime (or relatively prime), and write a ⊥ b
(LATEX code: \perp) (read ‘a is coprime to b’), if gcd(a, b) = 1.

Example 3.1.26
4 ⊥ 9. To see this, note that if d | 4 then d ∈ {−4,−2,−1, 1, 2, 4}, and if d | 9 then
d ∈ {−9,−3,−1, 1, 3, 9}. Hence if d | 4 and d | 9, then d = 1 or d = −1. It follows
that gcd(4, 9) = 1. C

Exercise 3.1.27
Which integers in the set [15] are coprime to 15? C

Proposition 3.1.28
Let a, b ∈ Z. The following are equivalent:

(1) a and b are coprime;
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(2) If d ∈ Z with d | a and d | b, then d is a unit.

Proof. We prove that condition (1) implies condition (2), and vice versa.

• (1)⇒(2). Suppose a and b are coprime, and fix d ∈ Z with d | a and d | b.
Then d | gcd(a, b) = 1, so d is a unit.

• (2)⇒(1). Suppose condition (2) above holds. We prove that 1 satisfies the
conditions required to be a greatest common divisor of a and b. The fact that
1 | a and 1 | b is automatic; and the fact that if d | a and d | b implies d | 1 is
precisely the condition (2) that we are assuming.

Hence the two conditions are equivalent.

Proposition 3.1.29
Let a and b be integers, not both zero, and let d = gcd(a, b). The integers a

d and b
d

are coprime.

Exercise 3.1.30
Prove Proposition 3.1.29. C

The following corollary is a specialisation of Bézout’s lemma to the case when a and
b are coprime.

Corollary 3.1.31
Let a, b ∈ Z. The equation au + bv = 1 has a solution if and only if a and b are
coprime. Moreover, if a and b are coprime, then the equation au + bv = z has a
solution for all z ∈ Z.

Proof. By Bézout’s lemma (Theorem 3.1.22), the equation au+bv = 1 has a solution
if and only if gcd(a, b) | 1. But the only positive divisor of 1 is 1, so a solution exists
if and only if gcd(a, b) = 1, which is precisely the assertion that a and b are coprime.

If a and b are coprime, then 1 = gcd(a, b) | z for all z ∈ Z. So by Bézout’s lemma
again, the equation au+ bv = z has a solution for all z ∈ Z.

A useful consequence of Bézout’s lemma is the following result:

Proposition 3.1.32
Let a, b, c ∈ Z. If a and b are coprime and a | bc, then a | c.

Proof. By Bézout’s lemma (Theorem 3.1.22) there exist integers u and v such that
au+ bv = 1. Multiplying by c gives acu+ bcv = c. Since a | bc, we can write bc = ka
for some k ∈ Z, and so acu+ kav = c. But then

(cu+ kv)a = c
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which proves that a | c.

Linear Diophantine equations

We have now seen two important results:

• The Euclidean algorithm, which was a procedure for computing the greatest
common divisor of two integers.

• Bézout’s lemma, which provides a necessary and sufficient condition for
equations of the form ax+ by = c to have an integer solution.

We will now develop the reverse Euclidean algorithm, which provides a method
for computing a solutions to (bivariate) linear Diophantine equations, when such a
solution exists. Then we will prove a theorem that characterises all integer solutions
in terms of a given solution.

Example 3.1.33
Suppose we want to find integers x and y such that 327x+ 114y = 18. Running the
Euclidean algorithm yields that gcd(327, 114) = 3 — see below. For reasons soon to
become apparent, we rearrange each equation to express the remainder on its own.

327 = 2× 114 + 99 ⇒ 99 = 327− 2× 114 (1)

114 = 1× 99 + 15 ⇒ 15 = 114− 1× 99 (2)

99 = 6× 15 + 9 ⇒ 9 = 99− 6× 15 (3)

15 = 1× 9 + 6 ⇒ 6 = 15− 1× 9 (4)

9 = 1× 6 + 3 ⇒ 3 = 9− 1× 6 (5)

6 = 2× 3 + 0

We can then express 3 in the form 327u + 114v by successively substituting the
equations into each other:

• Equation (5) expresses 3 as a linear combination of 6 and 9. Substituting
equation (4) yields:

3 = 9− 1× (15− 1× 9) ⇒ 3 = 2× 9− 1× 15

• This now expresses 3 as a linear combination of 9 and 15. Substituting equation
(3) yields:

3 = 2× (99− 6× 15)− 1× 15 ⇒ 3 = (−13)× 15 + 2× 99

• This now expresses 3 as a linear combination of 15 and 99. Substituting
equation (2) yields:

3 = (−13)× (114− 1× 99) + 2× 99 ⇒ 3 = 15× 99− 13× 114
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• This now expresses 3 as a linear combination of 99 and 114. Substituting
equation (1) yields:

3 = 15× (327− 2× 114)− 13× 114 ⇒ 3 = (−43)× 114 + 15× 327

Now that we’ve expressed 3 as a linear combination of 114 and 327, we’re nearly
done: we know that 18 = 6× 3, so multiplying through by 6 gives

18 = (−258)× 114 + 90× 327

Hence (x, y) = (90,−258) is a solution to the equation 327x+ 114y = 18. C

Proof tip
Let a, b ∈ Z and let d = gcd(a, b). To find integers x, y such that ax+ by = d:

(i) Run the Euclidean algorithm on the pair (a, b), keeping track of all quotients
and remainders.

(ii) Rearrange each equation of the form rn−2 = qnrn−1 + rn to isolate rn.

(iii) Substitute for the remainders rk in reverse order until gcd(a, b) is expressed in
the form ax+ by for some x, y ∈ Z.

This process is called the reverse Euclidean algorithm. C

Exercise 3.1.34
Find a solution (x, y) ∈ Z× Z to the equation 630x+ 385y = 4340. C

Now that we have a procedure for computing one solution to the equation ax+by = c,
we need to come up with a procedure for computing all solutions. This can be done
by proving the following theorem.

Theorem 3.1.35
Let a, b, c ∈ Z, where a and b are not both zero. Suppose that x0 and y0 are integers
such that ax0 + by0 = c. Then, (x, y) ∈ Z × Z is another solution to the equation
ax+ by = c if and only if

x = x0 + k · b

gcd(a, b)
and y = y0 − k ·

a

gcd(a, b)

for some k ∈ Z.

Thus, as soon as we’ve found one solution (x, y) = (x0, y0) to the equation ax+by =
c, this theorem tells us what all other solutions must look like.

Proof of Theorem 3.1.35. We prove the two directions separately.
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(⇒). First suppose that (x0, y0) is an integer solution to the equation ax+ by = c.
Let k ∈ Z and let

x = x0 + k · b

gcd(a, b)
and y = y0 − k ·

a

gcd(a, b)

Then

ax+ by

= a

(
x0 + k · b

gcd(a, b)

)
+ b

(
y0 − k ·

a

gcd(a, b)

)
by definition of x and y

= (ax0 + by0) + ak · b

gcd(a, b)
− kb · a

gcd(a, b)
rearranging

= (ax0 + by0) +
kab− kab
gcd(a, b)

combining the fractions

= ax0 + by0 since kab− kab = 0

= c since (x0, y0) is a solution

so (x, y) is indeed a solution to the equation.

(⇐). First suppose that a ⊥ b. Fix a solution (x0, y0) to the equation ax+ by = c,
and let (x, y) be another solution. Then

a(x− x0) + b(y − y0) = (ax0 + by0)− (ax+ by) = c− c = 0

so that
a(x− x0) = b(y0 − y)

Now a and b are coprime, so by Proposition 3.1.32, we have a | y0− y and b | x−x0.
Let k, ` ∈ Z be such that x − x0 = kb and y0 − y = `a. Then substituting into the
above equation yields

a · kb = b · `a

and hence (k − `)ab = 0. Since ab 6= 0, we have k = `, so that

x = x0 + kb and y = y0 − ka

Now we drop the assumption that a ⊥ b. Let gcd(a, b) = d > 1. We know that d | c,
by Bézout’s lemma (Theorem 3.1.22), and so

a

d
x+

b

d
y =

c

d

is another linear Diophantine equations, and moreover a
d ⊥

b
d by Proposition 3.1.29.

By what we proved above, we have

x = x0 + k · b
d

and y = y0 − k ·
a

d

for some k ∈ Z. But this is exactly what we sought to prove!
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Example 3.1.36
We know that (x, y) = (90,−258) is a solution to the equation 327x + 114y = 18,
and

327

gcd(327, 114)
=

327

3
= 109 and

114

gcd(327, 114)
=

114

3
= 38

so this theorem tells us that (x, y) ∈ Z×Z is a solution to the equation 327x+114y =
18 if and only if

x = 90 + 38k and y = −258− 109k

for some k ∈ Z. C

Exercise 3.1.37
Find all integers x, y such that

630x+ 385y = 4340

C

Least common multiples

You would be forgiven for wondering why so much of the foregoing section was
devoted to greatest common divisors, with no mention of least common multiples.
We will now give the latter some attention.

Definition 3.1.38
Let a, b ∈ Z. An integer m is a least common multiple of a and b if:

(a) a | m and b | m;

(b) If n is another integer such that a | n and b | n, then m | n.

In a sense that can be made precise, the definition of least common multiple is
dual to that of greatest common divisor (Definition 3.1.9).[a] This means that many
properties of greatest common divisors have corresponding ‘dual’ properties, which
hold of least common multiples. As such, we will not say much here about least
common multiples, and that which we do say is in the form of exercises.

Exercise 3.1.39
Let a, b ∈ Z. Prove that a and b have a least common multiple. Furthermore, prove
that least common multiples are unique up to sign, in the sense that if m,m′ are
two least common multiples of a and b, then m = m′ or m = −m′. C

[a]Specifically, we refer here to the dual of a preorder, i.e. a reflexive, transitive relation—see Chapter
5 for more on this!
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As with greatest common divisors, Exercise 3.1.39 justifies the following definition.

Definition 3.1.40
Given a, b ∈ Z, denote by lcm(a, b) (LATEX code: \mathrm{lcm}) the non-negative
least common multiple of a and b.

Exercise 3.1.41
Let a, b ∈ Z. Prove that gcd(a, b) · lcm(a, b) = |ab|. C
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Section 3.2

Prime numbers

Thinking of divisibility as a way of breaking down an integer, for example 12 =
2× 2× 3, our goal now is to show that:

• There are numbers which are atomic, in the sense that they can’t be broken
down any further by division;

• . . . and every non-zero non-unit can be written as a product of these atomic
numbers;

• . . . and this product is essentially unique.

There are a couple of fairly vague terms used here: ‘atomic’ and ‘essentially unique’.
We will soon make these precise; the atomic numbers will be the irreducible and
prime numbers (two notions which coincide for the integers), and ‘essentially unique’
will mean unique up to reordering and multiplication by units.

Primes and irreducibles

Definition 3.2.1
Let p be a non-zero non-unit. We say p is prime if for all a, b ∈ Z, if p | ab then
p | a or p | b.

Example 3.2.2
Here are some examples of prime and non-prime numbers:

• 2 is prime. Suppose not; then there exist a, b ∈ Z such that 2 | ab but 2 divides
neither a nor b. Thus a and b are both odd, meaning that ab is odd. . . but
this contradicts the assumption that 2 | ab.

• 6 is not prime. Indeed, 6 | 2× 3 but 6 divides neither 2 nor 3.

C

Exercise 3.2.3
Using Definition 3.2.1, prove that 3 and 5 are prime and that 4 is not prime. C

Recall the definition of binomial coefficients (Definition 1.3.27).

Example 3.2.4
Let k ∈ Z with 0 < k < 5. We’ll show that 5 |

(
5
k

)
.
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Well, by Theorem 1.3.31 we know that

5! =

(
5

k

)
k!(5− k)!

By Theorem 1.3.31, we have

5× 4!︸ ︷︷ ︸
=5!

=

(
5

k

)
× 1× · · · × k︸ ︷︷ ︸

=k!

× 1× · · · × (5− k)︸ ︷︷ ︸
=(5−k)!

Since 5 is prime, it must divide one of the factors on the right-hand side of this
equation. Thus, either 5 divides

(
5
k

)
, or it divides ` for some 1 6 ` 6 k or 1 6 ` 6

5 − k. But k < 5 and 5 − k < 5, so it cannot divide any of these values of `—if it
did, it would imply 5 6 ` 6 k or 5 6 ` 6 5 − k, which is nonsense. Hence 5 must
divide

(
5
k

)
. C

Exercise 3.2.5
Let p ∈ Z be a positive prime and let 0 < k < p. Show that p |

(
p
k

)
. C

Aside
Most people are introduced to primes with a definition along the lines of ‘p is prime
if p has exactly two positive divisors’. We have avoided this to elucidate the fact that
the integers together with their arithmetic structure are the canonical example of a
mathematical object called a ring. The notion of a prime element can be defined in
any ring as in Definition 3.2.1. Secondly, these two definitions are equivalent in Z,
but not in all rings. C

Definition 3.2.6
Let a be a non-zero non-unit. We say a is reducible if a = mn for some non-units
m,n; otherwise it is irreducible.

Proposition 3.2.7
A non-zero non-unit p is irreducible if and only if the only divisors of p are p, −p, 1
and −1.

Proof. Suppose p is irreducible and that a | p. Then p = ab for some b ∈ Z. Since
p is irreducible, either a or b is a unit. If a is a unit then b = ±p, and if b is a unit
then a = ±p. So the only divisors of p are ±1 and ±p.

Conversely, suppose that the only divisors of p are ±1 and ±p, and let a, b ∈ Z with
p = ab. We want to prove that a or b is a unit. Since a | p, we have a ∈ {1,−1, p,−p}.
If a = ±1, then a is a unit; if a = ±p, then b = ±1, so that b is a unit. In any case,
either a or b is a unit, and hence p is irreducible.

Example 3.2.8
A couple of examples of reducible and irreducible numbers are:
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• 2 is irreducible: if 2 = mn then either m or n is even, otherwise we’d be
expressing an even number as the product of two odd numbers. We may
assume m is even, say m = 2k; then 2 = 2kn, so kn = 1 and hence n is a unit.

• 6 is reducible since 6 = 2× 3 and both 2 and 3 are non-zero non-units.

C

Exercise 3.2.9
Prove that if p ∈ Z is prime then p is irreducible. C

Lemma 3.2.10
Let a ∈ Z be a non-zero non-unit. Then there are irreducibles p1, . . . , pn such that
a = p1 × · · · × pn.

Proof. We may assume a > 0, since if a < 0 we can just multiply by −1.

We proceed by strong induction on a > 2. The base case has a = 2 since we consider
only non-units.

• (BC) We have shown that 2 is irreducible, so setting p1 = 2 yields a product
of primes.

• (IS) Let a > 2 and suppose that each integer k with 2 6 k 6 a has an
expression as a product of irreducibles. If a+ 1 is irreducible then we’re done;
otherwise we can write a+ 1 = st, where s, t ∈ Z are non-zero non-units. We
may assume further that s and t are positive. Moreover, s < a+1 and t < a+1
since s, t > 2.

By the induction hypothesis, s and t have expressions as products of irredu-
cibles. Write

s = p1 × · · · × pm, t = q1 × · · · × qn

This gives rise to an expression of a as a product of irreducibles:

a = st = p1 × · · · × pm︸ ︷︷ ︸
=s

× q1 × · · · × qn︸ ︷︷ ︸
=t

By induction, we’re done.

Theorem 3.2.11
Let p ∈ Z. Then p is prime if and only if p is irreducible.

Proof. We prove the two directions separately.

• Prime ⇒ irreducible. This was Exercise 3.2.9.
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• Irreducible ⇒ prime. Suppose p is irreducible. Let a, b ∈ Z and suppose
p | ab. We need to show that p | a or p | b. It suffices to show that if p - a then
p | b.

So suppose p - a. Let d = gcd(p, a). Since d | p and p is irreducible, we must
have d = 1 or d = p by Proposition 3.2.7. Since p - a and d | a, we must
therefore have d = 1.

By Bézout’s lemma (Theorem 3.1.22), there exist u, v ∈ Z such that au+pv =
1. Multiplying by b gives abu+ pbv = b. Since p | ab, there exists k ∈ Z such
that pk = ab. Then

b = abu+ pbv = pku+ pbv = p(ku+ bv)

so p | b, as required.

So we’re done.

Since primes and irreducibles are the same thing in Z, we will refer to them as
‘primes’, unless we need to emphasise a particular aspect of them.

Prime factorisation

Having described prime numbers in two ways, each of which emphasises their nature
of being ‘unbreakable’ by multiplication, we will extend Lemma 3.2.10 to prove that
every integer can be expressed as a product of primes in an essentially unique way.

Theorem 3.2.12 (Fundamental theorem of arithmetic)
Let a ∈ Z be a non-zero non-unit. There exist primes p1, . . . , pk ∈ Z such that

a = p1 × · · · × pk

Moreover, this expression is essentially unique: if a = q1×· · ·× q` is another expres-
sion of a as a product of primes, then k = ` and, re-ordering the qi if necessary, for
each i there is a unit ui such that qi = uipi.

Proof. We showed that such a factorisation exists in Lemma 3.2.10, with the word
‘prime’ replaced by the word ‘irreducible’. It remains to prove (essential) uniqueness.

Let k be least such that there is an expression of a as a product of k primes, namely
a = p1 × · · · × pk. Let a = q1 × · · · × q` be any other such expression. We prove by
induction on k that ` = k and, after re-ordering if necessary, for each i there is a
unit ui such that qi = uipi.
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• (BC) If k = 1 then a = p1 is itself prime. Then we have p1 = q1 × · · · × q`.
Since p1 is prime, p1 | qj for some j; by swapping q1 and qj we may take j = 1,
so that p1 | q1. By irreducibility of q1 we have q1 = u1p1 for some unit u1.

• (IS) Let k > 1 and suppose that any integer which can be expressed as a
product of k primes is (essentially) uniquely expressible in such a way. Suppose
a has an expression as a product of k + 1 primes, and that k + 1 is the least
such number. Suppose also that

a = p1 × · · · × pk × pk+1 = q1 × · · · × q`

Note that ` > k + 1. Since pk+1 is prime we must have pk+1 | qj for some j;
by swapping qj and q` if necessary, we may take j = `, so that pk+1 | q`. As
before, q` = uk+1pk+1 for some unit uk+1. Dividing through by pk+1 gives

p1 × · · · × pk = q1 × · · · × q`−1 × uk+1

Replacing q`−1 by q`−1uk+1, which is still prime, we can apply the induction
hypothesis to obtain k = `− 1, so k+ 1 = `, and, after reordering if necessary
qi = uipi for all i 6 k. Since this also holds for i = k + 1, we’re done.

By induction, we’re done.

Example 3.2.13
Here are some examples of numbers written as products of primes:

• 12 = 2× 2× 3. We could also write this as 2× 3× 2 or (−2)× (−3)× 2, and
so on.

• 53 = 53 is an expression of 53 as a product of primes.

• −1000 = 2× 5× (−2)× 5× 2× 5.

C

Exercise 3.2.14
Express the following numbers as products of primes:

16 −240 5050 111111 −123456789

C

To make things slightly more concise, we introduce a standard way of expressing a
number as a product of primes:
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Definition 3.2.15
The canonical prime factorisation of a non-zero non-unit a ∈ Z is the expression
in the form

a = upj11 · · · p
jr
r

where:
• u = 1 if a > 0, and u = −1 if a < 0;

• The numbers pi are all positive primes;

• p1 < p2 < · · · < pr;

• ji > 1 for all i.
We call ji the multiplicity of pi in the factorisation of a, and we call u the sign of
a.

Typically we omit u if u = 1, and just write a minus sign (−) if u = −1.

Example 3.2.16
The canonical prime factorisations of the integers given in Example 3.2.13 are:

• 12 = 22 · 3.

• 53 = 53.

• −1000 = −23 · 53.

C

Exercise 3.2.17
Write out the canonical prime factorisations of the numbers from Exercise 3.2.14,
which were:

16 −240 5050 111111 −123456789

C

The following exercise provides another tool for computing reastgreatest common
divisors of pairs of integers by looking at their prime factorisations.

Exercise 3.2.18
Let p1, p2, . . . , pr be distinct primes, and let ki, `i ∈ N for all 1 6 i 6 r. Define

m = pk11 × p
k2
2 × · · · × p

kr
r and n = p`11 × p

`2
2 × · · · × p

`r
r

Prove that

gcd(m,n) = pu1
1 × p

u2
2 × · · · × p

ur
r

where ui = min{ki, `i} for all 1 6 i 6 r. C
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Example 3.2.19
We use Exercise 3.2.18 to compute the greatest common divisor of 17640 and 6468.

First we compute the prime factorisations of 17640 and 6468:

17640 = 23 · 32 · 5 · 72 and 6468 = 22 · 3 · 72 · 11

It now follows from Exercise 3.2.18 that

gcd(17640, 6468) = 22 · 31 · 50 · 72 · 110

= 4 · 3 · 1 · 49 · 1
= 588

C

Distribution of primes

So far we have seen several examples of prime numbers; to name a few, we’ve seen
2, 3, 5 and 53. It might seem like the prime numbers go on forever, but proving this
is less than obvious.

Exercise 3.2.20
Let P be an inhabited finite set of positive prime numbers and let m be the product
of all the elements of P . That is, for some n > 1 let

P = {p1, . . . , pn} and m = p1 × · · · × pn

where each pk ∈ P is a positive prime. Using the fundamental theorem of arithmetic,
show that m+ 1 has a positive prime divisor which is not an element of P . C

Theorem 3.2.21
There are infinitely many primes.

Proof. We prove that there are infinitely many positive prime numbers—the result
then follows immediately. Let P be the set of all positive prime numbers. Then P is
inhabited, since 2 ∈ P , for example. If P were finite, then by Exercise 3.2.20, there
would be a positive prime which is not an element of P—but P contains all positive
primes, so that is impossible. Hence there are infinitely many positive primes.

This is one proof of many, which is due to Euclid around 2300 years ago. We might
hope that a proof of the infinitude of primes gives some insight into how the primes
are distributed. That is, we might ask questions like: how frequently do primes
occur? How fast does the sequence of primes grow? How likely is there to be a
prime number in a given set of integers?
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As a starting point, Euclid’s proof gives an algorithm for writing an infinite list of
primes:

• Let p1 = 2; we know that 2 is prime;

• Given p1, . . . , pn, let pn+1 be the smallest positive prime factor of p1 × · · · ×
pn + 1.

The first few terms produced would be:

• p1 = 2 by definition;

• 2 + 1 = 3, which is prime, so p2 = 3;

• 2× 3 + 1 = 7, which is prime, so p3 = 7;

• 2× 3× 7 + 1 = 43, which is prime, so p4 = 43;

• 2× 3× 7× 43 + 1 = 1807 = 13× 139, so p5 = 13;

• 2× 3× 7× 43× 13 + 1 = 23479 = 53× 443, so p6 = 53;

• . . . and so on.

The sequence obtained, called the Euclid–Mullin sequence, is a bit bizarre:

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, . . .

Big primes like 38709183810571 often appear before small primes like 11. It remains
unknown whether or not every positive prime number appears in this list!

The chaotic nature of this sequence makes it difficult to extract information about
how the primes are distributed: the numbers p1 × · · · × pn + 1 grow very quickly—
indeed, it must be the case that p1×· · ·×pn+1 > 2n for all n—so the upper bounds
for the sequence grow at least exponentially.

Another proof of the infinitude of primes that gives a (slightly) tighter bound can
be obtained using the following exercise.

Exercise 3.2.22
Let n ∈ Z with n > 2. Prove that the set {k ∈ Z | n < k < n!} contains a prime
number. C
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Section 3.3

Modular arithmetic

It turns out that much arithmetic can be done by considering only the remainders
of integers when divided by a fixed integer. Here is a simple example:

Example 3.3.1
Suppose a1 has remainder r1 and a2 has remainder r2 when divided by 7. That is,
there exist q1, q2 ∈ Z such that

a1 = 7q1 + r1 and a2 = 7q2 + r2

Then a1 +a2 has the same remainder as r1 + r2 when divided by 7. Indeed, suppose
a1 + a2 = 7q + r, where 0 6 r < 7. Then

r1 + r2 = (a1 − 7q1) + (a2 − 7q2)

= (a1 + a2) + 7(−q1 − q2)

= (7q + r) + 7(−q1 − q1)

= 7(q − q1 − q2) + r

An example of this in action: 41 = 5×7 + 6 and 240 = 34×7 + 2, so the remainders
of 41 and 240 when divided by 7 are 6 and 2, respectively. Now

41 + 240 = 281 = 40× 7 + 1 and 6 + 2 = 8 = 1× 7 + 1

which demonstrates that 41 + 240 and 6 + 2 have the same remainder when divided
by 7. C

In this section we will study the extent to which we can do arithmetic with integers
knowing only their remainders upon division by a given integer.

Definition 3.3.2
Fix n ∈ Z. Given integers a, b ∈ Z, we say a is congruent to b modulo n, and
write

a ≡ b mod n (LATEX code: a \equiv b \bmod{n})

if n | a− b. If a is not congruent to b modulo n, write

a 6≡ b mod n (LATEX code: \not\equiv)

The number n is called the modulus of the congruence.

Convention 3.3.3
When talking about modular arithmetic, we will restrict our attention to positive
integers. This is because for any integers a, b, n we have

a ≡ b mod n ⇔ a ≡ b mod (−n)
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and a ≡ b mod 0 if and only if a = b. Thus, whenever we write ‘modn’ or specify
that a variable n is a ‘modulus’, it is implicit that n is an integer and n > 0. This
will shorten some of our proofs. C

Example 3.3.4
Some examples of congruence modulo n are as follows:

• 16 ≡ 30 mod 2 since 30− 16 = 14, which is a multiple of 2.

• 44 ≡ 20 mod 6 since 20− 44 = −24, which is a multiple of 6.

C

Exercise 3.3.5
Show that if a, b ∈ Z with a, b > 0 then a ≡ b mod 10 if and only if the decimal
expressions of a and b end in the same digit. What happens when a and b are
allowed to be negative? C

It is important from the outset to point out that, although congruence is written with
a symbol that looks like that of equality (‘≡’ vs. ‘=’), we can only treat congruence
like equality inasmuch as we have proved we can. Specifically, the ways in which
congruence can be treated like equality will be proved in two theorems:

• Theorem 3.3.6 tells us that congruence satisfies three extremely basic prop-
erties of equality.[b] One useful consequence of this is that it is valid to use
strings of congruences, for example

−5 ≡ 18 ≡ 41 ≡ 64 mod 23 ⇒ −5 ≡ 64 mod 23

• Theorem 3.3.9 tells us that we can treat congruence like equality for the pur-
poses of addition, multiplication and subtraction. Thus it will be valid to write
things like

x ≡ 7 mod 12 ⇒ 2x+ 5 ≡ 19 mod 12

and we’ll be able to replace values by congruent values in congruences, provided
they’re only being added, subtracted or multiplied. For example, from the
knowledge that 260 ≡ 1 mod 61 and 60! ≡ −1 mod 61, we will be able to
deduce

260 · 3 ≡ 60! · x mod 61 ⇒ 3 ≡ −x mod 61

Don’t let these properties shared by congruence and equality lull you into a false
sense of security! We will soon see that for other purposes, such as division and
various other algebraic operations, congruence does not behave like equality.

[b]Using the language of Definition 5.1.31, Theorem 3.3.6 says precisely that congruence is an equi-
valence relation.

150



Section 3.3. Modular arithmetic 151

Theorem 3.3.6
Let a, b, c ∈ Z and let n be a modulus. Then

(a) a ≡ a mod n;

(b) If a ≡ b mod n, then b ≡ a mod n;

(c) If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

Proof.

(a) Note that a − a = 0, which is divisible by n since 0 = 0 × n, and hence
a ≡ a mod n.

(b) Suppose a ≡ b mod n. Then n | a − b, so that a − b = kn for some k ∈ Z.
Hence b− a = −kn, and so n | b− a, so that b ≡ a mod n as required.

(c) Suppose a ≡ b mod n and b ≡ c mod n. Then n | a− b and n | b− c, so there
exist k, ` ∈ Z such that

a− b = kn and b− c = `n

Hence a−c = (a−b)+(b−c) = (k+`)n, so that n | a−c. Hence a ≡ c mod n,
as required.

There is a slightly simpler characterisation of congruence modulo n, as seen in
Proposition 3.3.7 below.

Proposition 3.3.7
Fix a modulus n and let a, b ∈ Z. The following are equivalent:

(i) a and b leave the same remainder when divided by n;

(ii) a = b+ kn for some k ∈ Z;

(iii) a ≡ b mod n.

Proof. We prove (i) ⇔ (iii) and (ii) ⇔ (iii).

• (i) ⇒ (iii). Suppose a and b leave the same remainder when divided by n, and
let q1, q2, r ∈ Z be such that

a = q1n+ r, b = q2n+ r and 0 6 r < n

Then a− b = (q1 − q2)n, which proves that n | a− b, and so a ≡ b mod n.
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• (iii) ⇒ (i). Suppose that a ≡ b mod n, so that b − a = qn for some q ∈ Z.
Write

a = q1n+ r1, b = q2n+ r2 and 0 6 r1, r2 < n

We may further assume that r1 6 r2. (If not, swap the roles of a and b—this
is fine, since n | b− a if and only if n | a− b.) Now we have

b− a = qn⇒ (q2n+ r2)− (q1n+ r1) = qn

⇒ (q2 − q1 − q)n+ (r2 − r1) = 0 rearranging

since 0 6 r1 6 r2 < n we have 0 6 r2− r1 < n, so that r2− r1 is the remainder
of 0 when divided by n. That is, r2 − r1 = 0, so r1 = r2. Hence a and b have
the same remainder when divided by n.

• (ii) ⇔ (iii). We unpack the definitions of (ii) and (iii) to see that they are
equivalent. Indeed

(ii)⇔ a = b+ kn for some k ∈ Z
⇔ a− b = kn for some k ∈ Z rearranging

⇔ n | a− b by definition of divisibility

⇔ a ≡ b mod n by definition of congruence

⇔ (iii)

Discussion 3.3.8
Where in the proof of Proposition 3.3.7 did we rely on the convention that the
modulus n is positive? Is the result still true if n is negative? C

The following theorem tells us that, in a very limited sense, the ≡ symbol can be
treated as a = symbol for the purposes of doing addition, subtraction and multiplic-
ation. Emphatically, it does not say that we can treat ‘≡’ like ‘=’ for the purposes
of doing division.

Theorem 3.3.9 (Modular arithmetic)
Fix a modulus n, and let a1, a2, b1, b2 ∈ Z be such that

a1 ≡ b1 mod n and a2 ≡ b2 mod n

Then the following congruences hold:
(a) a1 + a2 ≡ b1 + b2 mod n;

(b) a1a2 ≡ b1b2 mod n;

(c) a1 − a2 ≡ b1 − b2 mod n.
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Proof. By Definition 3.3.2 that n | a1 − b1 and n | a2 − b2, so there exist q1, q2 ∈ Z
such that

a1 − b1 = q1n and a2 − b2 = q2n

This implies that

(a1 + a2)− (b1 + b2) = (a1 − b1) + (a2 − b2) = q1n+ q2n = (q1 + q2)n

so n | (a1 + a2)− (b1 + b2). This proves (a).

The algebra for (b) is slightly more involved:

a1a2 − b1b2 = (q1n+ b1)(q2n+ b2)− b1b2
= q1q2n

2 + b1q2n+ b2q1n+ b1b2 − b1b2
= q1q2n

2 + b1q2n+ b2q1n

= (q1q2n+ b1q2 + b2q1)n

This shows that n | a1a2 − b1b2, thus proving (b).

Now (a) and (b) together imply (c). Indeed, we know that −1 ≡ −1 mod n and b1 ≡
b2 mod n, so by (b) we have −b1 ≡ −b2 mod n. We also know that a1 ≡ a2 mod n,
and hence a1 − b1 ≡ a2 − b2 mod n by (a).

Theorem 3.3.9 allows us to perform algebraic manipulations with congruences as if
they were equations, provided all we’re doing is adding, multiplying and subtracting.

Example 3.3.10
We will solve the congruence 3x− 5 ≡ 2x+ 3 mod 7 for x:

3x− 5 ≡ 2x+ 3 mod 7

⇔ x− 5 ≡ 3 mod 7 (⇒) subtract 2x (⇐) add 2x

⇔ x ≡ 8 mod 7 (⇒) add 5 (⇐) subtract 5

⇔ x ≡ 1 mod 7 since 8 ≡ 1 mod 7

So the integers x for which 3x−5 and 2x+3 leave the same remainder when divided
by 7, are precisely the integers x which leave a remainder of 1 when divided by 7:

3x− 5 ≡ 2x+ 3 mod 7 ⇔ x = 7q + 1 for some q ∈ Z

C

Exercise 3.3.11
For which integers x does the congruence 5x+ 1 ≡ x+ 8 mod 3 hold? Characterise
such integers x in terms of their remainder when divided by 3. C
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So far this all feels like we haven’t done very much: we’ve just introduced a new
symbol ≡ which behaves just like equality. . . but does it really? The following exer-
cises should expose some more ways in which congruence does behave like equality,
and some in which it doesn’t.

Exercise 3.3.12
Fix a modulus n. Is it true that

a ≡ b mod n ⇒ ak ≡ bk mod n

for all a, b ∈ Z and k ∈ N? If so, prove it; if not, provide a counterexample. C

Exercise 3.3.13
Fix a modulus n. Is it true that

k ≡ ` mod n ⇒ ak ≡ a` mod n

for all k, ` ∈ N and a ∈ Z? If so, prove it; if not, provide a counterexample. C

Exercise 3.3.14
Fix a modulus n. Is it true that

qa ≡ qb mod n ⇒ a ≡ b mod n

for all a, b, q ∈ Z with q 6≡ 0 mod n? If so, prove it; if not, provide a counterexample.
C

Common error
The false sense of security that Theorem 3.3.9 induces often leads students new to
all this to the belief that ≡ and = are interchangeable concepts. This is emphatically
not the case. In particular:

• Fractions don’t make sense in modular arithmetic; for instance, it is invalid to
say 2x ≡ 1 mod 5 implies x ≡ 1

2 mod 5.

• Square roots don’t make sense in modular arithmetic; for instance, it is invalid
to say x2 ≡ 3 mod 4 implies x ≡ ±

√
3 mod 4.

• Numbers in exponents cannot be replaced by congruent numbers; for instance,
it is invalid to say x3 ≡ 23 mod 4 implies x ≡ 2 mod 4.

C

Multiplicative inverses

We made a big deal about the fact that fractions don’t make sense in modular
arithmetic. That is, it is invalid to say

2x ≡ 1 mod 5 ⇒ x ≡ 1

2
mod 5
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Despite this, we can still make sense of ‘division’, provided we change what we mean
when we say ‘division’. Indeed, the congruence 2x ≡ 1 mod 5 has a solution:

2x ≡ 1 mod 5

⇔ 6x ≡ 3 mod 5 (⇒) multiply by 3 (⇐) subtract 3

⇔ x ≡ 3 mod 5 since 6 ≡ 1 mod 5

Here we didn’t divide by 2, but we still managed to cancel the 2 by instead mul-
tiplying through by 3. For the purposes of solving the equation this had the same
effect as division by 2 would have had if we were allowed to divide. The key here
was that 2× 3 ≡ 1 mod 5.

Definition 3.3.15
Fix a modulus n. Given a ∈ Z, a multiplicative inverse for a modulo n is an
integer u such that au ≡ 1 mod n.

Example 3.3.16
Some examples of multiplicative inverses are as follows:

• 2 is a multiplicative inverse of itself modulo 3, since 2× 2 ≡ 4 ≡ 1 mod 3.

• 2 is a multiplicative inverse of 3 modulo 5, since 2× 3 ≡ 6 ≡ 1 mod 5.

• 7 is also a multiplicative inverse of 3 modulo 5, since 3× 7 ≡ 21 ≡ 1 mod 5.

• 3 has no multiplicative inverse modulo 6. Indeed, suppose u ∈ Z with 3u ≡
1 mod 6. Then 6 | 3u− 1, so 3u− 1 = 6q for some q ∈ Z. But then

1 = 3u− 6q = 3(u− 2q)

which implies that 3 | 1, which is nonsense.

C

Knowing when multiplicative inverses exist is very important for solving congru-
ences: if u is a multiplicative inverse for a modulo n, then we can solve equations of
the form ax ≡ b mod n extremely easily:

ax ≡ b mod n ⇒ x ≡ ub mod n

Exercise 3.3.17
For n = 7, 8, 9, 10, 11, 12, either find a multiplicative inverse for 6 modulo n, or show
that no multiplicative inverse exists. Can you spot a pattern? C

Some authors write a−1 to denote multiplicative inverses. We refrain from this, since
it suggests that multiplicative inverses are unique—but they’re not, as you’ll see in
the following exercise.
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Exercise 3.3.18
Let n be a modulus and let a ∈ Z. Suppose that u is a multiplicative inverse for a
modulo n. Prove that, for all k ∈ Z, u+ kn is a multiplicative inverse for a modulo
n. C

Proposition 3.3.19
Let a ∈ Z and let n be a modulus. Then a has a multiplicative inverse modulo n if
and only if a ⊥ n.

Proof. Note that a has a multiplicative inverse u modulo n if and only if there is
a solution (u, v) to the equation au + nv = 1. Indeed, au ≡ 1 mod n if and only if
n | au − 1, which occurs if and only if there is some q ∈ Z such that au − 1 = nq.
Setting q = −v and rearranging yields the desired equivalence.

By Bézout’s lemma (Theorem 3.1.22), such a solution (u, v) exists if and only if
gcd(a, n) | 1. This occurs if and only if gcd(a, n) = 1, i.e. if and only if a ⊥ n.

Proof tip
To solve a congruence of the form ax ≡ b mod n when a ⊥ n, first find a multiplic-
ative inverse u for a modulo n, and then simply multiply through by u to obtain
x ≡ ub mod n. C

Corollary 3.3.20
Let a, p ∈ Z, where p is a positive prime. If p - a then a has a multiplicative inverse
modulo p.

Proof. Suppose p - a, and let d = gcd(a, p). Since d | p and p is prime we have d = 1
or d = p. Since d | a and p - a we can’t have d = p; therefore d = 1. By Proposition
3.3.19, a has a multiplicative inverse modulo p.

Example 3.3.21
11 is prime, so each of the integers a with 1 6 a 6 10 should have a multiplicative
inverse modulo 11. And indeed, the following are all congruent to 1 modulo 11:

1× 1 = 1 2× 6 = 12 3× 4 = 12 4× 3 = 12 5× 9 = 45
6× 2 = 12 7× 8 = 56 8× 7 = 56 9× 5 = 45 10× 10 = 100

C

Exercise 3.3.22
Find all integers x such that 25x− 4 ≡ 4x+ 3 mod 13. C

Orders and totients

For any modulus n, there are only finitely many possible remainders modulo n. A
nice consequence of this finiteness is that, when a ⊥ n, we can choose some power
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of a to be its multiplicative inverse, as proved in the following exercise.

Exercise 3.3.23
Let n be a modulus and let a ∈ Z with a ⊥ n. Prove that there exists k > 1 such
that ak ≡ 1 mod n. C

Exercise 3.3.23, together with the well-ordering principle, justify the following defin-
ition.

Definition 3.3.24
Let n be a modulus and let a ∈ Z with a ⊥ n. The order of a modulo n is the least
k > 1 such that ak ≡ 1 mod n.

Note that this definition makes sense by Exercise 3.3.23 and the well-ordering prin-
ciple.

Example 3.3.25
The powers of 7 modulo 100 are:

• 71 = 7, so 71 ≡ 7 mod 100;

• 72 = 49, so 72 ≡ 49 mod 100;

• 73 = 343, so 73 ≡ 43 mod 100;

• 74 = 2401, so 74 ≡ 1 mod 100.

Hence the order of 7 modulo 100 is 4, and 73 and 43 are multiplicative inverses of 7
modulo 100. C

Our focus turns to computing specific values of k such that ak ≡ 1 mod n, whenever
a ∈ Z and a ⊥ n. We first focus on the case when n is prime; then we develop the
machinery of totients to study the case when n is not prime.

Lemma 3.3.26
Let a, b ∈ Z and let p ∈ Z be a positive prime. Then (a+ b)p ≡ ap + bp mod p.

Proof. By the binomial theorem (Theorem 1.3.34), we have

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k

By Exercise 3.2.5, p |
(
p
k

)
for all 0 < k < p, and hence

(
p
k

)
akbp−k ≡ 0 mod p for all

0 < k < p. Thus

(a+ b)p ≡
(
p

0

)
a0bp−0 +

(
p

p

)
apbp−p ≡ ap + bp mod p
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as desired.

Theorem 3.3.27 (Fermat’s little theorem)
Let a, p ∈ Z with p a positive prime. Then ap ≡ a mod p.

Proof. We may assume that a > 0, otherwise replace a by its remainder modulo p.

We will prove that ap ≡ a mod p by induction on a.

• (BC) Since p > 0 we have 0p = 0, hence 0p ≡ 0 mod p.

• (IS) Fix a > 0 and suppose ap ≡ a mod p. Then (a+ 1)p ≡ ap + 1p mod p by
Lemma 3.3.26. Now ap ≡ a mod p by the induction hypothesis, and 1p = 1,
so we have (a+ 1)p ≡ a+ 1 mod p.

By induction, we’re done.

Corollary 3.3.28
Let a, p ∈ Z with p a positive prime and p - a. then ap−1 ≡ 1 mod p.

Proof. Since p - a, it follows that a ⊥ p. Fermat’s little theorem (Theorem 3.3.27)
tells us that a|p| ≡ a mod p. By Proposition 3.3.19, a has a multiplicative inverse b
modulo p. Hence

apb ≡ ab mod p

But apb ≡ ap−1ab mod p, and ab ≡ 1 mod p, so we get

ap−1 ≡ 1 mod p

as required.

This can be useful for computing remainders of humongous numbers when divided
by smaller primes.

Example 3.3.29
We compute the remainder of 21000 when divided by 7. By Fermat’s little theorem
(Theorem 3.3.27), we know that 27 ≡ 2 mod 7. Since 7 - 2, it follows that 2 has
a multiplicative inverse modulo 7, so we can cancel it from both sides to obtain
26 ≡ 1 mod 7. Now 1000 = 166× 6 + 4, so

21000 ≡ 2166×6+4 ≡ (26)166 · 24 ≡ 24 ≡ 16 ≡ 2 mod 7

so the remainder of 21000 when divided by 7 is 2. C

Exercise 3.3.30
Find the remainder of 3244886 when divided by 13. C
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Unfortunately, the hypothesis that p is prime in Fermat’s little theorem is necessary.
For example, 6 is not prime, and 56−1 = 55 = 3125 = 520× 6 + 5, so 55 ≡ 5 mod 6.

Definition 3.3.31
Let n ∈ Z. The totient of n is the natural number ϕ(n) (LATEX code: \varphi(n)),
which is the number of integers from 1 up to |n| which are coprime to n.a

aMore succinctly, we have ϕ(n) = |{k ∈ [|n|] | k ⊥ n}|, where the notation |X| is defined in Definition
4.1.39.

Example 3.3.32
Here are some examples of totients:

• The elements of [6] which are coprime to 6 are 1 and 5, so ϕ(6) = 2.

• If p is a positive prime, then every element of [p] is coprime to p except for p
itself. Hence if p is a positive prime then ϕ(p) = p− 1. More generally, if p is
prime then ϕ(p) = |p| − 1.

C

Exercise 3.3.33
Prove that if p is a positive prime and k > 1 then

ϕ(pk) = pk − pk−1

C

Theorem 3.3.34 (Euler’s theorem)
Let n be a modulus and let a ∈ Z with a ⊥ n. Then

aϕ(n) ≡ 1 mod n

Proof. By definition of totient, the set X defined by

X = {k ∈ [n] | k ⊥ n}

has ϕ(n) elements. List the elements as

X = {x1, x2, . . . , xϕ(n)}

Note that axi ⊥ n for all i, so let yi be the (unique) element of X such that
axi ≡ yi mod n.

Note that if i 6= j then yi 6= yj . We prove this by contraposition; indeed, since
a ⊥ n, by Proposition 3.3.19, a has a multiplicative inverse, say b. Then

yi ≡ yj mod n ⇒ axi ≡ axj mod n ⇒ baxi ≡ baxj mod n ⇒ xi ≡ xj mod n
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and xi ≡ xj mod n if and only if i = j. Thus

X = {x1, x2, . . . , xϕ(n)} = {y1, y2, . . . , yϕ(n)}

This means that the product of the ‘xi’s is equal to the product of the ‘yi’s, and
hence

x1 · . . . · xϕ(n)

≡ y1 · . . . · yϕ(n) mod n since {x1, . . . } = {y1, . . . }
≡ (ax1) · . . . · (axϕ(n)) mod n since yi ≡ axi mod n

≡ aϕ(n) · x1 · . . . · xϕ(n) mod n rearranging

Since each xi is coprime to n, we can cancel the xi terms (by multiplying by their
multiplicative inverses) to obtain

aϕ(n) ≡ 1 mod n

as required.

Example 3.3.35
Some examples of Euler’s theorem in action are as follows:

• We have seen that ϕ(6) = 2, and we know that 5 ⊥ 6. And, indeed,

5ϕ(6) = 52 = 25 = 4× 6 + 1

so 5ϕ(6) ≡ 1 mod 6.

• By Exercise 3.3.33, we have

ϕ(121) = ϕ(112) = 112 − 111 = 121− 11 = 110

Moreover, given a ∈ Z, a ⊥ 121 if and only if 11 - a. Hence a110 ≡ 1 mod 121
whenever 11 - a.

C

Wilson’s theorem

We conclude this chapter on number theory with Wilson’s theorem, which is a nice
result that completely characterises prime numbers in the sense that we can tell
when a number is prime by computing the remainder of (n− 1)! when divided by n.

Let’s test a few numbers first:
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n (n− 1)! remainder

2 1 1
3 2 2
4 6 2
5 24 4
6 120 0
7 720 6
8 5040 0

n (n− 1)! remainder

9 40320 0
10 362880 0
11 3628800 10
12 39916800 0
13 479001600 12
14 6227020800 0
15 87178291200 0

It’s tempting to say that an integer n > 1 is prime if and only if n - (n − 1)!, but
this isn’t true since it fails when n = 4. But it’s extremely close to being true.

Theorem 3.3.36 (Wilson’s theorem)
Let n > 1 be a modulus. Then n is prime if and only if (n− 1)! ≡ −1 mod n.

The following sequence of exercises will piece together into a proof of Wilson’s the-
orem.

Exercise 3.3.37
Let n ∈ Z be composite. Prove that if n > 4, then n | (n− 1)!. C

Exercise 3.3.38
Let p be a positive prime and let a ∈ Z. Prove that, if a2 ≡ 1 mod p, then a ≡
1 mod p or a ≡ −1 mod p. C

Exercise 3.3.38 implies that the only elements of [p−1] that are their own multiplic-
ative inverses are 1 and p− 1; this morsel of information allows us to deduce result
in the following exercise.

Exercise 3.3.39
Let p be a positive prime. Prove that (p− 1)! ≡ −1 mod p. C

Proof of Wilson’s theorem (Theorem 3.3.36). Let n > 1 be a modulus.

• If n is prime, then (n− 1)! ≡ −1 mod n by Exercise 3.3.39.

• If n is composite, then either n = 4 or n > 4. If n = 4 then

(n− 1)! = 3! = 6 ≡ 2 mod 4

and so (n− 1)! 6≡ −1 mod n. If n > 4, then

(n− 1)! ≡ 0 mod n

by Exercise 3.3.37.
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Hence (n− 1)! ≡ −1 mod n if and only if n is prime, as desired.

Since Wilson’s theorem completely characterises the positive prime numbers, we
could have defined ‘n is prime’, for n > 1, to mean that (n − 1)! ≡ −1 mod n. We
don’t do this because, although this is an interesting result, it is not particularly
useful in applications. We might even hope that Wilson’s theorem gives us an
easy way to test whether a number is prime, but unfortunately even this is a bust:
computing the remainder (n− 1)! on division by n is not particularly efficient.

However, there are some nice applications of Wilson’s theorem, which we will explore
now.

Example 3.3.40
We’ll compute the remainder of 345 · 44! when divided by 47. Note that 345 · 44!
is equal to a monstrous number with 76 digits; I don’t recommend doing the long
division! Anyway. . .

• 47 is prime, so we can apply both Fermat’s little theorem (Theorem 3.3.27)
and Wilson’s theorem (Theorem 3.3.36).

• By Fermat’s little theorem, we know that 346 ≡ 1 mod 47. Since 3 · 16 = 48 ≡
1 mod 47, we have

345 ≡ 345 · (3 · 16) ≡ 346 · 16 ≡ 16 mod 47

• By Wilson’s theorem, we have 46! ≡ −1 mod 47. Now

� 46 ≡ −1 mod 47, so 46 is its own multiplicative inverse modulo 47.

� The extended Euclidean algorithm yields 45 · 23 ≡ 1 mod 47.

