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Note to readers

Hello, and thank you for taking the time to read this quick introduction to the book! I
would like to begin with an apology and a warning:

This book is still under development!

That is to say, there are some sections that are incomplete (notably Sections 6.2 and 6.3,
and all of Chapter 8), as well as other sections which are currently much more terse than
I would like them to be.

An up-to-date version of this book is be available from the following web page:

http://infinitedescent.xyz

As the book is undergoing constant changes, I advise that you do not print the notes in
their entirety—if you must print them at all, then I suggest that you do it a few pages at
a time, as required.

This book was designed with inquiry and communication in mind, as they are central to a
good mathematical education. One of the upshots of this is that there are many exercises
throughout the book, requiring a more active approach to learning, rather than passive
reading. These exercises are a fundamental part of the book, and should be completed
even if not required by the course instructor. Another upshot of these design principles is
that solutions to exercises are not provided—a student seeking feedback on their solutions
should speak to someone to get such feedback, be it another student, a teaching assistant
or a course instructor.
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Navigating the book

The material covered in Chapters 1 and 2 can be considered prerequisite for all subsequent
material in the book; any introductory course in pure mathematics should cover at least
these two chapters. The remaining chapters are a preview of other areas of pure math-
ematics. The dependencies between the sections in Chapters 3–8; dashed arrows indicate
that a section is a recommended, rather than required, for another.

3:1 4:1 4:2 4:3 8:2

3:2 8:4 7:1 7:2 7:3

3:3 6:1 6:2 6:3 8:5

8:1 5:1 5:2 5:3 8:3

What the numbers, colours and symbols mean

Much of the material in this book is broken into enumerated items which, broadly speaking,
fall into one of four categories: results (often followed by proofs), de�nitions, examples
(including exercises for the reader), and remarks. These items are colour-coded as indic-
ated in the previous sentence, and are enumerated according to their section—for example,
Theorem 1.3.10 is in Section 1.3. Particularly important theorems, definitions and so on,
appear in a box .

You will also encounter the symbols �, C and ?, whose meanings are as follows:

� End of proof. It is standard in mathematical documents to identify when a proof
has ended by drawing a small square or by writing ‘Q.E.D.’ (The latter stands for
quod erat demonstrandum, which is Latin for what was to be shown.)

C End of item. This is not a standard usage, and is included only to help you to
identify when an item has finished and the main content of the book continues.

? Optional content. Sections, exercises, results and proofs marked with this symbol
can be skipped over. Usually this is because the content is very challenging, or
is technical in a way that is mathematically necessary but educationally not very
important.
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Licence

This book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 (cc by-nc-sa 4.0) licence. This means you’re welcome to share this book, provided
that you give credit to the author, and that any copies or derivatives of this book are
released under the same licence, are freely available and are not for commercial use. The
full licence is available at the following link:

http://creativecommons.org/licenses/by-nc-sa/4.0/

Comments and corrections

Any feedback, be it from students, teaching assistants, instructors or any other readers,
would be very much appreciated. Particularly useful are corrections of typographical errors,
suggestions for alternative ways to describe concepts or prove theorems, and requests for
new content (e.g. if you know of a nice example that illustrates a concept, or if there is a
relevant concept you wish were included in the book). Such feedback can be sent to me by
email (cnewstead@northwestern.edu).
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14 Chapter 1. Mathematical reasoning

Section 1.1

Getting started

Before we can start proving things, we need to eliminate certain kinds of statements that
we might try to prove. Consider the following statement:

This sentence is false.

Is it true or false? If you think about this for a couple of seconds then you'll get into a bit
of a pickle.

Now consider the following statement:

The happiest donkey in the world.

Is it true or false? Well it's not even a sentence; it doesn't make sense to evenask if it's
true or false!

Clearly we'll be wasting our time trying to write proofs of statements like the two listed
above|we need to narrow our scope to statements that we might actually have a chance
of proving (or perhaps refuting)! This motivates the following (informal) de�nition.

De�nition 1.1.1
A proposition is a statement to which it is possible to assign atruth value (`true' or
`false'). If a proposition is true, a proof of the proposition is a logically valid argument
demonstrating that it is true, which is pitched at such a level that a member of the intended
audience can verify its correctness.

Thus the statements given above are not propositions because there is no possible way
of assigning them a truth value. Note that, in De�nition 1.1.1, all that matters is that
it makes senseto say that it is true or false, regardless of whether it actually is true or
false|the truth value of many propositions is unknown, even very simple ones.

Exercise 1.1.2
Think of an example of a true proposition, a false proposition, a proposition whose truth
value you don't know, and a statement that is not a proposition. C

Results in mathematical papers and textbooks may be referred to aspropositions, but they
may also be referred to astheorems, lemmas or corollaries depending on their intended
usage.
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Section 1.1. Getting started 15

� A proposition is an umbrella term which can be used for any result.

� A theorem is a key result which is particularly important.

� A lemma is a result which is proved for the purposes of being used in the proof of
a theorem.

� A corollary is a result which follows from a theorem without much additional e�ort.

These are not precise de�nitions, and they are not meant to be|you could call every result
a proposition if you wanted to|but using these words appropriately helps readers work
out how to read a paper. For example, if you just want to skim a paper and �nd its key
results, you'd look for results labelled astheorems.

It is not much good trying to prove results if we don't have anything to prove results about.
With this in mind, we will now introduce the number setsand prove some results about
them in the context of four topics, namely: division of integers, number bases, rational and
irrational numbers, and polynomials. These topics will provide context for the rest of the
material in Chapters 1 and 2.

We will not go into very much depth in this section. Rather, think of this as a warm-up
exercise|a quick, light introduction, with more proofs to be provided in Chapter 1 and in
future chapters.

Number sets

Later in this section, and then in much more detail in Section 2.2, we will encounter the
notion of a set; a set can be thought of as being a collection of objects. This seemingly
simple notion is fundamental to mathematics, and is so involved that we will not treat sets
formally in the main body of the text|see Section B.2 for a formal viewpoint. For now,
the following de�nition will su�ce.

De�nition 1.1.3 (to be revised in De�nition 2.2.1)
A set is a collection of objects. The objects in the set are calledelements of the set. If
X is a set andx is an object, then we write x 2 X (LATEX code: x nin X) to denote the
assertion that x is an element ofX .

The sets of concern to us �rst and foremost are thenumber sets|that is, sets whose
elements are particular types ofnumber. At this introductory level, many details will be
temporarily swept under the rug; we will work at a level of precision which is appropriate
for our current stage, but still allows us to develop a reasonable amount of intuition.

15



16 Chapter 1. Mathematical reasoning

In order to de�ne the number sets, we will need three things: an in�nite line, a �xed point
on this line, and a �xed unit of length.

So here we go. Here is an in�nite line:

The arrows indicate that it is supposed to extend in both directions without end. The
points on the line will represent numbers (speci�cally, real numbers, a misleading term
that will be de�ned in De�nition 1.1.24). Now let's �x a point on this line, and label it `0':

0

This point can be thought of as representing the number zero; it is the point against which
all other numbers will be measured. Finally, let's �x a unit of length:

This unit of length will be used, amongst other things, to compare the extent to which the
other numbers di�er from zero.

De�nition 1.1.4
The above in�nite line, together with its �xed zero point and �xed unit length, constitute
the (real ) number line .

We will use the number line to construct �ve sets of numbers of interest to us:

� The set N of natural numbers|De�nition 1.1.5;

� The set Z of integers|De�nition 1.1.11;

� The set Q of rational numbers|De�nition 1.1.23;

� The set R of real numbers|De�nition 1.1.24; and

� The set C of complex numbers|De�nition 1.1.30.

Each of these sets has a di�erent character and is used for di�erent purposes, as we will
see both later in this section and throughout this book.

16



Section 1.1. Getting started 17

Natural numbers ( N)

The natural numbers are the numbers used for counting|they are the answers to questions
of the form `how many'|for example, I have three uncles,one dog and zero cats.

Counting is a skill humans have had for a very long time; we know this because there is
evidence of people using tally marks tens of thousands of years ago. Tally marks provide
one method of counting small numbers: starting with nothing, proceed through the objects
you want to count one by one, and make a mark for every object. When you are �nished,
there will be as many marks as there are objects. We are taught from a young age to
count with our �ngers; this is another instance of making tally marks, where now instead
of making a mark we raise a �nger.

Making a tally mark represents an increment in quantity|that is, adding one. On our
number line, we can represent an increment in quantity by moving to the right by the
unit length. Then the distance from zero we have moved, which is equal to the number of
times we moved right by the unit length, is therefore equal to the number of objects being
counted.

De�nition 1.1.5
The natural numbers are represented by the points on the number line which can be
obtained by starting at 0 and moving right by the unit length any number of times:

0 1 2 3 4 5

In more familiar terms, they are the non-negative whole numbers. We write N for the set
of all natural numbers; thus, the notation `n 2 N' means that n is a natural number.

The natural numbers have very important and interesting mathematical structure, and are
central to the material in Sections 1.3, 4.1 and 4.2. A more precise characterisation of the
natural numbers will be provided in Section 1.3, and a mathematical construction of the
set of natural numbers can be found in De�nition B.2.3. Central to these more precise
characterisations will be the notions of `zero' and of `adding one'|just like making tally
marks.

Aside
Some authors de�ne the natural numbers to be thepositive whole numbers (1; 2; 3; : : : ),
excluding zero. We take 0 to be a natural number since our main use of the natural numbers
will be for counting �nite sets, and a set with nothing in it is certainly �nite! That said, as
with any mathematical de�nition, the choice about whether 0 2 N or 0 62N is a matter of
taste or convenience, and is merely a convention|it is not something that can be proved

17



18 Chapter 1. Mathematical reasoning

or refuted. C

Number bases

Writing numbers down is something that may seem easy to you now, but it likely took
you several years as a child to truly understand what was going on. Historically, there
have been many di�erent systems for representing numbers symbolically, callednumeral
systems. First came the most primitive of all, tally marks, appearing in the Stone Age
and still being used for some purposes today. Thousands of years and hundreds of numeral
systems later, there is one dominant numeral system, understood throughout the world:
the Hindu{Arabic numeral system . This numeral system consists of ten symbols,
called digits. It is a positional numeral system, meaning that the position of a symbol in
a string determines its numerical value.

In English, the Arabic numerals are used as the ten digits:

0 1 2 3 4 5 6 7 8 9

The right-most digit in a string is in the units place, and the value of each digit increases
by a factor of ten moving to the left. For example, when we write `2812', the left-most `2'
represents the number two thousand, whereas the last `2' represents the number two.

The fact that there are ten digits, and that the numeral system is based on powers of ten,
is a biological accident corresponding with the fact that most humans have ten �ngers. For
many purposes, this is inconvenient. For example, ten does not have many positive divisors
(only four)|this has implications for the ease of performing arithmetic; a system based
on the number twelve, which has six positive divisors, might be more convenient. Another
example is in computing and digital electronics, where it is more convenient to work in
a binary system, with just two digits, which represent `o�' and `on' (or `low voltage' and
`high voltage'), respectively; arithmetic can then be performed directly using sequences of
logic gatesin an electrical circuit.

It is therefore worthwhile to have some understanding of positional numeral systems based
on numbers other than ten. The mathematical abstraction we make leads to the de�nition
of base-b expansion.

18



Section 1.1. Getting started 19

De�nition 1.1.6
Let b > 1. The base-b expansion of a natural number n is thea string dr dr � 1 : : : d0 such
that

� n = dr � br + dr � 1 � br � 1 + � � � + d0 � b0;

� 0 6 di < b for each i ; and

� If n > 0 then dr 6= 0|the base- b expansion of zero is 0 in all basesb.
Certain number bases have names; for instance, the base-2, 3, 8, 10 and 16 expansions are
respectively calledbinary, ternary, octal, decimal and hexadecimal.

aThe use of the word `the' is troublesome here, since it assumes that every natural number has only one
base-b expansion. This fact actually requires proof|see Theorem 3.3.51.

Example 1.1.7
Consider the number 1023. Its decimal (base-10) expansion is 1023, since

1023 = 1 � 103 + 0 � 102 + 2 � 101 + 3 � 100

Its binary (base-2) expansion is 1111111111, since

1023 = 1 � 29 + 1 � 28 + 1 � 27 + 1 � 26 + 1 � 25 + 1 � 24 + 1 � 23 + 1 � 22 + 1 � 21 + 1 � 20

We can express numbers in base-36 by using the ten usual digits 0 through 9 and the twenty-
six letters A through Z; for instance, A represents 10, M represents 22 and Z represents
35. The base-36 expansion of 1023 is SF, since

1023 = 28� 361 + 15 � 360 = S � 361 + F � 360

C

Exercise 1.1.8
Find the binary, ternary, octal, decimal, hexadecimal and base-36 expansions of the number
21127, using the letters A{F as additional digits for the hexadecimal expansion and the
letters A{Z as additional digits for the base-36 expansion. C

We sometimes wish to specify a natural number in terms of its base-b expansion; we have
some notation for this.

Notation 1.1.9
Let b > 1. If the numbers d0; d1; : : : ; dr are base-b digits (in the sense of De�nition 1.1.6),
then we write

dr dr � 1 : : : d0(b) = dr � br + dr � 1 � br � 1 + � � � + d0 � b0

for the natural number whose base-b expansion isdr dr � 1 : : : d0. If there is no subscript (b)
and a base is not speci�ed explicitly, the expansion will be assumed to be in base-10.

19



20 Chapter 1. Mathematical reasoning

Example 1.1.10
Using our new notation, we have

1023 = 1111111111(2) = 1101220(3) = 1777(8) = 1023(10) = 3FF (16) = SF (36)

C

Integers ( Z)

The integers can be used for measuring the di�erence between two instances of counting.
For example, suppose I have �ve apples and �ve bananas. Another person, also holding
apples and bananas, wishes to trade. After our exchange, I have seven apples and only one
banana. Thus I have two more apples and four fewer bananas.

Since an increment in quantity can be represented by moving to the right on the number
line by the unit length, a decrement in quantity can therefore be represented by moving to
the left by the unit length. Doing so gives rise to the integers.

De�nition 1.1.11
The integers are represented by the points on the number line which can be obtained by
starting at 0 and moving in either direction by the unit length any number of times:

� 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5

We write Z for the set of all integers; thus, the notation ǹ 2 Z' means that n is an integer.

The integers have such a fascinating structure that a whole chapter of this book is devoted
to them|see Chapter 3. This is to do with the fact that, although you can add, subtract
and multiply two integers and obtain another integer, the same is not true of division. This
`bad behaviour' of division is what makes the integers interesting. We will now see some
basic results about division.

Division of integers

The motivation we will soon give for the de�nition of the rational numbers (De�nition 1.1.23)
is that the result of dividing one integer by another integer is not necessarily another in-
teger. However, the result is sometimes another integer; for example, I can divide six
apples between three people, and each person will receive an integral number of apples.

20



Section 1.1. Getting started 21

This makes division interesting: how can we measure the failure of one integer's divisibility
by another? How can we deduce when one integer is divisible by another? What is the
structure of the set of integers when viewed through the lens of division? This motivates
De�nition 1.1.12.

De�nition 1.1.12 (to be repeated in De�nition 3.1.4)
Let a; b2 Z. We sayb divides a, or that b is a divisor (or factor ) of a, if a = qbfor some
integer q.

Example 1.1.13
The integer 12 is divisible by 1, 2, 3, 4, 6 and 12, since

12 = 12 � 1 = 6 � 2 = 4 � 3 = 3 � 4 = 2 � 6 = 1 � 12

It is also divisible by the negatives of all of those numbers; for example, 12 is divisible by
� 3 since 12 = (� 4) � (� 3). C

Exercise 1.1.14
Prove that 1 divides every integer, and that every integer divides 0. C

Using De�nition 1.1.12, we can prove some general basic facts about divisibility.

Proposition 1.1.15
Let a; b; c2 Z. If b divides a and c divides b, then c divides a.

Proof. Suppose thatb divides a and c divides b. By De�nition 1.1.12, it follows that

a = qb and b = rc

for some integersq and r . Using the second equation, we may substituterc for b in the
�rst equation, to obtain

a = q(rc)

But q(rc) = ( qr)c, and qr is an integer, so it follows from De�nition 1.1.12 that c divides
a.

Exercise 1.1.16
Let a; b2 Z. Suppose thatd divides a and d divides b. Prove that d divides au+ bv, where
u and v are any integers. C

It is not just interesting to know when one integer does divide another; however, proving
that one integer doesn't divide another is much harder. Indeed, to prove that an integerb
does not divide an integera, we must prove that a 6= qbfor any integer q at all. We will
look at methods for doing this in Section 1.2; these methods use the following extremely
important result, which will underlie all of Chapter 3.

21



22 Chapter 1. Mathematical reasoning

Theorem 1.1.17 (Division theorem, to be repeated in Theorem 3.1.1)
Let a; b2 Z with b 6= 0. There is exactly one way to write

a = qb+ r

such that q and r are integers, and 06 r < b (if b > 0) or 0 6 r < � b (if b < 0).

The number q in Theorem 1.1.17 is called thequotient of a when divided by b, and the
number r is called the remainder .

Example 1.1.18
The number 12 leaves a remainder of 2 when divided by 5, since 12 = 2� 5 + 2. C

Here's a slightly more involved example.

Proposition 1.1.19
Suppose an integera leaves a remainder ofr when divided by an integerb, and that r > 0.
Then � a leaves a remainder ofb� r when divided by b.

Proof. Supposea leaves a remainder ofr when divided by b. Then

a = qb+ r

for some integerq. A bit of algebra yields

� a = � qb� r = � qb� r + ( b� b) = � (q + 1) b+ ( b� r )

Since 0< r < b , we have 0< b � r < b . Hence� (q+ 1) is the quotient of � a when divided
by b, and b� r is the remainder.

Exercise 1.1.20
Prove that if an integer a leaves a remainder ofr when divided by an integer b, then a
leaves a remainder ofr when divided by � b. C

We will �nish this part on division of integers by connecting it with the material on number
bases|we can use the division theorem (Theorem 1.1.17) to �nd the base-b expansion of
a given natural number. It is based on the following observation: the natural numbern
whose base-b expansion isdr dr � 1 � � � d1d0 is equal to

d0 + b(d1 + b(d2 + � � � + b(dr � 1 + bdr ) � � � ))

Moreover, 06 di < b for all i . In particular n leaves a remainder ofd0 when divided by b.
Hence

n � d0

b
= d1 + d2b+ � � � + dr br � 1
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The base-b expansion of n� d0
b is therefore

dr dr � 1 � � � d1

In other words, the remainder of n when divided by b is the last base-b digit of n, and
then subtracting this number from n and dividing the result by b truncates the �nal digit.
Repeating this process gives usd1, and then d2, and so on, until we end up with 0.

This suggests the following algorithm for computing the base-b expansion of a numbern:

� Step 1. Let d0 be the remainder whenn is divided by b, and let n0 = n� d0
b be the

quotient. Fix i = 0.

� Step 2. Supposeni and di have been de�ned. If ni = 0, then proceed to Step
3. Otherwise, de�ne di +1 to be the remainder whenni is divided by b, and de�ne
ni +1 = n i � di +1

b . Increment i , and repeat Step 2.

� Step 3. The base-b expansion ofn, is

di di � 1 � � � d0

Example 1.1.21
We compute the base-17 expansion of 15213, using the letters A{G to represent the numbers
10 through 16.

� 15213 = 894� 17 + 15, so d0 = 15 = F and n0 = 894.

� 894 = 52 � 17 + 10, so d1 = 10 = A and n1 = 52.

� 52 = 3 � 17 + 1, so d2 = 1 and n2 = 3.

� 3 = 0 � 17 + 3, so d3 = 3 and n3 = 0.

� The base-17 expansion of 15213 is therefore 31AF.

A quick veri�cation gives

31AF(17) = 3 � 173 + 1 � 172 + 10 � 17 + 15 = 15213

as desired. C

Exercise 1.1.22
Find the base-17 expansion of 408 735 787 and the base-36 expansion of 1 442 151 747.C
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24 Chapter 1. Mathematical reasoning

Rational numbers ( Q)

Bored of eating apples and bananas, I buy a pizza which is divided into eight slices. A
friend and I decide to share the pizza. I don't have much of an appetite, so I eat three
slices and my friend eats �ve. Unfortunately, we cannot represent the proportion of the
pizza each of us has eaten using natural numbers or integers. However, we're not far o�:
we can count the number of equal parts the pizza was split into, and of those parts, we
can count how many we had. On the number line, this could be represented by splitting
the unit line segment from 0 to 1 into eight equal pieces, and proceeding from there. This
kind of procedure gives rise to therational numbers.

De�nition 1.1.23
The rational numbers are represented by the points at the number line which can be
obtained by dividing any of the unit line segments between integers into an equal number
of parts.

� 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5

The rational numbers are those of the form a
b, where a; b 2 Z and b 6= 0. We write Q

for the set of all rational numbers; thus, the notation `q 2 Q' means that q is a rational
number.

The rational numbers are a very important example of a type of algebraic structure known
as a�eld |they are particularly central to algebraic number theory and algebraic geometry.

Real numbers ( R)

Quantity and change can be measured in the abstract usingreal numbers.

De�nition 1.1.24
The real numbers are the points on the number line. We write R for the set of all real
numbers; thus, the notation à 2 R' means that a is a real number.

The real numbers are central to real analysis, a branch of mathematics introduced in
Chapter 6. They turn the rationals into a continuum by `�lling in the gaps'|speci�cally,
they have the property of completeness, meaning that if a quantity can be approximated
with arbitrary precision by real numbers, then that quantity is itself a real number.

24
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We can de�ne the basic arithmetic operations (addition, subtraction, multiplication and
division) on the real numbers, and a notion of ordering of the real numbers, in terms of
the in�nite number line.

� Ordering. A real number a is less than a real numberb, written a < b, if a lies to
the left of b on the number line. The usual conventions for the symbols6 (LATEX
code: nle ), > and > (LATEX code: nge) apply, for instance à 6 b' means that either
a < b or a = b.

� Addition. Suppose we want to add a real numbera to a real number b. To do this,
we translate a by b units to the right|if b < 0 then this amounts to translating a by
an equivalent number of units to the left. Concretely, take two copies of the number
line, one above the other, with the same choice of unit length; move the 0 of the lower
number line beneath the point a of the upper number line. Then a + b is the point
on the upper number line lying above the point b of the lower number line.

Here is an illustration of the fact that ( � 3) + 5 = 2:

� 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5

� 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5 6 7 8

� Multiplication. This one is fun. Suppose we want to multiply a real numbera
by a real number b. To do this, we scale the number line, and perhapsre
ect it.
Concretely, take two copies of the number line, one above the other; align the 0
points on both number lines, and stretch the lower number line evenly until the point
1 on the lower number line is below the pointa on the upper number line|note that
if a < 0 then the number line must be re
ected in order for this to happen. Then
a � b is the point on the upper number line lying aboveb on the lower number line.

Here is an illustration of the fact that 5 � 4 = 20.

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4

and here is an illustration of the fact that ( � 5) � 4 = � 20:

25
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-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

01234

Exercise 1.1.25
Interpret the operations of subtraction and division as geometric transformations of the
real number line. C

We will take for granted the arithmetic properties of the real numbers in this section,
waiting until Section 6.1 to sink our teeth into the details. For example, we will take for
granted the basic properties of rational numbers, for instance

a
b

+
c
d

=
ad + bc

bd
and

a
b

�
c
d

=
ac
bd

Rational and irrational numbers

Before we can talk about irrational numbers, we should say what they are.

De�nition 1.1.26
An irrational number is a real number that is not rational.

Unlike N; Z; Q; R; C, there is no standard single letter expressing the irrational numbers.
However, by the end of Section 2.2, we will be able to write the set of irrational numbers
as R n Q.

Note in particular that `irrational' does not simply mean `not rational'|that would imply
that all complex numbers which are not real are irrational|rather, the term `irrational'
means `real and not rational'.

Proving that a real number is irrational is not particularly easy. We will get our foot in
the door by allowing ourselves to assume the following result, which is proved in Proposi-
tion 1.3.38.

Proposition 1.1.27
The real number

p
2 is irrational.

We can use the fact that
p

2 is irrational to prove some facts about the relationship between
rational numbers and irrational numbers.
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Proposition 1.1.28
Let a and b be irrational numbers. It is possible that ab be rational.

Proof. Let a = b =
p

2. Then a and b are irrational, and ab= 2 = 2
1 , which is rational.

Exercise 1.1.29
Let r be a rational number and let a be an irrational number. Prove that it is possible
that ra be rational, and it is possible that ra be irrational. C

Complex numbers ( C)

We have seen that multiplication by real numbers corresponds with scaling and re
ection of
the number line|scaling alone when the multiplicand is positive, and scaling with re
ection
when it is negative. We could alternatively interpret this re
ection as a rotation by half a
turn, since the e�ect on the number line is the same. You might then wonder what happens
if we rotate by arbitrary angles, rather than only half turns.

What we end up with is a plane of numbers, not merely a line|see page 28. Moreover, it
happens that the rules that we expect arithmetic operations to satisfy still hold|addition
corresponds with translation, and multiplication corresponds with scaling and rotation.
This resulting number set is that of the complex numbers.

De�nition 1.1.30
The complex numbers are those obtained by the non-negative real numbers upon rotation
by any angle about the point 0.

There is a particularly important complex number, i , which is the point in the complex
plane exactly one unit above 0|this is illustrated on page 28. Multiplication by i has
the e�ect of rotating the plane by a quarter turn anticlockwise. In particular, we have
i 2 = i � i = � 1; the complex numbers have the astonishing property that square roots of
all complex numbers exist (including all the real numbers).

In fact, every complex number can be written in the form a + bi, where a; b 2 R; this
number corresponds with the point on the complex plane obtained by movinga units to
the right and b units up, reversing directions as usual ifa or b is negative. Arithmetic on
the complex numbers works just as with the real numbers; in particular, using the fact
that i 2 = � 1, we obtain

(a + bi) + ( c + di) = ( a + c) + ( b+ d)i and (a + bi) � (c + di) = ( ac � bd) + ( ad + bc)i
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-5 -4 -3 -2 -1 0 1 2 3 4 5

i

2i

3i

4i

5i

-2i

-3i

-4i

-5i

-i

Figure 1.1: Illustration of the complex plane, with some points labelled.
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We will discuss complex numbers further in the portion of this section on polynomials
below, and in Sections B.2 and 8.4.

Polynomials

The integers, rational numbers, real numbers and complex numbers are all examples of
rings, which means that they come equipped with nicely behaving notions of addition,
subtraction and multiplication.

De�nition 1.1.31
Let A be oneZ, Q, R or C. (More generally, A could be any ring|see Section 8.1.) A
(univariate ) polynomial over A in the indeterminate x is an expression of the form

a0 + a1x + � � � + anxn

where n 2 N and eachak 2 A. The numbers ak are called thecoe�cients of the polyno-
mial. If not all coe�cients are zero, the largest value of k for which ak 6= 0 is called the
degree of the polynomial. By convention, the degree of the polynomial 0 is�1 .

Polynomials of degree 1, 2 and 3 are calledlinear, quadratic and cubic polynomials, re-
spectively.

Example 1.1.32
The following expressions are all polynomials:

3 2x � 1 (3 + i )x2 � x

Their degrees are 0, 1 and 2, respectively. The �rst two are polynomials overZ, and the
third is a polynomial over C. C

Exercise 1.1.33
Write down a polynomial of degree 4 overR which is not a polynomial over Q. C

Notation 1.1.34
Instead of writing out the coe�cients of a polynomial each time, we may write something
like p(x) or q(x). The `(x)' indicates that x is the indeterminate of the polynomial. If �
is a number[a] and p(x) is a polynomial in indeterminate x, we write p(� ) for the result of
substituting � for x in the expressionp(x).

[a] When dealing with polynomials, we will typically reserve the letter x for the indeterminate variable, and
use the Greek letters �; �; 
 (LATEX code: nalpha, nbeta, ngamma) for numbers to be substituted into a
polynomial.
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30 Chapter 1. Mathematical reasoning

Note that, if A is any of the setsZ; Q; R; C and p(x) is a polynomial over A, then p(� ) 2 A
for all � 2 A.

Example 1.1.35
Let p(x) = x3 � 3x2 + 3x � 1. Then p(x) is a polynomial over Z with indeterminate x. For
any integer � , the value p(� ) will also be an integer. For example

p(0) = 0 3 � 3 � 02 + 3 � 0 � 1 = � 1 and p(3) = 3 3 � 3 � 32 + 3 � 3 � 1 = 8

C

De�nition 1.1.36
Let p(x) be a polynomial. A root of p(x) is a complex number� such that p(� ) = 0.

The quadratic formula (Theorem 1.2.6) tells us that the roots of the polynomialx2+ ax+ b,
where a; b2 C, are precisely the complex numbers

� a +
p

a2 � 4b
2

and
� a �

p
a2 � 4b

2

Note our avoidance of the symbol �̀ ', which is commonly found in discussions of quadratic
polynomials. The symbol �̀ ' is dangerous because it may suppress the word `and' or the
word `or', depending on context|this kind of ambiguity is not something that we will want
to deal with when discussing the logical structure of a proposition in Sections 1.2 and 2.1.

Example 1.1.37
Let p(x) = x2 � 2x + 5. The quadratic formula tells us that the roots of p are

2 +
p

4 � 4 � 5
2

= 1 +
p

� 4 = 1 + 2 i and
2 �

p
4 � 4 � 5
2

= 1 �
p

� 4 = 1 � 2i

The numbers 1 + 2i and 1 � 2i are related in that their real parts are equal and their
imaginary parts di�er only by a sign. Exercise 1.1.38 generalises this observation. C

Exercise 1.1.38
Let � = a+ bi be a complex number, wherea; b2 R. Prove that � is the root of a quadratic
polynomial over R, and �nd the other root of this polynomial. C

The following exercise proves the well-known result which classi�es the number of real roots
of a polynomial over R in terms of its coe�cients.
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Exercise 1.1.39
Let a; b2 R and let p(x) = x2+ ax+ b. The value � = a2 � 4b is called thediscriminant of
p. Prove that p has two roots if � 6= 0 and one root if � = 0. Moreover, if a; b2 R, prove
that p has no real roots if � < 0, one real root if � = 0, and two real roots if � > 0. C

Example 1.1.40
Consider the polynomial x2 � 2x +5. Its discriminant is equal to ( � 2)2 � 4� 5 = � 16, which
is negative. Exercise 1.1.39 tells us that it has two roots, neither of which are real. This
was veri�ed by Example 1.1.37, where we found that the roots ofx2 � 2x + 5 are 1 + 2i
and 1� 2i .

Now consider the polynomialx2 � 2x � 3. Its discriminant is equal to (� 2)2 � 4� (� 3) = 16,
which is positive. Exercise 1.1.39 tells us that it has two roots, both of which are real; and
indeed

x2 � 2x � 3 = ( x + 1)( x � 3)

so the roots ofx2 � 2x � 3 are � 1 and 3. C
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32 Chapter 1. Mathematical reasoning

Section 1.2

Elementary proof techniques

There are many facets to mathematical proof, ranging from questions of how much detail
to provide and what assumptions can be made, to questions of how to go about solving a
particular problem and what steps are logically valid. This section provides some tools for
answering the latter issues, but the proof techniques we will look at here are not exhaustive,
by any means.

If this section is successful, then it will feel somewhat like all we are doing is stating the
obvious. However, when it comes to writing your own proofs, this feeling of obviousness
will likely disappear|it is when this happens that the usefulness of the proof techniques
in this section will become apparent.

Assumptions and goals

Every mathematical proof is written in the context of certain assumptions being made,
and certain goals to be achieved.

� Assumptions are the propositions which are known to be true, or which we are
assuming to be true for the purposes of proving something. They include theorems
that have already been proved, prior knowledge which is assumed of the reader, and
assumptions which are explicitly made using words like `suppose' or `assume'.

� Goals are the propositions we are trying to prove in order to complete the proof of
a result, or perhaps just a step in the proof.

With every phrase we write, our assumptions and goals change. This is perhaps best illus-
trated by example. In Example 1.2.1 below, we will examine the proof of Proposition 1.1.15
in detail, so that we can see how the words we wrote a�ected the assumptions and goals at
each stage in the proof. We will indicate our assumptions and goals at any given stage using
tables|the assumptions listed will only be those assumptions which are made explicitly;
prior knowledge and previously proved theorems will be left implicit.

Example 1.2.1
The statement of Proposition 1.1.15 was as follows:

Let a; b; c2 Z. If b divides a and c divides b, then c divides a.

The set-up of the proposition instantly gives us our initial assumptions and goals:
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Assumptions Goals

a; b; c2 Z
If b divides a and c divides b,

then c divides a

We will now proceed through the proof, line by line, to see what e�ect the words we wrote
had on the assumptions and goals.

Since our goal was an expression of the form `if. . . then. . . ', it made sense to start by
assuming the `if ' statement, and using that assumption to prove the `then' statement. As
such, the �rst thing we wrote in our proof was:

Suppose thatb divides a and c divides b.

Our updated assumptions and goals are re
ected in the following table.

Assumptions Goals
a; b; c2 R c divides a
b divides a
c divides b

Our next step in the proof was to unpack the de�nitions of `b divides a' and `c divides b',
giving us more to work with.

Suppose thatb divides a and c divides b. By De�nition 1.1.12, it follows that

a = qb and b = rc

for some integersq and r .

This introduces two new variablesq; r and allows us to replace the assumptionsb̀ divides
a' and `c divides b' with their de�nitions.

Assumptions Goals
a; b; c; q; r2 Z c divides a

a = qb
b = rc

At this point we have pretty much exhausted all of the assumptions we can make, and
so our attention turns towards the goal|that is, we must prove that c divides a. At this
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point, it helps to `work backwards' by unpacking the goal: what does it mean forc to divide
a? Well, by De�nition 1.1.12, we need to prove that a is equal to some integer multiplied
by c|this will be re
ected in the following table of assumptions and goals.

Since we are now trying to expressa in terms of c, it makes sense to use the equations we
have relating a with b, and b with c, to relate a with c.

Suppose thatb divides a and c divides b. By De�nition 1.1.12, it follows that

a = qb and b = rc

for some integersq and r . Using the second equation, we may substituterc for
b in the �rst equation, to obtain

a = q(rc)

We are now very close, as indicated in the following table.

Assumptions Goals
a; b; c; q; r2 Z a = [some integer]� c

a = qb
b = rc

a = q(rc)

Our �nal step was to achieve the goal|namely, to express a as an integer multiplied by c:

Suppose thatb divides a and c divides b. By De�nition 1.1.12, it follows that

a = qb and b = rc

for some integersq and r . Using the second equation, we may substituterc for
b in the �rst equation, to obtain

a = q(rc)

But q(rc) = ( qr)c, and qr is an integer,

Assumptions Goals
a; b; c; q; r2 Z a = [some integer]� c

a = qb
b = rc

a = q(rc)
a = ( qr)c and qr 2 Z
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Section 1.2. Elementary proof techniques 35

It is helpful to the reader to declare when the goal has been achieved; this was the content
of the �nal sentence.

Suppose thatb divides a and c divides b. By De�nition 1.1.12, it follows that

a = qb and b = rc

for some integersq and r . Using the second equation, we may substituterc for
b in the �rst equation, to obtain

a = q(rc)

But q(rc) = ( qr)c, and qr is an integer, so it follows from De�nition 1.1.12 that
c divides a.

C

For the rest of this section, we will examine various proof techniques in the context of
assumptions and goals. This will be made more precise when we study proof from a
symbolic perspective in Section 2.1.

Conditional statements

One of the most common kinds of proposition that you will encounter in mathematics
is that of a conditional statement|that is, one of the form `if. . . then. . . '. As we saw in
Example 1.2.1, these can be proved by assuming the statement after the word `if ', and
deriving a proof of the statement after the word `then'.

Proof tip
To prove a proposition of the form `if P, then Q', assume the propositionP and then derive
a proof of the proposition Q.

Assumptions Goals
if P, then Q

 
Assumptions Goals

P Q

C

Proposition 1.1.15 was an example of a proposition containing a conditional statement.
Proposition 1.2.2 below contains another example.
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Proposition 1.2.2
Let x and y be real numbers. Ifx and x + y are rational, then y is rational.

Proof of Proposition 1.2.2. Supposex and x + y are rational. Then there exist integers
a; b; c; dwith b; d6= 0 such that

x =
a
b

and x + y =
c
d

It then follows that

y = ( x + y) � x =
c
d

�
a
b

=
bc� ad

bd

Sincebc� ad and bd are integers, andbd6= 0, it follows that y is rational.

The key phrase in the above proof was `Supposex and x + y are rational.' This introduced
the assumptionsx 2 Q and x + y 2 Q, and reduced our goal to that of deriving a proof
that y is rational|this was the content of the rest of the proof.

Writing tip
A template for writing proofs of propositions of the form `if P, then Q' is as follows:

Suppose [write out P here]. Then [prove Q here].

Words similar in meaning to `suppose', such as `assume', may also be used. C

The following exercises, based on the topics we introduced in Section 1.1, are an opportunity
for you to practise writing proofs of conditional statements.