So we have

44! = 44! · (45 · 23) · (46 · 46) ≡ 46! · 23 · 46 ≡ (−1) · 23 · (−1) ≡ 23 mod 47

Putting this information together yields

345 · 44! ≡ 16 · 23 = 368 ≡ 39 mod 47

So the remainder left when 345 · 44! is divided by 47 is 39. C

Exercise 3.3.41
Let p be an odd positive prime. Prove that[(

p− 1

2

)
!

]2

≡ (−1)
p+1
2 mod p

C
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Chinese remainder theorem

We introduce the Chinese remainder theorem with an example.

Example 3.3.42
We find all integer solutions x to the system of congruences

x ≡ 2 mod 5 and x ≡ 4 mod 8

Note that x ≡ 4 mod 8 if and only if x = 4 + 8k for some k ∈ Z. Now, for all k ∈ Z
we have

x ≡ 2 mod 5

⇔ 4 + 8k ≡ 2 mod 5 since x = 4 + 8k

⇔ 8k ≡ −2 mod 5 subtracting 4

⇔ 3k ≡ 3 mod 5 since 8 ≡ −2 ≡ 3 mod 5

⇔ k ≡ 1 mod 5 multiplying by a multiplicative inverse for 3 modulo 5

So 4 + 8k ≡ 2 mod 5 if and only if k = 1 + 5` for some ` ∈ Z.

Combining this, we see that x satisfies both congruences if and only if

x = 4 + 8(1 + 5`) = 12 + 40`

for some ` ∈ Z.

Hence the integers x for which both congruences are satisfied are precisely those
integers x such that x ≡ 12 mod 40. C

Exercise 3.3.43
Find all integer solutions x to the system of congruences:

x ≡ −1 mod 4

x ≡ 1 mod 9

x ≡ 5 mod 11

Express your solution in the form x ≡ a mod n for suitable n > 0 and 0 6 a < n. C

Exercise 3.3.44
Let m,n be coprime moduli and let a, b ∈ Z. Let u, v ∈ Z be such that

mu ≡ 1 mod n and nv ≡ 1 mod m

In terms of a, b,m, n, u, v, find an integer x such that

x ≡ a mod m and x ≡ b mod n

C
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Exercise 3.3.45
Let m,n be coprime moduli and let x, y ∈ Z. Prove that if x ≡ y mod m and
x ≡ y mod n, then x ≡ y mod mn. C

Theorem 3.3.46 (Chinese remainder theorem)
Let m,n be moduli and let a, b ∈ Z. If m and n are coprime, then there exists an
integer solution x to the simultaneous congruences

x ≡ a mod m and x ≡ b mod n

Moreover, if x, y ∈ Z are two such solutions, then x ≡ y mod mn.

Proof. Existence of a solution x is precisely the content of Exercise 3.3.44.

Now let x, y ∈ Z be two solutions to the two congruences. Then{
x ≡ a mod m

y ≡ a mod m ⇒ x ≡ y mod m{
x ≡ b mod n

y ≡ b mod n ⇒ x ≡ y mod n

so by Exercise 3.3.45, we have x ≡ y mod mn, as required.

We now generalise the Chinese remainder theorem to the case when the moduli
m,n are not assumed to be coprime. There are two ways we could make this
generalisation: either we could reduce the more general version of the theorem to
the version we proved in Theorem 3.3.46, or we could prove the more general version
from scratch. We opt for the latter approach, but you might want to consider what
a ‘reductive’ proof would look like.

Theorem 3.3.47
Let m,n be moduli and let a, b ∈ Z. There exists an integer solution x to the system
of congruences

x ≡ a mod m and x ≡ b mod n

if and only if a ≡ b mod gcd(m,n).
Moreover, if x, y ∈ Z are two such solutions, then x ≡ y mod lcm(m,n)

Proof. Let d = gcd(m,n), and write m = m′d and n = n′d for some m′, n′ ∈ Z.

We prove that an integer solution x to the system of congruences exists if and only
if a ≡ b mod d.
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• (⇒) Suppose an integer solution x to the system of congruences exists. Then
there exist integers k, ` such that

x = a+mk = b+ n`

But m = m′d and n = n′d, so we have a+m′dk = b+ n′d`, and so

a− b = (n′`−m′k)d

so that a ≡ b mod d, as required.

• (⇐) Suppose a ≡ b mod d, and let t ∈ Z be such that a− b = td. Let u, v ∈ Z
be solutions to the congruence mu+ nv = d, which exists by Bézout’s lemma
(Theorem 3.1.22). Note also that, since m = m′d and n = n′d, dividing
through by d yields m′u+ n′v = 1.

Define
x = an′v + bm′u

Now we have

x = an′v + bm′u by definition of x

= an′v + (a− td)m′u since a− b = td

= a(m′u+ n′v)− tdm′u rearranging

= a− tdm′u since m′u+ n′v = 1

= a− tum since m = m′d

so x ≡ a mod m. Likewise

x = an′v + bm′u by definition of x

= (b+ td)n′v + bm′u since a− b = td

= b(m′u+ n′v) + tdn′v rearranging

= b+ tdn′v since m′u+ n′v = 1

= b+ tvn since n = n′d

so x ≡ b mod n.

Hence x = an′v + bm′u is a solution to the system of congruences.

We now prove that if x, y are two integer solutions to the system of congruences,
then they are congruent modulo lcm(a, b). First note that we must have

x ≡ y mod m and x ≡ y mod n

so that x = y + km and x = y + `n for some k, ` ∈ Z. But then

x− y = km = `n
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Writing m = m′d and n = n′d, we see that km′d = `n′d, so that km′ = `n′. But
m′, n′ are coprime by Proposition 3.1.29, and hence m′ | ` by Proposition 3.1.32.
Write ` = `′m′ for some `′ ∈ Z. Then we have

x− y = `n = `′m′n

and hence x ≡ y mod m′n. But m′n = lcm(m,n) by Exercise 3.1.41.

This theorem is in fact constructive, in that it provides an algorithm for finding all
integer solutions x to a system of congruences

x ≡ a mod m and x ≡ b mod n

as follows:

• Use the Euclidean algorithm to compute d = gcd(m,n).

• If d - a − b then there are no solutions, so stop. If d | a − b, then proceed to
the next step.

• Use the extended Euclidean algorithm to compute u, v ∈ Z such thatmu+nv =
d.

• The integer solutions x to the system of congruences are precisely those of the
form

x =
anv + bmu+ kmn

d
for some k ∈ Z

Exercise 3.3.48
Verify that the algorithm outlined above is correct. Use it to compute the solutions
to the system of congruences

x ≡ 3 mod 12 and x ≡ 15 mod 20

C

? Exercise 3.3.49
Generalise the Chinese remainder theorem to systems of arbitrarily (finitely) many
congruences. That is, given r ∈ N, find precisely the conditions on moduli n1, n2, . . . , nr
and integers a1, a2, . . . , ar such that an integer solution exists to the congruences

x ≡ a1 mod n1, x ≡ a2 mod n2, · · · xr ≡ ar mod nr

Find an explicit formula for such a value of x, and find a suitable modulus n in
terms of n1, n2, . . . , nr such that any two solutions to the system of congruences are
congruent modulo n. C
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Exercise 3.3.50
Prove that gaps between consecutive primes can be made arbitrarily large. That is,
prove that for all n ∈ N, there exists an integer a such that the numbers

a, a+ 1, a+ 2, . . . , a+ n

are all composite. C

Application: tests for divisibility

The language of modular arithmetic provides a practical setting for proving tests for
divisibility using number bases. Number bases were introduced in Section 1.1, and
we gave a preliminary definition in Definition 1.1.6 of what a number base is. Our
first job will be to justify why this definition makes sense at all—that is, we need
to prove that every natural number has a base-b expansion, and moreover, that it
only has one of them. Theorem 3.3.51 says exactly this.

Theorem 3.3.51
Let n ∈ N and let b ∈ N with b > 2. Then there exist unique r ∈ N and
d0, d1, . . . , dr ∈ {0, 1, . . . , b− 1} such that

n =

r∑
i=0

dib
i

and such that dr 6= 0, except n = 0, in which case r = 0 and d0 = 0.

Proof. We proceed by strong induction on n.

• (BC) We imposed the requirement that if n = 0 then r = 0 and d0 = 0; and

this evidently satisfies the requirement that n =
r∑

i=0
dib

i.

• (IS) Fix n > 0 and suppose that the requirements of the theorem are satisfied
for all the natural numbers up to and including n.

By the division theorem (Theorem 3.1.1), there exist unique u, v ∈ N such that

n+ 1 = ub+ v and v ∈ {0, 1, . . . , b− 1}

Since b > 2, we have u < n + 1, and so u 6 n. It follows from the induction
hypothesis that there exist unique r ∈ N and d1, . . . , dr ∈ {0, 1, . . . , b−1} such
that

u =
r∑

i=0

di+1b
i
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and dr 6= 0. Writing d0 = v yields

n = ub+ v =
r∑

i=0

di+1b
i+1 + d0 =

r∑
i=0

dib
i

Since dr 6= 0, this proves existence.

For uniqueness, suppose that there exists s ∈ N and e0, . . . , es ∈ {0, 1, . . . , b−1}
such that

n+ 1 =

s∑
j=0

ejb
j

and es 6= 0. Then

n+ 1 =

 s∑
j=1

ejb
j−1

 b+ e0

so by the division theorem we have e0 = d0 = v. Hence

u =
n+ 1− v

b
=

s∑
j=1

ejb
j−1 =

r∑
i=1

dib
j−1

so by the induction hypothesis, it follows that r = s and di = ei for all
1 6 i 6 r. This proves uniqueness.

By induction, we’re done.

We now re-state the definition of base-b expansion, confident in the knowledge that
this definition makes sense.

Definition 3.3.52
Let n ∈ N. The base-b expansion of n is the unique string drdr−1 . . . d0 such
that the conditions in Theorem 3.3.51 are satisfied. The base-2 expansion is also
known as the binary expansion, and the base-10 expansion is called the decimal
expansion.

Example 3.3.53
Let n ∈ N. Then n is divisible by 3 if and only if the sum of the digits in the decimal
expansion of n is divisible by 3. Likewise, n is divisible by 9 if and only if the sum
of the digits in the decimal expansion n is divisible by 9.

We prove this for divisibility by 3. Let

n = drdr−1 · · · d1d0

be the decimal expansion of n, and let s =
r∑

i=0
di be the sum of the digits of n.
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Then we have

n ≡
r∑

i=0

di10i mod 3 since n =
∑
i

di10i

≡
r∑

i=0

di1
i mod 3 since 10 ≡ 1 mod 3

≡
r∑

i=0

di since 1i = 1 for all i

≡ s by definition of s

Since n ≡ s mod 3, it follows that n is divisible by 3 if and only if s is divisible by
3. C

Exercise 3.3.54
Let n ∈ N. Prove that n is divisible by 5 if and only if the final digit in the decimal
expansion of n is 5 or 0.

More generally, fix k > 1 and let m be the number whose decimal expansion is given
by the last k digits of that of n. Prove that n is divisible by 5k if and only if m is
divisible by 5k. For example, we have

125 | 9 550 828 230 495 875 ⇔ 125 | 875

C

Exercise 3.3.55
Let n ∈ N. Prove that n is divisible by 11 if and only if the alternating sum of the
digits of n is divisible by 11. That is, prove that if the decimal expansion of n is
drdr−2 · · · d0, then

11 | n ⇔ 11 | d0 − d1 + d2 − · · ·+ (−1)rdr

C

Exercise 3.3.56
Let n ∈ N. Find a method for testing if n is divisible by 7 based on the decimal
expansion of n. C

Application: public-key cryptography

Public-key cryptography is a method of encryption and decryption that works ac-
cording to the following principles:

• Encryption is done using a public key that is available to anyone.
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• Decryption is done using a private key that is only known to the recipient.

• Knowledge of the private key should be extremely difficult to derive from
knowledge of the public key.

Specifically, suppose that Alice wants to securely send Bob a message. As the
recipient of the message, Bob has a public key and a private key. So:

• Bob sends the public key to Alice.

• Alice uses the public key to encrypt the message.

• Alice sends the encrypted message, which is visible (but encrypted) to anyone
who intercepts it.

• Bob keeps the private key secret, and uses it upon receipt of the message to
decrypt the message.

Notice that, since the public key can only be used to encrypt messages, a hacker has
no useful information upon intercepting the message or the public key.

RSA encryption is an algorithm which provides one means of doing public-key
cryptography using the theory of modular arithmetic. It works as follows.

Step 1. Let p and q be distinct positive prime numbers, and let n = pq. Then ϕ(n) =
(p− 1)(q − 1).

Step 2. Choose e ∈ Z with 1 < e < ϕ(n) and e ⊥ ϕ(n). The pair (n, e) is called the
public key.

Step 3. Choose d ∈ Z with de ≡ 1 mod ϕ(n). The pair (n, d) is called the private
key.

Step 4. To encrypt a message M (which is encoded as an integer), compute K ∈ [n]
such that K ≡M e mod n. Then K is the encrypted message.

Step 5. The original message M can be recovered since M ≡ Kd mod n.

Computing the private key (n, d) from the knowledge of (n, e) would allow a hacker to
decrypt an encrypted message. However, doing so is typically very difficult when the
prime factors of n are large. So if we choose p and q to be very large primes—which
we can do without much hassle at all—then it becomes computationally infeasible
for a hacker to compute the private key.

Example. Suppose I want to encrypt the message M , which I have encoded as the
integer 32. Let p = 13 and q = 17. Then n = 221 and ϕ(n) = 192. Let e = 7, and
note that 7 ⊥ 192. Now 7× 55 ≡ 1 mod 192, so we can define d = 55.
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• The public key is (221, 7), which Bob sends to Alice. Now Alice can encrypt
the message:

327 ≡ 59 mod 221

Alice then sends Bob the encrypted message 59.

• The private key is (221, 55), so Bob can decrypt the message:

5955 ≡ 32 mod 221

so Bob has received Alice’s message 32.

Exercise 3.3.57
Prove that the RSA algorithm is correct. Specifically, prove:

(a) If n = pq, for distinct positive primes p and q, then ϕ(n) = (p− 1)(q − 1);

(b) Given 1 < e < ϕ(n) with e ⊥ ϕ(n), there exists d ∈ Z with de ≡ 1 mod ϕ(n).

(c) Given M,K ∈ Z with K ≡ M e mod n, it is indeed the case that Kd ≡
M mod n.

C
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Section 4.1

Functions revisited

To motivate some of the definitions to come, look at the dots (•) and stars (?) below.
Are there more dots or more stars?

• • • • • • • • • • • • • • • • • • •

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Pause for a second and think about how you knew the answer to this question.

Indeed, there are more dots than stars. There are a couple of ways to arrive at this
conclusion:

(i) You could count the number of dots, count the number of stars, and then
compare the two numbers; or

(ii) You could notice that the dots and the stars are evenly spaced, but that the
line of dots is longer than the line of stars.

It is likely that you chose method (ii). In fact, it is likely that you haven’t even
counted the number of dots or the number of stars yet—and you don’t need to! We
can conclude that there are more dots than stars by simply pairing up dots with
stars—we eventually run out of stars, and there are still dots left over, so there must
have been more dots than stars.

Injectivity

One way of formalising this act of pairing up stars with dots mathematically is to
define a function f : S → D from the set S of stars to the set D of dots, where the
value of f at each star is the dot that it is paired with. We of course must do this
in such a way that each dot is paired with at most one star:

• • • • • • • • • • • • • • • • • • •

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
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It is a property of this function—called injectivity—that allows us to deduce that
there are more dots than stars.

Intuitively, a function f : X → Y is injective if it puts the elements of X in one-
to-one correspondence[a] with the elements of a subset of Y—just like how the stars
are in one-to-one correspondence with a subset of the dots in the example above.

Definition 4.1.1
A function f : X → Y is injective (or one-to-one) if

f(x) = f(x′) ⇒ x = x′ for all x, x′ ∈ X

An injective function is said to be an injection.

Proof tip
The definition of injectivity makes it easy to see how to prove that a function f :
X → Y is injective: let x, x′ ∈ X, assume that f(x) = f(x′), then derive x = x′. C

By contraposition, f : X → Y being injective is equivalent to saying that if x, x′ ∈ X
and x 6= x′, then f(x) 6= f(x′).

The following is a very simple example from elementary arithmetic:

Example 4.1.2
Define f : Z → Z by letting f(x) = 2x + 1 for all x ∈ Z. We’ll prove that f is
injective. Fix x, x′ ∈ Z, and assume that f(x) = f(x′). By definition of f , we have
2x + 1 = 2x′ + 1. Subtracting 1 yields 2x = 2x′, and dividing by 2 yields x = x′.
Hence f is injective. C

The following example is slightly more sophisticated.

Proposition 4.1.3
Let f : X → Y and g : Y → Z be functions. If f and g are injective, then g ◦ f is
injective.

Proof. Let x, x′ ∈ X. We need to prove that

(g ◦ f)(x) = (g ◦ f)(x′) ⇒ x = x′

So assume (g◦f)(x) = (g◦f)(x′). By definition of function composition, this implies
that g(f(x)) = g(f(x′)). By injectivity of g, we have f(x) = f(x′); and by injectivity
of f , we have x = x′.

[a]In fact, some authors use the term ‘one-to-one’ to mean ‘injective’.
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Exercise 4.1.4
Let f : X → Y and g : Y → Z be functions. Prove that if g ◦ f is injective, then f
is injective. C

Exercise 4.1.5
Write out what it means to say a function f : X → Y is not injective, and say
how you would prove that a given function is not injective. Give an example of a
function which is not injective, and use your proof technique to write a proof that
it is not injective. C

Exercise 4.1.6
For each of the following functions, determine whether it is injective or not injective.

• f : N→ Z, defined by f(n) = n2 for all n ∈ N.

• g : Z→ N, defined by g(n) = n2 for all n ∈ Z.

• h : N× N× N→ N, defined by h(x, y, z) = 2x · 3y · 5z for all x, y, z ∈ N.

C

Surjectivity

Let’s revisit the rows of dots and stars that we saw earlier. Beforehand, we made
our idea that there are more dots than stars formal by proving the existence of an
injection f : S → D from the set S of stars to the set D of dots.

However, we could have drawn the same conclusion instead from defining a function
D → S, which in some sense covers the stars with dots—that is, every star is paired
up with at least one dot.

• • • • • • • • • • • • • • • • • • •

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

This property is called surjectivity—a function f : X → Y is surjective if every
element of Y is a value of f . This is made precise in Definition 4.1.7.
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Definition 4.1.7
A function f : X → Y is surjective (or onto) if

∀y ∈ Y, ∃x ∈ X, f(x) = y

A surjective function is said to be a surjection.

Proof tip
To prove that a function f : X → Y is surjective, prove that each element y ∈ Y is
a value of f . That is, fix y ∈ Y , and demonstrate that there exist some x ∈ X such
that f(x) = y. C

Example 4.1.8
Fix n ∈ N with n > 0, and define a function function r : Z → {0, 1, . . . , n − 1} by
letting r(a) be the remainder of a when divided by n. This function is surjective,
since for each k ∈ {0, 1, . . . , n− 1} we have r(k) = k. C

Exercise 4.1.9
For each of the following pairs of sets (X,Y ), determine whether the function f :
X → Y defined by f(x) = 2x+ 1 is surjective.

(a) X = Z and Y = {x ∈ Z | x is odd};

(b) X = Z and Y = Z;

(c) X = Q and Y = Q;

(d) X = R and Y = R.

C

Exercise 4.1.10
Let f : X → Y be a function. Find a subset V ⊆ Y and a surjection g : X → V
agreeing with f (that is, such that g(x) = f(x) for all x ∈ X). C

Exercise 4.1.11
Let f : X → Y be a function. Prove that f is surjective if and only if Y = f [X] C

Exercise 4.1.12
Let f : X → Y be a function. Prove that there is a set Z and functions

p : X → Z and i : Z → Y

such that p is surjective, i is injective, and f = i ◦ p. C

Bijectivity

Bijective functions formalise the idea of putting sets into one-to-one correspondence—
each element of one set is paired with exactly one element of another.
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Definition 4.1.13
A function f : X → Y is bijective if it is injective and surjective. A bijective
function is said to be a bijection.

Proof tip
To prove that a function f is bijective, prove that it is injective and surjective. C

Example 4.1.14
Let D ⊆ Q be the set of dyadic rational numbers, that is

D =

{
x ∈ Q

∣∣∣∣ x =
a

2n
for some a ∈ Z and n ∈ N

}
Let k ∈ N, and define f : D→ D by f(x) = x

2k
. We will prove that f is a bijection.

• (Injectivity) Fix x, y ∈ D and suppose that f(x) = f(y). Then x
2k

= y
2k

, so
that x = y, as required.

• (Surjectivity) Fix y ∈ D. We need to find x ∈ D such that f(x) = y. Well
certainly if 2ky ∈ D then we have

f(2ky) =
2ky

2k
= y

so it suffices to prove that 2ky ∈ D. Since y ∈ D, we must have y = a
2n for

some n ∈ N.

� If k 6 n then n− k ∈ N and so 2ky = a
2n−k ∈ D.

� If k > n then k − n > 0 and 2ky = 2k−na ∈ Z; but Z ⊆ D since if a ∈ Z
then a = a

20
. So again we have 2ky ∈ D.

In any case we have 2ky ∈ D and f(2ky) = y, so that f is surjective.

Since f is both injective and surjective, it is bijective. C

Exercise 4.1.15
Let X be a set. Prove that the identity function idX : X → X is a bijection. C

Exercise 4.1.16
Let m,n ∈ N. Find a bijection [m]× [n]→ [mn]. C

Exercise 4.1.17
Let f : X → Y and g : Y → Z be bijections. Prove that g ◦ f is a bijection. C

We will soon see a way to characterise injections, surjections and bijections in terms
of other functions, called inverses. Before we do that, though, we will make precise
our intuition that an injection X → Y tells us that X has at most as many elements
as Y , that a surjection X → Y tells us that X has at least as many elements as Y ,
and that a bijection X → Y tells us that X has exactly as many elements as Y .
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Inverses

Recall Definition 4.1.1, which says that a function f : X → Y is injective if, for all
x, x′ ∈ X, if f(x) = f(x′) then x = x′.

Exercise 4.1.18
Let f : X → Y be a function. Prove that f is injective if and only if

∀y ∈ f [X], ∃!x ∈ X, y = f(x)

C

Thinking back to Section 2.3, you might notice that this means that the logical
formula ‘y = f(x)’ defines a function f [X] → X—specifically, if f is injective then
there is a function g : f [X]→ X which is (well-)defined by the equation x = g(f(x)).
Thinking of f as an encoding function, we then have that g is the corresponding
decoding function—decoding is possible by injectivity of f . (If f were not injective
then distinct elements of X might have the same encoding, in which case we’re stuck
if we try to decode them!)

Exercise 4.1.19
Define a function e : N×N→ N by e(m,n) = 2m · 3n. Prove that e is injective. We
can think of e as encoding pairs of natural numbers as single natural numbers—for
example, the pair (4, 1) is encoded as 24 · 31 = 48. For each of the following natural
numbers k, find the pairs of natural numbers encoded by e as k:

1 24 7776 59049 396718580736

C

In Exercise 4.1.19, we were able to decode any natural number of the form 2m · 3n
for m,n ∈ N. This process of decoding yields a function

d : {k ∈ N | k = 2m · 3n for some m,n ∈ N} → N× N

What would happen if we tried to decode a natural number not of the form 2m · 3n
for m,n ∈ N, say 5 or 100? Well. . . it doesn’t really matter! All we need to be true
is that d(e(m,n)) = (m,n) for all (m,n) ∈ N × N; the value of d on other natural
numbers is irrelevant.

Definition 4.1.20
Let f : X → Y be a function. A left inverse (or post-inverse) for f is a function
g : Y → X such that g ◦ f = idX .
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Example 4.1.21
Let e : N× N→ N be as in Exercise 4.1.19. Define a function d : N→ N× N by

d(k) =

{
(m,n) if k = 2m · 3n for some m,n ∈ N
(0, 0) otherwise

Note that d is well-defined by the fundamental theorem of arithmetic (Theorem
3.2.12). Moreover, given m,n ∈ N, we have

d(e(m,n)) = d(2m · 3n) = (m,n)

and so d is a left inverse for e. C

Exercise 4.1.22
Let f : X → Y be a function with X 6= ∅. Prove that f is injective if and only if f
has a left inverse. C

What about surjections? Definition 4.1.7 said that a function f : X → Y is surjective
if

∀y ∈ Y, ∃x ∈ X, f(x) = y

This isn’t quite of the form ∀y ∈ Y, ∃!x ∈ X, p(y, x)—we assume a value of x making
‘f(x) = y’ true exists, but we don’t assume that it is unique. However, we can be
cunning[b]—just make an arbitrary (but fixed) choice amongst the y values that
work!

Definition 4.1.23
Let f : X → Y be a function. A right inverse (or pre-inverse) for f is a function
g : Y → X such that f ◦ g = idY .

Example 4.1.24
Define f : R→ R>0 by f(x) = x2. Note that f is surjective, since for each y ∈ R>0

we have
√
y ∈ R and f(

√
y) = y. However f is not injective; for instance

f(−1) = 1 = f(1)

Here are three right inverses for f :

• The positive square root function g : R>0 → R defined by g(y) =
√
y for all

y ∈ R>0. Indeed, for each y ∈ R>0 we have

f(g(y)) = f(
√
y) = (

√
y)2 = y

• The negative square root function h : R>0 → R defined by h(y) = −√y for all
y ∈ R>0. Indeed, for each y ∈ R>0 we have

f(h(y)) = f(−√y) = (−√y)2 = y
[b]We can only be cunning if we accept the axiom of choice—see Appendix B.2 for more details!
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• The function k : R>0 → R defined by

k(y) =

{√
y if 2n 6 y < 2n+ 1 for some n ∈ N
−√y otherwise

Note that k is well-defined, and again f(k(y)) = y for all y ∈ R>0 since no
matter what value k(y) takes, it is equal to either

√
y or −√y.

There are many more right inverses for f—in fact, there are infinitely many more!
C

Exercise 4.1.25
Prove that a function f : X → Y is surjective if and only if it has a right inverse. C

Exercises 4.1.22 and 4.1.25 establish that a function f : X → Y is. . .

• injective if and only if it has a left inverse (provided X is inhabited);

• surjective if and only if it has a right inverse.

It seems logical that we might be able to classify bijections as being those func-
tions which have a left inverse and a right inverse. We can actually say something
stronger—the left and right inverse can be taken to be the same function! (In fact,
Proposition 4.1.30 establishes that they are necessarily the same function.)

Definition 4.1.26
Let f : X → Y be a function. A (two-sided) inverse for f is a function g : Y → X
which is both a left inverse and a right inverse for f .

It is customary to simply say ‘inverse’ rather than ‘two-sided inverse’.

Example 4.1.27
Let D be the set of dyadic rational numbers, as defined in Example 4.1.14. There,
we defined a function f : D → D defined by f(x) = x

2k
for all x ∈ D, where k is

some fixed natural number. We find an inverse for f .

Define g : D → D by g(x) = 2kx. Then

• g is a left inverse for f . To see this, note that for all x ∈ D we have

g(f(x)) = g(
x

2k
) = 2k · x

2k
= x

• g is a right inverse for f . To see this, note that for all y ∈ D we have

f(g(y)) = f(2ky) =
2ky

2k
= y
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Since g is a left inverse for f and a right inverse for f , it is a two-sided inverse for
f . C

Exercise 4.1.28
The following functions have two-sided inverses. For each, find its inverse and prove
that it is indeed an inverse.

(a) f : R→ R defined by f(x) = 2x+1
3 .

(b) g : P(N)→ P(N) defined by g(X) = N \X.

(c) h : N× N→ N defined by h(m,n) = 2m(2n+ 1)− 1 for all m,n ∈ N.

C

Exercises 4.1.22 and 4.1.25 can be pieced together to prove the following result.

Exercise 4.1.29
Let f : X → Y be a function. Prove that f is bijective if and only if f has an
inverse. C

Common error
When proving a function f : X → Y is bijective by finding an inverse g : Y → X, it
is important to check that g is both a left inverse and a right inverse for f . If you
only prove that g is a left inverse for f , for example, then you have only proved that
f is injective! C

As indicated above, if a function has both a left and a right inverse, then they must
be equal.

Proposition 4.1.30
Let f : X → Y be a function and suppose ` : Y → X is a left inverse for f and
r : Y → X is a right inverse for f . Then ` = r.

Proof. The proof is deceptively simple:

` = ` ◦ idY by definition of identity functions

= ` ◦ (f ◦ r) since r is a right inverse for f

= (` ◦ f) ◦ r by Exercise 2.3.27

= idX ◦ r since ` is a left inverse for f

= r by definition of identity functions

It follows from Proposition 4.1.30 that, for any function f : X → Y , any two inverses
for f are equal—that is, every bijective function has a unique inverse!
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Notation 4.1.31
Let f : X → Y be a function. Write f−1 : Y → X to denote the (unique) inverse
for f , if it exists.

Proposition 4.1.32
Let f : X → Y be a bijection. A function g : Y → X is a left inverse for f if and
only if it is a right inverse for f .

Proof. We will prove the two directions separately.

• (⇒) Suppose g : Y → X is a left inverse for f—that is, g(f(x)) = x for all
x ∈ X. We prove that f(g(y)) = y for all y ∈ Y , thus establishing that g is
a right inverse for f . So let y ∈ Y . Since f is a bijection, it is in particular a
surjection, so there exists x ∈ X such that y = f(x). But then

f(g(y)) = f(g(f(x))) since y = f(x)

= f(x) since g(f(x)) = x

= y since y = f(x)

So indeed g is a right inverse for f .

• (⇐) Suppose g : Y → X is a right inverse for f—that is, f(g(y)) = y for all
y ∈ Y . We prove that g(f(x)) = x for all x ∈ X, thus establishing that g is a
left inverse for f . So let x ∈ X. Letting y = f(x), we have f(g(y)) = y since
g is a right inverse for f . This says precisely that f(g(f(x)) = f(x), since
y = f(x). By injectivity of f , we have g(f(x)) = x, as required.

Exercise 4.1.33
Let f : X → Y be a bijection. Prove that f−1 : Y → X is a bijection. C

Exercise 4.1.34
Let f : X → Y and g : Y → Z be bijections. Prove that g ◦f : X → Z is a bijection,
and write an expression for its inverse in terms of f−1 and g−1. C

First look at counting

We’ll very soon (Section 4.2) make heavy use of functions to count the number of
elements of a finite set. Before we do that, let’s look at how injections, surjections
and bijections can be used to compare sizes of particular finite sets—namely, those
of the form [n] for n ∈ N, as defined in Definition 2.2.31.

When we used dots and stars to motivate the definitions of injective and surjective
functions, we suggested the following intuition:
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• If there is an injection f : X → Y , then X has ‘at most as many elements as
Y ’; and

• If there is a surjection g : X → Y , then X has ‘at least as many elements as
Y ’.

Let’s make this intuition formal in the case when X and Y are sets of the form [n]
for n ∈ N.

Theorem 4.1.35
Let m,n ∈ N.

(a) If there exists an injection f : [m]→ [n], then m 6 n.

(b) If there exists a surjection g : [m]→ [n], then m > n.

(c) If there exists a bijection h : [m]→ [n], then m = n.

Let’s think about how we might prove part (a); part (b) is left as an exercise, and
part (c) follows immediately from (a), (b) and the definition of a bijection. The
intuition behind (a) is clear: if we can pair up the natural numbers from 1 up to m
with a subset of the numbers from 1 up to n, then n should be at least as large as
m.

Our hypothesis is that an injection f : [m] → [n] exists—but, unfortunately for us,
we have no control over what values this function takes. If it were as simple as
f(k) = k for all k ∈ [m], then this would be an incredibly easy result to prove. But
it might be the case that, say, f(1) = 3, and f(2) = 5, and f(3) = 2, and f(4) = 1,
and so on.

Since we’re working with natural numbers (m and n), let’s use the canonical tech-
nique for proving results about natural numbers—induction! We’ll proceed by in-
duction on n, but you could think about how you might prove the claim by induction
on m.

Proof of Theorem 4.1.35(a). We’ll prove the following statement by induction on
n ∈ N:

For all m ∈ N, if there exists an injection f : [m]→ [n], then m 6 n.

• (Base case) Fix m ∈ N and suppose there exists an injection f : [m] → [0].
We need to prove that m 6 0, or equivalently that m = 0, since m can’t be
negative.
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Well, if m > 1, then 1 ∈ [m], and so f(1) ∈ [0]. But [0] = ∅, so this would
imply that the empty set has an element, which is nonsense. So m < 1, and
hence m = 0.

• (Induction step) Fix n ∈ N and suppose that, for all m ∈ N, if there exists
an injection f : [m] → [n], then m 6 n. This assumption is our induction
hypothesis.

Now fix m ∈ N and suppose there is an injection f : [m] → [n + 1]. We need
to prove that m 6 n+ 1.

We can use our induction hypothesis to prove that things are 6 n, so we need
to prove m − 1 6 n. But the number to the left-hand side of the 6 symbol
must be a natural number—so let’s consider the case when m = 0 separately.
Well, if m = 0 then 0 6 n + 1. (That was easy!) So let’s now assume that
m > 1, so that m− 1 ∈ N.

In order to use the induction hypothesis to prove m− 1 6 n, we need to find
an injection [m− 1]→ [n]. We’re given an injection f : [m]→ [n+ 1], so let’s
use this to construct an injection g : [m − 1] → [n]. There are two cases to
consider:

� Suppose f(k) 6= n + 1 for all k ∈ [m − 1]. Then we can define g :
[m − 1] → [n] by g(k) = f(k) for all k ∈ [m − 1]. Injectivity of g then
follows immediately from injectivity of f : indeed, given k, ` ∈ [m−1], we
have

g(k) = g(`) ⇒ f(k) = f(`) ⇒ k = `

where the second implication follows from injectivity of f .

� Suppose f(r) = n+ 1 for some r ∈ [m− 1]. Since f is injective, we have
f(k) 6= n + 1 for all k 6= r; in particular, f(m) 6= n + 1. We’ll define
g : [m − 1] → [n] to be the same as f , except it exchanges the values at
r and at m. This ensures that g(k) ∈ [n] for all k ∈ [m− 1]. Specifically,
for k ∈ [m− 1], define

g(k) =

{
f(k) if k 6= r

f(m) if k = r

We just noted that g defines a function [m − 1] → [n]. Now let’s prove
that g is injective.

Fix k, ` ∈ [m − 1] and suppose g(k) = g(`). We’ll split into some cases
and prove that k = ` in each case:

∗ Suppose k 6= r and ` 6= r. Then g(k) = f(k) and g(`) = f(`), so
f(k) = f(`) and k = ` by injectivity of f .

∗ Suppose k = r or ` = r. (We may in fact assume k = r, otherwise
swap the roles of k and ` in what follows.) Then g(k) = g(r) = f(m)
by definition of g. Moreover, we know that g(`) = f(t) for some

185



186 Chapter 4. Finite and infinite sets

t ∈ [m] and, by definition of g, we must have t = ` (if t 6= r) or
t = m. But then f(t) = f(m), so t = m by injectivity of f , so
` = r = k.

Either way, we have k = `. So g is injective. Now that we’ve proved that there
exists an injective function g : [m − 1] → [n], it follows from the induction
hypothesis that m− 1 6 n, and so m 6 n+ 1 as required.

This completes the inductive step, so the theorem is proved.

Exercise 4.1.36
Prove part (b) of Theorem 4.1.35. C

Exercise 4.1.37
Let m,n ∈ N with m 6 n. Does there exist an injection [m]→ [n]? Does there exist
a surjection [n]→ [m]? Prove your answers. C

Proposition 4.1.35 showed us that we can compare natural numbers m and n by
determining if there is an injection, surjection or bijection [m] → [n]. We can use
this result, together with our intuition, to motivate the definition of what it is for
a set to be finite. Intuitively, a set is finite if we can label its elements using the
elements of [n] for some n ∈ N. This labelling process can be formalised using
bijections. Exercise 4.1.38 shows that this n is unique.

Exercise 4.1.38
Let X be a set and let m,n ∈ N. Prove that, if there exist bijections f : [m] → X
and g : [n]→ X, then m = n. C

Definition 4.1.39
A set X is finite if there is a bijection [n] → X for some n ∈ N, called the size of
X. Write |X| for the size of X. If X is not finite we say it is infinite.

In more intuitive terms: a set X is finite if the number of elements of X is a natural
number; the size X is simply the number of elements of X.

Example 4.1.40
Let X = {cat,dog, rabbit,horse, sheep}. Then |X| = 5. To see this, define f : [5]→
X by

f(1) = cat, f(2) = dog, f(3) = rabbit, f(4) = horse, f(5) = sheep

Then f is a bijection, as can easily be checked by noting that the function g : X → 5
defined by

g(cat) = 1, g(dog) = 2, g(rabbit) = 3, g(horse) = 4, g(sheep) = 5

is an inverse for f . C
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Example 4.1.41
For each n ∈ N the set [n] is finite, and |[n]| = n. This is because the identity
function id[n] : [n]→ [n] is a bijection. C

Exercise 4.1.42
Let X be a finite set with |X| = n > 1. Let x ∈ X and let y 6∈ X. Prove that

|X \ {x}| = n− 1 and |X ∪ {y}| = n+ 1

Demonstrate that the hypotheses that x ∈ X and y 6∈ X are necessary—in other
words, find a set X with |X| = n > 1 and elements x, y such that |X \ {x}| 6= n− 1
and |X ∪ {y}| 6= n+ 1. C

The following exercise is straightforward to prove, but is extremely powerful. We
will make heavy use of it in Section 4.2, where it can be used to prove combinatorial
identities.

Exercise 4.1.43
Let X and Y be finite sets. Prove that if there exists a bijection h : X → Y , then
|X| = |Y |. C

We conclude this section by proving that not all sets are finite—specifically, we’ll
prove that N is infinite. Intuitively this seems extremely easy: of course N is infinite!
But in mathematical practice, this isn’t good enough: we need to use our definition
of ‘infinite’ to prove that N is infinite. Namely, we need to prove that there is no
bijection [n]→ N for any n ∈ N. We will use Lemma 4.1.44 below in our proof.

Lemma 4.1.44
Every inhabited finite set of natural numbers has a greatest element.

Proof. We’ll prove by induction on n > 1 that, for all sets X with |X| = n, X has
a greatest element.

• (BC) Fix a set X with |X| = 1. then X = {x} for some x ∈ N. Since x is the
only element of X, it is certainly the greatest element!

• (IS) Let n ∈ N and suppose that every set of natural numbers of size n has a
greatest element (IH).

Let X = {x1, x2, . . . , xn, xn+1} be a set with n+ 1 elements. We wish to show
that X has a greatest element.

To do this, let Y = X \ {xn+1}. Then |Y | = n, so by (IH) it has a greatest
element, say xi. If xi > xn+1 then xi is the greatest element of X; otherwise,
xn+1 is the greatest element of X. In either case, X has a greatest element.

By induction, we’re done.
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Theorem 4.1.45
The set N is infinite.

Proof. We proceed by contradiction. Suppose N is finite. Then |N| = n for some
n ∈ N, and hence N is either empty (nonsense) or, by Lemma 4.1.44, it has a greatest
element g. But g+ 1 ∈ N since every natural number has a successor, contradicting
maximality of g. Hence N is infinite.
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Section 4.2

Counting principles

Recall from Definition 4.1.39 that a set X is finite if there is a bijection [n] → X
for some n ∈ N; moreover, this n is unique, and is called the size of X, which we
denote by |X|.

The main portion of this section focuses on the problem of computing |X| given a
description of X. The field of mathematics that concerns itself with this problem is
called enumerative combinatorics.

The next few results allow us to deduce that subsets, binary intersections, binary
unions and binary products of finite sets are finite.

Proposition 4.2.1
Let i : U → X be an injection. If X is finite, then U is finite, and moreover
|U | 6 |X|.

Proof. We prove by induction on n that, for all finite sets X of size n, and all
injections i : U → X, the set U is finite and |U | 6 n.

• (BC) Suppose |X| = 0. Then X = ∅. The only function whose codomain is
the empty set is the empty function ∅ → ∅; in other words, if i : U → ∅ is
an injection, then U = ∅. Hence U is finite and |U | = 0 6 0 as required.

• (IS) Fix n > 0 and suppose that, for any set Y with |Y | = n, and any injection
j : V → Y , we have V finite and |V | 6 n.

Let X be a set with |X| = n+ 1, and let f : [n+ 1]→ X be a bijection.

Fix an injection i : U → X. For simplicity of notation, write X ′ = X \ {f(n+
1)}. Note that |X ′| = n by Exercise 4.1.42.

We split into cases based on whether or not f(n+ 1) ∈ i[U ].

� If f(n + 1) 6∈ i[U ], then there is a function i′ : U → X ′ defined by
i′(x) = i(x) for all x ∈ U . Moreover, this function is injective, since if
x, y ∈ U and i′(x) = i′(y), then i(x) = i(y) by definition of i′, and so
x = y by injectivity of i. Moreover |X ′| = n, so the induction hypothesis
applies to the injection i′ : U → X ′. It follows that U is finite and

|U | 6 |X ′| = n < n+ 1 = |X|

as required.

� If f(n+ 1) ∈ i[U ], then there is some u? ∈ U such that i(u?) = f(n+ 1).
Write U ′ = U \{u?}, and define i′ : U ′ → X ′ by i′(x) = i(x) for all x ∈ U ′.
Again i′ is injective, and |X ′| = n, so the induction hypothesis yields that
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U ′ is finite and |U ′| 6 n; say |U ′| = k ∈ N. But then |U | = k + 1 by
Exercise 4.1.42, and k + 1 6 n+ 1 since k 6 n.

In either case, we’ve proved that U is finite and |U | 6 |X|, so the induction
step is complete.

By induction, it follows that any injection with finite codomain has a finite domain.

Exercise 4.2.2
Let X be a finite set. Prove that every subset U ⊆ X is finite. C

Exercise 4.2.3
Let X and Y be finite sets. Prove that X ∩ Y is finite. C

Exercise 4.2.4
Let X be a finite set and let U ⊆ X. Prove that X \ U is finite, and moreover
|X \ U | = |X| − |U |. C

Proposition 4.2.5
Let X and Y be finite sets. Then X ∪ Y is finite, and moreover

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |

Proof. We will prove this in the case when X and Y are disjoint. The general case,
when X and Y are not assumed to be disjoint, will be Exercise 4.2.6.

If X = ∅ then X ∪ Y = Y and X ∩ Y = ∅, so that

|X ∪ Y | = |Y | and |X|+ |Y | − |X ∩ Y | = 0 + |Y | − 0 = |Y |

so the result is proved. The proof is similar when Y = ∅. So for the remainder of
the proof, we assume that both X and Y are inhabited.

Let m = |X| > 0 and n = |Y | > 0, and let f : [m] → X and g : [n] → Y be
bijections.

Since X and Y are disjoint, we have X ∩ Y = ∅. Define h : [m + n] → X ∪ Y as
follows; given k ∈ [m+ n], let

h(k) =

{
f(k) if k 6 m

g(k −m) if k > m

Note that h is well-defined: the cases k 6 m and k > m are mutually exclusive,
they cover all possible cases, and k − m ∈ [n] for all m + 1 6 k 6 n so that
g(k − m) is defined. It is then straightforward to check that h has an inverse
h−1 : X ∪ Y → [m+ n] defined by

h−1(z) =

{
f−1(z) if z ∈ X
g−1(z) +m if z ∈ Y
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Well-definedness of h−1 relies fundamentally on the assumption that X ∩Y = ∅, as
this is what ensures that the cases x ∈ X and x ∈ Y are mutually exclusive.

Hence |X ∪ Y | = m+ n = |X|+ |Y |, which is as required since |X ∩ Y | = 0.

Exercise 4.2.6
The following steps complete the proof of Proposition 4.2.5:

(a) Given sets A and B, prove that the sets A×{0} and B×{1} are disjoint, and
find bijections A → A × {0} and B → B × {1}. Write A t B (LATEX code:
\sqcup) to denote the set (A× {0}) ∪ (B × {1}). The set A tB is called the
disjoint union of A and B.

(b) Prove that, if A and B are finite then A tB is finite and

|A tB| = |A|+ |B|

(c) Let X and Y be sets. Find a bijection

(X ∪ Y ) t (X ∩ Y )→ X t Y

(d) Complete the proof of Proposition 4.2.5—that is, prove that if X and Y are
finite sets, not necessarily disjoint, then X ∪ Y is finite and

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |

C

Proposition 4.2.7
Let X and Y be finite sets. Then X × Y is finite, and moreover

|X × Y | = |X| · |Y |

Proof. If X = ∅ or Y = ∅, then X × Y = ∅, so that |X| = |Y | = |X × Y | = 0 and
the result is immediate. As such, we assume for the rest of the proof that X and Y
are both inhabited.

Let X and Y be sets with |X| = m > 0 and |Y | = n > 0, and let f : [m] → X and
g : [n]→ Y be bijections. Define a function h : [m]× [n]→ X × Y by

h(k, `) = (f(k), g(`))

for each k ∈ [m] and ` ∈ [n]. It is easy to see that this is a bijection, with inverse
defined by

h−1(x, y) = (f−1(x), g−1(y))

for all x ∈ X and y ∈ Y . By Exercise 4.1.16 there is a bijection p : [mn]→ [m]× [n],
and by Exercise 4.1.17 the composite h ◦ p : [mn] → X × Y is a bijection. Hence
|X × Y | = mn.
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In summary, we have shown that if X and Y are finite sets, then so are X ∪ Y ,
X ∩ Y , X × Y , any subset U ⊆ X, and more generally any set U for which there
exists an injection U → X.

Indexed unions, intersections and products — finite version

Since we will be dealing with arbitrary finite collections of sets, it will help us to
introduce some new notation to make notation more concise. For example, writing

X1 ∪X2 ∪ · · · ∪Xn

again and again will be cumbersome.

Definition 4.2.8
Let n ∈ N and, for each i ∈ [n], let Xi be a set. We define. . .
• . . . the indexed union of {Xi | i ∈ [n]} is the set

⋃n
i=1Xi defined by

n⋃
i=1

Xi = {x | x ∈ Xi for some i ∈ [n]}

• . . . the indexed intersection of {Xi | i ∈ [n]} is the set
⋂n

i=1Xi defined by

n⋂
i=1

Xi = {x | x ∈ Xi for all i ∈ [n]}

• . . . the indexed product of {Xi | i ∈ [n]} is the set
n∏

i=1
Xi defined by

n∏
i=1

Xi = {(x1, x2 . . . , xn) | xi ∈ Xi for each i ∈ [n]}

The notation (x1, x2 . . . , xn) refers to an ordered n-tuple; formally, this is a
function x : [n] →

⋃n
i=1Xi such that x(i) ∈ Xi for all i ∈ [n]—then xi is just

shorthand for x(i). But for our purposes, it will suffice to think of (x1, . . . , xn)
as simply being an ordered list of n elements, with the ith component of the
list being an element of Xi.

We write Xn =
n∏

i=1
X. For example, N4 is the set of ordered sequences of

natural numbers of length 4, such as (1, 5, 7, 3) or (2, 2, 2, 2).

In Section 4.3 we will generalise Definition 4.2.8 even further to define indexed
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unions, intersections and products of arbitrary families of sets, not just finite ones.
Everything we do now generalises to that scenario, but it is instructive to work in
the finite case first.

Example 4.2.9
If X1 and X2 are sets, then {X1, X2} is a family of sets indexed by the index set
I = {1, 2}. Then x ∈

⋂
i∈I Xi if and only if x ∈ X1 and x ∈ X2. This proves that

2⋂
i=1

Xi = X1 ∩X2

In other words, pairwise intersection is a special case of indexed intersection. The
proof that

⋃2
i=1Xi = X1 ∪X2 is similar. C

Example 4.2.10
Let Xi be a set for all i ∈ N. Notice that according to our definition we have

0⋃
i=1

Xi = ∅

since, for given x, we have x ∈
⋃0

i=1Xi if and only if x ∈ Xi for some i ∈ [0]; since
[0] = ∅, there are no such values of i, and so the expression x ∈

⋃0
i=1Xi can never

be true.

Moreover, given n ∈ N we have

n+1⋃
i=1

Xi =

(
n⋃

i=1

Xi

)
∪Xn+1

This is because, for given x, we have

x ∈
n+1⋃
i=1

Xi ⇔ x ∈ Xi for some i ∈ [n+ 1]

⇔ x ∈ Xi for some i ∈ [n], or x ∈ Xn+1

⇔ x ∈
n⋃

i=1

Xi or x ∈ Xn+1

⇔ x ∈

(
n⋃

i=1

Xi

)
∪Xn+1

This yields an inductive proof that, when n > 1, we have

n⋃
i=1

Xi = X1 ∪X2 ∪ · · · ∪Xn

C
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Exercise 4.2.11
Let Xi be a set for each i ∈ N. Prove that

0⋂
i=1

Xi = U and
n+1⋂
i=1

Xi =

(
n⋂

i=1

Xi

)
∩Xn+1 for all n ∈ N

where U is the universe. Deduce that if n > 1 then

n⋂
i=1

Xi = X1 ∩X2 ∩ · · · ∩Xn

C

To tie up this portion on finite indexed families of sets, we note a new version of
de Morgan’s laws for sets which generalises the version you saw in Theorem 2.2.40.
This theorem will be generalised even further in Theorem 4.3.5.