Exercise 1.2.3
Let p(x) be a polynomial over C. Prove that if � is a root of p(x), and a 2 C, then � is a
root of (x � a)p(x). C

Another common kind of proposition is that of a biconditional statement; that is, one of the
form `P if and only if Q' (sometimes abbreviated in writing to `P i� Q'). This abbreviates
the longer expression, `ifP , then Q, and if Q, then P', and indicates that P and Q are in
some senseequivalent. The statement `if Q, then P' is called the converse of the statement
`if P , then Q'.

Proof tip
To prove a propositions of the form P̀ if and only if Q', provide separate proofs of the
propositions `if P, then Q' and `if Q, then P'.
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Assumptions Goals
P if and only if Q

 
Assumptions Goals

if P, then Q
if Q, then P

C

In writing, we may sometimes abbreviate `ifP , then Q' by writing ` P ) Q' (LATEX code:
P nRightarrow Q ), and `P if and only if Q' by `P , Q' (LATEX code: P nLeftrightarrow Q ).
These symbols will reappear from a formal point of view in Section 2.1.

Many examples of biconditional statements come from solving equations; indeed, to say
that the values � 1; : : : ; � n are the solutions to a particular equation is precisely to say that

x is a solution , x = � 1 or x = � 2 or � � � or x = � n

Example 1.2.4
We �nd all real solutions x to the equation

p
x � 3 +

p
x + 4 = 7

Let's rearrange the equation to �nd out what the possible solutions may be.
p

x � 3 +
p

x + 4 = 7 ) (x � 3) + 2
p

(x � 3)(x + 4) + ( x + 4) = 49 squaring

) 2
p

(x � 3)(x + 4) = 48 � 2x rearranging

) 4(x � 3)(x + 4) = (48 � 2x)2 squaring

) 4x2 + 4x � 48 = 2304� 192x + 4x2 expanding

) 196x = 2352 rearranging

) x = 12 dividing by 196

You might be inclined to stop here. Unfortunately, all we have proved is that, given a real
number x, if x solves the equation

p
x � 3 +

p
x + 4 = 7, then x = 12. This narrows down

the set of possible solutions to just one candidate|but we still need to check the converse,
namely that if x = 12, then x is a solution to the equation.

As such, to �nish o� the proof, note that
p

12� 3 +
p

12 + 4 =
p

9 +
p

16 = 3 + 4 = 7

and so the valuex = 12 is indeed a solution to the equation. C

The last step in Example 1.2.4 may have seemed a little bit silly; but Example 1.2.5
demonstrates that proving the converse when solving equations truly is necessary.
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Example 1.2.5
We �nd all real solutions x to the equation

x +
p

x = 0

We proceed as before, rearranging the equation to �nd all possible solutions.

x +
p

x = 0 ) x = �
p

x rearranging

) x2 = x squaring

) x(x � 1) = 0 rearranging

) x = 0 or x = 1

Now certainly 0 is a solution to the equation, since

0 +
p

0 = 0 + 0 = 0

However, 1 isnot a solution, since

1 +
p

1 = 1 + 1 = 2

Hence it is actually the case that, given a real numberx, we have

x +
p

x = 0 , x = 0

Checking the converse here was vital to our success in solving the equation! C

A slightly more involved example of a biconditional statement arising from the solution to
an equation|in fact, a class of equations|is the proof of the quadratic formula.

Theorem 1.2.6 (Quadratic formula)
Let a; b2 C. A complex number � is a root of the polynomial x2 + ax + b if and only if

� =
� a +

p
a2 � 4b

2
or � =

� a �
p

a2 � 4b
2

Proof. First we prove that if � is a root, then � is one of the values given in the statement
of the proposition. So suppose� be a root of the polynomial x2 + ax + b. Then

� 2 + a� + b = 0

The algebraic technique of `completing the square' tells us that

� 2 + a� =
�

� +
a
2

� 2
�

a2

4
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and hence �
� +

a
2

� 2
�

a2

4
+ b = 0

Rearranging yields
�

� +
a
2

� 2
=

a2

4
� b =

a2 � 4b
4

Taking square roots gives

� +
a
2

=

p
a2 � 4b

2
or � +

a
2

=
�

p
a2 � 4b
2

and, �nally, subtracting a
2 from both sides gives the desired result.

The proof of the converse is Exercise 1.2.7.

Exercise 1.2.7
Complete the proof of the quadratic formula. That is, for �xed a; b2 C, prove that if

� =
� a +

p
a2 � 4b

2
or � =

� a �
p

a2 � 4b
2

then � is a root of the polynomial x2 + ax + b. C

Writing tip
A template for proving statements of the form `P if and only if Q' is as follows.

Suppose [write out P here]. Then [prove Q here].

Conversely, suppose [write out Q here]. Then [prove P here].

Another template, which more clearly separates the two conditional statements, is as fol-
lows.

� () ) Suppose [write out P here]. Then [prove Q here].

� (( ) Suppose [write out Q here]. Then [prove P here].

C

Example 1.2.8
Let n 2 N. We will prove that n is divisible by 8 if and only if the number formed of the
last three digits of the base-10 expansion ofn is divisible by 8.

First, we will do some `scratch work'. Let dr dr � 1 : : : d0 be the base-10 expansion ofn.
Then

n = dr � 10r + dr � 1 � 10r � 1 + � � � + d0
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De�ne
n0 = d2d1d0 and n00= n � n0 = dr dr � 1 : : : d4d3000

Now n � n0 = 1000 � dr dr � 1 : : : d4d3 and 1000 = 8� 125, so it follows that 8 dividesn00.

Our goal is now to prove that 8 divides n if and only if 8 divides n0.

� () ) Suppose 8 dividesn. Since 8 dividesn00, it follows from Exercise 1.1.16 that 8
divides an + bn00for all a; b2 Z. But

n0 = n � (n � n0) = n � n00= 1 � n + ( � 1) � n00

so indeed 8 dividesn0, as required.

� (( ) Suppose 8 dividesn0. Since 8 dividesn00, it follows from Exercise 1.1.16 that 8
divides an0+ bn00for all a; b2 Z. But

n = n0+ ( n � n0) = n0+ n00= 1 � n0+ 1 � n00

so indeed 8 dividesn, as required.

C

Exercise 1.2.9
Prove that a natural number n is divisible by 3 if and only if the sum of its base-10 digits
is divisible by 3. C

Negation and contradiction

Frequently we are tasked with proving that a proposition is not true. For example,
p

2 is
not rational, there is not an integer solution x to the equation 3x = 5, and so on. One way
to prove that a proposition is false is to assume that it is true, and use that assumption to
derive nonsense. The nonsense we derive is more properly called acontradiction .

De�nition 1.2.10
A contradiction is a proposition which is known or assumed to be false.

Proof tip
To prove a proposition of the form `not P ', assume thatP is true and derive a contradiction.

Assumptions Goals
not P

 
Assumptions Goals

P [contradiction]
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C

The following proposition has a classic proof by contradiction.

Proposition 1.2.11
Let r be a rational number and let a be an irrational number. Then r + a is irrational.

Proof. By De�nition 1.1.26, we need to prove that r + a is real and not rational. It is
certainly real, since r and a are real, so it remains to prove that r + a is not rational.

Supposer + a is rational. Since r is rational, it follows from Proposition 1.2.2 that a is
rational, since

a = ( r + a) � r

This contradicts the assumption that a is irrational. It follows that r + a is not rational,
and is therefore irrational.

Writing tip
A template for proving statements of the form `not P ' (or, equivalently, `P is false') is as
follows.

Suppose [write out P here]. Then [derive a contradiction here]. This contradicts
[write out the assumption or known fact that is contradicted]. It follows that
[write out the assertion that P is false here].

C

Now you can try proving some elementary facts by contradiction.

Exercise 1.2.12
Let x 2 R. Prove by contradiction that if x is irrational then � x and 1

x are irrational. C

Exercise 1.2.13
Prove by contradiction that there is no least positive real number. That is, prove that
there is not a real numbera such that a 6 b for all positive real numbers b. C

A proof need not be a `proof by contradiction' in its entirety|indeed, it may be that only a
small portion of the proof uses contradiction. This is exhibited in the proof of the following
proposition.

Proposition 1.2.14
Let a be an integer. Thena is odd[b] if and only if a = 2b+ 1 for some integer b.
[b] For clarity's sake, we take `even' to mean `divisible by 2' and `odd' to mean `not even'.
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Proof. Supposea is odd. By the division theorem (Theorem 1.1.17), eithera = 2b or
a = 2b+ 1, for some b 2 Z. If a = 2b, then 2 divides a, contradicting the assumption that
a is odd; so it must be the case thata = 2b+ 1.

Conversely, supposea = 2b+1. Then a leaves a remainder of 1 when divided by 2. However,
by the division theorem, the even numbers are precisely those that leave a remainder of 0
when divided by 2. It follows that a is not even, so is odd.

Proofs involving cases

The situation often arises where you know that (at least) one of several facts is true, but
you don't know which of the facts is true. The solution is to do whatever you're trying to
do in all the possible cases|then it doesn't matter which case you fall into!

Proof tip
To use an assumption of the form P̀ or Q' when proving a proposition R, split into cases
based on whetherP is true or Q is true|in both cases, prove that P is true.

Assumptions Goals
P or Q R  

Assumptions Goals
if P, then R
if Q, then R

C

As you might guess, this proof technique generalises to more than two cases. The proof of
Proposition 1.2.15 below splits into three cases.

Proposition 1.2.15
Let n 2 Z. Then n2 leaves a remainder of 0 or 1 when divided by 3.

Proof. Let n 2 Z. By the division theorem, one of the following must be true for some
k 2 Z:

n = 3k or n = 3k + 1 or n = 3k + 2

� Supposen = 3k. Then
n2 = (3 k)2 = 9k2 = 3 � (3k2)

So n2 leaves a remainder of 0 when divided by 3.

� Supposen = 3k + 1. Then

n2 = (3 k + 1) 2 = 9k2 + 6k + 1 = 3(3 k2 + 2k) + 1
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So n2 leaves a remainder of 1 when divided by 3.

� Supposen = 3k + 2. Then

n2 = (3 k + 2) 2 = 9k2 + 12k + 4 = 3(3 k2 + 4k + 1) + 1

So n2 leaves a remainder of 1 when divided by 3.

In all cases,n2 leaves a remainder of 0 or 1 when divided by 3.

Writing tip
The following is a template for proving a proposition R by using an assumption of the form
`P or Q'.

There are two possible cases.

� Suppose [write out P here]. Then [prove R here].

� Suppose [write out Q here]. Then [prove R here].

In both cases,R is true.

A similar template can be used for proofs requiring more than two cases. C

Exercise 1.2.16
Let n be an integer. Prove that n2 leaves a remainder of 0, 1 or 4 when divided by 5. C

Exercise 1.2.17
Let a; b2 R and supposea2 � 4b 6= 0. Let � and � be the (distinct) roots of the polyonomial
x2 + ax+ b. Prove that there is a real numberc such that either � � � = c or � � � = ci. C

A particularly useful proof principle which allows us to prove propositions by splitting into
cases is thelaw of excluded middle.

De�nition 1.2.18
The law of excluded middle is the assertion that every proposition is either true or it
is false. Put otherwise, it says that if P is any proposition, then the proposition P̀ or not
P ' is true.

We can therefore use the law of excluded middle to prove facts by splitting into two cases,
based on whether a particular proposition is true or false. The law of excluded middle
is an example of anonconstructive proof technique|whilst this matter is not an issue in
mainstream mathematics, it can lead to issues in computer science when not kept in check.
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This matter will not concern us in the main body of the text, but will be discussed in
Section B.3.

The proof of Proposition 1.2.19 below makes use of the law of excluded middle.

Proposition 1.2.19
Let a; b2 Z. If ab is even, then eithera is even orb is even (or both).

Proof. Supposea; b2 Z with ab even.

� Supposea is even|then we're done.

� Supposea is odd. Suppose thatb is also odd. Then we can write

a = 2k + 1 and b = 2 ` + 1

for some integersk; ` . This implies that

ab= (2 k + 1)(2 ` + 1) = 4 k` + 2k + 2 ` + 1 = 2(2 k` + k + `| {z }
2 Z

) + 1

so that ab is odd. This contradicts the assumption that ab is even, and sob must in
fact be even.

In both cases, eithera or b is even.

Exercise 1.2.20
Re
ect on the proof of Proposition 1.2.19. Where in the proof did we use the law of
excluded middle? Where in the proof did we use proof by contradiction? What was the
contradiction in this case? Prove Proposition 1.2.19 twice more, once using contradiction
and not using the law of excluded middle, and once using the law of excluded middle and
not using contradiction. C

Exercise 1.2.21
Let a and b be irrational numbers. Prove that it is possible that ab be rational. C

Reducing a goal to another goal

As indicated above, a huge number of mathematical results take the form `ifP, then Q'.
We've already seen a few, and there are dozens more to come! The reason why we prove
results of this form is because they are useful|any time we know P is true, we also know
that Q is true! In particular, if Q is what we're trying to prove, and we know that P
implies Q, then we reduce the problem of provingQ to that of proving P.
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Proof tip
To prove a proposition Q using an assumption of the form `ifP, then Q', simply prove
that P is true.

Assumptions Goals
if P, then Q Q

 
Assumptions Goals
if P, then Q P

C

The following is a very simple example of using a conditional statement in a proof.

Proposition 1.2.22
The number 1p

2
is irrational.

Proof. We proved in Exercise 1.2.12 that, for any real numberx, if x is irrational, then � x
and 1

x are irrational. Since
p

2 is irrational, it follows that 1p
2

is irrational.

Writing tip
The following is a template for proving a proposition Q by using an assumption of the form
`if P, then Q'.

Since [write out P ) Q here], in order to prove [write out Q here], it su�ces
to prove [write out P here]. To this end, [prove P here].

C

Example 1.2.23
Section 1.3 is devoted toinduction principles, which are proof techniques used to prove
that a given statement is true of all natural numbers. For example, induction can be used
to prove that

1 + 2 + � � � + n =
n(n + 1)

2
is true for all natural numbers n. Induction principles reduce the problem of proving a
statement is true of all natural numbers to the problem of proving a base caseand an
induction step (to be de�ned in Section 1.3).

Thus, from a mathematical perspective, induction principles are nothing more than state-
ments of the form

if [base case] and [induction step], then [statement is true for all natural numbers]

We will not explore induction any further here, as it is on its way very soon! C
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Dealing with variables

We have made heavy use of variables already in this book, and we will not stop any time
soon. The notion of a variable may seem like a simple concept, but it actually has many
technicalities associated with it|a whole �eld, called nominal theory, has emerged within
mathematical logic and theoretical computer science in order to deal with variables in a
systematic way. We won't need to go into quite that amount of detail; instead, we will just
need to focus on two aspects:

� the range of a variable, which tells us what kind of thing it refers to; and

� the quanti�cation of a variable, which tells us how many things it refers to.

De�nition 1.2.24
Let x be a variable. Therange (or domain of discourse ) of x is the set of objects which
x refers to.

In mathematical writing, all variables should have a range, which is either explicitly men-
tioned or is clear from context.

Example 1.2.25
Consider the following statement.

If x2 is rational, then x is rational.

As stated, this statement looks like it is false; for example, letting x =
p

2, we can see that
x2 = 2, which is rational, but x is irrational. However, this is poorly written, since the
range of x is not indicated|indeed, if we're told in advance that x refers to an integer,
then the statement is automatically true, since all integers are rational; the counterexample
above doesn't work in this case, since

p
2 is not an integer.

Here is a better way of writing it.

Let x be a real number. If x2 is rational, then x is rational.

The �rst sentence here indicates to the reader what kind of object the variablex refers
to. As we expected in the �rst place, this is now a false statement|but it's a well-written
false statement! C

Exercise 1.2.26
Consider the following statement:
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Let x be an integer. If x = 2k + 1, then x is odd.

Re-word the statement to specify the range ofk. With the range of k that you speci�ed,
is the statement true or is it false? Would a di�erent choice of range change its truth or
falsity? C

Unfortunately simply specifying the range of a variable is not su�cient to give statements
mathematical meaning and can lead to ambiguity.

Example 1.2.27
Consider the following statement:

x + y is even; x; y 2 Z

The range of the variablesx and y is speci�ed|namely, they refer to integers|but we're
left wondering whether the statement x̀ + y is even' is true. It's certainly sometimestrue,
but it can also be false|speci�cally, it's true if x and y are both even or both odd, and
false otherwise. C

As Example 1.2.27 demonstrates, simply stating the range of variables is not su�cient.
This is wherequanti�cation comes in. We will focus on two kinds of quanti�cation, namely
universal and existential quanti�cation.

Universal quanti�cation is a means of saying that the variable can take any value in its
range|typically, we universally quantify a variable by using the words `all' or `every'. In
Section 2.1 we will describe universal quanti�cation more precisely.

Proof tip
To prove a proposition of the form `for all x 2 X , P ', take an element x 2 X , and prove
P for that value of x, knowing nothing about x, other than the assumption that x is an
element ofX .

Assumptions Goals
for all x 2 X , P

 
Assumptions Goals

x 2 X P

C

Proposition 1.2.28
Every integer greater than one has at least four divisors.

Proof. Let n 2 Z, and supposen > 1. Then the numbers� n, � 1, 1 and n are all distinct,
and moreover

n = ( � 1) � (� n) = ( � n) � (� 1) = n � 1 = 1 � n
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so they all divide n.

Writing tip
A template for proving statements of the form `for all x, P ' is as follows.

Let x 2 X . Then [prove P for x here, using no assumptions aboutx other than
the fact that x is an element ofX ].

Other words can be used instead of `let', such as `take' or `�x', or even `suppose'. C

Proposition 1.2.29
The base-10 expansion of the square of every natural number ends in one of the digits 0,
1, 4, 5, 6 or 9.

Proof. Fix n 2 N, and let
n = dr dr � 1 : : : d0

be its base-10 expansion. Write
n = 10m + d0

where m 2 N|that is, m is the natural number obtained by removing the �nal digit from
n. Then

n2 = 100m2 + 20md0 + d2
0 = 10m(10m + 2d0) + d2

0

Hence the �nal digit of n2 is equal to the �nal digit of d2
0. But the possible values ofd2

0 are

0 1 4 9 25 36 49 64 81

all of which end in one of the digits 0, 1, 4, 5, 6 or 9.

Exercise 1.2.30
Prove that every linear polynomial over Q has a rational root. C

Exercise 1.2.31
Prove that, for all real numbers x and y, if x and y are irrational, then x + y and x � y are
not both rational. C

Sometimes we seek to prove results about existence in mathematics|this just requires
us to �nd one thing making a statement true. Existential quanti�cation is a means of
expressing that there is at least one value a variable can take which makes a statement
true. We typically existentially quantify a variable using words like `there exist' or `there
is'.
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Proof tip
To prove a proposition of the form `there existsx 2 X such that P ', �nd a value of x 2 X
making P true, specify such a value ofx, and then prove that P is true for the speci�ed
value of x.

Assumptions Goals
there exists x 2 X

such that P
 

Assumptions Goals
x = [ speci�ed value] P

C

Proposition 1.2.32
Let a 2 R. The cubic polynomial

x3 + (1 � a2)x � a

has a real root.

Proof. Let p(x) = x3 + (1 � a2)x � a. De�ne x = a; then

p(x) = p(a) = a3 + (1 � a2)a � a = a3 + a � a3 � a = 0

Hencea is a root of p(x). Since a is real, p(x) has a real root.

Writing tip
A template for proving statements of the form `there existsx such that P ' is as follows.

De�ne x by [de�ne x here]. Then [prove P for the speci�ed value of x here].

Other words can be used instead of `let', such as `take' or `�x', or even `suppose'. C

Exercise 1.2.33
Prove that there is a real number which is irrational but whose square is rational. C

Exercise 1.2.34
Prove that there is an integer which is divisible by zero. C

Statements may involve many variables, which could be universally or existentially quan-
ti�ed, or any combination of the above. In these cases, variables appearing later in a
statement can depend on variables appearing earlier in the statement.

We now revisit Example 1.2.27, this time with quanti�ed variables, and look at how the
choice of quanti�er a�ects its truth values.
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Example 1.2.35
Consider the statement x̀ + y is even', where x and y are variables ranging over the
integers. There are four ways of quantifyingx and y, each yielding a statement with a
di�erent meaning:

(a) For all integers x, and all integers y, x + y is even;

(b) For all integers x, there exists an integery such that x + y is even;

(c) There exists an integerx such that, for all integers y, x + y is even;

(d) There exists an integer x and an integer y such that x + y is even.

Statement (a) is false. If it were true, then it would imply that 0 + 1 is even; but that is
nonsense!

Statement (b) is true. To see this, let x 2 Z. We split into cases based on whetherx is
even or odd.

� If x is even, then by letting y = 0, we see that x + y = x is even.

� If x is odd, then by letting y = 1, we see that x + y = x + 1 is even.

In any case, there is an integery such that x + y is even, as required. C

Exercise 1.2.36
Prove that (c) is false and (d) is true in Example 1.2.35. C

Exercise 1.2.37
Prove that, for all real numbers x, there exists a real numbery such that x + y 2 Q. C
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Section 1.3

Induction on the natural numbers

We de�ned the natural numbers in De�nition 1.1.5; to reiterate, they are the non-negative
whole numbers

0; 1; 2; 3; : : :

and we denote the set of natural numbers byN. This was aninformal de�nition: it assumed
that we have an inherent notion in our minds of what a number line is, what 0 is, and so
on. And we probably do have such an inherent notion in our minds; it's so ingrained that
you wouldn't think twice about what I mean when I write 3 + 15 or 7 � 12, even though I
haven't de�ned what + or � mean (or even what 3, 15, 7 and 12 mean).

This informal approach gets us into some trouble if we really want to be precise about
what we're doing, and so De�nition 1.1.5 won't su�ce. However, we can pin down what it
is that the natural numbers `should be' by writing down some basic properties that they
should satisfy|these properties are called axioms. The approach we take is to characterise
the natural numbers in terms of the number 0 and the operation of `adding 1', which we
call the successor operation. A set with a notion of zero and a notion of successor can be
thought of as a set of natural numbers provided it satis�es following �ve axioms, called the
Peano axioms.

Axioms 1.3.1 (Peano axioms)

(a) N contains a zero element , denoted 0;

(b) If n 2 N then there is an elementn+ 2 N, called the successor of n;

(c) Zero is not a successor; that is,n+ 6= 0 for all n 2 N;

(d) For all m; n 2 N, if m+ = n+ , then m = n;

(e) If X is a set such that

(i) 0 2 X ; and

(ii) for all n 2 N, if n 2 X , then n+ 2 X ;

then every natural number is an element ofX .

Most of these properties are reasonably self-explanatory. For example, we can interpret
(c) as saying that there isn't a natural number n such that n + 1 = 0. . . if there were, then
we'd have n = � 1 but � 1 isn't a natural number. And (d) says that if m + 1 = n + 1 then
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m = n; this makes sense because we should be able to `subtract 1' from both sides of the
equation.

The property that requires some discussion is (e). In slightly more human terms, it says:
if a set X contains 0 and the successors of all its elements, then it contains all the natural
numbers. Why should this be so? Well, we know 02 X . Since X contains successors of
all its elements, it contains 0 + 1, which is 1; and so it contains 1 + 1, which is 2; and so it
contains 2 + 1, which is 3; . . . and so on.

From the �ve Peano axioms, we can recover everything we know about the natural numbers.
For instance:

� Numerals. De�ne 1 = 0 + , 2 = 1+ (= 0 ++ ), 3 = 2 + (= 0 +++ ), and so on. Thus the
symbols 0; 1; 2; 3; 4; : : : (called numerals) are given meaning by saying thatn is the
nth iterated successor of 0.

� Addition. We can de�ne addition by declaring m+0 = m and m+( n+ ) = ( m+ n)+ .
Thus, for instance,

m + 1 = m + (0 + ) = ( m + 0) + = m+

and, then

m + 2 = m + (1 + ) = ( m + 1) + = m++

and so on.

� Multiplication. We can de�ne multiplication as iterated addition. Precisely, de�ne
m � 0 = 0 and m � (n+ ) = ( m � n) + m (LATEX code: ntimes ).

� Exponentiation. We can de�ne exponentiation as iterated multiplication. Pre-
cisely, de�ne m0 = 1 and mn+

= ( mn ) � m.

� Order. If you think about it, m 6 n (LATEX code: nle ) really just means that there
is some non-negative number you can add tom to obtain n. Thus we can de�ne
`m 6 n' to mean

m + k = n for somek 2 N

and then we can de�ne m̀ < n ' to mean `m 6 n and m 6= n'.

The way we de�ned addition and multiplication is called recursion : we de�ned how they
act on zero, and how they act on a successorn + 1 in terms of how they act on n.

Example 1.3.2
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We prove that 2 � 2 = 4 using the recursive de�nitions of addition and multiplication.

2 � 2 = (2 � 1) + 2 by de�nition of � , since 2 = 1+

= ((2 � 0) + 2) + 2 by de�nition of � , since 1 = 0+

= (0 + 2) + 2 by de�nition of �

= ((0 + 1) + 1) + 2 by de�nition of +, since 2 = 1 +

= (1 + 1) + 2 since 0 + 1 = 0 + = 1

= 2 + 2 since 1 + 1 = 1 + = 2

= (2 + 1) + 1 by de�nition of +, since 2 = 1 +

= 3 + 1 since 2 + 1 = 2 + = 3

= 4 since 3 + 1 = 3 + = 4

Note that, in order to shorten the proof, we used the fact proved earlier, thatm + 1 = m+

for all m, on the �fth, sixth, eighth and ninth lines. C

Exercise 1.3.3
Using the recursive de�nitions of addition, multiplication and exponentiation, prove that
22 = 4. C

We will not go through the long, arduous process of proving everything we need from the
Peano axioms, as that would take a long time, and would not be very enlightening. Before
moving on, we will make some more recursive de�nitions that will be useful to us as we
progress through the book.

De�nition 1.3.4
For each i 2 N let x i be a real number.

� The indexed sum
nP

i =1
x i is de�ned recursively for n 2 N by

0X

i =1

x i = 0 and
n+1X

i =1

x i =

 
nX

i =1

x i

!

+ xn+1

� The indexed product
nQ

i =1
x i is de�ned recursively for n 2 N by

0Y

i =1

x i = 1 and
n+1Y

i =1

x i =

 
nY

i =1

x i

!

� xn+1
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Example 1.3.5
Let x i = i 2 for each i 2 N. Then

5X

i =1

x i = 1 + 4 + 9 + 16 + 25 = 55

and
5Y

i =1

x i = 1 � 4 � 9 � 16� 25 = 14400

C

Exercise 1.3.6
Let x1; x2 2 R. Working strictly from the de�nitions of indexed sum and indexed product,
prove that

2X

i =1

x i = x1 + x2 and
2Y

i =1

x i = x1 � x2

C

The remainder of this section concernsinduction on the natural numbers. This is a class of
proof techniques which are used for proving statements about natural numbers|De�nition
1.3.7 makes this notion slightly more precise, and is a particular instance of alogical
formula, which will be introduced in De�nition 2.1.37 (and again formally in De�nition
B.1.3).

De�nition 1.3.7
A statement about natural numbers is an expression involving a variable, such that
when a natural number is substituted for the variable in the expression, it becomes a
proposition (in the sense of De�nition 1.1.1). We will denote statements about natural
numbers asp(n), q(m), and so on; the letter in parentheses denotes the variable.

Example 1.3.8
Let p(n) be the statement

2n + 1 is divisible by 3

This is a statement about natural numbers. The proposition p(1) says

2 � 1 + 1 is divisible by 3

which is true, since 2� 1 + 1 = 3 = 1 � 3. The proposition p(2) says

2 � 2 + 1 is divisible by 3
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which is false, since 2� 2 + 1 = 5 = 1 � 3 + 2, which leaves a remainder of 2 when divided
by 3. For a given natural number n, the proposition p(3n) says

2 � (3n) + 1 is divisible by 3

which will be seen to be false in the following exercise. C

Exercise 1.3.9
Letting p(n) be the statement as in Example 1.3.8. Prove thatp(3n + 1) is true for all
n 2 N, and that p(3n) and p(3n + 2) are both false for all n 2 N. C

Weak induction

The �rst induction principle we encounter says that natural numbers behave like dominoes.
Imagine an in�nitely long line of dominoes|one for each natural number|and suppose we
want to prove a statement about natural numbers, sayp(n). Proving p(n) will correspond
to the nth domino falling; hence provingp(n) for all n 2 N corresponds toall the dominoes
falling.

How do we make all the dominoes fall? Well we knock down domino 0, and from there
everything is taken care of: domino 0 knocks down domino 1; then domino 1 knocks down
domino 2; and so on. Forn 2 N, domino n knocks down dominon + 1.

From a more mathematical perspective, what this means is: we provep(0); then p(1) will
follow from the fact that p(0) is true; and p(2) will follow from the fact that p(1) is true;
and so on. Forn 2 N, p(n + 1) will follow from the fact that p(n) is true. In other words,
provided we can provep(0) is true, and that p(n) ) p(n + 1) for each n, we've made all
the dominos fall over and hence proved the proposition for all natural numbers.

Sometimes a statement might be false for a few natural numbers, but true after a certain
point. For example 3n < 2n is true when n = 0, false when n = 1 ; 2; 3, and then true for
all n > 4. This isn't a problem|if all we want to do is prove that it is true for n > 4, we
just knock over domino 4 �rst instead of domino 0!

Now let's be more precise about what we mean, and prove that we're correct.

Theorem 1.3.10 (Weak induction principle)
Let p(n) be a statement about natural numbers, and letb 2 N. If

(i) p(b) is true; and

(ii) For all n > b, if p(n) is true, then p(n + 1) is true;
then p(n) is true for all n > b.
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Proof. First suppose b = 0. Let X be the set of all natural numbers n for which p(n) is
true. For a natural number n, the proposition n 2 X is equivalent to the proposition p(n).
Thus, respectively, the hypotheses of the theorem state:

(i) 0 2 X ; and

(ii) For all n 2 N, if n 2 X , then n + 1 2 X ;

So by Axiom 1.3.1(e), every natural number is an element ofX . Hencep(n) is true for all
n 2 N.

The case whenb > 0 is left for the reader in Exercise 1.3.13.

Proof tip
To prove a statement p(n) is true for all natural numbers n > b, you can:

� (Base case) Prove p(b) is true;

� (Induction step ) Fix n > b, and assume thatp(n) is true; from this assumption
alone, derivep(n + 1).

The assumption p(n) is called the induction hypothesis .

This whole process is calledproof by (weak ) induction (on n). We won't usually use
the word `weak' unless we really need to specify it. Usually we'll also omit `onn' unless
there is more than one variable at play, in which case we will specify. C

Example 1.3.11
We will prove that 0 + 1 + 2 + � � � + n = n(n+1)

2 for all natural numbers n, by induction. [c]

Note that since we're proving it for all natural numbers, our base case hasb = 0.

Let p(n) be the assertion that 0 + 1 + � � � + n = n(n+1)
2 .

� (BC ) We prove p(0) is true. Now, p(0) is the expression 0 = 0(0+1)
2 . Since the

right-hand side evaluates to 0,p(0) is true.

� (IS ) Let n 2 N and supposep(n) is true, i.e. assume

0 + 1 + � � � + n = n(n+1)
2 |( IH )

We prove that this implies p(n + 1), which is the formula

0 + 1 + � � � + n + ( n + 1) =
(n + 1)( n + 2)

2

[c] The LATEX code for a
b is nfrac f agf bg.
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We proceed by calculation:

0 + 1 + � � � + n + ( n + 1) =
n(n + 1)

2
+ ( n + 1) by ( IH )

= ( n + 1)
� n

2
+ 1

�
by factorisation

= ( n + 1)
�

n
2

+
2
2

�
since

2
2

= 1

=
(n + 1)( n + 2)

2
combining fractions

Hencep(n) implies p(n + 1). By induction, we're done. C

Writing tip
Proofs by induction all follow the same format, so it is good to get into some good habits.
These good habits make your proof more readable and better structured, and they help you
to avoid silly mistakes. With reference to Example 1.3.11, here are some tips for writing
proofs by induction of your own:

� Labelling the steps. Clearly labelling the base case and induction step helps the
reader identify what part of the proof is being done. I usedBC and IS to signify
which is which; you are of course welcome to develop your own convention.

� Writing down the induction hypothesis. Writing down the induction hypo-
thesisp(n) explicitly|which I labelled by IH |makes it very clear what it is you are
assuming. You can then refer back to it later in your proof|as I did in the �rst line
of the calculation|to specify when you have used it.

� Writing down the goal of the induction step. When proving the induction
step, it is common to fall down the trap of forgetting what you are actually trying
to prove. Writing down p(n + 1) explicitly, pre�xed by something like `we need to
prove . . . ', gives you something to look back on as you complete your proof.

� Saying when you're done. When you have provedp(n + 1) is true, it is a good
idea to conclude the proof by summarising what you did. A quick statement like
`hencep(n) implies p(n + 1), so by induction, we're done' will su�ce.

C

Example 1.3.12
We'll prove that n3 � n is divisible by 3 for all n 2 N. Thus, the statement p(n) to be
proved is n3 � n, and the base case is whenn = 0.

� (BC ) We need to prove that 03 � 0 is divisible by 3. Well 03 � 0 = 0 = 3 � 0, so
03 � 0 is divisible by 3.
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� (IS ) Let n 2 N and suppose thatn3 � n is divisible by 3. Speci�cally, the induction
hypothesis is:

n3 � n = 3k for somek 2 N |( IH )

We need to prove that (n + 1) 3 � (n + 1) is divisible by 3; in other words, we need to
�nd some natural number ` such that

(n + 1) 3 � (n + 1) = 3 `

Expanding the brackets, we obtain:

(n + 1) 3 � (n + 1) = ( n3 + 3n2 + 3n + 1) � n � 1 expand brackets

= n3 � n + 3n2 + 3n + 1 � 1 rearrange terms

= n3 � n + 3n2 + 3n since 1� 1 = 0

= 3k + 3n2 + 3n by (IH )

= 3( k + n2 + n) factorise

Thus we have expressed (n+1) 3 � (n+1) in the form 3 ` for a natural number `; speci�cally,
` = k + n2 + n. By induction, we're done. C

The following exercise completes the proof of the weak induction principle, where the base
case is allowed to be nonzero.

Exercise 1.3.13
Prove the weak induction principle (Theorem 1.3.10) in the case whenb > 0. C

Example 1.3.14
Let p(n) be the statement 3n < 2n . We prove p(n) is true for all n > 4 by induction.

� (BC ) p(4) is the statement 3 � 4 < 24. This is true, since 12< 16.

� (IS ) Supposen > 4 and that p(n) is true, i.e. that 3n < 2n (IH ). We want to prove
3(n + 1) < 2n+1 . Well

3(n + 1) = 3 n + 3 expand brackets

< 2n + 3 by ( IH )

< 2n + 16 since 3< 16

= 2 n + 2 4 since 24 = 16

6 2n + 2 n sincen > 4

= 2 � 2n sincex + x = 2x

= 2 n+1 using laws of indices
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So we have proved 3(n + 1) < 2n+1 , as required.

Hencep(n) implies p(n + 1), so by induction, we're done. C

Note that the proof in Example 1.3.14 says nothing about the truth or falsity of p(n)
for n = 0 ; 1; 2; 3. In order to assert that these cases are false, you need to show them
individually; indeed:

� 3 � 0 = 0 and 20 = 1, hence p(0) is true;

� 3 � 1 = 3 and 21 = 2, hence p(1) is false;

� 3 � 2 = 6 and 22 = 4, hence p(2) is false;

� 3 � 3 = 9 and 23 = 9, hence p(3) is false.

So we deduce thatp(n) is true when n = 0 or n > 4, and false otherwise.

Exercise 1.3.15
Use weak induction to prove that

nX

k=0

2k = 2 n+1 � 1

for all n 2 N. C

Sometimes a `proof' by induction might appear to be complete nonsense. The following is
a classic example of a `fail by induction':

Example 1.3.16
The following argument supposedly proves that every horse is the same colour.

� (BC ) Suppose there is just one horse. This horse is the same colour as itself, so the
base case is immediate.

� (IS ) Suppose that every collection ofn horses is the same colour (IH ). Let X be a
set of n + 1 horses. Removing the �rst horse from X , we see that the lastn horses
are the same colour by (IH ). Removing the last horse fromX , we see that the �rst
n horses are the same colour. Hence all the horses inX are the same colour.

By induction, we're done. C

Exercise 1.3.17
Write down the statement p(n) that Example 1.3.16 attempted to prove for all n > 1. Con-
vince yourself that the proof of the base case is correct, then write down|with quanti�ers|
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exactly the proposition that the induction step is meant to prove. Explain why the argu-
ment in the induction step failed to prove this proposition. C

Writing tip
There are several ways to avoid situations like that of Example 1.3.16 by simply putting
more thought into writing the proof. Some tips are:

� State p(n) explicitly. In the statement `all horses are the same colour' it is not
clear exactly what the induction variable is. However, we could have said:

Let p(n) be the statement `every set ofn horses has the same colour'.

� Refer to the base case b in the induction step. In Example 1.3.16, our induction
hypothesis simply stated `assume every set ofn horses has the same colour'. Had we
instead said:

Let n > 1 and assume every set ofn horses has the same colour.

We may have spotted the error in what was to come.

C

What follows are a couple more examples of proofs by weak induction.

Example 1.3.18
Given any n 2 N,

nX

k=0

k3 =

 
nX

k=0

k

! 2

We proved in Example 1.3.11 that
nP

k=0
k = n(n+1)

2 for all n 2 N, thus it su�ces to prove

that
nX

k=0

k3 =
n2(n + 1) 2

4

for all n 2 N.

We proceed by induction.

� (BC ) We need to prove that 03 = 02 (0+1) 2

4 . This is true since both sides of the
equation are equal to 0.
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� (IS ) Fix n 2 N and suppose that
nP

k=0
k3 = n2 (n+1) 2

4 . We need to prove that
n+1P

k=0
k3 =

(n+1) 2 (n+2) 2

4 . This is true since:

n+1X

i =0

k3 =
nX

i =0

k3 + ( n + 1) 3 by de�nition of sum

=
n2(n + 1) 2

4
+ ( n + 1) 3 by (IH )

=
n2(n + 1) 2 + 4( n + 1) 3

4
(algebra)

=
(n + 1) 2(n2 + 4( n + 1))

4
(algebra)

=
(n + 1) 2(n + 2) 2

4
(algebra)

By induction, the result follows. C

Example 1.3.19
We will prove the correctness of the following formula for the sum of anarithmetic pro-
gression, that is a sequence of �nite length such that the di�erence between consecutive
terms is constant.

Speci�cally, let a; d 2 R. We will prove that

nX

k=0

(a + kd) =
(n + 1)(2 a + nd)

2

for all n 2 N.

We proceed by induction.

� (BC ) We need to prove that
0P

k=0
(a + kd) = (0+1)(2 a+0 d)

2 . This is true, since

0X

k=0

(a + kd) = a + 0d = a =
2a
2

=
1 � (2a)

2
=

(0 + 1)(2 a + 0d)
2

� (IS ) Fix n 2 N and suppose that
nP

k=0
(a + kd) = (n+1)(2 a+ nd)

2 . We need to prove:

n+1X

k=0

(a + kd) =
(n + 2)(2 a + ( n + 1) d)

2
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This is true, since

n+1X

k=0

(a + kd)

=
nX

k=0

(a + kd) + ( a + ( n + 1) d) by de�nition of sum

=
(n + 1)(2 a + nd)

2
+ ( a + ( n + 1) d) by ( IH )

=
(n + 1)(2 a + nd) + 2 a + 2( n + 1) d

2
(algebra)

=
(n + 1) � 2a + ( n + 1) � nd + 2a + 2( n + 1) d

2
(algebra)

=
2a(n + 1 + 1) + ( n + 1)( nd + 2d)

2
(algebra)

=
2a(n + 2) + ( n + 1)( n + 2) d

2
(algebra)

=
(n + 2)(2 a + ( n + 1) d)

2
(algebra)

By induction, the result follows. C

Strong induction

Sometimes it is clear that a statement canalmost be proved by induction, but a snag
appears; for example, in the following example, the truth ofp(n + 1) seems to depend not
on just p(n), but also on p(n � 1):

Example 1.3.20
De�ne a sequence of numbers (an )n2 N recursively by:

a0 = 0 ; a1 = 1 ; an = 3an� 1 � 2an� 2 for all n > 2

Thus, continuing the sequence, we have

a2 = 3 � 1 � 2 � 0 = 3; a3 = 3 � 3 � 2 � 1 = 7; a4 = 15; : : :

Looking at the sequence (0; 1; 3; 7; 15; : : : ), you might hypothesise that an = 2 n � 1 for all
n 2 N. And you would be correct! So let's try and prove that an = 2 n � 1 for all n 2 N by
induction.
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Section 1.3. Induction on the natural numbers 63

The statement is demonstrably true for n = 0 ; 1, since

a0 = 0 = 1 � 1 = 20 � 1 and a1 = 1 = 2 � 1 = 21 � 1

Fix n > 1 and supposean = 2 n � 1. If this implies that an+1 = 2 n+1 � 1, we'll be done by
induction: indeed, induction gives that p(n) is true for all n > 1, and we checked the case
n = 0 separately.

So let's see what happens. Sincen > 1, we haven + 1 > 2, so we can apply the recursive
formula for an+1 :

an+1 = 3an � 2an� 1

Here's where we get stuck: our induction hypothesis only tells us thatan = 2 n � 1, so that

an+1 = 3(2 n � 1) � 2an� 1

but it doesn't tell us anything at all about an� 1. We need to expressan� 1 in terms of n in
order to get a reasonable formula foran+1 . � C

This example illustrates why weak induction is called `weak'. But all is not lost: using the
technique of weak induction, we can prove a principle ofstrong induction. The induction
step in strong induction assumes not just the truth of the proposition for one prior step,
but its truth of all prior steps.

Despite its name, strong induction is no stronger than weak induction; the two principles
are equivalent. In fact, we'll prove the strong induction principle by weak induction!

Corollary 1.3.21 (Strong induction principle)
Let p(x) be a statement about natural numbers and letb 2 N. If

(i) p(b) is true; and

(ii) For all n 2 N, if p(k) is true for all b 6 k 6 n, then p(n + 1) is true;
then p(n) is true for all n > b.

Proof. We'll prove this using weak induction. For each n, let q(n) be the statement

`p(k) is true for all b 6 k 6 n'

Notice that q(n) implies p(n) for all n > b|to see this, let k = n in the statement of q(n).
Thus if we can prove that q(n) is true for all n, then we've proved that p(n) is true for all
n.

� (BC ) q(b) is equivalent to p(b), since the only natural number k with b 6 k 6 b is b
itself; henceq(b) is true by (i);
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64 Chapter 1. Mathematical reasoning

� (IS ) Let n > b and supposeq(n) is true. By (ii), p(n + 1) is true. Since q(n) is true,
p(k) is true for all b 6 k 6 n. Combining these facts,p(k) is true for all b 6 k 6 n+1,
which is precisely the statement that q(n + 1) is true.

By induction, q(n) is true for all n > b. Hencep(n) is true for all n > b.

Proof tip
To prove a statement p(n) is true for all natural numbers n > b (where b is some �xed
natural number):

� (Base case) Prove p(b) is true;

� (Induction step ) Fix n > b, and assume thatp(k) is true for all b 6 k 6 n; from
this assumption alone, derivep(n + 1).

The assumption that p(k) is true for all b 6 k 6 n is called the induction hypothesis .

This whole process is calledproof by (strong ) induction (on n). We won't usually use
the word `strong' unless we really need to specify it. Usually we'll also omit `onn' unless
there is more than one variable at play, in which case we will specify. C

Strong induction is very well suited to proving formulae for sequences where subsequent
terms are de�ned in terms of more than one previous term, as the next few examples
demonstrate.

Example 1.3.22
Recall from Example 1.3.20 that we de�ned the sequence

a0 = 0 ; a1 = 1 ; an = 3an� 1 � 2an� 2 for all n > 2

and we wished to prove thatan = 2 n � 1 for all n 2 N. We have proved that it's true when
n = 0, and will show that it's true for n > 1 by strong induction on n.

� (BC ) We have already proved that a1 = 2 1 � 1.

� (IS ) Let n 2 N, and assume thatak = 2 k � 1 for all 1 6 k 6 n. Sincea0 = 2 0 � 1,
this in fact holds for all k 6 n.

We need to prove that this assumption implies that an+1 = 2 n+1 � 1. Well, n > 1,
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so n + 1 > 2 and we can apply the recursive formula toan+1 . Thus

an+1 = 3an � 2an� 1 by de�nition of an+1

= 3(2 n � 1) � 2(2n� 1 � 1) sincep(k) holds for all k 6 n

= 3 � 2n � 3 � 2 � 2n� 1 + 2 expand brackets

= 3 � 2n � 3 � 2n + 2 laws of indices

= 2 � 2n � 1 simplifying

= 2 n+1 � 1 laws of indices

So we're done by strong induction. C

Example 1.3.23
De�ne a sequence recursively bya0 = 4, a1 = 9 and an = 5an� 1 � 6an� 2 for all n > 2.

We will prove that an = 3 � 2n + 3 n for all n 2 N.

We proceed by strong induction for n > 1, treating the n = 0 case as a second base case.

� (BC ) The result holds when n = 0 and when n = 1, since

a0 = 4 = 3 � 20 + 3 0 and a1 = 9 = 3 � 21 + 3 1

� (IS ) Fix n > 1 and suppose thatak = 3 � 2k + 3 k for all k 6 n. We need to prove
that an+1 = 3 � 2n+1 + 3 n+1 . Well,

an+1 = 5an � 6an� 1 by de�nition of the sequence

= 5(3 � 2n + 3 n ) � 6(3 � 2n� 1 + 3 n� 1) by the induction hypothesis

= (5 � 3 � 2 � 6 � 3)2n� 1 + (5 � 3 � 6)3n� 1 (algebra)

= 12 � 2n� 1 + 9 � 3n� 1 (algebra)

= 3 � 22 � 2n� 1 + 3 2 � 3n� 1 (algebra)

= 3 � 2n+1 + 3 n+1 (algebra)

Hence the result we sought to prove is true.

By induction, it follows that an = 3 � 2n + 3 n for all n 2 N. C

Example 1.3.24
De�ne a sequence recursively by

b0 = 1 and bn+1 = 1 +
nX

k=0

bk for all n 2 N

We will prove by strong induction that bn = 2 n for all n 2 N.
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� (BC ) By de�nition of the sequence we haveb0 = 1 = 2 0.

� (IS ) Fix n 2 N, and suppose that bk = 2 k for all k 6 n. We need to show that
bn+1 = 2 n+1 . This is true, since

bn+1 = 1 +
nX

k=0

bk by the recursive formula for bn+1

= 1 +
nX

k=0

2k by the induction hypothesis

= 1 + (2 n+1 � 1) by Exercise 1.3.15

= 2 n+1

By induction, it follows that bn = 2 n for all n 2 N. C

A �rst look at binomials and factorials

In Section 4.2, two kinds of natural number will turn out to be extremely useful, namely
factorials and binomial coe�cients . These numbers allow us to count the number of ele-
ments of certain kinds of sets, and correspond with the `real-world' processes ofpermutation
and selection, respectively. Everything we do here will be re-de�ned and re-provedcom-
binatorially in Section 3.2. In this section, we will overlook the combinatorial nature, and
instead characterise them recursively. We will prove that the combinatorial and recursive
de�nitions of binomial coe�cients and factorials are equivalent in Section 4.2.

De�nition 1.3.25 (to be rede�ned in De�nition 4.2.24)
Let n 2 N. The factorial of n, written n!, is de�ned recursively by

0! = 1 and (n + 1)! = ( n + 1) � n! for all n > 0

Put another way, we have

n! =
nY

i =1

i

for all n 2 N|recall 1.3.4 to see why these de�nitions are really just two ways of wording
the same thing.

Exercise 1.3.26
Prove that

n� 1Y

i =0

(3i + 1)(3 i + 2) =
(3n)!
3nn!
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for all n 2 N. C

De�nition 1.3.27 (to be rede�ned in De�nition 4.2.18)
Let n; k 2 N. The binomial coe�cient

� n
k

�
(LATEX code: nbinomf ngf kg) (read `n choose

k') is de�ned recursively for n; k 2 N by
�

k
0

�
= 1 ;

�
0

k + 1

�
= 0 ;

�
n + 1
k + 1

�
=

�
n
k

�
+

�
n

k + 1

�

This de�nition gives rise to an algorithm for computing binomial coe�cients: they �t into
a diagram known asPascal's triangle , with each binomial coe�cient computed as the
sum of the two lying above it (with zeroes omitted):

� 0
0

�
1� 1

0

� � 1
1

�
1 1� 2

0

� � 2
1

� � 2
2

�
= 1 2 1� 3

0

� � 3
1

� � 3
2

� � 3
3

�
1 3 3 1� 4

0

� � 4
1

� � 4
2

� � 4
3

� � 4
4

�
1 4 6 4 1� 5

0

� � 5
1

� � 5
2

� � 5
3

� � 5
4

� � 5
5

�
1 5 10 10 5 1

...
...

...
...

...
...

...
...

...

Exercise 1.3.28
Write down the next two rows of Pascal's triangle. C

We can prove lots of identities concerning binomial coe�cients and factorials by induction.

Example 1.3.29

We prove that
nP

i =0

� n
i

�
= 2 n by induction on n.

� (BC ) We need to prove
� 0

0

�
= 1 and 20 = 1. These are both true by the de�nitions

of binomial coe�cients and exponents.

� (IS ) Fix n > 0 and suppose that

nX

i =0

�
n
i

�
= 2 n

We need to prove
n+1X

i =0

�
n + 1

i

�
= 2 n+1
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This is true, since

n+1X

i =0

�
n + 1

i

�

=
�

n + 1
0

�
+

n+1X

i =1

�
n + 1

i

�
splitting the sum

= 1 +
nX

j =0

�
n + 1
j + 1

�
letting j = i � 1

= 1 +
nX

j =0

��
n
j

�
+

�
n

j + 1

��
by De�nition 1.3.27

= 1 +
nX

j =0

�
n
j

�
+

nX

j =0

�
n

j + 1

�
separating the sums

Now
nP

j =0

� n
j

�
= 2 n by the induction hypothesis. Moreover, reindexing the sum using

k = j + 1 yields

nX

j =0

�
n

j + 1

�
=

n+1X

k=1

�
n
k

�
=

nX

k=1

�
n
k

�
+

�
n

n + 1

�

By the induction hypothesis, we have

nX

k=1

�
n
k

�
=

nX

k=0

�
n
k

�
�

�
n
0

�
= 2 n � 1

and
� n

n+1

�
= 0, so that

nP

j =0

� n
j +1

�
= 2 n � 1.

Putting this together, we have

1 +
nX

j =0

�
n
j

�
+

nX

j =0

�
n

j + 1

�
= 1 + 2 n + (2 n � 1)

= 2 � 2n

= 2 n+1

so the induction step is �nished.
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By induction, we're done. C

Exercise 1.3.30
Prove by induction on n > 1 that

nX

i =0

(� 1)i
�

n
i

�
= 0

C

Theorem 1.3.31
Let n; k 2 N. Then

�
n
k

�
=

(
n!

k!(n� k)! if k 6 n

0 if k > n

Proof. We proceed by induction onn.

� (BC ) When n = 0, we need to prove that
� 0

k

�
= 0!

k!( � k)! for all k 6 0, and that
� 0

k

�
= 0

for all k > 0.

If k 6 0 then k = 0, since k 2 N. Hence we need to prove

�
0
0

�
=

0!
0!0!

But this is true since
� 0

0

�
= 1 and 0!

0!0! = 1
1� 1 = 1.

If k > 0 then
� 0

k

�
= 0 by De�nition 1.3.27.

� (IS ) Fix n 2 N and suppose that
� n

k

�
= n!

k!(n� k)! for all k 6 n and
� n

k

�
= 0 for all

k > n .

We need to prove that, for all k 6 n + 1, we have

�
n + 1

k

�
=

(n + 1)!
k!(n + 1 � k)!

and that
� n+1

k

�
= 0 for all k > n + 1.

So �x k 2 N. There are four possible cases: either (i)k = 0, or (ii) 0 < k 6 n, or (iii)
k = n + 1, or (iv) k > n + 1. In cases (i), (ii) and (iii), we need to prove the factorial
formula for

� n+1
k

�
; in case (iv), we need to prove that

� n+1
k

�
= 0.
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(i) Supposek = 0. Then
� n+1

0

�
= 1 by De�nition 1.3.27, and

(n + 1)!
k!(n + 1 � k)!

=
(n + 1)!

0!(n + 1)!
= 1

since 0! = 1. So
� n+1

0

�
= (n+1)!

0!(n+1)! .

(ii) If 0 < k 6 n then k = ` + 1 for some natural number ` < n . Then ` + 1 6 n, so
we can use the induction hypothesis to apply factorial formula to both

� n
`

�
and� n

`+1

�
. Hence
�

n + 1
k

�

=
�

n + 1
` + 1

�
sincek = ` + 1

=
�

n
`

�
+

�
n

` + 1

�
by De�nition 1.3.27

=
n!

`!(n � `)!
+

n!
(` + 1)!( n � ` � 1)!

by induction hypothesis

Now note that

n!
`!(n � `)!

=
n!

`!(n � `)!
�

` + 1
` + 1

=
n!

(` + 1)!( n � `)!
� (` + 1)

and
n!

(` + 1)!( n � ` � 1)!
=

n!
(` + 1)!( n � ` � 1)!

�
n � `
n � `

=
n!

(` + 1)!( n � `)!
� (n � `)

Piecing this together, we have

n!
`!(n � `)!

+
n!

(` + 1)!( n � ` � 1)!

=
n!

(` + 1)!( n � `)!
� [(` + 1) + ( n � `)]

=
n!(n + 1)

(` + 1)!( n � `)!

=
(n + 1)!

(` + 1)!( n � `)!

so that
� n

`+1

�
= (n+1)!

(`+1)!( n� `)! . Now we're done; indeed,

(n + 1)!
(` + 1)!( n � `)!

=
(n + 1)!

k!(n + 1 � k)!

sincek = ` + 1.
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(iii) If k = n + 1, then

�
n + 1

k

�
=

�
n + 1
n + 1

�
sincek = n + 1

=
�

n
n

�
+

�
n

n + 1

�
by De�nition 1.3.27

=
n!

n!0!
+ 0 by induction hypothesis

= 1

and (n+1)!
(n+1)!0! = 1, so again the two quantities are equal.

(iv) If k > n + 1, then k = ` + 1 for some ` > n , and so by De�nition 1.3.27 and the
induction hypothesis we have

�
n + 1

k

�
=

�
n + 1
` + 1

�
IH=

�
n
`

�
+

�
n

` + 1

�
= 0 + 0 = 0

On �rst reading, this proof is long and confusing, especially in the induction step where we
are required to split into four cases. We will give a much simpler proof in Section 4.2 (see
Theorem 1.3.31), where we prove the statementcombinatorially by putting the elements
of two sets in one-to-one correspondence.

We can use 1.3.31 to prove useful identities involving binomial coe�cients.

Example 1.3.32
Let n; k; ` 2 N with ` 6 k 6 n then

�
n
k

��
k
`

�
=

�
n
`

��
n � `
k � `

�
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Indeed:
�

n
k

��
k
`

�

=
n!

k!(n � k)!
�

k!
`!(k � `!)

by Theorem 1.3.31

=
n!k!

k!`!(n � k)!(k � `)!
combine fractions

=
n!

`!(n � k)!(k � `)!
cancelk!

=
n!(n � `)!

`!(n � k)!(k � `)!(n � `)!
multiply by

(n � `)!
(n � `)!

=
n!

`!(n � `!)
�

(n � `)!
(k � `)!(n � k)!

separate fractions

=
n!

`!(n � `!)
�

(n � `)!
(k � `)!(( n � `) � (k � `))!

rearranging

=
�

n
`

��
n � `
k � `

�
by Theorem 1.3.31

C

Exercise 1.3.33
Proof that

� n
k

�
=

� n
n� k

�
for all n; k 2 N with k 6 n. C

A very useful application of binomial coe�cients in elementary algebra is to the binomial
theorem.

Theorem 1.3.34 (Binomial theorem)
Let n 2 N and x; y 2 R. Then

(x + y)n =
nX

k=0

�
n
k

�
xkyn� k

Proof. In the case wheny = 0 we have yn� k = 0 for all k < n , and so the equation reduces
to

xn = xnyn� n

which is true, sincey0 = 1. So for the rest of the proof, we will assume thaty 6= 0.

We will now reduce to the case wheny = 1; and extend to arbitrary y 6= 0 afterwards.
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We prove (1 + x)n =
nP

k=0

� n
k

�
xk by induction on n.

� (BC ) (1 + x)0 = 1 and
� 0

0

�
x0 = 1 � 1 = 1, so the statement is true whenn = 0.

� (IS ) Fix n 2 N and suppose that

(1 + x)n =
nX

k=0

�
n
k

�
xk |( IH )

We need to show that (1 + x)n+1 =
n+1P

k=0

� n+1
k

�
xk . Well,

(1 + x)n+1

= (1 + x)(1 + x)n by laws of indices

= (1 + x) �
nX

k=0

�
n
k

�
xk by (IH )

=
nX

k=0

�
n
k

�
xk + x �

nX

k=0

�
n
k

�
xk by expanding (x + 1)

=
nX

k=0

�
n
k

�
xk +

nX

k=0

�
n
k

�
xk+1 distributing x

=
nX

k=0

�
n
k

�
xk +

n+1X

k=1

�
n

k � 1

�
xk k ! k � 1 in second sum

=
�

n
0

�
x0 +

nX

k=1

��
n
k

�
+

�
n

k � 1

��
xk +

�
n
n

�
xn+1 splitting the sums

=
�

n
0

�
x0 +

nX

k=1

�
n + 1

k

�
xk +

�
n
n

�
xn+1 by De�nition 1.3.27

=
�

n + 1
0

�
x0 +

nX

k=1

�
n + 1

k

�
xk +

�
n + 1
n + 1

�
xn+1 see (� ) below

=
n+1X

k=0

�
n + 1

k

�
xk

The step labelled (� ) holds because

�
n
0

�
= 1 =

�
n + 1

0

�
and

�
n
n

�
= 1 =

�
n + 1
n + 1

�
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By induction, we've shown that (1 + x)n =
nP

i =0

� n
k

�
xk for all n 2 N.

When y 6= 0 is not necessarily equal to 1, we have that

(x + y)n = yn �
�

1 +
x
y

� n

= yn �
nX

k=0

�
n
k

� �
x
y

� k

=
nX

k=0

�
n
k

�
xkyn� k

The middle equation follows by what we just proved; the leftmost and rightmost equations
are simple algebraic rearrangements.

Example 1.3.35
In Example 1.3.29 we saw that

nX

k=0

�
n
k

�
= 2 n

This follows quickly from the binomial theorem, since

2n = (1 + 1) n =
nX

k=0

�
n
k

�
� 1k � 1n� k =

nX

k=0

�
n
k

�

Likewise, in Exercise 1.3.30 you proved that the alternating sum of binomial coe�cients is
zero; that is, for n 2 N, we have

nX

k=0

(� 1)k
�

n
k

�
= 0

The proof is greatly simpli�ed by applying the binomial theorem. Indeed, by the binomial
theorem, we have

0 = 0n = ( � 1 + 1) n =
nX

k=0

�
n
k

�
(� 1)k1n� k =

nX

k=0

(� 1)k
�

n
k

�

Both of these identities can be proved much more elegantly, quickly and easily usingenu-
merative combinatorics. This will be the topic covered in Section 4.2. C

Well-ordering principle

In a way that we will make precise in Section 5.2, the underlying reason why we can
perform induction and recursion on the natural numbers is because of the way they are
ordered. Speci�cally, the natural numbers satisfy the well-ordering principle: if a set of
natural numbers has at least one element, then it has a least element. This sets the natural
numbers apart from the other number sets; for example,Z has no least element, since if
a 2 Z then a � 1 2 Z and a � 1 < a .
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Section 1.3. Induction on the natural numbers 75

De�nition 1.3.36
Let X be a set. IfX has at least one element, then we sayX is inhabited (or nonempty );
otherwise, we sayX is empty .

Aside
The term nonempty is more common thaninhabited in the mathematical community for
referring to sets which have elements, but there are reasons to prefer latter|in particular,
it avoids a double negative (`has at least one element' vs. `doesn't have no elements')|so
in this book we will typically use the word inhabited. C

Theorem 1.3.37 (Well-ordering principle)
Let X be a set of natural numbers. IfX is inhabited, then X has a least element.

Strategy. Under the assumption that X is a set of natural numbers, the proposition we
want to prove has the form p ) q. Namely

X is inhabited ) X has a least element

Assuming X is inhabited doesn't really give us much to work with, so let's try the contra-
positive:

X has no least element ) X is empty

The assumption that X has no least elementdoesgive us something to work with. Under
this assumption we need to deduce thatX is empty.

We will do this by `forcing X up' by strong induction. Certainly 0 62X , otherwise it would
be the least element. If none of the numbers 0; 1; : : : ; n are elements ofX then neither can
n +1 be, since if it were then it would be the least element ofX . Let's make this argument
formal.

Proof. Let X be a set of natural numbers containing no least element. We prove by strong
induction that n 62X for all n 2 N.

� (BC ) 0 62X since if 02 X then 0 must be the least element ofX , as it is the least
natural number.

� (IS ) Supposek 62X for all 0 6 k 6 n. If n + 1 2 X then n + 1 is the least element of
X ; indeed, if ` < n + 1 then 0 6 ` 6 n, so ` 62X by the induction hypothesis. This
contradicts the assumption that X has no least element, son + 1 62X .

By strong induction, n 62X for each n 2 N. Since X is a set of natural numbers, and it
contains no natural numbers, it follows that X is empty.
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Aside
In Section 5.2 we will encounter more general sets with a notion of `less than', for which
any inhabited subset has a `least' element. Any such set has an induction principle, the
proof of which is more or less identical to the proof of Corollary 1.3.21. This has powerful
applications in computer science, where it can be used to formally verify that a computer
program containing various loops will terminate: termination of a program corresponds to
a particular set having a `least' element. C

The following proof that
p

2 is irrational is a classic application of the well-ordering prin-
ciple.

Proposition 1.3.38
The number

p
2 is irrational.

To prove Proposition 1.3.38 we will use the following two lemmas. The �rst lemma we
prove uses the well-ordering principle to prove that fractions can be `cancelled to lowest
terms'.

Lemma 1.3.39
Let q be a positive rational number. There is a pair of nonzero natural numbersa; b such
that q = a

b and such that the only natural number which divides both a and b is 1.

Proof. First note that we can expressq as the ratio of two nonzero natural numbers, since
q is a positive rational number. By the well-ordering principle, there is a least natural
number a such that q = a

b for some positiveb 2 N.

Suppose that some natural numberd other than 1 divides both a and b. Note that d 6= 0,
since if d = 0 then that would imply a = 0. Since d 6= 1, it follows that d > 2.

Since d divides a and b, there exist natural numbers a0; b0 such that a = a0d and b = b0d.
Moreover, a0; b0 > 0 sincea; b; d > 0. It follows that

q =
a
b

=
a0d
b0d

=
a0

b0

But d > 2, and hence

a0 =
a
d

6
a
2

< a

contradicting minimality of a. Hence our assumption that some natural numberd other
than 1 divides both a and b was false|it follows that the only natural number dividing
both a and b is 1.
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The next lemma is a technical result that will allow us to derive a contradiction in our
proof that

p
2 is irrational.

Lemma 1.3.40
Let a 2 Z. If a2 is even thena is even.

Proof. We prove the contrapositive; that is, we prove that if a is odd then a2 is odd.

Odd numbers are precisely those of the form 2k + 1, where k 2 Z. So supposea = 2k + 1
for somek 2 Z. Then

a2 = (2 k + 1) 2 = 4k2 + 4k + 1 = 2(2 k2 + 2k) + 1

Letting ` = 2k2 + 2k we see thata2 = 2 ` + 1, and since ` 2 Z, it follows that a2 is odd.

By contraposition, if a2 is even thena is even.

We are now ready to prove that
p

2 is irrational.

Proof of Proposition 1.3.38. Suppose
p

2 is rational. Since
p

2 > 0, this means that we
can write p

2 =
a
b

where a and b are both positive natural numbers. By Lemma 1.3.39, we may assume that
the only natural number dividing a and b is 1.

Multiplying the equation
p

2 = a
b and squaring yields

a2 = 2b2

Hence a2 is even. By Lemma 1.3.40,a is even, so we can writea = 2c for some c > 0.
Then a2 = (2 c)2 = 4c2, and hence

4c2 = 2b2

Dividing by 2 yields
2c2 = b2

and henceb2 is even. By Lemma 1.3.40 again,b is even.

But if a and b are both even, the natural number 2 divides botha and b. This contradicts
the fact that the only natural number dividing both a and b is 1. Hence our assumption
that

p
2 is rational is incorrect, and

p
2 is irrational.
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Writing tip
In the proof of Proposition 1.3.38 we could have separately proven thata2 being even
implies a is even, and that b2 being even impliesb is even. This would have required
us to repeat the same proof twice, which is somewhat tedious! Proving auxiliary results
(lemmas) separately and then applying them in theorems can improve the readability of
the main proof, particularly when the auxiliary results are particularly technical. Doing
so also helps emphasise the important steps. C

Exercise 1.3.41
What goes wrong in the proof of Proposition 1.3.38 if we try instead to prove that

p
4 is

irrational? C

Exercise 1.3.42
Prove that

p
3 is irrational. C
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Section 2.1

Symbolic logic

Symbolic logic arises from the observation that propositions|that is, results about math-
ematical objects|can themselves be treated as mathematical objects. So that we can study
propositions in an abstract setting, we will represent propositions by symbols, typically the
letters p, q, r and s. (It is rare that we will speak about more than four propositions at the
same time; if we need to, we'll just use more letters!) We call thesepropositional vari-
ables: they are `propositional' because they represent propositions, and they are `variables'
because we will make no assumptions about their truth value (unless explicitly stated).

This symbolic approach will allow us to decompose complex propositions into simpler ones
and investigate their logical structure, which in turn will help us work out how to structure
our proofs.

For example, consider the following:

Let n be an integer. If n is prime and n > 2 then n is odd.

The three statements ǹ is prime', `n > 2' and `n is odd' are all propositions in their own
right, despite the fact that they all appear in a more complex proposition. We can really
examine the logical structure of the proposition by replacing these simpler propositions
with symbols. Referring to `n is prime' as p, `n > 2' as q, and ǹ is odd' as r , the structure
of the second proposition is:

If p and q, then r .

Thus the propositions p; q; r are tied together by language, namely the word `and' and the
construction `if{then'. Soon we will give precise de�nitions of what these words mean; in
the abstract setting they are called logical operators.

Looking at the logical structure of complex propositions allows us to make an educated
guess about how to proceed with a proof of the statement if it is true. Indeed, it is a safe
bet that in order to prove `if p and q, then r ', you should derive r from the assumption
that p and q are both true.

The value of reducing statements to symbolic expressions is that it forces us to remove
ambiguity and gives a clear-cut and precise way of knowing when we've done what we set
out to do.

80



Section 2.1. Symbolic logic 81

Logical operators

A logical operator, intuitively speaking, is a rule that constructs a new proposition out of
other propositions. For example, as we saw in Section 1.2, from propositionsp; q we can
construct several new propositions o� the bat:

`p and q' `p or q' `if p, then q' `p is false'

These constructions correspond with the logical operators ofconjunction, disjunction, im-
plication and negation, respectively|and there are many more where they came from!

Relying on our understanding of the English language to interpret what these logical op-
erators mean will cause us some trouble; the next few pages introduce the most commonly
used logical operators, together with their precise de�nitions. To get us started, we will
need the de�nition of a propositional formula; these are the symbolic expressions which
represent propositions built from smaller propositions using logical operators.

De�nition 2.1.1
A propositional formula is an expression built from propositional variables
p; q; r; s; : : : and logical operators (to be de�ned individually below).

Intuitively, propositional variables will refer to basic propositions, such as `3 is odd', and
propositional formulae will refer to more complex propositions, such as `3 is odd and 6 is
not a perfect square'.

Conjunction (`and', ^ )

Conjunction is the logical operator which makes precise what we mean when we say `and'.

De�nition 2.1.2
Let p and q be propositions. The conjunction of p and q, denoted p ^ q (read: p̀ and
q') (LATEX code: nwedge) is a proposition which is true if both p and q are true, and false
otherwise.

Aside
Strictly speaking, the de�nitions of logical operators should be given in terms of pro-
positional variables, rather than propositions themselves; these truth values then extend
inductively to general propositional formulae, in a sense to be made precise in Section 5.3.
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These propositional formulae only represent propositions|the latter cannot be treated
formally because they are statements in natural language, not mathematical objects. This
perspective is confusing on �rst exposure, so we will simplify matters by blurring the dis-
tinction between propositional variables, propositional formulae and propositions. C

It is not always obvious when conjunction is being used; sometimes it sneaks in without
the word `and' ever being mentioned! Be on the look-out for occasions like this, such as in
the following exercise.

Example 2.1.3
We can express the proposition `7 is an integer greater than 5' in the formp^ q, by letting
p represent the proposition `7 is an integer' and letq represent the proposition `7 is greater
than 5'. In order to prove that 7 is an integer greater than 5, we would need to give a
proof that 7 is an integer, and a proof that 7 is greater than 5. C

Exercise 2.1.4
Express the proposition `Clive is a mathematician who lives in Pittsburgh' in the form
p ^ q, for propositions p and q. C

The truth value of a propositional formula is determined by the truth values of the pro-
positional variables it contains. As such, the truth value of p ^ q is de�ned in terms of the
truth values of p and of q. An easy way to specify this information isusing atruth table ,
which tells us the truth value of p ^ q for all possible assignments of truth values top and
q:

p q p ^ q
X X X  p ^ q is true when p is true and q is true
X � �  p ^ q is false whenp is true and q is false
� X �  p ^ q is false whenp is false andq is true
� � �  p ^ q is false whenp is false andq is false

Here X (LATEX code: ncheckmark) denotes `true' and � (LATEX code: ntimes ) denotes
`false'.[a] There is a row for each possible assignment of `true' (X ) or `false' (� ) to the
propositional variables, and a column for each variable and the proposition we're interested
in.

Disjunction (`or', _)

Disjunction is the logical operator that makes precise what we mean by `or'.
[a] Instead of X ,� , some authors use> ; ? (LATEX code: ntop, nbot ) or T; F or 1; 0.
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The word `or' is especially context-dependent in English: if you say to me, `you can have
a slice of cake or you can have a chocolate bar,' does that mean I can have both, or not?
We remove this ambiguity with the following de�nition; and to clarify, with this de�nition
of `or', I can have both the cake and the chocolate bar. Yummy.

De�nition 2.1.5
Let p and q represent propositions. Thedisjunction of p and q, denoted p _ q (read: p̀
or q') (LATEX code: nvee) is the proposition which is true if at least one of p or q is true,
and false otherwise.

Exercise 2.1.6
Using De�nition 2.1.5, write down a truth table for p _ q (see page 82 for how it was done
for p ^ q). C

The real power of truth tables comes when investigating how logical operators interact
with each other.

Example 2.1.7
Given propositions p; q; r, when is (p^ q) _ (p^ r ) true? It's not immediately obvious, but
we can work it out by breaking it down into its component parts, namely the propositions
p ^ q and p ^ r ; we'll call these auxiliary propositions . We can then make a column
for each variable, each auxiliary proposition, and the main proposition, to �nd its truth
values.

p q r p ^ q p ^ r (p ^ q) _ (p ^ r )
X X X X X X
X X � X � X
X � X � X X
X � � � � �
� X X � � �
� X � � � �
� � X � � �
� � � � � �
| {z } | {z } | {z }

variables auxiliary prop n s main proposition

We can then read o� the table precisely when (p ^ q) _ (p ^ r ) is true, by comparing the
entries in its column with the corresponding truth values of p; q; r. C

Aside
If you haven't already mixed up ^ and _, you probably will soon, so here's a way of
remembering which is which:
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mac n cheese

If you forget whether it's ^ or _ that means `and', just write it in place of the `n' in `mac
n cheese':

mac ^ cheese mac_ cheese

Clearly the �rst looks more correct, so ^ means `and'. (For any Brits among you, the
mnemonic `�sh n chips' works just as well.) C

Exercise 2.1.8
Write a truth table for the proposition p ^ (q _ r ). Compare it with the truth table for
(p ^ q) _ (p ^ r ). What do you notice? C

Hopefully, if you did the previous exercise correctly, you'll have noticed that the column
for p ^ (q _ r ) is identical to the column for ( p ^ q) _ (p ^ r ). So in some sense, these two
propositions are `the same'.

De�nition 2.1.9
Two propositional formulae depending on the same propositional variables arelogically
equivalent if they have the same truth value as each other, no matter what the assignment
of truth values to their propositional variables.

Proof tip
To prove that two propositions are logically equivalent, you can draw a truth table contain-
ing both propositions; if their columns are identical, then they are logically equivalent. C

Example 2.1.10
The propositional formulae p ^ (q ^ r ) and (p ^ q) ^ r are equivalent. To prove this, we'll
combine the truth tables for both propositions, with auxiliary columns for the propositions
q ^ r and p ^ q.

p q r q ^ r p ^ (q ^ r ) p ^ q (p ^ q) ^ r
X X X X X X X
X X � � � X �
X � X � � � �
X � � � � � �
� X X X � � �
� X � � � � �
� � X � � � �
� � � � � � �
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Evidently the two propositional formulae are equivalent since their columns are identical.
Indeed, p ^ (q ^ r ) and (p ^ q) ^ r are both true if all three of p, q and r are true, and
they're both false if one or more ofp, q or r is false. C

Negation (`not', : )

So far we only o�cially know how to prove that true propositions are true. The nega-
tion operator makes precise what we mean by `not', which allows us to prove that false
propositions are false.

De�nition 2.1.11
Let p be a proposition. The negation of p, denoted : p (read: `not p') (LATEX code: nneg)
is the proposition which is true if p is false, and false ifp is true.