Theorem 4.2.12 (de Morgan’s laws for sets (finite version))
Let n ∈ N. For each i ∈ [n] let Xi be a set, and let Z be a set. Then

(a) Z \ (
⋃n

i=1Xi) =
⋂n

i=1(Z \Xi);

(b) Z \ (
⋂n

i=1Xi) =
⋃n

i=1(Z \Xi).

Exercise 4.2.13
Prove Theorem 4.2.12 by induction on n, using Theorem 2.2.40 for the induction
step. C

Exercise 4.2.14
Let n ∈ N and let Xi be a set for each i ∈ [n + 1]. Note that the elements of
n+1∏
i=1

Xi are ordered (n + 1)-tuples, and that the elements of

(
n∏

i=1
Xi

)
× Xn+1 are

ordered pairs, the first component of which is an ordered n-tuple. Prove that these
are essentially the same thing, by showing that the function

f :
n+1∏
i=1

Xi →

(
n∏

i=1

Xi

)
×Xn+1

defined by
f(x1, x2, . . . , xn, xn+1) = ((x1, x2, . . . , xn), xn+1)

for all xi ∈ Xi and i ∈ [n+ 1], is a bijection. C

Binomials and factorials revisited

We defined binomial coefficients
(
n
k

)
and factorials n! recursively in Section 1.3,

and proved elementary facts about them by induction. We will now re-define them
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combinatorially—that is, we give them meaning in terms of sizes of particular finite
sets. We will prove that the combinatorial and recursive definitions are equivalent,
and prove facts about them using combinatorial arguments.

The reasons for doing so are manifold. The combinatorial definitions allow us to
reason about binomials and factorials with direct reference to descriptions of finite
sets, which will be particularly useful when we prove identities about them using
counting in two ways. Moreover, the combinatorial definitions remove the seeming
arbitrary nature of the recursive definitions—for example, they provide a reason why
it makes sense to define 0! = 1 and

(
0
0

)
= 1.

Definition 4.2.15
Let X be a set and let k ∈ N. A k-element subset of X is a subset U ⊆ X such
that |U | = k. The set of all k-element subsets of X is denoted

(
X
k

)
(read: ‘X choose

k’) (LATEX code: \binom{X}{k}).

Intuitively,
(
X
k

)
is the set of ways of picking k elements from X, without repetitions,

in such a way that order doesn’t matter. (If order mattered, the elements would be
sequences instead of subsets.)

Example 4.2.16
We find

([4]
k

)
for all k ∈ N.

•
(

[4]
0

)
= {∅} since the only set with 0 elements is ∅;

•
(

[4]
1

)
= {{1}, {2}, {3}, {4}};

•
(

[4]
2

)
= {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}};

•
(

[4]
3

)
= {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}};

•
(

[4]
4

)
= {{1, 2, 3, 4}};

• If k > 5 then
([4]
k

)
= ∅, since by Exercise 4.2.2, no subset of [4] can have more

than 4 elements.

C

Proposition 4.2.17
If X is a finite set, then P(X) =

⋃
k6|X|

(
X
k

)
.

Proof. Let U ⊆ X. By Exercise 4.2.2, U is finite and |U | 6 |X|. Thus U ∈
(
X
|U |
)
,

and hence U ∈
⋃

k6|X|
(
X
k

)
. This proves that P(X) ⊆

⋃
k6|X|

(
X
k

)
.
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The fact that
⋃

k6|X|
(
X
k

)
⊆ P(X) is immediate, since elements of

(
X
k

)
are defined

to be subsets of X, and hence elements of P(X).

Definition 4.2.18
Let n, k ∈ N. Denote by

(
n
k

)
(read: ‘n choose k’) (LATEX code: \binom{n}{k}) the

number of k-element subsets of a set of size n. That is, we define
(
n
k

)
=
∣∣∣([n]

k

)∣∣∣. The

numbers
(
n
k

)
are called binomial coefficients.a

aSome authors use the notation nCk or nCk instead of
(
n
k

)
. We avoid this, as it is unnecessarily

clunky.

Intuitively,
(
n
k

)
is the number of ways of selecting k things from n, without repeti-

tions, in such a way that order doesn’t matter.

The value behind this notation is that it allows us to express huge numbers in a
concise and meaningful way. For example,(

4000

11

)
= 103 640 000 280 154 258 645 590 429 564 000

Although these two numbers are equal, their expressions are very different; the
expression on the left is meaningful, but the expression on the right is completely
meaningless out of context.

Writing tip
When expressing the sizes of finite sets described combinatorially, it is best to avoid
evaluating the expression; that is, leave in the powers, products, sums, binomial
coefficients and factorials! The reason for this is that performing the calculations
takes the meaning away from the expressions. C

Example 4.2.19
In Example 4.2.16 we proved that:(

4

0

)
= 1,

(
4

1

)
= 4,

(
4

2

)
= 6,

(
4

3

)
= 4,

(
4

4

)
= 1

and that
(

4
k

)
= 0 for all k > 5. C

Exercise 4.2.20
Fix n ∈ N. Prove that

(
n
0

)
= 1,

(
n
1

)
= n and

(
n
n

)
= 1. C

Definition 4.2.21
Let X be a set. A permutation of X is a bijection X → X. Denote the set of all
permutations of X by SX (LATEX code: S X),a and write S[n] = Sn for n ∈ N.

aThe ‘S’ comes from ‘symmetry’. The set SX comes with the natural structure of a group.
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Example 4.2.22
There are six permutations of the set [3]. Representing each f ∈ S[3] by the ordered
triple (f(1), f(2), f(3)), these permutations are thus given by

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

For example, (2, 3, 1) represents the permutation f : [3] → [3] defined by f(1) = 2,
f(2) = 3 and f(3) = 1. C

Exercise 4.2.23
List all the permutations of the set [4]. C

Definition 4.2.24
Let n ∈ N. Denote by n! (read: ‘n factorial’) the number of permutations of a set
of size n. That is, n! = |Sn|. The numbers n! are called factorials.

Example 4.2.25
Example 4.2.22 shows that 3! = 6. C

Counting products and partitions

We saw in Proposition 4.2.7 and Proposition 4.2.5 that, given two finite sets X and
Y , the product X × Y and the union X ∪ Y are finite. We also found formulae
for their size. The multiplication principle (Theorem 4.2.26) and addition principle
(Theorem 4.2.37) generalise these formulae, extending to products and (disjoint)
unions of any finite number of finite sets.

Theorem 4.2.26 (Multiplication principle (independent version))

Let {X1, . . . , Xn} be a family of finite sets, with n > 1. Then
n∏

i=1
Xi is finite, and

∣∣∣∣∣
n∏

i=1

Xi

∣∣∣∣∣ = |X1| · |X2| · · · · · |Xn|

Proof. We proceed by induction on n.

• (BC) When n = 1, an element of
1∏

i=1
Xi is ‘officially’ 1-ary sequence (x1) with

x1 ∈ X1. This is the same as an element of X1: it is easy to check that the
assignments (x1) 7→ x1 and x1 7→ (x1) define mutually inverse (hence bijective)
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functions between
1∏

i=1
Xi and X1, and so∣∣∣∣∣

1∏
i=1

Xi

∣∣∣∣∣ = |X1|

• (IS) Fix n ∈ N, and suppose that∣∣∣∣∣
n∏

i=1

Xi

∣∣∣∣∣ = |X1| · |X2| · · · · · |Xn|

for all sets Xi for i ∈ [n]. This is our induction hypothesis.

Now let X1, . . . , Xn, Xn+1 be sets. We define a function

F :

n+1∏
i=1

Xi →

(
n∏

i=1

Xi

)
×Xn+1

by letting F ((x1, . . . , xn, xn+1)) = ((x1, . . . , xn), xn+1). It is again easy to
check that F is a bijection, and hence∣∣∣∣∣

n+1∏
i=1

Xi

∣∣∣∣∣ =

∣∣∣∣∣
n∏

i=1

Xi

∣∣∣∣∣ · |Xn+1|

by Proposition 4.2.7. Applying the induction hypothesis, we obtain the desired
result, namely ∣∣∣∣∣

n+1∏
i=1

Xi

∣∣∣∣∣ = |X1| · |X2| · · · · · |Xn| · |Xn+1|

By induction, we’re done.

The multiplication principle is also known as the rule of product.

Problem-solving tip
The multiplication principle allows us to count the number of elements of a finite
set X by devising a procedure for counting all of its elements exactly once. If this
procedure has n steps, where n ∈ N, then the procedure establishes a bijection

X →
n∏

i=1

Si

where Si is the set of possible outcomes of the ith step in the procedure. If there are
ni possible outcomes of the ith step in the procedure, this therefore implies that

|X| =
n∏

i=1

ni

C
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Example 4.2.27
You go to an ice cream stand selling the following flavours:

vanilla, strawberry, chocolate, rum and raisin, mint choc chip, toffee crunch

You can have your ice cream in a tub, a regular cone or a choco-cone. You can have
one, two or three scoops. We will compute how many options you have.

To select an ice cream, you follow the following procedure:

• Step 1. Choose a flavour. There are 6 ways to do this.

• Step 2. Choose whether you’d like it in a tub, regular cone or choco-cone.
There are 3 ways to do this.

• Step 3. Choose how many scoops you’d like. There are 3 ways to do this.

Hence there are 6× 3× 3 = 54 options in total. C

This may feel informal, but really what we are doing is establishing a bijection.
Letting X be the set of options, the above procedure defines a bijection

X → F × C × S

where F is the set of flavours, C = {tub, regular cone, choco-cone} and S = [3] is
the set of possible numbers of scoops.

Example 4.2.28
We will prove that |P(X)| = 2|X| for all finite sets X.[c]

Let X be a finite set and let n = |X|. Write

X = {xk | k ∈ [n]} = {x1, x2, . . . , xn}

Intuitively, specifying an element of P(X)—that is, a subset U ⊆ X—is equivalent
to deciding, for each k ∈ [n], whether xk ∈ U or xk 6∈ U (‘in or out’), which in turn
is equivalent to specifying an element of {in, out}n.

For example, taking X = [7], the subset U = {1, 2, 6} corresponds with the choices

1 in, 2 in, 3 out, 4 out, 5 out, 6 in, 7 out

and hence the element (in, in, out, out, out, in, out) ∈ {in, out}7.

This defines a function i : P(X) → {in, out}n. This function is injective, since dif-
ferent subsets determine different sequences; and it is surjective, since each sequence
determines a subset.

[c]Some authors write 2X to refer to the power set of a set X. This is justified by Exercise 4.2.28.
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The above argument is sufficient for most purposes, but since this is the first bijective
proof we have come across, we now give a more formal presentation of the details.

Define a function

i : P(X)→ {in, out}n

by letting the kth component of i(U) be ‘in’ if xk ∈ U or ‘out’ if xk 6∈ U , for each
k ∈ [n].

We prove that i is a bijection.

• i is injective. To see this, take U, V ⊆ X and suppose i(U) = i(V ). We prove
that U = V . So fix x ∈ X and let k ∈ [n] be such that x = xk. Then

x ∈ U ⇔ the kth component of i(U) is ‘in’ by definition of i

⇔ the kth component of i(V ) is ‘in’ since i(U) = i(V )

⇔ x ∈ V by definition of i

so indeed we have U = V , as required.

• i is surjective. To see this, let v ∈ {in, out}n, and let

U = {xk | the kth component of v is ‘in’}

Then i(U) = v, since for each k ∈ [n] we have xk ∈ U if and only if the kth

component of v is ‘in’, which is precisely the definition of i(U).

Hence

|P(X)| = |{in, out}|n = 2n

as required. C

Exercise 4.2.29
Let X and Y be finite sets, and recall that Y X denotes the set of functions from X
to Y . Prove that |Y X | = |Y ||X|. C

Example 4.2.30
We count the number of ways we can shuffle a standard deck of cards in such a way
that the colour of the cards alternate between red and black.

A procedure for choosing the order of the cards is as follows:

(i) Choose the colour of the first card. There are 2 such choices. This then
determines the colours of the remaining cards, since they have to alternate.

(ii) Choose the order of the red cards. There are 26! such choices.

(iii) Choose the order of the black cards. There are 26! such choices.
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By the multiplication principle, there are 2·(26!)2 such rearrangements. This number
is huge, and in general there is no reason to write it out. Just for fun, though:

2·(26!)2 = 325 288 005 235 264 929 014 077 766 819 257 214 042 112 000 000 000 000

C

Exercise 4.2.31
Since September 2001, car number plates on the island of Great Britain have taken
the form XX NN XXX, where each X can be any letter of the alphabet except for ‘I’, ‘Q’
or ‘Z’, and NN is the last two digits of the year.[d] How many possible number plates
are there? Number plates of vehicles registered in the region of Yorkshire begin with
the letter ‘Y’. How many Yorkshire number plates can be issued in a given year? C

A sight modification to the multiplication principle allows sets later in the product to
depend somehow on those appearing earlier. Thinking of the elements of a product
as steps in a counting procedure, this means that later steps can depend on the
outcome of earlier steps, which will turn out to be extremely useful!

Corollary 4.2.32 (Multiplication principle (dependent version))
Let n > 1 and for each i ∈ [n] let ki ∈ N. Define a family of sets Xi(x1, . . . , xi−1)
for i ∈ [n] inductively as follows:

• Let X1 be a finite set of size k1;

• Let i < n and suppose Xi(x1, . . . , xi−1) has been defined. For each xi ∈
Xi(x1, . . . , xi−1), let Xi+1(x1, . . . , xi−1, xi) be a finite set of size ki+1.

Then for each choice of sequence (x1, x2, . . . , xn), with xi ∈ Xi(x1, . . . , xi−1) for each
i ∈ [n], the set

X = {(x1, x2, . . . , xn) | xi ∈ Xi(x1, x2, . . . , xi−1) for all i ∈ [n]}

is finite, and moreover

|X| =
n∏

i=1

ki

Proof. We proceed by induction on n > 1.

• (BC) When n = 1, this result says precisely that if X1 is a finite set of size
k1, then X1 is a finite set of size k1. This is true.

• (IS) Fix n > 1 and suppose that the theorem is true for n.

[d]This is a slight simplification of what is really the case, but let’s not concern ourselves with too
many details!
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For i 6 n + 1, let sets Xi(x1, . . . , xi−1) be defined as in the statement of the
theorem, and let

X = {(x1, x2, . . . , xn, xn+1) | xi ∈ Xi(x1, x2, . . . , xi−1) for all i ∈ [n+ 1]}

We prove that X is finite and |X| =
n+1∏
i=1

ki.

Let X ′ = {(x1, x2, . . . , xn) | xi ∈ Xi(x1, x2, . . . , xi−1) for all i ∈ [n]}. By the

induction hypothesis, we know that |X ′| =
n∏

i=1
ki. Now there is an evident

bijection

X →
⋃

(x1,...,xn)∈X′
{(x1, x2, . . . , xn)} ×Xn+1(x1, . . . , xn)

given by the correspondence between

(x1, x2, . . . , xn, xn+1) and ((x1, x2, . . . , xn), xn+1)

for all i ∈ [n+1] and xi ∈ Xi(x1, . . . , xi−1). Moreover the sets {(x1, x2, . . . , xn)}×
Xn+1(x1, . . . , xn) are pairwise disjoint. Hence by the addition principle (to be
proved soon—see Theorem 4.2.37), we have

|X| =
∑

(x1,...,xn)∈X′
|{(x1, x2, . . . , xn)} ×Xn+1(x1, . . . , xn)|

But for all (x1, . . . , xn) ∈ X ′, we have

|{(x1, x2, . . . , xn)} ×Xn+1(x1, . . . , xn)|
= |{(x1, x2, . . . , xn)}| · |Xn+1(x1, . . . , xn)| by Proposition 4.2.7

= 1 · kn+1 by definition of Xn+1(· · · )
= kn+1

and hence∑
(x1,...,xn)∈X′

|{(x1, x2, . . . , xn)} ×Xn+1(x1, . . . , xn)|

=
∑

(x1,...,xn)∈X′
kn+1 as we just saw

= |X ′| · kn+1 since terms in sum are constant

=

(
n∏

i=1

ki

)
· kn+1 by the induction hypothesis

=

n+1∏
i=1

ki

as required.
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By induction, we’re done.

Example 4.2.33
We prove that there are six bijections [3]→ [3]. We can specify a bijection f : [3]→
[3] according to the following procedure.

• Step 1. Choose the value of f(1). There are 3 choices.

• Step 2. Choose the value of f(2). The values f(2) can take depend on the
chosen value of f(1).

� If f(1) = 1, then f(2) can be equal to 2 or 3.

� If f(1) = 2, then f(2) can be equal to 1 or 3.

� If f(1) = 3, then f(2) can be equal to 1 or 2.

In each case, there are 2 choices for the value of f(2).

• Step 3. Choose the value of f(3). The values f(3) can take depend on the
values of f(1) and f(2). We could split into the (six!) cases based on the values
of f(1) and f(2) chosen in Steps 1 and 2; but we won’t. Instead, note that
{f(1), f(2)} has two elements, and by injectivity f(3) must have a distinct
value, so that [3] \ {f(1), f(2)} has one element. This element must be the
value of f(3). Hence there is only possible choice of f(3).

By the multiplication principle, there are 3× 2× 1 = 6 bijections [3]→ [3]. C

Exercise 4.2.34
Count the number of injections [3]→ [4]. C

The addition principle says that if we can partition a set into smaller chunks, then
the size of the set is the sum of the sizes of the chunks. We will first make this
notion of ‘partition’ precise.

Definition 4.2.35
Sets X and Y are disjoint if X ∩ Y = ∅. More generally, given n ∈ N, a collection
of sets X1, X2, . . . , Xn is pairwise disjoint if Xi ∩ Xj = ∅ for all i, j ∈ [n] with
i 6= j.

Definition 4.2.36
A (finite) partition of a set X is, for some n ∈ N, a collection {Ui | i ∈ [n]} of
subsets of X such that:

(i) Each Ui is inhabited;

(ii) The sets U1, U2, . . . , Un are pairwise disjoint; and

(iii)
⋃n

i=1 Ui = X.
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Theorem 4.2.37 (Addition principle)
Let X be a set and let {U1, . . . , Un} be a partition of X for some n ∈ N, such that
each set Ui is finite. Then X is finite, and

|X| = |U1|+ |U2|+ · · ·+ |Un|

Exercise 4.2.38
Prove Theorem 4.2.37. The proof follows the same pattern as that of the multiplic-
ation principle (Theorem 4.2.26). Be careful to make sure you identify where you
use the hypothesis that the sets Ui are pairwise disjoint! C

Problem-solving tip
The addition principle allows us to count the number of elements of a finite set by
finding a partition of X, say {U1, U2, . . . , Un}. If |Ui| = ni for each 1 6 i 6 n, then
this means that

|X| =
n∑

i=1

ni

C

Example 4.2.39
We will count the number of inhabited subsets of [7] which either contain only even
numbers, or contain only odd numbers.

Let O denote the set of inhabited subsets of [7] containing only odd numbers, and
let E denote the set of inhabited subsets of [7] containing only even numbers. Note
that {O,E} forms a partition of the set we are counting, and so our set has |O|+ |E|
elements.

• An element of O must be a subset of {1, 3, 5, 7}. By Example 4.2.28 there are
24 = 16 such subsets. Thus the number of inhabited subsets of [7] containing
only odd numbers is 15, since we must exclude the empty set. That is, |O| = 15.

• A subset containing only even numbers must be a subset of {2, 4, 6}. Again
by Example 4.2.28 there are 23 = 8 such subsets. Hence there are 7 inhabited
subsets of [7] containing only even numbers. That is, |E| = 7.

Hence there are 15 + 7 = 22 inhabited subsets of [7] containing only even or only
odd numbers. And here they are:

{1} {3} {5} {7} {1, 3} {2} {4} {6}
{1, 5} {1, 7} {3, 5} {3, 7} {5, 7} {2, 4} {2, 6} {4, 6}
{1, 3, 5} {1, 3, 7} {1, 5, 7} {3, 5, 7} {1, 3, 5, 7} {2, 4, 6}

C

Exercise 4.2.40
Pick your favourite integer n > 1000. For this value of n, how many inhabited
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subsets of [n] contain either only even or only odd numbers? (You need not evaluate
exponents.) C

We now consider some examples of finite sets which use both the multiplication
principle and the addition principle.

Example 4.2.41
A city has 6n inhabitants. The favourite colour of n of the inhabitants is orange,
the favourite colour of 2n of the inhabitants is pink, and the favourite colour of 3n
of the inhabitants is turquoise. The city government wishes to form a committee
with equal representation from the three colour preference groups to decide how the
new city hall should be painted. We count the number of ways this can be done.

Let X be the set of possible committees. First note that

X =
n⋃

k=0

Xk

where Xk is the set of committees with exactly k people from each colour preference
group. Indeed, we must have k 6 n, since it is impossible to have a committee with
more than n people from the orange preference group.

Moreover, if k 6= ` then Xk ∩ X` = ∅, since if k 6= ` then a committee cannot
simultaneously have exactly k people and exactly ` people from each preference
group.

By the addition principle, we have

|X| =
n∑

k=0

|Xk|

We count Xk for fixed k using the following procedure:

• Step 1. Choose k people from the orange preference group to be on the
committee. There are

(
n
k

)
choices.

• Step 2. Choose k people from the pink preference group to be on the com-
mittee. There are

(
2n
k

)
choices.

• Step 3. Choose k people from the turquoise preference group to be on the
committee. There are

(
3n
k

)
choices.

By the multiplication principle, it follows that |Xk| =
(
n
k

)(
2n
k

)(
3n
k

)
. Hence

|X| =
n∑

k=0

(
n

k

)(
2n

k

)(
3n

k

)
C

205



206 Chapter 4. Finite and infinite sets

Exercise 4.2.42
In Example 4.2.41, how many ways could a committee be formed with a represent-
ative number of people from each colour preference group? That is, the proportion
of people on the committee which prefer any of the three colours should be equal to
the corresponding proportion of the population of the city. C

Counting in two ways

Counting in two ways (also known as double counting) is a proof technique that
allows us to prove that two natural numbers are equal by establishing they are two
expressions for the size of the same set. (More generally, by Exercise 4.1.43, we can
relate them to the sizes of two sets which are in bijection.)

The proof of Proposition 4.2.43 illustrates this proof very nicely. We proved it
already by induction in Exercise 1.3.29; the combinatorial proof we now provide is
much shorter and cleaner.

Proposition 4.2.43

Let n ∈ N. Then 2n =
n∑

k=0

(
n

k

)
.

Proof. We know that |P([n])| = 2n by Example 4.2.28 and that P([n]) =
⋃n

k=0

([n]
k

)
by Proposition 4.2.17. Moreover, the sets

([n]
k

)
are pairwise disjoint, so by the

addition principle it follows that

2n = |P([n])| =

∣∣∣∣∣
n⋃

k=0

(
[n]

k

)∣∣∣∣∣ =
n∑

k=0

∣∣∣∣([n]

k

)∣∣∣∣ =
n∑

k=0

(
n

k

)

Proof tip
To prove that two natural numbers m and n are equal, we can find sets X and Y
such that |X| = m, |Y | = n and either X = Y or there is a bijection X → Y . This
proof technique is called counting in two ways, and is very useful for proving
identities regarding numbers that have a combinatorial interpretation (especially
binomial coefficients and factorials, which will be introduced later). C

The next example counts elements of different sets and puts them in bijection to
establish an identity.

Proposition 4.2.44
Let n, k ∈ N with n > k. Then (

n

k

)
=

(
n

n− k

)
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Proof. First note that
(
n
k

)
=
∣∣∣([n]

k

)∣∣∣ and
(

n
n−k
)

=
∣∣∣( [n]

n−k
)∣∣∣, so it suffices to find a

bijection f :
([n]
k

)
→
( [n]
n−k
)
. Intuitively, this bijection arises because choosing k

elements from [n] to put into a subset is equivalent to choosing n− k elements from
[n] to leave out of the subset. Specifically, we define

f(U) = [n] \ U for all U ∈
(

[n]

k

)
Note first that f is well-defined, since if U ⊆ [n] with |U | = k, then [n] \ U ⊆ [n]
and |[n] \ U | = |[n]| − |U | = n− k by Exercise 4.2.4. We now prove f is a bijection:

• f is injective. Let U, V ⊆ [n] and suppose [n] \ U = [n] \ V . Then for all
k ∈ [n], we have

k ∈ U ⇔ k 6∈ [n] \ U by definition of set difference

⇔ k 6∈ [n] \ V since [n] \ U = [n] \ V
⇔ k ∈ V by definition of set difference

so U = V , as required.

• f is surjective. Let V ∈
( [n]
n−k
)
. Then |[n] \ V | = n− (n− k) = k by Exercise

4.2.4, so that [n] \ V ∈
([n]
k

)
. But then

f([n] \ V ) = [n] \ ([n] \ V ) = V

by Exercise 2.2.39.

Since f is a bijection, we have(
n

k

)
=

∣∣∣∣([n]

k

)∣∣∣∣ =

∣∣∣∣( [n]

n− k

)∣∣∣∣ =

(
n

n− k

)
as required.

We put a lot of detail into this proof. A slightly less formal proof might simply say
that

(
n
k

)
=
(

n
n−k
)

since choosing k elements from [n] to put into a subset is equivalent
to choosing n − k elements from [n] to leave out of the subset. This would be fine
as long as the members of the intended audience of your proof could reasonably by
expected to construct the bijection by themselves.

The proof of Proposition 4.2.45 follows this more informal format.

Proposition 4.2.45
Let n, k, ` ∈ N with n > k > `. Then(

n

k

)(
k

`

)
=

(
n

`

)(
n− `
k − `

)
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Proof. Let’s home in on the left-hand side of the equation. By the multiplication
principle,

(
n
k

)(
k
`

)
is the number of ways of selecting a k-element subset of [n] and

an `-element subset of [k]. Equivalently, it’s the number of ways of selecting a k-
element subset of [n] and then an `-element subset of the k-element subset that we
just selected. To make this slightly more concrete, let’s put it this way:

(
n
k

)(
k
`

)
is the number of ways of painting k balls red from a bag of n balls,

and painting ` of the red balls blue. This leaves us with ` blue balls and
k − ` red balls.

Now we need to find an equivalent interpretation of
(
n
`

)(
n−`
k−`
)
. Well, suppose we pick

the ` elements to be coloured blue first. To make up the rest of the k-element subset,
we now have to select k− ` elements, and there are now n− ` to choose from. Thus

(
n
`

)(
n−`
k−`
)

is the number of ways of painting ` balls from a bag of n balls
blue, and painting k − ` of the remaining balls red.

Thus, both numbers represent the number of ways of painting ` balls blue and k− `
balls red from a bag of n balls. Hence they are equal.

Exercise 4.2.46
Make the proof of Proposition 4.2.45 more formal by defining a bijection between
sets of the appropriate sizes. C

Exercise 4.2.47
Provide a combinatorial proof that if n, k ∈ N with n > k, then(

n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)

Deduce that the combinatorial definition of binomial coefficients (Definition 4.2.18)
is equivalent to the recursive definition (Definition 1.3.27). C

The following proposition demonstrates that the combinatorial definition of factori-
als (Definition 4.2.24) is equivalent to the recursive definition (Definition 1.3.25).

Proposition 4.2.48
0! = 1 and if n ∈ N then (n+ 1)! = (n+ 1) · n!.

Proof. The only permutation of ∅ is the empty function e : ∅→ ∅. Hence S0 = {e}
and 0! = |S0| = 1.

Let n ∈ N. A permutation of [n+ 1] is a bijection f : [n+ 1]→ [n+ 1]. Specifying
such a bijection is equivalent to carrying out the following procedure:
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• Choose the (unique!) element k ∈ [n + 1] such that f(k) = n + 1. There are
n+ 1 choices for k.

• Choose the values of f at each ` ∈ [n + 1] with ` 6= k. This is equivalent to
finding a bijection [n + 1] \ {k} → [n]. Since |[n + 1] \ {k}| = |[n]| = n, there
are n! such choices.

By the multiplication principle, we have

(n+ 1)! = |Sn+1| = (n+ 1) · n!

so we’re done.

We now revisit Theorem 1.3.31; this time, our proof will be combinatorial, rather
than inductive.

Theorem 4.2.49
Let n, k ∈ N. Then (

n

k

)
=


n!

k!(n− k)!
if k 6 n

0 if k > n

Proof. Suppose k > n. By Exercise 4.2.2, if U ⊆ [n] then |U | 6 n. Hence if k > n,

then
([n]
k

)
= ∅, and so

(
n
k

)
= 0, as required.

Now suppose k 6 n. We will prove that n! =
(
n
k

)
·k! · (n−k)!; the result then follows

by dividing through by k!(n− k)!. We prove this equation by counting the number
of elements of Sn.

A procedure for defining an element of Sn is as follows:

(i) Choose which elements will appear in the first k positions of the list. There
are

(
n
k

)
such choices.

(ii) Choose the order of these k elements. There are k! such choices.

(iii) Choose the order of the remaining n − k elements. There are (n − k)! such
choices.

By the multiplication principle, n! =
(
n
k

)
· k! · (n− k)!.

Note that the proof of Theorem 4.2.49 relied only on the combinatorial definitions
of binomial coefficients and factorials; we didn’t need to know how to compute them
at all! The proof was much shorter, cleaner and, in some sense, more meaningful,
than the inductive proof we gave in Section 1.3—see Theorem 1.3.31.
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We conclude this section with some more examples and exercises in which counting
in two ways can be used.

Exercise 4.2.50
Let n, k ∈ N with k 6 n+ 1. Prove that

k

(
n

k

)
= (n− k + 1)

(
n

k − 1

)
C

Example 4.2.51
Let m,n, k ∈ N. We prove that

k∑
`=0

(
m

`

)(
n

k − `

)
=

(
m+ n

k

)
by finding a procedure for counting the number of k-element subsets of an appropri-
ate (m+ n)-element set. Specifically, let X be a set containing m cats and n dogs.
Then

∣∣(m+n
k

)∣∣ is the number of k-element subsets U ⊆ X. We can specify such a
subset according to the following procedure.

• Step 1. Split into cases based on the number ` of cats in U . Note that we
must have 0 6 ` 6 k, since the number of cats must be a natural number
and cannot exceed k as |U | = k. Moreover, these cases are mutually exclusive.
Hence by the addition principle we have(

m+ n

k

)
=

k∑
`=0

a`

where a` is the number of subsets of X containing ` cats and k − ` dogs.

• Step 2. Choose ` cats from the m cats in X to be elements of U . There are([m]
`

)
such choices.

• Step 3. Choose k − ` dogs from the n dogs in X to be elements of U . There
are

( [n]
k−`
)

such choices.

The multiplication principle shows that a` =
(
m
`

)(
n

k−`
)
. Hence(

m+ n

k

)
=

k∑
`=0

(
m

`

)(
n

k − `

)
as required. C

Exercise 4.2.52
Let n ∈ N. Prove that

n∑
k=0

(
n

k

)2

=

(
2n

n

)
C
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Exercise 4.2.53
Let n,m ∈ N with m 6 n. Prove that

n∑
k=m

(
n

k

)(
k

m

)
= 2n−m

(
n

m

)
C

Exercise 4.2.54
Given natural numbers n, a, b, c with a+b+c = n, define the trinomial coefficient(

n

a, b, c

)
to be the number of ways of partitioning [n] into three sets of sizes a, b

and c, respectively. That is,

(
n

a, b, c

)
is the size of the set(A,B,C)

∣∣∣∣∣∣
A ⊆ [n], B ⊆ [n], C ⊆ [n],
|A| = a, |B| = b, |C| = c,

and A ∪B ∪ C = [n]


By considering trinomial coefficients, prove that if a, b, c ∈ N, then (a + b + c)! is
divisible by a! · b! · c!. C

Here is one nice application of counting in two ways and the multiplication principle
to number theory. We will make use of this in the proof of Theorem 5.3.7, which
provides a general formula for the totient of an integer.

Theorem 4.2.55 (Multiplicativity of Euler’s totient function)
Let m,n ∈ Z and let ϕ : Z → N be Euler’s totient function (see Definition 3.3.31).
If m and n are coprime, then ϕ(mn) = ϕ(m)ϕ(n).

Proof. Since ϕ(−k) = ϕ(k) for all k ∈ Z, we may assume that m > 0 and n > 0.
Moreover, if m = 0 or n = 0, then ϕ(m)ϕ(n) = 0 and ϕ(mn) = 0, so the result is
immediate. Hence we may assume that m > 0 and n > 0.

Given k ∈ Z, define
Ck = {a ∈ [k] | a ⊥ k}

By definition of Euler’s totient function, we thus have |Ck| = ϕ(k) for all k ∈ Z. We
will define a bijection

f : Cm × Cn → Cmn

using the Chinese remainder theorem (Theorem 3.3.46).

Given a ∈ Cm and b ∈ Cn, let f(a, b) be the element x ∈ [mn] such that{
x ≡ a mod m

x ≡ b mod n
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• f is well-defined. We check the properties of totality, existence and unique-
ness.

� Totality. We have accounted for all the elements of Cm × Cn in our
specification of f .

� Existence. By the Chinese remainder theorem, there exists x ∈ Z such
that x ≡ a mod m and x ≡ b mod n. By adding an appropriate integer
multiple of mn to x, we may additionally require x ∈ [mn]. It remains to
check that x ⊥ mn.

So let d = gcd(x,mn). If d > 1, then there is a positive prime p such
that p | x and p | mn. But then p | m or p | n, meaning that either p |
gcd(x,m) or p | gcd(x, n). But x ≡ a mod m, so gcd(x,m) = gcd(a,m);
and likewise gcd(x, n) = gcd(b, n). So this contradicts the assumption
that a ⊥ m and b ⊥ n. Hence x ⊥ mn after all.

� Uniqueness. Suppose x, y ∈ Cmn both satisfy the two congruences in
question. By the Chinese remainder theorem, we have x ≡ y mod mn,
and hence x = y + kmn for some k ∈ Z. Since x, y ∈ [mn], we have

|k|mn = |kmn| = |x− y| 6 mn− 1 < mn

This implies |k| < 1, so that k = 0 and x = y.

so f is well-defined.

• f is injective. Let a, a′ ∈ Cm and b, b′ ∈ Cn, and suppose that f(a, b) =
f(a′, b′). Then there is an element x ∈ Cmn such that

x ≡ a mod m

x ≡ a′ mod m

x ≡ b mod n

x ≡ b′ mod n

Hence a ≡ a′ mod m and b ≡ b′ mod n. Since a, a′ ∈ [m] and b, b′ ∈ [n], we
must have a = a′ and b = b′.

• f is surjective. Let x ∈ Cmn. Let a ∈ [m] and b ∈ [n] be the (unique)
elements such that x ≡ a mod m and x ≡ b mod n, respectively. If a ∈ Cm

and b ∈ Cn, then we’ll have f(a, b) = x by construction, so it remains to check
that a ⊥ m and b ⊥ n.

Suppose d ∈ Z with d | a and d | m. We prove that d = 1. Since x ≡ a mod m,
we have d | x by Theorem 3.1.17. Since m | mn, we have d | mn. By
definition of greatest common divisors, it follows that d | gcd(x,mn). But
gcd(x,mn) = 1, so that d is a unit, and so a ⊥ m as required.

The proof that b ⊥ n is similar.
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It was a lot of work to check that it worked, but we have defined a bijection f :
Cm × Cn → Cmn. By the multiplication principle, we have

ϕ(m)ϕ(n) = |Cm| · |Cn| = |Cm × Cn| = |Cmn| = ϕ(mn)

as required.

Exercise 4.2.56
Let n ∈ Z and let p > 0 be prime. Prove that if p | n, then ϕ(pn) = p ·ϕ(n). Deduce
that ϕ(pk) = pk − pk−1 for all prime p > 0 and all k > 1. C

Theorem 4.2.57 (Formula for Euler’s totient function)
Let n be a nonzero integer. Then

ϕ(n) = |n| ·
∏
p|n

(
1− 1

p

)

where the product is indexed over positive primes p dividing n

Proof. Since ϕ(n) = ϕ(−n) for all n ∈ Z, we may assume that n > 0. Moreover

ϕ(1) = 1 = 1 ·
∏
p|1

(
1− 1

p

)
Note that the product here is empty, and hence equal to 1, since there are no positive
primes p which divide 1. So now suppose n > 1.

Using the fundamental theorem of arithmetic (Theorem 3.2.12), we can write

n = pk11 p
k2
2 · · · p

kr
r

for primes 0 < p1 < p2 < · · · < pr and natural numbers k1, k2, . . . , kr > 1.

By repeated application of Theorem 4.2.55, we have

ϕ(n) =

r∏
i=1

ϕ(pkii )

By Exercise 4.2.56, we have

ϕ(pkii ) = pkii − p
ki−1
i = pkii

(
1− 1

pi

)
Combining these two results, it follows that

ϕ(n) =
r∏

i=1

pkii

(
1− 1

pi

)
=

(
r∏

i=1

pkii

)(
r∏

i=1

(
1− 1

pi

))
= n ·

r∏
i=1

(
1− 1

pi

)
which is as required.
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Inclusion–exclusion principle

The addition principle is useful only for counting unions of pairwise disjoint sets,
i.e. sets that do not overlap. We saw in Proposition 4.2.5 how to compute the size
of a union of two sets which do overlap:

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |

So far so good. But what if we have three or four sets instead of just two?

Exercise 4.2.58
Let X,Y, Z be sets. Show that

|X ∪ Y ∪ Z| = |X|+ |Y |+ |Z| − |X ∩ Y | − |X ∩ Z| − |Y ∩ Z|+ |X ∩ Y ∩ Z|

Let W be another set. Derive a similar formula for |W ∪X ∪ Y ∪ Z|. C

The inclusion–exclusion principle generalises Exercise 4.2.58 to arbitary finite col-
lections of finite sets.

Theorem 4.2.59 (Inclusion–exclusion principle)
Let n > 2 and let X1, X2, . . . , Xn be sets. Then∣∣∣∣∣

n⋃
i=1

Xi

∣∣∣∣∣ =
∑
J⊆[n]

(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣
where for the purposes of the formula we take

⋂
j∈∅Xj = ∅.

Proof. We proceed by induction.

• (BC) The proof for the case n = 2 was Proposition 4.2.5.

• (IS) Fix n > 2 and suppose, for any sets X1, X2, . . . , Xn, that∣∣∣∣∣
n⋃

i=1

Xi

∣∣∣∣∣ =
∑
J⊆[n]

(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣ —(IH)

We need to prove that, for any sets X1, X2, . . . , Xn, Xn+1, that

∣∣∣∣∣
n+1⋃
i=1

Xi

∣∣∣∣∣ =
∑

J⊆[n+1]

(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣
Write U =

⋃n
i=1Xi. We know that

|U ∪Xn+1| = |U |+ |Xn+1| − |U ∩Xn+1| —(?)
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Now by (IH) we know |U | straight away:

|U | =
∑
J⊆[n]

(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣
This covers the sizes of all the J ⊆ [n+ 1] for which n+ 1 6∈ J .

Note that U ∩Xn+1 =
⋂n

i=1Xi ∩Xn+1. Applying (IH) again we get

− |U ∩Xn+1|

= −
∑
J⊆[n]

(−1)|J |+1

∣∣∣∣∣∣
⋂

j∈J
Xj

 ∩Xn+1

∣∣∣∣∣∣ by (IH)

= −
∑
J⊆[n]

(−1)|J∪{n+1}|

∣∣∣∣∣∣
⋂

j∈J∪{n+1}

Xj

∣∣∣∣∣∣ re-indexing the sum

=
∑
J⊆[n]

(−1)|J∪{n+1}|+1

∣∣∣∣∣∣
⋂

j∈J∪{n+1}

Xj

∣∣∣∣∣∣ distributing the − sign

This covers the sizes of all the J ⊆ [n + 1] for which n + 1 ∈ J and which
contain some element of [n].

The only subset of [n+ 1] not covered by the above two sums is {n+ 1}, and
(−1)|{n+1}|+1 = (−1)2 = 1, so that

(−1)|{n+1}|+1|Xn+1| = |Xn+1|

Together with (?), this yields the equation we wanted to prove was true.

By induction, we’re done.

Proof tip
To find the size of a union of

⋃n
i=1Xi:

• Add the sizes of the individual sets Xi;

• Subtract the sizes of the double-intersections Xi ∩Xj ;

• Add the sizes of the triple-intersections Xi ∩Xj ∩Xk;

• Subtract the sizes of the quadruple-intersections Xi ∩Xj ∩Xk ∩X`;

• . . . and so on . . .

Keep alternating until the intersection of all the sets is covered. C
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Example 4.2.60
We count how many subsets of [12] contain a multiple of 3. Precisely, we count the
number of elements of the set

X3 ∪X6 ∪X9 ∪X12

where Xk = {S ⊆ [12] | k ∈ S}. We will apply the inclusion–exclusion principle:

(i) An element S ∈ X3 is precisely a set of the form {3}∪S′, where S′ ⊆ [12]\{3}.
Since [12]\{3} has 11 elements, there are 211 such subsets. So |X3| = 211, and
likewise |X6| = |X9| = |X12| = 211.

(ii) An element S ∈ X3∩X6 is a set of the form {3, 6}∪S′, where S′ ⊆ [12]\{3, 6}.
Thus there are 210 such subsets, so |X3 ∩X6| = 210. And likewise

|X3 ∩X9| = |X3 ∩X12| = |X6 ∩X9| = |X6 ∩X12| = |X9 ∩X12| = 210

(iii) Reasoning as in the last two cases, we see that

|X3 ∩X6 ∩X9| = |X3 ∩X6 ∩X12| = |X3 ∩X9 ∩X12| = |X6 ∩X9 ∩X12| = 29

(iv) . . . and |X3 ∩X6 ∩X9 ∩X12| = 28.

Thus the number of subsets of [12] which contain a multiple of 3 is

4× 211︸ ︷︷ ︸
by (i)

− 6× 210︸ ︷︷ ︸
by (ii)

+ 4× 29︸ ︷︷ ︸
by (iii)

− 28︸︷︷︸
by (iv)

which is equal to 3840. C

Exercise 4.2.61
How many natural numbers less than 1000 are multiples of 2, 3, 5 or 7? C

Exercise 4.2.62
Recall the definition of the totient of an integer n (Definition 3.3.31). Use the
inclusion–exclusion principle to show that ϕ(100) = 40. Use this fact to prove that
the last two digits of 379 are ‘67’. C
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Section 4.3

Infinite sets

Indexed families of sets

We begin this section by generalising the indexed union, intersection and product
notation that we saw in Definition 4.2.8.

Definition 4.3.1
Let I be a set. A family of sets indexed by I is a choice, for each i ∈ I of a set
Xi. We write {Xi | i ∈ I} for the set of such choices.

Definition 4.3.2
Let {Xi | i ∈ I} be a family of sets indexed by some set I. We define. . .
• . . . the indexed union of {Xi | i ∈ I} is the set

⋃
i∈I Xi defined by⋃

i∈I
Xi = {x | x ∈ Xi for some i ∈ I}

• . . . the indexed intersection of {Xi | i ∈ I} is the set
⋂

i∈I Xi defined by⋂
i∈I

Xi = {x | x ∈ Xi for all i ∈ I}

• . . . the indexed product of {Xi | i ∈ I} is the set
∏
i∈I

Xi defined by

∏
i∈I

Xi = {(xi)i∈I | xi ∈ Xi for all i ∈ I}

The elements (xi)i∈I of
∏
i∈I

Xi are ordered I-tuples. Formally, an ordered

I-tuple is a function f : I →
⋃

i∈I Xi such that f(i) ∈ Xi for all i ∈ I—then
xi is just shorthand for f(i).

Note that when all the sets Xi are equal to some set X, the product
∏
i∈I

X is

exactly the set XI of functions I → X.

Example 4.3.3
Let X be a set, and for each n ∈ N, let Sn be the set of subsets of X of size n. Then⋃

n∈N
Sn
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218 Chapter 4. Finite and infinite sets

is the set F of all finite subsets of X. Indeed:

• (⊆). Let U ∈
⋃

n∈N Sn. Then U ∈ Sn for some n ∈ N, so that U ⊆ X and U
is finite (and |U | = n). Hence U ∈ F .

• (⊇). Let U ∈ F . Then U ⊆ X is finite, so that U ∈ S|U |, and hence U ∈⋃
n∈N Sn.

C

Exercise 4.3.4
Find a family {Un | n ∈ N} of subsets of N such that

• Um ∩ Un is infinite for all m,n ∈ N; but

•
⋂

n∈N Un is empty.

C

We can use this new indexed union and intersection notation to prove a general
version of de Morgan’s laws for sets.

Theorem 4.3.5 (De Morgan’s laws for sets)
Let Z be a set and let {Xi | i ∈ I} be an indexed family of sets. Then

(a) Z \
⋃

i∈I Xi =
⋂

i∈I(Z \Xi);

(b) Z \
⋂

i∈I Xi =
⋃

i∈I(Z \Xi).

Proof 1 of (a). In this proof, we prove (a) directly by unpacking the definitions of
relative complement, indexed union and indexed intersection.

Fix z. Note that z ∈ Z \
⋃

i∈I Xi if and only if

z ∈ Z ∧ ¬

(
z ∈

⋃
i∈I

Xi

)
by definition of relative complement. This holds if and only if

z ∈ Z ∧ ¬(∃i ∈ I, z ∈ Xi)

by definition of indexed union. This holds if and only if

z ∈ Z ∧ ∀i ∈ I, z 6∈ Xi

by De Morgan’s laws for quantifiers (Theorem 2.1.46). Since the proposition z ∈ Z
doesn’t depend on i, this holds if and only if

∀i ∈ I, (z ∈ Z ∧ z 6∈ Xi)

which is precisely the statement that z ∈
⋂

i∈I(Z \Xi).
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Proof 2 of (a). In this proof, we prove (a) by a double-containment argument.

• Z \
⋃

i∈I Xi ⊆
⋂

i∈I(Z \Xi).

Let z ∈ Z \
⋃

i∈I Xi. We know that z ∈ Z and z 6∈
⋃

i∈I Xi. We need to prove
that z ∈

⋂
i∈I(Z \ Xi); that is, we need to prove that, for all i ∈ I, we have

z ∈ Z \Xi; that is, z ∈ Z and z 6∈ Xi. We have z ∈ Z for free, so all we have
to prove is that, for all i ∈ I, z 6∈ Xi.

So let i ∈ I. If z ∈ Xi then z ∈
⋃

i∈I Xi, contradicting the fact that z 6∈⋃
i∈I Xi. Therefore it must be the case that z 6∈ Xi. This finishes this half of

the proof.

• Z \
⋃

i∈I Xi ⊇
⋂

i∈I(Z \Xi).

Let z ∈
⋂

i∈I(Z \ Xi). We know that, for all i ∈ I, z ∈ Z \ Xi. Hence it’s
certainly true that z ∈ Z. To prove that z ∈ Z \

⋃
i∈I Xi, it remains to prove

that z 6∈
⋃

i∈I Xi.

Suppose z ∈
⋃

i∈I Xi. Then z ∈ Xi for some i ∈ I. Since we already know
that z ∈ Z, it follows that z 6∈ Z \Xi, contradicting the fact that z ∈ Z \Xi

for all i ∈ I. This finishes the second half of the proof.

We have shown containment in both directions, hence equality.

Sizes of finite sets revisited

We have seen how to use injections, surjections and bijections to study the relative
size of sets:

• If f : X → Y is injective, then |X| 6 |Y |;

• If f : X → Y is surjective, then |X| > |Y |;

• If f : X → Y is bijective, then |X| = |Y |.

Recall Definition 4.1.39, where we said a set X is finite if there is a bijection [n]→ X
for some n ∈ N. The next definition takes this one step further.

Definition 4.3.6
A set X is countably infinite if there exists a bijection N → X. We say X is
countable if it is finite or countably infinite.

Thus a set X is countably infinite if its elements can be listed, with one entry in the
list for each natural number.
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220 Chapter 4. Finite and infinite sets

Example 4.3.7
We have already seen many examples of countably infinite sets.

• The set N is countably infinite, since by Exercise 4.1.15, idN : N → N is a
bijection.

• The function f : Z→ N defined for x ∈ Z by

f(x) =

{
2x if x > 0

−(2x+ 1) if x < 0

is a bijection. Indeed, it has an inverse is given by

f−1(x) =

{
x
2 if x is even

−x+1
2 if x is odd

Hence the set of integers Z is countably infinite. The corresponding list of
integers is given by

0, −1, 1, −2, 2, −3, 3, −4, 4, . . .

The fact that f−1 is a bijection means that each integer appears on this list
exactly once.

C

Exercise 4.3.8
Prove that the function p : N × N → N defined by p(x, y) = 2x(2y + 1) − 1 is
a bijection. Deduce that if X and Y are countably infinite sets, then X × Y is
countably infinite. C

Exercise 4.3.8 allows us to prove that the product of finitely many countably infinite
sets are countably infinite.

Exercise 4.3.9
Let f : X → Y be a bijection. Prove that X is countably infinite if and only if Y is
countably infinite. C

Proposition 4.3.10

Let n > 1 and let X1, . . . , Xn be countably infinite sets. Then the product
n∏

i=1

Xi is

countably infinite.