The truth table for the negation operator is very simple, since it is de�ned in terms of only
one propositional variable:

p : p
X �
� X

Example 2.1.12
What follows is the truth table for p ^ (: q) (read `p and not q'); we include a column for
: q because it appears inside the proposition.

p q : q p ^ (: q)
X X � �
X � X X
� X � �
� � X �

C

Theoretically we could stop here: the three operators we've seen,̂, _ and : , can be used
to give any combination of truth values to a compound proposition, in any number of
variables![b] For example, try the following exercise:

[b] Proving this claim and investigating other `complete sets' of operators would make a nice �nal project!
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Exercise 2.1.13
Using only two variables p; q and the operators^ ; _; : , write down a propositional formula
whose truth table column is:

p q ???
X X �
X � X
� X X
� � �

Did you use all three of the permitted logical operators? If so, �nd another equivalent
propositional formula de�ned using only two of the operators. We will encounter this later
as the exclusive disjunction operator, see De�nition 2.1.21. C

The following theorem is our �rst big result of the course. It is a pair of dual results which
relate conjunction, disjunction and negation. Informally the result says:

� Saying `neither p nor q is true' is the same as saying `bothp and q are false';

� Saying p̀ and q are not both true' is the same as saying `at least one ofp and q is
false'.

Let's make this precise:

Theorem 2.1.14 (De Morgan's laws for logical operators)
Let p and q be propositions. Then

(a) : (p _ q) is logically equivalent to (: p) ^ (: q);

(b) : (p ^ q) is logically equivalent to (: p) _ (: q).

Proof. (a) The following truth table demonstrates that : (p _ q) and (: p) ^ (: q) have the
same truth value for any assignment of truth values to p and q; hence they are logically
equivalent.

p q p _ q : (p _ q) : p : q (: p) ^ (: q)
X X X � � � �
X � X � � X �
� X X � X � �
� � � X X X X
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The proof of (b) mimics the proof of (a) and is left as an exercise.

Corollary 2.1.15

(a) The operator ^ can be expressed in terms of_ and : ;

(b) The operator _ can be expressed in terms of̂ and : .

Proof. (a) First note that, if p is any proposition, then p is equivalent to : (: p), which we'll
write simply :: p. This is demonstrated by the following truth table

p : p :: p
X � X
� X �

Therefore, given any propositionsp and q,

� p ^ q is equivalent to (:: p) ^ (:: q);

� ...which is equivalent to : (( : p) _ (: q)) by De Morgan's laws applied to the proposi-
tions : p and : q.

Sincep^ q is equivalent to : (( : p) _ (: q)), which contains only the operators : and _, the
result has been shown.

The proof of (b) mimics the proof of (a) and is left as an exercise.

This means that just two operators, say^ and : , su�ce for expressing all other possible
operators! However, there is no real virtue in being stingy with our operators; after all,
the whole point of everything we're doing is to communicate mathematical ideas. The
propositional formula

: (( : p) _ (: q))

is a lot harder to read and much harder to understand than the expression

p ^ q

So we'll keep ^ for now, and we'll go one step further: there is one especially crucial
operator that we have not yet de�ned, namely implication .
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Implication (`if. . . then. . . ', ) )

The implication operator makes precise what we mean when we say `ifp, then q' or `p
implies q'. The de�nition of the implication operator might seem unnatural at �rst, but
this will be discussed as an aside after the de�nition has been given.

De�nition 2.1.16
Let p and q be propositions. The proposition p ) q (read: `if p then q', or `p implies q')
(LATEX code: nRightarrow ) is false if p is true and q is false, and true otherwise.

The truth table for the implication operator is as follows:

p q p ) q
X X X
X � �
� X X
� � X

Exercise 2.1.17
Use a truth table to show that p ) q is equivalent to (: p) _ q. C

Exercise 2.1.18
Let p and q be propositional variables. Find a propositional formula which is equivalent
to : (p ) q), using only the operators ^ , _ and : . How could you use this equivalence to
prove that an implication p ) q is false? C

Aside
The biggest source of confusion for most people about the implication operator is why
p ) q is true wheneverp is false, even ifq is also false.

The reason behind this confusion is that people tend to think of implication in terms of
causation, i.e. that p ) q is a statement asserting q̀ is true because ofp'. This is not what
`implies' means here! The statementp ) q says nothing about the truth value of q unless
we know that p is true.

Think of it this way: p ) q means that I can give you a proof ofq so long as you can give
me a proof ofp. If p has no proofs, my job is done before I even started! The only way I
can fail is if you have a proof ofp but I have no proof of q. C
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Other operators ( , , � ...)

There are many other operators we can de�ne, but we will focus on just two more.

De�nition 2.1.19
Let p and q be propositions. The propositionp , q (read p̀ if and only if q') (LATEX code:
nLeftrightarrow ) is true when p and q have the same truth value, and false otherwise.
The operator , is called the biconditional operator .

Exercise 2.1.20
Show that p , q is logically equivalent to (p ) q) ^ (q ) p). C

De�nition 2.1.21
Let p and q be propositions. The proposition p � q (read p̀ or q but not both') (L ATEX
code: noplus ) is true when p and q have di�erent truth values, and false otherwise. The
operator � is called the exclusive disjunction operator .

Computer scientists and logicians often refer to� as `xor' or `exclusive or'.

Proof principles

In Section 1.2, we saw how to prove statements using the techniques ofproof by contra-
diction and the law of excluded middle. We are now in a position to make these proof
techniques precise from a symbolic perspective. For good measure, we will now also intro-
duce another useful technique, calledproof by contraposition.

De�nition 2.1.22
The law of excluded middle is the assertion that p _ (: p) is true for all propositions p.

In Section 1.2, we attributed the usefulness of the law of excluded middle to the fact that we
can prove a proposition is true by splitting into cases based on whether another proposition
is true.

Exercise 2.1.23
Let p; q; r be propositions. Prove that (p_ q) ) r is logically equivalent to (p ) r ) ^ (q )
r ). C
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The following corollary is the technical result underpinning the reason why the law of
excluded middle is so useful in proofs.

Corollary 2.1.24
Let p and q be propositions. If p ) q and : p ) q are true, then q is true.

Proof. By Exercise 2.1.23, it su�ces to show that if ( p _ : p) ) q is true, then q is true.
By the law of the excluded middle, p _ : p is true, and hence (p _ : p) ) q is true if and
only if q is true. But this is precisely what we wanted to prove.

Proof by contradiction can also be proved to be a valid proof technique by considering
truth tables.

Theorem 2.1.25 (Principle of contradiction)
Let p and q be propositions, and suppose thatq is false. If p ) q is true, then p is false.

Proof. Consider the truth table of the proposition p ) q:

p q p ) q
X X X
X � �
� X X
� � X

The only row in which q is false andp ) q is true is the fourth row, in which p is false.

We won't dwell on these proof techniques, since we already saw them in Section 1.1.
However, there is a very useful proof technique that we haven't seen yet, calledproof by
contraposition. This is particularly useful for when you're trying to prove an implication
and can't quite get it to work.

De�nition 2.1.26
Let p and q be propositions. Thecontrapositive of the proposition p ) q is the proposi-
tion ( : q) ) (: p).

Theorem 2.1.27 (Principle of contraposition)
Let p and q be propositions. Thenp ) q is logically equivalent to (: q) ) (: p).
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Proof. Consider the following truth table:

p q p ) q : q : p (: q) ) (: p)
X X X � � X
X � � X � �
� X X � X X
� � X X X X

Since the third and sixth columns are identical, the two propositions are logically equivalent.

Proof tip
To prove an implication p ) q, you can instead prove the implication : q ) : p; that
is, assuming that q is false, show that p must be false. We then sayp ) q is true `by
contraposition'. C

Example 2.1.28
Fix two natural numbers m and n. We will prove that if mn > 64, then either m > 8 or
n > 8. Letting p be the proposition m̀n > 64', q be the proposition m̀ > 8' and r be the
proposition `n > 8', the statement `if mn > 64, then either m > 8 or n > 8' becomes

p ) (q _ r )

By contraposition, this is equivalent to

: (q _ r ) ) : p

By de Morgan's laws, this is equivalent to

(( : q) ^ (: r )) ) : p

Let's spell this out. The proposition : p meansmn 6 64, and the proposition (: q) ^ (: r )
means that m 6 8 and n 6 8. So what we need to prove is:

If m 6 8 and n 6 8 then mn 6 64.

Well this is certainly true! If you multiply two natural numbers which are less than or
equal to 8, then their product must be less than or equal to 82, which is equal to 64. C

Corollary 2.1.29
Let p and q be propositions. Thenp , q is equivalent to

(p ) q) ^ (( : p) ) (: q))
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Proof. Left as an exercise. You can prove it directly, or apply reasoning you've already
acquired to the result of Theorem 2.1.27.

The logical equivalence set up by Corollary 2.1.29 is useful in proofs of some biconditional
statements.

Whilst the contrapositive of an implication p ) q is equivalent to p ) q, its converse is
not.

De�nition 2.1.30
Let p and q be propositions. The converse of the proposition p ) q is the proposition
q ) p.

Exercise 2.1.31
Demonstrate by truth table that, for propositional variables p and q, the propositions
p ) q and q ) p are not logically equivalent. Provide an example of an implication and
its converse that demonstrate this. C

? Tautologies

There are many instances when a proposition expressed in terms of propositional variables
is true no matter what truth values are assigned to the variables.

Example 2.1.32
Let p be a proposition. The following propositions are all true, regardless of whetherp is
true or false:

p ) p; p , (p ^ p); p , (p _ p)

C

De�nition 2.1.33
A tautology is a propositional formula which is true regardless of the truth values assigned
to its variables.

Example 2.1.34
Let p and q be propositions. We'll prove that

p ) (q ) p)

is a tautology by looking at its truth table:
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p q q ) p p ) (q ) p)
X X X X
X � X X
� X � X
� � X X

The column for p ) (q ) p) has X in every row, so is a tautology.

An alternative proof is as follows. The only way that p ) (q ) p) can befalse is if p is true
and q ) p is false. But if p is true then q ) p is necessarily true, so this is impossible. C

Exercise 2.1.35
How might fact proved in Exercise 2.1.34, that p ) (q ) p) is a tautology, be useful in
a proof of a conditional statement? Where did we use this in the proof of Proposition
1.2.19? C

Exercise 2.1.36
Let p; q; r be propositions. Prove that

[p ) (q ) r )] ) [(p ) q) ) (p ) r )]

is a tautology. C

Free and bound variables

If all we have to work with is propositions then our ability to do mathematical reasoning
will be halted pretty quickly. For example, consider the following statement:

x is divisible by 7

This statement seems like the kind of thing we should probably be able to work with if
we're doing mathematics. It makes sense ifx is a whole number, such as 28 or 41; but
it doesn't make sense at all ifx is a parrot called Alex.[c] In any case, even when it does
make sense, its truth depends on the value ofx; indeed, `28 is divisible by 7' is a true
proposition, but `41 is divisible by 7' is a false proposition.

This means that the statement x̀ is divisible by 7' isn't a proposition| quel horreur! But
it almost is a proposition: if we know that x refers somehow to a whole number, then it

[c] Alex the parrot is the only non-human animal to have ever been observed to ask an existential question;
he died in September 2007. It is unlikely that Alex was divisible by 7, even when he was alive.
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becomes a proposition as soon as a particular numerical value ofx is speci�ed. Such a
symbol x is called afree variable or parameter . To indicate that a statement p contains
x as a free variable, we will writep(x). When we replacex by a speci�c value, say 28, we
write p(28); this is called substitution of a value for a variable.

Some statements might have several free variables. For example, the statement `y = x + 3'
is a true proposition when x = 3 and y = 6, but it's a false proposition when x = 1 and
y = 2. What really matters is that we have a notion of what it is appropriate to use
as values ofx and y|namely, they should be numbers|and that whenever we use such
values, what comes out is a proposition. To indicate that a statementp contains x and y
as free variables, we will writep(x; y).

De�nition 2.1.37
A logical formula is a statement containing some number offree variables , each with
a speci�ed range , such that the statement becomes a proposition when values for all the
variables are substituted from their respective ranges.

Example 2.1.38
As mentioned before, the statementp(x) de�ned by `x is divisible by 7' is a logical formula
with one free variable x, whose range is the setZ of integers. Then, for example,p(28) is
a true proposition and p(41) is a false proposition. C

Exercise 2.1.39
Write down a logical formula p(x; y) with two free variables x; y with range Z. Is the
proposition p(3; 7) true or false? For what values ofy 2 Z is p(0; y) true? C

We can obtain propositions from logical formulae in ways other than simply substituting
for a variable. For example, the assertion thatevery substitution for a variable makes the
formula true, is in itself a proposition. This can be done usingquanti�ers .

Universal quanti�er ( 8)

The universal quanti�er makes precise what we mean when we say `for all', orp̀(x) is
always true no matter what value x takes'.

De�nition 2.1.40
Let p(x) be a logical formula with free variable x, whose range is a setX . The proposition
`8x 2 X; p(x)' (read `for all x in X , p(x)') (LATEX code: nforall ) is true if p(x) is true no
matter what value of x is substituted from X , and false otherwise. The symbol8 is called
the universal quanti�er .
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Note that the fact that the variable x ranges over the setX is built into the notation
`8x 2 X '.

Exercise 2.1.41
Let p(x) be the formula x̀ is divisible by 7', where x ranges over the integers. Write out
the propositions 8x 2 Z; p(x) and 8x 2 Z; : p(x) in English. C

Example 2.1.42
Consider the proposition

For all integers n, if n is even thenn + 1 is odd.

This proposition takes the form

8n 2 Z; (p(n) ) q(n))

where p(n) is the statement ǹ is even' andq(n) is the statement ǹ + 1 is odd'.

A proof would proceed as follows:

(i) Let n be an (arbitrary) integer.

(ii) Assume that n is even.

(iii) From the above two assumptions, derive the fact that n + 1 is odd.

Step (i) is introduction of the variable n. For the rest of the proof we may treat n as if it's
any old integer, but whatever we say aboutn must be true no matter what value n takes.
Having introduced n, we now need to provep(n) ) q(n).

Step (ii) uses our proof strategy for proving implications: prove the proposition to the right
of the ) symbol from the assumption that what is to the left of the ) symbol is true.
This means that for the remainder of the proof, we may assume thatn is even.

Step (iii) �nishes o� the proof. C

Common error
Consider the following (non-)proof of the proposition 8n 2 Z; n2 > 0.

Let n be an arbitrary integer, say n = 17. Then 172 = 289 > 0, so the statement
is true.

The error made here is that thewriter has picked an arbitrary value of n, not the reader.
(In fact, the above argument actually proves 9n 2 Z; n2 > 0; see below.)
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Your proof should make no assumptions about the value ofn other than its range. Here is
a correct proof:

Let n be an arbitrary integer. Either n > 0 or n < 0. If n > 0 then n2 > 0,
since the product of two nonnegative numbers is nonnegative; ifn < 0 then
n2 > 0, since the product of two negative numbers is positive.

C

Existential quanti�er ( 9)

The existential quanti�er makes precise what we mean when we say `there exists', or `p(x)
is true for some value ofx in its range'.

De�nition 2.1.43
Let p(x) be a logical formula with free variable x, ranging over a setX . The proposition
`9x 2 X; p(x)' (read `there exists x in X such that p(x)') (LATEX code: nexists ) is true if
p(x) is true for at least one substitution of the variable x from X . The symbol 9 is called
the existential quanti�er .

Exercise 2.1.44
Let p(x) be the formula x̀ is divisible by 7', where x ranges over the integers. Write out
the propositions 9x; p(x) and 9x; : p(x) in English. For each, either prove that it is true,
or prove that it is false. C

Example 2.1.45
Consider the proposition

There exists a natural number which is odd and greater than 3.

This proposition takes the form 9n 2 N; (p(n) ^ q(n)), where p(n) is the statement ǹ is
odd' and q(n) is the statement ǹ is greater than 3'.

A proof would proceed by �nding a particular value of n such that p(n) and q(n) are both
true. Well, we know that 5 is odd, and 5 is certainly greater than 3! This means that
p(5) ^ q(5) is true. Since we've proved the proposition for a value ofn, we now know that
9n 2 N; (p(n) ^ q(n)) is true. C
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From now on, if a variable's range is irrelevant or is clear from context, we will simply omit
reference to its range. For example, if it is clear that the variablen refers to an integer, we
will write 8n; p(n) and 9n; p(n) instead of 8n 2 Z; p(n) and 9n 2 Z; p(n), respectively.

Quanti�ers behave in an interesting way with the negation operator. Intuitively this
makes sense: for example, to show `x is even' isn't true for all x, it su�ces to �nd a
single x for which `x is even' is false. Thus, we can disprove8x; (x is even) by proving
9x; (x is not even). This will be useful when cooking up proof strategies.

Theorem 2.1.46 (De Morgan's laws for quanti�ers)
Let p(x) be a logical formula. Then

(a) : (9x; p(x)) is logically equivalent to 8x; (: p(x));

(b) : (8x; p(x)) is logically equivalent to 9x; (: p(x)).

Proof. (a) We need to show that 8x; (: p(x)) is true when : (9x; p(x)) is true, and false
when it is false.

Suppose: (9x; p(x)) is true. Then 9x; p(x) is false, which means it is not the case that
at least one value ofx makes p(x) true. Since no values ofx make p(x) true, this must
mean that all values ofx make : p(x) true. So from the assumption that x takes any value
whatsoever, we know that : p(x) is true. Hence 8x; (: p(x)) is true.

Conversely, suppose: (9x; p(x)) is false. Then 9x; p(x) is true, so there is some �xed value
of x making p(x) true. Therefore it is not the case that : p(x) is true for all values of x: if
x takes this special value thenp(x) is true, so : p(x) is false! Hence8x; (: p(x)) is false.

The proof of (b) mimics the proof of (a) and is left to the reader.

Bound variables

When a variable is quanti�ed, we say it is bound . Bound variables behave di�erently from
free variables in a number of ways, for example

� Propositions cannot have free variables, but they can have bound variables.

� It is possible to substitute a value for a free variable, but not for a bound variable.

Example 2.1.47
Consider the following formula, in which the variables x; y; z all have rangeZ:

8x 2 Z; 9y 2 Z; x2 + y2 + z2 = 1
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In this formula, the variables x and y are bound, but the variable z is free. To see this,
note that we can substitute for z; substituting 2 for z yields:

8x; 9y; x2 + y2 + 2 2 = 1

which is a false proposition. However we cannot substitute forx or y; trying to substitute
2 for x yields:

82; 9y; 22 + y2 + z2 = 1

which must be nonsense: the phrase `for all 2, . . . ' doesn't even make sense! C

Exercise 2.1.48
For each of the following formulae, where all variables range over the integers, write down
the formula using quanti�ers and specify which variables are free and which are bound:

(a) If n is prime and n > 2 then n is odd.

(b) There exist x and y such that ax + by = 1.

(c) No integer value of x satis�es 0x = 1.

C

Quanti�er alternation

Compare the following two statements:

(i) For every door, there is a key that can unlock it.

(ii) There is a key that can unlock every door.

Letting the variables x and y refer to doors and keys, respectively, and lettingp(x; y) be
the statement `door x can be unlocked by keyy', we can formulate these statements as:

(i) 8x; 9y; p(x; y)

(ii) 9y; 8x; p(x; y)

This is a typical `real-world' example of what is known asquanti�er alternation |the two
statements di�er only by the order of the front-loaded quanti�ers, and yet they say very
di�erent things. Statement (i) requires every door to be unlockable, but the keys might be
di�erent for di�erent doors; statement (ii), however, implies the existence of some kind of
`master key' that can unlock all the doors.

Here's another example with a more mathematical nature:

98



Section 2.1. Symbolic logic 99

Exercise 2.1.49
Let p(x; y) be the statement x̀ + y is even'.

� Prove that 8x 2 Z; 9y 2 Z; p(x; y) is true.

� Prove that 9y 2 Z; 8x 2 Z; p(x; y) is false.

C

In both of the foregoing examples, you might have noticed that the 8̀9' statement says
something weaker than the `98' statement|in some sense, it is easier to make a 89 state-
ment true than it is to make an 98 statement true.

This idea is formalised in Theorem 2.1.50 below, which despite its abstract nature, has an
extremely simple proof.

Theorem 2.1.50
Let p(x; y) be a logical formula. Then

9y; 8x; p(x; y) ) 8 x; 9y; p(x; y)

Proof. Suppose9y; 8x; p(x; y) is true. We need to prove that 8x; 9y; p(x; y) is true.

Using our assumption9y; 8x; p(x; y), we may choosey� such that 8x; p(x; y � ) is true.

Now to prove 8x; 9y; p(x; y), �x x. We need to �nd y such that p(x; y) is true. But p(x; y � )
is true by our above assumption! So we're done.

Statements of the form9y; 8x; p(x; y) imply some kind of uniformity : a value ofy making
8x; p(x; y) true can be thought of as a `one size �ts all' solution to the problem of proving
p(x; y) for a given x. Later in your studies, it is likely that you will encounter the word
`uniform' many times|it is precisely this notion of quanti�er alternation that the word
`uniform' refers to.
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Section 2.2

Sets and set operations

With a system of logical notation under our belt, we're now ready to introduce the notion
of a set with a notch more precision than in Section 1.1. At their core, sets seem extremely
simple|a set is just collections of objects|except this characterisation of a set leads to
logical inconsistencies.[d] We overcome these inconsistencies by restricting ourselves to
working inside a universe U, which we consider to be a set which is so big that it contains
all of the mathematical objects that we want to talk about. This de�nition seems circular|
Section B.2 aims to clear up this confusion.

De�nition 2.2.1
A set is a collection of elements from a speci�ed universe of discourse . The collection
of everything in the universe of discourse is called theuniversal set (or just universe ),
denoted U (LATEX code: nmathcal f Ug).
The formula x 2 X (LATEX code: nin ) denotes the statement that x is an element ofX ,
where the range ofx is the universe of discourse. We writex 62X (LATEX code: nnot nin )
to mean : (x 2 X ), i.e. that x is not an element ofX .

This de�nition seems a bit weird|and it is|so if you're confused, then don't worry, as
we will avoid reference to it as much as possible. The only property ofU that we'll need
is that if we speak about any mathematical object at all, except for U itself, then this
mathematical object is an element ofU (rather than just 
oating around in space without
being an element of anything).

Example 2.2.2
In Section 1.1, we introduced �ve sets: the empty set? , the set N of natural numbers, the
set Z of integers, the setQ of rational numbers, the setR of real numbers and the setC of
complex numbers. C

Exercise 2.2.3
Which of the following propositions are true, and which are false?

1
2

2 Z
1
2

2 Q Z 2 Q Z 2 U
1
2

2 U

C

Another fundamental example of a set is theempty set.

[d] Read about Russell's paradox for more information.
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De�nition 2.2.4
The empty set , denoted ? (LATEX code: nvarnothing ), is the set with no elements.

The empty set may seem trivial|and it is|but owing to its canonicity, it arises all over
the place, and will be especially important when we come to talk about functions and
cardinality in Section 4.3.

Exercise 2.2.5
Let p(x) be any formula. Show that the proposition 8x; (x 2 ? ) p(x)) is true. What
does the proposition8x; (x 2 ? ) x 6= x) mean in English? Is it true? C

Specifying a set

One way of de�ning a set is simply to describe it in words, like we have done up to now.
There are other, more concise ways, of specifying sets, which also remove such ambiguity
from the process.

Lists. One way is simply to provide a list the elements of the set. To specify that the
list denotes a set, we enclose the list with curly bracketsf ; g (LATEX code: nf , ng). For
example, the following is a speci�cation of a setX , whose elements are the natural numbers
between 0 and 5 (inclusive):

X = f 0; 1; 2; 3; 4; 5g

Implied lists. Sometimes a list might be too long to write out|maybe even in�nite|or
the length of the list might depend on a variable. In these cases it will be convenient to
use animplied list , in which some elements of the list are written, and the rest are left
implicit by writing an ellipsis ` : : : ' (LATEX code: ndots ). For example, the statement

X = f 1; 4; 9; : : : ; n2g

means that X is the set whose elements are all the square numbers from 1 ton2, where n
is some number. Implied lists can be ambiguous, since they rely on the reader's ability to
infer the pattern being followed, so use with caution!

Set-builder notation. In general, implied lists can be ambiguous, so in practice they
are avoided unless the implied list is very simple, such as a set of consecutive numbers like
f 3; 4; : : : ; 9g. In fact, many sets can't even be listed in this way.

To get around this, we can useset-builder notation, which is a means of specifying a set
in terms of the properties its elements satisfy. Given a setX , the set of elements ofX
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satisfying some propertyp(x) is denoted

f x 2 X j p(x)g

The bar j̀' (LATEX code: nmid) separates the variable name from the formula that they
make true. Some authors use a colon `f x 2 X : p(x)g' or semicolon f̀ x 2 X ; p(x)g'
instead.[e]

Example 2.2.6
The set of all even integers can be written as

f n 2 Z j n is eveng = f : : : ; � 4; � 2; 0; 2; 4; 6; : : : g

For comparison, the set of all even natural numbers can be written as

f n 2 N j n is eveng = f 0; 2; 4; 6; : : : g

C

Proof tip
When a setX is expressed in set-builder notation, sayX = f x j p(x)g, then the statement
x 2 X is true precisely whenp(x) is true. In other words, to prove x 2 X , you can prove
p(x). Likewise, to prove x 62X , you can prove: p(x). C

Exercise 2.2.7
Express the set of all integers which are perfect squares in set-builder notation and as an
implied list. C

You're probably tired of worrying about ranges and universes|and so am I. We can use the
language of set theory to avoid them completely by specifying the ranges of the variables
we use as soon as they appear. For example, given a setX :

� The proposition 8x 2 X; p(x) means that x has rangeX and 8x; p(x). It is equivalent
to 8x; x 2 X ) p(x), so long as the range ofx contains all the elements ofX .

� The proposition 9x 2 X; p(x) means that x has rangeX and 9x; p(x). It is equivalent
to 9x; x 2 X ^ p(x), so long as the range ofx contains all the elements ofX .

� The set f x 2 X j p(x)g denotes the setf x j p(x)g, where the range ofx is X .

From now on, this is the style that we will use, and the universeU will be assumed to
include all the mathematical objects that we de�ne or need.

[e] When X = U, we abbreviate this by simply writing f x j p(x)g instead of f x 2 U j p(x)g.
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We can also use set-builder notation to specify the form of the elements of a set. For
example, the set

Z = f 3x + 2 j x is an integerg

denotes the set of things of the form 3x + 2 where x is an integer. Thus

Z = f : : : ; � 7; � 4; � 1; 2; 5; 8; 11; : : : g

From now on our universe of discourse will, unless otherwise speci�ed, include all math-
ematical objects that we de�ne. With this in mind, there are some very important sets to
be de�ned.

Subsets and set equality

Much of the discussion above concerned when an element of one set is or is not an element
of another. For example, every integer is a rational number; that is

8n; (n 2 Z ) n 2 Q)

We can say this more concisely by saying thatZ is a subsetof Q.

De�nition 2.2.8
Let X and Y be sets. We sayX is a subsetof Y if 8x 2 X; x 2 Y , or equivalently, if

8x; (x 2 X ) x 2 Y)

We abbreviate this proposition by writing X � Y (LATEX code: nsubseteq ), and we write
X * Y (LATEX code: nnsubseteq) for its negation.

Note that we could also

Proof tip
A proof that X is a subset ofY typically proceeds as follows. Letx 2 X be arbitrary; then
knowing nothing about x other than the fact that x 2 X , prove that x 2 Y . C

Exercise 2.2.9
Let X be a set. Prove that ? � X and that X � X . C

Example 2.2.10
We know from Section 1.1 that there is a chain of subsets given by:

? � N � Z � Q � R

C
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The following proposition proves a property of subsethood known astransitivity |we'll
revisit this property in Sections 5.1 and 5.2.

Proposition 2.2.11
Let X; Y; Z be sets. IfX � Y and Y � Z , then X � Z .

Strategy. The result we want to prove is an implication. Thus we assumeX � Y and
Y � Z , and our goal is to derive that X � Z . Spelling this out slightly more, the goal
is to derive 8x; x 2 X ) x 2 Z ; so we can introduce a variablex and assume that
x 2 X . Then our goal is to use our assumptions to prove thatx 2 Z . Well, X � Y means
8x; x 2 X ) x 2 Y . Since we're assumingx 2 X , substituting it into this assumption
yields that x 2 Y . Likewise, the assumption that Y � Z yields that x 2 Z .

Proof. Suppose thatX � Y and Y � Z . We need to prove that every element ofX is an
element of Z . So let x 2 X . Since X � Y , it follows that x 2 Y ; and sinceY � Z , it
follows that x 2 Z . HenceX � Z .

Aside
Notice how in the proof of Proposition 2.2.11 we omitted many of the details of the thought
process that went into coming up with the proof: decomposing the logical structure of the
proposition to be proved, spelling out what our goal is at every step, and so on. We left
enough of an argument to convince a mathematically literate reader that we're correct, but
kept it concise enough that attention is drawn to the important steps. C

De�nition 2.2.12
Let X be a set. Thepower set of X , denoted P(X ) (LATEX code: nmathcal f Pg), is the
set of all subsets ofX .

Example 2.2.13
There are four subsets off 1; 2g, namely

? ; f 1g; f 2g; f 1; 2g

so P(X ) = f ? ; f 1g; f 2g; f 1; 2gg. C

Exercise 2.2.14
Write out the elements of P(f 1; 2; 3g). C

Exercise 2.2.15
Let X be a set. Show that? 2 P (X ) and X 2 P (X ). C

Exercise 2.2.16
Write out the elements of P(? ), P(P(? )) and P(P(P(? ))). C
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Power sets are often a point of confusion because they bring the property of being asubset
of one set to that of being anelement of another, in the sense that for all setsU and X
we have

U � X , U 2 P (X )

This distinction looks easy to grasp, but when the setsU and X look alike, it's easy to fall
into various traps. Here's a simple example.

Example 2.2.17
It is true that ? � ? , but false that ? 2 ? . Indeed,

� ? � ? means8x 2 ? ; x 2 ? ; but propositions of the form 8x 2 ? ; p(x) are always
true, as discussed in Exercise 2.2.5.

� The empty set has no elements; if? 2 ? were true, it would mean that ? had an
element (that element being? ). So it must be the case that? 62? .

C

The following exercise is intended to help you overcome similar potential kinds of confusion
by means of practice. Try to think precisely about what the de�nitions involved are.

Exercise 2.2.18
Write out the elements of P(? ) and of P(P(? )). Determine, with proof, whether or not
each of the following statements is true:

P(? ) 2 P (P(? )) ; P(? ) � P (P(? )) ; ? 2 ff ? gg; ? � ff ? gg; f ? g 2 ff ? gg

C

Set equality

Discussion 2.2.19
Let X and Y be sets. What should it mean to say thatX and Y are equal? Try to provide
a precise de�nition of equality of sets before reading on. C

There are di�erent possible notions of `sameness' for sets: maybeX = Y when X and Y
have the same elements (this is calledextensional equality), or maybe X = Y when they're
described by the same criteria (this is calledintensional equality). In mathematics, it is
more useful to know when two sets have the same elements, regardless of how they are
described; so we take extensional equality as our notion of sameness for sets. This doesn't
mean intensional equality should be ignored|if you want to implement mathematics in a
computer, the sets' descriptions have a much more important role to play.
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De�nition 2.2.20
Let X and Y be sets. We sayX is equal to Y if X � Y and Y � X , and we write X = Y .
If X � Y and X 6= Y then we sayX is a proper subset of Y and write X $ Y (LATEX
code: nsubsetneqq).

Example 2.2.21
Let E = f n 2 Z j n is eveng. Then:

� E $ Z . Indeed, E � Z since every element ofE is an element ofZ by de�nition; but
E 6= Z since, for instance, 12 Z but 1 62E.

� N * E since, for instance, 12 N but 1 62E.

� E * N since, for instance,� 2 2 E but � 2 62N.

C

Exercise 2.2.22
De�ne a set X such that:

N $ X ^ X $ Q ^ X * Z ^ Z * X

C

Proof tip
To prove X = Y, you can prove that X � Y and Y � X . This proof strategy is called
double-containment. More speci�cally, such a proof is split into two parts:

(i) Let x 2 X ; from this assumption alone, prove that x 2 Y .

(ii) Let x 2 Y ; from this assumption alone, prove that x 2 X .

C

Set operations

In Example 2.2.21 we de�nedE to be the set of all even integers. What if we wanted to
talk about the set of all even natural numbers instead? It would be nice if there was some
expression in terms ofE and N to denote this set. This is whereset operations come in.

Intersection ( \ )

The intersection of two sets is the set of things which are elements of both sets.
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De�nition 2.2.23
Let X and Y be sets. The (pairwise ) intersection of X and Y , denoted X \ Y (LATEX
code: ncap), is de�ned by

X \ Y = f x j x 2 X ^ x 2 Yg

Example 2.2.24
Let E be the set of all even integers. ThenE \ N refers to the set of things which are
both even integers and natural numbers. . . in other words, it is the set of even natural
numbers. C

Exercise 2.2.25
Write down the elements of the set

f 0; 1; 4; 7g \ f 1; 2; 3; 4; 5g

C

Proof tip
To prove x 2 X \ Y you can give two proofs: one thatx 2 X and one that x 2 Y . For
example, if X = f x j p(x)g and Y = f x j q(x)g, then X \ Y = f x j p(x) ^ q(x)g. C

Example 2.2.26
Let X = f x 2 Z j x > 5g and Y = f x 2 N j x 6 10g. Then

X \ Y = f x 2 Z j 5 6 x 6 10g = f 5; 6; 7; 8; 9; 10g

C

Exercise 2.2.27
Let X and Y be sets. Prove thatX � Y if and only if X \ Y = X . C

Union ( [ )

The union of two sets is the set of things which are elements of at least one of the sets.

De�nition 2.2.28
Let X and Y be sets. The (pairwise ) union of X and Y , denoted X [ Y (LATEX code:
ncup), is de�ned by

X [ Y = f x j x 2 X _ x 2 Yg

Example 2.2.29
Let E be the set of even integers andO be the set of odd integers. Since every integer is
either even or odd, E [ O = Z. Note that E \ O = ? , thus f E; Og is an example of a
partition of Z; see De�nition 4.2.36. C
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Exercise 2.2.30
Write down the elements of the set

f 0; 1; 4; 7g [ f 1; 2; 3; 4; 5g

C

The union operation allows us to de�ne the following class of sets that will be particularly
useful for us when studying counting principles in Section 4.2.

De�nition 2.2.31
De�ne [n] recursively for n 2 N by

[0] = ? and [n + 1] = [ n] [ f n + 1g for all n 2 N

Exercise 2.2.32
Prove that if n > 0 then the elements of [n] are the natural numbers from 1 up to n
(inclusive). In implied list notation, this is to say that

[n] = f 1; 2; : : : ; ng

whenevern > 1. C

Exercise 2.2.33
Let X and Y be sets. Prove thatX � Y if and only if X [ Y = Y . C

Example 2.2.34
Let X; Y; Z be sets. We prove thatX \ (Y [ Z ) = ( X \ Y ) [ (X \ Z ).

� (� ) Let x 2 X \ (Y [ Z ). Then x 2 X , and either x 2 Y or x 2 Z . If x 2 Y then
x 2 X \ Y , and if x 2 Z then x 2 X \ Z . In either case, we havex 2 (X \ Y ) [ (X \ Z ).

� (� ) Let x 2 (X \ Y ) [ (X \ Z ). Then either x 2 X \ Y or x 2 X \ Z . In both
cases we havex 2 X by de�nition of intersection. In the �rst case we have x 2 Y ,
and in the second case we havex 2 Z ; in either case, we havex 2 Y [ Z , so that
x 2 X \ (Y [ Z ).

C

Exercise 2.2.35
Let X; Y; Z be sets. Prove thatX [ (Y \ Z ) = ( X [ Y ) \ (X [ Z ). C
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Relative complement ( n) and complement ( � c)

De�nition 2.2.36
Let X and Y be sets. Therelative complement of Y in X , denoted X nY (LATEX code:
nsetminus ), is de�ned by

X n Y = f x 2 X j x 62Yg

If X is a set then the complement of X , denoted X c (LATEX code: X^c), is simply the
relative complement of X in the universal set: X c = U nX .

Example 2.2.37
Let E be the set of all even integers. Thenn 2 Z n E if and only if n is an integer and
n is not an even integer; that is, if and only if n is odd. Thus Z n E is the set of all odd
integers.

Moreover, n 2 N n E if and only if n is a natural number and n is not an even integer.
Since the even integers which are natural numbers are precisely the even natural numbers,
N n E is precisely the set of all odd natural numbers. C

Exercise 2.2.38
Write down the elements of the set

f 0; 1; 4; 7g n f1; 2; 3; 4; 5g

C

Exercise 2.2.39
Let X and Y be sets. Prove thatX � Y if and only if Y n (Y n X ) = X . C

Comparison with logical operators and quanti�ers

The astute reader will have noticed some similarities between set operations and the logical
operators and quanti�ers that we saw in Section 2.1. Indeed, this can be summarised in
the following table. In each row, the expressions in both columns are equivalent, wherep
denotes x̀ 2 X ', q denotes x̀ 2 Y ', and r (i ) denotes x̀ 2 X i ':

sets logic
x 2 X \ Y p ^ q
x 2 X [ Y p _ q

x 2 X c : p
x 2 X n Y p ^ (: q)
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This translation between logic and set theory does not stop there; in fact, as the following
theorem shows, De Morgan's laws for the logical operatorŝ and _ also carry over to the
set operations\ and [ .

Theorem 2.2.40 (De Morgan's laws for sets—pairwise version)
Let X; Y; Z be sets. Then

(a) Z n (X [ Y ) = ( Z n X ) \ (Z n Y);

(b) Z n (X \ Y ) = ( Z n X ) [ (Z n Y).

Proof of (a). Let x 2 Z n (X [ Y ). Then x 2 Z and x 62X [ Y . The formula x 62X [ Y
says precisely

: (x 2 X _ x 2 Y)

By de Morgan's laws for logical operators (Theorem 2.1.14), this is equivalent to

x 62X ^ x 62Y

Sincex 2 Z and x 62X , we havex 2 Z n X . Sincex 2 Z and x 62Y , we havex 2 Z n Y .
Hence, by de�nition of intersection, it follows that x 2 (Z n X ) \ (Z n Y).

HenceZ n (X [ Y ) � (Z n X ) \ (Z n Y).

The proof of (Z nX ) \ (Z nY) � Z n(X [ Y ) is similar, and is left as an exercise, as is the
proof of (b).

The following exercise derives perhaps a more familiar statement of de Morgan's laws for
sets.

Exercise 2.2.41
Let X and Y be sets. Prove that

(X [ Y )c = X c \ Y c and (X \ Y )c = X c [ Y c

C

Product ( � )

De�nition 2.2.42
Let X and Y be sets. The (Cartesian ) product of X and Y , denoted X � Y (LATEX
code: ntimes ), is the set of all ordered pairs (x; y), where x 2 X and y 2 Y . That is,

X � Y = f (x; y) j x 2 X ^ y 2 Yg
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Example 2.2.43
If you have ever taken calculus, you will probably be familiar with the set R � R.

R � R = f (x; y) j x; y 2 Rg

Formally, this is the set of ordered pairs of real numbers. Geometrically, if we interpretR
as an in�nite line, the set R � R is the (real) plane: an element (x; y) 2 R � R describes
the point in the plane with coordinates (x; y).

We can investigate this further. For example, the following set:

R � f 0g = f (x; 0) j x 2 Rg

is precisely thex-axis. We can describe graphs as subsets ofR � R. Indeed, the graph of
y = x2 is given by

G = f (x; y) 2 R � R j y = x2g = f (x; x 2) j x 2 Rg � R � R

C

Exercise 2.2.44
Write down the elements of the setf 1; 2g � f 1; 3; 4g. C

Exercise 2.2.45
Let X be a set. Prove that X � ? = ? . C

Exercise 2.2.46
Let X , Y and Z be sets. Is it true that X � Y = Y � X ? Is it true that ( X � Y ) � Z =
X � (Y � Z )? C

Aside
Aaand breathe! All this new notation can be overwhelming at �rst, but it will be worth it
in the end. This chapter was all about teaching you a new language|new symbols, new
terminology|because without it, our future pursuits will be impossible. If you're stuck
now, then don't worry: you'll soon get the hang of it, especially when we start using this
new language in context. You can, of course, refer back to the results in this chapter for
reference at any point in the future. C
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Section 2.3

Functions

One way of studying interactions between sets is by studyingfunctions between them,
which we will de�ne informally in De�nition 2.3.9. Functions are mathematical objects
which assign, to each element of one set, exactly one element of another. Almost every
branch of mathematics studies functions, be it directly or indirectly, and almost every
application of mathematics arises from a translation of the abstract notion of a function to
the real world. Just one example of this is the theory of computation|functions provide
precisely the language necessary to describe the deterministic input-output behaviour of
algorithms.

Existence and uniqueness

When discussing functions, it is useful to isolate the logical principles at work. To do so,
it will help us to introduce a new quanti�er ` 9!'.

De�nition 2.3.1
Let p(x) be a logical formula. The proposition 9̀!x; p(x)' (read `there exists a uniquex
such that p(x)') (LATEX code: nexists! ) is true if p(x) is true for exactly one value of x.
The symbol 9! is called the unique existential quanti�er .

Example 2.3.2
There is only one set with no elements, namely the empty set. Symbolically, we could write

9!X 2 U; (X is a set^ 8 x 2 U; x 62X )

C

Example 2.3.3
Every positive real number has a unique positive square root. We can write this symbol-
ically as

8a 2 R; (a > 0 ) 9 !b 2 R; (b > 0 ^ b2 = a))

Reading this from left to right, this says: for every real number a, if a is positive, then
there exists a unique real numberb, which is positive and whose square isa. C

Exercise 2.3.4
The following propositions are all true. For each of the propositions, write it out using the
9! quanti�er, and consider how you might prove it. Do you notice any patterns in your
proof techniques?
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(a) For each real numbera, the equation x2 + 2ax + a2 = 0 has exactly one real solution
x.

(b) There is a unique real numbera for which the equation x2 + a2 = 0 has a real solution
x.

(c) There is a unique natural number with exactly one positive divisor.

C

The following exercise shows that the9! quanti�er is really just shorthand for a more
complicated expression.

Exercise 2.3.5
Let p(x) be a logical formula. Prove that the following are equivalent:

(a) 9!x; p(x)

(b) [9x; p(x)] ^ [8y; 8z; (p(y) ^ p(z) ) y = z)]

(c) 9x; (p(x) ^ 8 y; (p(y) ) y = x))

C

The expressions (b) and (c) in Exercise 2.3.5 is particularly informative, as they breaks
down a proof of existence and uniqueness into two chunks.

Proof tip
A proof of a statement of the form 9!x; p(x) can be split into two proofs:

� Existence. Prove 9x; p(x). That is, �nd a value of x making p(x) true.

� Uniqueness. Either. . .

� . . . prove 8y; 8z; (p(y) ^ p(z) ) y = z). That is, �x y; z and assume thatp(y)
and p(z) are true. Derive that it must be the case that y = z.

. . . or. . .

� . . . prove 8y; (p(y) ) y = x). That is, �x y and assume thatp(y) is true. Derive
that it must be the case that y = x, where x is as in your proof of existence.

From these two parts, you can conclude that9!x; p(x) is true.

Note that you only need to use one of the above techniques for proving uniqueness; the
�rst corresponds to (b) in Exercise 2.3.5, and the second corresponds to (c). C
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Example 2.3.6
An example of this proof structure in action is in a proof of the statement in part (a) of
Exercise 2.3.4, that is, for each real numbera there exists a uniquex such that x2 + 2ax +
a2 = 0.

Fix a 2 R. We prove existence and uniqueness of an elementx 2 R for which x2+2ax+ a2 =
0 separately.

� (Existence ) Let x = � a. Then

x2 + 2ax + a2 = ( � a)2 + 2a(� a) + a2 = a2 � 2a2 + a2 = 0

so a solution exists.

� (Uniqueness ) Fix y 2 R and suppose thaty2 + 2ay + a2 = 0. We will prove that is
must be the case thaty = � a. Well, factorising the expression yields (y + a)2 = 0. If
y+ a were nonzero then its square would also be nonzero, hencey+ a = 0. Therefore,
y = � a, as required.

Hencex = � a is the unique solution to the equation x2 + 2ax + a2 = 0. C

This followed pattern (c) from Exercise 2.3.5. The following follows pattern (b).

Example 2.3.7
We prove Exercise 2.3.3, namely that for each reala > 0 there is a uniqueb > 0 such that
b2 = a. So �rst �x a > 0.

� (Existence ) The real number
p

a is positive and satis�es (
p

a)2 = a by de�nition. Its
existence will be deferred to a later time, but an informal argument for its existence
could be provided using `number line' arguments as in Section 1.1.

� (Uniqueness ) Let y; z > 0 be real numbers such thaty2 = a and z2 = a. Then
y2 = z2. Rearranging and factorising yields

(y � z)(y + z) = 0

so either y � z = 0 or y + z = 0. If y + z = 0 then z = � y, and sincey > 0, this
means that z < 0. But this contradicts the assumption that z > 0. As such, it must
be the case thaty � z = 0, and hencey = z, as required.

C

Exercise 2.3.8
Prove the statements in parts (b) and (c) of Exercise 2.3.4. C
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The unique existence quanti�er clari�es the process of solving equations: when solving
equations, there are typically two steps:

� Step 1. Start with the equation, and derive some set of potential solutions.

� Step 2. For each of the potential solutions, check whether each solves the equation|
the set of those that do is precisely the set of all solutions to the equation.

In the case when an equation has a unique solution, and this solution is the only one
which is derived algebraically from the equation, we recognise `Step 1' as being a proof of
uniquenessof a solution, and `Step 2' as a proof ofexistenceof a solution.

To wit, let's revisit the equation

x2 + 2ax + a2 = 0

from Example 2.3.6, wherea and x refer to real numbers. We established that, for a given
real numbera, there is a unique real solutionx. Instead of proving existence and uniqueness
seprately, we could have instead solved this equation using a sequence of reversible steps:

x2 + 2ax + a2 = 0 , (x + a)2 = 0 by factorising

, x + a = 0 since 0 is the only square root of 0

, x = � a rearranging

Working from top to bottom, this says if there is a solution x, then it is equal to � a.
Working from bottom to top, this says that � a is a solution. Thus the `bottom to top'
direction proves existence, and the `top to bottom' direction proves uniqueness.

Functions

You might have come across the notion of afunction before now. In schools, functions are
often introduced as being likemachines|they have inputs and outputs, and on a given
input they always return the same output. For instance, there is a function which takes
integers as inputs and gives integers as outputs, which on the inputx returns the integer
x + 3.

This, however, is clearly not a precise de�nition. A next approximation to a precise de�n-
ition of a function might look something like this:
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De�nition 2.3.9
Let X and Y be sets. Afunction f from X to Y is a mathematical object which assigns
to each element ofX exactly one element ofY . Given x 2 X , the element ofY associated
with x by f is denotedf (x), and is called the value of f at x. We write

f : X ! Y (LATEX code: f : X nto Y)
to denote that f is a function from X to Y . We say X is the domain (or source ) of f
and Y is the codomain (or target ) of f .

This is better|for instance, we're now talking about sets (and not mysterious `machines'),
which we have explored with in Section 2.2. Moreover, this de�nition establishes the
relationship between functions and the9! quanti�er: indeed, to say that f assigns to each
element ofX a unique element ofY is to say precisely that

8x 2 X; 9!y 2 Y; y = f (x)

Functions arise whenever there is a true proposition of the form8x 2 X; 9!y 2 Y; p(x; y)|
this de�nes a function f : X ! Y which assigns to eachx 2 X the unique y 2 Y such that
p(x; y) is true. In other words, 8x 2 X; p(x; f (x)) is true! We can use this to generate
some examples.

Example 2.3.10
Example 2.3.3 said that every positive real number has a unique positive square root; we
proved this in Example 2.3.7. What this means is that there is a function

r : R> 0 ! R> 0 where R> 0 = f x 2 R j x > 0g

de�ned by letting r (x) be the (unique) positive square root ofx, for each x 2 R> 0. That
is, we have a functionr de�ned by r (x) =

p
x. C

Exercise 2.3.11
Recall Exercise 2.3.4. Which of the statements (a), (b) or (c) is of the form8x 2 X; 9!y 2
Y; p(x; y)? For each statement of this form, determine the domain and codomain of the
corresponding function, and write an expression de�ning this function. C

There are many ways to specify a functionf : X ! Y . Before we move too far in this
direction, it is worth noting a very important point regarding what should be written in
the speci�cation of a function.

Writing tip
When specifying a function, make sure that you specify itsdomain and its codomain
and, if you use any variables, make sure they're allquanti�ed ! C

With this in mind, let's look at a few ways of specifying a function.
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� Lists. If X is �nite, then we can specify a function f : X ! Y by simply listing the
values of f at all possible elementsx 2 X . For example, we can de�ne a function

f : f 1; 2; 3g ! f red; yellow; green; blue; purpleg

by declaring
f (1) = red; f (2) = purple; f (3) = green

Note that the function is at this point completely speci�ed: we know its values at
all elements of the domainf 1; 2; 3g. It doesn't matter that some of the elements of
the codomain (yellow and blue) are unaccounted for|all that matters is that each
element of the domain is associated with exactly one element of the codomain.

Unfortunately, most of the sets that we work with will be in�nite, or of an unspeci�ed
�nite size; in these cases, simply writing a list of values isn't su�cient. Fortunately
for us, there are other ways of specifying functions.

� Formulae. In many cases, particularly when the domainX and codomain Y are
number sets, we can de�ne a function by giving a formula for the value off (x) for
eachx 2 X . For example, we can de�ne a functionf : R ! R by letting

f (x) = x2 + 3 for all x 2 R

� By cases. It will at times be convenient to de�ne a function using di�erent speci�c-
ations for di�erent elements of the domain. A very simple example is theabsolute
value function j�j : R ! R, de�ned for x 2 R

jxj =

(
x if x > 0

� x if x 6 0

Here we have split into two cases based on the conditionsx > 0 and x 6 0.

When specifying a function f : X ! Y by cases, it is important that the conditions
be:

� exhaustive : given x 2 X , at least one of the conditions onX must hold; and

� compatible : if any x 2 X satis�es more than one condition, the speci�ed value
must be the same no matter which condition is picked.

For the absolute value function de�ned above, these conditions are satis�ed. Indeed,
for x 2 R, it is certainly the case that x > 0 or x 6 0, so the conditions are exhaustive.
Moreover, given x 2 R, if both x > 0 and x 6 0, then x = 0|so we need to check
that the speci�cation yields the same value whenx = 0 regardless of which condition
we pick. The x > 0 condition yields the value 0, and thex 6 0 condition yields the
value � 0, which is equal to 0|so the conditions are compatible. We could have used
x < 0 instead ofx 6 0; in this case the conditions aremutually exclusive, so certainly
compatible because they do not overlap.
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� Algorithms. You might, on �rst exposure to functions, have been taught to think
of a function as a machine which, when given an input, produces anoutput. This
`machine' is de�ned by saying what the possible inputs and outputs are, and then
providing a list of instructions (an algorithm) for the machine to follow, which on
any input produces an output|and, moreover, if fed the same input, the machine
always produces the same output.

For example, we might instruct a machine to take rational numbers as inputs and
give rational numbers as outputs, and to follow the following sequence of steps on a
given input

multiply by 2 ! add 5 ! square the result ! divide by 6

This `machine' de�nes a function M : Q ! Q which, in equation form, is speci�ed by

M (x) =
(2x + 5) 2

6
for all x 2 Q

In our more formal set-up, therefore, we can de�ne a functionM : I ! O by specify-
ing:

� a set I of all inputs ;

� a set O of potential outputs ; and

� a deterministic[f] algorithm which describes how an input x 2 I is transformed
into an output M (x) 2 O.

That is, the domain is the set I of all possible `inputs', the codomain is a setO
containing all the possible `outputs', and the function M is a rule specifying how an
input is associated with the corresponding output.

For now, we will use algorithmic speci�cations of functions only sparingly|this is
because it is much harder to make formal what is meant by an `algorithm', and it is
important to check that a given algorithm is deterministic.

� Graphs. Given setsX and Y , each function X ! Y is uniquely determined by its
graph (see De�nition 2.3.12), which is a particular subset ofX � Y , thought of as the
set of all `input-output' pairs of the function|this equivalence will be the content of
Theorem 2.3.15. The elements of the graphG of a function f are pairs (x; y), with
x 2 X and y 2 Y , and the assertion that (x; y) 2 G will be equivalent to the assertion
that f (x) = y.

[f] The word `deterministic' just means that the algorithm always produces the same output on a single
input.
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De�nition 2.3.12
Let f : X ! Y be a function. The graph of f is the subset Gr(f ) � X � Y (LATEX
code: nmathrmf Grg) de�ned by

Gr( f ) = f (x; f (x)) j x 2 X g = f (x; y) 2 X � Y j y = f (x)g

Example 2.3.13
Given a (su�ciently well-behaved) function f : R ! R, we can represent Gr(f ) �
R � R by plotting it on a pair of axes using Cartesian coordinates in the usual way.
For example, if f is de�ned by f (x) = x

2 for all x 2 R, then its graph

Gr( f ) =
� �

x;
x
2

� �
�
�
� x 2 R

�

can be represented by graph plot in Figure 2.1.

x

y

� 6 � 5 � 4 � 3 � 2 � 1 1 2 3 4 5 6

� 3

� 2

� 1

1

2

3

Figure 2.1: Graph (in blue) of the function f : R ! R de�ned by f (x) = x
2 for all x 2 R

C

Exercise 2.3.14
Find a function f : Z ! Z whose graph is equal to the set

f : : : ; (� 2; � 5); (� 1; � 2); (0; 1); (1; 4); (2; 7); (3; 10); : : : g

C
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Well-de�nedness

We must be careful when specifying functions that what we write really does de�ne a
function! This correctness of speci�cation is known aswell-de�nedness.

There are three things to check when it comes to well-de�nedness of a functionf : X ! Y ,
namely totality , existenceand uniqueness:

� Totality. A value f (x) should be speci�ed for eachx 2 X .

� Existence. For each x 2 X , the speci�ed value f (x) should actually exist, and
should be an element ofY .

� Uniqueness. For each x 2 X , the speci�ed value f (x) should refer to only one
element of Y . That is, if x = x0 2 X then we should havef (x) = f (x0). This issue
usually arises when elements ofX can be described in di�erent ways.

When specifying a function, you should justify each of these components of well-de�nedness
unless they are extremely obvious. You will probably �nd that, in most cases, the only
component in need of justi�cation is uniqueness, but keep all three in mind.

Theorem 2.3.15 below provides a way of verifying that a function is well-de�ned by char-
acterising their graphs.

Theorem 2.3.15
Let X and Y be sets. A subsetG � X � Y is the graph of a function if and only if

8x 2 X; 9!y 2 Y; (x; y) 2 G

Proof. () ). SupposeG � X � Y is the graph of a function, say G = Gr( f ) for some
f : X ! Y . Then for each x 2 X , it follows from well-de�nedness of f that f (x) is the
unique element y 2 Y for which (x; y) 2 G. That is, ( x; f (x)) 2 G, and if y 2 Y with
(x; y) 2 G, then y = f (x).

(( ). SupposeG � X � Y is satis�es 8x 2 X; 9!y 2 Y; (x; y) 2 G. De�ne a function
f : X ! Y by, for each x 2 X , de�ning the value f (x) to be the unique elementy 2 Y
for which (x; y) 2 G. Well-de�nedness of f is then immediate from our assumption of the
existence and uniqueness of such a value ofy for each x 2 X .

Example 2.3.16
The set G de�ned by

G = f (1; red); (2; red); (3; green)g
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is the graph of a function f : f 1; 2; 3g ! f red; green; blueg. The function f is de�ned by

f (1) = red; f (2) = red; f (3) = green

However, G is not the graph of a function f 1; 2; 3; 4g ! f red; green; blueg, sinceG contains
no elements of the form (4; y) for y 2 f red; green; blueg. Moreover, the setG0 de�ned by

G0 = f (1; red); (2; red); (2; blue); (3; green)g

does not de�ne the graph of a function f 1; 2; 3g ! f red; green; blueg, since there is not a
unique element of the form (2; y) in G0|rather, there are two of them! C

Exercise 2.3.17
For each of the following speci�cations of setsX , Y , G, determine whether or not G is the
graph of a function from X to Y .

(a) X = R, Y = R, G = f (a; a2) j a 2 Rg;

(b) X = R, Y = R, G = f (a2; a) j a 2 Rg;

(c) X = R> 0, Y = R> 0, G = f (a2; a) j a 2 Rg, where R> 0 = f x 2 R j x > 0g;

(d) X = Q, Y = Q, G = f (x; y) 2 Q � Q j xy = 1g.

(e) X = Q, Y = Q, G = f (a; a) j a 2 Zg;

C

Aside
In light of Theorem 2.3.15, some people choose to de�ne functionsX ! Y as particular
subsets ofX � Y |that is, they identify functions with their graphs. This is particularly
useful when studying the logical foundations of mathematics. We avoid this practice here,
because it is not conceptually necessary, and it would preclude other possible ways of
encoding functions. C

We will now look at some more examples (and non-examples) of functions.

Example 2.3.18
Example 2.3.3 gives a prime example of a function: it says that for every positive real
number a there is a unique positive real numberb such that b2 = a. This unique b
is precisely the positive square root

p
a of a. Writing R> 0 for the set of positive real

numbers, we have thus established that taking the positive square root de�nes a function
R> 0 ! R> 0. C

There is a class of functions calledidentity functions that, despite being very simple, are
so important that we will give them a numbered de�nition!
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De�nition 2.3.19
Let X be a set. Theidentity function on X is the function idX : X ! X (LATEX code:
nmathrmf id g X) de�ned by id X (x) = x for all x 2 X .

You should convince yourself that the speci�cation of idX given in De�nition 2.3.19 is
well-de�ned.

Another interesting example of a function is the empty function, which is useful in coming
up with counterexamples and proving combinatorial identities (see Section 4.2).

De�nition 2.3.20
Let X be a set. Theempty function with codomain X is the (unique!) function ? ! X .
It has no values, since there are no elements of its domain.

Again, you should convince yourself that this speci�cation is well-de�ned. Conceptually,
convincing yourself of this is not easy; but writing down the proof of well-de�nedness is
extremely easy|you will �nd that there is simply nothing to prove!

Example 2.3.21
De�ne f : R ! R by the equation f (x)2 = x for all x 2 R. This is not well-de�ned for a
few reasons. First, if x < 0 then there is no real numbery such that y2 = x, so for x < 0
there are no possible values off (x) in the codomain of f , so existence fails. Second, if
x > 0 then there are in fact two real numbers y such that y2 = x, namely the positive
square root

p
x and the negative square root�

p
x. The speci�cation of f does not indicate

which of these values to take, souniquenessfails.

Notice that the function r : R> 0 ! R> 0 from Example 2.3.10 is (well-)de�ned by the
equation r (x)2 = x for all x 2 R> 0. This illustrates why it is very important to specify the
domain and codomain when de�ning a function. C

Exercise 2.3.22
Which of the following speci�cations of functions are well-de�ned?

(a) g : Q ! Q de�ned by the equation (x + 1) g(x) = 1 for all x 2 Q;

(b) h : N ! Q de�ned by ( x + 1) h(x) = 1 for all x 2 N;

(c) k : N ! N de�ned by ( x + 1) k(x) = 1 for all x 2 N;

(d) ` : N ! N de�ned by `(x) = `(x) for all x 2 N.
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Under what conditions on setsX and Y is a function i : X [ Y ! f 0; 1g de�ned by

i (z) =

(
0 if z 2 X

1 if z 2 Y

well-de�ned? C

Composition of functions

In our section on sets, we talked about various operations that can be performed on sets|
union, intersection, and so on. There are also operations on functions, by far the most
important of which is composition. To understand how composition works, let's revisit the
algorithmically de�ned function M : Q ! Q from page 118:

multiply by 2 ! add 5 ! square the result ! divide by 6

The function M is, in some sense, asequenceof functions, performed one-by-one until the
desired result is reached. This is preciselycomposition of functions.

De�nition 2.3.23
Given functions f : X ! Y and g : Y ! Z , their composite g � f (LATEX code: g ncirc
f ) (read `g composed withf ' or `g after f ' or even just `g f ') is the function g � f : X ! Z
de�ned by

(g � f )(x) = g(f (x)) for all x 2 X

Intuitively, g� f is the function resulting from �rst applying f , and then applying g, to the
given input.

Common error
Function composition is in some sense written `backwards': in the expressiong � f , the
function which is applied �rst is written last|there is a good reason for this: the argument
to the function is written after the function! However, this mis-match often trips students
up on their �rst exposure to function composition, so be careful! C

Example 2.3.24
The function M from page 118 can be de�ned as the composite

M = (( k � h) � g) � f

where
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� f : Q ! Q is de�ned by f (x) = 2 x for all x 2 Q;

� g : Q ! Q is de�ned by g(x) = x + 5 for all x 2 Q;

� h : Q ! Q is de�ned by h(x) = x2 for all x 2 Q;

� k : Q ! Q is de�ned by k(x) = x
6 for all x 2 Q.

C

Exercise 2.3.25
Let f; g; h; k : Q ! Q be as in Exercise 2.3.24. Compute equations de�ning the following
composites:

(a) f � g;

(b) g � f ;

(c) (( f � g) � h) � k;

(d) f � (g � (h � k));

(e) (g � g) � (g � g).

C

Example 2.3.26
Let f : X ! Y be any function. Then

idY � f = f = f � idX

To see this, let x 2 X . Then

(idY � f )(x) = id Y (f (x)) by de�nition of composition

= f (x) by de�nition of id Y

= f (idX (x)) by de�nition of id X

= ( f � idX )(x) by de�nition of composition

Equality of the three functions in question follows. C

Exercise 2.3.27
Prove that composition of functions is associative, that is, if f : X ! Y , g : Y ! Z and
h : Z ! W are functions, then

h � (g � f ) = ( h � g) � f : X ! W

As a consequence of associativity, when we want to compose more than two functions,
it doesn't matter what order we compose the functions in. As such, we can just write
h � g � f . C
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Exercise 2.3.28
Let f : X ! Y and g : Z ! W be functions, and suppose thatY $ Z . Note that there is
a function h : X ! W de�ned by h(x) = g(f (x)) for all x 2 X . Write h as a composite of
functions involving f and g. C

Images and preimages

De�nition 2.3.29
Let f : X ! Y be a function and let U � X . The image of U under f is the subset
f [U] � Y (also written f � (U) (LATEX code: f * ) or even just f (U)) is de�ned by

f [U] = f f (x) j x 2 Ug = f y 2 Y j 9x 2 U; y = f (x)g

That is, f [U] is the set of values that the function f takes when given inputs fromU.
The image of f is the image of the entire domain, i.e. the setf [X ].

Example 2.3.30
Let f : R ! R be de�ned by f (x) = x2. The image of f is the set R> 0 of all nonnegative
real numbers. Let's prove this:

� (f [R] � R> 0). Let y 2 f [R]. Then y = x2 for somex 2 R. But x2 > 0, so we must
have y 2 R> 0, as required.

� (R> 0 � f [R]). Let y 2 R> 0. Then
p

y 2 R, and y = (
p

y)2 = f (
p

y). Hencey 2 f [R],
as required.

We have shown by double containment thatf [R] = R> 0. C

Exercise 2.3.31
For each of the following functions f and subsetsU of their domain, describe the image
f [U].

(a) f : Z ! Z de�ned by f (n) = 3 n, with U = N;

(b) f : X ! X � X (where X is any set) de�ned by f (x) = ( x; x ) with U = X ;

(c) f : f a; b; cg ! f 1; 2; 3g de�ned by f (a) = 1, f (b) = 3 and f (c) = 1, with U = f a; b; cg.

C

Exercise 2.3.32
Prove that f [? ] = ? for all functions f . C
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Example 2.3.33
Let f : X ! Y be a function and let U; V � X . Then f [U \ V ] � f [U] \ f [V ]. To see this,
let y 2 f [U \ V ]. Then y = f (x) for some x 2 U \ V . By de�nition of intersection, x 2 U
and x 2 V . Since x 2 U and y = f (x), we have y 2 f [U]; likewise, sincex 2 V , we have
y 2 f [V ]. But then by de�nition of intersection, we have y 2 f [U] \ f [V ]. C

Exercise 2.3.34
Let f : X ! Y be a function and let U; V � X . We saw in Example 2.3.33 thatf [U \ V ] �
f [U] \ f [V ]. Determine which of the following is true, and for each, provide a proof of its
truth or falsity:

(a) f [U] \ f [V ] � f [U \ V ];

(b) f [U [ V ] � f [U] [ f [V ];

(c) f [U] [ f [V ] � f [U [ V ].

C

De�nition 2.3.35
Let f : X ! Y be a function and let V � Y . The preimage of V under f is the subset
f � 1[V ] (LATEX code: f^ f -1 g) (also written f � (V ) (LATEX code: f^* )) is de�ned by

f � 1[V ] = f x 2 X j f (x) 2 Vg = f x 2 X j 9y 2 V; f (x) = yg

That is, f � 1[V ] is the set of all the elements of its domainX that the function f sends to
elements ofV .

Example 2.3.36
Let f : Z ! Z be the function de�ned by f (x) = x2 for all x 2 X . Then

� f � 1[f 1; 4; 9g] = f� 3; � 2; � 1; 1; 2; 3g;

� f � 1[f 1; 2; 3; 4; 5; 6; 7; 8; 9g] = f� 3; � 2; � 1; 1; 2; 3g too, since the other elements of [9]
are not perfect squares, and hence not of the formf (x) for x 2 Z;

� f � 1[N] = Z, since for anyx 2 Z we havef (x) > 0, so that f (x) 2 N.

C

Example 2.3.37
Let f : X ! Y be a function, let U � X and let V � Y . Then f [U] � V if and only if
U � f � 1[V ]. The proof is as follows.

() ). Supposef [U] � V ; we'll prove U � f � 1[V ]. So �x x 2 U. Then f (x) 2 f [U]
by de�nition of image. But then f (x) 2 V by our assumption that f [U] � V , and so
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x 2 f � 1[V ] by de�nition of preimage. Since x was arbitrarily chosen from U, it follows
that U � f � 1[V ].

(( ). SupposeU � f � 1[V ]; we'll prove f [U] � V . So �x y 2 f [U]. Then y = f (x) for some
x 2 U by de�nition of image. But then x 2 f � 1[V ] by our assumption that U � f � 1[V ],
and so f (x) 2 V by de�nition of preimage. But y = f (x), so y 2 V , and since y was
arbitrarily chosen, it follows that f [U] � V . C

The following exercise demonstrates that preimages interact very nicely with the basic set
operations (intersection, union and relative complement):

Exercise 2.3.38
Let f : X ! Y be a function and let U; V � Y . Prove that

f � 1[U\ V ] = f � 1[U]\ f � 1[V ] and f � 1[U[ V ] = f � 1[U][ f � 1[V ] and f � 1[YnU] = X nf � 1[U]

C

Exercise 2.3.39
Let f : X ! Y be a function. Prove that f � 1[? ] = ? and f � 1[Y ] = X . C

Exercise 2.3.40
Let f : X ! Y be a function. Provide a proof of the truth or falsity of each of the following
statements:

� U � f � 1[f [U]] for all U � X ;

� f � 1[f [U]] � U for all U � X ;

� V � f [f � 1[V ]] for all V � Y ;

� f [f � 1[V ]] � V for all V � Y .

C
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Section 3.1

Division

This section introduces the notion of divisibility . As we have already mentioned, it is not
always the case that one integer can divide another. As you read through this section, note
that we never use fractions; everything we do isinternal to Z, and does not require that
we `spill over' to Q at any point. This will help you when you study ring theory in the
future, and is a good practice to mimic in your own work.

The following theorem, called the division theorem, is the crux of everything that is to
follow.

Theorem 3.1.1 (Division theorem)
Let a; b2 Z with b 6= 0. There exist unique q; r 2 Z such that

a = qb+ r and 0 6 r < jbj

Strategy. Let's look at the simple case whena > 0 and b > 0. We can always �nd q; r such
that a = qb+ r , for example q = 0 and r = a. Moreover, by increasingq we can reducer ,
since

qb+ r = ( q + 1) b+ ( r � b)

We will keep doing this until the `remainder' is as small as it can be without being negative.
As an example, consider the case whena = 14 and b = 5. This procedure gives

14 = 0 � 5 + 14

= 1 � 5 + 9

= 2 � 5 + 4  least nonnegative remainder

= 3 � 5 + ( � 1)

= � � �

This procedure shows that in this case we should takeq = 2 and r = 4, since 14 = 2� 5+4
and 0 6 4 < j5j.

We can show that such a descending sequence of remainders terminates using the well-
ordering principle, and then we must argue that the quotient and remainder that we obtain
are unique.

? Proof. We may assume thatb > 0: if not, replace b by � b and q by � q. We may also
assume thata > 0. Otherwise, replacea by � a, q by � (q + 1) and r by b� r .
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Thus, what follows assumes thata > 0 and b > 0.

� Existence. We prove that such integers q; r exist by the well-ordering principle.
Namely, we de�ne a sequence (rn )n2 N such that a = nb+ rn and r0 > r 1 > r 2 > � � � ,
and use this sequence to �nd the values ofq; r.

� Let r0 = a. Then a = 0b+ r0, as required.

� Supposern has been de�ned, and letrn+1 = rn � b. Then

(n + 1) b+ rn+1 = ( n + 1) b+ rn � b

= nb + b+ rn � b

= nb + r = a

Sinceb > 0, we must havern+1 < r n for all n.

Let R = N \ f rn j n 2 Ng. That is, R is the set of terms of the sequence which are
non-negative. Sincer0 = a > 0, we have that r0 2 R and henceR is inhabited. By
the well-ordering principle, R has a least elementr k for somek 2 N.

De�ne q = k and r = r k . By construction we havea = qb+ r and r > 0, so it remains
to show that r < b . Well, if r > b then r � b > 0, but r � b = r k+1 , so this would
imply r k+1 2 R, contradicting minimality of r . Hencer < b , so q; r are as required.

� Uniqueness. Supposeq0; r 0 also satisfya = q0b+ r 0 and 0 6 r 0 < b. If we can show
that r 0 = r then this proves that q = q0: indeed, if qb+ r = q0b + r then we can
subtract r and then divide by b, sinceb > 0.

First note that q0 > 0. If q0 < 0 then q0 6 � 1, so

a = q0b+ r 0 6 � b+ r 0

and hencer 0 > a + b > b since a > 0. This contradicts the assumption that r < b .
So q0 > 0.

Sinceq0 > 0, we also know thata = q0b+ rq0, and hencer 0 = rq0 2 R. By minimality
of r we haver 6 r 0. It remains to show that r = r 0. If not then r < r 0. Thus

qb+ r = q0b+ r 0 > q0b+ r ) qb > q0b ) q > q0

and henceq = q0+ t for somet > 1. But then

q0b+ r 0 = a = qb+ r = ( q0+ t)b+ r = q0b+ ( tb + r )

so r 0 = tb + r > b, contradicting r 0 < b. So r = r 0 as desired, and henceq = q0.

At long last, we are done.
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De�nition 3.1.2
Let a; b2 Z with b 6= 0, and let q; r be the unique integers such that

a = qb+ r and 0 6 r < jbj

We say q is the quotient and r is the remainder of a divided by b.

Example 3.1.3
Some examples of division include:

14 = 2 � 5 + 4; � 14 = � 3 � 5 + 1; 15 = 3 � 5 + 0

C

De�nition 3.1.4
Let a; b 2 Z. We say b divides a, or that b is a divisor (or factor ) of a, if there exists
q 2 Z such that a = qb. To denote the fact that b divides a we write b j a (LATEX code:
nmid). For the negation : (b j a) write b - a (LATEX code: nnmid).

Thus, when b 6= 0, saying b j a is equivalent to saying that the remainder of a divided by b
is 0.

Example 3.1.5
5 divides 15 since 15 = 3� 5. However, 5 does not divide 14: we know that the remainder
of 14 divided by 5 is 4, not 0|and it can't be both since we proved in the division theorem
that remainders are unique! C

Exercise 3.1.6
Show that if a 2 Z then 1 j a, � 1 j a and a j 0. For which integers a doesa j 1? For which
integers a does 0j a? C

We now introduce the very basic notion of aunit . This notion is introduced to rule out
trivialities. Units become interesting when talking about general rings, but in Z, the units
are very familiar.

De�nition 3.1.7
Let u 2 Z. We say u is a unit if u j 1; that is, u is a unit if there exists v 2 Z such that
uv = 1.

Proposition 3.1.8
The only units in Z are 1 and� 1.
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Proof. First note that 1 and � 1 are units, since 1� 1 = 1 and (� 1) � (� 1) = 1. Now suppose
that u 2 Z is a unit, and let v 2 Z be such that uv = 1. Certainly u 6= 0, since 0v = 0 6= 1.
If u > 1 or u < � 1 then v = 1

u 62Z. So we must haveu 2 f� 1; 1g.

Exercise 3.1.6 shows that� 1, 0 and 1 are, from the point of view of divisibility, fairly
trivial. For this reason, most of the results we discuss regarding divisibility will concern
non-zero non-units , i.e. all integers except� 1, 0 or 1.

Greatest common divisors

De�nition 3.1.9
Let a; b2 Z. An integer d is a greatest common divisor of a and b if:

(a) d j a and d j b;

(b) If q is another integer such that q j a and q j b, then q j d.

Example 3.1.10
2 is a greatest common divisor of 4 and 6; indeed:

(a) 4 = 2 � 2, and 6 = 3 � 2, so 2j 4 and 2j 6;

(b) Supposeq j 4 and q j 6. The divisors of 4 are� 1; � 2; � 4 and the divisors of 6 are
� 1, � 2, � 3, � 6. Sinceq divides both, it must be the case that q 2 f� 2; � 1; 1; 2g; in
any case,q j 2.

Likewise, � 2 is a greatest common divisor of 4 and 6. C

Exercise 3.1.11
There are two greatest common divisors of 6 and 15; �nd both. C

We will now prove that greatest common divisorsexist|that is, any two integers have a
greatest common divisor|and that they are unique up to sign.

Theorem 3.1.12
Every pair of integers a; b has a greatest common divisor.

Proof. First note that if a = b = 0, then 0 is a greatest common divisor for a and b.
Moreover, we may takea; b to be non-negative, since divisibility is insensitive to sign. So
suppose thata; b> 0 and that a; b are not both zero.
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De�ne a set X � Z by

X = f au + bv j u; v 2 Z; au + bv > 0g

That is, X is the set of positive integers of the formau + bv.