Proof. We proceed by induction on n.

• (BC) When n = 1 the assertion is trivial: if X1 is countably infinite then X1

is countably infinite.
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• (IS) Fix n > 1 and suppose that for any sets X1, . . . , Xn, the product
n∏

i=1
Xi

is countably infinite. Fix sets X1, . . . , Xn+1. Then
n∏

i=1
Xi is countably infinite

by the induction hypothesis, and Xn+1 is countably infinite by assumption, so
by Exercise 4.3.8, the set (

n∏
i=1

Xi

)
×Xn+1

is countably infinite. But by Exercise 4.2.14 there is a bijection

n+1∏
i=1

Xi →

(
n∏

i=1

Xi

)
×Xn+1

and so by Exercise 4.3.9 we have that
n+1∏
i=1

Xi is countably infinite, as required.

By induction, we’re done.

Finding a bijection N → X, or equivalently X → N, can be a bit of a hassle.
However, in order to prove that a set X is countable, it suffices to find either a
surjection N→ X or an injection X → N.

Theorem 4.3.11
Let X be an inhabited set. The following are equivalent:

(i) X is countable;

(ii) There exists a surjection f : N→ X;

(iii) There exists an injection f : X → N.

Proof. We’ll prove (i)⇔(ii) and (i)⇔(iii).

• (i)⇒(ii). Suppose X is countable. If X is countably infinite, then there exists
a bijection f : N→ X, which is a surjection. If X is finite then there exists a
bijection g : [m]→ X, where m = |X| > 1. Define f : N→ X by

f(n) =

{
g(n) if 1 6 n 6 m

g(1) if n = 0 or n > m

Then f is surjective: if x ∈ X then there exists n ∈ [m] such that g(n) = x,
and then f(n) = g(n) = x.

• (ii)⇒(i). Suppose there exists a surjection f : N → X. To prove that X is
countable, it suffices to prove that if X is infinite then it is countably infinite.
So suppose X is infinite, and define a sequence recursively by
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222 Chapter 4. Finite and infinite sets

� a0 = 0;

� Fix n ∈ N and suppose a0, . . . , an have been defined. Define an+1 to be
the least natural number for which f(an+1) 6∈ {f(a0), f(a1), . . . , f(an)}.

Define g : N→ X by g(n) = f(an) for all n ∈ N. Then

� g is injective, since if m 6 n then f(am) 6= f(an) by construction of the
sequence (an)n∈N.

� g is surjective. Indeed, given x ∈ X, by surjectivity there exists m ∈ N
which is least such that f(m) = x, and we must have an = m for some
n 6 m by construction of the sequence (an)n∈N. So x = g(an), and hence
g is surjective.

So g is a bijection, and X is countable.

• (i)⇒(iii). Suppose X is countable. If X is countably infinite, then there exists
a bijection f : N → X, so f−1 : X → N is bijective and hence injective. If X
is finite then there exists a bijection g : [m] → X, where m = |X| > 1. Then
g−1 : X → [m] is injective. Let i : [m] → N be defined by i(k) = k for all
k ∈ [m]. Then i ◦ g−1 is injective; indeed, for x, x′ ∈ X we have

i(g−1(x)) = i(g−1(x′))⇒ g−1(x) = g−1(x′)⇒ x = x′

The first implication is by definition of i, and the second is by injectivity of
g−1. So there exists an injection X → N.

• (iii)⇒(i). Suppose there exists an injection f : X → N. To prove that X is
countable, it suffices to prove that if X is infinite then it is countably infinite.
Define a sequence (an)n∈N recursively as follows:

� Let a0 be the least element of f [X];

� Fix n ∈ N and suppose a0, . . . , an have been defined. Let an+1 be the
least element of f [X] \ {a0, . . . , an}. This exists since f is injective, so
f [X] is infinite.

Define g : N→ X by, for each n ∈ N, letting g(n) be the unique value of x for
which f(x) = an. Then

� g is injective. By construction am 6= an whenever m 6= n. Let x, y ∈ X
be such that f(x) = am and f(y) = an. Since f is injective, we must
have x 6= y, and so g(m) = x 6= y = g(n).

� g is surjective. Fix x ∈ X. Then f(x) ∈ f [X], so there exists m ∈ N such
that f(x) = am. Hence g(m) = x.

So g is a bijection, and X is countably infinite.

Hence the equivalences have been proved.
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In fact, we needn’t even use N as the domain of the surjection or the codomain of
the injection; we can in fact use any countable set C.

Corollary 4.3.12
Let X be an inhabited set. The following are equivalent:

(a) X is countable;

(b) There exists a surjection f : C → X for some countable set C;

(c) There exists an injection f : X → C for some countable set C.

Exercise 4.3.13
Prove Corollary 4.3.12. C

Corollary 4.3.12 is useful for proving the countability of many other sets: as we build
up our repertoire of countable sets, all we need to do in order to prove a set X is
countable is find a surjection from a set we already know is countable to X, or an
injection from X into a set we already know is countable.

Example 4.3.14
Q is countable. Indeed, by Exercises 4.3.7 and 4.3.8, the set Z×(Z\{0}) is countable.
Moreover, there exists a surjection q : Z× (Z \ {0})→ Q defined by

q(a, b) =
a

b

By Corollary 4.3.12, Q is countable. C

Exercise 4.3.15
Let X be a countable set. Prove that

(
X
k

)
is countable for each k ∈ N. C

Theorem 4.3.16
A countable union of countable sets is countable. More precisely, let {Xn | n ∈ N}
be a family of countable sets. Then the set X defined by

X =
⋃
n∈N

Xn

is countable.

Proof. We may assume that the sets Xn are all inhabited, since the empty set does
not contribute to the union.

For each n ∈ N there is a surjection fn : N → Xn. Define f : N × N → X by
f(m,n) = fm(n) for all m,n ∈ N. Then f is surjective: if x ∈ X then x ∈ Xm for
some m ∈ N. Since fm is surjective, it follows that x = fm(n) for some n ∈ N. But
then x = f(m,n). Since N×N is countable, it follows from Corollary 4.3.12 that X
is countable.
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Example 4.3.17
Let X be a countable set. The set of all finite subsets of X is countable. Indeed,

the set of all finite subsets of X is equal to
⋃
k∈N

(
X

k

)
, which is a union of countably

many countable sets by Exercise 4.3.15, so is countable by Theorem 4.3.16. C

We can also use some clever trickery to prove that certain sets are uncountable. The
proof of the following theorem is known as Cantor’s diagonal argument.

Theorem 4.3.18
The set {0, 1}N is uncountable.

Proof. Let f : N→ {0, 1}N be a function. We will prove that f is not surjective by
constructing a sequence which is not contained in the image of N under f .

Define an element b ∈ {0, 1}N, i.e. a function b : N→ {0, 1}, by

b(n) = 1− f(n)(n)

Then b(n) 6= f(n)(n) for all n ∈ N. If b = f(m) for some m, then by definition
of function equality we must have b(m) = f(m)(m); but we just saw that this is
necessarily false. Hence b 6∈ f [N], so f is not surjective.

Hence there does not exist a surjective function N → {0, 1}N. By Theorem 4.3.11,
the set {0, 1}N is uncountable.

This result can be used to show that the set R of all real numbers is uncountable,
though this relies on features of the real numbers that we have not developed so far
in this course.

Exercise 4.3.19
Let X be a set. Prove that P(X) is either finite or uncountable. C
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Section 5.1

Relations

When sets were first introduced in Section 2.2, after slewing through several defin-
itions of set operations and set algebra, you probably wondered why you’d ever
decided to embark on your journey into pure mathematics. It may have seemed at
first like sets were introduced solely to shorten notation—for instance, instead of
saying ‘n is an integer but not a natural number’, we could simply write ‘n ∈ Z \N’.

But we soon saw that sets are powerful tools, which can be used to prove interesting
results and solve difficult problems, largely with the help of functions. When we
stopped studying sets in isolation, and started seeing how they interact with each
other using functions in Section 2.3, their true power became apparent.

This section introduces the notion of a relation, which generalises that of a function.

Definition 5.1.1
Let X and Y be sets. A (binary) relation from X to Y is a logical formula R(x, y)
with two free variables x, y, where x has range X and y has range Y . We call X the
domain of R and Y the codomain of R.
Given x ∈ X and y ∈ Y , if R(x, y) is true then we say ‘x is related to y by R’, and
write x R y (LATEX code: x\; R\; y).a

aThe LATEX code \; inserts a small space: we use it because ‘x R y’ looks better and clearer than
‘xRy’.

In more human terms, a relation from X to Y is a statement about a generic element
x ∈ X and a generic element y ∈ Y , which is either true or false depending on the
values of x and y.

Example 5.1.2
We have seen many examples of relations so far. For example:

• Every function f : X → Y defines a relation Rf from X to Y by letting

x Rf y ⇔ f(x) = y

• Given a set X, equality between elements of X (‘x = y’) is a relation from X
to X.

• Divisibility (‘x | y’) is a relation from Z to Z.

• For fixed n ∈ Z, congruence modulo n (‘x ≡ y mod n’) is a relation from Z to
Z.
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• Order (‘x 6 y’) is a relation from N to N, or from Z to Z, or from Q to Q, and
so on.

• Given sets X and Y , there is an empty relation ∅X,Y from X to Y , which
is defined simply by declaring ∅X,Y (x, y) to be false for all x ∈ X and y ∈ Y .

C

Exercise 5.1.3
Define a relation R from Z to Z which is not on the list given in Example 5.1.2. C

It is possible, and extremely useful, to represent relations as sets. We do this by
defining the graph of a relation, which is the set of all pairs of elements which are
related by the relation. You might recognise this as being similar to the graph of a
function (Definition 2.3.12).

Definition 5.1.4
Let X and Y be sets, and let R be a relation from X to Y . The graph of R is the
set Gr(R) (LATEX code: \mathrm{Gr}{R}) of pairs (x, y) ∈ X × Y for which x R y.
That is

Gr(R) = {(x, y) ∈ X × Y | x R y} ⊆ X × Y

Example 5.1.5
Consider the relation of divisibility from Z to Z, that is R(x, y) is the statement
x | y. The graph Gr(R) of R is the set whose elements are all pairs (m,n) where
m,n ∈ Z and m | n. For example, (2, 6) ∈ Gr(R) since 2 | 6, but (2, 7) 6∈ Gr(R)
since 2 - 7.

Since m | n if and only if n = qm for some q ∈ Z, we thus have

Gr(R) = {(m, qm) | m, q ∈ Z} ⊆ Z× Z

C

Exercise 5.1.6
Let X and Y be sets. What is the graph of the empty relation from X to Y ? C

Exercise 5.1.7
Let f : X → Y be a function, and define the relation Rf from X to Y as in Example
5.1.2. Prove that Gr(Rf ) = Gr(f)—that is, the graph of the relation Rf is equal to
the graph of the function f . C

As with functions, the graph of a relation R from a set X to a set Y can often be
represented graphically: draw a pair of axes, with the horizontal axis representing
the elements of X and the vertical axis representing the elements of Y , and plot the
point (x, y) if and only if R(x, y) is true.
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Example 5.1.8
Consider the relation S from R to R defined by x S y ⇔ x2 + y2 = 1. Then

Gr(S) = {(x, y) ∈ R× R | x2 + y2 = 1}

Plotting Gr(S) on a standard pair of axes yields a circle with radius 1 centred at the
point (0, 0). Note that Gr(S) is not the graph of a function s : [0, 1] → R. Indeed,
since for example both 0 S 1 and 0 S −1, the value s(0) would not be uniquely
defined. C

Example 5.1.9
Let X be a set. The graph of the equality relation from X to X is very simple:

Gr(=) = {(x, y) ∈ X ×X | x = y} = {(x, x) | x ∈ X} ⊆ X ×X

This set is often denoted ∆X (LATEX code: \Delta {X}), and called the diagonal
subset of X × X. The reason for the word ‘diagonal’ is because—provided the
horizontal and vertical axes have the same ordering of the elements of X—the points
plotted are precisely those on the diagonal line. C

Since we defined relations as particular logical formulae, and we have not defined
a notion of equality between logical formulae, if we want to say that two relations
are equal then first we need to define what we mean by equal. As with sets, this
raises some subtleties: should two relations be equal when they’re described by
the same formula? Or should two relations be equal when they relate the same
elements, even if their underlying descriptions are somewhat different? As with
equality between sets (Definition 2.2.20), our notion of equality between relations
will be extensional : for the purposes of deciding whether two relations are equal, we
forget their descriptions and look only at whether or not they relate the same pairs
elements.

Definition 5.1.10
Let X and Y be sets, and let R and S be relations from X to Y . We say R and S
are equal, and write R = S, if

∀x ∈ X, ∀y ∈ Y, (x R y ⇔ x S y)

That is, R = S if they relate exactly the same pairs of elements.

Note that two relations R and S from a set X to a set Y are equal as relations if
and only if their graphs Gr(R) and Gr(S) are equal as sets. This fact, together with
the correspondence between relations from X to Y and subsets of X × Y (Theorem
5.1.11 below) is incredibly convenient, because it makes the notion of a relation more
concrete.
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Theorem 5.1.11
Let X and Y be sets. Any subset G ⊆ X × Y is the graph of exactly one relation R
from X to Y .

Proof. Fix G ⊆ X × Y . Define a relation R by

∀x ∈ X, ∀y ∈ Y, x R y ⇔ (x, y) ∈ G

Then certainly G = Gr(R).

Moreover, if S is a relation from X to Y such that G = Gr(S), then, for all x ∈ X
and y ∈ Y

x S y ⇔ (x, y) ∈ Gr(S)⇔ (x, y) ∈ Gr(R)⇔ x R y

so S = R. Hence there is exactly one relation from X to Y whose graph is G.

Theorem 5.1.11 allows us to use the counting principles from Section 4.2 to find the
number of relations from one finite set to another.

Exercise 5.1.12
Let X and Y be finite sets with |X| = m and |Y | = n. Prove that there are 2mn

relations from X to Y . C

Aside
It is very common to identify a relation with its graph, saying that a relation from a
set X to a set Y ‘is’ a subset of X×Y . This practice is justified by Theorem 5.1.11,
which says precisely that there is a correspondence between relations from X to Y
and subsets of X × Y . C

Relations on a set

In most of the examples of relations we’ve seen so far, the domain of the relation is
equal to its codomain. The remainder of this section—in fact, the remainder of this
chapter—is dedicated to such relations. So let’s simplify the terminology slightly.

Definition 5.1.13
Let X be a set. A relation on X is a relation from X to X.

We have seen many such relations so far, such as: equality on any set, congruence
modulo n on Z, divisibility, on Z inclusion of subsets (⊆) on P(X), and comparison
of size (6) on N, Z, Q or R. Remarkably, each of these relations can be characterised
in one of two ways: either as an equivalence relation or as a partial order.

Equivalence relations are those that behave in some sense like equality, and partial
orders are those that behave in some way like 6.
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• Equality. If X is any set, then equality on X satisfies:

� Given x ∈ X, we have x = x;

� Given x, y ∈ X, if x = y, then y = x;

� Given x, y, z ∈ X, if x = y and y = z, then x = z.

Note that these are all true if we replace X by Z and · = · by · ≡ · mod n for
some fixed n > 0.

• Order. If X = N (or Z or Q or R), then the order relation 6 on X satisfies:

� Given x ∈ X, we have x 6 x;

� Given x, y ∈ X, if x 6 y and y 6 x, then x = y;

� Given x, y, z ∈ X, if x 6 y and y 6 z, then x 6 z.

Note that these are all true if we replace (X,6) by (P(X),⊆) or (N, | ).

For both equality and order, the first condition states that every element is related
to itself, and the third condition states that in some sense we can cut out interme-
diate steps. These conditions are known as reflexivity and transitivity. The second
condition for equality states that the direction of the relation doesn’t matter; this
condition is called symmetry. The second condition for the order relation states that
the only way two objects can be related to each other in both directions is if they
are equal; this condition is called antisymmetry.

The remainder of this section will develop the language needed to talk about equi-
valence relations and partial orders. We will finish the section with a discussion of
equivalence relations, and then study partial orders in depth in Section 5.2.

Reflexive relations are those that relate everything to itself.

Definition 5.1.14
Let X be a set. A relation R on X is reflexive if x R x for all x ∈ X.

Example 5.1.15
Given a set X, the equality relation on X is reflexive since x = x for all x ∈ X. C

Example 5.1.16
The divisibility relation on N, or on Z, is reflexive. Given n ∈ Z we have n = 1× n,
and so n | n. C

The following exercise demonstrates the importance of specifying the (co)domain of
a relation: it shows that a logical formula may define a reflexive relation on one set,
but not on another.

Exercise 5.1.17
Prove that coprimality (‘x ⊥ y’) is not a reflexive relation on Z, but that it is a
reflexive relation on the set {−1, 1}.
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As such, it doesn’t make sense to say ‘coprimality is a reflexive relation’ or ‘coprim-
ality is not a reflexive relation’: we must specify on which set we are considering the
coprimality relation. C

The result of the next exercise characterises reflexive relations in terms of their
graph.

Exercise 5.1.18
Let X be a set and let R be a relation on X. Prove that R is reflexive if and only
if ∆X ⊆ Gr(R), where ∆X is the diagonal subset of X × X (see Example 5.1.9).
Deduce that if X is finite and |X| = n, then there are 2n(n−1) reflexive relations on
X. C

Symmetric relations are those for which the direction of the relation doesn’t matter.

Definition 5.1.19
Let X be a set. A relation R on X is symmetric if, for all x, y ∈ X, x R y implies
y R x.

Example 5.1.20
Some examples of symmetric relations include:

• Equality is a symmetric relation on any set X. Indeed, if x, y ∈ X and x = y,
then y = x.

• Coprimality is a symmetric relation on Z, since if a, b ∈ Z then a ⊥ b if and
only if b ⊥ a.

• Divisibility is not a symmetric relation on Z, since for instance 1 | 2 but 2 - 1.
However, divisibility is a symmetric relation on {−1, 1}, since 1 | −1 and
−1 | 1.

C

Exercise 5.1.21
Let X be a finite set with |X| = n. Prove that there are 2(n2) ·2n symmetric relations
on X. C

A related condition a relation may possess is antisymmetry.

Definition 5.1.22
Let X be a set. A relation R on X is antisymmetric if, for all x, y ∈ X, if x R y
and y R x, then x = y.
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A word of warning here is that ‘antisymmetric’ does not mean the same thing as ‘not
symmetric’—indeed, we we will see, equality is both symmetric and antisymmetric,
and many relations are neither symmetric nor antisymmetric.[a]

Example 5.1.23
Some examples of antisymmetric relations include are as follows.

• Let X be a set. The equality relation on X is antisymmetric: it is immediate
that if x, y ∈ X and x = y and y = x, then x = y.

• The relation 6 on the set N (or Z or Q or R) is antisymmetric: if m,n ∈ N
and m 6 n and n 6 m, then m = n.

• The divisibility relation on N is antisymmetric. Indeed, let m,n ∈ N and
suppose m | n and n | m. Then n = km for some k ∈ Z and m = `n for some
` ∈ Z. It follows that n = k`n. If n = 0 then m = n trivially; otherwise, we
have k` = 1. Hence k is a unit; moreover, since m,n > 0 and n = km, we
must have k = 1. Hence m = n.

C

Exercise 5.1.24
Show that the divisibility relation on Z is not antisymmetric. C

Exercise 5.1.25
Let X be a set and let R be a relation on X. Prove that R is both symmetric and
antisymmetric if and only if Gr(R) ⊆ ∆X , where ∆X is the diagonal subset of X×X
(see Exercise 5.1.9). Deduce that the only reflexive, symmetric and antisymmetric
relation on a set X is the equality relation on X. C

Exercise 5.1.26
Let X be a finite set with |X| = n. Prove that there are 3(n2) · 2n antisymmetric
relations on X. C

Transitivity is the property of 6 that allows us to deduce, for example, that 0 6 4,
from the information that 0 6 1 6 2 6 3 6 4.

Definition 5.1.27
Let X be a set. A relation R on X is transitive if, for all x, y, z ∈ X, if x R y and
y R z, then x R z.

Example 5.1.28
Some examples of transitive relations include:

[a]Even more confusingly, there is a notion of asymmetric relation, which also does not mean ‘not
symmetric’.
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• Equality is a transitive relation on any set X, since it is immediate that if
x, y, z ∈ X with x = y and y = z, then x = z.

• Divisibility is a transitive relation on N, or on Z. Indeed, if a, b, c ∈ N with
a | b and b | c, then there exist k, ` ∈ Z such that b = ka and c = `b. Then
c = (k`)a, so a | c.

• Inclusion is a transitive relation on P(X), for any set X. Indeed, Proposition
2.2.11 implies that if U, V,W ⊆ X with U ⊆ V and V ⊆W , then U ⊆W .

C

A fundamental property of transitive relations is that we can prove two elements a
and b are related by finding a chain of related elements starting at a and finishing
at b. This is the content of the following proposition.

Proposition 5.1.29
Let R be a relation on a set X. Then R is transitive if and only if, for any finite
sequence x0, x1, . . . , xn of elements of X such that xi−1 R xi for all i ∈ [n], we have
x0 R xn.

Proof. For the sake of abbreviation, let p(n) be the assertion that, for any n > 1
and any sequence x0, x1, . . . , xn of elements of X such that xi−1 R xi for all i ∈ [n],
we have x0 R xn.

We prove the two directions of the proposition separately.

• (⇒) Suppose R is transitive. For n > 1. We prove p(n) is true for all n > 1
by induction.

� (BC) When n = 1 this is immediate, since we assume that x0 R x1.

� (IS) Fix n > 1 and suppose p(n) is true. Let x0, . . . , xn, xn+1 is a sequence
such that xi−1 R xi for all i ∈ [n+ 1]. We need to prove that x0 R xn+1.

By the induction hypothesis we know that x0 R xn. By definition of the
sequence we have xn R xn+1. By transitivity, we have x0 R xn+1.

So by induction, we have proved the ⇒ direction.

• (⇐) Suppose p(n) is true for all n > 1. Then in particular p(2) is true, which
is precisely the assertion that R is transitive.

So we’re done.

That is, Proposition 5.1.29 states that for a transitive relation R on a set X, if
x0, x1, . . . , xn ∈ X, then

x0 R x1 R · · · R xn ⇒ x0 R xn
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where ‘x0 R x1 R · · · R xn’ abbreviates the assertion that xi R xi+1 for each i < n.

Exercise 5.1.30
For each of the eight subsets

P ⊆ {reflexive, symmetric, transitive}

find a relation satisfying (only) the properties in P . C

Equivalence relations

We will now study what it is for a relation to be equality-like.

Definition 5.1.31
A relation R on a set X is an equivalence relation if R is reflexive, symmetric
and transitive.

When we talk about arbitrary equivalence relations, we usually use a symbol like
‘∼’ (LATEX code: \sim) or ‘≡’ (LATEX code: \equiv) or ‘≈’ (LATEX code: \approx)
instead of ‘R’.

Example 5.1.32
Recall Theorem 3.3.6. With our new language of relations, we could succinctly
re-state it as follows:

Let n be a modulus. Congruence modulo n is an equivalence relation on
Z.

Indeed, part (a) of Theorem 3.3.6 proved reflexivity, part (b) proved symmetry, and
part (c) proved transitivity. C

Exercise 5.1.33
Use the definition of equality of sets (Definition 2.2.20) to prove that equality of sets
is an equivalence relation on the universe of discourse U . C

Exercise 5.1.34
Define a relation ∼ on Z by declaring, for m,n ∈ Z,

m ∼ n ⇔ ϕ(m) = ϕ(n)

Prove that ∼ is an equivalence relation. C

In the following exercise, we construct a particular equivalence relation ∼R out of
an arbitrary relation R and prove that ∼R is, in a suitable sense, the ‘smallest’
equivalence relation extending R.
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? Exercise 5.1.35
Let R be any relation on a set X. Define a new relation ∼R on X as follows. Given
x, y ∈ X, say x ∼R y if and only if for some k ∈ N there is a sequence (a0, a1, . . . , ak)
of elements of X such that a0 = x, ak = y and, for all 0 6 i < k, either aiRai+1 or
ai+1Rai.

First we’ll work out a couple of examples.

(a) Fix a modulus n and let R be the relation on Z defined by xR y if and only if
y = x+ n. Prove that ∼R is the relation of congruence modulo n.

(b) Let X be a set and let R be the subset relation on P(X). Prove that ∼R is
the set equality relation on P(X).

(c) Let X be a set, fix two distinct elements a, b ∈ X, and define a relation R on
X by declaring aR b only—that is, for all x, y ∈ X, we have xR y if and only
if x = a and y = b. Prove that the relation ∼R is defined by x ∼R y if and
only if either x = y or {x, y} = {a, b}. (Intuitively, ∼R ‘glues’ the elements a
and b together.)

Next we prove the fundamental facts about ∼R that we mentioned before the state-
ment of this exercise.

(d) Prove that ∼R is an equivalence relation on X

(e) Prove that xR y ⇒ x ∼R y for all x, y ∈ X.

(f) Prove that, furthermore, if ≈ is any equivalence relation on X and xR y ⇒
x ≈ y for all x, y ∈ X, then x ∼R y ⇒ x ≈ y for all x, y ∈ X.

(g) Use parts (e) and (f) to prove that if R is already an equivalence relation, then
the relation ∼R is equal to R.

We say that the relation ∼R is the equivalence relation on X generated by R. C

Equivalence relations are useful because they allow us to ignore irrelevant inform-
ation about elements of a set. As an example, suppose we want to prove that, for
a ∈ Z, if 3 - a then a2 leaves a remainder of 1 when divided by 3. Before we
learnt about modular arithmetic in Section 3.3, in order to prove this, we would
have written a = 3k ± 1 for some k ∈ Z and done some tedious algebra to deduce
that a2 = 3(3k2 ± 2k) + 1. This required us to use more information than we need:
the value of k doesn’t make any difference to the truth of the result, the expression
3(3k2 ± 2k) + 1 is ugly and, more importantly, keeping track of k made the proof
longer and more difficult than it has to be. When we learnt modular arithmetic,
everything was simplified: if 3 - a then a ≡ ±1 mod 3, so that a2 ≡ (±1)2 ≡ 1 mod 3.
This proof was shorter and simpler because we didn’t need to keep track of exactly
which integer a was—all we cared about was its value modulo 3. We could just as
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well have replaced a with any other integer which leaves the same remainder modulo
3.

This motivates the following definition, which provides a means of identifying two
elements of a set that are related by an equivalence relation.

Definition 5.1.36
Let X be a set and let ∼ be an equivalence relation on X. The ∼-equivalence
class of x ∈ X is the set [x]∼ (LATEX code: [x] {\sim}) defined by

[x]∼ = {y ∈ X | x ∼ y}

The quotient of X by ∼ is the set X/∼ (LATEX code: X/{\sim}) of all ∼-equivalence
classes of elements of X; that is

X/∼ = {[x]∼ | x ∈ X}

Formatting tip
Putting braces ({ and }) around a symbol like ∼ tells LATEX to consider the symbol
on its own, rather than in the context of its surrounding variables. Compare:

LATEX code: output:

Without braces: X/\sim = Y X/ ∼= Y

With braces: X/{\sim} = Y X/∼ = Y

This is because, without braces, LATEX thinks you’re saying ‘X/ is related to is equal
to Y ’, which clearly makes no sense; putt braces around \sim signifies to LATEX that
the ∼ symbol is being considered as an object in its own right. C

Example 5.1.37
Let ∼ be the relation of congruence modulo 5 on the set of integers. Then

[0]∼ = {a ∈ Z | a ∼ 0}

Now, a ∼ 0 if and only if 5 | a, so we can also write

[0]∼ = {. . . ,−10,−5, 0, 5, 10, . . . } = {5k | k ∈ Z}

So in fact [0]∼ = [5k]∼ for any k ∈ Z. And likewise

[r]∼ = [r + 5k]∼

for all r, k ∈ Z. It follows that Z/∼ = {[0]∼, [1]∼, [2]∼, [3]∼, [4]∼}. C
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Definition 5.1.38
Consider the relation of congruence modulo n on the set Z of integers. We call the
equivalence class of a ∈ Z the congruence class of a modulo n, denoted [a]n, and
we write Z/nZ to denote the quotient of Z by the relation of congruence modulo n.

Example 5.1.39
The set Z/5Z has five elements:

Z/5Z = {[0]5, [1]5, [2]5, [3]5, [4]5}

Example 5.1.37 demonstrates that for all n ∈ Z and all 0 6 r < 5, we have [n]5 =
[r]5 if and only if n leaves a remainder of r when divided by 5. For example,
[7]5 = [2]5. C

Exercise 5.1.40
Let n be a modulus. Prove that Z/nZ is finite and |Z/nZ| = n. C

Exercise 5.1.40 doesn’t tell us much more than we already know: namely, that
there are only finitely many possible remainders modulo n. But it makes our lives
significantly easier for doing modular arithmetic, because now there are only finitely
many objects to work with.

One last word on equivalence relations is that they are essentially the same thing as
partitions (see Definition 4.2.36).

Exercise 5.1.41
If ∼ be an equivalence relation on X, then X/∼ is a partition X. Deduce that, for
x, y ∈ X, we have x ∼ y if and only if [x]∼ = [y]∼. C

In fact, the converse of 5.1.41 is also true, as we prove next.

Proposition 5.1.42
Let X be a set and let U be a partition of X. Then U = X/∼ for exactly one
equivalence relation ∼ on X.

Proof. Define a relation ∼ by

x ∼ y ⇔ ∃U ∈ U , x ∈ U and y ∈ U

for all x, y ∈ X. That is, x ∼ y if and only if x and y are elements of the same set
of the partition. We check that ∼ is an equivalence relation.

• Reflexivity. Let x ∈ X. Then x ∈ U for some U ∈ U since
⋃

U∈U U = X.
Hence x ∼ x.

• Symmetry. Let x, y ∈ X and suppose x ∼ y. Then there is some U ∈ U with
x ∈ U and y ∈ U . But then it is immediate that y ∼ x.
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• Transitivity. Let x, y, z ∈ X and suppose that x ∼ y and y ∼ z. Then
there exist U, V ∈ U with x, y ∈ U and y, z ∈ V . Thus y ∈ U ∩ V . Since
U is a partition of X, its elements are pairwise disjoint; thus if U 6= V then
U ∩ V = ∅. Hence U = V . Thus x ∈ U and z ∈ U , so x ∼ z.

The definition of ∼ makes it immediate that X/∼ = U .

To prove that ∼ is the only such relation, suppose ≈ is another equivalence relation
on X for which X/≈ = U . Then, given x, y ∈ X, we have:

x ∼ y ⇔ [x]∼ = [y]∼ by Exercise 5.1.41

⇔ ∃U ∈ U , x ∈ U ∧ y ∈ U by definition of ∼
⇔ ∃z ∈ X, x ∈ [z]≈ ∧ y ∈ [z]≈ since U = X/≈
⇔ ∃z ∈ X, x ≈ z ∧ y ≈ z by definition of [z]≈

⇔ x ≈ y by symmetry and transitivity

So ∼ = ≈.
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Section 5.2

Orders and lattices

We saw in Section 5.1 how equivalence relations behave like ‘=’, in the sense that
they are reflexive, symmetric and transitive.

This section explores a new kind of relation which behaves like ‘6’. This kind of
relation proves to be extremely useful for making sense of mathematical structures,
and has powerful applications throughout mathematics, computer science and even
linguistics.

Definition 5.2.1
A relation R on a set X is a partial order if R is reflexive, antisymmetric and
transitive. That is, if:
• (Reflexivity) x R x for all x ∈ X;

• (Antisymmetry) For all x, y ∈ X, if x R y and y R x, then x = y;

• (Transitivity) For all x, y, z ∈ X, if x R y and y R z, then x R z.
A set X together with a partial order R on X is called a partially ordered set,
or poset for short, and is denoted (X,R).

When we talk about partial orders, we usually use a suggestive symbol like ‘4’
(LATEX code: \preceq) or ‘v’ (LATEX code: \sqsubseteq).

Example 5.2.2
We have seen many examples of posets so far:

• Any of the sets N, Z, Q or R, with the usual order relation 6.

• Given a set X, its power set P(X) is partially ordered by ⊆. Indeed:

� Reflexivity. If U ∈ P(X) then U ⊆ U .

� Antisymmetry. If U, V ∈ P(X) with U ⊆ V and V ⊆ U , then U = V
by definition of set equality.

� Transitivity. If U, V,W ∈ P(X) with U ⊆ V and V ⊆W , then U ⊆W
by Proposition 2.2.11.

• The set N of natural numbers is partially ordered by divisibility (see Examples
5.1.16, 5.1.23 and 5.1.28). However, by Exercise 5.1.24, the set Z of integers is
not partially ordered by divisibility, since divisibility is not antisymmetric on
Z.

• Any set X is partially ordered by its equality relation. This is called the
discrete order on X.
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C

Much like the difference between the relations 6 and < on N, or between ⊆ and
$ on P(X), every partial order can be strictified, in a precise sense outlined in the
following definition and proposition.

Definition 5.2.3
A relation R on a set X is a strict partial order if it is irreflexive, asymmetric
and transitive. That is, if:
• (Irreflexivity) ¬(x R x) for all x ∈ X;

• (Asymmetry) For all x, y ∈ X, if x R y, then ¬(y R x);

• (Transitivity) For all x, y, z ∈ X, if x R y and y R z, then x R z.

Proposition 5.2.4
Let X be a set. Partial orders 4 on X are in natural correspondence with strict
partial orders ≺ on X, according to the rule:

x 4 y ⇔ (x ≺ y ∨ x = y) and x ≺ y ⇔ (x 4 y ∧ x 6= y)

Proof. Let P be the set of all partial orders on X and let S be the set of all strict
partial orders on X. Define functions

f : P → S and g : S → P

as in the statement of the proposition, namely:

• Given a partial order 4, let f(4) be the relation ≺ defined for x, y ∈ X by
letting x ≺ y be true if and only if x 4 y and x 6= y;

• Given a strict partial order ≺, let g(≺) be the relation 4 defined for x, y ∈ X
by letting x 4 y be true if and only if x ≺ y or x = y.

We’ll prove that f and g are mutually inverse functions. Indeed:

• f is well-defined. To see this, fix 4 and ≺ = f(4) and note that:

� ≺ is irreflexive, since for x ∈ X if x ≺ x then x 6= x, which is a contra-
diction.

� ≺ is asymmetric. To see this, let x, y ∈ X and suppose x ≺ y. Then
x 4 y and x 6= y. If also y ≺ x, then we’d have y 4 x, so that x = y by
antisymmetry of 4. But x 6= y, so this is a contradiction.

� ≺ is transitive. To see this, let x, y, z ∈ X and suppose x ≺ y and y ≺ z.
Then x 4 y and y 4 z, so that x 4 z. Moreover, if x = z then we’d also
have z 4 x by reflexivity of 4, so z 4 y by transitivity of 4, and hence
y = z by antisymmetry of 4. But this contradicts y ≺ z.
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So ≺ is a strict partial order on X.

• g is well-defined. To see this, fix ≺ and 4 = g(≺) and note that:

� 4 is reflexive. This is built into the definition of 4.

� 4 is symmetric. To see this, fix x, y ∈ X and suppose x 4 y and y 4 x.
Now if x 6= y then x ≺ y and y ≺ x, but this contradicts asymmetry of
≺. Hence x = y.

� 4 is transitive. To see this, fix x, y, z ∈ X and suppose x 4 y and y 4 z.
Then one of the following four cases must be true:

∗ x = y = z. In this case, x = z, so x 4 z.

∗ x = y ≺ z. In this case, x ≺ z, so x 4 z.

∗ x ≺ y = z. In this case, x ≺ z, so x 4 z.

∗ x ≺ y ≺ z. In this case, x ≺ z by transitivity of ≺, so x 4 z.

In any case, we have that x 4 z.

So 4 is a partial order on X.

• g ◦ f = idP . To see this, let ≺ = f(4) and v = g(≺). For x, y ∈ X, we have
x v y if and only if x ≺ y or x = y, which in turn occurs if and only if x = y
or both x 4 y and x 6= y. This is equivalent to x 4 y, since if x = y then
x 4 y by reflexivity. Hence v and 4 are equal relations, so g ◦ f = idP .

• f ◦ g = idS . To see this, let 4 = g(≺) and @ = f(4). For x, y ∈ X, we have
x @ y if and only if x 4 y and x 6= y, which in turn occurs if and only if x 6= y
and either x ≺ y or x = y. Since x 6= y precludes x = y, this is equivalent to
x ≺ y. Hence ≺ and @ are equal relations, so f ◦ g = idS .

So f and g are mutually inverse functions, and we have established the required
bijection.

In light of Proposition 5.2.4, we will freely translate between partial orders and
strict partial orders wherever necessary. When we do so, we will use ≺ (LATEX code:
\prec) to denote the ‘strict’ version, and 4 to denote the ‘weak’ version. (Likewise
for @ (LATEX code: \sqsubet).)

Definition 5.2.5
Let (X,4) be a poset. A 4-least element of X (or a least element of X with
respect to 4) is an element ⊥ ∈ X (LATEX code: \bot) such that ⊥ 4 x for all
x ∈ X. A 4-greatest element of X (or a greatest element of X with respect
to 4) is an element > ∈ X (LATEX code: \top) such that x 4 > for all x ∈ X.

Example 5.2.6
Some examples of least and greatest elements that we have already seen are:
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• In (N,6), 0 is a least element; there is no greatest element.

• Let n ∈ N with n > 0. Then 1 is a least element of ([n],6), and n is a greatest
element.

• (Z,6) has no greatest or least elements.

C

Proposition 5.2.7 says that least and greatest elements of posets are unique, if they
exist. This allows us to talk about ‘the’ least or ‘the’ greatest element of a poset.

Proposition 5.2.7
Let (X,4) be a poset. If X has a least element, then it is unique; and if X has a
greatest element, then it is unique.

Proof. Suppose X has a least element `. We prove that if `′ is another least element,
then `′ = `.

So take another least element `′. Since ` is a least element, we have ` 4 `′. Since `′

is a least element, we have `′ 4 `. By antisymmetry of 4, it follows that ` = `′.

Hence least elements are unique. The proof for greatest elements is similar, and is
left as an exercise.

Exercise 5.2.8
Let X be a set. The poset (P(X),⊆) has a least element and a greatest element;
find both. C

Exercise 5.2.9
Prove that the least element of N with respect to divisibility is 1, and the greatest
element is 0. C

Definition 5.2.10
Let (X,4) be a poset and let A ⊆ X. A 4-supremum of A is an element s ∈ X
such that
• a 4 s for each a ∈ A; and

• If s′ ∈ X with a 4 s′ for all a ∈ A, then s 4 s′.
A 4-infimum of A is an element i ∈ X such that
• i 4 a for each a ∈ A; and

• If i′ ∈ X with i′ 4 a for all a ∈ A, then i′ 4 i.

Example 5.2.11
The well-ordering principle states that if U ⊆ N is inhabited then U has a6-infimum,
and moreover the infinum of U is an element of U . C
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Exercise 5.2.12
Let X be a set, and let U, V ∈ P(X). Prove that the ⊆-supremum of {U, V } is
U ∪ V , and the ⊆-infimum of {U, V } is U ∩ V . C

Exercise 5.2.13
Let a, b ∈ N. Show that gcd(a, b) is an infimum of {a, b} and that lcm(a, b) is a
supremum of {a, b} with respect to divisbility. C

Example 5.2.14
Define U = [0, 1) = {x ∈ R | 0 6 x < 1}. We prove that U has both an infimum
and a supremum in the poset (R,6).

• Infimum. 0 is an infimum for U . Indeed:

(i) Let x ∈ U . Then 0 6 x by definition of U .

(ii) Let y ∈ R and suppose that y 6 x for all x ∈ U . Then y 6 0, since 0 ∈ U .

so 0 is as required.

• Supremum. 1 is a supremum for U . Indeed:

(i) Let x ∈ U . Then x < 1 by definition of U , so certainly x 6 1.

(ii) Let y ∈ R and suppose that x 6 y for all x ∈ U . We prove that 1 6 y
by contradiction. So suppose it is not the case that 1 6 y. Then y < 1.
Since x 6 y for all x ∈ U , we have 0 6 y. But then

0 6 y =
y + y

2
<
y + 1

2
<

1 + 1

2
= 1

But then y+1
2 ∈ U and y < y+1

2 . This contradicts the assumption that
x 6 y for all x ∈ U . So it must in fact have been the case that 1 6 y.

so 1 is as required.

C

The following proposition proves that suprema and infima are unique, provided they
exist.

Proposition 5.2.15
Let (X,4) is a poset, and let A ⊆ X.

(i) If s, s′ ∈ X are suprema of A, then s = s′;

(ii) If i, i′ ∈ X are infima of A, then i = i′.

Proof. Suppose s, s′ are suprema of A. Then:

• a 4 s′ for all a ∈ A, so s′ 4 s since s is a supremum of A;
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• a 4 s for all a ∈ A, so s 4 s′ since s′ is a supremum of A.

Since 4 is antisymmetric, it follows that s = s′. This proves (i).

The proof of (ii) is almost identical and is left as an exercise to the reader.

Notation 5.2.16
Let (X,4) be a poset and let U ⊆ X. Denote the 4-infimum of U , if it exists, by∧
U (LATEX code: \bigwedge); and denote the 4-supremum of U , if it exists, by∨
U (LATEX code: \bigvee). Moreover, for x, y ∈ X, write∧
{x, y} = x ∧ y (LATEX code: \wedge),

∨
{x, y} = x ∨ y (LATEX code: \vee)

Example 5.2.17
Some examples of Notation 5.2.16 are as follows.

• Let X be a set. In (P(X),⊆) we have U ∧ V = U ∩ V and U ∨ V = U ∪ V for
all U, V ∈ P(X).

• We have seen that, in (N, |), we have a∧ b = gcd(a, b) and a∨ b = lcm(a, b) for
all a, b ∈ N.

• In (R,6), we have a ∧ b = min{a, b} and a ∨ b = max{a, b}.

C

Definition 5.2.18
A lattice is a poset (X,4) such that every pair of elements of X has a 4-supremum
and a 4-infimum.

Example 5.2.19
We have seen that (P(X),⊆), (R,6) and (N, |) are lattices. C

Proposition 5.2.20 (Associativity laws for lattices)
Let (X,4) be a lattice, and let x, y, z ∈ X. Then

x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z

Proof. We prove x ∧ (y ∧ z) = (x ∧ y) ∧ z; the other equation is dual and is left as
an exercise. We prove that the sets {x, y ∧ z} and {x ∧ y, z} have the same sets of
lower bounds, and hence the same infima. So let

L1 = {i ∈ X | i 4 x and i 4 y ∧ z} and L2 = {i ∈ X | i 4 x ∧ y and i 4 z}

We prove L1 = L = L2, where

L = {i ∈ X | i 4 x, i 4 y and i 4 z}

First we prove L1 = L. Indeed:
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• L1 ⊆ L. To see this, suppose i ∈ L1. Then i 4 x by definition of L1. Since
i 4 y ∧ z, and y ∧ z 4 y and y ∧ z 4 z, we have i 4 y and i 4 z by transitivity
of 4.

• L ⊆ L1. To see this, suppose i ∈ L. Then i 4 x by definition of L. Moreover,
i 4 y and i 4 z by definition of L, so that i 4 y ∧ z by definition of ∧. Hence
i ∈ L.

The proof that L2 = L is similar. Hence L1 = L2. But x ∧ (y ∧ z) is, by definition
of ∧, the 4-greatest element of L1, which exists since (X,4) is a lattice. Likewise,
(x ∧ y) ∧ z is the 4-greatest element of L2.

Since L1 = L2, it follows that x ∧ (y ∧ z) = (x ∧ y) ∧ z, as required.

Exercise 5.2.21 (Commutativity laws for lattices)
Let (X,4) be a lattice. Prove that, for all x, y ∈ X, we have

x ∧ y = y ∧ x and x ∨ y = y ∨ x

C

Exercise 5.2.22 (Absorption laws for lattices)
Let (X,4) be a lattice. Prove that, for all x, y ∈ X, we have

x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x

C

Example 5.2.23
It follows from what we’ve proved that if a, b, c ∈ Z then

gcd(a, gcd(b, c)) = gcd(gcd(a, b), c)

For example, take a = 882, b = 588 and c = 252. Then

• gcd(b, c) = 84, so gcd(a, gcd(b, c)) = gcd(882, 84) = 42;

• gcd(a, b) = 294, so gcd(gcd(a, b), c) = gcd(294, 252) = 42.

These are indeed equal. C

Distributive lattices and Boolean algebras

One particularly important class of lattice is that of a distributive lattice, in which
suprema and infima interact in a particularly convenient way. This makes algebraic
manipulations of expressions involving suprema and infima particularly simple.
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Definition 5.2.24
A lattice (X,4) is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

for all x, y, z ∈ X.

Example 5.2.25
For any set X, the power set lattice (P(X),⊆) is distributive. That is to say that
for all U, V,W ⊆ X we have

U ∩ (V ∪W ) = (U ∩ V ) ∪ (U ∩W ) and U ∪ (V ∩W ) = (U ∪ V ) ∩ (U ∪W )

This was the content of Example 2.2.34 and Exercise 2.2.35. C

Exercise 5.2.26
Prove that (N, |) is a distributive lattice. C

Definition 5.2.27
Let (X,4) be a lattice with a greatest element > and a least element ⊥, and let
x ∈ X. A complement for x is an element y such that

x ∧ y = ⊥ and x ∨ y = >

Example 5.2.28
Let X be a set. We show that every element U ∈ P(X) has a complement. C

Exercise 5.2.29
Let (X,4) be a distributive lattice with a greatest element and a least element, and
let x ∈ X. Prove that, if a complement for x exists, then it is unique; that is, prove
that if y, y′ ∈ X are complements for X, then y = y′. C

Exercise 5.2.29 justifies the following notation.

Notation 5.2.30
Let (X,4) be a distributive lattice with greatest and least elements. If x ∈ X has
a complement, denote it by ¬x.

Definition 5.2.31
A lattice (X,4) is complemented if every element x ∈ X has a complement. A
Boolean algebra is a complemented distributive lattice with a greatest element
and a least element.

The many preceding examples and exercises concerning (P(X),⊆) piece together to
provide a proof of the following theorem.
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Theorem 5.2.32
Let X be a set. Then (P(X),⊆) is a Boolean algebra.

Another extremely important example of a Boolean algebra is known as the Lindenbaum–
Tarski algebra, which we define in Definition 5.2.35. In order to define it, we need
to prove that the definition will make sense. First of all, we fix some notation.

Definition 5.2.33
Let P be a set, thought of as a set of propositional variables. Write L(P ) to denote
the set of propositional formulae with propositional variables in P—that is, the
elements of L(P ) are strings built from the elements of P , using the operations of
conjunction (∧), disjunction (∨) and negation (¬).

Lemma 5.2.34
Logical equivalence ≡ is an equivalence relation on L(P ).

Proof. This is immediate from definition of equivalence relation, since for s, t ∈
L(P ), s ≡ t is defined to mean that s and t have the same truth values for all
assignments of truth values to their propositional variables.

In what follows, the set P of propositional variables is fixed; we may moreover take
it to be countably infinite, since all strings in L(P ) are finite.

Definition 5.2.35
The Lindenbaum–Tarski algebra (for propositional logic) over P is the pair
(A,`), where A = L(P )/≡ and ` is the relation on A defined by [s]≡ ` [t]≡ if and
only if s⇒ t is a tautology.

In what follows, we will simply write [−] for [−]≡.

Theorem 5.2.36
The Lindenbaum–Tarski algebra is a Boolean algebra.

Sketch proof. There is lots to prove here! Indeed, we must prove:

• ` is a well-defined relation on A; that is, if s ≡ s′ and t ≡ t′ then we must
have [s] ` [t] if and only if [s′] ` [t′].

• ` is a partial order on A; that is, it is reflexive, antisymmetric and transitive.

• The poset (A,`) is a lattice; that is, it has suprema and infima.
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• The lattice (A,`) is distributive, has a greatest element and a least element,
and is complemented.

We will omit most of the details, which are left as an exercise; instead, we outline
what the components involved are.

The fact that ` is a partial order can be proved as follows.

• Reflexivity of ` follows from the fact that s⇒ s is a tautology for all propos-
itional formulae s.

• Symmetry of ` follows from the fact that, for all propositional formulae s, t, if
s⇔ t is a tautology then s and t are logically equivalent.

• Transitivity of ` follows immediately from transitivity of ⇒.

The fact that (A,`) is a lattice can be proved by verifying that:

• Given [s], [t] ∈ A, the infimum [s]∧[t] is given by conjunction, namely [s]∧[t] =
[s ∧ t].

• Given [s], [t] ∈ A, the supremum [s] ∨ [t] is given by disjunction, namely [s] ∨
[t] = [s ∨ t].

Finally, distributivity of suprema and infima in (A,`) follows from the corresponding
properties of conjunction and disjunction; (A,`) has greatest element [p ⇒ p] and
least element [¬(p ⇒ p)], where p is some fixed propositional variable; and the
complement of [s] ∈ A is given by [¬s].