X is inhabited. To see this, note that a2 > 0 or b2 > 0 sincea 6= 0 or b 6= 0, so letting
u = a and v = b in the expressionau + bv, we see that

au + bv = a2 + b2 > 0 ) a2 + b2 2 X

By the well-ordering principle, X has a least elementd, and by de�nition of X there exist
u; v 2 Z such that d = au + bv.

We will prove that d is a greatest common divisor fora and b.

� d j a. If a = 0, then this is immediate, so suppose thata > 0. Let q; r 2 Z be such
that

a = qd+ r and 0 6 r < d

Now a = a � 1 + b� 0, soa 2 X , and henced 6 a.

r = a � qd= a � q(au + bv) = a(1 � qu) + b(� qv)

If r > 0 then this implies that r 2 X ; but this would contradict minimality of d,
sincer < d . So we must haver = 0 after all.

� d j b. The proof of this is identical to the proof that d j a.

� Supposeq is an integer dividing both a and b. Then q j au + bv by Exercise 1.1.16.
Sinceau + bv = d, we haveq j d.

So d is a greatest common divisor ofa and b after all.

Exercise 3.1.13
Let a; b2 Z. If d and d0 are two greatest common divisors ofa and b, then either d = d0 or
d = � d0. C

Aside
A consequence of Theorem 3.1.12 and Exercise 3.1.13 is that every pair of integers has a
unique non-negative greatest common divisor! Written symbolically, we can say

8(a; b) 2 Z � Z; 9!d 2 Z;
�

d > 0 and d is a greatest
common divisor for a and b

�

As discussed in Section 2.3, since this is a formula of the form `for all . . . there exists a
unique . . . ', this de�nes a function gcd : Z � Z ! Z. We won't explicitly refer to the fact
that gcd is a function; rather, we'll just concern ourselves with its values, as in Notation
3.1.14. C
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Exercise 3.1.13 justi�es our use of the following notation to refer to greatest common
divisors.

Notation 3.1.14
Let a; b2 Z. Denote by gcd(a; b) (LATEX code: nmathrmf gcdg) the (unique!) non-negative
greatest common divisor ofa and b.

Example 3.1.15
In Example 3.1.10, we saw that both 2 and� 2 are greatest common divisors of 4 and 6.
Using Notation 3.1.14, we can now write gcd(4; 6) = 2. C

Exercise 3.1.16
For each n 2 Z, let Dn � Z be the set of divisors ofn. Prove that Da \ Db = Dgcd(a;b) for
all a; b2 Z. C

Our goal for the rest of this subsection is to investigate the behaviour of greatest common
divisors, �nd out how to compute them, and look into the implications they have for
solutions to certain kinds of equations.

Theorem 3.1.17
Let a; b; q; r 2 Z, and suppose thata = qb+ r . Then

gcd(a; b) = gcd( b; r)

Proof. Let d = gcd(a; b). We check that d satis�es the conditions required to be a greatest
common divisor of b and r .

Note that d j a and d j b, so let s; t 2 Z be such that a = sd and b = td.

� d j b by de�nition, and d j r since

r = a � qb= sd � qtd = ( s � qt)d

� Supposed0 j b and d0 j r ; say b = ud0 and r = vd0 with u; v 2 Z. Then d0 j a, since

a = qb+ r = qud0+ vd0 = ( qu+ v)d0

so d0 j d sinced = gcd(a; b).

So d is a greatest common divisor ofb and r . Sinced > 0, the result is shown.

Combined with the division theorem (Theorem 3.1.1), Theorem 3.1.17 gives a relatively
fast algorithm for computing the greatest common divisor of two integers, known as the
Euclidean algorithm .
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Proof tip
Euclidean algorithm. Let a; b2 Z. To �nd gcd( a; b), proceed as follows.

� Set r0 = jaj and r1 = jbj.

� Given rn� 2 and rn� 1, de�ne rn to be the remainder of rn� 2 divided by rn� 1.

� Stop when rn = 0; then rn� 1 = gcd(a; b).

C

Example 3.1.18
We will �nd the greatest common divisor of 148 and 28.

148 = 5 � 28 + 8

28 = 3 � 8 + 4

8 = 2 � 4 + 0  Stop!

Hence gcd(148; 28) = 4. Here the sequence of remainders is given by:

r0 = 148; r1 = 28; r2 = 8 ; r3 = 4 ; r4 = 0

C

Example 3.1.19
The Euclidean algorithm works surprisingly quickly, even for relatively large numbers.
Consider the problem of computing gcd(1311; 5757) for example:

5757 = 4 � 1311 + 513

1311 = 2 � 513 + 285

513 = 1 � 285 + 228

285 = 1 � 228 + 57

228 = 4 � 57 + 0  Stop!

Hence gcd(1311; 5757) = 57. Here the sequence of remainders is given by:

r0 = 5757; r1 = 1311; r2 = 513; r3 = 285; r4 = 228; r5 = 57; r6 = 0

C

Example 3.1.20
Here's an example where one of the numbers is negative: we compute the value of gcd(� 420; 76):

� 420 = (� 6) � 76 + 36

76 = 2 � 36 + 4

36 = 9 � 4 + 0  Stop!

Hence gcd(� 420; 76) = 4. C

136



Section 3.1. Division 137

Exercise 3.1.21
Use the Euclidean algorithm to compute the greatest common divisors of the following
pairs of integers

(12; 9); (100; 35); (7125; 1300); (1010; 101010); (� 4; 14)

C

The following theorem will be useful when we study modular arithmetic in Section 3.3; it
is called a `lemma' for historical reasons, and is really an important result in its own right.

Theorem 3.1.22 (Bézout's lemma)
Let a; b; c2 Z, and let d = gcd(a; b). The equation

ax + by = c

has a solution (x; y) 2 Z � Z if and only if d j c.

Proof. () ) Write a = a0d and b = b0d, for a0; b0 2 Z. If there exist x; y 2 Z such that
ax + by = c, then

c = ax + by = a0dx + b0dy = ( a0x + b0y)d

and sod j c.

(( ) Supposed j c, and let c = kd for somek 2 Z.

If c = 0, then a solution is x = y = 0. If c < 0, then ax + by = c if and only if
a(� x) + b(� y) = � c; so we may assume thatc > 0.

We proved in Theorem 3.1.12 that a greatest common divisor ofa and b is a least element
of the set

X = f au + bv j u; v 2 Z; au + bv > 0g

So let u; v 2 Z be such that au + bv = d. Then

a(ku) + b(kv) = k(au + bv) = kd = c

and so letting x = ku and y = kv, we see that the equationax + by = c has a solution
(x; y) 2 Z � Z.

B�ezout's lemma completely characterises when the equationax + by = c has a solution.
An easy generalisation of B�ezout's lemma provides a complete characterisation of when
solutions to linear Diophantine equations exist, that is equations of the form

ax + by = c
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where a; b; c2 Z. We will soon develop an algorithm for computing all solutions to these
equations.

Example 3.1.23
Here are some examples of applications of B�ezout's lemma.

� Consider the equation 1311x + 5757y = 12963. We computed in Example 3.1.19 that
gcd(1311; 5757) = 57. But 57 - 12963 since 12963 = 227� 57 + 24. By B�ezout's
lemma, the equation 1311x + 5757y = 12963 has no integer solutions.

� For �xed z, the equation 4u + 6v = z has solutions exactly whenz is even, since
gcd(4; 6) = 2.

� For �xed a; b, the equation au + bv = 0 always has solution. Indeed, settingu = b
and v = � a gives a solution; but we knew one had to exist since by Exercise 3.1.6
we know that d j 0 for all d 2 Z.

C

Exercise 3.1.24
Which of the following equations have solutions?

(a) 12u + 9v = � 18

(b) 12u + 9v = 1

(c) 100u + 35v = 125

(d) 7125u + 1300v = 0

(e) 1010u + 101010v = 1010101010101010

(f) 14u � 4v = 12

C

Coprimality

De�nition 3.1.25
Let a; b2 Z. We say a and b are coprime (or relatively prime ), and write a ? b (LATEX
code: nperp) (read `a is coprime to b'), if gcd( a; b) = 1.

Example 3.1.26
4 ? 9. To see this, note that if d j 4 then d 2 f� 4; � 2; � 1; 1; 2; 4g, and if d j 9 then
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d 2 f� 9; � 3; � 1; 1; 3; 9g. Hence if d j 4 and d j 9, then d = 1 or d = � 1. It follows that
gcd(4; 9) = 1. C

Exercise 3.1.27
Which integers in the set [15] are coprime to 15? C

Proposition 3.1.28
Let a; b2 Z. The following are equivalent:

(1) a and b are coprime;

(2) If d 2 Z with d j a and d j b, then d is a unit.

Proof. We prove that condition (1) implies condition (2), and vice versa.

� (1)) (2). Supposea and b are coprime, and �x d 2 Z with d j a and d j b. Then
d j gcd(a; b) = 1, so d is a unit.

� (2)) (1). Suppose condition (2) above holds. We prove that 1 satis�es the conditions
required to be a greatest common divisor ofa and b. The fact that 1 j a and 1 j b is
automatic; and the fact that if d j a and d j b implies d j 1 is precisely the condition
(2) that we are assuming.

Hence the two conditions are equivalent.

Proposition 3.1.29
Let a and b be integers, not both zero, and letd = gcd(a; b). The integers a

d and b
d are

coprime.

Exercise 3.1.30
Prove Proposition 3.1.29. C

The following corollary is a specialisation of B�ezout's lemma to the case whena and b are
coprime.

Corollary 3.1.31
Let a; b 2 Z. The equation au + bv = 1 has a solution if and only if a and b are coprime.
Moreover, if a and b are coprime, then the equationau+ bv = z has a solution for all z 2 Z.

Proof. By B�ezout's lemma (Theorem 3.1.22), the equation au + bv = 1 has a solution if
and only if gcd(a; b) j 1. But the only positive divisor of 1 is 1, so a solution exists if and
only if gcd(a; b) = 1, which is precisely the assertion that a and b are coprime.
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If a and b are coprime, then 1 = gcd(a; b) j z for all z 2 Z. So by B�ezout's lemma again,
the equation au + bv = z has a solution for all z 2 Z.

A useful consequence of B�ezout's lemma is the following result:

Proposition 3.1.32
Let a; b; c2 Z. If a and b are coprime anda j bc, then a j c.

Proof. By B�ezout's lemma (Theorem 3.1.22) there exist integersu and v such that au+ bv =
1. Multiplying by c givesacu+ bcv= c. Sincea j bc, we can write bc= ka for somek 2 Z,
and soacu + kav = c. But then

(cu + kv)a = c

which proves that a j c.

Linear Diophantine equations

We have now seen two important results:

� The Euclidean algorithm , which was a procedure for computing the greatest com-
mon divisor of two integers.

� B�ezout's lemma , which provides a necessary and su�cient condition for equations
of the form ax + by = c to have an integer solution.

We will now develop the reverse Euclidean algorithm , which provides a method for
computing a solutions to (bivariate) linear Diophantine equations, when such a solution
exists. Then we will prove a theorem that characterisesall integer solutions in terms of a
given solution.

Example 3.1.33
Suppose we want to �nd integers x and y such that 327x + 114y = 18. Running the
Euclidean algorithm yields that gcd(327; 114) = 3 | see below. For reasons soon to
become apparent, we rearrange each equation to express the remainder on its own.

327 = 2 � 114 + 99 ) 99 = 327 � 2 � 114 (1)

114 = 1 � 99 + 15 ) 15 = 114 � 1 � 99 (2)

99 = 6 � 15 + 9 ) 9 = 99 � 6 � 15 (3)

15 = 1 � 9 + 6 ) 6 = 15 � 1 � 9 (4)

9 = 1 � 6 + 3 ) 3 = 9 � 1 � 6 (5)

6 = 2 � 3 + 0
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We can then express 3 in the form 327u + 114v by successively substituting the equations
into each other:

� Equation (5) expresses 3 as a linear combination of 6 and 9. Substituting equation
(4) yields:

3 = 9 � 1 � (15 � 1 � 9) ) 3 = 2 � 9 � 1 � 15

� This now expresses 3 as a linear combination of 9 and 15. Substituting equation (3)
yields:

3 = 2 � (99 � 6 � 15) � 1 � 15 ) 3 = ( � 13) � 15 + 2 � 99

� This now expresses 3 as a linear combination of 15 and 99. Substituting equation (2)
yields:

3 = ( � 13) � (114� 1 � 99) + 2 � 99 ) 3 = 15 � 99� 13� 114

� This now expresses 3 as a linear combination of 99 and 114. Substituting equation
(1) yields:

3 = 15 � (327� 2 � 114) � 13� 114 ) 3 = ( � 43) � 114 + 15 � 327

Now that we've expressed 3 as a linear combination of 114 and 327, we're nearly done: we
know that 18 = 6 � 3, so multiplying through by 6 gives

18 = ( � 258) � 114 + 90 � 327

Hence (x; y) = (90 ; � 258) is a solution to the equation 327x + 114y = 18. C

Proof tip
Let a; b2 Z and let d = gcd(a; b). To �nd integers x; y such that ax + by = d:

(i) Run the Euclidean algorithm on the pair ( a; b), keeping track of all quotients and
remainders.

(ii) Rearrange each equation of the formrn� 2 = qn rn� 1 + rn to isolate rn .

(iii) Substitute for the remainders r k in reverse order until gcd(a; b) is expressed in the
form ax + by for somex; y 2 Z.

This process is called thereverse Euclidean algorithm . C

Exercise 3.1.34
Find a solution (x; y) 2 Z � Z to the equation 630x + 385y = 4340. C
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Now that we have a procedure for computingone solution to the equation ax + by = c,
we need to come up with a procedure for computingall solutions. This can be done by
proving the following theorem.

Theorem 3.1.35
Let a; b; c2 Z, where a and b are not both zero. Suppose thatx0 and y0 are integers such
that ax0 + by0 = c. Then, (x; y) 2 Z � Z is another solution to the equation ax + by = c if
and only if

x = x0 + k �
b

gcd(a; b)
and y = y0 � k �

a
gcd(a; b)

for somek 2 Z.

Thus, as soon as we've found one solution (x; y) = ( x0; y0) to the equation ax + by = c,
this theorem tells us what all other solutions must look like.

Proof of Theorem 3.1.35. We prove the two directions separately.

() ). First suppose that (x0; y0) is an integer solution to the equation ax + by = c. Let
k 2 Z and let

x = x0 + k �
b

gcd(a; b)
and y = y0 � k �

a
gcd(a; b)

Then

ax + by

= a
�

x0 + k �
b

gcd(a; b)

�
+ b

�
y0 � k �

a
gcd(a; b)

�
by de�nition of x and y

= ( ax0 + by0) + ak �
b

gcd(a; b)
� kb �

a
gcd(a; b)

rearranging

= ( ax0 + by0) +
kab� kab
gcd(a; b)

combining the fractions

= ax0 + by0 sincekab� kab = 0

= c since (x0; y0) is a solution

so (x; y) is indeed a solution to the equation.

(( ). First suppose that a ? b. Fix a solution (x0; y0) to the equation ax + by = c, and let
(x; y) be another solution. Then

a(x � x0) + b(y � y0) = ( ax0 + by0) � (ax + by) = c � c = 0
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so that
a(x � x0) = b(y0 � y)

Now a and b are coprime, so by Proposition 3.1.32, we havea j y0 � y and b j x � x0.
Let k; ` 2 Z be such that x � x0 = kb and y0 � y = `a. Then substituting into the above
equation yields

a � kb = b� `a

and hence (k � `)ab= 0. Since ab6= 0, we have k = `, so that

x = x0 + kb and y = y0 � ka

Now we drop the assumption that a ? b. Let gcd(a; b) = d > 1. We know that d j c, by
B�ezout's lemma (Theorem 3.1.22), and so

a
d

x +
b
d

y =
c
d

is another linear Diophantine equations, and moreovera
d ? b

d by Proposition 3.1.29. By
what we proved above, we have

x = x0 + k �
b
d

and y = y0 � k �
a
d

for somek 2 Z. But this is exactly what we sought to prove!

Example 3.1.36
We know that ( x; y) = (90 ; � 258) is a solution to the equation 327x + 114y = 18, and

327
gcd(327; 114)

=
327
3

= 109 and
114

gcd(327; 114)
=

114
3

= 38

so this theorem tells us that (x; y) 2 Z � Z is a solution to the equation 327x + 114y = 18
if and only if

x = 90 + 38 k and y = � 258� 109k

for somek 2 Z. C

Exercise 3.1.37
Find all integers x; y such that

630x + 385y = 4340

C
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Least common multiples

You would be forgiven for wondering why so much of the foregoing section was devoted to
greatest common divisors, with no mention of least common multiples. We will now give
the latter some attention.

De�nition 3.1.38
Let a; b2 Z. An integer m is a least common multiple of a and b if:

(a) a j m and b j m;

(b) If n is another integer such that a j n and b j n, then m j n.

In a sense that can be made precise, the de�nition of least common multiple isdual to
that of greatest common divisor (De�nition 3.1.9). [a] This means that many properties of
greatest common divisors have corresponding `dual' properties, which hold of least common
multiples. As such, we will not say much here about least common multiples, and that
which we do say is in the form of exercises.

Exercise 3.1.39
Let a; b 2 Z. Prove that a and b have a least common multiple. Furthermore, prove that
least common multiples are unique up to sign, in the sense that ifm; m0 are two least
common multiples of a and b, then m = m0 or m = � m0. C

As with greatest common divisors, Exercise 3.1.39 justi�es the following de�nition.

De�nition 3.1.40
Given a; b 2 Z, denote by lcm(a; b) (LATEX code: nmathrmf lcmg) the non-negative least
common multiple of a and b.

Exercise 3.1.41
Let a; b2 Z. Prove that gcd(a; b) � lcm(a; b) = jabj. C

[a] Speci�cally, we refer here to the dual of a preorder, i.e. a re
exive, transitive relation|see Chapter 5 for
more on this!
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Section 3.2

Prime numbers

Thinking of divisibility as a way of breaking downan integer, for example 12 = 2� 2 � 3,
our goal now is to show that:

� There are numbers which areatomic, in the sense that they can't be broken down
any further by division;

� . . . and every non-zero non-unit can be written as a product of these atomic numbers;

� . . . and this product is essentially unique.

There are a couple of fairly vague terms used here: `atomic' and `essentially unique'. We
will soon make these precise; the atomic numbers will be theirreducible and prime numbers
(two notions which coincide for the integers), and `essentially unique' will mean unique up
to reordering and multiplication by units.

Primes and irreducibles

De�nition 3.2.1
Let p be a non-zero non-unit. We sayp is prime if for all a; b 2 Z, if p j ab then p j a or
p j b.

Example 3.2.2
Here are some examples of prime and non-prime numbers:

� 2 is prime. Suppose not; then there exista; b 2 Z such that 2 j ab but 2 divides
neither a nor b. Thus a and b are both odd, meaning that ab is odd. . . but this
contradicts the assumption that 2 j ab.

� 6 is not prime. Indeed, 6j 2 � 3 but 6 divides neither 2 nor 3.

C

Exercise 3.2.3
Using De�nition 3.2.1, prove that 3 and 5 are prime and that 4 is not prime. C

Recall the de�nition of binomial coe�cients (De�nition 1.3.27).

Example 3.2.4
Let k 2 Z with 0 < k < 5. We'll show that 5 j

� 5
k

�
.
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Well, by Theorem 1.3.31 we know that

5! =
�

5
k

�
k!(5 � k)!

By Theorem 1.3.31, we have

5 � 4!| {z }
=5!

=
�

5
k

�
� 1 � � � � � k| {z }

= k!

� 1 � � � � � (5 � k)
| {z }

=(5 � k)!

Since 5 is prime, it must divide one of the factors on the right-hand side of this equation.
Thus, either 5 divides

� 5
k

�
, or it divides ` for some 1 6 ` 6 k or 1 6 ` 6 5 � k. But

k < 5 and 5� k < 5, so it cannot divide any of these values of̀ |if it did, it would imply
5 6 ` 6 k or 5 6 ` 6 5 � k, which is nonsense. Hence 5 must divide

� 5
k

�
. C

Exercise 3.2.5
Let p 2 Z be a positive prime and let 0< k < p . Show that p j

� p
k

�
. C

Aside
Most people are introduced to primes with a de�nition along the lines of p̀ is prime if p has
exactly two positive divisors'. We have avoided this to elucidate the fact that the integers
together with their arithmetic structure are the canonical example of a mathematical object
called a ring. The notion of a prime element can be de�ned in any ring as in De�nition
3.2.1. Secondly, these two de�nitions are equivalent inZ, but not in all rings. C

De�nition 3.2.6
Let a be a non-zero non-unit. We saya is reducible if a = mn for some non-unitsm; n;
otherwise it is irreducible .

Proposition 3.2.7
A non-zero non-unit p is irreducible if and only if the only divisors of p are p, � p, 1 and
� 1.

Proof. Supposep is irreducible and that a j p. Then p = ab for some b 2 Z. Since p is
irreducible, either a or b is a unit. If a is a unit then b = � p, and if b is a unit then a = � p.
So the only divisors ofp are � 1 and � p.

Conversely, suppose that the only divisors ofp are � 1 and � p, and let a; b2 Z with p = ab.
We want to prove that a or b is a unit. Since a j p, we havea 2 f 1; � 1; p; � pg. If a = � 1,
then a is a unit; if a = � p, then b = � 1, so that b is a unit. In any case, eithera or b is a
unit, and hence p is irreducible.

Example 3.2.8
A couple of examples of reducible and irreducible numbers are:
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� 2 is irreducible: if 2 = mn then either m or n is even, otherwise we'd be expressing
an even number as the product of two odd numbers. We may assumem is even, say
m = 2k; then 2 = 2kn, so kn = 1 and hencen is a unit.

� 6 is reducible since 6 = 2� 3 and both 2 and 3 are non-zero non-units.

C

Exercise 3.2.9
Prove that if p 2 Z is prime then p is irreducible. C

Lemma 3.2.10
Let a 2 Z be a non-zero non-unit. Then there are irreduciblesp1; : : : ; pn such that a =
p1 � � � � � pn .

Proof. We may assumea > 0, since if a < 0 we can just multiply by � 1.

We proceed by strong induction ona > 2. The base case hasa = 2 since we consider only
non-units.

� (BC ) We have shown that 2 is irreducible, so settingp1 = 2 yields a product of
primes.

� (IS ) Let a > 2 and suppose that each integerk with 2 6 k 6 a has an expression as
a product of irreducibles. If a + 1 is irreducible then we're done; otherwise we can
write a + 1 = st, where s; t 2 Z are non-zero non-units. We may assume further that
s and t are positive. Moreover,s < a + 1 and t < a + 1 since s; t > 2.

By the induction hypothesis, s and t have expressions as products of irreducibles.
Write

s = p1 � � � � � pm ; t = q1 � � � � � qn

This gives rise to an expression ofa as a product of irreducibles:

a = st = p1 � � � � � pm| {z }
= s

� q1 � � � � � qn| {z }
= t

By induction, we're done.

Theorem 3.2.11
Let p 2 Z. Then p is prime if and only if p is irreducible.

Proof. We prove the two directions separately.
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� Prime ) irreducible. This was Exercise 3.2.9.

� Irreducible ) prime. Supposep is irreducible. Let a; b 2 Z and supposep j ab.
We need to show that p j a or p j b. It su�ces to show that if p - a then p j b.

So supposep - a. Let d = gcd(p; a). Since d j p and p is irreducible, we must have
d = 1 or d = p by Proposition 3.2.7. Sincep - a and d j a, we must therefore have
d = 1.

By B�ezout's lemma (Theorem 3.1.22), there exist u; v 2 Z such that au + pv = 1.
Multiplying by b gives abu + pbv = b. Since p j ab, there exists k 2 Z such that
pk = ab. Then

b = abu+ pbv= pku + pbv= p(ku + bv)

so p j b, as required.

So we're done.

Since primes and irreducibles are the same thing inZ, we will refer to them as `primes',
unless we need to emphasise a particular aspect of them.

Prime factorisation

Having described prime numbers in two ways, each of which emphasises their nature of
being `unbreakable' by multiplication, we will extend Lemma 3.2.10 to prove that every
integer can be expressed as a product of primes in an essentially unique way.

Theorem 3.2.12 (Fundamental theorem of arithmetic)
Let a 2 Z be a non-zero non-unit. There exist primesp1; : : : ; pk 2 Z such that

a = p1 � � � � � pk

Moreover, this expression is essentially unique: ifa = q1 � � � � � q̀ is another expression of
a as a product of primes, thenk = ` and, re-ordering the qi if necessary, for eachi there is
a unit ui such that qi = ui pi .

Proof. We showed that such a factorisation exists in Lemma 3.2.10, with the word `prime'
replaced by the word `irreducible'. It remains to prove (essential) uniqueness.

Let k be least such that there is an expression ofa as a product of k primes, namely
a = p1 � � � � � pk . Let a = q1 � � � � � q̀ be any other such expression. We prove by induction
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on k that ` = k and, after re-ordering if necessary, for eachi there is a unit ui such that
qi = ui pi .

� (BC ) If k = 1 then a = p1 is itself prime. Then we havep1 = q1 � � � � � q̀ . Sincep1

is prime, p1 j qj for somej ; by swapping q1 and qj we may take j = 1, so that p1 j q1.
By irreducibility of q1 we haveq1 = u1p1 for some unit u1.

� (IS ) Let k > 1 and suppose that any integer which can be expressed as a product
of k primes is (essentially) uniquely expressible in such a way. Supposea has an
expression as a product ofk + 1 primes, and that k + 1 is the least such number.
Suppose also that

a = p1 � � � � � pk � pk+1 = q1 � � � � � q̀

Note that ` > k + 1. Since pk+1 is prime we must havepk+1 j qj for some j ; by
swapping qj and q̀ if necessary, we may takej = `, so that pk+1 j q̀ . As before,
q̀ = uk+1 pk+1 for some unit uk+1 . Dividing through by pk+1 gives

p1 � � � � � pk = q1 � � � � � q̀ � 1 � uk+1

Replacing q̀ � 1 by q̀ � 1uk+1 , which is still prime, we can apply the induction hypo-
thesis to obtain k = ` � 1, so k + 1 = `, and, after reordering if necessaryqi = ui pi

for all i 6 k. Since this also holds fori = k + 1, we're done.

By induction, we're done.

Example 3.2.13
Here are some examples of numbers written as products of primes:

� 12 = 2 � 2 � 3. We could also write this as 2� 3 � 2 or (� 2) � (� 3) � 2, and so on.

� 53 = 53 is an expression of 53 as a product of primes.

� � 1000 = 2 � 5 � (� 2) � 5 � 2 � 5.

C

Exercise 3.2.14
Express the following numbers as products of primes:

16 � 240 5050 111111 � 123456789

C

To make things slightly more concise, we introduce a standard way of expressing a number
as a product of primes:
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De�nition 3.2.15
The canonical prime factorisation of a non-zero non-unita 2 Z is the expression in the
form

a = upj 1
1 � � � pj r

r

where:
� u = 1 if a > 0, and u = � 1 if a < 0;

� The numbers pi are all positive primes;

� p1 < p 2 < � � � < p r ;

� j i > 1 for all i .
We call j i the multiplicity of pi in the factorisation of a, and we call u the sign of a.

Typically we omit u if u = 1, and just write a minus sign ( � ) if u = � 1.

Example 3.2.16
The canonical prime factorisations of the integers given in Example 3.2.13 are:

� 12 = 22 � 3.

� 53 = 53.

� � 1000 = � 23 � 53.

C

Exercise 3.2.17
Write out the canonical prime factorisations of the numbers from Exercise 3.2.14, which
were:

16 � 240 5050 111111 � 123456789

C

The following exercise provides another tool for computing reastgreatest common divisors
of pairs of integers by looking at their prime factorisations.

Exercise 3.2.18
Let p1; p2; : : : ; pr be distinct primes, and let ki ; ` i 2 N for all 1 6 i 6 r . De�ne

m = pk1
1 � pk2

2 � � � � � pkr
r and n = p`1

1 � p`2
2 � � � � � p` r

r

Prove that
gcd(m; n) = pu1

1 � pu2
2 � � � � � pur

r

where ui = min f ki ; ` i g for all 1 6 i 6 r . C
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Example 3.2.19
We use Exercise 3.2.18 to compute the greatest common divisor of 17640 and 6468.

First we compute the prime factorisations of 17640 and 6468:

17640 = 23 � 32 � 5 � 72 and 6468 = 22 � 3 � 72 � 11

It now follows from Exercise 3.2.18 that

gcd(17640; 6468) = 22 � 31 � 50 � 72 � 110

= 4 � 3 � 1 � 49� 1

= 588

C

Distribution of primes

So far we have seen several examples of prime numbers; to name a few, we've seen 2, 3, 5
and 53. It might seem like the prime numbers go on forever, but proving this is less than
obvious.

Exercise 3.2.20
Let P be an inhabited �nite set of positive prime numbers and let m be the product of all
the elements ofP. That is, for some n > 1 let

P = f p1; : : : ; png and m = p1 � � � � � pn

where eachpk 2 P is a positive prime. Using the fundamental theorem of arithmetic, show
that m + 1 has a positive prime divisor which is not an element ofP. C

Theorem 3.2.21
There are in�nitely many primes.

Proof. We prove that there are in�nitely many positive prime numbers|the result then
follows immediately. Let P be the set of all positive prime numbers. ThenP is inhabited,
since 2 2 P, for example. If P were �nite, then by Exercise 3.2.20, there would be a
positive prime which is not an element ofP|but P contains all positive primes, so that
is impossible. Hence there are in�nitely many positive primes.

This is one proof of many, which is due to Euclid around 2300 years ago. We might
hope that a proof of the in�nitude of primes gives some insight into how the primes are
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distributed. That is, we might ask questions like: how frequently do primes occur? How
fast does the sequence of primes grow? How likely is there to be a prime number in a given
set of integers?

As a starting point, Euclid's proof gives an algorithm for writing an in�nite list of primes:

� Let p1 = 2; we know that 2 is prime;

� Given p1; : : : ; pn , let pn+1 be the smallest positive prime factor ofp1 � � � � � pn + 1.

The �rst few terms produced would be:

� p1 = 2 by de�nition;

� 2 + 1 = 3, which is prime, so p2 = 3;

� 2 � 3 + 1 = 7, which is prime, so p3 = 7;

� 2 � 3 � 7 + 1 = 43, which is prime, so p4 = 43;

� 2 � 3 � 7 � 43 + 1 = 1807 = 13 � 139, sop5 = 13;

� 2 � 3 � 7 � 43� 13 + 1 = 23479 = 53 � 443, sop6 = 53;

� . . . and so on.

The sequence obtained, called theEuclid{Mullin sequence, is a bit bizarre:

2; 3; 7; 43; 13; 53; 5; 6221671; 38709183810571; 139; 2801; 11; 17; 5471; : : :

Big primes like 38709183810571 often appear before small primes like 11. It remains
unknown whether or not every positive prime number appears in this list!

The chaotic nature of this sequence makes it di�cult to extract information about how the
primes are distributed: the numbers p1 � � � � � pn + 1 grow very quickly|indeed, it must
be the case thatp1 � � � � � pn + 1 > 2n for all n|so the upper bounds for the sequence
grow at least exponentially.

Another proof of the in�nitude of primes that gives a (slightly) tighter bound can be
obtained using the following exercise.

Exercise 3.2.22
Let n 2 Z with n > 2. Prove that the set f k 2 Z j n < k < n !g contains a prime
number. C
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Section 3.3

Modular arithmetic

It turns out that much arithmetic can be done by considering only the remainders of
integers when divided by a �xed integer. Here is a simple example:

Example 3.3.1
Supposea1 has remainderr1 and a2 has remainderr2 when divided by 7. That is, there
exist q1; q2 2 Z such that

a1 = 7q1 + r1 and a2 = 7q2 + r2

Then a1 + a2 has the same remainder asr1 + r2 when divided by 7. Indeed, suppose
a1 + a2 = 7q + r , where 06 r < 7. Then

r1 + r2 = ( a1 � 7q1) + ( a2 � 7q2)

= ( a1 + a2) + 7( � q1 � q2)

= (7 q + r ) + 7( � q1 � q1)

= 7( q � q1 � q2) + r

An example of this in action: 41 = 5 � 7 + 6 and 240 = 34� 7 + 2, so the remainders of 41
and 240 when divided by 7 are 6 and 2, respectively. Now

41 + 240 = 281 = 40 � 7 + 1 and 6 + 2 = 8 = 1 � 7 + 1

which demonstrates that 41 + 240 and 6 + 2 have the same remainder when divided by
7. C

In this section we will study the extent to which we can do arithmetic with integers knowing
only their remainders upon division by a given integer.

De�nition 3.3.2
Fix n 2 Z. Given integers a; b2 Z, we saya is congruent to b modulo n, and write

a � b mod n (LATEX code: a nequiv b nbmodf ng)

if n j a � b. If a is not congruent to b modulo n, write

a 6� b mod n (LATEX code: nnot nequiv )

The number n is called the modulus of the congruence.
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Convention 3.3.3
When talking about modular arithmetic, we will restrict our attention to positive integers.
This is because for any integersa; b; n we have

a � b mod n , a � b mod (� n)

and a � b mod 0 if and only if a = b. Thus, whenever we write `modn' or specify that a
variable n is a `modulus', it is implicit that n is an integer and n > 0. This will shorten
some of our proofs. C

Example 3.3.4
Some examples of congruence modulon are as follows:

� 16 � 30 mod 2 since 30� 16 = 14, which is a multiple of 2.

� 44 � 20 mod 6 since 20� 44 = � 24, which is a multiple of 6.

C

Exercise 3.3.5
Show that if a; b2 Z with a; b> 0 then a � b mod 10 if and only if the decimal expressions
of a and bend in the same digit. What happens whena and bare allowed to be negative? C

It is important from the outset to point out that, although congruence is written with
a symbol that looks like that of equality (` � ' vs. `='), we can only treat congruence like
equality inasmuch as we have proved we can. Speci�cally, the ways in which congruence
can be treated like equality will be proved in two theorems:

� Theorem 3.3.6 tells us that congruence satis�es three extremely basic properties of
equality.[b] One useful consequence of this is that it is valid to use strings of congru-
ences, for example

� 5 � 18 � 41 � 64 mod 23 ) � 5 � 64 mod 23

� Theorem 3.3.9 tells us that we can treat congruence like equality for the purposes of
addition, multiplication and subtraction. Thus it will be valid to write things like

x � 7 mod 12 ) 2x + 5 � 19 mod 12

and we'll be able to replace values by congruent values in congruences, provided
they're only being added, subtracted or multiplied. For example, from the knowledge
that 260 � 1 mod 61 and 60!� � 1 mod 61, we will be able to deduce

260 � 3 � 60! � x mod 61 ) 3 � � x mod 61
[b] Using the language of De�nition 5.1.31, Theorem 3.3.6 says precisely that congruence is anequivalence

relation .
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Don't let these properties shared by congruence and equality lull you into a false sense
of security! We will soon see that for other purposes, such as division and various other
algebraic operations, congruence doesnot behave like equality.

Theorem 3.3.6
Let a; b; c2 Z and let n be a modulus. Then

(a) a � a mod n;

(b) If a � b mod n, then b � a mod n;

(c) If a � b mod n and b � c mod n, then a � c mod n.

Proof.

(a) Note that a � a = 0, which is divisible by n since 0 = 0� n, and hencea � a mod n.

(b) Supposea � b mod n. Then n j a � b, so that a � b = kn for some k 2 Z. Hence
b� a = � kn, and son j b� a, so that b � a mod n as required.

(c) Supposea � b mod n and b � c mod n. Then n j a � b and n j b � c, so there exist
k; ` 2 Z such that

a � b = kn and b� c = `n

Hencea � c = ( a � b) + ( b� c) = ( k + `)n, so that n j a � c. Hencea � c mod n, as
required.

There is a slightly simpler characterisation of congruence modulon, as seen in Proposition
3.3.7 below.

Proposition 3.3.7
Fix a modulus n and let a; b2 Z. The following are equivalent:

(i) a and b leave the same remainder when divided byn;

(ii) a = b+ kn for somek 2 Z;

(iii) a � b mod n.

Proof. We prove (i) , (iii) and (ii) , (iii).
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� (i) ) (iii). Suppose a and b leave the same remainder when divided byn, and let
q1; q2; r 2 Z be such that

a = q1n + r; b = q2n + r and 0 6 r < n

Then a � b = ( q1 � q2)n, which proves that n j a � b, and soa � b mod n.

� (iii) ) (i). Suppose that a � b mod n, so that b� a = qn for someq 2 Z. Write

a = q1n + r1; b = q2n + r2 and 0 6 r1; r2 < n

We may further assume that r1 6 r2. (If not, swap the roles of a and b|this is �ne,
sincen j b� a if and only if n j a � b.) Now we have

b� a = qn ) (q2n + r2) � (q1n + r1) = qn

) (q2 � q1 � q)n + ( r2 � r1) = 0 rearranging

since 06 r1 6 r2 < n we have 06 r2 � r1 < n , so that r2 � r1 is the remainder of 0
when divided by n. That is, r2 � r1 = 0, so r1 = r2. Hencea and b have the same
remainder when divided by n.