We finish this section on orders and lattices with a general version of de Morgan’s
laws for Boolean algebras, which by Theorems 5.2.32 and 5.2.36 implies the versions
we proved for logical formulae (Theorem 2.1.14) and for sets (Theorem 2.2.40).

Theorem 5.2.37 (De Morgan’s laws)
Let (X,4) be a Boolean algebra, and let x, y ∈ X. Then

¬(x ∧ y) = (¬x) ∨ (¬y) and ¬(x ∨ y) = (¬x) ∧ (¬y)

Proof. We prove ¬(x ∧ y) = (¬x) ∨ (¬y)
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Section 5.3

Well-foundedness and structural induction

Warning!
This section is not yet finished—do not rely on its correctness or completeness.

Section 1.3 introduced induction as a technique for proving statements which are
true of all natural numbers. We saw induction in three flavours: weak induction,
strong induction and the well-ordering principle.

• The principle of weak induction exploited the inductively defined structure
of N. Every natural number can be obtained from 0 by repeatedly applying
the successor (‘plus one’) operation, so if a statement p(n) is true of 0, and its
truth is preserved by the successor operation (i.e. if p(n) ⇒ p(n + 1) is true
for all n ∈ N), then it must be true of all natural numbers

• The well-ordering principle exploited the well-founded nature of the order
relation < on N. It says that every inhabited subset of N, so that any pro-
position p(n) which is not true of all natural numbers n must have a least
counterexample—this led to the technique of proof by infinite descent.

In this section, we will generalise these techniques to other sets with an inductively
defined or a well-founded structure.

• An inductively defined set will, intuitively, be a set X built from some set
of basic elements (like zero) using a set of constructors (like the successor
operation). We will be able to perform induction on these sets to prove that
a statement p(x) is true for all x ∈ X by proving that it is true for the basic
elements, and then proving that its truth is preserved by the constructors. This
proof technique generalises weak induction and is called structural induction.

• A set X with a well-founded relation R will allow us to generalise proof by
infinite descent: if there is a counterexample to a logical formula p(x), then
there must be one which is ‘minimal’ with respect to R. This leads to a proof
technique called well-founded induction, which has similarities with strong in-
duction.

Structural induction is conceptually easier to comprehend than well-founded induc-
tion, so we will introduce it first. However, we will not be able to prove that it is a
valid proof technique until after we have introduced well-founded induction.
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Inductively defined sets

In Section 1.3, we formalised the idea that the set of natural numbers should be what
is obtained by starting with zero and repeating the successor (‘plus one’) operation.
In a sense, zero was a basic element—we posited its existence from the outset—and
the successor operation constructed the remaining elements.

Although hidden beneath the surface, this method of defining a set was implicitly
used in Section 2.1 when defining propositional formulae. Here, our basic elements
were propositional variables p, q, r, s, . . . , and the remaining propositional formulae
could be constructed by repeatedly applying the logical connectives ∧, ∨, ¬ and ⇒.

Definition 5.3.1
An inductively defined set is a set X equipped with a subset B ⊆ X of basic
elements and a set C of constructors, with the following properties:

(i) Each constructor f ∈ C is a function f : Xn → X for some n ∈ N. The
natural number n is called the arity of f .

(ii) For all constructors f, g ∈ C if m,n are the arities of f, g, respectively, and
x1, x2, . . . , xm, y1, y2, . . . , yn ∈ X are such that

f(x1, x2, . . . , xm) = g(y1, y2, . . . , yn)

then m = n, f = g and xi = yi for all i ∈ [m].

(iii) For all constructors f ∈ C, the image of f is a subset of X \ B. That is,
no basic element is of the form f(x1, x2, . . . , xn) for any constructor f and
elements x1, x2, . . . , xn ∈ X.

(iv) For all x ∈ X \ B, then x = f(x1, x2, . . . , xn) for some constructor f ∈ C of
arity n.

Example 5.3.2
The set N of natural number is inductively defined by taking B = {0} and C = {s},
where s : N→ N is defined by s(n) = n+ 1 for all n ∈ N. Indeed:

(i) s : N→ N is a constructor of arity 1.

(ii) Let f, g ∈ C. Then f = g = s; and if x, y ∈ N with s(x) = s(y), then
x+ 1 = y + 1, so x = y.

(iii) s[N] ⊆ N \ {0} since 0 6= x+ 1 for any x ∈ N.

(iv) For all x ∈ N\{0} we have x = x′+1 for some x′ ∈ N—namely, x′ = x−1—and
so x = s(x′).

C
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Exercise 5.3.3
Prove that the set E = {1, 2, 4, 8, 16 . . . } of powers of 2 is inductively defined by
taking B = {1} and C = {d}, where d : E → E is defined by d(n) = 2n for all
n ∈ N. C

Exercise 5.3.4
Prove that N is inductively defined by taking B = 0 and C = {f}, where f : N→ N
is defined by

f(n) =


1 if n = 0

2(n− 1) if n = 2k + 1 for some k ∈ N
n− 1 otherwise

for all n ∈ N. C

To do: Example: propositional formulae

Theorem 5.3.5 (Principle of structural induction)
Let X be an inductively defined set, and let p(x) be a logical formula concerning
elements of X. Suppose that
• p(b) is true for all basic elements b ∈ X; and

• For all constructors f of arity n and all x1, x2, . . . , xn ∈ X, if
p(x1), p(x2), . . . , p(xn) are all true, then p(f(x1, x2, . . . , xn)) is true.

Then p(x) is true for all x ∈ X.

We will prove Theorem 5.3.5 on page 258.

Example 5.3.6
To do: Structural induction on N is weak induction. C

To do: Disjunctive normal form

To do: Generalise to quotients of inductive structures  induction on Z using 0
and +,− and on Z>0 using 1 and p× (−).

We saw in Proposition 5.3.13 that the relation R on the set Z>0 of positive integers
defined for m,n ∈ Z>0 by

m R n ⇔ n = pm for some prime p > 0

is well-founded. We can use well-founded induction to prove a general formula for
the totient of an integer n.
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Theorem 5.3.7 (Formula for Euler’s totient function)
Let n ∈ Z be nonzero, and let ϕ : Z→ N be Euler’s totient function (see Definition
3.3.31). Then

ϕ(n) = |n| ·
∏

p|n prime

(
1− 1

p

)
where the product is indexed over the distinct positive prime factors p of n.

Proof. If n < 0 then ϕ(n) = ϕ(−n), |n| = −n and p | n if and only if p | −n, so the
theorem holds for negative integers if and only if it holds for positive integers.

We prove the formula for n > 0 by well-founded induction on Z>0 with respect to
the relation R defined in Proposition 5.3.13.

• (BC) ϕ(1) = 1 and, since no prime p divides 1, we have
∏

p|1 prime

(
1− 1

p

)
= 1.

Hence

1 ·
∏

p|1 prime

(
1− 1

p

)
= 1 · 1 = 1

as erquired.

• (IS) Fix n > 1 and suppose that

ϕ(n) = n ·
∏

p|n prime

(
1− 1

p

)

Let q > 0 be prime. We prove that

ϕ(qn) = qn ·
∏

p|qn prime

(
1− 1

p

)

� Suppose q | n. Then by we have

ϕ(qn) = qϕ(n) by Exercise 4.2.56

= qn ·
∏

p|n prime

(
1− 1

p

)
by induction hypothesis

= qn ·
∏

p|qn prime

(
1− 1

p

)

The last equation holds because the fact that q | n implies that, for all
positive primes p, we have p | n if and only if p | qn.
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� Suppose q - n. Then q ⊥ n, so we have

ϕ(qn) = ϕ(q)ϕ(n) by Theorem 4.2.55

= ϕ(q) · n ·
∏

p|n prime

(
1− 1

p

)
by induction hypothesis

= (q − 1) · n ·
∏

p|n prime

(
1− 1

q

)
by Example 3.3.32

= q

(
1− 1

p

)
n ·

∏
p|n prime

(
1− 1

p

)
rearranging

= qn ·

 ∏
p|n prime

(
1− 1

p

) · (1− 1

q

)
rearranging

= qn ·
∏
p|qn

(
1− 1

p

)
reindexing the product

In both cases, we have shown that the formula holds.

By induction, we’re done.

Well-founded relations

First, we introduce the notion of a well-founded relation.

Definition 5.3.8
Let X be a set. A relation R on X is well-founded if every inhabited subset of X
has an R-minimal element, in the following sense: for each inhabited U ⊆ X, there
exists m ∈ U such that ¬(x R m) for all x ∈ U . A relation that is not well-founded
is called ill-founded.

Example 5.3.9
The relation < on N is well-founded—this is just a fancy way of stating the well-
ordering principle (Theorem 1.3.37). Indeed, let U ⊆ N be an inhabited subset. By
the well-ordering principle, there exists an element m ∈ U such that m 6 x for all
x ∈ U . But this says precisely that ¬(x < m) for all x ∈ U . C

Example 5.3.10
However, the relation < on Z is not well-founded—indeed, Z is an inhabited subset
of Z with no <-least element. C

Exercise 5.3.11
Let <1 be the relation on N defined for m,n ∈ N by

m <1 n ⇔ n = m+ 1
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Prove that <1 is a well-founded relation on N. C

Proposition 5.3.12
Let X be a set and let R be a relation on X. R is well-founded if and only if there
is no infinite R-descending chains; that is, there does not exist a sequence (xn)n∈N
of elements of X such that xn+1 R xn for all n ∈ N.

Proof. We prove the contrapositives of the two directions; that is, R is ill-founded
if and only if R has an infinite descending R-chain.

• (⇒) Suppose that R is ill-founded, and let U ⊆ X be an inhabited subset with
no R-minimal element. Define a sequence (xn)n∈N of elements of X—in fact,
of U—recursively as follows:

� Let x0 ∈ U be arbitrarily chosen.

� Fix n ∈ N and suppose x0, x1, . . . , xn ∈ U have been defined. Since U
has no R-minimal element, it contains an element which is related to xn
by R; define xn+1 to be such an element.

Then (xn)n∈N is an infinite R-descending chain

• (⇐) Suppose there is an infinite R-descending chain (xn)n∈N. Define U = {xn |
n ∈ N} to be the set of elements in this sequence. Then U has no R-minimal
element. Indeed, given m ∈ U , we must have m = xn for some n ∈ N; but
then xn+1 ∈ U and xn+1 R m. Hence R is ill-founded.

Proposition 5.3.13
Let Z>0 be the set of positive integers and define a relation R on Z>0 by

m R n ⇔ n = pm for some prime p > 0

for all m,n > 0. Then R is a well-founded relation on Z>0.

Proof. Suppose that (xn)n∈N is an infiniteR-descending chain in Z>0. Since xn+1 R xn
for all n ∈ N, we have xn = pxn+1 for some positive prime p for all n ∈ N. Since all
positive primes are greater than or equal to 2, this implies that xn > 2xn+1 for all
n ∈ N.

We prove by strong induction on n ∈ N that x0 > 2nxn+1 for all n ∈ N.

• (BC) We proved above that x0 > 2x1. Hence x0 > x1 = 20x1, as required.

• (IS) Fix n ∈ N and suppose x0 > 2nxn+1. We want to show x0 > 2n+1xn+2.
Well xn+1 > 2xn+2, as proved above, and hence

x0
IH
> 2nxn+1 > 2n · 2xn+2 = 2n+1xn+2
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as required.

By induction, we’ve shown that x0 > 2nxn+1 for all n ∈ N. But xn+1 > 0 for all
n ∈ N, so x0 > 2n for all n ∈ N. This implies that x0 is greater than every integer,
which is a contradiction.

So such a sequence (xn)n∈N cannot exist, and by Proposition 5.3.12, the relation R
is well-founded.

Exercise 5.3.14
Let X be a set and let R be a well-founded relation on X. Given x, y ∈ X, prove
that not both x R y and y R x are true. C

Theorem 5.3.15 (Principle of well-founded induction)
Let X be a set, let R be a well-founded relation on X, and let p(x) be a logical
formula concerning elements of X. Suppose that for each x ∈ X, the following is
true:

If p(y) is true for all R-predecessors y of x, then p(x) is true.

That is, suppose for each x ∈ X that

[∀y ∈ X, (y R x⇒ p(y))]⇒ p(x)

Then p(x) is true for all x ∈ X.

Proof. Suppose that, for each x ∈ X, if p(y) is true for all R-predecessors y of x,
then p(x) is true. Let

U = {x ∈ X | ¬p(x)}

Towards a contradiction, suppose that p(x) is false for some x ∈ X. Then U is
inhabited. Since R is well-founded, U has an R-minimal element m ∈ U . Now

(i) p(m) is false, since m ∈ U .

(ii) p(x) is true for all x ∈ X with x R m. To see this, note that if p(x) is false
and x R m, then x ∈ U , so that m R x by R-minimality of m in U . Since also
x R m, this contradicts Exercise 5.3.14.

Since p(x) is true for all x ∈ X with x R m, by assumption we also have that p(m)
is true. But this contradicts our assumption that m ∈ U .

So it must in fact be the case that U = ∅, so that p(x) is true for all x ∈ X.

Exercise 5.3.16
Prove that the principle of <-induction on N is precisely strong induction. Specific-
ally, prove that the following two statements are equivalent:
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(i) p(0) is true and, for all n ∈ N, if p(k) is true for all k 6 n, then p(n + 1) is
true;

(ii) For all n ∈ N, if p(k) is true for all k < n, then p(n) is true.

Strong induction says that we can deduce that p(n) is true for all n ∈ N from the
knowledge that (i) is true for all n ∈ N; and <-induction tells us that p(n) is true
for all n ∈ N from the knowledge that (ii) is true for all n ∈ N. You should prove
that (i) and (ii) are equivalent. C

Example 5.3.17
Let <1 be the relation on N defined in Exercise 5.3.11. We prove that the principle of
<1-induction on N is precisely strong induction. Specifically, prove that the following
two statements are equivalent:

(i) p(0) is true and, for all n ∈ N, if p(n) is true then p(n+ 1) is true;

(ii) For all n ∈ N, if p(k) is true for all k ∈ N with k + 1 = n, then p(n) is true.

Weak induction says that we can deduce that p(n) is true for all n ∈ N from the
knowledge that (i) is true for all n ∈ N; and <1-induction tells us that p(n) is true
for all n ∈ N from the knowledge that (ii) is true for all n ∈ N. We prove that (i)
and (ii) are equivalent.

• (i) ⇒ (ii). Suppose that p(0) and, for all n ∈ N, if p(n) is true then p(n + 1)
is true. We will prove that

[∀m ∈ N, (n = m+ 1⇒ p(m))]⇒ p(n)

is true for all n ∈ N.

So fix n ∈ N, and assume ∀m ∈ N, (n = m + 1 ⇒ p(m)). We prove p(n) is
true.

� If n = 0 then we’re done, since p(0) is true by assumption.

� If n > 0 then n = m + 1 for some m ∈ N. By our assumption, we have
∀m ∈ N, (n = m+ 1⇒ p(m)), and so in particular, p(m) is true. By the
weak induction step, we have p(m)⇒ p(m+1) is true. But then p(m+1)
is true. Since n = m+ 1, we have that p(n) is true.

In any case, we’ve proved that p(n) is true, as required.

• (ii) ⇒ (i). For n ∈ N, denote the following statement by H(n)

[∀m ∈ N, (n = m+ 1⇒ p(m))]⇒ p(n)

Assume H(n) is true for all n ∈ N. We prove that p(0) is true and, for all
n ∈ N, if p(n) is true then p(n+ 1) is true.
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� p(0) is true. Indeed, for any m ∈ N we have that 0 = m+1 is false, so the
statement 0 = m+1⇒ p(m) is true. Hence ∀m ∈ N, (0 = m+1⇒ p(m))
is true. Since H(0) is true, it follows that p(0) is true.

� Fix n ∈ N and suppose p(n) is true. By H(n+1), we have that if p(n+1)
is true for all m ∈ N with m + 1 = n + 1, then p(n + 1) is true. But
the only m ∈ N such that m + 1 = n + 1 is n itself, and p(n) is true by
assumption; so by H(n+ 1), we have p(n+ 1), as required.

Hence the two induction principles are equivalent. C

Example 5.3.18
C

Structural induction from well-founded induction

We will now derive the principle of structural induction in terms of the principle of
well-founded induction. To do this, we need to associate to each inductively defined
set X a corresponding well-founded relation RX , such that well-founded induction
on RX corresponds with structural induction on X.

Definition 5.3.19
Let X be an inductively defined set. Define a relation RX on X as follows: for all
x, y ∈ X, x RX y if and only if

y = f(x1, x2, . . . , xn)

for some constructor f of arity n and elements x1, x2, . . . , xn, such that xi = x for
some i ∈ [n].

Example 5.3.20
Let N be the set of natural numbers, taken to be inductively defined in the usual way.
Since the only constructor is the successor operation, we must have for m,n ∈ N
that

m RN n ⇔ n = m+ 1

This is precisely the relation <1 from Exercise 5.3.11. We already established that
structural induction on N is precisely weak induction (Example 5.3.6), and that
well-founded induction on <1 is also precisely weak induction (Example 5.3.17). C

Example 5.3.21
Let P be a set of propositional variables and let L(P ) be the set of propositional
formulae built from variables in P and the logical operators ∧, ∨, ⇒ and ¬.

Then R = RL(P ) is the relation defined for s, t ∈ L(P ) by letting s R t if and only if

t ∈ {s ∧ u, u ∧ s, s ∨ u, u ∨ s, s⇒ u, u⇒ s, ¬s}
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for some u ∈ L(P ). C

The plan for the rest of this section is to demonstrate that structural induction
follows from well-founded induction. To do this, we prove that the relation RX

associated with an inductively defined set X is well-founded, and then we prove
that structural induction on X is equivalent to well-founded induction on RX .

To simplify our proofs, we introduce the notion of rank. The rank of an element x of
an inductively defined set X is a natural number which says how many constructors
need to be applied in order to obtain x.

Definition 5.3.22
Let X be an inductively defined set. The function rank : X → N is defined recurs-
ively as follows:
• If b is a basic element of X, then rank(b) = 0.

• Let f be a constructor of arity n and let x1, x2, . . . , xn ∈ X. Then

rank(f(x1, x2, . . . , xn)) = max{rank(x1), rank(x2), . . . , rank(xn)}+ 1

Note that rank : X → N is a well-defined function, since by the conditions listed in
Definition 5.3.1, every element of X is either basic or has a unique representation in
the form f(x1, x2, . . . , xn) for some constructor f and elements x1, x2, . . . , xn ∈ X.

Example 5.3.23
The rank function on the inductively defined set of natural numbers is fairly boring.
Indeed, it tells us that

• rank(0) = 0; and

• rank(n+ 1) = rank(n) + 1 for all n ∈ N.

It can easily be seen that rank(n) = n for all n ∈ N. This makes sense, since n can
be obtained from 0 by iterating the successor operation n times. C

Lemma 5.3.24
Let X be an inductively defined set. The relation RX defined in Definition 5.3.19 is
well-founded.

Proof.

Proof of Theorem 5.3.5. To do: Write proof

To do: Examples and exercises
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Section 6.1

Inequalities and bounds

We first encountered the real numbers in Section 1.1, when the real numbers were
introduced using a vague (but intuitive) notion of an infinite number line (Definition
1.1.24):

−5 −4 −3 −2 −1 0 1 2 3 4 5

This section will scrutinise the set of real numbers in its capacity as a complete
ordered field. Decomposing what this means:

• A field is a set with a notion of ‘zero’ and ‘one’, in which it makes sense to
talk about addition, subtraction, multiplication, and division by everything
except zero. Examples are Q, R, and Z/pZ when p is a prime number (but not
when p is composite). However, Z is not a field, since we can’t freely divide
by nonzero elements—for example, 1 ∈ Z and 2 ∈ Z, but no integer n satisfies
2n = 1.

• An ordered field is a field which is equipped with a well-behaved notion of
order. Both Q and R are ordered fields, but Z/pZ is not. We’ll see why soon.

• A complete ordered field is an ordered field in which every set with an upper
bound has a least upper bound. As we will see, Q is not a complete ordered
field, but R is.

We will first establish a small set of rules (axioms) that a set (with appropriate
structure) should follow in order to be considered a complete ordered field. The rest
of the section will be concerned with proving some theorems that will be extremely
useful in real analysis. Most of these theorems are inequalities, that is statements
that exploit the order structure of the reals. Later in the section, we will consider
suprema and infima, which exploit the completeness of the reals.

? Axiomatising the real numbers

First on our agenda is establishing a set of rules that characterise the reals.

First and foremost, we should be able to perform arithmetic with real numbers—real
numbers can be added, subtracted, multiplied and divided (except by zero). This is
to say that the real numbers are a field—Axioms 6.1.1 make this precise.
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Axioms 6.1.1 (Field axioms)
Let X be a set equipped with elements 0 (‘zero’) and 1 (‘unit’), and binary operations
+ (‘addition’) and · (‘multiplication’). The structure (X, 0, 1,+, ·) is a field if it
satisfies the following axioms:

• Zero and unit

(F1) 0 6= 1.

• Axioms for addition

(F2) (Associativity) x+ (y + z) = (x+ y) + z for all x, y, z ∈ X.

(F3) (Identity) x+ 0 = x for all x ∈ X.

(F4) (Inverse) For all x ∈ X, there exists y ∈ X such that x+ y = 0.

(F5) (Commutativity) x+ y = y + x for all x, y ∈ X.

• Axioms for multiplication

(F6) (Associativity) x · (y · z) = (x · y) · z for all x, y, z ∈ X.

(F7) (Identity) x · 1 = x for all x ∈ X.

(F8) (Inverse) For all x ∈ X with x 6= 0, there exists y ∈ X such that x ·y = 1.

(F9) (Commutativity) x · y = y · x for all x, y ∈ X.

• Distributivity

(F10) x · (y + z) = (x · y) + (x · z) for all x, y, z ∈ X.

Example 6.1.2
The rationals Q and the reals R both form fields with their usual notions of zero,
unit, addition and multiplication. However, the integers Z do not, since for example
2 has no multiplicative inverse. C

Example 6.1.3
Let p > 0 be prime. The set Z/pZ (see Definition 5.1.38) is a field, with zero element
[0]p and unit element [1]p, and with addition and multiplication defined by

[a]p + [b]p = [a+ b]p and [a]p · [b]p = [ab]p

for all a, b ∈ Z. Well-definedness of these operations is immediate from Theorem
3.3.6 and the modular arithmetic theorem (Theorem 3.3.9).

The only axiom which is not easy to verify is the multiplicative inverse axiom (F8).
Indeed, if [a]p ∈ Z/pZ then [a]p 6= [0]p if and only if p - a. But if p - a then a ⊥ p, so
a has a multiplicative inverse u modulo p. This implies that [a]p · [u]p = [au]p = [1]p.
So (F8) holds. C

Exercise 6.1.4
Let n > 0 be composite. Prove that Z/nZ is not a field, where zero, unit, addition
and multiplication are defined as in Example 6.1.3. C
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Axioms 6.1.1 tell us that every element of a field has an additive inverse, and every
nonzero element of a field has a multiplicative inverse. It would be convenient if
inverses were unique whenever they exist. Proposition 6.1.5 proves that this is the
case.

Proposition 6.1.5 (Uniqueness of inverses)
Let (X, 0, 1,+, ·) be a field and let x ∈ X. Then

(a) Suppose y, z ∈ X are such that x+ y = 0 and x+ z = 0. Then y = z.

(b) Suppose x 6= 0 and y, z ∈ X are such that x · y = 1 and x · z = 1. Then y = z.

Proof of (a). By calculation, we have

y = y + 0 by (F3)

= y + (x+ z) by definition of z

= (y + x) + z by associativity (F2)

= (x+ y) + z by commutativity (F5)

= 0 + z by definition of y

= z + 0 by commutativity (F5)

= z by (F3)

so indeed y = z.

The proof of (b) is essentially the same and is left as an exercise.

Since inverses are unique, it makes sense to have notation to refer to them.

Notation 6.1.6
Let (X, 0, 1,+, ·) be a field and let x ∈ X. Write −x for the (unique) additive inverse
of x and, if x 6= 0 write x−1 for the (unique) multiplicative inverse of x.

Example 6.1.7
In the fields Q and R, the additive inverse −x of an element x is simply its negative,
and the multiplicative inverse x−1 of some x 6= 0 is simply its reciprocal 1

x . C

Example 6.1.8
Let p > 0 be prime and let [a]p ∈ Z/pZ. Then −[a]p = [−a]p and, if p - a, then
[a]−1

p = [u]p, where u is any integer satisfying au ≡ 1 mod p. C

Exercise 6.1.9
Let (X, 0, 1,+, ·) be a field. Prove that −(−x) = x for all x ∈ X, and that (x−1)−1 =
x for all nonzero x ∈ X. C

Example 6.1.10
Let (X, 0, 1,+, ·) be a field. We prove that if x ∈ X then x ·0 = 0. Well, 0 = 0+0 by
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(F3). Hence x·0 = x·(0+0). By distributivity (F10), we have x·(0+0) = (x·0)+(x·0).
Hence

x · 0 = (x · 0) + (x · 0)

Let y = −(x · 0). Then

0 = x · 0 + y by (F4)

= ((x · 0) + (x · 0)) + y as above

= (x · 0) + ((x · 0) + y) by associativity (F2)

= (x · 0) + 0 by (F4)

= x · 0 by (F3)

so indeed we have x · 0 = 0. C

Exercise 6.1.11
Let (X, 0, 1,+, ·) be a field. Prove that (−1) · x = −x for all x ∈ X, and that
(−x)−1 = −(x−1) for all nonzero x ∈ X. C

What makes the real numbers useful is not simply our ability to add, subtract,
multiply and divide them; we can also compare their size—indeed, this is what gives
rise to the informal notion of a number line. Axioms 6.1.12 make precise exactly
what it means for the elements of a field to be assembled into a ‘number line’.

Axioms 6.1.12 (Ordered field axioms)
Let X be a set, 0, 1 ∈ X be elements, +, · be binary operations, and 6 be a relation
on X. The structure (X, 0, 1,+, ·,6) is an ordered field if it satisfies the field
axioms (F1)–(F10) (see Axioms 6.1.1) and, additionally, it satisfies the following
axioms:

• Linear order axioms

(PO1) (Reflexivity) x 6 x for all x ∈ X.

(PO2) (Antisymmetry) For all x, y ∈ X, if x 6 y and y 6 x, then x = y.

(PO3) (Transitivity) For all x, y, z ∈ X, if x 6 y and y 6 z, then x 6 z.

(PO4) (Linearity) For all x, y ∈ X, either x 6 y or y 6 x.

• Interaction of order with arithmetic

(OF1) For all x, y, z ∈ X, if x 6 y, then x+ z 6 y + z.

(OF2) For all x, y ∈ X, if 0 6 x and 0 6 y, then 0 6 xy.

Example 6.1.13
The field Q of rational numbers and and the field R of real numbers, with their usual
notions of ordering, can easily be seen to form ordered fields. C

Example 6.1.14
We prove that, in any ordered field, we have 0 6 1. Note first that either 0 6 1 or
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1 6 0 by linearity (PO4). If 0 6 1 then we’re done, so suppose 1 6 0. Then 0 6 −1;
indeed:

0 = 1 + (−1) by (F4)

6 0 + (−1) by (OF1), since 1 6 0

= (−1) + 0 by commutativity (F5)

= −1 by (F3)

By (OF2), it follows that 0 6 (−1)(−1). But (−1)(−1) = 1 by Exercise 6.1.11, and
hence 0 6 1. Since 1 6 0 and 0 6 1, we have 0 = 1 by antisymmetry (PO2). But
this contradicts axiom (F1). Hence 0 6 1. In fact, 0 < 1 since 0 6= 1. C

We have seen that Q and R are ordered fields (Examples 6.1.7 and 6.1.13), and that
Z/pZ is a field for p > 0 prime (Example 6.1.3). The following proposition is an
interesting result proving that there is no notion of ‘ordering’ under which the field
Z/pZ can be made into an ordered field!

Proposition 6.1.15
Let p > 0 be prime. There is no relation 6 on Z/pZ which satisfies the ordered field
axioms.

Proof. We just showed that [0] 6 [1]. It follows that, for all a ∈ Z, we have [a] 6
[a] + [1]; indeed:

[a] = [a] + [0] by (F3)

6 [a] + [1] by (OF1), since [0] 6 [1]

= [a+ 1] by definition of + on Z/pZ

It is a straightforward induction to prove that [a] 6 [a+ n] for all n ∈ N. But then
we have

[1] 6 [1 + (p− 1)] = [p] = [0]

so [0] 6 [1] and [1] 6 [0]. This implies [0] = [1] by antisymmetry (PO2), contradict-
ing axiom (F1).

Exercise 6.1.16
Let (X, 0, 1,+, ·) be a field. Prove that if X is finite, then there is no relation 6 on
X such that (X, 0, 1,+, ·,6) is an ordered field. C

Theorem 6.1.17 below summarises some properties of ordered fields which will be
useful in our proofs. Note, however, that this is certainly not an exhaustive list of
elementary properties of ordered fields that we will use in our subsequent proofs—to
explicitly state and prove all of these would not make for a scintillating read.

264



Section 6.1. Inequalities and bounds 265

Theorem 6.1.17
Let (X, 0, 1,+, ·,6) be an ordered field. Then

(a) For all x, y ∈ X, x 6 y if and only if 0 6 y − x;

(b) For all x ∈ X, −x 6 0 6 x or x 6 0 6 −x;

(c) For all x, x′, y, y′ ∈ X, if x 6 x′ and y 6 y′, then x+ y 6 x′ + y′;

(d) For all x, y, z ∈ X, if 0 6 x and y 6 z, then xy 6 xz;

(e) For all nonzero x ∈ X, if 0 6 x, then 0 6 x−1.

(f) For all nonzero x, y ∈ X, if x 6 y, then y−1 6 x−1.

Proof of (a), (b) and (e).

(a) (⇒) Suppose x 6 y. Then by additivity (OF1), x+ (−x) 6 y + (−x), that is
0 6 y − x. (⇐) Suppose 0 6 y − x. By additivity (OF1), 0 + x 6 (y − x) + x;
that is, x 6 y.

(b) We know by linearity (PO4) that either 0 6 x or x 6 0. If 0 6 x, then by
(OF1) we have 0 + (−x) 6 x+ (−x), that is −x 6 0. Likewise, if x 6 0 then
0 6 −x.

(e) Suppose 0 6 x. By linearity (PO4), either 0 6 x−1 or x−1 6 0. If x−1 6 0,
then by (d) we have x−1 · x 6 0 · x, that is 1 6 0. This contradicts Example
6.1.14, so we must have 0 6 x−1.

The proofs of the remaining properties are left as an exercise.

We wanted to characterise the reals completely, but so far we have failed to do so—
indeed, Exercise 6.1.13 showed that both Q and R are ordered fields, so the ordered
field axioms do not suffice to distinguish Q from R. The final piece in the puzzle
is completeness. This single additional axiom distinguishes Q from R, and in fact
completely characterises R (see Theorem 6.1.19).

Axioms 6.1.18 (Complete ordered field axioms)
Let X be a set, 0, 1 ∈ X be elements, +, · be binary operations, and 6 be a relation
on X. The structure (X, 0, 1,+, ·,6) is a complete ordered field if it is an ordered
field—that is, it satisfies axioms (F1)–(F10), (PO1)–(PO4) and (OF1)–(OF2) (see
Axioms 6.1.1 and 6.1.12)—and, in addition, it satisfies the following completeness
axiom:

(C1) Let A ⊆ X. If A has an upper bound, then it has a least upper bound.
Specifically, if there exists u ∈ X such that a 6 u for all a ∈ A, then there
exists s ∈ X such that
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� a 6 s for all a ∈ A; and

� If s′ ∈ X is such that a 6 s′ for all a ∈ A, then s 6 s′.

We call such a value s ∈ X a supremum for A.

Theorem 6.1.19
The real numbers (R, 0, 1,+, ·,6) form a complete ordered field. Moreover, any two
complete ordered fields are essentially the same.a

aThe notion of ‘sameness’ here is isomorphism (specifically, isomorphism of ordered fields), a concept
which is beyond the scope of these notes.

The proof of Theorem 6.1.19 is intricate and far beyond the scope of these notes, so
is omitted. What it tells us is that it doesn’t matter exactly how we define the reals,
since any complete ordered field will do. We can therefore proceed with confidence
that, no matter what notion of ‘real numbers’ we settle on, everything we prove will
be true of that notion. This is for the best, since we haven’t actually defined the set
R of real numbers at all!

The two most common approaches to constructing a set of real numbers are:

• Dedekind reals. In this approach, real numbers are identified with particular
subsets of Q—informally speaking, r ∈ R is identified with the set of rational
numbers less than r.

• Cauchy reals. In this approach, real numbers are identified with equivalence
classes of sequences of rational numbers—informally speaking, r ∈ R is identi-
fied with the set of sequences of rational numbers which converge to r (in the
sense of Definition 6.2.7).

Discussion of Dedekind and Cauchy reals is relegated to the appendices of these
notes—see Section B.2.

We will focus on the reals in their capacity as a complete ordered field towards the
end of this section, when we study suprema and infima. However, the completeness
axiom (C1) will not be needed in any of our proofs until that point.

Magnitude and scalar product

In this part of the section, we home in on sets of the form Rn, for n ∈ N. Elements
of Rn are sequences of the form (x1, x2, . . . , xn), where each xi ∈ R. With our
interpretation of the reals R as a line, we can interpret a sequence (x1, x2, . . . , xn)
as a point in n-dimensional space:
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• 0-dimensional space is a single point. The set R0 has one element, namely the
empty sequence (), so this makes sense.

• 1-dimensional space is a line. This matches our intuition that R = R1 forms a
line.

• 2-dimensional space is a plane. The elements of R2 are pairs (x, y), where x
and y are both real numbers. We can interpret the pair (x, y) as coordinates
for a point which is situated x units to the right of (0, 0) and y units above
(0, 0) (where negative values of x or y reverse this direction)—see Figure 6.1.

(−3,−1)

(−3, 0)

(−3, 1)

(−3, 2)

(−2,−1)

(−2, 0)

(−2, 1)

(−2, 2)

(−1,−1)

(−1, 0)

(−1, 1)

(−1, 2)

(0,−1)

(0, 0)

(0, 1)

(0, 2)

(1,−1)

(1, 0)

(1, 1)

(1, 2)

(2,−1)

(2, 0)

(2, 1)

(2, 2)

(3,−1)

(3, 0)

(3, 1)

(3, 2)

Figure 6.1: Some points in R2

With this intuition in mind, we set up the following notation.

Notation 6.1.20
Let n ∈ N. Elements of Rn will be denoted ~x, ~y, ~z, . . . (LATEX code: \vec) and
called (n-dimensional) vectors. Given a vector ~x ∈ Rn, we write xi for the ith

component of ~x, so that
~x = (x1, x2, . . . , xn)

The element (0, 0, . . . , 0) ∈ Rn is called the origin or zero vector of Rn, and is
denoted by ~0.

Moreover, if ~x, ~y ∈ Rn and a ∈ R we write

~x+ ~y = (x1 + y1, x2 + y2, . . . , xn + yn) and a~x = (ax1, ax2, . . . , axn)

Example 6.1.21
For all ~x ∈ Rn, we have

~x+~0 = ~x and 1~x = ~x

C
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Definition 6.1.22
Let ~x ∈ Rn. The magnitude of ~x is the real number ‖~x‖ (LATEX code: \lVert
\vec x \rVert) defined by

‖~x‖ =

√√√√ n∑
i=1

x2
i =

√
x2

1 + x2
2 + · · ·+ x2

n

Given vectors ~x, ~y ∈ Rn, the distance from ~x to ~y is defined to be ‖~y − ~x‖. Thus
the magnitude of a vector can be thought of as the distance from that vector to the
origin.

Example 6.1.23
In R2, Definition 6.1.22 says that

‖(x, y)‖ =
√
x2 + y2

This matches the intuition obtained from the Pythagorean theorem on the sides of
right-hand triangles. For example, consider the triangle with vertices (0, 0), (4, 0)
and (4, 3):

(0, 0) (4, 0)

(4, 3)

The hypotenuse of the triangle has magnitude

‖(4, 3)‖ =
√

42 + 32 =
√

25 = 5

C

Exercise 6.1.24
Let ~x, ~y ∈ Rn. Prove that ‖~x − ~y‖ = ‖~y − ~x‖. That is, the distance from ~x to ~y is
equal to the distance from ~y to ~x. C

Exercise 6.1.25
Prove that if x ∈ R then the magnitude ‖(x)‖ is equal to the absolute value |x|. C

Exercise 6.1.26
Let ~x ∈ Rn. Prove that ‖~x‖ = 0 if and only if ~x = ~0. C
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The triangle inequality and the Cauchy–Schwarz inequality

The first, and simplest, inequality that we investigate is the (one-dimensional version
of the) triangle inequality (Theorem 6.1.28). It is so named because of a generalisa-
tion to higher dimensions (Theorem 6.1.38), which can be interpreted geometrically
as saying that the sum of two side lengths of a triangle is greater than or equal to
the third side length.

The triangle inequality is used very frequently in mathematical proofs—you will
encounter it repeatedly in Sections 6.2 and 6.3—yet its proof is surprisingly simple.

Before we can prove the triangle inequality, we need the following fact about square
roots of real numbers.

Lemma 6.1.27
Let x, y ∈ R. If 0 6 x 6 y, then

√
x 6
√
y.

Proof. Suppose 0 6 x 6 y. Note that, by definition of the square root symbol, we
have

√
x > 0 and

√
y > 0.

Suppose
√
x >
√
y. By two applications of Theorem 6.1.17(d), we have

y =
√
y · √y <

√
x · √y <

√
x ·
√
x = x

so that y < x. But this contradicts the assumption that x 6 y. Hence
√
x 6
√
y, as

required.

Theorem 6.1.28 (Triangle inequality in one dimension)
Let x, y ∈ R. Then |x+ y| 6 |x|+ |y|. Moreover, |x+ y| = |x|+ |y| if and only if x
and y have the same sign.

Proof. Note first that xy 6 |xy|; indeed, xy and |xy| are equal if xy is non-negative,
and otherwise we have xy < 0 < |xy|. Also x2 = |x|2 and y2 = |y|2. Hence

(x+ y)2 = x2 + 2xy + y2 6 |x|2 + 2|xy|+ |y|2 = (|x|+ |y|)2

Taking (nonnegative) square roots yields

|x+ y| 6 ||x|+ |y||

by Lemma 6.1.27. But |x| + |y| > 0, so ||x| + |y|| = |x| + |y|. This completes the
first part of the proof.

Equality holds in the above if and only if xy = |xy|, which occurs if and only if
xy > 0. But this is true if and only if x and y are both non-negative or both
non-positive—that is, they have the same sign.
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Example 6.1.29
Let x, y ∈ R. We prove that

|x+ y|
1 + |x+ y|

6
|x|

1 + |x|
+
|y|

1 + |y|

First note that, if 0 6 s 6 t, then

s

1 + s
6

t

1 + t

To see this, note that

s 6 t⇒ 1 + s 6 1 + t rearranging

⇒ 1

1 + t
6

1

1 + s
since 1 + s, 1 + t > 0

⇒ 1− 1

1 + s
6 1− 1

1 + t
rearranging

⇒ s

1 + s
6

t

1 + t
rearranging

Now letting s = |x + y| and t = |x| + |y|, we have s 6 t by the triangle inequality,
and hence

|x+ y|
1 + |x+ y|

6
|x|

1 + |x|+ |y|
+

|y|
1 + |x|+ |y|

6
|x|

1 + |x|
+
|y|

1 + |y|

as required. C

Exercise 6.1.30
Let n ∈ N and let xi ∈ R for each i ∈ [n]. Prove that∣∣∣∣∣

n∑
i=1

xi

∣∣∣∣∣ 6
n∑

i=1

|xi|

with equality if and only if the numbers xi are either all positive or all negative. C

Exercise 6.1.31
Let x, y ∈ R. Prove that

||x| − |y|| 6 |x− y|

C

We will generalise the triangle inequality to arbitrary dimensions in Theorem 6.1.38.
Our proof will go via the Cauchy–Schwarz inequality (Theorem 6.1.35). To motivate
the Cauchy–Schwarz inequality, we introduce another geometric notion called the
scalar product of two vectors.
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Definition 6.1.32
Let ~x, ~y ∈ Rn. The scalar product (or dot product) of ~x with ~y is the real
number ~x · ~y (LATEX code: \cdot) defined by

~x · ~y =
n∑

i=1

xiyi = x1y1 + x2y2 + · · ·+ xnyn

Example 6.1.33
Let ~x ∈ Rn. Then ~x · ~x = ‖~x‖2. Indeed

~x · ~x =

n∑
i=1

x2
i = ‖~x‖2

C

Exercise 6.1.34
Let ~x, ~y, ~z, ~w ∈ Rn and let a, b, c, d ∈ R. Prove that

(a~x+ b~y) · (c~z + d~w) = ac(~x · ~z) + ad(~x · ~w) + bc(~y · ~z) + bd(~y · ~w)

C

Intuitively, the scalar product of two vectors ~x and ~y measures the extent to which
~x and ~y fail to be orthogonal. In fact, if θ is the acute angle formed between the
lines `1 and `2, where `1 passes through ~0 and ~x and `2 passes through ~0 and ~y, then
a formula for the scalar product of ~x and ~y is given by

~x · ~y = ‖~x‖‖~y‖ cos θ

~0

~x

~y

‖x‖ cos θ

θ

Evidently, ~x and ~y are orthogonal if and only if cos θ = 0, in which case ~x · ~y = 0
as well. We cannot prove this yet, though, as we have not yet defined trigonomet-
ric functions or explored their properties, but hopefully this provides some useful
intuition.
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The Cauchy–Schwarz inequality provides a useful comparison of the size of a scalar
product of two vectors with the magnitudes of the vectors.

Theorem 6.1.35 (Cauchy–Schwarz inequality)
Let n ∈ N and let xi, yi ∈ R for each i ∈ [n]. Then

|~x · ~y| 6 ‖~x‖‖~y‖

with equality if and only if a~x = b~y for some a, b ∈ R which are not both zero.

Proof. If ~y = ~0, then this is trivial: both sides of the equation are equal to zero! So
assume that ~y 6= ~0. In particular, by Exercise 6.1.26, we have ‖~y‖ > 0.

Define k =
~x · ~y
‖~y‖2

. Then

0 6 ‖~x− k~y‖2 since squares are nonnegative

= (~x− k~y) · (~x− k~y) by Example 6.1.33

= (~x · ~x)− 2k(~x · ~y) + k2(~y · ~y) by Exercise 6.1.34

= ‖~x‖2 − (~x · ~y)2

‖y‖2
by definition of k

Multiplying through by ‖~y‖2, which is non-negative and therefore doesn’t change
the sign of the inequality, yields

0 6 ‖~x‖2‖~y‖2 − (~x · ~y)2

which is equivalent to what was to be proved.

Evidently, equality holds if and only if ‖~x−k~y‖ = 0, which by Exercise 6.1.26 occurs
if and only if ~x− k~y = 0. Now:

• If ~x− k~y = 0, then we have

~x− k~y = 0

⇔ ~x− ~x · ~y
‖~y‖2

~y = 0 by definition of k

⇔ ‖~y‖2~x = (~x · ~y)~y rearranging

If ~y 6= ~0 then let a = ‖~y‖2 and b = ~x · ~y; otherwise, let a = 0 and b = 1. In
both cases, we have a~x = b~y and a, b are not both zero.

If a~x = b~y for some a, b ∈ R not both zero, then either:

� a = 0 and b 6= 0, in which case ~y = 0 and we have equality in the
Cauchy–Schwarz inequality; or
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� a 6= 0, in which case ~y = b
a~x. Write c = b

a . Then

|~x · ~y| = |~x · (c~x)|
= |c(~x · ~x)| by Exercise 6.1.34

= |c|‖~x‖2 by Example 6.1.33

= ‖~x‖‖c~x‖ rearranging

= ‖~x‖‖~y‖

In either case, we have equality in the Cauchy–Schwarz inequality.

So equality holds if and only if a~x = b~y for some a, b ∈ R not both zero.

Example 6.1.36
Let a, b, c ∈ R. We’ll prove that

ab+ bc+ ca 6 a2 + b2 + c2

and examine when equality holds.

Letting ~x = (a, b, c) and ~y = (b, c, a) yields

~x · ~y = ab+ bc+ ca

and

‖~x‖ =
√
a2 + b2 + c2 =

√
b2 + c2 + a2 = ‖~y‖

Hence ‖~x‖‖~y‖ = a2 + b2 + c2. By the Cauchy–Schwarz inequality, it follows that

~x · ~y = ab+ bc+ ca 6 a2 + b2 + c2 = ‖~x‖‖~y‖

as required. Equality holds if and only if k(a, b, c) = `(b, c, a) for some k, ` ∈ R not
both zero. We may assume k 6= 0—otherwise, swap the vectors ~x and ~y in what
follows. Then, letting t = `

k , we have

k(a, b, c) = `(b, c, a)

⇔ (a, b, c) = (tb, tc, ta) by definition of t

⇔ (a, b, c) = (t2c, t2a, t2b) substituting a = tb etc.

⇔ (a, b, c) = (t3a, t3b, t3c) substituting a = tb etc. again

⇔ ~x = t3~x

This occurs if and only if either (a, b, c) = (0, 0, 0), or t = 1, in which case

(a, b, c) = (tb, tc, ta) = (b, c, a)

So equality holds if and only if a = b = c. C
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Exercise 6.1.37
Let r ∈ N and let a1, a2, . . . , ar ∈ R be such that a2

1 + a2
2 + · · ·+ a2

n = 6. Prove that

(a1 + 2a2 + · · ·+ nan)2 6 n(n+ 1)(2n+ 1)

and determine when equality holds. C

We now use the Cauchy–Schwarz inequality to generalise the one-dimensional version
of the triangle inequality (Theorem 6.1.28) to arbitrary (finite) dimensions.

Theorem 6.1.38 (Triangle inequality)
Let ~x, ~y ∈ Rn. Then

‖~x+ ~y‖ 6 ‖~x‖+ ‖~y‖

with equality if and only if a~x = b~y for some real numbers a, b > 0.

Proof. We proceed by calculation:

‖~x+ ~y‖2 = (~x+ ~y) · (~x+ ~y) by Example 6.1.33

= (~x · ~x) + 2(~x · ~y) + (~y · ~y) by Exercise 6.1.34

6 (~x · ~x) + 2|~x · ~y|+ (~y · ~y) since a 6 |a| for all a ∈ R
6 ‖~x‖2 + 2‖x‖‖y‖+ ‖~y‖2 by Exercise 6.1.33 and Cauchy–Schwarz

= (‖~x‖+ ‖~y‖)2 rearranging

Taking (nonnegative) square roots of both sides yields

‖~x+ ~y‖ 6 ‖~x‖+ ‖~y‖

by Lemma 6.1.27, as required.

Equality holds if and only if the two ‘6’ symbols in the above derivation are in fact
‘=’ symbols.

• The first inequality is equality if and only if ~x · ~y = |~x · ~y|, which holds if and
only if ~x · ~y > 0.

• The second inequality is equality if and only if equality holds in the Cauchy–
Schwarz inequality. In turn, this occurs if and only if a~x = b~y for some
a, b ∈ R. We may, moreover, assume that a > 0—if not, replace a and b by
their negatives.

If a = 0 then we can take b = 0. If a > 0, then by Example 6.1.33 and Exercise
6.1.34, we have

~x ·
(
b

a
~x

)
=
b

a
‖~x‖2
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which is non-negative if and only if b > 0, since we are assuming that a > 0.

Thus, equality holds in the triangle inequality if and only if a~x = b~y for some
a, b > 0.

This general version of the triangle inequality has a geometric interpretation in terms
of—you guessed it—triangles. Any three points ~a,~b,~c ∈ Rn form a (potentially flat)
triangle:

~a

u

~b

v

~c

w

The side lengths u, v, w are given by the following equations:

u = ‖~b− ~a‖, v = ‖~c−~b‖, w = ‖~a− ~c‖

The triangle inequality says tells us that u 6 v + w. Indeed:

u = ‖~b− ~a‖ by definition of u

= ‖(~b− ~c) + (~c− ~a)‖ rearranging

6 ‖~b− ~c‖+ ‖~c− ~a‖ by the triangle inequality

= ‖~c−~b‖+ ‖~a− ~c‖ by Exercise 6.1.24

= v + w by definition of v and w

That is, the triangle inequality says that the sum of two side lengths of a triangle
is greater than or equal to the third side length. Moreover, it tells us u = v + w
precisely when k(~a− ~c) = `(~c−~b) for some k, ` > 0. If k = 0 then

~c = ~b = 0~a+ (1− 0)~b

if k > 0, then k + ` > 0, so we have

~c =
k

k + `
~a+

`

k + `
~b =

k

k + `
~a+

(
1− k

k + `

)
~b
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Examining this a bit more closely yields that u = v + w if and only if

~c = t~a+ (1− t)~b

for some 0 6 t 6 1, which is to say precisely that ~c lies on the line segment between
~a and ~b. In other words, equality holds in the triangle inequality only if the three
vertices of the triangle are collinear, which is to say that the triangle whose vertices
are the points ~a, ~b and ~c, is flat.