� (ii) , (iii). We unpack the de�nitions of (ii) and (iii) to see that they are equivalent.
Indeed

(ii) , a = b+ kn for somek 2 Z

, a � b = kn for somek 2 Z rearranging

, n j a � b by de�nition of divisibility

, a � b mod n by de�nition of congruence

, (iii)

Discussion 3.3.8
Where in the proof of Proposition 3.3.7 did we rely on the convention that the modulusn
is positive? Is the result still true if n is negative? C

The following theorem tells us that, in a very limited sense, the� symbol can be treated as a
= symbol for the purposes of doing addition, subtraction and multiplication. Emphatically,
it does not say that we can treat �̀ ' like `=' for the purposes of doing division.
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Theorem 3.3.9 (Modular arithmetic)
Fix a modulus n, and let a1; a2; b1; b2 2 Z be such that

a1 � b1 mod n and a2 � b2 mod n

Then the following congruences hold:
(a) a1 + a2 � b1 + b2 mod n;

(b) a1a2 � b1b2 mod n;

(c) a1 � a2 � b1 � b2 mod n.

Proof. By De�nition 3.3.2 that n j a1 � b1 and n j a2 � b2, so there existq1; q2 2 Z such
that

a1 � b1 = q1n and a2 � b2 = q2n

This implies that

(a1 + a2) � (b1 + b2) = ( a1 � b1) + ( a2 � b2) = q1n + q2n = ( q1 + q2)n

so n j (a1 + a2) � (b1 + b2). This proves (a).

The algebra for (b) is slightly more involved:

a1a2 � b1b2 = ( q1n + b1)(q2n + b2) � b1b2

= q1q2n2 + b1q2n + b2q1n + b1b2 � b1b2

= q1q2n2 + b1q2n + b2q1n

= ( q1q2n + b1q2 + b2q1)n

This shows that n j a1a2 � b1b2, thus proving (b).

Now (a) and (b) together imply (c). Indeed, we know that � 1 � � 1 mod n and b1 �
b2 mod n, so by (b) we have� b1 � � b2 mod n. We also know that a1 � a2 mod n, and
hencea1 � b1 � a2 � b2 mod n by (a).

Theorem 3.3.9 allows us to perform algebraic manipulations with congruences as if they
were equations, provided all we're doing is adding, multiplying and subtracting.

Example 3.3.10

157



158 Chapter 3. Number theory

We will solve the congruence 3x � 5 � 2x + 3 mod 7 for x:

3x � 5 � 2x + 3 mod 7

, x � 5 � 3 mod 7 () ) subtract 2x (( ) add 2x

, x � 8 mod 7 () ) add 5 (( ) subtract 5

, x � 1 mod 7 since 8� 1 mod 7

So the integersx for which 3x � 5 and 2x + 3 leave the same remainder when divided by
7, are precisely the integersx which leave a remainder of 1 when divided by 7:

3x � 5 � 2x + 3 mod 7 , x = 7q + 1 for some q 2 Z

C

Exercise 3.3.11
For which integers x does the congruence 5x + 1 � x + 8 mod 3 hold? Characterise such
integers x in terms of their remainder when divided by 3. C

So far this all feels like we haven't done very much: we've just introduced a new symbol
� which behaves just like equality. . . but does it really? The following exercises should
expose some more ways in which congruencedoesbehave like equality, and some in which
it doesn't.

Exercise 3.3.12
Fix a modulus n. Is it true that

a � b mod n ) ak � bk mod n

for all a; b2 Z and k 2 N? If so, prove it; if not, provide a counterexample. C

Exercise 3.3.13
Fix a modulus n. Is it true that

k � ` mod n ) ak � a` mod n

for all k; ` 2 N and a 2 Z? If so, prove it; if not, provide a counterexample. C

Exercise 3.3.14
Fix a modulus n. Is it true that

qa � qbmod n ) a � b mod n

for all a; b; q2 Z with q 6� 0 mod n? If so, prove it; if not, provide a counterexample. C
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Common error
The false sense of security that Theorem 3.3.9 induces often leads students new to all this
to the belief that � and = are interchangeable concepts. This is emphaticallynot the case.
In particular:

� Fractions don't make sense in modular arithmetic; for instance, it is invalid to say
2x � 1 mod 5 impliesx � 1

2 mod 5.

� Square roots don't make sense in modular arithmetic; for instance, it is invalid to say
x2 � 3 mod 4 impliesx � �

p
3 mod 4.

� Numbers in exponents cannot be replaced by congruent numbers; for instance, it is
invalid to say x3 � 23 mod 4 implies x � 2 mod 4.

C

Multiplicative inverses

We made a big deal about the fact that fractions don't make sense in modular arithmetic.
That is, it is invalid to say

2x � 1 mod 5 ) x �
1
2

mod 5

Despite this, we can still make sense of `division', provided we change what we mean when
we say `division'. Indeed, the congruence 2x � 1 mod 5 has a solution:

2x � 1 mod 5

, 6x � 3 mod 5 () ) multiply by 3 ( ( ) subtract 3

, x � 3 mod 5 since 6� 1 mod 5

Here we didn't divide by 2, but we still managed to cancel the 2 by instead multiplying
through by 3. For the purposes of solving the equation this had the same e�ect as division
by 2 would have had if we were allowed to divide. The key here was that 2� 3 � 1 mod 5.

De�nition 3.3.15
Fix a modulus n. Given a 2 Z, a multiplicative inverse for a modulo n is an integer u
such that au � 1 mod n.

Example 3.3.16
Some examples of multiplicative inverses are as follows:
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� 2 is a multiplicative inverse of itself modulo 3, since 2� 2 � 4 � 1 mod 3.

� 2 is a multiplicative inverse of 3 modulo 5, since 2� 3 � 6 � 1 mod 5.

� 7 is also a multiplicative inverse of 3 modulo 5, since 3� 7 � 21 � 1 mod 5.

� 3 has no multiplicative inverse modulo 6. Indeed, supposeu 2 Z with 3u � 1 mod 6.
Then 6 j 3u � 1, so 3u � 1 = 6q for someq 2 Z. But then

1 = 3u � 6q = 3( u � 2q)

which implies that 3 j 1, which is nonsense.

C

Knowing when multiplicative inverses exist is very important for solving congruences: if
u is a multiplicative inverse for a modulo n, then we can solve equations of the form
ax � b mod n extremely easily:

ax � b mod n ) x � ub mod n

Exercise 3.3.17
For n = 7 ; 8; 9; 10; 11; 12, either �nd a multiplicative inverse for 6 modulo n, or show that
no multiplicative inverse exists. Can you spot a pattern? C

Some authors write a� 1 to denote multiplicative inverses. We refrain from this, since
it suggests that multiplicative inverses are unique|but they're not, as you'll see in the
following exercise.

Exercise 3.3.18
Let n be a modulus and leta 2 Z. Suppose thatu is a multiplicative inverse for a modulo
n. Prove that, for all k 2 Z, u + kn is a multiplicative inverse for a modulo n. C

Proposition 3.3.19
Let a 2 Z and let n be a modulus. Thena has a multiplicative inverse modulo n if and
only if a ? n.

Proof. Note that a has a multiplicative inverse u modulo n if and only if there is a solution
(u; v) to the equation au + nv = 1. Indeed, au � 1 mod n if and only if n j au � 1, which
occurs if and only if there is someq 2 Z such that au � 1 = nq. Setting q = � v and
rearranging yields the desired equivalence.

By B�ezout's lemma (Theorem 3.1.22), such a solution (u; v) exists if and only if gcd(a; n) j 1.
This occurs if and only if gcd(a; n) = 1, i.e. if and only if a ? n.
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Section 3.3. Modular arithmetic 161

Proof tip
To solve a congruence of the formax � b mod n when a ? n, �rst �nd a multiplicative
inverse u for a modulo n, and then simply multiply through by u to obtain x � ub mod
n. C

Corollary 3.3.20
Let a; p 2 Z, wherep is a positive prime. If p - a then a has a multiplicative inverse modulo
p.

Proof. Supposep - a, and let d = gcd(a; p). Since d j p and p is prime we haved = 1 or
d = p. Sinced j a and p - a we can't have d = p; therefore d = 1. By Proposition 3.3.19, a
has a multiplicative inverse modulo p.

Example 3.3.21
11 is prime, so each of the integersa with 1 6 a 6 10 should have a multiplicative inverse
modulo 11. And indeed, the following are all congruent to 1 modulo 11:

1 � 1 = 1 2 � 6 = 12 3 � 4 = 12 4 � 3 = 12 5 � 9 = 45
6 � 2 = 12 7 � 8 = 56 8 � 7 = 56 9 � 5 = 45 10 � 10 = 100

C

Exercise 3.3.22
Find all integers x such that 25x � 4 � 4x + 3 mod 13. C

Orders and totients

For any modulus n, there are only �nitely many possible remainders modulo n. A nice
consequence of this �niteness is that, whena ? n, we can choose some power ofa to be its
multiplicative inverse, as proved in the following exercise.

Exercise 3.3.23
Let n be a modulus and leta 2 Z with a ? n. Prove that there exists k > 1 such that
ak � 1 mod n. C

Exercise 3.3.23, together with the well-ordering principle, justify the following de�nition.

De�nition 3.3.24
Let n be a modulus and leta 2 Z with a ? n. The order of a modulo n is the least k > 1
such that ak � 1 mod n.

Note that this de�nition makes sense by Exercise 3.3.23 and the well-ordering principle.
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162 Chapter 3. Number theory

Example 3.3.25
The powers of 7 modulo 100 are:

� 71 = 7, so 71 � 7 mod 100;

� 72 = 49, so 72 � 49 mod 100;

� 73 = 343, so 73 � 43 mod 100;

� 74 = 2401, so 74 � 1 mod 100.

Hence the order of 7 modulo 100 is 4, and 73 and 43 are multiplicative inverses of 7 modulo
100. C

Our focus turns to computing speci�c values ofk such that ak � 1 mod n, whenevera 2 Z
and a ? n. We �rst focus on the case whenn is prime; then we develop the machinery of
totients to study the case whenn is not prime.

Lemma 3.3.26
Let a; b2 Z and let p 2 Z be a positive prime. Then (a + b)p � ap + bp mod p.

Proof. By the binomial theorem (Theorem 1.3.34), we have

(a + b)p =
pX

k=0

�
p
k

�
akbp� k

By Exercise 3.2.5, p j
� p

k

�
for all 0 < k < p , and hence

� p
k

�
akbp� k � 0 mod p for all

0 < k < p . Thus

(a + b)p �
�

p
0

�
a0bp� 0 +

�
p
p

�
apbp� p � ap + bp mod p

as desired.

Theorem 3.3.27 (Fermat's little theorem)
Let a; p 2 Z with p a positive prime. Then ap � a mod p.

Proof. We may assume thata > 0, otherwise replacea by its remainder modulo p.

We will prove that ap � a mod p by induction on a.

� (BC ) Since p > 0 we have 0p = 0, hence 0p � 0 mod p.
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� (IS ) Fix a > 0 and supposeap � a mod p. Then (a+ 1) p � ap + 1 p mod p by Lemma
3.3.26. Now ap � a mod p by the induction hypothesis, and 1p = 1, so we have
(a + 1) p � a + 1 mod p.

By induction, we're done.

Corollary 3.3.28
Let a; p 2 Z with p a positive prime and p - a. then ap� 1 � 1 mod p.

Proof. Since p - a, it follows that a ? p. Fermat's little theorem (Theorem 3.3.27) tells
us that ajpj � a mod p. By Proposition 3.3.19, a has a multiplicative inverse b modulo p.
Hence

apb � abmod p

But apb � ap� 1abmod p, and ab � 1 mod p, so we get

ap� 1 � 1 mod p

as required.

This can be useful for computing remainders of humongous numbers when divided by
smaller primes.

Example 3.3.29
We compute the remainder of 21000 when divided by 7. By Fermat's little theorem (The-
orem 3.3.27), we know that 27 � 2 mod 7. Since 7- 2, it follows that 2 has a multiplicative
inverse modulo 7, so we can cancel it from both sides to obtain 26 � 1 mod 7. Now
1000 = 166� 6 + 4, so

21000 � 2166� 6+4 � (26)166 � 24 � 24 � 16 � 2 mod 7

so the remainder of 21000 when divided by 7 is 2. C

Exercise 3.3.30
Find the remainder of 3244886 when divided by 13. C

Unfortunately, the hypothesis that p is prime in Fermat's little theorem is necessary. For
example, 6 is not prime, and 56� 1 = 5 5 = 3125 = 520 � 6 + 5, so 55 � 5 mod 6.

De�nition 3.3.31
Let n 2 Z. The totient of n is the natural number ' (n) (LATEX code: nvarphi(n) ), which
is the number of integers from 1 up tojnj which are coprime to n.a

aMore succinctly, we have ' (n) = jf k 2 [jnj] j k ? ngj, where the notation jX j is de�ned in De�nition 4.1.39.
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164 Chapter 3. Number theory

Example 3.3.32
Here are some examples of totients:

� The elements of [6] which are coprime to 6 are 1 and 5, so' (6) = 2.

� If p is a positive prime, then every element of [p] is coprime to p except for p itself.
Hence if p is a positive prime then ' (p) = p � 1. More generally, if p is prime then
' (p) = jpj � 1.

C

Exercise 3.3.33
Prove that if p is a positive prime and k > 1 then

' (pk ) = pk � pk� 1

C

Theorem 3.3.34 (Euler's theorem)
Let n be a modulus and leta 2 Z with a ? n. Then

a' (n) � 1 mod n

Proof. By de�nition of totient, the set X de�ned by

X = f k 2 [n] j k ? ng

has ' (n) elements. List the elements as

X = f x1; x2; : : : ; x ' (n)g

Note that axi ? n for all i , so let yi be the (unique) element ofX such that axi � yi mod n.

Note that if i 6= j then yi 6= yj . We prove this by contraposition; indeed, sincea ? n, by
Proposition 3.3.19,a has a multiplicative inverse, sayb. Then

yi � yj mod n ) axi � axj mod n ) baxi � baxj mod n ) x i � x j mod n

and x i � x j mod n if and only if i = j . Thus

X = f x1; x2; : : : ; x ' (n)g = f y1; y2; : : : ; y' (n)g
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This means that the product of the x̀ i 's is equal to the product of the ỳi 's, and hence

x1 � : : : � x ' (n)

� y1 � : : : � y' (n) mod n sincef x1; : : : g = f y1; : : : g

� (ax1) � : : : � (ax ' (n) ) mod n sinceyi � axi mod n

� a' (n) � x1 � : : : � x ' (n) mod n rearranging

Since eachx i is coprime to n, we can cancel thex i terms (by multiplying by their multi-
plicative inverses) to obtain

a' (n) � 1 mod n

as required.

Example 3.3.35
Some examples of Euler's theorem in action are as follows:

� We have seen that' (6) = 2, and we know that 5 ? 6. And, indeed,

5' (6) = 5 2 = 25 = 4 � 6 + 1

so 5' (6) � 1 mod 6.

� By Exercise 3.3.33, we have

' (121) = ' (112) = 11 2 � 111 = 121 � 11 = 110

Moreover, given a 2 Z, a ? 121 if and only if 11 - a. Hence a110 � 1 mod 121
whenever 11- a.

C

Wilson's theorem

We conclude this chapter on number theory with Wilson's theorem, which is a nice result
that completely characterises prime numbers in the sense that we can tell when a number
is prime by computing the remainder of (n � 1)! when divided by n.

Let's test a few numbers �rst:
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n (n � 1)! remainder
2 1 1
3 2 2
4 6 2
5 24 4
6 120 0
7 720 6
8 5040 0

n (n � 1)! remainder
9 40320 0
10 362880 0
11 3628800 10
12 39916800 0
13 479001600 12
14 6227020800 0
15 87178291200 0

It's tempting to say that an integer n > 1 is prime if and only if n - (n � 1)!, but this isn't
true since it fails when n = 4. But it's extremely close to being true.

Theorem 3.3.36 (Wilson's theorem)
Let n > 1 be a modulus. Thenn is prime if and only if ( n � 1)! � � 1 mod n.

The following sequence of exercises will piece together into a proof of Wilson's theorem.

Exercise 3.3.37
Let n 2 Z be composite. Prove that if n > 4, then n j (n � 1)!. C

Exercise 3.3.38
Let p be a positive prime and let a 2 Z. Prove that, if a2 � 1 mod p, then a � 1 mod p or
a � � 1 mod p. C

Exercise 3.3.38 implies that the only elements of [p � 1] that are their own multiplicative
inverses are 1 andp� 1; this morsel of information allows us to deduce result in the following
exercise.

Exercise 3.3.39
Let p be a positive prime. Prove that (p � 1)! � � 1 mod p. C

Proof of Wilson's theorem (Theorem 3.3.36). Let n > 1 be a modulus.

� If n is prime, then (n � 1)! � � 1 mod n by Exercise 3.3.39.

� If n is composite, then eithern = 4 or n > 4. If n = 4 then

(n � 1)! = 3! = 6 � 2 mod 4

and so (n � 1)! 6� � 1 mod n. If n > 4, then

(n � 1)! � 0 mod n

by Exercise 3.3.37.
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Hence (n � 1)! � � 1 mod n if and only if n is prime, as desired.

Since Wilson's theorem completely characterises the positive prime numbers, we could have
de�ned `n is prime', for n > 1, to mean that (n� 1)! � � 1 mod n. We don't do this because,
although this is an interesting result, it is not particularly useful in applications. We might
even hope that Wilson's theorem gives us an easy way to test whether a number is prime,
but unfortunately even this is a bust: computing the remainder (n � 1)! on division by n
is not particularly e�cient.

However, there are some nice applications of Wilson's theorem, which we will explore now.

Example 3.3.40
We'll compute the remainder of 345 � 44! when divided by 47. Note that 345 � 44! is equal to a
monstrous number with 76 digits; I don't recommend doing the long division! Anyway. . .

� 47 is prime, so we can apply both Fermat's little theorem (Theorem 3.3.27) and
Wilson's theorem (Theorem 3.3.36).

� By Fermat's little theorem, we know that 3 46 � 1 mod 47. Since 3� 16 = 48 �
1 mod 47, we have

345 � 345 � (3 � 16) � 346 � 16 � 16 mod 47

� By Wilson's theorem, we have 46!� � 1 mod 47. Now

� 46 � � 1 mod 47, so 46 is its own multiplicative inverse modulo 47.

� The extended Euclidean algorithm yields 45� 23 � 1 mod 47.

So we have

44! = 44! � (45 � 23) � (46 � 46) � 46! � 23� 46 � (� 1) � 23� (� 1) � 23 mod 47

Putting this information together yields

345 � 44! � 16� 23 = 368 � 39 mod 47

So the remainder left when 345 � 44! is divided by 47 is 39. C

Exercise 3.3.41
Let p be an odd positive prime. Prove that

��
p � 1

2

�
!
� 2

� (� 1)
p+1

2 mod p

C
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Chinese remainder theorem

We introduce the Chinese remainder theorem with an example.

Example 3.3.42
We �nd all integer solutions x to the system of congruences

x � 2 mod 5 and x � 4 mod 8

Note that x � 4 mod 8 if and only if x = 4 + 8 k for somek 2 Z. Now, for all k 2 Z we
have

x � 2 mod 5

, 4 + 8k � 2 mod 5 sincex = 4 + 8 k

, 8k � � 2 mod 5 subtracting 4

, 3k � 3 mod 5 since 8� � 2 � 3 mod 5

, k � 1 mod 5 multiplying by a multiplicative inverse for 3 modulo 5

So 4 + 8k � 2 mod 5 if and only if k = 1 + 5 ` for some` 2 Z.

Combining this, we see thatx satis�es both congruences if and only if

x = 4 + 8(1 + 5 `) = 12 + 40 `

for some` 2 Z.

Hence the integersx for which both congruences are satis�ed are precisely those integers
x such that x � 12 mod 40. C

Exercise 3.3.43
Find all integer solutions x to the system of congruences:

8
><

>:

x � � 1 mod 4

x � 1 mod 9

x � 5 mod 11

Express your solution in the form x � a mod n for suitable n > 0 and 06 a < n . C

Exercise 3.3.44
Let m; n be coprime moduli and let a; b2 Z. Let u; v 2 Z be such that

mu � 1 mod n and nv � 1 mod m

In terms of a; b; m; n; u; v, �nd an integer x such that

x � a mod m and x � b mod n

C
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Exercise 3.3.45
Let m; n be coprime moduli and letx; y 2 Z. Prove that if x � y mod m and x � y mod n,
then x � y mod mn. C

Theorem 3.3.46 (Chinese remainder theorem)
Let m; n be moduli and let a; b 2 Z. If m and n are coprime, then there exists an integer
solution x to the simultaneous congruences

x � a mod m and x � b mod n

Moreover, if x; y 2 Z are two such solutions, thenx � y mod mn.

Proof. Existence of a solutionx is precisely the content of Exercise 3.3.44.

Now let x; y 2 Z be two solutions to the two congruences. Then
(

x � a mod m

y � a mod m ) x � y mod m
(

x � b mod n

y � b mod n ) x � y mod n

so by Exercise 3.3.45, we havex � y mod mn, as required.

We now generalise the Chinese remainder theorem to the case when the modulim; n are not
assumed to be coprime. There are two ways we could make this generalisation: either we
could reduce the more general version of the theorem to the version we proved in Theorem
3.3.46, or we could prove the more general version from scratch. We opt for the latter
approach, but you might want to consider what a `reductive' proof would look like.

Theorem 3.3.47
Let m; n be moduli and let a; b 2 Z. There exists an integer solutionx to the system of
congruences

x � a mod m and x � b mod n

if and only if a � b mod gcd(m; n).
Moreover, if x; y 2 Z are two such solutions, thenx � y mod lcm(m; n)

Proof. Let d = gcd(m; n), and write m = m0d and n = n0d for somem0; n0 2 Z.

We prove that an integer solution x to the system of congruences exists if and only if
a � b mod d.
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� () ) Suppose an integer solutionx to the system of congruences exists. Then there
exist integers k; ` such that

x = a + mk = b+ n`

But m = m0d and n = n0d, so we havea + m0dk = b+ n0d`, and so

a � b = ( n0̀ � m0k)d

so that a � b mod d, as required.

� (( ) Supposea � b mod d, and let t 2 Z be such that a � b = td. Let u; v 2 Z be
solutions to the congruencemu + nv = d, which exists by B�ezout's lemma (Theorem
3.1.22). Note also that, sincem = m0d and n = n0d, dividing through by d yields
m0u + n0v = 1.

De�ne
x = an0v + bm0u

Now we have

x = an0v + bm0u by de�nition of x

= an0v + ( a � td)m0u sincea � b = td

= a(m0u + n0v) � tdm0u rearranging

= a � tdm0u sincem0u + n0v = 1

= a � tum sincem = m0d

so x � a mod m. Likewise

x = an0v + bm0u by de�nition of x

= ( b+ td)n0v + bm0u sincea � b = td

= b(m0u + n0v) + tdn0v rearranging

= b+ tdn0v sincem0u + n0v = 1

= b+ tvn sincen = n0d

so x � b mod n.

Hencex = an0v + bm0u is a solution to the system of congruences.

We now prove that if x; y are two integer solutions to the system of congruences, then they
are congruent modulo lcm(a; b). First note that we must have

x � y mod m and x � y mod n
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so that x = y + km and x = y + `n for somek; ` 2 Z. But then

x � y = km = `n

Writing m = m0d and n = n0d, we see thatkm0d = `n 0d, so that km0 = `n 0. But m0; n0 are
coprime by Proposition 3.1.29, and hencem0 j ` by Proposition 3.1.32. Write ` = `0m0 for
some`0 2 Z. Then we have

x � y = `n = `0m0n

and hencex � y mod m0n. But m0n = lcm( m; n) by Exercise 3.1.41.

This theorem is in fact constructive, in that it provides an algorithm for �nding all integer
solutions x to a system of congruences

x � a mod m and x � b mod n

as follows:

� Use the Euclidean algorithm to computed = gcd(m; n).

� If d - a � b then there are no solutions, so stop. Ifd j a � b, then proceed to the next
step.

� Use the extended Euclidean algorithm to computeu; v 2 Z such that mu + nv = d.

� The integer solutions x to the system of congruences are precisely those of the form

x =
anv + bmu + kmn

d
for somek 2 Z

Exercise 3.3.48
Verify that the algorithm outlined above is correct. Use it to compute the solutions to the
system of congruences

x � 3 mod 12 and x � 15 mod 20

C

? Exercise 3.3.49
Generalise the Chinese remainder theorem to systems of arbitrarily (�nitely) many con-
gruences. That is, givenr 2 N, �nd precisely the conditions on moduli n1; n2; : : : ; nr and
integers a1; a2; : : : ; ar such that an integer solution exists to the congruences

x � a1 mod n1; x � a2 mod n2; � � � xr � ar mod nr

Find an explicit formula for such a value of x, and �nd a suitable modulus n in terms
of n1; n2; : : : ; nr such that any two solutions to the system of congruences are congruent
modulo n. C
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Exercise 3.3.50
Prove that gaps between consecutive primes can be made arbitrarily large. That is, prove
that for all n 2 N, there exists an integera such that the numbers

a; a + 1 ; a + 2 ; : : : ; a + n

are all composite. C

Application: tests for divisibility

The language of modular arithmetic provides a practical setting for proving tests for divis-
ibility using number bases. Number bases were introduced in Section 1.1, and we gave a
preliminary de�nition in De�nition 1.1.6 of what a number base is. Our �rst job will be to
justify why this de�nition makes sense at all|that is, we need to prove that every natural
number has a base-b expansion, and moreover, that it only has one of them. Theorem
3.3.51 says exactly this.

Theorem 3.3.51
Let n 2 N and let b 2 N with b > 2. Then there exist unique r 2 N and d0; d1; : : : ; dr 2
f 0; 1; : : : ; b� 1g such that

n =
rX

i =0

di bi

and such that dr 6= 0, except n = 0, in which case r = 0 and d0 = 0.

Proof. We proceed by strong induction onn.

� (BC ) We imposed the requirement that if n = 0 then r = 0 and d0 = 0; and this

evidently satis�es the requirement that n =
rP

i =0
di bi .

� (IS ) Fix n > 0 and suppose that the requirements of the theorem are satis�ed for all
the natural numbers up to and including n.

By the division theorem (Theorem 3.1.1), there exist uniqueu; v 2 N such that

n + 1 = ub+ v and v 2 f 0; 1; : : : ; b� 1g

Sinceb > 2, we haveu < n +1, and so u 6 n. It follows from the induction hypothesis
that there exist unique r 2 N and d1; : : : ; dr 2 f 0; 1; : : : ; b� 1g such that

u =
rX

i =0

di +1 bi
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and dr 6= 0. Writing d0 = v yields

n = ub+ v =
rX

i =0

di +1 bi +1 + d0 =
rX

i =0

di bi

Sincedr 6= 0, this proves existence.

For uniqueness, suppose that there existss 2 N and e0; : : : ; es 2 f 0; 1; : : : ; b� 1g such
that

n + 1 =
sX

j =0

ej bj

and es 6= 0. Then

n + 1 =

0

@
sX

j =1

ej bj � 1

1

A b+ e0

so by the division theorem we havee0 = d0 = v. Hence

u =
n + 1 � v

b
=

sX

j =1

ej bj � 1 =
rX

i =1

di bj � 1

so by the induction hypothesis, it follows that r = s and di = ei for all 1 6 i 6 r .
This proves uniqueness.

By induction, we're done.

We now re-state the de�nition of base-b expansion, con�dent in the knowledge that this
de�nition makes sense.

De�nition 3.3.52
Let n 2 N. The base-b expansion of n is the unique string dr dr � 1 : : : d0 such that the
conditions in Theorem 3.3.51 are satis�ed. The base-2 expansion is also known as the
binary expansion , and the base-10 expansion is called thedecimal expansion .

Example 3.3.53
Let n 2 N. Then n is divisible by 3 if and only if the sum of the digits in the decimal
expansion ofn is divisible by 3. Likewise, n is divisible by 9 if and only if the sum of the
digits in the decimal expansionn is divisible by 9.

We prove this for divisibility by 3. Let

n = dr dr � 1 � � � d1d0
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be the decimal expansion ofn, and let s =
rP

i =0
di be the sum of the digits ofn.

Then we have

n �
rX

i =0

di 10i mod 3 sincen =
X

i

di 10i

�
rX

i =0

di 1i mod 3 since 10� 1 mod 3

�
rX

i =0

di since 1i = 1 for all i

� s by de�nition of s

Sincen � s mod 3, it follows that n is divisible by 3 if and only if s is divisible by 3. C

Exercise 3.3.54
Let n 2 N. Prove that n is divisible by 5 if and only if the �nal digit in the decimal
expansion ofn is 5 or 0.

More generally, �x k > 1 and let m be the number whose decimal expansion is given by
the last k digits of that of n. Prove that n is divisible by 5k if and only if m is divisible by
5k . For example, we have

125j 9 550 828 230 495 875 , 125j 875

C

Exercise 3.3.55
Let n 2 N. Prove that n is divisible by 11 if and only if the alternating sum of the digits of
n is divisible by 11. That is, prove that if the decimal expansion ofn is dr dr � 2 � � � d0, then

11 j n , 11 j d0 � d1 + d2 � � � � + ( � 1)r dr

C

Exercise 3.3.56
Let n 2 N. Find a method for testing if n is divisible by 7 based on the decimal expansion
of n. C

Application: public-key cryptography

Public-key cryptography is a method of encryption and decryption that works according
to the following principles:
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� Encryption is done using apublic key that is available to anyone.

� Decryption is done using aprivate key that is only known to the recipient.

� Knowledge of the private key should be extremely di�cult to derive from knowledge
of the public key.

Speci�cally, suppose that Alice wants to securely send Bob a message. As the recipient of
the message, Bob has a public key and a private key. So:

� Bob sends thepublic key to Alice.

� Alice uses the public key to encrypt the message.

� Alice sends the encrypted message, which is visible (but encrypted) to anyone who
intercepts it.

� Bob keeps the private key secret, and uses it upon receipt of the message to decrypt
the message.

Notice that, since the public key can only be used toencrypt messages, a hacker has no
useful information upon intercepting the message or the public key.

RSA encryption is an algorithm which provides one means of doing public-key crypto-
graphy using the theory of modular arithmetic. It works as follows.

Step 1. Let p and q be distinct positive prime numbers, and let n = pq. Then ' (n) =
(p � 1)(q � 1).

Step 2. Choosee 2 Z with 1 < e < ' (n) and e ? ' (n). The pair ( n; e) is called the public
key .

Step 3. Choosed 2 Z with de � 1 mod ' (n). The pair ( n; d) is called the private key .

Step 4. To encrypt a messageM (which is encoded as an integer), computeK 2 [n] such
that K � M e mod n. Then K is the encrypted message.

Step 5. The original messageM can be recovered sinceM � K d mod n.

Computing the private key (n; d) from the knowledge of (n; e) would allow a hacker to
decrypt an encrypted message. However, doing so is typically very di�cult when the
prime factors of n are large. So if we choosep and q to be very large primes|which we can
do without much hassle at all|then it becomes computationally infeasible for a hacker to
compute the private key.
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Example. Suppose I want to encrypt the messageM , which I have encoded as the integer
32. Let p = 13 and q = 17. Then n = 221 and ' (n) = 192. Let e = 7, and note that
7 ? 192. Now 7� 55 � 1 mod 192, so we can de�ned = 55.

� The public key is (221; 7), which Bob sends to Alice. Now Alice can encrypt the
message:

327 � 59 mod 221

Alice then sends Bob the encrypted message 59.

� The private key is (221; 55), so Bob can decrypt the message:

5955 � 32 mod 221

so Bob has received Alice's message 32.

Exercise 3.3.57
Prove that the RSA algorithm is correct. Speci�cally, prove:

(a) If n = pq, for distinct positive primes p and q, then ' (n) = ( p � 1)(q � 1);

(b) Given 1 < e < ' (n) with e ? ' (n), there exists d 2 Z with de � 1 mod ' (n).

(c) Given M; K 2 Z with K � M e mod n, it is indeed the case thatK d � M mod n.

C
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Section 4.1

Functions revisited

To motivate some of the de�nitions to come, look at the dots (� ) and stars (?) below. Are
there more dots or more stars?

� � � � � � � � � � � � � � � � � � �

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Pause for a second and think about how you knew the answer to this question.

Indeed, there are more dots than stars. There are a couple of ways to arrive at this
conclusion:

(i) You could count the number of dots, count the number of stars, and then compare
the two numbers; or

(ii) You could notice that the dots and the stars are evenly spaced, but that the line of
dots is longer than the line of stars.

It is likely that you chose method (ii). In fact, it is likely that you haven't even counted
the number of dots or the number of stars yet|and you don't need to! We can conclude
that there are more dots than stars by simply pairing up dots with stars|we eventually
run out of stars, and there are still dots left over, so there must have been more dots than
stars.

Injectivity

One way of formalising this act of pairing up stars with dots mathematically is to de�ne a
function f : S ! D from the set S of stars to the set D of dots, where the value off at
each star is the dot that it is paired with. We of course must do this in such a way that
each dot is paired with at most one star:

178



Section 4.1. Functions revisited 179

� � � � � � � � � � � � � � � � � � �

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

It is a property of this function|called injectivity |that allows us to deduce that there are
more dots than stars.

Intuitively, a function f : X ! Y is injective if it puts the elements of X in one-to-
one correspondence[a] with the elements of a subset ofY |just like how the stars are in
one-to-one correspondence with a subset of the dots in the example above.

De�nition 4.1.1
A function f : X ! Y is injective (or one-to-one ) if

f (x) = f (x0) ) x = x0 for all x; x 0 2 X

An injective function is said to be an injection .

Proof tip
The de�nition of injectivity makes it easy to see how to prove that a function f : X ! Y
is injective: let x; x 0 2 X , assume that f (x) = f (x0), then derive x = x0. C

By contraposition, f : X ! Y being injective is equivalent to saying that if x; x 0 2 X and
x 6= x0, then f (x) 6= f (x0).

The following is a very simple example from elementary arithmetic:

Example 4.1.2
De�ne f : Z ! Z by letting f (x) = 2 x + 1 for all x 2 Z. We'll prove that f is injective.
Fix x; x 0 2 Z, and assume thatf (x) = f (x0). By de�nition of f , we have 2x + 1 = 2 x0+ 1.
Subtracting 1 yields 2x = 2x0, and dividing by 2 yields x = x0. Hencef is injective. C

The following example is slightly more sophisticated.

Proposition 4.1.3
Let f : X ! Y and g : Y ! Z be functions. If f and g are injective, then g� f is injective.

Proof. Let x; x 0 2 X . We need to prove that

(g � f )(x) = ( g � f )(x0) ) x = x0

[a] In fact, some authors use the term `one-to-one' to mean `injective'.
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So assume (g � f )(x) = ( g � f )(x0). By de�nition of function composition, this implies that
g(f (x)) = g(f (x0)). By injectivity of g, we havef (x) = f (x0); and by injectivity of f , we
have x = x0.

Exercise 4.1.4
Let f : X ! Y and g : Y ! Z be functions. Prove that if g � f is injective, then f is
injective. C

Exercise 4.1.5
Write out what it means to say a function f : X ! Y is not injective, and say how you
would prove that a given function is not injective. Give an example of a function which is
not injective, and use your proof technique to write a proof that it is not injective. C

Exercise 4.1.6
For each of the following functions, determine whether it is injective or not injective.

� f : N ! Z, de�ned by f (n) = n2 for all n 2 N.

� g : Z ! N, de�ned by g(n) = n2 for all n 2 Z.

� h : N � N � N ! N, de�ned by h(x; y; z) = 2 x � 3y � 5z for all x; y; z 2 N.

C

Surjectivity

Let's revisit the rows of dots and stars that we saw earlier. Beforehand, we made our
idea that there are more dots than stars formal by proving the existence of an injection
f : S ! D from the set S of stars to the set D of dots.

However, we could have drawn the same conclusion instead from de�ning a functionD ! S,
which in some sensecovers the stars with dots|that is, every star is paired up with at
least one dot.

� � � � � � � � � � � � � � � � � � �

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

This property is called surjectivity |a function f : X ! Y is surjective if every element of
Y is a value of f . This is made precise in De�nition 4.1.7.
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De�nition 4.1.7
A function f : X ! Y is surjective (or onto ) if

8y 2 Y; 9x 2 X; f (x) = y

A surjective function is said to be a surjection .

Proof tip
To prove that a function f : X ! Y is surjective, prove that each elementy 2 Y is a
value of f . That is, �x y 2 Y , and demonstrate that there exist somex 2 X such that
f (x) = y. C

Example 4.1.8
Fix n 2 N with n > 0, and de�ne a function function r : Z ! f 0; 1; : : : ; n � 1g by letting
r (a) be the remainder of a when divided by n. This function is surjective, since for each
k 2 f 0; 1; : : : ; n � 1g we haver (k) = k. C

Exercise 4.1.9
For each of the following pairs of sets (X; Y ), determine whether the function f : X ! Y
de�ned by f (x) = 2 x + 1 is surjective.

(a) X = Z and Y = f x 2 Z j x is oddg;

(b) X = Z and Y = Z;

(c) X = Q and Y = Q;

(d) X = R and Y = R.