Inequalities of means

Our goal now is to explore different kinds of average—specifically, means—of finite
sets of non-negative real numbers. We will compare the relative sizes of these means
with respect to one-another, with emphasis on three particular kinds of mean: the
arithmetic mean (Definition 6.1.39), the geometric mean (Definition 6.1.41) and the
harmonic mean (Definition 6.1.49). These means in fact assemble into a continuum
of means, called generalised means (Definition 6.1.57), all of which can be compared
with one another.

Definition 6.1.39
Let n > 1. The (arithmetic) mean of real numbers x1, . . . , xn is

1

n

n∑
i=1

xi =
x1 + x2 + · · ·+ xn

n

Example 6.1.40
The arithmetic mean of the numbers C

Definition 6.1.41
Let n > 1. The geometric mean of non-negative real numbers x1, . . . , xn is

n

√√√√ n∏
i=1

xi = n
√
x1 · x2 · · · · · xn

The following theorem is commonly known as the AM–GM inequality.

Theorem 6.1.42 (Inequality of arithmetic and geometric means)
Let n ∈ N and x1, x2, . . . , xn > 0. Then

n
√
x1 · · ·xn︸ ︷︷ ︸

geometric mean

6
x1 + · · ·+ xn

n︸ ︷︷ ︸
arithmetic mean

with equality if and only if x1 = · · · = xn.
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Proof when n = 2. We need to show that, if x, y ∈ R with x, y > 0, then

√
xy 6

x+ y

2

with equality if and only if x = y.

First note that the square roots of x and y exist since they are non-negative. Now

0 6 (
√
x−√y)2 since squares are nonnegative

= (
√
x)2 − 2

√
x
√
y + (

√
y)2 expanding

= x− 2
√
xy + y rearranging

Rearranging the inequality 0 6 x− 2
√
xy + y yields the desired result.

If
√
xy = x+y

2 , then we can rearrange the equation as follows:

√
xy =

x+ y

2
⇒ 2
√
xy = x+ y multiplying by 2

⇒ 4xy = x2 + 2xy + y2 squaring both sides

⇒ x2 − 2xy + y2 = 0 rearranging

⇒ (x− y)2 = 0 factorising

⇒ x− y = 0 since a2 = 0⇒ a = 0 for a ∈ R
⇒ x = y rearranging

So we have proved both parts of the theorem.

Example 6.1.43
We use the AM–GM inequality to prove that the area of a rectangle with fixed
perimeter is maximised when the rectangle is a square.

Indeed, fix a perimeter p > 0, and let x, y > 0 be side lengths of a rectangle with
perimeter p—that is, x and y satisfy the equation 2x + 2y = p. The area a of the
rectangle satisfies a = xy. By the AM–GM inequality, we have

a = xy 6

(
x+ y

2

)2

=
p2

16

Equality holds if and only if x = y, in other words, if and only if the rectangle is a
square. C

Exercise 6.1.44

Let a, b > 0 be real numbers. Prove that
a2 + b2

2
> ab. C
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Example 6.1.45
Let x > 0. We find the minimum possible value of x+ 9

x . By the AM–GM inequality,
we have

x+
9

x
> 2

√
x · 9

x
= 2
√

9 = 6

with equality if and only if x = 9
x , which occurs if and only if x = 3. Hence the

minimum value of x+ 9
x when x > 0 is 6. C

Exercise 6.1.46

Let x > 0 and let n ∈ N. Find the minimum possible value of
n∑

k=−n
xk. C

Exercises 6.1.47 and 6.1.48 complete the proof of the AM–GM inequality (Theorem
6.1.42). Before proceeding with the exercises, let’s fix some notation: for each n ∈ N,
let pAM–GM(n) be the assertion that the AM–GM inequality holds for collections of
n numbers; that is, pAM–GM(n) is the assertion:

For all x1, x2, . . . , xn > 0, we have

1

n

n∑
i=1

xi 6 n

√√√√ n∏
i=1

xi

with equality if and only if x1 = x2 = · · · = xn.

Note that we already proved pAM–GM(2).

Exercise 6.1.47
Let r ∈ N and let x1, x2, . . . , x2r ∈ R. Write

a =
1

r

r∑
i=1

xi and g = r

√√√√ r∏
i=1

xi

for the arithmetic and geometric means, respectively, of the numbers x1, . . . , xr;
write

a′ =
1

r

2r∑
i=r+1

xi and g′ = r

√√√√ 2r∏
i=r+1

xi

for the arithmetic and geometric means, respectively, of the numbers xr+1, . . . , x2r;
and write

A =
1

2r

2r∑
i=1

xi and G = 2r

√√√√ 2r∏
i=1

xi

for the arithmetic and geometric means, respectively, of all the numbers x1, . . . , x2r.
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Prove that

A =
a+ a′

2
and G =

√
gg′

Deduce that, for each r ∈ N, if pAM–GM(r) is true then pAM–GM(2r) is true. Deduce
further than pAM–GM(2m) is true for all m ∈ N. C

Exercise 6.1.48
Let r > 2 and let x1, . . . , xr−1 ∈ N. Define

xr =
1

r − 1

r−1∑
i=1

xi

Prove that
1

r

r∑
i=1

xi = xr

Assuming pAM–GM(r), deduce that

xrr 6
r∏

i=1

xi =

(
r−1∏
i=1

xi

)
· xr

with equality if and only if x1 = x2 = · · · = xr. Deduce that pAM–GM(r) implies
pAM–GM(r − 1). Use Exercise 6.1.47 to deduce further that pAM–GM(n) is true for
all n > 1. C

We now introduce another kind of mean, called the harmonic mean.

Definition 6.1.49
Let n ∈ N. The harmonic mean of nonzero real numbers x1, x2, . . . , xn is(

1

n

n∑
i=1

x−1
i

)−1

=
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

The harmonic mean of two nonzero real numbers x and y has a simpler expression:(
x−1 + y−1

2

)−1

=
2xy

x+ y

The harmonic mean arises naturally when considering

Example 6.1.50
The cities of York and Leeds are located d > 0 miles apart. Two cars drive from
York to Leeds, then immediately turn around and drive back. The two cars depart
from York at the same time and arrive back in York at the same time.
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• The first car drives from York to Leeds at a constant speed of u miles per
hour, and drives back to York at a constant speed of v miles per hour.

• The second car drives from York to Leeds and back again at the same constant
speed of w miles per hour.

According to the following formula from physics:

speed× time = distance

the time spent driving by the first car is d
u + d

v , and the time spent driving by the

second car is 2d
w .

Since the cars spend the same amount of time driving, it follows that

2d

w
=
d

u
+
d

v
⇒ w =

2uv

u+ v

That is, the second car’s speed is the harmonic mean of the two speeds driven by
the first car. C

As might be expected, we now prove a theorem relating the harmonic means with
the other means we have established so far—this theorem is known as the GM–HM
inequality.

Theorem 6.1.51 (Inequality of geometric and harmonic means)
Let n ∈ N and x1, x2, . . . , xn > 0. Then

n
1
x1

+ 1
x2

+ · · ·+ 1
xn︸ ︷︷ ︸

harmonic mean

6 n
√
x1x2 · · ·xn︸ ︷︷ ︸

geometric mean

with equality if and only if x1 = · · · = xn.

Proof when n = 2. We need to prove that if x, y > 0, then

2
1
x + 1

y

6
√
xy

This is almost immediate from the AM–GM inequality (Theorem 6.1.42). Indeed,
since all numbers in sight are positive, we can take reciprocals to see that this
inequality is equivalent to the assertion that

1
√
xy
6
x−1 + y−1

2

But 1√
xy =

√
x−1y−1, so this is immediate from the AM–GM inequality.
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Exercise 6.1.52
Prove the GM–HM inequality for general values of n ∈ N. C

Another example of a mean that has applications in probability theory and statistics
is that of the quadratic mean.

Definition 6.1.53
Let n ∈ N. The quadratic mean (or root-mean-square) of real numbers
x1, x2, . . . , xn is (

1

n

n∑
i=1

x2
i

) 1
2

=

√
x2

1 + x2
2 + · · ·+ x2

n

n

The following theorem is, predictably, known as the QM–AM inequality (or
RMS–AM inequality); it is a nice application of the Cauchy–Schwarz inequality.

Theorem 6.1.54 (Inequality of quadratic and arithmetic means)
Let n > 0 and x1, x2, . . . , xn > 0. Then

x1 + · · ·+ xn
n︸ ︷︷ ︸

arithmetic mean

6

√
x2

1 + x2
2 + · · ·+ x2

n

n︸ ︷︷ ︸
quadratic mean

with equality if and only if x1 = · · · = xn.

Proof. Define
~x = (x1, x2, . . . , xn) and ~y = (1, 1, . . . , 1)

Then

x1 + x2 + · · ·+ xn = ~x · ~y by definition of scalar product

6 ‖~x‖‖~y‖ by Cauchy–Schwarz

=
√
x2

1 + x2
2 + · · ·+ x2

n ·
√
n evaluating the magnitudes

Dividing through by n yields

x1 + x2 + · · ·+ xn
n

6

√
x2

1 + x2
2 + · · ·+ x2

n

n

as required. Equality holds if and only if equality holds in the Cauchy–Schwarz
inequality, which occurs if and only if

(ax1, ax2, . . . , axn) = (b, b, . . . , b)
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for some a, b ∈ R not both zero. If a = 0 then b = 0, so we must have a 6= 0.
Hence equality holds if and only if xi = b

a for all i ∈ [n]—in particular, if and only
if x1 = x2 = · · · = xn.

To summarise, what we have proved so far is

harmonic
mean

(6.1.51)

6
geometric

mean

(6.1.42)

6
arithmetic

mean

(6.1.54)

6
quadratic

mean

with equality in each case if and only if the real numbers whose means we are taking
are all equal.

The following exercise allows us to bookend our chain of inequalities with the min-
imum and maximum of the collections of numbers.

Exercise 6.1.55
Let n > 0 and let x1, x2, . . . , xn be positive real numbers. Prove that

min{x1, x2, . . . , xn} 6

(
1

n

n∑
i=1

x−1
i

)−1

and max{x1, x2, . . . , xn} >

(
1

n

n∑
i=1

x2
i

) 1
2

with equality in each case if and only if x1 = x2 = · · · = xn. C

? Generalised means

We conclude this section by mentioning a generalisation of the results we have proved
about means. We are not yet ready to prove the results that we mention; they are
only here for the sake of interest.

Definition 6.1.56
The extended real number line is the (ordered) set [−∞,∞], defined by

[−∞,∞] = R ∪ {−∞,∞}

where R is the set of real numbers with its usual ordering, and −∞,∞ are new
elements ordered in such a way that −∞ < x <∞ for all x ∈ R.

Note that the extended real line does not form a field—the arithmetic operations
are not defined on −∞ or ∞, and we will at no point treat −∞ and ∞ as real
numbers; they are merely elements which extend the reals to add a least element
and a greatest element.
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Definition 6.1.57
Let p ∈ [−∞,∞], let n ∈ N, and let x1, x2, . . . , xn be positive real numbers. The
generalised mean with exponent p (or simply p-mean) x1, x2, . . . , xn is the real
number Mp(x1, x2, . . . , xn) defined by

Mp(x1, x2, . . . , xn) =

(
1

n

n∑
i=1

xpi

) 1
p

if p 6∈ {−∞, 0,∞}, and by

Mp(x1, x2, . . . , xn) = lim
q→p

Mq(x1, x2, . . . , xn)

if p ∈ {−∞, 0,∞}, where the notation lim
q→p

refers to the limit, to be defined in

Section 8.5.

We can see immediately that the harmonic, arithmetic and quadratic means of a
finite set of positive real numbers are the p-means for a suitable value of p: the har-
monic mean is the (−1)-mean, the arithmetic mean is the 1-mean, and the quadratic
mean is the 2-mean. Furthermore, Proposition 6.1.58 exhibits the minimum as the
(−∞)-mean, the geometric mean as the 0-mean, and the maximum as the∞-mean.

Proposition 6.1.58
Let n > 0 and let x1, x2, . . . , xn > 0. Then

• M−∞(x1, x2, . . . , xn) = min{x1, x2, . . . , xn};

• M0(x1, x2, . . . , xn) = n
√
x1x2 · · ·xn; and

• M∞(x1, x2, . . . , xn) = min{x1, x2, . . . , xn}.

All of the inequalities of means we have seen so far will be subsumed by Theorem
6.1.59, which compares the p-mean and q-mean of a set of numbers for all values of
p, q ∈ [−∞,∞].

Theorem 6.1.59
Let n > 0, let x1, x2, . . . , xn > 0 and let p, q ∈ [−∞,∞] with p < q. Then

Mp(x1, x2, . . . , xn) 6Mq(x1, x2, . . . , xn)

with equality if and only if x1 = x2 = · · · = xn.

Theorem 6.1.59 implies each of the following:

• HM–min inequality (Exercise 6.1.55): take p = −∞ and q = −1;
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• GM–HM inequality (Theorem 6.1.51): take p = −1 and q = 0;

• AM–GM inequality (Theorem 6.1.42): take p = 0 and q = 1;

• QM–AM inequality (Theorem 6.1.54): take p = 1 and q = 2;

• max–QM inequality (Exercise 6.1.55): take p = 2 and q =∞.
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Section 6.2

Sequences and convergence

Warning!
This section is not yet finished—do not rely on its correctness or completeness.

As we saw at the beginning of Section 6.1, the property of the real numbers that
really sets them apart from the rational numbers is completeness (see Axioms 6.1.18),
which says that every set of real numbers with an upper bound has a supremum.

This seemingly innocuous statement turns out to form the basis of all of real analysis.
It allows us to reason about mathematical objects involving real numbers by studying
their local behaviour. The word ‘local’ here is supposed to contrast with ‘global’—it
refers to studying properties by zooming in on arbitrarily small regions, rather than
concerning ourselves with behaviour on a large scale.

Sequences of real numbers

Definition 6.2.1
A sequence of real numbers is a function x : N → R. Given a sequence x, we
write xn instead of x(n) and write (xn)n>0, or even just (xn), instead of x : N→ R.
The values xn are called the terms of the sequence, and the variable n is called the
index of the term xn.

Example 6.2.2
Some very basic but very boring examples of sequences are constant sequences. For
example, the constant sequence with value 0 is

(0, 0, 0, 0, 0, 0, . . . )

More generally, for fixed a ∈ R, the constant sequence with value a is defined by
xn = a for all n ∈ N. C

Example 6.2.3
Sequences can be defined just like functions. For example, there is a sequence defined
by xn = 2n for all n ∈ N. Writing out the first few terms, this sequence is

(1, 2, 4, 8, 16, . . . )

C

Sometimes it will be convenient to start the indexing of our sequence from numbers
other than 0, particularly when an expression involving a variable n isn’t defined
when n = 0. We’ll denote such sequences by (xn)n>1 or (xn)n>2, and so on.
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Example 6.2.4
Let (zn)n>2 be the sequence defined by zn = (n+1)(n+2)

(n−1)n for all n > 2:(
6,

10

3
,
5

2
,
21

10
, . . .

)
The indexing of this sequence begins at 2, rather than 0, since when n = 0 or n = 1,
the expression (n+1)(n+2)

(n−1)n is undefined. We could reindex the sequence: by letting

z′n = zn+2 for all n > 0, we obtain a new sequence (z′n)n>0 defined by z′n = (n+3)(n+4)
(n+1)(n+2)

whose indexing starts from 0. Fortunately for us, such matters won’t cause any
problems—it’s just important to make sure that whenever we define a sequence, we
make sure the terms make sense for all of the indices. C

Of particular interest to us will be sequences whose terms get closer and closer to a
fixed real number.

Example 6.2.5
Consider the sequence (yn)n>1 defined by yn = 1

n for all n > 1:(
1,

1

2
,
1

3
,
1

4
,
1

5
, . . .

)
It is fairly clear that the terms yn become closer and closer to 0 as n grows; the
following diagram is a plot of yn against n for a few values of n. C

Example 6.2.6
Define a sequence (rn)n>0 by rn = 2n

n+1 for all n ∈ N. Some of the values of this
sequence are illustrated in the following table:

n rn decimal expansion

0 0 0
1 1 1
2 4

3 1.333 . . .
3 3

2 1.5
...

...
...

10 20
11 1.818 . . .

...
...

...
100 200

101 1.980 . . .
...

...
...

1000 2000
1001 1.998 . . .

...
...

...

As n increases, the values of rn become closer and closer to 2. C
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The precise sense in which the terms of the sequences in Examples 6.2.5 and 6.2.6
‘get closer’ to 0 and 2, respectively, is called convergence, which we will define
momentarily in Definition 6.2.7.

First, let’s try to work out what the definition should be for a sequence (xn) to
converge to a real number a.

A näıve answer might be to say that the sequence is ‘eventually equal to a’—that
is, after some point in the sequence, all terms are equal to a. Unfortunately, this
isn’t quite good enough: if it were, then the values rn = 2n

n+1 from Example 6.2.6
would be equal to 2 for sufficiently large n. However, if for some n ∈ N we have
2n
n+1 = 2, then it follows that 2n = 2(n+ 1); rearranging this gives 1 = 0, which is a
contradiction.

However, this answer isn’t too far from giving us what we need. Instead of saying
that the terms xn are eventually equal to a, we might want to say that they become
infinitely close to a, whatever that means.

We can’t really make sense of an ‘infinitely small positive distance’ (e.g. Exercise
1.2.13), so we might instead make sense of ‘infinitely close’ by saying that the terms
xn eventually become as close to a as we could possibly want them to be. Spelling
this out, this means that for any positive distance ε (LATEX code: \varepsilon)
(read: ‘epsilon’)[a] no matter how small, the terms xn are eventually within distance
ε of a. In summary:

Definition 6.2.7
Let (xn) be a sequence and let a ∈ R. We say that (xn) converges to a, and write
(xn)→ a (LATEX code: \to), if the following condition holds:

∀ε > 0, ∃N ∈ N, ∀n > N, |xn − a| < ε

The value a is called a limit of (xn). Moreover, we say that a sequence (xn) con-
verges if it has a limit, and diverges otherwise.

Before we move onto some examples, let’s quickly digest the definition of the ex-
pression (xn)→ a. The following table presents a suggestion of how you might read
the expression ‘∀ε > 0, ∃N ∈ N, ∀n > N, |xn − a| < ε’ in English.

[a]The lower case Greek letter epsilon (ε) is traditionally used in analysis to denote a positive
quantity whose value can be made arbitrarily small. We will encounter this letter frequently in
this section and the next when discussing convergence.
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Symbols English

∀ε > 0. . . For any positive distance ε (no matter how small). . .
. . . ∃N ∈ N . . . . . . there is a stage in the sequence. . .
. . . ∀n > N . . . . . . after which all terms in the sequence. . .
. . . |xn − a| < ε. . . . are within distance ε of a.

Thus, a sequence (xn) converges to a if ‘for any positive distance ε (no matter how
small), there is a stage in the sequence after which all terms in the sequence are
within ε of a’. After reading this a few times, you should hopefully be content that
this definition captures what is meant by saying that the terms in the sequence are
eventually as close to a as we could possibly want them to be.

We are now ready to see some examples of convergent (and divergent) sequences.
When reading the following proofs, keep in mind the logical structure—that is, the
alternating quantifiers ∀ε . . .∃N . . .∀n . . .—in the definition of (xn)→ a.

Example 6.2.8
The sequence (yn) defined by yn = 1

n for all n > 1 converges to 0. To see this, by
Definition 6.2.7, we need to prove

∀ε > 0, ∃N ∈ N, ∀n > N,
∣∣∣∣ 1n − 0

∣∣∣∣ < ε

So fix ε > 0. Our goal is to find N ∈ N such that
∣∣ 1
n

∣∣ < ε for all n > N .

Let N be any natural number which is greater than 1
ε . Then for all n > N , we have∣∣∣∣ 1n

∣∣∣∣ =
1

n
since

1

n
> 0 for all n > 1

6
1

N
since n > N

<
1

1/ε
since N >

1

ε

= ε

Hence |yn| < ε for all n > N . Thus we have proved that (yn)→ 0. C

Remark 6.2.9
The value of N you need to find in the proof of convergence will usually depend on
the parameter ε. (For instance, in Example 6.2.8, we defined N to be some natural
number greater than 1

ε .) This is to be expected—remember that ε is the distance
away from the limit that the terms are allowed to vary after the N th term. If
you make this distance smaller, you’ll probably have to go further into the sequence
before your terms are all close enough to a. In particular, the value of N will usually
grow as the value of ε gets smaller. This was the case in Example 6.2.8: note that
1
ε increases as ε decreases. C
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Example 6.2.10
Let (rn) be the sequence from Example 6.2.6 defined by rn = 2n

n+1 for all n ∈ N.
We’ll prove that (rn)→ 2. So fix ε > 0. We need to find N ∈ N such that∣∣∣∣ 2n

n+ 1
− 2

∣∣∣∣ < ε for all n > N

To find such a value of n, we’ll first do some algebra. Note first that for all n ∈ N
we have ∣∣∣∣ 2n

n+ 1
− 2

∣∣∣∣ =

∣∣∣∣2n− 2(n+ 1)

n+ 1

∣∣∣∣ =

∣∣∣∣ −2

n+ 1

∣∣∣∣ =
2

n+ 1

Rearranging the inequality 2
n+1 < ε gives n+1

2 > 1
ε , and hence n > 2

ε − 1.

To be clear, what we’ve shown so far is that a necessary condition for |rn − 2| < ε
to hold is that n > 2

ε − 1. This informs us what the desired value of N might look
like—we will then verify that the desired inequality holds.

So define N = 2
ε − 1. For all n > N , we have∣∣∣∣ 2n

n+ 1
− 2

∣∣∣∣ =
2

n+ 1
by the above work

6
2

N + 1
since n > N

<
2(

2
ε − 1

)
+ 1

since N >
2

ε
− 1

=
2

2/ε
rearranging

= ε rearranging

Thus, as claimed, we have |rn − 2| < ε for all n > N . It follows that (rn) → 2, as
required. C

Exercise 6.2.11
Let (xn) be the constant sequence with value a ∈ R. Prove that (xn)→ a. C

Exercise 6.2.12
Prove that the sequence (zn) defined by zn = n+1

n+2 converges to 1. C

The following proposition is a technical tool, which proves that convergence of se-
quences is unaffected by changing finitely many terms at the beginning of a sequence.

Proposition 6.2.13
Let (xn) be a sequence and suppose that (xn) → a. Let (yn) be another sequence
and suppose that there is some k ∈ N such that xn = yn for all n > k. Prove that
(yn)→ a.
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Proof. Fix ε > 0. We need to find N ∈ N such that |yn − a| < ε for all n > N .

Since (xn) → a, there is some M ∈ N such that |xn − a| < ε for all n > M . Let N
be the greater of M and k. Then for all n > N , we have yn = xn, since n > k, and
hence |yn − a| = |xn − a| < ε, since n >M .

Hence (yn)→ a, as required.

Before we go too much further, let’s see some examples of sequences which diverge.
Recall (Definition 6.2.7) that a sequence (xn) converges if (xn)→ a for some a ∈ R.
Spelling this out symbolically, to say ‘(xn) converges’ is to say the following:

∃a ∈ R, ∀ε > 0, ∃N ∈ N, ∀n > N, |xn − a| < ε

We can negate this using the tools of Section 2.1: to say that a sequence (xn) diverges
is to say the following:

∀a ∈ R, ∃ε > 0, ∀N ∈ N, ∃n > N, |xn − a| > ε

In more intuitive terms: for all possible candidates for a limit a ∈ R, there is a
positive distance ε such that, no matter how far down the sequence you go (say xN ),
you can find a term xn beyond that point which is at distance > ε away from a.

Example 6.2.14
Let (xn) be the sequence defined by xn = (−1)n for all n ∈ N:

(1,−1, 1,−1, 1,−1, . . . )

We’ll prove that (xn) diverges. Fix a ∈ R. Intuitively, if a is non-negative, then
it must be at distance > 1 away from −1, and if a is negative, then it must be at
distance > 1 away from 1. We’ll now make this precise.

So let ε = 1, and fix N ∈ N. We need to find n > N such that |(−1)n − a| > 1.
We’ll split into cases based on whether a is non-negative or negative.

• Suppose a > 0. Then −1− a 6 −1 < 0, so that we have

|−1− a| = a− (−1) = a+ 1 > 1

So let n = 2N + 1. Then n > N and n is odd, so that

|xn − a| = |(−1)n − a| = |−1− a| > 1

• Suppose a < 0. Then 1− a > 1 > 0, so that we have

|1− a| = 1− a > 1

So let n = 2N . Then n > N and n is even, so that

|xn − a| = |(−1)n − a| = |1− a| > 1
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In both cases, we’ve found n > N such that |xn − a| > 1. It follows that (xn)
diverges. C

Example 6.2.14 is an example of a periodic sequence—that is, it’s a sequence that
repeats itself. It is difficult for such sequences to converge since, intuitively speaking,
they jump up and down a lot. (In fact, the only way that a period sequence can
converge is if it is a constant sequence!)

Exercise 6.2.15
Let (yn) be the sequence defined by yn = n for all n ∈ N:

(0, 1, 2, 3, . . . )

Prove that (yn) diverges. C

Finding limits of sequences can be tricky. Theorem 6.2.17 makes it slightly easier
by saying that if a sequence is built up using arithmetic operations—addition, sub-
traction, multiplication and division—from sequences whose limits you know, then
you can simply apply those arithmetic operations to the limits.

In order to prove part of Theorem 6.2.17, however, the following lemma will be
useful.

Lemma 6.2.16
Let (xn) be a sequence of real numbers. If (xn) converges, then (xn) is bounded—
that is, there is some real number k such that |xn| 6 k for all n ∈ N.

Proof. Let a ∈ R be such that (xn) → a. Letting ε = 1 in the definition of conver-
gence, it follows that there exists some N ∈ N such that |xn − a| < 1 for all n > N .
It follows that −1 < xn − a < 1 for all n > N , and hence −(1− a) < xn < 1 + a for
all n > N .

Now define

k = max{|x0|, |x1|, . . . , |xN−1|, |1− a|, |1 + a|}+ 1

For all n < N , we have

−k < −|xn| 6 xn 6 |xn| < k

so that |xn| < k. For all n > N , we have

−k < −|1− a| 6 −(1− a) < xn < 1 + a 6 |1 + a| < k

so that |xn| < k.

Hence |xn| < k for all n ∈ N, as required.
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Theorem 6.2.17
Let (xn) and (yn) be sequences of real numbers, let a, b ∈ R, and suppose that
(xn)→ a and (yn)→ b. Then

(a) (xn + yn)→ a+ b;

(b) (xn − yn)→ a− b;

(c) (xnyn)→ ab; and

(d) (xn
yn

)→ a
b , so long as yn 6= 0 for all n ∈ N and b 6= 0.

Proof of (a) and (c). (a). Fix ε > 0. We need to prove that there is some N ∈ N
such that |(xn + yn)− (a+ b)| < ε for all n > N .

• Since (xn)→ a, there is some N1 ∈ N such that |xn − a| < ε
2 for all n > N1;

• Since (yn)→ b, there is some N2 ∈ N such that |xn − b| < ε
2 for all n > N2.

Let N be the greatest of N1 and N2. Then for all n > N , we have n > N1 and
n > N2; it follows from the triangle inequality (Theorem 6.1.28), that

|(xn + yn)− (a+ b)| = |(xn − a) + (yn − b)| 6 |xn − a|+ |yn − b| <
ε

2
+
ε

2

as required.

(c). This one is a little harder. Fix ε > 0. Since (xn) converges, it follows from
Lemma 6.2.16 that there is some real number k with |xn| < k for all n ∈ N.

• Since (xn)→ a, there is some N1 ∈ N such that |xn − a| < ε
2|b| for all n > N1;

• Since (yn)→ b, there is some N2 ∈ N such that |xn − b| < ε
2k for all n > N2.

Let N be the greatest of N1 and N2. Then for all n > N , we have

|xnyn − ab| = |xn(yn − b) + b(xn − a)| rearranging

6 |xn(yn − b)|+ |b(xn − a)| by the triangle inequality

= |xn||yn − b|+ |b||xn − a| rearranging

< k|yn − b|+ |b||xn − a| since |xn| < k for all n

< k
ε

2k
+ |b| ε

2|b|
since n > N1 and n > N2

= ε rearranging

Hence (xnyn)→ ab, as required.

Exercise 6.2.18
Prove parts (b) and (d) of Theorem 6.2.17. C
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Theorem 6.2.17 appears obvious, but as you can see in the proof, it is more complic-
ated than perhaps expected. It was worth the hard work, though, because we can
now compute more complicated limits formed in terms of arithmetic operations by
taking the limits of the individual components. The following example uses Theorem

6.2.17 to prove that
(

2n
n+1

)
→ 2 in a much simpler way than we saw in Example

6.2.10.

Example 6.2.19
We provide another proof that the sequence (rn) of Example 6.2.6, defined by rn =
2n
n+1 for all n ∈ N, converges to 2.

For all n > 1, dividing by the top and bottom gives

rn =
2

1 + 1
n

The constant sequences (2) and (1) converge to 2 and 1, respectively; and by Ex-
ample 6.2.8, we know that ( 1

n)→ 0. It follows that

(rn)→ 2

1 + 0
= 2

as required. C

Exercise 6.2.20
To do: Write exercise C

To do: Motivate

Theorem 6.2.21 (Uniqueness of limits)
Let (xn) be a sequence and let a, b ∈ R. If (xn)→ a and (xn)→ b, then a = b.

Proof. We’ll prove that |a − b| = 0, which will imply that a = b. To do this, we’ll
prove that |a − b| is not positive: we already know it’s non-negative, so this will
imply that it is equal to zero. To prove that |a− b| is not positive, we’ll prove that
it is less than every positive number.

So fix ε > 0. Then also ε
2 > 0. The definition of convergence (Definition 6.2.7) tells

us that:

• There exists N1 ∈ N such that |xn − a| < ε
2 for all n > N1; and

• There exists N2 ∈ N such that |xn − b| < ε
2 for all n > N2.

Let n be the greatest of N1 and N2. Then n > N1 and n > N2, and hence

|xn − a| <
ε

2
and |xn − b| <

ε

2
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By the triangle inequality (Theorem 6.1.28), it follows that

|a− b| = |(a− xn) + (xn − b)| by cancelling the xn terms

6 |a− xn|+ |xn − b| by the triangle inequality

= |xn − a|+ |xn − b| by Exercise 6.1.24

<
ε

2
+
ε

2
= ε since n > N1 and n > N2

Since |a − b| < ε for all ε > 0, it follows that |a − b| is a non-negative real number
that is less than every positive real number, so that it is equal to zero.

Since |a− b| = 0, we have a− b = 0, and so a = b.

Theorem 6.2.21 tells us that if a sequence converges, then its limit is uniquely de-
termined. This allows us to talk about the limit of a convergent sequence, and in
particular justifies the following notation.

Notation 6.2.22
Let (xn) be a convergent sequence. Write lim

n→∞
xn for its (unique) limit.

To do: Warn about the symbol ∞.

Example 6.2.23
Examples 6.2.8 and 6.2.10 tell us that

lim
n→∞

1

n
= 0 and lim

n→∞

2n

n+ 1
→ 2

C

To do: Introduce squeeze theorem

Theorem 6.2.24 (Squeeze theorem)
Let (xn), (yn) and (zn) be sequences of real numbers such that:

(i) (xn)→ a and (zn)→ a; and

(ii) xn 6 yn 6 zn for all n ∈ N.
Then (yn)→ a.

Proof. Fix ε > 0. We need to find N ∈ N such that |yn − a| < ε for all n > N .

Since (xn)→ a and (zn)→ a, there exist N1, N2 ∈ N such that

• |xn − a| < ε for all n > N1;

• |zn − a| < ε for all n > N2.
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Letting N be the greatest of N1 and N2 then tells us that both |xn− a| and |zn− a|
are less than ε whenever n > N .

We will prove that |yn − a| < ε for all n > N . To see this let n > N . Either yn > a
or yn 6 a.

• If yn > a, then we have a 6 yn 6 zn. It follows that

|yn − a| = yn − a 6 zn − a = |zn − a| < ε

• If yn 6 a, then we have xn 6 yn 6 a. It follows that

|yn − a| = a− yn 6 a− xn = |xn − a| < ε

Since in both cases we have proved |yn−a| < ε, we may conclude that (yn)→ a.

Example 6.2.25
To do: C

Example 6.2.26
To do: C

Exercise 6.2.27
To do: C

Exercise 6.2.28
To do: C

Existence of limits

It is often useful to know that a sequence converges, but not necessary to go to the
arduous lengths of computing its limit. However, as it currently stands, we don’t
really have any tools for proving that a sequence converges other than finding a
limit for it! This section explores the properties of R that allow us to know when a
sequence does or does not converge.

First, recall from Section 6.1 that R is a complete ordered field (see Axioms 6.1.18).
In fact, it’s the only one—this was the content of Theorem 6.1.19. To repeat, this
means is that every subset A ⊆ R that has a (real) upper bound has a least (real)
upper bound, called a supremum. This property is called completeness.

Exercise 6.2.29
Let A ⊆ R. Write down the definitions of what it means for a real number u to be
an upper bound of A, and what it means for a real number s to be a supremum
of A. C
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We can use the completeness axiom to prove results about existence of limits of
sequences.

Perhaps the most fundamental result is the monotone convergence theorem (The-
orem 6.2.34), since it underlies the proofs of all the other results that we will prove.
What it says is that if the terms in a sequence always increase, or always decrease,
and the set of terms in the sequence is bounded, then the sequence converges to a
limit.

The sequence (rn) from Example 6.2.6, defined by rn = 2n
n+1 for all n ∈ N, is an

example of such a sequence. We proved that it converged by computing its limit in
Example 6.2.10 and again in Example 6.2.19. We will soon (Example 6.2.36) use
the monotone convergence theorem to give yet another proof that it converges, but
this time without going to the trouble of first finding its limit.

Before we can state the monotone convergence theorem, we must first define what
we mean by a monotonic sequence.

Definition 6.2.30
A sequence of real numbers (xn) is. . .
• . . . increasing if m 6 n implies xm 6 xn for all m,n ∈ N;

• . . . decreasing if m 6 n implies xm > xn for all m,n ∈ N.
If a sequence is either increasing or decreasing, we say it is monotonic.

Example 6.2.31
The sequence (xn) defined by xn = n2 for all n ∈ N is increasing, since for all
m,n ∈ N, if m 6 n, then m2 6 n2. To see this, note that if m 6 n, then n−m > 0
and n+m > 0, so that

n2 −m2 = (n−m)(n+m) > 0 · 0 = 0

and hence n2 > m2, as required. C

Example 6.2.32
The sequence (rn) from Example 6.2.6, defined by rn = 2n

n+1 for all n ∈ N, is
increasing. To see this, suppose m 6 n. Then n = m+ k for some k > 0. Now

0 6 k by assumption

⇔ m2 + km+m 6 m2 + km+m+ k adding m2 + km+m to both sides

⇔ m(m+ k + 1) 6 (m+ 1)(m+ k) factorising

⇔ m(n+ 1) 6 (m+ 1)n since n = m+ k

⇔ m

m+ 1
6

n

n+ 1
dividing both sides by (m+ 1)(n+ 1)

⇔ rm 6 rn by definition of (rn)
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Note that the step where we divided through by (m+ 1)(n+ 1) is justified since this
quantity is positive.

It is perhaps useful to add that to come up with this proof, it is more likely that
you would start with the assumption rm 6 rn and derive that k > 0—noting that
all steps are reversible then allows us to write it in the ‘correct’ order. C

Exercise 6.2.33
To do: C

Theorem 6.2.34 (Monotone convergence theorem)
Let (xn) be a sequence of real numbers.

(a) If (xn) is increasing and has an upper bound,a then it converges;

(b) If (xn) is decreasing and has a lower bound, then it converges.

aOfficially, what it means to say a sequence (xn) has an upper (or lower) bound is to say that the
set {xn : n ∈ N} has an upper (or lower) bound.

Proof of (a). We prove (a) here—part (b) is Exercise 6.2.35.

So suppose (xn) is increasing and has an upper bound. Then:

(i) xm 6 xn for all m 6 n; and

(ii) There is some real number u such that u > xn for all n ∈ N.

Condition (ii) tells us that the set {xn | n ∈ N} ⊆ R has an upper bound. By the
completeness axiom, it has a supremum a. We prove that (xn)→ a.

So let ε > 0. We need to find N ∈ N such that |xn − a| < ε for all n > N .

Since a is a supremum of {xn | n ∈ N}, there is some N ∈ N such that xN > a− ε.

Since (xn) is increasing, by (i) we have xN 6 xn for all n > N . Moreover, since a is
an upper bound for the sequence, we actually have xN 6 xn 6 a for all n > N .

Putting this together, for all n > N , we have

|xn − a| = a− xn since xn − a 6 0

6 a− xN since xN 6 xn for all n > N

< ε since xN > a− ε

It follows that (xn)→ a, as required.

Exercise 6.2.35
Prove part (b) of the monotone convergence theorem (Theorem 6.2.34). That is,
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prove that if a sequence (xn) is decreasing and has a lower bound, then it converges.
C

Example 6.2.36
To do: C

Example 6.2.37
To do: C

Exercise 6.2.38
To do: C

Exercise 6.2.39
To do: C

To do: subsequences, Cauchy sequences, Bolzano–Weierstrass theorem
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Section 6.3

Series and sums

Warning!
This section is not yet finished—do not rely on its correctness or completeness.

To do: Lots of stuff

Proposition 6.3.1

Let x ∈ R with −1 < x < 1. Then
∑
n∈N

xn =
1

1− x
.

Proof. Given N ∈ N, the N th partial sum SN of the series is given by by

SN =
N∑

n=0

xn = 1 + x+ x2 + · · ·+ xN

Note that

xSN =

n∑
n=0

xn+1 = x+ x2 + · · ·+ xN+1 = SN+1 − 1

and hence

(1− x)SN = SN − xSN = SN − (SN+1 − 1) = 1− (SN+1 − SN ) = 1− xN+1

and hence dividing by 1− x, which is permissible since x 6= 1, yields

SN =
1− xN+1

1− x

To do: Finish proof

Proposition 6.3.2

Let x ∈ R with −1 < x < 1. Then
∑
n∈N

nxn−1 =
1

(1− x)2
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Section 7.1

Discrete probability spaces

Probability theory is a field of mathematics which attempts to model randomness
and uncertainty in the ‘real world’. The mathematical machinery it develops allows
us to understand how this randomness behaves and to extract information which is
useful for making predictions.

Discrete probability theory, in particular, concerns situations in which the possible
outcomes form a countable set. This simplifies matters considerably: if there are only
countably many outcomes, then the probability that any event occurs is determined
entirely by the probabilities that the individual outcomes comprised by the event
occur.

For example, the number N of words spoken by a child over the course of a year takes
values in N, so is discrete. To each n ∈ N, we may assign a probability that N = n,
which can take positive values in a meaningful way, and from these probabilities we
can compute the probabilities of more general events occurring (e.g. the probability
that the child says under a million words). However, the height H grown by the
child over the same period takes values in [0,∞), which is uncountable; for each
h ∈ [0,∞), the probability that H = h is zero, so these probabilities give us no
information. We must study the behaviour of H through some other means.

In this chapter, we will concern ourselves only with the discrete setting.

It is important to understand from the outset that, although we use language like
outcome, event, probability and random, and although we use real-world examples,
everything we do concerns mathematical objects: sets, elements of sets, and func-
tions. If we say, for example, “the probability that a roll of a fair six-sided die shows
3 or 4 is 1

3 ,” we are actually interpreting the situation mathematically—the outcomes
of the die rolls are interpreted as the elements of the set [6]; the event that the die
shows 3 or 4 is interpreted as the subset {3, 4} ⊆ [6]; and the probability that this
event occurs is the value of a particular function P : P([6])→ [0, 1] on input {3, 4}.
The mathematical interpretation is called a model of the real-world situation.
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Definition 7.1.1
A discrete probability space is a pair (Ω,P) (LATEX code: (\Omega,
\mathbb{P})), consisting of a countable set Ω and a function P : P(Ω) → [0, 1],
such that

(i) P(Ω) = 1; and

(ii) (Countable additivity) If {Ai | i ∈ I} is any family of pairwise disjoint
subsets of Ω, indexed by a countable set I, then

P

(⋃
i∈I

Ai

)
=
∑
i∈I

P(Ai)

The set Ω is called the sample space; the elements ω ∈ Ω are called outcomes;a

the subsets A ⊆ Ω are called events; and the function P is called the probability
measure. Given an event A, the value P(A) is called the probability of A.

aThe symbols Ω, ω (LATEX code: \Omega,\omega) are the upper- and lower-case forms, respectively,
of the Greek letter omega.

There is a general notion of a probability space, which does not require the sample
space Ω to be countable. This definition is significantly more technical, so we restrict
our attention in this section to discrete probability spaces. Thus, whenever we
say ‘probability space’ in this chapter, the probability space can be assumed to
be discrete. However, when our proofs do not specifically use countability of Ω,
they typically are true of arbitrary probability spaces. As such, we will specify
discreteness in the statement of results only when countability of the sample space
is required.

Example 7.1.2
We model the roll of a fair six-sided die.

The possible outcomes of the roll are 1, 2, 3, 4, 5 and 6, so we can take Ω = [6] to
be the sample space.

The events correspond with subsets of [6]. For example:

• {4} is the event that the die roll shows 4. This event occurs with probability
1
6 .

• {1, 3, 5} is the event that the die roll is odd. This event occurs with probability
1
2

• {1, 4, 6} is the event that the die roll is not prime. This event occurs with
probability 1

2 .

• {3, 4, 5, 6} is the event that the die roll shows a number greater than 2. This
event occurs with probability 2

3 .
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• {1, 2, 3, 4, 5, 6} is the event that anything happens. This event occurs with
probability 1.

• ∅ is the event that nothing happens. This event occurs with probability 0.

More generally, since each outcome occurs with equal probability 1
6 , we can define

P(A) =
|A|
6

for all events A

We will verify that P defines a probability measure on [6] in Example 7.1.6. C

Example 7.1.3
Let (Ω,P) be a probability space. We prove that P(∅) = 0.

Note that Ω and ∅ are disjoint, so by countable additivity, we have

1 = P(Ω) = P(Ω ∪∅) = P(Ω) + P(∅) = 1 + P(∅)

Subtracting 1 throughout yields P(∅) = 0, as required. C

Exercise 7.1.4
Let (Ω,P) be a probability space. Prove that

P(Ω \A) = 1− P(A)

for all events A. C

Countable additivity of probability measures—that is, condition (ii) in Definition
7.1.1—implies that probabilities of events are determined by probabilities of indi-
vidual outcomes. This is made precise in Proposition 7.1.5.

Proposition 7.1.5
Let Ω be a countable set and let P : P(Ω)→ [0, 1] be a function such that P(Ω) = 1.
The following are equivalent:

(i) P is a probability measure on Ω;

(ii)
∑
ω∈A

P({ω}) = P(A) for all A ⊆ Ω.

Proof. Since P(Ω) = 1, it suffices to prove that condition (ii) of Proposition 7.1.5 is
equivalent to countable additivity of P.

• (i)⇒(ii). Suppose P is a probability measure on Ω. Let A ⊆ Ω.

Note that since A ⊆ Ω and Ω is countably infinite, it follows that {{ω} | ω ∈ A}
is a countable family of pairwise disjoint sets. By countable additivity, we have

P(A) = P

(⋃
ω∈A
{ω}

)
=
∑
ω∈A

P({ω})
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as required. Hence condition (ii) of the proposition is satisfied.

• (ii)⇒(i). Suppose that
∑
ω∈A

P({ω}) = P(A) for all A ⊆ Ω. We prove that P is

a probability measure on Ω.

So let {Ai | i ∈ I} be a family of pairwise disjoint events, indexed by a
countable set I. Define A =

⋃
i∈I Ai. Since the sets Ai partition A, summing

over elements of A is the same as summing over each of the sets Ai individually,
and then adding those results together; specifically, for each A-tuple (pω)ω∈A,
we have ∑

ω∈A
pω =

∑
i∈I

∑
ω∈Ai

pω

Hence

P(A) =
∑
ω∈A

P({ω}) by condition (ii) of the proposition

=
∑
i∈I

∑
ω∈Ai

P({ω}) by the above observation

=
∑
i∈I

P(Ai) by condition (ii) of the proposition

So P satisfies the countable additivity condition. Thus P is a probability
measure on Ω.

Hence the two conditions are equivalent.

Example 7.1.6
We prove that the function P from Exercise 7.1.2 truly does define a probability
measure. Indeed, let Ω = [6] and let P : P(Ω)→ [0, 1] be defined by

P(A) =
|A|
6

for all events A

Then P(Ω) = 6
6 = 1, so condition (i) in Definition 7.1.1 is satisfied. Moreover, for

each A ⊆ [6] we have

∑
ω∈A

P({ω}) =
∑
ω∈A

1

6
=
|A|
6

= P(A)

so, by Proposition 7.1.5, P defines a probability measure on [6]. C

Proposition 7.1.5 makes defining probability measures much easier, since it implies
that probability measures are determined entirely by their values on individual out-
comes. This means that, in order to define a probability measure, we only need to
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specify its values on individual outcomes and check that the sum of these probabil-
ities is equal to 1. This is significantly easier than defining P(A) on all events A ⊆ Ω
and checking the two conditions of Definition 7.1.1.

This is made precise in Proposition 7.1.7 below.

Proposition 7.1.7
Let Ω be a countable set and, for each ω ∈ Ω, let pω ∈ [0, 1]. If

∑
ω∈Ω

pω = 1, then

there is a unique probability measure P on Ω such that P({ω}) = pω for each ω ∈ Ω.

Proof. We prove existence and uniqueness of P separately.

• Existence. Define P : P(Ω)→ [0, 1] be defined by

P(A) =
∑
ω∈A

pω

for all events A ⊆ Ω. Then condition (ii) of Proposition 7.1.5 is automatically
satisfied, and indeed P({ω}) = pω for each ω ∈ Ω. Moreover

P(Ω) =
∑
ω∈Ω

P({ω}) =
∑
ω∈Ω

pω = 1

and so condition (i) of Definition 7.1.1 is satisfied. Hence P defines a probability
measure on Ω.

• Uniqueness. Suppose that P′ : P(Ω)→ [0, 1] is another probability measure
such that P′({ω}) = pω for all ω ∈ Ω. For each event A ⊆ Ω, condition (ii) of
Proposition 7.1.5 implies that

P′(A) =
∑
ω∈A

P′({ω}) =
∑
ω∈A

pω = P(A)

hence P′ = P.

So P is uniquely determined by the values pω.

The assignments of pω ∈ [0, 1] to each ω ∈ Ω in fact defines something that we will
later defined to be a probability mass function (Definition 7.2.6).

With Proposition 7.1.7 proved, we will henceforth specify probability measures P on
sample spaces Ω by specifying only the values of P({ω}) for ω ∈ Ω.

Example 7.1.8
Let p ∈ [0, 1]. A coin, which shows heads with probability p, is repeatedly flipped
until heads shows.
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The outcomes of such a sequence of coin flips all take the form

(tails, tails, · · · , tails︸ ︷︷ ︸
n ‘tails’

,heads)

for some n ∈ N. Identifying such a sequence with the number n of flips before heads
shows, we can take Ω = N to be the sample space.

For each n ∈ N, we can define

P({n}) = (1− p)np

This will define a probability measure on N, provided these probabilities all sum to
1; and indeed by Proposition 6.3.1, we have

∑
n∈N

P({n}) =
∑
n∈N

(1− p)np = p · 1

1− (1− p)
= p · 1

p
= 1

By Proposition 7.1.7, it follows that (Ω,P) is a probability space. C

Exercise 7.1.9
A fair six-sided die is rolled twice. Define a probability space (Ω,P) that models
this situation. C

Exercise 7.1.10
Let (Ω,P) be a probability space and let A,B be events with A ⊆ B. Prove that
P(A) 6 P(B). C

Set operations on events

In the real world, we might want to talk about the probability that two events both
happen, or the probability that an event doesn’t happen, or the probability that at
least one of some collection of events happens. This is interpreted mathematically
in terms of set operations.

Example 7.1.11
Let (Ω,P) be the probability space modelling two rolls of a fair six-sided die—that is,
the sample space Ω = [6]×[6] with probability measure P defined by P({(a, b)}) = 1

36
for each (a, b) ∈ Ω.

Let A be the event that the sum of the die rolls is even, that is

A =


(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6),
(3, 1), (3, 3), (3, 5), (4, 2), (4, 4), (4, 6),
(5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)


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and let B be the event that the sum of the die rolls is greater than or equal to 9,
that is

B = {(3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6)}

Then

• Consider the event that the sum of the die rolls is even or greater than or
equal to 9. An outcome ω gives rise to this event precisely when either ω ∈ A
or ω ∈ B; so the event in question is A ∪B;

• Consider the event that the sum of the die rolls is even and greater than or
equal to 9. An outcome ω gives rise to this event precisely when both ω ∈ A
and ω ∈ B; so the event in question is A ∩B;

• Consider the event that the sum of the die rolls is not even. An outcome ω
gives rise to this event precisely when ω 6∈ A; so the event in question is is
([6]× [6]) \A.

Thus we can interpret ‘or’ as union, ‘and’ as intersection, and ‘not’ as relative
complement in the sample space. C

The intuition provided by Example 7.1.11 is formalised in Exercise 7.1.13. Before
we do this, we adopt a convention that simplifies notation when discussing events
in probability spaces.

Notation 7.1.12
Let (Ω,P) be a probability space. When a subset A ⊆ Ω is interpreted as an event,
we will write Ac for Ω \A (instead of U \A where U is the universe of discourse).

That is, when we talk about the complement of an event, we really mean their
relative complement inside the sample space.

Exercise 7.1.13
Let (Ω,P) be a probability space, and let p(ω), q(ω) be logical formulae with free
variable ω ranging over Ω. Let

A = {ω ∈ Ω | p(ω)} and B = {ω ∈ Ω | q(ω)}

Prove that

• {ω ∈ Ω | p(ω) ∧ q(ω)} = A ∩B;

• {ω ∈ Ω | p(ω) ∨ q(ω)} = A ∪B;

• {ω ∈ Ω | ¬p(ω)} = Ac.

For reference, in Example 7.1.11, we had Ω = [6] × [6] and we defined p(a, b) to be
‘a+ b is even’ and q(a, b) to be ‘a+ b > 7’. C
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With this in mind, it will be useful to know how set operations on events interact
with probabilities. A useful tool in this investigation is that of an indicator function.

Definition 7.1.14
Let Ω be a set and let A ⊆ Ω. The indicator function of A in Ω is the function
iA : Ω→ {0, 1} defined by

iA(ω) =

{
1 if ω ∈ A
0 if ω 6∈ A

Proposition 7.1.15
Let Ω be a set and let A,B ⊆ Ω. Then for all ω ∈ Ω we have

(i) iA∩B(ω) = iA(ω)iB(ω);

(ii) iA∪B(ω) = iA(ω) + iB(ω)− iA∩B(ω); and

(iii) iAc(ω) = 1− iA(ω).

Proof. Proof of (i) Let ω ∈ Ω. If ω ∈ A ∩ B then ω ∈ A and ω ∈ B, so that
iA∩B(ω) = iA(ω) = iB(ω) = 1. Hence

iA(ω)iB(ω) = 1 = iA∩B(ω)

If ω 6∈ A∩B then either ω 6∈ A or ω 6∈ B. Hence iA∩B(ω) = 0, and either iA(ω) = 0
or iB(ω) = 0. Thus

iA(ω)iB(ω) = 0 = iA∩B(ω)

In both cases, we have iA∩B(ω) = iA(ω)iB(ω), as required.

Exercise 7.1.16
Prove parts (ii) and (iii) of Proposition 7.1.15. C

Exercise 7.1.17
Let (Ω,P) be a discrete probability space, and for each ω ∈ Ω let pω = P({ω}).
Prove that, for each event A, we have

P(A) =
∑
ω∈Ω

pωiA(ω)

C

Theorem 7.1.18
Let (Ω,P) be a probability space and let A,B ⊆ Ω. Then

P(A ∪B) = P(A) + P(B)− P(A ∩B)
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Proof. For each ω ∈ Ω, let pω = P({ω}). Then

P(A ∪B) =
∑
ω∈Ω

pωiA∪B(ω) by Exercise 7.1.17

=
∑
ω∈Ω

pω(iA(ω) + iB(ω)− iA∩B(ω)) by Proposition 7.1.15(ii)

=
∑
ω∈Ω

pωiA(ω) +
∑
ω∈Ω

pωiB(ω) +
∑
ω∈Ω

pωiA∩B(ω) rearranging

= P(A) + P(B)− P(A ∩B) by Exercise 7.1.17

as required.

Although there are nice expressions for unions and complements of events, it is
not always the case that intersection of events corresponds with multiplication of
probabilities.

Example 7.1.19
Let Ω = [3] and define a probability measure P on Ω by letting

P({1}) =
1

4
, P({2}) =

1

2
and P({3}) =

1

4

Then we have

P({1, 2} ∩ {2, 3}) = P({2}) =
1

2
6= 9

16
=

3

4
· 3

4
= P({1, 2}) · P({2, 3})

C

This demonstrates that it is not always the case that P(A∩B) = P(A)P(B) for events
A,B in a given probability space. Pairs of events A,B for which this equation is
true are said to be independent.

Definition 7.1.20
Let (Ω,P) be a probability space and let A,B be events. We say A and B are
independent if P(A ∩ B) = P(A)P(B); otherwise, we say they are dependent.
More generally, events A1, A2, . . . , An are mutually independent if

P(A1 ∩A2 ∩ · · · ∩An) = P(A1)P(A2) · · ·P(An)

Example 7.1.21
A fair six-sided die is rolled twice. Let A be the event that the first roll shows 4,
and let B be the event that the second roll is even. Then

A = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}
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so P(A) = 6
36 = 1

6 ; and

B = {(a, 2), (a, 4), (a, 6) | a ∈ [6]}

so P(B) = 18
36 = 1

2 . Moreover A ∩B = {(4, 2), (4, 4), (4, 6)}, so it follows that

P(A ∩B) =
3

36
=

1

12
=

1

6
· 1

2
= P(A)P(B)

so the events A and B are independent.

Let C be the event that the sum of the two dice rolls is equal to 5. Then

C = {(1, 4), (2, 3), (3, 2), (4, 1)}

so P(C) = 4
36 = 1

9 . Moreover A ∩ C = {(4, 1)}, so it follows that

P(A ∩ C) =
1

36
6= 1

54
=

1

6
· 1

9
= P(A)P(C)

so the events A and C are dependent. C

Exercise 7.1.22
Let (Ω,P) be a probability space. Under what conditions is an event A independent
from itself? C

Conditional probability

Suppose we model a real-world situation, such as the roll of a die or the flip of a
coin, using a probability (Ω,P). When we receive new information, the situation
might change, and we might want to model this new situation by updating our
probabilities to reflect the fact that we know that B has occurred. This is done by
defining a new probability measure P̃ on Ω. What follows is an example of this.

Example 7.1.23
Two cards are drawn at random, in order, without replacement, from a 52-card deck.
We can model this situation by letting the sample space Ω be the set of ordered pairs
of distinct cards, and letting P assign an equal probability (of 1

|Ω|) to each outcome.

Note that |Ω| = 52 · 51, and so

P({ω}) =
1

52 · 51

for each outcome ω.

We will compute two probabilities:

• The probability that the second card drawn is a heart.
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• The probability that the second card drawn is a heart given that the first card
drawn is a diamond.

Let A ⊆ Ω be the event that the second card drawn is a heart, and let B ⊆ Ω be
the event that the first card drawn is a diamond.

To compute P(A), note first that A = A′ ∪A′′, where

• A′ is the event that both cards are hearts, so that |A′| = 13 · 12; and

• A′′ is the event that only the second card is a heart, so that |A′′| = 39 · 13.

Since A′ ∩A′′ = ∅, it follows from countable additivity that

P(A) = P(A′) + P(A′′) =
13 · 12 + 39 · 13

52 · 51
=

13 · (12 + 39)

52 · 51
=

1

4

Now suppose we know that first card drawn is a diamond—that is, event B has
occurred—and we wish to update our probability that A occurs. We do this by
defining a new probability measure

P̃ : P(Ω)→ [0, 1]

such that:

(a) The outcomes that do not give rise to the event B are assigned probability
zero; that is, P̃({ω}) = 0 for all ω 6∈ B; and

(b) The outcomes that give rise to the event B are assigned probabilities pro-
portional to their old probability; that is, there is some k ∈ R such that
P̃(ω) = kP(ω) for all ω ∈ B.

In order for P̃ to be a probability measure on Ω, we need condition (i) of Definition
7.1.1 to occur.

P̃(Ω) =
∑
ω∈Ω

P̃({ω}) by condition (ii) of Proposition 7.1.5

=
∑
ω∈B

P̃({ω}) since P̃({ω}) = 0 for ω 6∈ B

=
∑
ω∈B

kP({ω}) since P̃({ω}) = kP({ω} for ω ∈ B

= kP(B) by condition (ii) of Proposition 7.1.5

Since we need P̃(Ω) = 1, we must therefore take k = 1
P(B) . (In particular, we need

P(B) > 0 for this notion to be well-defined.)
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Recall that, before we knew that the first card was a diamond, the probability that
the second card is a heart was 1

4 . We now calculate how this probability changes
with the updated information that the first card was a diamond.

The event that the second card is a heart in the new probability space is precisely
A ∩B, since it is the subset of B consisting of all the outcomes ω giving rise to the
event A. As such, the new probability that the second card is a heart is given by

P̃(A) =
P(A ∩B)

P(B)

Now:

• A ∩B is the event that the first card is a diamond and the second is a heart.
To specify such an event, we need only specify the ranks of the two cards, so
|A ∩B| = 13 · 13 and hence P(A ∩B) = 13·13

52·51 .

• B is the event that the first card is a diamond. A similar procedure as with A
yields P(B) = 1

4 .

Hence

P̃(A) =
P(A ∩B)

P(B)
=

13 · 13 · 4
52 · 51

=
13

51

Thus the knowledge that the first card drawn is a diamond very slightly increases
the probability that the second card is a heart from 1

4 = 13
52 to 13

51 . C

Example 7.1.23 suggests the following schema: upon discovering that an event B
occurs, the probability that event A occurs should change from P(A) to P(A∩B)

P(B) .
This motivates the following definition of conditional probability.

Definition 7.1.24
Let (Ω,P) be a probability space and let A,B be events such that P(B) > 0. The
conditional probability of A given B is the number P(A | B) (LATEX code:
\mathbb{P}(A \mid B)) defined by

P(A | B) =
P(A ∩B)

P(B)

Example 7.1.25
A fair six-sided die is rolled twice. We compute the probability that the first roll
showed a 2 given that the sum of the die rolls is less than 5.

We can model this situation by taking the sample space to be [6] × [6], with each
outcome having an equal probability of 1

36 .

313



314 Chapter 7. Discrete probability theory

Let A be the event that the first die roll shows a 2, that is

A = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}

and let B be the event that the sum of the die rolls is less than 5, that is

B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}

We need to compute P(A | B). Well,

A ∩B = {(2, 1), (2, 2)}

so P(A ∩B) = 2
36 ; and P(B) = 6

36 . Hence

P(A | B) =
2
36
6
36

=
2

6
=

1

3

C

Exercise 7.1.26
A fair six-sided die is rolled three times. What is the probability that the sum of
the die rolls is less than or equal to 12, given that each die roll shows a power of
2? C

Exercise 7.1.27
Let (Ω,P) be a probability space and let A,B be events with P(B) > 0. Prove that

P(A | B) = P(A ∩B | B)

C

Exercise 7.1.28
Let (Ω,P) be a probability space and let A,B be events such that P(B) > 0. Prove
that P(A | B) = P(A) if and only if A and B are independent. C

We will soon see some useful real-world applications of probability theory using
Bayes’s theorem (Theorem 7.1.33). Before we do so, some technical results will be
useful in our proofs.

Proposition 7.1.29
Let (Ω,P) be a probability space and let A,B be events with 0 < P(B) < 1. Then

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc)

Proof. Note first that we can write

A = A ∩ Ω = A ∩ (B ∪Bc) = (A ∩B) ∪ (A ∩Bc)
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and moreover the events A ∩B and A ∩Bc are mutually exclusive. Hence

P(A) = P(A ∩B) + P(A ∩Bc)

by countable additivity. The definition of conditional probability (Definition 7.1.24)
then gives

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc)

as required.

Example 7.1.30
An animal rescue centre houses a hundred animals, sixty of which are dogs and forty
of which are cats. Ten of the dogs and ten of the cats hate humans. We compute
the probability that a randomly selected animal hates humans.

Let A be the event that a randomly selected animal hates humans, and let B be the
event that the animal is a dog. Note that Bc is precisely the event that the animal
is a cat. The information we are given says that:

• P(B) = 60
100 , since 60 of the 100 animals are dogs;

• P(Bc) = 40
100 , since 40 of the 100 animals are cats;

• P(A | B) = 10
60 , since 10 of the 60 dogs hate humans;

• P(A | Bc) = 10
40 , since 10 of the 40 cats hate humans.

By Proposition 7.1.29, it follows that the probability that a randomly selected animal
hates humans is

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc) =
60

100
· 10

60
+

40

100
· 10

40
=

20

100
=

1

5

C

The following exercise generalises Proposition 7.1.29 to arbitrary partitions of a
sample space into events with positive probabilities.

Example 7.1.31
The animal rescue centre from Example 7.1.30 acquires twenty additional rabbits, of
whom sixteen hate humans. We compute the probability that a randomly selected
animal hates humans, given the new arrivals.

A randomly selected animal must be either a dog, a cat or a rabbit, and each of
these occurs with positive probability. Thus, letting D be the event that the selected
animal is a dog, C be the event that the animal is a cat, and R be the event that
the animal is a rabbit, we see that the sets D,C,R form a partition of the sample
space.
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Letting A be the event that the selected animal hates humans. Then

P(A) = P(A | D)P(D)+P(A | C)P(C)+P(A | R)P(R) =
10

60
· 60

120
+

10

40
· 40

120
+

16

20
· 20

120
=

3

10

C

Proposition 7.1.32 below is a technical result which proves that conditional probab-
ility truly does yield a new probability measure on a given sample space.

Proposition 7.1.32
Let (Ω,P) be a discrete probability space and let B be an event such that P(B) > 0.
The function P̃ : P(Ω)→ [0, 1] defined by

P̃(A) = P(A | B) for all A ⊆ Ω

defines a probability measure on Ω.

Proof. First note that

P̃(Ω) = P(Ω | B) =
P(Ω ∩B)

P(B)
=

P(B)

P(B)
= 1

so condition (i) of Definition 7.1.1 is satisfied.

Moreover, for each A ⊆ Ω we have

P̃(A) = P(A | B) by definition of P̃

=
P(A ∩B)

P(B)
by Definition 7.1.24

=
1

P(B)

∑
ω∈A∩B

P({ω}) byProposition 7.1.5

=
∑

ω∈A∩B
P({ω} | B) by Definition 7.1.24

=
∑
ω∈A

P({ω} | B) since P({ω} | B) = 0 for ω ∈ A \B

=
∑
ω∈A

P̃({ω}) by definition of P̃

so condition (ii) of Proposition 7.1.5 is satisfied. Hence P̃ defines a probability
measure on Ω.

Proposition 7.1.32 implies that we can use all the results we’ve proved about prob-
ability measures to conditional probability given a fixed event B. For example,
Theorem 7.1.18 implies that

P(A ∪A′ | B) = P(A | B) + P(A′ | B)− P(A ∩A′ | B)
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for all events A,A′, B in a probability space (Ω,P) such that P(B) > 0.

The next theorem we prove has a very short proof, but is extremely important in
applied probability theory.

Theorem 7.1.33 (Bayes’s theorem)
Let (Ω,P) be a probability space and let A,B be events with positive probabilities.
Then

P(B | A) =
P(A | B)P(B)

P(A)

Proof. Definition 7.1.24 gives

P(A | B)P(B) = P(A ∩B) = P(B ∩A) = P(B | A)P(A)

Dividing through by P(A) yields the desired equation.

As stated, Bayes’s theorem is not necessarily particularly enlightening, but its use-
fulness increases sharply when combined with Proposition 7.1.29 to express the de-
nominator of the fraction in another way.

Corollary 7.1.34
Let (Ω,P) be a probability space and let A,B be events such that P(A) > 0 and
0 < P(B) < 1. Then

P(B | A) =
P(A | B)P(B)

P(A | B)P(B) + P(A | Bc)P(Bc)

Proof. Bayes’s theorem tells us that

P(B | A) =
P(A | B)P(B)

P(A)

By Proposition 7.1.29 we have

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc)

Substituting for P(A) therefore yields

P(B | A) =
P(A | B)P(B)

P(A | B)P(B) + P(A | Bc)P(Bc)

as required.

The following example is particularly counterintuitive.
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Example 7.1.35
A town has 10000 people, 30 of whom are infected with Disease X. Medical scientists
develop a test for Disease X, which is accurate 99% of the time. A person takes the
test, which comes back positive. We compute the probability that the person truly
is infected with Disease X.

Let A be the event that the person tests positive for Disease X, and let B be the
event that the person is infected with Disease X. We need to compute P(B | A).

By Corollary 7.1.34, we have

P(B | A) =
P(A | B)P(B)

P(A | B)P(B) + P(A | Bc)P(Bc)

It remains to compute the individual probabilities on the right-hand side of this
equation. Well,

• P(A | B) is the probability that the person tests positive for Disease X, given
that they are infected. This is equal to 99

100 , since the test is accurate with
probability 99%.

• P(A | Bc) is the probability that the person tests positive for Disease X, given
that they are not infected. This is equal to 1

100 , since the test is inaccurate
with probability 1%.

• P(B) = 30
10000 , since 30 of the 10000 inhabitants are infected with Disease X.

• P(Bc) = 9970
10000 , since 9970 of the 10000 inhabitants are not infected with

Disease X.

Piecing this together gives

P(B | A) =
99
100 ·

30
10000

99
100 ·

30
10000 + 1

100 ·
9970
10000

=
297

1294
≈ 0.23

Remarkably, the probability that the person is infected with Disease X given that
the test is positive is only 23%, even though the test is accurate 99% of the time! C

The following result generalises Corollary 7.1.34 to arbitrary partitions of the sample
space into sets with positive probabilities.

Corollary 7.1.36
Let (Ω,P) be a probability space, let A be an event with P(A) > 0, and let {Bi | i ∈
I} be a family of mutually exclusive events indexed by a countable set I such that

P(Bi) > 0 for all i ∈ I and
⋃
i∈I

P(Bi) = Ω
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Then

P(Bi | A) =
P(A | Bi)P(Bi)∑

i∈I
P(A | Bi)P(Bi)

for each i ∈ I.

Proof. Bayes’s theorem tells us that

P(B | A) =
P(A | B)P(B)

P(A)

By countable additivity, we have

P(A) = P

(⋃
i∈I

A ∩Bi

)
=
∑
i∈I

P(A ∩Bi) =
∑
i∈I

P(A | Bi)P(Bi)

Substituting for P(A) therefore yields

P(Bi | A) =
P(A | Bi)P(Bi)∑

i∈I
P(A | Bi)P(Bi)

as required.

Example 7.1.37
A car company, Cars N’At, makes three models of cars, which it imaginatively
named Model A, Model B and Model C. It made 3000 Model As, 6500 Model Bs,
and 500 Model Cs. In a given day, a Model A breaks down with probability 1

100 , a
Model B breaks down with probability 1

200 , and the notoriously unreliable Model C
breaks down with probability 1

20 . An angry driver calls Cars N’At to complain that
their car has broken down. We compute the probability that the driver was driving
a Model C car.

Let A be the event that the car is a Model A, let B be the event that the car is a
Model B, and let C be the event that the car is a Model C. Then

P(A) =
3000

10000
, P(B) =

6500

10000
, P(C) =

500

10000

Let D be the event that the car broke down. Then

P(D | A) =
1

100
, P(D | B) =

1

200
, P(D | C) =

1

20

We need to compute P(C | D). Since the events A,B,C partition the sample space
and have positive probabilities, we can use Corollary 7.1.36, which tells us that

P(C | D) =
P(D | C)P(C)

P(D | A)P(A) + P(D | B)P(B) + P(D | C)P(C)
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Substituting the probabilities that we computed above, it follows that

P(C | D) =
1
20 ·

500
10000

1
100 ·

3000
10000 + 1

200 ·
6500
10000 + 1

20 ·
500

10000

=
2

7
≈ 0.29

C

Exercise 7.1.38
In Example 7.1.37, find the probabilities that the car was a Model A and that the
car was a Model B. C
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Section 7.2

Discrete random variables

Events in a probability space are sometimes unenlightening when looked at in isol-
ation. For example, suppose we roll a fair six-sided die twice. The outcomes are
elements of the set [6] × [6], each occurring with equal probability 1

36 . The event
that the die rolls sum to 7 is precisely the subset

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} ⊆ [6]× [6]

and so we can say that the probability that the two rolls sum to 7 is

P({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}) =
1

6

However, it is not at all clear from the expression {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
that, when we wrote it down, what we had in mind was the event that the sum of
the die rolls is 7. Moreover, the expression of the event in this way does not make
it clear how to generalise to other possible sums of die rolls.

Note that the sum of the die rolls defines a function S : [6]× [6]→ [12], defined by

S(a, b) = a+ b for all (a, b) ∈ [6]× [6]

The function S allows us to express our event in a more enlightening way: indeed,

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} = {(a, b) ∈ [6]× [6] | a+ b = 7} = S−1[{7}]

(Recall the definition of preimage in Definition 2.3.35.) Thus the probability that
the sum of the two die rolls is 7 is equal to P(S−1[{7}]).

If we think of S not as a function [6]×[6]→ [12], but as a [12]-valued random variable,
which varies according to a random outcome in [6]× [6], then we can informally say

P{S = 7} =
1

6
which formally means P(S−1[{7}]) =

1

6

This affords us much more generality. Indeed, we could ask what the probability
is that the die rolls sum to a value greater than or equal to 7. In this case, note
that the die rolls (a, b) sum to a number greater than or equal to 7 if and only if
a+b ∈ {7, 8, 9, 10, 11, 12}, which occurs if and only if (a, b) ∈ S−1[{7, 8, 9, 10, 11, 12}].
Thus, we might informally say

P{S > 7} =
7

12
which formally means P(S−1[{7, 8, 9, 10, 11, 12}]) =

7

12

We might also ask what the probability is that the sum of the die rolls is prime. In
this case, we might informally say

P{S is prime} =
5

12
which formally means P(S−1[{2, 3, 5, 7, 11}]) =

5

12
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and so on. In each of these cases, we’re defining events—which are subsets of the
sample space—in terms of conditions on the values of a random variable (which is,
formally, a function).

We make the above intuition formal in Definition 7.2.1.

Definition 7.2.1
Let (Ω,P) be a probability space and let E be a set. An E-valued random variable
on (Ω,P) is a function X : Ω→ E such that the image

X[Ω] = {X(ω) | ω ∈ Ω}

is countable. The set E is called the state space of X. A random variable with
countable state space is called a discrete random variable.

Before we proceed with examples, some notation for events regarding values of ran-
dom variables will be particularly useful.

Notation 7.2.2
Let (Ω,P) be a probability space, let E be a set and let X be an E-valued random
variable on (Ω,P). For each e ∈ E, write

{X = e} = {ω ∈ Ω | X(ω) = e} = X−1[{e}]

to denote the event that X takes the value e. More generally, for each logical formula
p(x) with free variable x ranging over E, we write

{p(X)} = {ω ∈ Ω | p(X(ω))} = X−1[{e ∈ E | p(e)}]

for the event that the value of X satisfies p(x).

We will usually write P{X = e} instead of P({X = e}) for the probability that a
random variable X takes a value e, and so on.

Example 7.2.3
We can model a sequence of three coin flips using the probability space (Ω,P), where
Ω = {H,T}3 and P({ω}) = 1

8 for all ω ∈ Ω.

Let N be the real-valued random variable representing number of heads that show.
This is formalised as a function

N : Ω→ R where N(i1, i2, i3) = the number of heads amongst i1, i2, i3

for example, N(H,T,H) = 2. Now
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• The probability that exactly two heads show is

P{N = 2} = P(N−1[{2}]) by Notation 7.2.2

= P({(H,H,T), (H,T,H), (T,H,H)}) evaluating event N−1[{2}]

=
3

23
=

3

8

• The probability that at least two heads show is

P{N > 2} = P({ω ∈ Ω | N(ω) > 2}) by Notation 7.2.2

= P
({

(H,H,T), (H,T,H),
(T,H,H), (H,H,H)

})
evaluating event

=
4

23
=

1

2

C

Exercise 7.2.4
With probability space (Ω,P) and random variable N defined as in Example 7.2.3,
compute P{N is odd} and P{N = 4}. C

Exercise 7.2.5
Let (Ω,P) be a probability space, let E be a set, let X be an E-valued random
variable and let U ⊆ E. Prove that the event {X ∈ U} is equal to the preimage
X−1[U ]. Deduce that

P{X ∈ U} =
∑
e∈U

fX(e)

C

Each random variable comes with an associated probability mass function, which
allows us to ‘forget’ the underlying probability space for the purposes of studying
only the random variable.

Definition 7.2.6
Let (Ω,P) be a probability space, let X : Ω → E be an E-valued random variable.
The probability mass function of X is the function fX : S → [0, 1] defined by

fX(e) = P{X = e} for all e ∈ S

Example 7.2.7
The probability mass function of the random variable N from Exercise 7.2.3 is the
function fN : R→ [0, 1] defined by

fN (e) = P{N = e} =
1

8

(
3

e

)
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for all e ∈ {0, 1, 2, 3}, and fN (e) = 0 otherwise. Indeed, there are 23 = 8 possible
outcomes, each equally likely, and

(
3
e

)
of those outcomes show exactly e heads for

e ∈ {0, 1, 2, 3}. C

In the previous exercise, we could have just specified the value of fN on {0, 1, 2, 3},
with the understanding that N does not take values outside of this set and hence
that P{N = e} = 0 for all e 6∈ {0, 1, 2, 3}. This issue arises frequently when dealing
with real-valued discrete random variables, and it will be useful to ignore most (or
all) of those real numbers which are not values of the random variable.

As such, for E ⊆ R, we will from now on blur the distinction between the following
concepts:

(i) E-valued random variables;

(ii) real-valued random variables X such that P{X = x} = 0 for all x 6∈ E.

Example 7.2.8
The probability mass function of the random variable N from Example 7.2.3 can be
taken to be the function fX : {0, 1, 2, 3} → [0, 1] defined by

fX(k) =
1

8

(
3

k

)
for all k ∈ {0, 1, 2, 3}

C

Lemma 7.2.9
Let (Ω,P) be a probability space, let E be a set and let X be an E-valued random
variable. The sets {X = e} for e ∈ E are mutually exclusive, and their union is Ω.

Proof. If e, e′ ∈ E, then for all ω ∈ Ω we have

ω ∈ {X = e} ∩ {X = e′} ⇔ ω ∈ X−1[{e}] ∩X−1[{e′}] by Notation 7.2.2

⇔ X(ω) = e and X(ω) = e′ by definition of preimage

⇒ e = e′

so if e 6= e′ then {X = e} ∩ {X = e′} = ∅. So the events are mutually exclusive.

Moreover, if ω ∈ Ω, then ω ∈ {X = X(ω)}. Hence

Ω =
⋃
e∈E
{X = e}

as required.
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Theorem 7.2.10
Let (Ω,P) be a probability space, let E be a countable set, and let X be an E-valued
random variable. Then ∑

e∈E
fX(e) = 1

Proof. Since fX(e) = P{X = e} for all e ∈ E, we need to check that∑
e∈E

P{X = e} = 1

By Lemma 7.2.9, we have

∑
e∈E

P{X = e} = P

(⋃
e∈E
{X = e}

)
= P(Ω) = 1

as required.

The following corollary follows immediately.

Corollary 7.2.11
Let (Ω,P) be a probability space, let E be a countable set, and let X be an E-valued
random variable. The function X∗P : P(E)→ [0, 1] defined by

(X∗P)(A) =
∑
e∈A

fX(e) = P{X ∈ A}

for all A ⊆ E defines a probability measure on E. The space (E,X∗P) is called the
pushforward probability measure of X.

Corollary 7.2.11 implies that any statement about probability measures can be ap-
plied to the pushforward measure. For example,

P{X ∈ A ∪B} = P{X ∈ A}+ P{X ∈ B} − P{X ∈ A ∩B}

for all subsets A,B ⊆ E.

As with events, there is a notion of independence for random variables.

Definition 7.2.12
Let (Ω,P) be a discrete probability space and let X,Y : Ω→ E be discrete random
variables on (Ω,P). We say X and Y are independent if, for all e, e′ ∈ E, the
events {X = e} and {Y = e′} are independent. More generally, random variables
X1, X2, . . . , Xn are mutually independent if, for all e1, e2, . . . , en ∈ E, the events
{Xi = ei} are mutually independent.
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Example 7.2.13
A fair six-sided die is rolled twice. Let X be the value shown on the first roll and Y
be the value shown on the second roll.

We can model this situation by letting Ω = [6] × [6] with P({(a, b)}) = 1
36 for all

(a, b) ∈ Ω. The random variables X,Y can thus be taken to be functions Ω → [6]
defined by

X(a, b) = a and Y (a, b) = b for all (a, b) ∈ Ω

So let e, e′ ∈ [6]. Note first that

{X = e} ∩ {Y = e′} = {(a, b) ∈ Ω | a = e} ∩ {(a, b) ∈ Ω | b = e′} by Notation 7.2.2

= {(a, b) ∈ Ω | a = e and b = e′}
= {(e, e′)}

Hence

P({X = e} ∩ {Y = e′}) = P({(e, e′)}) =
1

36
=

1

6
· 1

6
= P{X = e}P{Y = e′}

The events {X = e} and {Y = e′} are independent, and so X and Y are independent.
C

Exercise 7.2.14
A coin which shows heads with probability p ∈ [0, 1], and tails otherwise, is flipped
five times. For each i ∈ [5], let

Xi =

{
0 if the ith flip shows tails

1 if the ith flip shows heads

Prove that the random variables X1, X2, X3, X4, X5 are mutually independent. C

One final technicality that we mention before continuing concerns performing arith-
metic with random variables which assume real values.

Notation 7.2.15
Let (Ω,P) be a probability space, and let X,Y be real-valued random variables on
(Ω,P). Then we can define a new real-valued random variable X + Y by

(X + Y )(ω) = X(ω) + Y (ω) for all ω ∈ Ω

Likewise for multipication, scalar multiplication and constants: for each ω ∈ Ω,
define

(XY )(ω) = X(ω)Y (ω), (aX)(ω) = a ·X(ω), a(ω) = a

where a ∈ R. Note that the random variables X + Y,XY, aX, a are all supported
on a countable set.
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Example 7.2.16
A coin which shows heads with probability p ∈ [0, 1], and tails otherwise, is flipped
n times. For each i ∈ [n], let

Xi =

{
0 if the ith flip shows tails

1 if the ith flip shows heads

Then each Xi is a {0, 1}-valued random variable.

Define X = X1 +X2 + · · ·+Xn. Then X is a {0, 1, . . . , n}-valued random variable
representing the number of heads that show in total after the coin is flipped n
times. C

Probability distributions

Most of the random variables we are interested in are characterised by one of a
few probability distributions. We won’t define the term ‘probability distribution’
precisely—indeed, its use in the mathematical literature is often ambiguous and
informal—instead, we will take it to mean any description of the random behaviour
of a probability space or random variable.

The uniform distribution models the real-world situation in which any of a fixed
number of outcomes occurs with equal probability.

Definition 7.2.17 (Uniform distribution)
Let (Ω,P) be a probability space, let E be a finite set, and let X : Ω → E be
a random variable. We say X follows the uniform distribution on E, or X is
uniformly distributed on E, if fX is constant—that is, if

fX(e) =
1

|E|
for all e ∈ E

If X is uniformly distributed on E, we write X ∼ Unif(E) (LATEX code: \sim).

Example 7.2.18
Let (Ω,P) be the probability space modelling the roll of a fair six-sided die, and let
X be the [6]-valued random variable representing the number shown. Then for each
k ∈ [6] we have

fX(k) = P{X = k} = P({k}) =
1

6

so X is uniformly distributed on [6]. C

Exercise 7.2.19
Let (Ω,P) be the probability space modelling the roll of a fair six-sided die, and let
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X be the {0, 1}-valued random variable which is equal to 0 if the die shows an even
number and 1 if the die shows an odd number. Prove that X ∼ Unif({0, 1}). C

Before we continue, we prove that the notion of ‘uniform distribution’ does not make
sense for countably infinite sets.

Theorem 7.2.20
Let (Ω,P) be a probability space and let E be a countably infinite set. There is no
notion of a uniformly E-valued random variable X—that is, there is no p ∈ [0, 1]
such that fX(e) = p for all e ∈ E.

Proof. We may assume E = N; otherwise, re-index the sums accordingly.

Let p ∈ [0, 1]. Note that

∑
n∈N

fX(n) =
∑
n∈N

p = lim
N→∞

N∑
n=0

p = lim
N→∞

(N + 1)p

If p = 0 then

lim
N→∞

(N + 1)p = lim
N→∞

0 = 0

If p > 0 then, for all K > 0, letting N = K
p yields (N + 1)p = K+p > K, and hence

lim
N→∞

(N + 1)p =∞

Thus
∑
n∈N

p 6= 1 for all p ∈ [0, 1].

In both cases, we have contradicted Theorem 7.2.10. As such, there can be no
random variable X : Ω→ N such that fX is constant.

The Bernoulli distribution models real-world situations in which one of two outcomes
occurs, but not necessarily with the same probability.

Definition 7.2.21 (Bernoulli distribution)
Let (Ω,P) be a probability space. A {0, 1}-valued random variable X follows the
Bernoulli distribution with parameter p if its probability mass function fX :
{0, 1} → [0, 1] satisfies

fX(0) = 1− p and fX(1) = p

If X follows the Bernoulli distribution with parameter p, we write X ∼ B(1, p).
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The reason behind the notation B(1, p) will become clear soon—the Bernoulli dis-
tribution is a specific instance of a more general distribution, which we will see in
Definition 7.2.24.

Example 7.2.22
A coin shows ‘heads’ with probability p and ‘tails’ with probability 1− p. Let X be
the random variable which takes the value 0 if the coin shows tails and 1 if the coin
shows heads. Then X ∼ B(1, p). C

Exercise 7.2.23
Let X be a {0, 1}-valued random variable. Prove that X ∼ U({0, 1}) if and only if
X ∼ B(1, 1

2). C

Suppose that, instead of flipping a coin just once, as in Example 7.2.22, you flip it n
times. The total number of heads that show must be an element of {0, 1, . . . , n}, and
each such element occurs with some positive probability. The resulting probability
distribution is called the binomial distribution.

Definition 7.2.24 (Binomial distribution)
Let (Ω,P) be a probability space. A {0, 1, . . . , n}-valued random variable X follows
the binomial distribution with parameters n, p if its probability mass function
fX : {0, 1, . . . , n} → [0, 1] satisfies

fX(k) =

(
n

k

)
pk(1− p)n−k

for all k ∈ {0, 1, . . . , n}. If X follows the binomial distribution with parameters n, p,
we write X ∼ B(n, p).

Example 7.2.25
A coin which shows heads with probability p ∈ [0, 1], and tails otherwise, is flipped n
times. We will prove that the number of heads that show is binomially distributed.

We can model this situation with probability space (Ω,P) defined by taking Ω =
{H,T}n, and letting P({ω}) = ph(1 − p)t for all ω ∈ Ω, where h is the number of
heads that show and t is the number of tails that show in outcome ω. For example,
if n = 5 then

P({HTHHT}) = p3(1− p)2 and P({TTTTT}) = (1− p)5

Note in particular that h+ t = n.

Let X be the random variable which counts the number of heads that show. Form-
ally, we can define X : {H,T}n → {0, 1, . . . , n} by letting X(ω) be the number of
heads that show in outcome ω. For example if n = 5 then

X(HTHHT) = 3 and X(TTTTT) = 0
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The event {X = k} is the set of n-tuples of ‘H’s and ‘T’s which contain exactly
k ‘H’. Hence |{X = k}| =

(
n
k

)
, since such an n-tuple can be specified by choosing

the k positions of the ‘H’s, and putting ‘T’s in the remaining positions. Since each
outcome in this event occurs with equal probability pk(1− p)n−k, it follows that

fX(k) =

(
n

k

)
pk(1− p)n−k

for all k ∈ {0, 1, . . . , n}. Hence X ∼ B(n, p). C

The following theorem proves that the sum of Bernoulli random variables follows
the binomial distribution.

Theorem 7.2.26
Let (Ω,P) be a probability space, let p ∈ [0, 1] and let X1, X2, . . . , Xn : Ω → {0, 1}
be independent random variables such that Xi ∼ B(1, p). Then

X1 +X2 + · · ·+Xn ∼ B(n, p)

Proof. Let X = X1 +X2 + · · ·+Xn. For each outcome ω and each k ∈ {0, 1, . . . , n},
we have X(ω) = k if and only if exactly k of the values X1(ω), X2(ω), . . . , Xn(ω)
are equal to 1.

For each specification S of which of the random variables Xi is equal to 1, let AS ⊆ Ω
be the event that this occurs. Formally, this is to say that, for each S ⊆ [n], we
define

AS = {ω ∈ Ω | Xi(ω) = 0 for all i 6∈ S and Xi(ω) = 1 for all i ∈ S}

Then P(AS) = pk(1−p)n−k, since the random variables X1, X2, . . . , Xn are mutually
independent.

As argued above sets {AS | U ⊆ [n], |S| = k} form a partition of {X = k}, and
hence

fX(k) =
∑

S∈([n]
k )

P(AS) =
∑

S∈([n]
k )

pk(1− p)n−k =

(
n

k

)
pk(1− p)n−k

which is to say that X ∼ B(n, p).

We will make heavy use of Theorem 7.2.26 in Section 7.3, when we will study the
expectation of binomially distributed random variables. First, let’s will look at a
couple of scenarios in which a binomially distributed random variable is expressed
as a sum of independent Bernoulli random variables.
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Example 7.2.27
In Example 7.2.25, we could have defined {0, 1}-valued random variablesX1, X2, . . . , Xn

by letting

Xi(ω) =

{
0 if the ith coin flip shows tails

1 if the ith coin flip shows heads

Then the number of heads shown in total is the random variable X = X1 + X2 +
· · ·+Xn. Note that each random variable Xi follows the Bernoulli distribution with
parameter p, and they are independent, so that X ∼ B(n, p) by Theorem 7.2.26. C

In Example 7.2.25, we flipped a coin a fixed number of times and counted how many
heads showed. Now suppose that we flip a coin repeatedly until heads show, and
then stop. The number of times the coin was flipped before heads shows could,
theoretically, be any natural number. This situation is modelled by the geometric
distribution.

Definition 7.2.28 (Geometric distribution on N)
Let (Ω,P) be a probability space. An N-valued random variable X follows the
geometric distribution with parameter p if its probability mass function fX :
N→ [0, 1] satisfies

fX(k) = (1− p)kp for all k ∈ N

If X follows the geometric distribution with parameter p, we write X ∼ Geom(p).

Example 7.2.29
A coin which shows heads with probability p ∈ [0, 1], and tails otherwise, is flipped
repeatedly until heads shows. C

Exercise 7.2.30
Let p ∈ [0, 1] and let X ∼ Geom(p). Prove that

P{X is even} =
1

1− p

What is the probability that X is odd? C

Occasionally, it will be useful to consider geometrically distributed random variables
which are valued in the set

N+ = {1, 2, 3, . . . }

of all positive natural numbers. The probability mass function of such a random
variable is slightly different.
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Definition 7.2.31 (Geometric distribution on N+)
Let (Ω,P) be a probability space. An N+-valued random variable X follows the
geometric distribution with parameter p if its probability mass function fX :
N→ [0, 1] satisfies

fX(k) = (1− p)k−1p for all k ∈ N+

If X follows the geometric distribution with parameter p, we write X ∼ Geom(p).

It is to be understood from context whether a given geometric random variable is
N-valued or N+-valued.

Example 7.2.32
An urn contains n > 1 distinct coupons. Each time you draw a coupon that you
have not drawn before, you get a stamp. When you get all n stamps, you win. Let
X be the number of coupons drawn up to, and including, a winning draw.

For each k ∈ [n], let Xk be the random variable representing the number of draws
required to draw the kth new coupon, after k−1 coupons have been collected. Then
the total number of times a coupon must be drawn is X = X1 +X2 + · · ·+Xn.

After k − 1 coupons have been collected, there are n − k + 1 uncollected coupons
remaining in the urn, and hence on any given draw, an uncollected coupon is drawn
with probability n−k+1

n , and a coupon that has already been collected is drawn with

probability k−1
n . Hence for each r ∈ N+ we have

P[Xk = r] =

(
k − 1

n

)r−1(n− k + 1

n

)
That is to say, Xk is geometrically distributed on N+ with parameter n−k+1

n .

We will use this in Example 7.3.15 to compute the number of times a person should
expect to have to draw coupons from the urn until they win. C
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Section 7.3

Expectation

We motivate the definition of expectation (Definition 7.3.2) with the following ex-
ample.

Example 7.3.1
For each n > 1, let Xn be the average value shown when a fair six-sided die is rolled
n times.

When n is small, the value of Xn is somewhat unpredictable. For example, X1

is uniformly distributed, since it takes each of the values 1, 2, 3, 4, 5, 6 with equal
probability. This is summarised in the following table:

e 1 2 3 4 5 6

P{X1 = e} 1
6

1
6

1
6

1
6

1
6

1
6

The distribution of X2 is shown in the following table:

e 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

P{X2 = e} 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

As can be seen, the probabilities increase towards the middle of the table; the
extreme values occur with low probability. This effect is exaggerated as n increases.
Indeed,

P{Xn = 1} = P{Xn = 6} =
1

6n

which is extremely small when n is large; however, it can be shown that for all ε > 0,
we have

P{3.5− ε < Xn < 3.5 + ε} → 1

Thus when we roll a die repeatedly, we can expect its value to approach 3.5 with
arbitrary precision. This is an instance of a theorem called the law of large numbers,
which we will not prove here. C

The value 3.5 in Example 7.3.1 is special because it is the average of the numbers
1, 2, 3, 4, 5, 6. More generally, assignments of different probabilities to different val-
ues of a random variable X yields a weighted average of the possible values. This
weighted average, known as the expectation of the random variable, behaves in the
same way as the number 3.5 did in Example 7.3.1.
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Definition 7.3.2
Let (Ω,P) be a probability space, let E ⊆ R be countable, and let X be an E-valued
random variable on (Ω,P). The expectation (or expected value) of X, if it exists,
is the real number E[X] (LATEX code: \mathbb{E}) defined by

E[X] =
∑
e∈E

efX(e)

Example 7.3.3
Let X be a random variable representing the value shown when a fair six-sided die
is rolled. Then X ∼ U([6]), so that fX(k) = 1

6 for all k ∈ [6], and hence

E[X] = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

21

6
= 3.5

so the expected value of the die roll is 3.5. C

Example 7.3.4
Let p ∈ [0, 1] and let X ∼ B(1, p). Then

E[X] = 0 · (1− p) + 1 · p = p

So the expected value of a Bernoulli random variable is equal to the parameter. C

Exercise 7.3.5
Let (Ω,P) be a probability space and let c ∈ R. Thinking of c as a constant real-
valued random variable,[a] prove that E[c] = c. C

The following lemma provides an alternative method for computing the expectation
of a random variable. It will be useful for proving that expectation is linear in
Theorem 7.3.11.

Lemma 7.3.6
Let (Ω,P) be a probability space, let E be a countable set and let X be an E-valued
random variable on (Ω,P). Then

E[X] =
∑
ω∈Ω

X(ω)P({ω})

Proof. Recall from Lemma 7.2.9 that

Ω =
⋃
e∈E
{X = e}

[a]Formally, we should define X : Ω→ R by letting X(ω) = c for all ω ∈ Ω; then compute E[X].
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and the events {X = e} are mutually exclusive. Hence∑
ω∈Ω

X(ω)P({ω}) =
∑
e∈E

∑
ω∈{X=e}

X(ω)P({ω}) by Lemma 7.2.9

=
∑
e∈E

eP{X = e} by (ii) in Proposition 7.1.5

=
∑
e∈E

efX(e) by Definition 7.2.6

as required.

Proposition 7.3.7
Let n ∈ N and p ∈ [0, 1], and suppose that X is a random variable such that
X ∼ B(n, p). Then E[X] = np.

Proof. Since X ∼ B(n, p), we have fX(k) =
(
n
k

)
pk(1−p)n−k for all 0 6 k 6 n. Hence

E[X] =
n∑

k=0

k ·
(
n

k

)
pk(1− p)n−k by definition of expectation

=
n∑

k=1

k ·
(
n

k

)
pk(1− p)n−k since the k = 0 term is zero

=

n∑
k=1

n

(
n− 1

k − 1

)
pk(1− p)n−k by Proposition 4.2.45

=

n−1∑
`=0

n

(
n− 1

`

)
p`+1(1− p)(n−1)−` writing ` = k + 1

= np ·
n−1∑
`=0

(
n− 1

`

)
p`(1− p)(n−1)−` pulling out constant factors

= np(p+ (1− p))n−1 by the binomial theorem

= np since p+ (1− p) = 1

as required.

Example 7.3.8
A coin which shows heads with probability 1

3 , and tails otherwise, is tossed 12 times.
Letting X be the random variable represent the number of heads that show, we see
that X ∼ B(12, 1

3), and hence the expected number of heads that show is equal to

E[X] = 12 · 1

3
= 4

C
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Exercise 7.3.9
Use Proposition 6.3.2 to prove that the expectation of a N-valued random variable
which is geometrically distributed with parameter p ∈ [0, 1] is equal to 1−p

p . Use
this to compute the expected number of times a coin must be flipped before the first
time heads shows, given that heads shows with probability 2

7 . C

Exercise 7.3.10
Prove that the expectation of a N+-valued random variable which is geometrically
distributed with parameter p ∈ [0, 1] is equal to 1

p . C

Theorem 7.3.11 (Linearity of expectation)
Let (Ω,P) be a probability space, let E ⊆ R be countable, let X and Y be E-valued
random variables on (Ω,P), and let a, b ∈ R. Then

E[aX + bY ] = aE[X] + bE[Y ]

Proof. This follows directly from the fact that summation is linear. Indeed,

E[aX + bY ] =
∑
ω∈Ω

(aX + bY )(ω)P({ω}) by Lemma 7.3.6

=
∑
ω∈Ω

(
aX(ω)P({ω}) + bY (ω)P({ω})

)
expanding

= a
∑
ω∈Ω

X(ω)P({ω}) + b
∑
ω∈Ω

Y (ω)P({ω}) by linearity of summation

= aE[X] + bE[Y ] by Lemma 7.3.6

as required.

Example 7.3.12
Let X be a random variable representing the sum of the numbers shown when a fair
six-sided die is rolled twice. We can write X = Y + Z, where Y is the value of the
first die roll and Z is the value of the second die roll. By Example 7.3.3, we have
E[Y ] = E[Z] = 3.5. Linearity of expectation then yields

E[X] = E[Y ] + E[Z] = 3.5 + 3.5 = 7

so the expected value of the sum of the two die rolls is 7. C

Example 7.3.13
A coin, when flipped, shows heads with probability p ∈ [0, 1]. The coin is flipped. If
it shows heads, I gain $10; if it shows tails, I lose $20. We compute the least value
of p that ensures that I do not expect to lose money.

Let X be the random variable which is equal to 0 if tails shows, and 1 if heads
shows. then X ∼ B(1, p), so that E[X] = p by Example 7.3.4. Let Y be the amount
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of money I gain. Then

Y = 10X − 20(1−X) = 30X − 20

Hence my expected winnings are

E[Y ] = 30E[X]− 20 = 30p− 20

In order for this number to be non-negative, we require p > 2
3 . C

Theorem 7.3.11 generalises by induction to linear combinations of countably many
random variables; this is proved in the following exercise

Exercise 7.3.14
Let (Ω,P) be a probability space, let E ⊆ R be countable, let {Xi | i ∈ I} be a
family of E-valued random variables on (Ω,P), indexed by some countable set I,
and let {an | n ∈ N} be an I-indexed family of real numbers. Prove that

E

[∑
i∈I

aiXi

]
=
∑
i∈I

aiE[Xi]

C

Example 7.3.15
Recall Exercise 7.2.32: an urn contains n > 1 distinct coupons. Each time you draw
a coupon that you have not drawn before, you get a stamp. When you get all n
stamps, you win. We find the expected number of times you need to draw a coupon
from the urn in order to win.

For each k ∈ [n], let Xk be the random variable representing the number of draws
required to draw the kth new coupon, after k−1 coupons have been collected. Then
the total number of times a coupon must be drawn is X = X1 +X2 + · · ·+Xn.

We already saw that Xk ∼ Geom
(
n−k+1

n

)
for each k ∈ [n]. By Exercise 7.3.10, we

have E[Xk] = n
n−k+1 for all k ∈ [n]. By linearity of expectation, it follows that

E[X] =

n∑
k=1

E[Xk] =
n∑

k=1

n

n− k + 1
= n

n∑
i=1

1

i

C
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340 Chapter 8. Additional topics

Section 8.1

Ring theory

In Chapter 3 we examined the integers by pushing their arithmetic structure to their
limits. Everything we did—including the definition and study of divisibility—was
done in terms of addition, subtraction and multiplication.

Given a set R, provided we can make sense of addition, subtraction and multiplica-
tion, we can make all the same basic definitions—like divisibility, greatest common
divisors, and so on—and ask ourselves to what extent the results that held true of
integers hold for R.

This motivates the definition of a ring.

Definition 8.1.1
A (commutative) ring (with unity) is a set R equipped with:
• An addition function a : R×R→ R; we write a(r, s) = r + s for r, s ∈ R;

• A negation function n : R→ R; we write n(r) = −r for r ∈ R;

• A multiplication function m : R×R→ R; we write m(r, s) = r·s for r, s ∈ R;

• An additive identity element 0R ∈ R;

• A multiplicative identity element 1R ∈ R
such that the following conditions hold:
• Properties of addition

� (Associativity) If r, s, t ∈ R then (r + s) + t = r + (s+ t);

� (Identity) If r ∈ R then r + 0R = 0R + r = r;

� (Inverse) If r ∈ R then r + (−r) = (−r) + r = 0R;

� (Commutativity) If r, s ∈ R then r + s = s+ r.

• Properties of multiplication

� (Associativity) If r, s, t ∈ R then (r · s) · t = r · (s · t);
� (Identity) If r ∈ R then r · 1R = 1R · r = r;

� (Commutativity) If r, s ∈ R then r · s = s · r.

• Relationship between addition and multiplication

� (Distributivity) If r, s, t ∈ R then r · (s+ t) = (r · s) + r · t.

Example 8.1.2
The number sets Z, Q and R are all rings with their usual notions of addition and
multiplication and so on. The ring Z of integers was our focus in Chapter 3. C
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Example 8.1.3
Let X be a set. Then the power set P(X) is a ring, with:

• U + V = U4V ; that is, addition is given by the symmetric difference.

• −U = U ;

• U · V = U ∩ V ; that is, multiplication is given by intersection;

• 0P(X) = ∅;

• 1P(X) = X.

C

Exercise 8.1.4
Verify that P(X), as described in Example 8.1.3, is a ring. C

Example 8.1.5
There are many other rings. Some commonly occuring ones are:

• Given a ring R, there is a ring R[x] of polynomials over R. That is, expres-
sions of the form

r0 + r1x+ · · ·+ rnx
n

where n ∈ N and r0, . . . , rn ∈ R.

• If n ∈ Z is not a perfect square, we can define

Z[
√
n] = {a+ b

√
n | a, b ∈ Z}

with addition and multiplication defined as you’d expect; in particular

(a+ b
√
n)(c+ d

√
n) = (ac+ bdn) + (ad+ bc)

√
n

This is defined even when n < 0. For example in Z[
√
−5] we have

(1−
√
−5)(1 +

√
−5) = (1 + 5) + (1− 1)

√
−5 = 6

• Given n > 0, the set Zn = {0, 1, . . . , n − 1} can be given the structure of a
ring by declaring a + b to be the remainder of a + b when divided by n, and
likewise for a · b.

C

Many of the definitions that we provided for integers can then be carried over to
arbitrary rings; we’ll spend most of the rest of this section comparing them.
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Units and zero divisors

Definition 8.1.6
Let R be a ring.
• Let r, s ∈ R. We say r divides s, and write r | s if there exists q ∈ R such

that s = qr.

• u ∈ R is a unit if u | 1R.

Example 8.1.7
Some examples of divisors and units in rings are as follows:

• We showed above that 1 +
√

5 | 6 in Z[
√
−5].

• The number 1 +
√

2 is a unit in Z[
√

2]: indeed, 1 +
√

2 | 1 since

(1 +
√

2)(−1 +
√

2) = (−1 + 2) + (−1 + 1)
√

2 = 1

• In Q and R, every non-zero element is a unit. Indeed, if x ∈ Q and x 6= 0 then
1
x ∈ Q, so x · 1

x = 1, so x | 1. Likewise with R.

• We know that if a ⊥ n then a has a multiplicative inverse modulo n; this is
precisely the assertion that a ⊥ n if and only if a is a unit in Zn. (Contrast
this to the situation of Z, where the only units are −1 and 1.)

C

One definition that we didn’t give for the integers, because it would have been silly,
is that of a zero divisor.

Definition 8.1.8
Let R be a ring. A zero divisor in R is an element r ∈ R such that r | 0R. We say
R is an integral domain if the only zero divisor in R is 0R itself.

So for example Z is an integral domain, since if r ∈ Z and r | 0, then r = 0.

Proposition 8.1.9
Let n > 1. Then Zn is an integral domain if and only if n is prime.

Proof. Suppose n is composite, say n = ab where 0 < a < n and 0 < b < n. Then
ab = 0 in Zn, so a | 0, even though a 6= 0. Hence Zn is not an integral domain.

Conversely, suppose n is prime. Then a ⊥ n for all a ∈ Zn with a 6= 0, so a
has a multiplicative inverse b ∈ Zn modulo n. That is, ab = 1 in Zn. Suppose,
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furthermore, that a is a zero divisor. Then ac = 0 for some c ∈ Zn with c 6= 0.
Hence

c = 1 · c = (ab)c = (ac)b = 0b = 0

contradicting the fact that c 6= 0. So a must not be a zero divisor. So Zn is an
integral domain.

Primes and irreducibles

The definitions of primes and irreducibles in Z carry over to arbitrary integral do-
mains.

Definition 8.1.10
Let R be an integral domain and let p ∈ R. Then
• p is prime if p is a non-zero non-unit and, for all r, s ∈ R, if p | rs then p | r

or p | s;

• p is irreducible if p is a non-zero non-unit and, for all r, s ∈ R, if p = rs then
either r is a unit or s is a unit.

Primes and irreducibles coincide in the ring Z, as we proved in Theorem 3.2.11, but
this is not necessarily the case in an arbitrary ring.

Example 8.1.11
In Z[

√
−5], the element 2 is irreducible. Moreover, since (1 +

√
−5)(1−

√
−5) = 6,

we have

2× 3 = (1 +
√
−5)(1−

√
−5)

However, 2 - 1 +
√
−5 and 2 - 1−

√
−5. Indeed, if 2 | 1 +

√
−5, then there will exist

a, b ∈ Z such that

1 +
√
−5 = 2(a+ b

√
−5) = 2a+ 2b

√
−5

But this implies that 1 = 2a, and hence 2 | 1 in Z, which is nonsense. Likewise for
1−
√
−5.

Hence 2 is not prime in Z[
√
−5]. However 2 is irreducible in Z[

√
−5], though the

proof of this is omitted here because it’s a little involved. C

We can classify some rings in which primes and irreducibles do coincide, however.
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Principal ideal domains

Definition 8.1.12
Let R be a ring. An ideal in R is a subset I ⊆ R such that
• If x, y ∈ I then x− y ∈ I; and

• If x ∈ I and r ∈ R then rx ∈ I.

Example 8.1.13
We have seen To do: reference; PS4 Q3 that if I ⊆ Z is an ideal then

I = dZ = {dn | n ∈ Z}

for some d ∈ Z. C

The proof of Exercise 8.1.13 relies fundamentally on the division theorem. However,
we cannot state the division theorem for an arbitrary ring because it used the order
relation 6 on Z, which might not exist in an arbitrary ring.

Example 8.1.14
There is an ideal in Z[x] defined by

(2, x) = {2p(x) + xq(x) | p(x), q(x) ∈ Z[x]} = {2a+ xq(x) | a ∈ Z, q(x) ∈ Z[x]}

C

Ideals in a ring R give rise to a nice kind of an equivalence relation, called a con-
gruence relation. Define ≡I by r ≡I s if and only if r−s ∈ I. The quotient R/≡I

is denoted by R/I, and the equivalence class [r]≡I is denoted by r + I.

Example 8.1.15
In Z, if I = nZ then, given a, b ∈ Z, we have

a ≡nZ b ⇔ a− b ∈ nZ ⇔ n | a− b ⇔ a ≡ b mod n

Hence a+ nZ = [a]n and Z/nZ is what we previously called Z/nZ. C

Moreover, in any ring R with ideal I, the relation ≡I is compatible with the opera-
tions of R; in other words, if r + s = r′ + s′ in R then

(r + s) + I = (r′ + s′) + I

and likewise for multiplication. Hence we have a form of modular arithmetic that
we can perform in any ring.

Example 8.1.16
Consider the ring R[x] of polynomials with real coefficients. Define

I = 〈x2 + 1〉 = {(x2 + 1)f(x) | f(x) ∈ R[x]}
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Then I is an ideal in R[x], and the quotient ring R[x]/〈x2 + 1〉 is ‘the same’ as the
set of complex numbers; that is, the real numbers extended by allowing

√
−1 to

exist. C

Principal ideal domains

Definition 8.1.17
An ideal I is principal if there exists d ∈ R such that

I = {rd | r ∈ R}

In this case we write I = (d). A ring R is called a principal ideal domain if every
ideal in R is principal.

A consequence of 8.1.13 is:

Proposition 8.1.18
Z is a principal ideal domain.

Nonetheless, there are other examples of principal ideal domains, such as Q[x] and
Z[
√
−1].

Theorem 8.1.19
Let R be a ring. If R is a principal ideal domain, then every irreducible element
p ∈ R is prime.

Proof. Let p ∈ R and suppose p is irreducible.

First note that if I ⊆ R is an ideal and p ∈ I, then either I = (p) or I = R. Certainly
(p) ⊆ I since p, and hence all multiples of p are elements of I. Since R is a principal
ideal domain, I = (x) for some x ∈ R. Since p ∈ I we must have p = rx for some
r ∈ I. Since p is irreducible, either x is a unit or r is a unit. If x is a unit then
I = R. If r is a unit then qr = 1 for some q ∈ R, so x = qrx = qp ∈ (p), so I ⊆ (p),
and hence I = (p). So either I = (p) or I = R.

Now fix r, s ∈ R and suppose that p | rs. We need to prove that p | r or p | s. To
do: Finish proof
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Section 8.2

Ordinal and cardinal numbers
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Section 8.3

Boolean algebra
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Section 8.4

Complex numbers
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Section 8.5

Limits and asymptotes
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Appendix A

Hints for selected exercises

Hint for Exercise 1.2.9
Suppose n = dr · 10r + · · · + d1 · 10 + d0 and let s = dr + · · · + d1 + d0. Start by
proving that 3 | n− s.

Hint for Exercise 1.2.21
Use the law of excluded middle with the proposition ‘

√
2
√

2
is rational’.

Hint for Exercise 1.2.34
Look carefully at the definition of divisibility (Definition 1.1.12).

Hint for Exercise 1.3.13
Let q(n) be the statement p(n+ b) and prove q(n) for all n > 0 by induction on n.

Hint for Exercise 1.3.42
Prove first that if a ∈ Z and a2 is divisible by 3, then a is divisible by 3.

Hint for Exercise 2.3.28
Look closely at Definition 2.3.23.

Hint for Exercise 3.1.11
Remember that negative integers can be greatest common divisors too.

Hint for Exercise 3.1.13
Start by proving that d and d′ must divide each other.

Hint for Exercise 3.1.24
Exercise 3.1.21 would be a good starting point.

Hint for Exercise 3.1.39
This is essentially the same as Exercise 3.1.13.

Hint for Exercise 3.1.41
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Define m =
ab

gcd(a, b)
and prove that m satisfies the definition of being a least

common multiple of a and b (Definition 3.1.38). Then apply Exercise 3.1.39.

Hint for Exercise 3.2.5
Use the factorial formula for binomial coefficients (Theorem 1.3.31).

Hint for Exercise 3.2.9
Assume p = mn for some m,n ∈ Z. Prove that m or n is a unit.

Hint for Exercise 3.2.22
What are the prime factors of n!− 1?

Hint for Exercise 3.3.23
Consider the list a0, a1, a2, . . . . Since there are only finitely many remainders modulo
n, we must have ai ≡ aj mod n for some 0 6 i < j.

Hint for Exercise 3.3.30
First find the remainder of 244886 when divided by 12.

Hint for Exercise 3.3.33
Consider what it means for an element of [pk] not to be coprime to pk.

Hint for Exercise 3.3.38
You need to use the fact that p is prime at some point in your proof.

Hint for Exercise 3.3.39
Pair as many elements of [p− 1] as you can into multiplicative inverse pairs modulo
p.

Hint for Exercise 3.3.49
This generalisation will be tricky! You may need to generalise the definitions and
results about greatest common divisors and least common multiples that we have
seen so far, including Bézout’s lemma. You might want to try proving this first in
the case that ni ⊥ nj for all i 6= j.

Hint for Exercise 3.3.50
Observe that if a, k ∈ Z and k | a, then k | a+ k.

Hint for Exercise 4.1.10
Recall Definition 2.3.29.

Hint for Exercise 4.1.12
If Z were a subset of Y , then we could easily define an injection i : Z → Y by
i(z) = z for all z ∈ Z. Are there any subsets of Y that are associated with a
function with codomain Y ?
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Hint for Exercise 4.1.16
Write the elements of both sets on an m × n grid, and then find a function that
sends an element on one grid to the corresponding element of the other. Quotients
and remainders might be useful! (See Section 3.1.)

Hint for Exercise 4.1.22
When defining a left inverse g : Y → X for f , consider for each y ∈ Y whether or
not y is in the image of f . If it is, what value must g(y) take? If it isn’t, does it
matter what value g(y) takes?

Hint for Exercise 4.1.25
Think about how you prove that a function f is surjective and, given y ∈ Y , identify
where in the proof you define an element of X that you could take to be the value
g(y) of a right inverse g : Y → X.

Hint for Exercise 4.1.28
For part (c), don’t try to write a formula for the inverse of h; instead, use the
fundamental theorem of arithmetic.

Hint for Exercise 4.1.33
Use Exercise 4.1.29.

Hint for Exercise 4.2.29
Any function f : X → Y with finite domain can be specified by listing its values.
For each x ∈ X, how many choices do you have for the value f(x)?

Hint for Exercise 4.2.34
An injection [3]→ [4] must have exactly three values.

Hint for Exercise 4.2.47
How many ways can you select k + 1 animals from a set containing n cats and one
dog?

Hint for Exercise 4.2.50
Find two procedures for counting the number of pairs (U, u), such that U ⊆ [n] is a
k-element subset and u ∈ U . Equivalently, count the number of ways of forming a
committee of size k from a population of size n, and then appointing one member
of the committee to be the chair.

Hint for Exercise 4.2.54
Find an expression for (a + b + c)! in terms of a!, b!, c! and

(
a+b+c
a,b,c

)
, following the

pattern of Theorem 4.2.49.

Hint for Exercise 4.2.56
Find a bijection [p]× Cn → Cpn, where Cn is defined as in Theorem 4.2.55.
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Hint for Exercise 4.3.4
You need to find a family of subsets of N such that (i) any two of the subsets have
infinitely many elements in common, but (ii) given any natural number, you can
find one of the subsets that it is not an element of.

Hint for Exercise 4.3.8
Use prime factorisation.

Hint for Exercise 4.3.15
Suppose X = N. By Proposition 4.3.10, the set Nk is countable. By Theorem
4.3.11(c), it suffices to find an injection

(N
k

)
→ Nk.

Hint for Exercise 4.3.19
We have already proved this when X is finite. When X is countably infinite, find
a bijection {0, 1}X → P(X) and apply Theorem 4.3.18. When X is uncountably
infinite, find an injection X → P(X) and find a way to apply Corollary 4.3.12.

Hint for Exercise 5.2.26
Use the characterisation of gcd and lcm in terms of prime factorisation.

Hint for Exercise 5.2.29
Use distributivity, together with the fact that ⊥ ∨ y′ = y′ and > ∧ y′ = y′.

Hint for Exercise 6.1.9
Prove that x is an additive inverse for −x (in the sense of Axioms 6.1.1(F4)) and
use uniqueness of additive inverses. Likewise for x−1.

Hints for exercises in Chapter 5 and thereafter are coming soon.
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Section B.1

Logical theories and models

First-order logic

Throughout, a countably infinite set Var of variables is fixed.

Definition B.1.1
A signature for first-order logic is a quadruple Σ = (C,F ,R, ar), where C, F
and R are pairwise disjoint sets and ar : F ∪R → N is a function. To do: Provide
more intuition. The elements of C are called constant symbols, the elements of F
are called function symbols and the elements of R are called relation symbols.
Given a function symbol or relation symbol s ∈ F ∪R, the value ar(s) is the arity
of s.

To do: Examples

Definition B.1.2
Let Σ be a signature for first-order logic. The set Term(Σ) of all Σ-terms, and the
function FV : Term(Σ)→ P(Var) assigning to each term its set of free variables,
are defined inductively as follows.
• If x is a variable, then x is a term and FV(x) = {x};

• If c is a constant symbol, then c is a term and FV(c) = ∅;

• If f is a function symbol of arity k and t1, . . . , tk are terms, then f(t1, . . . , tk)
is a term and FV(f(t1, . . . , tk)) = FV(t1) ∪ · · · ∪ FV(tk).

A term with no free variables is called a closed term.

To do: Examples
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Definition B.1.3
Let Σ be a signature for first-order logic. The set Form(Σ) of all logical formulae
over Σ (or Σ-formulae), and the function FV : Form(Σ) → P(Var) assigning to
each formula its set of free variables, are defined inductively as follows.
• ⊥ is a formula and FV(⊥) = ∅;

• If r is a relation symbol of arity k and t1, . . . , tk are terms, then r(t1, . . . , tk)
is a formula and FV(r(t1, . . . , tk)) = FV(t1) ∪ · · · ∪ FV(tk);

• If p is a formula, then ¬p is a formula and FV(¬p) = FV(p).

• If p and q are formulae, then (p ∧ q), (p ∨ q) and (p⇒ q) are formulae and

FV(p ∧ q) = FV(p ∨ q) = FV(p⇒ q) = FV(p) ∪ FV(q)

• If p is a formula and x ∈ FV(p), then ∀x, p and ∃x, p are formulae and

FV(∀x, p) = FV(∃x, p) = FV(p) \ {x}

A logical formula with no free variables is called a sentence.

To do: Examples

Definition B.1.4
Let Σ be a signature for first-order logic. A theory over Σ is a set of Σ-sentences.

To do: Examples

Structures and models

Definition B.1.5
Let Σ be a signature for first-order logic. A Σ-structure A (LATEX code: \mathfrak)
consists of a set A together with:
• For each constant symbol c, an element cA ∈ A;

• For each function symbol f of arity k, a function fA : Ak → A; and

• For each relation symbol r of arity k, a subset rA ⊆ Ak.

To do: Examples
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Definition B.1.6
Let Σ be a structure for first-order logic and let A be a Σ-structure. For each closed
Σ-term t, the interpretation tA of t in A is defined inductively by
• If t = c is a constant symbol, then tA = cA.

• If t = f(t1, . . . , tk), where f is a function symbol of arity k and t1, . . . , tk are
closed terms, then tA = fA(tA1 , . . . , t

A
k ).

Definition B.1.7
Let Σ be a structure for first-order logic. The relation � from the set of all Σ-
structures to the set of all sentences over Σ is defined, for all Σ-structures A, induct-
ively on sentences as follows:
• A 2 ⊥;

• For all relation symbols r of arity k and all terms t1, . . . , tk

A � r(t1, . . . , tk) if and only if (tA1 , . . . , t
A
k ) ∈ rA

• For all sentences p, q

A � p ∧ q if and only if A � p and A � q

• For all sentences p, q

A � p ∨ q if and only if A � p or A � q

• For all sentences p

A � p⇒ q if and only if A � p implies A � q

• For all sentences p
A � ¬p if and only if A 2 p

• For all formulae p(x) with one free variable

A � ∀x, p(x) if and only if A ` p(a) for all a ∈ A

• For all formulae p(x) with one free variable

A � ∃x, p(x) if and only if A ` p(a) for some a ∈ A

To do: Examples
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Definition B.1.8
Let Σ be a signature for first-order logic and let T be a first-order theory over Σ. A
model of T is a Σ-structure A such that A � p for all p ∈ T .
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Section B.2

Set theoretic foundations

Zermelo–Fraenkel set theory

To do: Motivation

Axioms B.2.1 (Zermelo–Fraenkel axioms)
The following axioms, taken over the signature with a single relation symbol ∈ of
arity 2, are Zermelo–Fraenkel axioms for set theory.

• (Extensionality) If two sets have the same elements, then they are equal.

∀X, ∀Y, [(∀x, (x ∈ X ⇔ x ∈ Y ))⇒ X = Y ]

The axiom of extensionality states that equality of sets can be proved by
double-containment.

• (Foundation) Every set has an element which is ∈-minimal, in the sense of
Definition 5.3.8.

∀X, ∃x, [x ∈ X ∧ ∀u ∈ X, u 6∈ x]

The axiom of foundation states that ∈ is a well-founded relation.

• (Empty set) There is a set with no elements.

∃X, ∀x, x 6∈ X

The empty set axiom asserts the existence of ∅.

• (Separation) For any logical formula p(x) with one free variable, and any set
X, there is a set consisting of the elements of X satisfying p(x).

∀X, ∃U, ∀x, [x ∈ U ⇔ (x ∈ X ∧ p(x))]

The axiom of separation asserts the existence of sets of the form {x ∈ X |
p(x)}.

• (Pairing) For any two sets x and y, there is a set containing only x and y.

∀x, ∀y, ∃X, ∀u, [u ∈ X ⇔ (u = x ∨ u = y)]

The axiom of pairing asserts the existence of sets of the form {x, y}.

• (Union) The union of any family of sets exists and is a set.

∀F, ∃U, ∀x, [x ∈ U ⇔ ∃X, (x ∈ X ∧X ∈ F )]

The axiom of union asserts that if F = {Xi | i ∈ I} is a family of sets then
the set U =

⋃
i∈I Xi exists.
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• (Replacement) The image of any set under any function is a set. That is,
for each logical formula p(x, y) with two free variables x, y, we have

∀X, [(∀x ∈ X, ∃!y, p(x, y))⇒ ∃Y, ∀y, y ∈ Y ⇔ ∃x ∈ X, p(x, y)]

• (Power set) The set of all subsets of a set is a set.

∀X, ∃P, ∀U, [U ∈ P ⇔ ∀u, (u ∈ U ⇒ u ∈ X)]

The axiom of power set asserts the existence of P(X) for all sets X.

• (Infinity) There is an inhabited set containing successors[a] of all of its ele-
ments.

∃X, [(∃u, u ∈ X) ∧ ∀x, (x ∈ X ⇒ x ∪ {x} ∈ X)]

Together with the axioms of empty set and replacement, the axiom of infinity
implies the existence of the set {∅,∅+,∅++,∅+++, . . . }. We will make use of
this in Definition B.2.3. Note also that we used the axiom of union in order
to state the axiom of infinity.

The logical theory consisting of the Zermelo–Fraenkel axioms is called Zermelo–
Fraenkel set theory, or simply ‘ZF’.

To do: V , apparent circularity.

Axiom B.2.2 (Axiom of choice)
Every family of inhabited sets admits a choice function. That is, for every set I
and every family {Xi | i ∈ I} of inhabited sets indexed by I, there is a function
f : I →

⋃
i∈I Xi such that f(i) ∈ Xi for each i ∈ I. Formally,

∀F, [∅ 6∈ F ⇒ ∃f : F → U, ∀X ∈ F, X ∈ f(X)]

where U =
⋃
F =

⋃
X∈F X is the union of all the sets in the family F .

The logical theory consisting of the ZF axioms (Axioms B.2.1) together with the
axiom of choice (Axiom B.2.2) is known as Zermelo–Frankel set theory with
choice, or simply ‘ZFC’.

Constructions of common mathematical objects

To do: Set operations

To do: Ordered n-tuples

To do: Functions

To do: Relations
[a]Here, the successor of a set x is defined to be x ∪ {x}.
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Constructions of the number sets

As we saw in Section 1.3, the Peano axioms 1.3.1 are very powerful, in that from
a very basic set of rules we can write down everything we know about the natural
numbers; and, moreover, any set N with an element 0 and a successor operation
(−)+ could be treated as a set of natural numbers. But how do we know that such
a set, element and operation actually exist? In this section, we construct the von
Neumann natural numbers—this is an encoding of natural numbers as sets, and with
the successor operation defined as in Definition B.2.3.

Definition B.2.3
Given a set X, the successor set of X is the set X+ defined by

X+ = X ∪ {X}

A von Neumann natural number is any set obtainable from ∅ by repeatedly
taking successor sets. Write 0vN = ∅ and (n+ 1)vN = (nvN)+; that is

0vN = ∅, 1vN = ∅+, 2vN = ∅++, 3vN = ∅+++, 4vN = ∅++++, . . .

Example B.2.4
The first three von Neumann natural numbers are:

• 0vN = ∅;

• 1vN = ∅+ = ∅ ∪ {∅} = {∅};

• 2vN = ∅++ = {∅}+ = {∅} ∪ {{∅}} = {∅, {∅}}.

C

Exercise B.2.5
Write out the elements of 3vN (= ∅+++) and of 4vN. C

Exercise B.2.6
Recall the definition of von Neumann natural numbers from Definition B.2.3. Prove
that |nvN| = n for all n ∈ N. C

Theorem B.2.7
Axioms 1.3.1 are satisfied by letting N be the set of von Neumann natural numbers,
letting the zero element be the empty set, and the successor operation (−)+ be as
defined in Definition B.2.3.

Proof. To do:
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Example B.2.8
We verify Axiom 1.3.1(c); that is, n+

vN 6= 0vN for all von Neumann natural numbers
nvN. This is easy to check—indeed, nvN ∈ n+

vN since n+
vN = nvN ∪ {nvN} and

nvN ∈ {nvN}; but nvN 6∈ 0vN since 0vN = ∅ and ∅ has no elements. C

Since we know by Theorem B.2.7 that the von Neumann natural numbers satisfy
the Peano axioms (Axioms 1.3.1), we may declare ‘the natural numbers’ to be the
von Neumann natural numbers, and have done with it. As such, you can—if you
want—think of all natural numbers in these notes as being their corresponding von
Neumann natural number. From now on, we will only use a subscript ‘vN’ when it
is imperative that a natural number be treated as a von Neumann natural number.

To do: Arithmetic operations, order

To do: Define relation for the integers, prove it’s well-defined, provide intuition.

Definition B.2.9
The set of integers is the set Z defined by

Z = (N× N)/∼

where ∼ is the relation on N× N defined by

(a, b) ∼ (c, d) if and only if a+ d = b+ c

for all (a, b), (c, d) ∈ N× N.

To do: Arithmetic operations, order

To do: Define relation for the rationals, prove it’s well-defined, provide intuition.

Definition B.2.10
The set of rational numbers is the set Q defined by

Q = (Z× (Z \ {0}))/∼

where ∼ is the relation on Z× (Z \ {0}) defined by

(a, b) ∼ (c, d) if and only if ad = bc

for all (a, b), (c, d) ∈ Z× (Z \ {0}).

To do: Arithmetic operations, order

To do: Motivate Dedekind cuts
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Definition B.2.11 (Dedekind’s construction of the real numbers)
The set of (Dedekind) real numbers is the set R defined by

R = {D ⊆ Q | D is bounded above and downwards-closed}

To do: Arithmetic operations, order

To do: Motivate Cauchy reals

Definition B.2.12 (Cauchy’s construction of the real numbers)
The set of (Cauchy) real numbers is the set R defined by

R = {(xn) ∈ QN | (xn) is Cauchy}/∼

where ∼ is the relation defined by

(xn) ∼ (yn) if and only if (xn − yn)→ 0

for all Cauchy sequences (xn), (yn) of rational numbers.

To do: Arithmetic operations, order

To do: Motivate definition of complex numbers

Definition B.2.13
The set of complex numbers is the set C = R× R.

To do: Arithmetic operations
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Appendix C

Typesetting mathematics in LATEX

Being able to type up your mathematical writing is a beneficial skill to have; unfor-
tunately, most Office-style WYSIWYG (‘what you see is what you get’) text editors
are not designed for this task—they just can’t cope with all the notation.

LATEX[a] is a markup language that allows you to input both text and mathematical
notation, the latter in the form of code, which is then beautifully typeset. What
follows is a brisk intro to LATEX, that should suffice for the purposes of this course.

Finding the software

There are several good LATEX editors that you can install on your computer—I
recommend Texmaker (http://www.xm1math.net/texmaker/) if you’re new to it,
because it’s cross-platform and fairly intuitive.

There are also online editors that you can use if you want to avoid installing new
software; I highly recommend ShareLaTeX (http://www.sharelatex.com), which
is free to use and stores your .tex files on the cloud.

There is some faffing around to be done with document headers and so on. So that
you can avoid this, I’ve uploaded template .tex files to Blackboard that you can
use in your homework write-ups.

[a]The word LATEX is pronounced like ‘lay-tek’ or ‘lah-tek’; some people pronounce the ‘k’ like the
German ‘ch’ sound, meant to resemble the Greek letter chi (χ). It doesn’t really matter, but if
you pronounce it like ‘lay-teks’ then people will think you’re talking about something somewhat
different.
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Text mode and math mode

Before we get into the nitty-gritty, I should mention the difference between ‘text
mode’ and ‘math mode’.

• Text mode is the default mode: the stuff you type will appear as text, and
this is the mode you should use when writing anything that isn’t mathematical
notation.

• You should use math mode when you’re typing anything which is mathem-
atical notation, including variables, numbers, fractions, square roots, powers,
sums, products, binomial coefficients, and so on.

To enter math mode, enclose whatever mathematical notation you are writing with
dollar signs ($). For example, if I type $E=mc^2$ then LATEX shows E = mc2. Some-
times it is convenient to put longer expressions on their own line, in which case you
can enclose it with double-dollar signs ($$); for example, if I type $$a^2+b^2+c^2=ab+bc+ca$$
then LATEX displays

a2 + b2 + c2 = ab+ bc+ ca

on a line all of its own.

If you need to type text inside math mode (enclosed by $ signs), you can do that
using \text{...}, for example the code

$$\sum {i=1}^n i = \frac{n(n+1)}{2} \text{ for all } n \in
\mathbb{N}$$

gives
n∑

i=1

i =
n(n+ 1)

2
for all n ∈ N

Note the spaces before and after ‘for all’; had I left those out of the code, they would
not appear because LATEX ignores spacing in math mode. You can force a space by
putting a backslash before a space, for example $a b$ gives ab but $a\ b$ gives a b.

All mathematical notation should be in math mode, including single variables. No-
tice the difference between the following two lines:

If a and b are both even then so is a+b.

If a and b are both even then so is a+ b.

While the first is written entirely in text mode, the second is written using math
mode for the variables and + sign.
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Mathematical symbols

The following table lists—I hope—all of the mathematical symbols you will need in
this course. If you come across other symbols, please let me know.

Logic

conjunction, disjunction ∧, ∨ \wedge, \vee
negation ¬ \neg

implication, biconditional ⇒, ⇔ \Rightarrow, \Leftrightarrow
exclusive disjunction ⊕ \oplus

true, false (in truth table) X, × \checkmark, \times
quantifiers (universal, existential) ∀, ∃ \forall, \exists

Set theory

element, subset ∈, ⊆ \in, \subseteq
not equal, proper subset 6=, $ \ne, \subsetneqq
intersection, (indexed) ∩,

⋂n
i=1 \cap, \bigcap {i=1}^{n}

union, (indexed) ∪,
⋃n

i=1 \cup, \bigcup {i=1}^{n}
relative complement, complement X \ Y , Xc \setminus, X^c

product, (indexed) ×,
n∏

i=1
\times, \prod {i=1}^{n}

implied lists {1, . . . , n} \{ 1, \dots, n \}
indexed sets {xi | i ∈ I} \{ x i \mid i \in I \}

set-builder notation {x | p(x)} \{ x \mid p(x) \}
empty, universal set ∅, U \varnothing, \mathcal{U}

number sets N,Z,Q,R \mathbb{N}, \mathbb{Z}, etc.

Numbers and combinatorics

multiplication m× n, m · n \times, \cdot
fractions, exponents m

n , mn \frac{m}{n}, m^{n}
order relations 6, > \le, \ge

divisibility, (non-) m | n, m - n \mid, \nmid
binomial coefficient

(
n
k

)
\binom{n}{k}

indexed sum, product
n∑

i=1
ai,

n∏
i=1

ai \sum {i=1}^{n} a i, \prod

modular arithmetic a ≡ b mod n a \equiv b \bmod{n}
Functions and relations

functions f : X → Y f : X \to Y

composition g ◦ f \circ
isomorphism ∼= \cong

equivalence relations ∼, ≈ \sim, \approx
Structured sets

order relation 4, ≺ \preceq, \prec
group operations ·, ?, ◦ \cdot, \star, \circ
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Organisation and formatting

When typing up solutions to problem, organisation can be the difference between
a masterpiece and an unreadable heap of notation. Here are some tips to help you
organise your work:

Sections and paragraphs

You can split your work up into sections, subsections, subsubsections, and even sub-
subsubsections. To do this, use \section{Section title} or \section*{Section
title}; the former includes a section number, and the latter omits it. To start a
new paragraph, simply make two new lines in the code.

Bulleted and enumerated lists

Sometimes it is useful to use bullet points or give an enumerated list. For example,
in these notes, I separate the base case from the induction step in proofs by induction
by using bullet points.

For a bulleted list you can use the itemize environment:

\begin{itemize}
\item Something here\dots
\item You can do lists within

lists:

\begin{itemize}
\item Like this.

\item Isn’t it crazy!

\end{itemize}
\item Well, not that crazy.

\end{itemize}

• Something here. . .

• You can do lists within lists:

� Like this.

� Isn’t it crazy!

• Well, not that crazy.

For an enumerated list, you can use the enumerate environment. You can play
around with different methods of enumeration, which you specify in square brackets
[...]; personally I like (1), (i) and (a) the best:
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\begin{enumerate}[(a)]
\item Here’s the first thing;

\item Here’s the second thing;

\item And here’s the third thing.

\end{enumerate}

(a) Here’s the first thing;

(b) Here’s the second thing;

(c) And here’s the third thing.

Definitions, results and proofs

If you use the provided templates, you can make definitions, and state and prove
results, using the following environments:

definition, example, proposition, theorem, lemma, corollary, proof

They are given a number m.n, where m is the section number and n is the position
within the section.

Here’s an example of a theorem appearing in the third section of a document, in
which five definitions, results or examples come before it:

\begin{theorem}
If $n \in \mathbb{N}$ then $n \ge
0$.

\end{theorem}

\begin{proof}
This is really obvious.

\end{proof}

Theorem 3.6. If n ∈ N then n >
0.
Proof. This is really obvious.

Note that the box (�) designating the end of the proof is inserted automatically
when you close the proof environment.

Labels

As you change the contents of a document, the numbering of the definitions, ex-
amples and results might change. To refer to a specific result, instead of typing the
number and having to change it each time the number changes, you can use the
\label and \ref commands.

An example of this in action is as follows:
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\begin{definition}
\label{defDivides}
Say $a$ \textbf{divides} $b$ if

there exists $k \in \mathbb{Z}$
such that $ka=b$.

\end{definition}

We will use Definition

\ref{defDivides} for absolutely

nothing.

Definition 2.11. Say a divides
b if there exists k ∈ Z such that
ka = b.

We will use Definition 2.11 for ab-
solutely nothing.

Formatting

In text mode. To put the icing on the cake, you might want to make some
words bold or italicised. This is simple: for bold text type \textbf{text here}
and for italic text type \textit{text here}. In Texmaker and ShareLaTeX you
can press Ctrl+B and Ctrl+I to avoid having to type all this out. Other useful
fonts include monospace (\texttt{text here}), sans-serif (\textsf{text here})
and underlined (\underline{text here}).

In math mode. There are also various fonts or font styles that you can use inside
math mode, including:

• Roman (i.e. not italic): AaBbCc, \mathrm{AaBbCc};

• Bold: AaBbCc, \mathbf{AaBbCc};

• Sans-serif: AaBbCc, \mathsf{AaBbCc};

• Blackboard bold: ABCDE, \mathbb{ABCDE} — only capital letters;

• Fraktur: AaBbCc, \mathfrak{AaBbCc};

• Calligraphic: ABCDE , \mathcal{ABCDE} — only capital letters;

Tables

Tables can be created using the tabular environment. You can specify how columns
are aligned and separated as an argument to the command \begin{tabular}: write
l, c or r to specify that a column should be aligned left, centre or right, respectively.
If you want columns to be separated by a single or double line, enter a single or double
bar (| or ||), respectively.
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Columns are then separated by ampersands (&) and you can move to a new row
by entering a double-backslash (\\). To insert a horizontal line between two rows,
simply enter \hline.

Here’s an example:

\begin{tabular}{c||ccc}
$\times$ & 1 & 2 & 3 \\ \hline
\hline
1 & 1 & 2 & 3 \\
2 & 2 & 4 & 6 \\
3 & 3 & 6 & 9 \\
\end{tabular}

× 1 2 3

1 1 2 3
2 2 4 6
3 3 6 9

Aligned equations

Occasionally a proof may require you to demonstrate that two terms are equal by
proving a sequence of intermediate equations. This can be done using the align*

environment, which behaves much like the tabular environment.

New lines are introduced by inserting a double-backslash (\\), and the two columns
are separated by an ampersand (&). The left column is aligned right, and the right
column is aligned left. Here’s an example:

\begin{align*}
(n+1)! - n! & = (n+1)n! - n!

\\
& = n \cdot n! + n! - n! \\
& = n \cdot n!

\end{align*}

(n+ 1)!− n! = (n+ 1)n!− n!

= n · n! + n!− n!

= n · n!

Note that the align* environment automatically enters into math mode, so to enter
text you should use the \text command.

Entering more ampersands will create more columns, whose alignment alternates
(right, left, right, left, and so on). For example, to add annotations to each line, you
can enter a double-ampersand (&&). For example, the following code. . .

\begin{align*}
(n+1)! - n! & = (n+1)n! - n! && \text{by recursive def of factorials}
\\
& = n \cdot n! + n! - n! && \text{by distributivity} \\
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& = n \cdot n! && \text{by cancellation}
\end{align*}

. . . yields the following output:

(n+ 1)!− n! = (n+ 1)n!− n! by recursive def of factorials

= n · n! + n!− n! by distributivity

= n · n! by cancellation

Note again that, because the align* environment automatically enters math mode,
any annotations must be made within the \text command.

Graphics

To insert graphics into your documents, you need to make sure that the code
\usepackage{graphicx} is somewhere in the document header, i.e. above the line
that says \begin{document}.

Images can then be inserted using the \includegraphics command. The format is

\includegraphics[parameters]{filename}

where, in the above, parameters denotes information telling LATEX how large you
want the image to be, and filename is the name of the image file, which. . .

• . . . excludes the extension, for example ‘donkey’ instead of ‘donkey.png’;

• . . . includes the path relative to the main .tex file, for example if donkey.png is
stored in a directory called images, you would enter ‘images/donkey’ instead
of ‘donkey’.

The simplest way to control the size of the image is to enter [width=k\textwidth],
where k is a scaling factor between 0 and 1.

For example, the following code:

\begin{center}
\includegraphics[width=0.3\textwidth]{donkey}
\end{center}

yields the following output:
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More advanced techniques

I should take a moment to emphasise that what really matters is your ability to com-
municate mathematical arguments clearly and correctly. The LATEX tools discussed
so far in this section are more than sufficient for our purposes.

However, if you are interested in pushing your LATEX skills further or there is a feature
you’re unsure about how to implement, then I recommend browsing or searching one
of the following websites:

• http://tex.stackexchange.com — Q&A website about LATEX

• https://en.wikibooks.org/wiki/LaTeX — online LATEX manual
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Practice page

Use the provided LATEX template template.tex to re-create the following page:

Squarefree integers
Carl Friedrich Gauss, Wednesday 14th September 1831

Introduction

When you’ve written this page, you will be unstoppable, at least as far as typesetting mathematics
is concerned. You will need to implement:

• Text mode stuff: sections, paragraphs, text formatting, labels and references, lists;

• Math mode stuff: definitions and results, aligned equations, etc.

So let’s get on with it!

1 Squarefree integers

1.1 Definition and an elementary result

Definition 1.1. An integer a is squarefree if it is divisible by no perfect square other than 1.
That is, if n2 divides a then n2 = 1.

Proposition 1.2. A non-zero non-unit a is squarefree if and only if

a = p1 × p2 × · · · × pn

for distinct primes p1, p2, . . . , pn.

Proof. We leave the proof as an exercise to the reader.

1.2 Some examples

Example 1.3. Some concrete examples include:

(i) 5610 is squarefree by Proposition 1.2, since

5610 = 10× 561

= (2× 5)× (11× 17)

(ii) 12 is not squarefree since 4 | 12 and 4 = 22.

1
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addition principle, 204

AM–GM inequality, 276

antisymmetric relation, 231

arity, 250, 356

axiom of choice, 361

base-b expansion, 19, 168

basic element, 250

Bayes’s theorem, 317

Bernoulli distribution, 328

biconditional, 86

bijection, 178

binary expansion, 168

binomial coefficient, 65, 196

binomial distribution, 329

Boolean algebra, 246

bound variable, 94

canonical prime factorisation, 146

Cantor’s diagonal argument, 224

Cauchy–Schwarz inequality, 272

codomain

of a function, 112

of a relation, 226

complement, 105

complete ordered field, 265

completeness axiom, 265

component, 267

conditional probability, 313

congruence, 149

congruence class, 237

conjunction, 79

constructor, 250

contrapositive, 88

convergence

of a sequence, 287

converse, 35, 89

coprime, 134

countable additivity, 303

countable set, 219

counting in two ways, 206

counting principle

addition principle, 204

multiplication principle, 197, 201

De Morgan’s laws

for sets (general), 218

de Morgan’s laws

for logical operators, 84

for quantifiers, 94

for sets (finite), 194

for sets (pairwise), 106

decimal expansion, 168

decreasing sequence, 296

diagonal subset, 228

Diophantine equation

linear, 133, 136

discriminant, 30

disjoint, 203

disjoint union, 191

disjunction, 81

exclusive, 86

distance, 268

divergence, 287

division, 21, 128

division theorem, 22, 126

divisor, 21, 128

domain

of a function, 112

of a relation, 226
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dot product, 271
double counting, 206

element, 97
empty function, 118
empty relation, 227
empty set, 72, 97
equivalence class, 236
equivalence relation, 234
Euclidean algorithm, 131

reverse, 136
Euler’s theorem, 159
event, 303

that p(X), 322
that X = e, 322

expectation, 334
expected value, 334
extended real number line, 282

factor, 21, 128
factorial, 64, 197
Fermat’s little theorem, 158
field, 261
finite set, 186
free variable, 91

in a term, 356
function, 112

bijective, 178
empty, 118
identity, 118
injective (one-to-one), 175
surjective, 177

Fundamental theorem of arithmetic, 144

geometric distribution
on N, 331
on N+, 332

GM–HM inequality, 280
graph

of a function, 115
of a relation, 227

greatest common divisor, 129
greatest element of a poset, 241

identity function, 118

ill-founded relation, 253
implication, 85
inclusion–exclusion principle, 214
increasing sequence, 296
independent

events, 310
random variables, 325

indexed product, 52
indexed sum, 52
indicator function, 309
induction, 50, 249

on N (strong), 62
on N (weak), 54
on a well-founded relation, 255
on an inductively defined set, 251

inductively defined set, 250
inequality

Cauchy–Schwarz, 272
of arithmetic and harmonic means,

276
of generalised means, 283
of geometric and harmonic means, 280
of quadratic and arithmetic means,

281
triangle, 274
triangle (one-dimensional), 269

infimum, 242
infinite set, 186
inhabited set, 72, 97
injection, 175
interpretation, 358
intersection

indexed, 217
indexed (finite), 192
pairwise, 103

inverse
left inverse, 179
right inverse, 180
two-sided, 181

irrational number, 26
irreducible number, 142

lattice
complemented, 246
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distributive, 246
least common multiple, 139
least element of a poset, 241
left inverse, 179
limit

of a sequence, 287
Lindenbaum–Tarski algebra, 247
linear Deiophantine equation, 136
linear Diophantine equation, 133
logical equivalence, 82
logical formula, 91, 357
logical operator, 79

magnitude, 268
mean

arithmetic, 276
generalised, 283
geometric, 276
harmonic, 279
quadratic, 281

model
probablistic, 302

model of a theory, 359
modular arithmetic, 152
modulo, 149
monotone convergence theorem, 297
monotone sequence, 296
multiplication principle, 197, 201
multiplicity

of a prime, 146
mutually independent

random variables, 325

natural number, 362
von Neumann, 362

negation, 83
non-zero non-unit, 129
number

natural, 362
von Neumann natural, 362

number base, 19
numeral system, 18

Hindu–Arabic, 18

ordered I-tuple, 217

ordered n-tuple, 192

ordered pair, 107

origin, 267

outcome, 303

parameter, see free variable

partial order, 239

partition (finite version), 203

Pascal’s triangle, 65

Peano axioms, 50

permutation, 196

polynomial, 29

poset, 239

power set, 101

prime

canonical prime factorisation, 146

prime number, 141

probability, 303

conditional, 313

probability distribtion

Bernoulli, 328

probability distribution, 327

binomial, 329

geometric (on N), 331

geometric (on N+), 332

uniform, 327

probability mass function, 323

probability measure, 303

pushforward, 325

probability space

discrete, 303

product

indexed, 52, 217

indexed (finite), 192

product of sets

pairwise, 107

proof, 14

by contradiction, 87

by contraposition, 88

proposition, 14

propositional formula, 79

pushforward measure, 325

pushforward probability measure, 325
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QM–AM inequality, 281

quantifier, 46

existential, 93

universal, 92

quantifier alternation, 95

quotient, 22

of a set by an equivalence relation,
236

of numbers, 128

R-induction, 255

random variable, 322

range of a variable, 91

rank, 258

recursion, 51

reducible number, 142

reflexive relation, 230

relation, 226

antisymmetric, 231

equivalence relation, 234

ill-founded, 253

on a set, 229

partial order, 239

reflexive, 230

symmetric, 231

transitive, 232

well-founded, 253

relatively prime, 134

remainder, 22, 128

reverse Euclidean algorithm, 136

right inverse, 180

ring, 340

root, 29

root-mean-square, 281

RSA encryption, 170

rule of product, 197, 201

rule of sum, 204

sample space, 303

satisfaction, 358

scalar product, 271

sentence, 357

sequence, 285

constant, 285

decreasing, 296
increasing, 296
monotone, 296

set, 97
inductively defined, 250
universal, 97
Zermelo–Fraenkel axioms, 360

set equality, 102
set-builder notation, 98
sign, 146
signature for first-order logic, 356
size

of a finite set, 186
strong induction principle, 62
structure for a signature, 357
subset, 100

k-element subset, 195
diagonal, 228

substitution, 91
sum

indexed, 52
supremum, 242
surjection, 177
symmetric relation, 231

tautology, 90
term, 356

of a sequence, 285
theory, 357
totient, 159

transitive relation, 232

triangle inequality, 274
in one dimension, 269

trinomial coefficient, 211
truth table, 80

two-sided inverse, 181

uniform distribution, 327
union

indexed, 217

indexed (finite), 192
pairwise, 104

unique existential, 109

unit, 128
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universe, 97
universe of discourse, 97

variable
free and bound, 90

von Neumann natural number, 362

weak induction principle, 54
well-definedness, 116
well-founded induction, 255
well-founded relation, 253
well-ordering principle, 73

xor, 86

Zermelo–Fraenkel set theory, 360
with choice, 361

,

Index of notation ,

{· · · } — set notation, 98

A — structure, model, 357, 359

∀ — universal quantifier, 92

[a]n — congruence class, 237

× — Cartesian product, 107

Π — indexed Cartesian product, 192, 217

Xc — complement, 105

◦ — composition, 120

∧ — conjunction, 79

(xn) → a — convergence of a sequence,
287

⊥ — coprime, 134

∨ — disjunction, 81

a | b — division, 128

∆X — diagonal subset, 228, 231

ε — epsilon, 287

4, v — partial order, 239

∼, ≡, ≈ — equivalence relation, 234

[x]∼ — equivalence class, 236

E[X] — expectation, 334

⊕ — exclusive disjunction, 86

∃ — existential quantifier, 93

∃! — unique existential quantifier, 109

× — false, 80

f : X → Y — function, 112

f [U ] — image, 121

f−1 — inverse function, 183

f−1[V ] — preimage, 123

gcd — greatest common divisor, 130

Gr(f) — graph of a function, 116

Gr(R) — graph of a relation, 227

iA — indicator function, 309

idX — identity function, 118

⇔ — biconditional, 86

⇒ — implication, 85

∈ — element, 97

∩ — intersection, 103, 192, 217

lcm — least common multiple, 140

\ — set difference, 105

a ≡ b mod n — congruence, 149

mod — congruence, 149
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[n] — standard n-element set, 105(
n
k

)
— binomial coefficient, 65, 196(

n
a,b,c

)
— trinomial coefficient, 211

n! — factorial, 64, 197
¬ — negation, 83
nvN — von Neumann natural number, 362
∅ — empty set, 97
(Ω,P) — probability space, 303
∅X,Y — empty relation, 227
P — probability, 303
P(A | B) — conditional probability, 313
Π — indexed product, 52
P(X) — power set, 101
X/∼ — quotient, 236
RX — relation assoc. w. an ind. def. set,

257
⊆ — subset, 100
Σ — indexed sum, 52
SX — permutations, 196
ϕ(n) — totient, 159
U — universal set, 97
∪ — union, 104, 192, 217
t — disjoint union, 191(
X
k

)
— k-element subsets, 195

~x · ~y — scalar product, 271
‖~x‖ — magnitude, 268
(xn)n>0 — sequence, 285
~x — vector, 267
{X = e} — event that X = e, 322
Z/nZ — congruence classes modulo n,

237
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