C

Exercise 4.1.10
Let f : X ! Y be a function. Find a subsetV � Y and a surjection g : X ! V agreeing
with f (that is, such that g(x) = f (x) for all x 2 X ). C

Exercise 4.1.11
Let f : X ! Y be a function. Prove that f is surjective if and only if Y = f [X ] C

Exercise 4.1.12
Let f : X ! Y be a function. Prove that there is a setZ and functions

p : X ! Z and i : Z ! Y

such that p is surjective, i is injective, and f = i � p. C
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Bijectivity

Bijective functions formalise the idea of putting sets into one-to-one correspondence|each
element of one set is paired with exactly one element of another.

De�nition 4.1.13
A function f : X ! Y is bijective if it is injective and surjective. A bijective function is
said to be abijection .

Proof tip
To prove that a function f is bijective, prove that it is injective and surjective. C

Example 4.1.14
Let D � Q be the set ofdyadic rational numbers, that is

D =
�

x 2 Q

�
�
�
� x =

a
2n for somea 2 Z and n 2 N

�

Let k 2 N, and de�ne f : D ! D by f (x) = x
2k . We will prove that f is a bijection.

� (Injectivity ) Fix x; y 2 D and suppose that f (x) = f (y). Then x
2k = y

2k , so that
x = y, as required.

� (Surjectivity ) Fix y 2 D. We need to �nd x 2 D such that f (x) = y. Well certainly
if 2ky 2 D then we have

f (2ky) =
2ky
2k = y

so it su�ces to prove that 2 ky 2 D. Since y 2 D, we must have y = a
2n for some

n 2 N.

� If k 6 n then n � k 2 N and so 2ky = a
2n � k 2 D.

� If k > n then k � n > 0 and 2ky = 2 k� na 2 Z; but Z � D since if a 2 Z then
a = a

20 . So again we have 2ky 2 D.

In any case we have 2ky 2 D and f (2ky) = y, so that f is surjective.

Sincef is both injective and surjective, it is bijective. C

Exercise 4.1.15
Let X be a set. Prove that the identity function id X : X ! X is a bijection. C

Exercise 4.1.16
Let m; n 2 N. Find a bijection [m] � [n] ! [mn]. C
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Exercise 4.1.17
Let f : X ! Y and g : Y ! Z be bijections. Prove that g � f is a bijection. C

We will soon see a way to characterise injections, surjections and bijections in terms of
other functions, called inverses. Before we do that, though, we will make precise our
intuition that an injection X ! Y tells us that X has at most as many elements asY ,
that a surjection X ! Y tells us that X has at least as many elements asY , and that a
bijection X ! Y tells us that X has exactly as many elements asY .

Inverses

Recall De�nition 4.1.1, which says that a function f : X ! Y is injective if, for all x; x 0 2 X ,
if f (x) = f (x0) then x = x0.

Exercise 4.1.18
Let f : X ! Y be a function. Prove that f is injective if and only if

8y 2 f [X ]; 9!x 2 X; y = f (x)

C

Thinking back to Section 2.3, you might notice that this means that the logical formula
`y = f (x)' de�nes a function f [X ] ! X |speci�cally, if f is injective then there is a
function g : f [X ] ! X which is (well-)de�ned by the equation x = g(f (x)). Thinking of
f as an encoding function, we then have that g is the correspondingdecoding function|
decoding is possible by injectivity of f . (If f were not injective then distinct elements of
X might have the same encoding, in which case we're stuck if we try to decode them!)

Exercise 4.1.19
De�ne a function e : N � N ! N by e(m; n) = 2 m � 3n . Prove that e is injective. We can
think of e as encodingpairs of natural numbers as single natural numbers|for example,
the pair (4; 1) is encoded as 24 � 31 = 48. For each of the following natural numbers k, �nd
the pairs of natural numbers encoded bye as k:

1 24 7776 59049 396718580736

C

In Exercise 4.1.19, we were able to decode any natural number of the form 2m � 3n for
m; n 2 N. This process of decoding yields a function

d : f k 2 N j k = 2 m � 3n for somem; n 2 Ng ! N � N
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What would happen if we tried to decode a natural number not of the form 2m � 3n for
m; n 2 N, say 5 or 100? Well. . . it doesn't really matter! All we need to be true is that
d(e(m; n)) = ( m; n) for all ( m; n) 2 N � N; the value of d on other natural numbers is
irrelevant.

De�nition 4.1.20
Let f : X ! Y be a function. A left inverse (or post-inverse ) for f is a function
g : Y ! X such that g � f = id X .

Example 4.1.21
Let e : N � N ! N be as in Exercise 4.1.19. De�ne a functiond : N ! N � N by

d(k) =

(
(m; n) if k = 2 m � 3n for somem; n 2 N

(0; 0) otherwise

Note that d is well-de�ned by the fundamental theorem of arithmetic (Theorem 3.2.12).
Moreover, given m; n 2 N, we have

d(e(m; n)) = d(2m � 3n ) = ( m; n)

and sod is a left inverse for e. C

Exercise 4.1.22
Let f : X ! Y be a function with X 6= ? . Prove that f is injective if and only if f has a
left inverse. C

What about surjections? De�nition 4.1.7 said that a function f : X ! Y is surjective if

8y 2 Y; 9x 2 X; f (x) = y

This isn't quite of the form 8y 2 Y; 9!x 2 X; p(y; x)|we assume a value of x making
f̀ (x) = y' true exists, but we don't assume that it is unique. However, we can be cun-
ning[b] |just make an arbitrary (but �xed) choice amongst the y values that work!

De�nition 4.1.23
Let f : X ! Y be a function. A right inverse (or pre-inverse ) for f is a function
g : Y ! X such that f � g = id Y .

Example 4.1.24
De�ne f : R ! R> 0 by f (x) = x2. Note that f is surjective, since for eachy 2 R> 0 we
have

p
y 2 R and f (

p
y) = y. However f is not injective; for instance

f (� 1) = 1 = f (1)

Here are three right inverses forf :
[b] We can only be cunning if we accept the axiom of choice|see Appendix B.2 for more details!
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� The positive square root function g : R> 0 ! R de�ned by g(y) =
p

y for all y 2 R> 0.
Indeed, for eachy 2 R> 0 we have

f (g(y)) = f (
p

y) = (
p

y)2 = y

� The negative square root function h : R> 0 ! R de�ned by h(y) = �
p

y for all
y 2 R> 0. Indeed, for eachy 2 R> 0 we have

f (h(y)) = f (�
p

y) = ( �
p

y)2 = y

� The function k : R> 0 ! R de�ned by

k(y) =

( p
y if 2n 6 y < 2n + 1 for some n 2 N

�
p

y otherwise

Note that k is well-de�ned, and again f (k(y)) = y for all y 2 R> 0 since no matter
what value k(y) takes, it is equal to either

p
y or �

p
y.

There are many more right inverses forf |in fact, there are in�nitely many more! C

Exercise 4.1.25
Prove that a function f : X ! Y is surjective if and only if it has a right inverse. C

Exercises 4.1.22 and 4.1.25 establish that a functionf : X ! Y is. . .

� injective if and only if it has a left inverse (provided X is inhabited);

� surjective if and only if it has a right inverse.

It seems logical that we might be able to classify bijections as being those functions which
have a left inverse and a right inverse. We can actually say something stronger|the left and
right inverse can be taken to be the same function! (In fact, Proposition 4.1.30 establishes
that they are necessarily the same function.)

De�nition 4.1.26
Let f : X ! Y be a function. A (two-sided ) inverse for f is a function g : Y ! X which
is both a left inverse and a right inverse forf .

It is customary to simply say `inverse' rather than `two-sided inverse'.

Example 4.1.27
Let D be the set of dyadic rational numbers, as de�ned in Example 4.1.14. There, we
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de�ned a function f : D ! D de�ned by f (x) = x
2k for all x 2 D , where k is some �xed

natural number. We �nd an inverse for f .

De�ne g : D ! D by g(x) = 2 kx. Then

� g is a left inverse for f . To see this, note that for all x 2 D we have

g(f (x)) = g(
x
2k ) = 2 k �

x
2k = x

� g is a right inverse for f . To see this, note that for all y 2 D we have

f (g(y)) = f (2ky) =
2ky
2k = y

Sinceg is a left inverse for f and a right inverse for f , it is a two-sided inverse for f . C

Exercise 4.1.28
The following functions have two-sided inverses. For each, �nd its inverse and prove that
it is indeed an inverse.

(a) f : R ! R de�ned by f (x) = 2x+1
3 .

(b) g : P(N) ! P (N) de�ned by g(X ) = N n X .

(c) h : N � N ! N de�ned by h(m; n) = 2 m (2n + 1) � 1 for all m; n 2 N.

C

Exercises 4.1.22 and 4.1.25 can be pieced together to prove the following result.

Exercise 4.1.29
Let f : X ! Y be a function. Prove that f is bijective if and only if f has an inverse. C

Common error
When proving a function f : X ! Y is bijective by �nding an inverse g : Y ! X , it is
important to check that g is both a left inverse and a right inverse for f . If you only prove
that g is a left inverse for f , for example, then you have only proved thatf is injective! C

As indicated above, if a function has both a left and a right inverse, then they must be
equal.

Proposition 4.1.30
Let f : X ! Y be a function and supposè : Y ! X is a left inverse for f and r : Y ! X
is a right inverse for f . Then ` = r .
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Proof. The proof is deceptively simple:

` = ` � idY by de�nition of identity functions

= ` � (f � r ) since r is a right inverse for f

= ( ` � f ) � r by Exercise 2.3.27

= id X � r since` is a left inverse for f

= r by de�nition of identity functions

It follows from Proposition 4.1.30 that, for any function f : X ! Y , any two inverses for
f are equal|that is, every bijective function has a unique inverse!

Notation 4.1.31
Let f : X ! Y be a function. Write f � 1 : Y ! X to denote the (unique) inverse forf , if
it exists.

Proposition 4.1.32
Let f : X ! Y be a bijection. A function g : Y ! X is a left inverse for f if and only if it
is a right inverse for f .

Proof. We will prove the two directions separately.

� () ) Supposeg : Y ! X is a left inverse for f |that is, g(f (x)) = x for all x 2 X .
We prove that f (g(y)) = y for all y 2 Y , thus establishing that g is a right inverse
for f . So let y 2 Y . Since f is a bijection, it is in particular a surjection, so there
exists x 2 X such that y = f (x). But then

f (g(y)) = f (g(f (x))) since y = f (x)

= f (x) since g(f (x)) = x

= y sincey = f (x)

So indeedg is a right inverse for f .

� (( ) Supposeg : Y ! X is a right inverse for f |that is, f (g(y)) = y for all y 2 Y .
We prove that g(f (x)) = x for all x 2 X , thus establishing that g is a left inverse for
f . So let x 2 X . Letting y = f (x), we have f (g(y)) = y sinceg is a right inverse for
f . This says precisely that f (g(f (x)) = f (x), since y = f (x). By injectivity of f , we
have g(f (x)) = x, as required.
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Exercise 4.1.33
Let f : X ! Y be a bijection. Prove that f � 1 : Y ! X is a bijection. C

Exercise 4.1.34
Let f : X ! Y and g : Y ! Z be bijections. Prove that g � f : X ! Z is a bijection, and
write an expression for its inverse in terms off � 1 and g� 1. C

First look at counting

We'll very soon (Section 4.2) make heavy use of functions to count the number of elements
of a �nite set. Before we do that, let's look at how injections, surjections and bijections
can be used to compare sizes of particular �nite sets|namely, those of the form [n] for
n 2 N, as de�ned in De�nition 2.2.31.

When we used dots and stars to motivate the de�nitions of injective and surjective func-
tions, we suggested the following intuition:

� If there is an injection f : X ! Y , then X has `at most as many elements asY '; and

� If there is a surjection g : X ! Y , then X has `at least as many elements asY '.

Let's make this intuition formal in the case when X and Y are sets of the form [n] for
n 2 N.

Theorem 4.1.35
Let m; n 2 N.

(a) If there exists an injection f : [m] ! [n], then m 6 n.

(b) If there exists a surjection g : [m] ! [n], then m > n.

(c) If there exists a bijection h : [m] ! [n], then m = n.

Let's think about how we might prove part (a); part (b) is left as an exercise, and part (c)
follows immediately from (a), (b) and the de�nition of a bijection. The intuition behind
(a) is clear: if we can pair up the natural numbers from 1 up to m with a subset of the
numbers from 1 up to n, then n should be at least as large asm.

Our hypothesis is that an injection f : [m] ! [n] exists|but, unfortunately for us, we
have no control over what values this function takes. If it were as simple asf (k) = k for
all k 2 [m], then this would be an incredibly easy result to prove. But it might be the case
that, say, f (1) = 3, and f (2) = 5, and f (3) = 2, and f (4) = 1, and so on.
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Since we're working with natural numbers (m and n), let's use the canonical technique for
proving results about natural numbers|induction! We'll proceed by induction on n, but
you could think about how you might prove the claim by induction on m.

Proof of Theorem 4.1.35(a). We'll prove the following statement by induction on n 2 N:

For all m 2 N, if there exists an injection f : [m] ! [n], then m 6 n.

� (Base case) Fix m 2 N and suppose there exists an injectionf : [m] ! [0]. We need
to prove that m 6 0, or equivalently that m = 0, since m can't be negative.

Well, if m > 1, then 1 2 [m], and so f (1) 2 [0]. But [0] = ? , so this would imply
that the empty set has an element, which is nonsense. Som < 1, and hencem = 0.

� (Induction step ) Fix n 2 N and suppose that, for all m 2 N, if there exists an
injection f : [m] ! [n], then m 6 n. This assumption is our induction hypothesis.

Now �x m 2 N and suppose there is an injectionf : [m] ! [n + 1]. We need to prove
that m 6 n + 1.

We can use our induction hypothesis to prove that things are6 n, so we need to
prove m � 1 6 n. But the number to the left-hand side of the 6 symbol must be a
natural number|so let's consider the case when m = 0 separately. Well, if m = 0
then 0 6 n +1. (That was easy!) So let's now assume thatm > 1, so that m � 1 2 N.

In order to use the induction hypothesis to prove m � 1 6 n, we need to �nd an
injection [m � 1] ! [n]. We're given an injection f : [m] ! [n + 1], so let's use this
to construct an injection g : [m � 1] ! [n]. There are two cases to consider:

� Supposef (k) 6= n + 1 for all k 2 [m � 1]. Then we can de�ne g : [m � 1] ! [n]
by g(k) = f (k) for all k 2 [m � 1]. Injectivity of g then follows immediately
from injectivity of f : indeed, givenk; ` 2 [m � 1], we have

g(k) = g(`) ) f (k) = f (`) ) k = `

where the second implication follows from injectivity of f .

� Supposef (r ) = n + 1 for some r 2 [m � 1]. Sincef is injective, we havef (k) 6=
n + 1 for all k 6= r ; in particular, f (m) 6= n + 1. We'll de�ne g : [m � 1] ! [n]
to be the same asf , except it exchanges the values atr and at m. This ensures
that g(k) 2 [n] for all k 2 [m � 1]. Speci�cally, for k 2 [m � 1], de�ne

g(k) =

(
f (k) if k 6= r

f (m) if k = r
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We just noted that g de�nes a function [m � 1] ! [n]. Now let's prove that g is
injective.
Fix k; ` 2 [m � 1] and supposeg(k) = g(`). We'll split into some cases and prove
that k = ` in each case:

� Supposek 6= r and ` 6= r . Then g(k) = f (k) and g(`) = f (`), so f (k) = f (`)
and k = ` by injectivity of f .

� Supposek = r or ` = r . (We may in fact assumek = r , otherwise swap the
roles ofk and ` in what follows.) Then g(k) = g(r ) = f (m) by de�nition of
g. Moreover, we know that g(`) = f (t) for some t 2 [m] and, by de�nition
of g, we must have t = ` (if t 6= r ) or t = m. But then f (t) = f (m), so
t = m by injectivity of f , so ` = r = k.

Either way, we have k = `. Sog is injective. Now that we've proved that there exists
an injective function g : [m � 1] ! [n], it follows from the induction hypothesis that
m � 1 6 n, and som 6 n + 1 as required.

This completes the inductive step, so the theorem is proved.

Exercise 4.1.36
Prove part (b) of Theorem 4.1.35. C

Exercise 4.1.37
Let m; n 2 N with m 6 n. Does there exist an injection [m] ! [n]? Does there exist a
surjection [n] ! [m]? Prove your answers. C

Proposition 4.1.35 showed us that we can compare natural numbersm and n by determining
if there is an injection, surjection or bijection [m] ! [n]. We can use this result, together
with our intuition, to motivate the de�nition of what it is for a set to be �nite . Intuitively,
a set is �nite if we can label its elements using the elements of [n] for somen 2 N. This
labelling process can be formalised using bijections. Exercise 4.1.38 shows that thisn is
unique.

Exercise 4.1.38
Let X be a set and letm; n 2 N. Prove that, if there exist bijections f : [m] ! X and
g : [n] ! X , then m = n. C

De�nition 4.1.39
A set X is �nite if there is a bijection [n] ! X for some n 2 N, called the size of X .
Write jX j for the size ofX . If X is not �nite we say it is in�nite .

In more intuitive terms: a set X is �nite if the number of elements of X is a natural
number; the sizeX is simply the number of elements ofX .
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Example 4.1.40
Let X = f cat; dog; rabbit ; horse; sheepg. Then jX j = 5. To see this, de�ne f : [5] ! X by

f (1) = cat ; f (2) = dog ; f (3) = rabbit ; f (4) = horse; f (5) = sheep

Then f is a bijection, as can easily be checked by noting that the functiong : X ! 5
de�ned by

g(cat) = 1 ; g(dog) = 2 ; g(rabbit) = 3 ; g(horse) = 4; g(sheep) = 5

is an inverse forf . C

Example 4.1.41
For each n 2 N the set [n] is �nite, and j[n]j = n. This is because the identity function
id[n] : [n] ! [n] is a bijection. C

Exercise 4.1.42
Let X be a �nite set with jX j = n > 1. Let x 2 X and let y 62X . Prove that

jX n f xgj = n � 1 and jX [ f ygj = n + 1

Demonstrate that the hypotheses that x 2 X and y 62X are necessary|in other words,
�nd a set X with jX j = n > 1 and elementsx; y such that jX n f xgj 6= n � 1 and
jX [ f ygj 6= n + 1. C

The following exercise is straightforward to prove, but is extremely powerful. We will make
heavy use of it in Section 4.2, where it can be used to prove combinatorial identities.

Exercise 4.1.43
Let X and Y be �nite sets. Prove that if there exists a bijection h : X ! Y , then
jX j = jY j. C

We conclude this section by proving that not all sets are �nite|speci�cally, we'll prove
that N is in�nite. Intuitively this seems extremely easy: ofcourse N is in�nite! But in
mathematical practice, this isn't good enough: we need to use our de�nition of `in�nite' to
prove that N is in�nite. Namely, we need to prove that there is no bijection [n] ! N for
any n 2 N. We will use Lemma 4.1.44 below in our proof.

Lemma 4.1.44
Every inhabited �nite set of natural numbers has a greatest element.

Proof. We'll prove by induction on n > 1 that, for all sets X with jX j = n, X has a
greatest element.
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� (BC ) Fix a set X with jX j = 1. then X = f xg for somex 2 N. Sincex is the only
element ofX , it is certainly the greatest element!

� (IS ) Let n 2 N and suppose that every set of natural numbers of sizen has a greatest
element (IH ).

Let X = f x1; x2; : : : ; xn ; xn+1 g be a set with n + 1 elements. We wish to show that
X has a greatest element.

To do this, let Y = X n f xn+1 g. Then jY j = n, so by (IH ) it has a greatest element,
say x i . If x i > x n+1 then x i is the greatest element ofX ; otherwise, xn+1 is the
greatest element ofX . In either case,X has a greatest element.

By induction, we're done.

Theorem 4.1.45
The set N is in�nite.

Proof. We proceed by contradiction. SupposeN is �nite. Then jNj = n for somen 2 N,
and henceN is either empty (nonsense) or, by Lemma 4.1.44, it has a greatest elementg.
But g + 1 2 N since every natural number has a successor, contradicting maximality ofg.
HenceN is in�nite.
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Section 4.2

Counting principles

Recall from De�nition 4.1.39 that a set X is �nite if there is a bijection [n] ! X for some
n 2 N; moreover, this n is unique, and is called thesize of X , which we denote byjX j.

The main portion of this section focuses on the problem of computingjX j given a de-
scription of X . The �eld of mathematics that concerns itself with this problem is called
enumerative combinatorics.

The next few results allow us to deduce that subsets, binary intersections, binary unions
and binary products of �nite sets are �nite.

Proposition 4.2.1
Let i : U ! X be an injection. If X is �nite, then U is �nite, and moreover jUj 6 jX j.

Proof. We prove by induction on n that, for all �nite sets X of sizen, and all injections
i : U ! X , the set U is �nite and jUj 6 n.

� (BC ) SupposejX j = 0. Then X = ? . The only function whose codomain is the
empty set is the empty function ? ! ? ; in other words, if i : U ! ? is an injection,
then U = ? . HenceU is �nite and jUj = 0 6 0 as required.

� (IS ) Fix n > 0 and suppose that, for any setY with jY j = n, and any injection
j : V ! Y , we haveV �nite and jV j 6 n.

Let X be a set with jX j = n + 1, and let f : [n + 1] ! X be a bijection.

Fix an injection i : U ! X . For simplicity of notation, write X 0 = X n f f (n + 1) g.
Note that jX 0j = n by Exercise 4.1.42.

We split into cases based on whether or notf (n + 1) 2 i [U].

� If f (n +1) 62i [U], then there is a function i 0 : U ! X 0 de�ned by i 0(x) = i (x) for
all x 2 U. Moreover, this function is injective, since if x; y 2 U and i 0(x) = i 0(y),
then i (x) = i (y) by de�nition of i 0, and so x = y by injectivity of i . Moreover
jX 0j = n, so the induction hypothesis applies to the injection i 0 : U ! X 0. It
follows that U is �nite and

jUj 6 jX 0j = n < n + 1 = jX j

as required.

� If f (n + 1) 2 i [U], then there is someu? 2 U such that i (u?) = f (n + 1). Write
U0 = U n f u?g, and de�ne i 0 : U0 ! X 0 by i 0(x) = i (x) for all x 2 U0. Again
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i 0 is injective, and jX 0j = n, so the induction hypothesis yields that U0 is �nite
and jU0j 6 n; say jU0j = k 2 N. But then jUj = k + 1 by Exercise 4.1.42, and
k + 1 6 n + 1 since k 6 n.

In either case, we've proved thatU is �nite and jUj 6 jX j, so the induction step is
complete.

By induction, it follows that any injection with �nite codomain has a �nite domain.

Exercise 4.2.2
Let X be a �nite set. Prove that every subset U � X is �nite. C

Exercise 4.2.3
Let X and Y be �nite sets. Prove that X \ Y is �nite. C

Exercise 4.2.4
Let X be a �nite set and let U � X . Prove that X n U is �nite, and moreover jX n Uj =
jX j � j Uj. C

Proposition 4.2.5
Let X and Y be �nite sets. Then X [ Y is �nite, and moreover

jX [ Y j = jX j + jY j � j X \ Y j

Proof. We will prove this in the case whenX and Y are disjoint. The general case, when
X and Y are not assumed to be disjoint, will be Exercise 4.2.6.

If X = ? then X [ Y = Y and X \ Y = ? , so that

jX [ Y j = jY j and jX j + jY j � j X \ Y j = 0 + jY j � 0 = jY j

so the result is proved. The proof is similar whenY = ? . So for the remainder of the
proof, we assume that bothX and Y are inhabited.

Let m = jX j > 0 and n = jY j > 0, and let f : [m] ! X and g : [n] ! Y be bijections.

SinceX and Y are disjoint, we haveX \ Y = ? . De�ne h : [m + n] ! X [ Y as follows;
given k 2 [m + n], let

h(k) =

(
f (k) if k 6 m

g(k � m) if k > m

Note that h is well-de�ned: the casesk 6 m and k > m are mutually exclusive, they cover
all possible cases, andk � m 2 [n] for all m + 1 6 k 6 n so that g(k � m) is de�ned. It is
then straightforward to check that h has an inverseh� 1 : X [ Y ! [m + n] de�ned by

h� 1(z) =

(
f � 1(z) if z 2 X

g� 1(z) + m if z 2 Y
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Well-de�nedness ofh� 1 relies fundamentally on the assumption that X \ Y = ? , as this is
what ensures that the casesx 2 X and x 2 Y are mutually exclusive.

HencejX [ Y j = m + n = jX j + jY j, which is as required sincejX \ Y j = 0.

Exercise 4.2.6
The following steps complete the proof of Proposition 4.2.5:

(a) Given sets A and B , prove that the sets A � f 0g and B � f 1g are disjoint, and �nd
bijections A ! A � f 0g and B ! B � f 1g. Write A t B (LATEX code: nsqcup) to
denote the set (A � f 0g) [ (B � f 1g). The set A t B is called the disjoint union of
A and B .

(b) Prove that, if A and B are �nite then A t B is �nite and

jA t B j = jAj + jB j

(c) Let X and Y be sets. Find a bijection

(X [ Y ) t (X \ Y ) ! X t Y

(d) Complete the proof of Proposition 4.2.5|that is, prove that if X and Y are �nite
sets, not necessarily disjoint, thenX [ Y is �nite and

jX [ Y j = jX j + jY j � j X \ Y j

C

Proposition 4.2.7
Let X and Y be �nite sets. Then X � Y is �nite, and moreover

jX � Y j = jX j � j Y j

Proof. If X = ? or Y = ? , then X � Y = ? , so that jX j = jY j = jX � Y j = 0 and the
result is immediate. As such, we assume for the rest of the proof thatX and Y are both
inhabited.

Let X and Y be sets with jX j = m > 0 and jY j = n > 0, and let f : [m] ! X and
g : [n] ! Y be bijections. De�ne a function h : [m] � [n] ! X � Y by

h(k; ` ) = ( f (k); g(`))

for each k 2 [m] and ` 2 [n]. It is easy to see that this is a bijection, with inverse de�ned
by

h� 1(x; y) = ( f � 1(x); g� 1(y))
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for all x 2 X and y 2 Y . By Exercise 4.1.16 there is a bijectionp : [mn] ! [m]� [n], and by
Exercise 4.1.17 the compositeh� p : [mn] ! X � Y is a bijection. HencejX � Y j = mn.

In summary, we have shown that if X and Y are �nite sets, then so are X [ Y , X \ Y ,
X � Y , any subsetU � X , and more generally any setU for which there exists an injection
U ! X .

Indexed unions, intersections and products | �nite version

Since we will be dealing with arbitrary �nite collections of sets, it will help us to introduce
some new notation to make notation more concise. For example, writing

X 1 [ X 2 [ � � � [ X n

again and again will be cumbersome.
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De�nition 4.2.8
Let n 2 N and, for eachi 2 [n], let X i be a set. We de�ne. . .

� . . . the indexed union of f X i j i 2 [n]g is the set
S n

i =1 X i de�ned by

n[

i =1

X i = f x j x 2 X i for somei 2 [n]g

� . . . the indexed intersection of f X i j i 2 [n]g is the set
T n

i =1 X i de�ned by

n\

i =1

X i = f x j x 2 X i for all i 2 [n]g

� . . . the indexed product of f X i j i 2 [n]g is the set
nQ

i =1
X i de�ned by

nY

i =1

X i = f (x1; x2 : : : ; xn ) j x i 2 X i for each i 2 [n]g

The notation ( x1; x2 : : : ; xn ) refers to anordered n-tuple ; formally, this is a function
x : [n] !

S n
i =1 X i such that x(i ) 2 X i for all i 2 [n]|then x i is just shorthand for

x(i ). But for our purposes, it will su�ce to think of ( x1; : : : ; xn ) as simply being an
ordered list of n elements, with the i th component of the list being an element ofX i .

We write X n =
nQ

i =1
X . For example, N4 is the set of ordered sequences of natural

numbers of length 4, such as (1; 5; 7; 3) or (2; 2; 2; 2).

In Section 4.3 we will generalise De�nition 4.2.8 even further to de�ne indexed unions,
intersections and products of arbitrary families of sets, not just �nite ones. Everything we
do now generalises to that scenario, but it is instructive to work in the �nite case �rst.

Example 4.2.9
If X 1 and X 2 are sets, thenf X 1; X 2g is a family of sets indexed by the index setI = f 1; 2g.
Then x 2

T
i 2 I X i if and only if x 2 X 1 and x 2 X 2. This proves that

2\

i =1

X i = X 1 \ X 2

In other words, pairwise intersection is a special case of indexed intersection. The proof
that

S 2
i =1 X i = X 1 [ X 2 is similar. C
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Example 4.2.10
Let X i be a set for all i 2 N. Notice that according to our de�nition we have

0[

i =1

X i = ?

since, for givenx, we havex 2
S 0

i =1 X i if and only if x 2 X i for somei 2 [0]; since [0] = ? ,
there are no such values ofi , and so the expressionx 2

S 0
i =1 X i can never be true.

Moreover, given n 2 N we have

n+1[

i =1

X i =

 
n[

i =1

X i

!

[ X n+1

This is because, for givenx, we have

x 2
n+1[

i =1

X i , x 2 X i for somei 2 [n + 1]

, x 2 X i for somei 2 [n], or x 2 X n+1

, x 2
n[

i =1

X i or x 2 X n+1

, x 2

 
n[

i =1

X i

!

[ X n+1

This yields an inductive proof that, when n > 1, we have

n[

i =1

X i = X 1 [ X 2 [ � � � [ X n

C

Exercise 4.2.11
Let X i be a set for eachi 2 N. Prove that

0\

i =1

X i = U and
n+1\

i =1

X i =

 
n\

i =1

X i

!

\ X n+1 for all n 2 N

where U is the universe. Deduce that ifn > 1 then
n\

i =1

X i = X 1 \ X 2 \ � � � \ X n

C
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To tie up this portion on �nite indexed families of sets, we note a new version of de Morgan's
laws for sets which generalises the version you saw in Theorem 2.2.40. This theorem will
be generalised even further in Theorem 4.3.5.

Theorem 4.2.12 (de Morgan's laws for sets (�nite version))
Let n 2 N. For each i 2 [n] let X i be a set, and letZ be a set. Then

(a) Z n (
S n

i =1 X i ) =
T n

i =1 (Z n X i );

(b) Z n (
T n

i =1 X i ) =
S n

i =1 (Z n X i ).

Exercise 4.2.13
Prove Theorem 4.2.12 by induction onn, using Theorem 2.2.40 for the induction step. C

Exercise 4.2.14

Let n 2 N and let X i be a set for eachi 2 [n + 1]. Note that the elements of
n+1Q

i =1
X i are

ordered (n + 1)-tuples, and that the elements of
�

nQ

i =1
X i

�
� X n+1 are ordered pairs, the

�rst component of which is an ordered n-tuple. Prove that these are essentially the same
thing, by showing that the function

f :
n+1Y

i =1

X i !

 
nY

i =1

X i

!

� X n+1

de�ned by
f (x1; x2; : : : ; xn ; xn+1 ) = (( x1; x2; : : : ; xn ); xn+1 )

for all x i 2 X i and i 2 [n + 1], is a bijection. C

Binomials and factorials revisited

We de�ned binomial coe�cients
� n

k

�
and factorials n! recursively in Section 1.3, and proved

elementary facts about them by induction. We will now re-de�ne them combinatorially |
that is, we give them meaning in terms of sizes of particular �nite sets. We will prove that
the combinatorial and recursive de�nitions are equivalent, and prove facts about them
using combinatorial arguments.

The reasons for doing so are manifold. The combinatorial de�nitions allow us to reason
about binomials and factorials with direct reference to descriptions of �nite sets, which
will be particularly useful when we prove identities about them using counting in two
ways. Moreover, the combinatorial de�nitions remove the seeming arbitrary nature of the
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recursive de�nitions|for example, they provide a reason why it makes sense to de�ne
0! = 1 and

� 0
0

�
= 1.

De�nition 4.2.15
Let X be a set and letk 2 N. A k-element subset of X is a subsetU � X such that
jUj = k. The set of all k-element subsets ofX is denoted

� X
k

�
(read: X̀ choosek') (LATEX

code: nbinomf Xgf kg).

Intuitively,
� X

k

�
is the set of ways of pickingk elements from X , without repetitions, in

such a way that order doesn't matter. (If order mattered, the elements would besequences
instead of subsets.)

Example 4.2.16
We �nd

� [4]
k

�
for all k 2 N.

�
� [4]

0

�
= f ? g since the only set with 0 elements is? ;

�
� [4]

1

�
= ff 1g; f 2g; f 3g; f 4gg;

�
� [4]

2

�
= ff 1; 2g; f 1; 3g; f 1; 4g; f 2; 3g; f 2; 4g; f 3; 4gg;

�
� [4]

3

�
= ff 1; 2; 3g; f 1; 2; 4g; f 1; 3; 4g; f 2; 3; 4gg;

�
� [4]

4

�
= ff 1; 2; 3; 4gg;

� If k > 5 then
� [4]

k

�
= ? , since by Exercise 4.2.2, no subset of [4] can have more than

4 elements.

C

Proposition 4.2.17
If X is a �nite set, then P(X ) =

S
k6 jX j

� X
k

�
.

Proof. Let U � X . By Exercise 4.2.2,U is �nite and jUj 6 jX j. Thus U 2
� X

jUj

�
, and hence

U 2
S

k6 jX j

� X
k

�
. This proves that P(X ) �

S
k6 jX j

� X
k

�
.

The fact that
S

k6 jX j

� X
k

�
� P (X ) is immediate, since elements of

� X
k

�
are de�ned to be

subsets ofX , and hence elements ofP(X ).
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De�nition 4.2.18
Let n; k 2 N. Denote by

� n
k

�
(read: ǹ choosek') (LATEX code: nbinomf ngf kg) the number

of k-element subsets of a set of sizen. That is, we de�ne
� n

k

�
=

�
�
�
� [n]

k

� �
�
� . The numbers

� n
k

�

are calledbinomial coe�cients .a

aSome authors use the notation n Ck or n Ck instead of
� n

k

�
. We avoid this, as it is unnecessarily clunky.

Intuitively,
� n

k

�
is the number of ways of selectingk things from n, without repetitions, in

such a way that order doesn't matter.

The value behind this notation is that it allows us to express huge numbers in a concise
and meaningful way. For example,

�
4000
11

�
= 103 640 000 280 154 258 645 590 429 564 000

Although these two numbers are equal, theirexpressionsare very di�erent; the expression
on the left is meaningful, but the expression on the right is completely meaningless out of
context.

Writing tip
When expressing the sizes of �nite sets described combinatorially, it is best toavoid eval-
uating the expression; that is, leave in the powers, products, sums, binomial coe�cients
and factorials! The reason for this is that performing the calculations takes the meaning
away from the expressions. C

Example 4.2.19
In Example 4.2.16 we proved that:

�
4
0

�
= 1 ;

�
4
1

�
= 4 ;

�
4
2

�
= 6 ;

�
4
3

�
= 4 ;

�
4
4

�
= 1

and that
� 4

k

�
= 0 for all k > 5. C

Exercise 4.2.20
Fix n 2 N. Prove that

� n
0

�
= 1,

� n
1

�
= n and

� n
n

�
= 1. C

De�nition 4.2.21
Let X be a set. A permutation of X is a bijection X ! X . Denote the set of all
permutations of X by SX (LATEX code: S X),a and write S[n] = Sn for n 2 N.

aThe `S' comes from `symmetry'. The set SX comes with the natural structure of a group.
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Example 4.2.22
There are six permutations of the set [3]. Representing eachf 2 S[3] by the ordered triple
(f (1); f (2); f (3)), these permutations are thus given by

(1; 2; 3); (1; 3; 2); (2; 1; 3); (2; 3; 1); (3; 1; 2); (3; 2; 1)

For example, (2; 3; 1) represents the permutationf : [3] ! [3] de�ned by f (1) = 2, f (2) = 3
and f (3) = 1. C

Exercise 4.2.23
List all the permutations of the set [4]. C

De�nition 4.2.24
Let n 2 N. Denote by n! (read: ǹ factorial') the number of permutations of a set of size
n. That is, n! = jSn j. The numbers n! are calledfactorials .

Example 4.2.25
Example 4.2.22 shows that 3! = 6. C

Counting products and partitions

We saw in Proposition 4.2.7 and Proposition 4.2.5 that, given two �nite sets X and Y ,
the product X � Y and the union X [ Y are �nite. We also found formulae for their size.
The multiplication principle (Theorem 4.2.26) and addition principle (Theorem 4.2.37)
generalise these formulae, extending to products and (disjoint) unions of any �nite number
of �nite sets.

Theorem 4.2.26 (Multiplication principle (independent version))

Let f X 1; : : : ; X ng be a family of �nite sets, with n > 1. Then
nQ

i =1
X i is �nite, and

�
�
�
�
�

nY

i =1

X i

�
�
�
�
�

= jX 1j � j X 2j � � � � � j X n j

Proof. We proceed by induction onn.

� (BC ) When n = 1, an element of
1Q

i =1
X i is `o�cially' 1-ary sequence (x1) with x1 2

X 1. This is the same as an element ofX 1: it is easy to check that the assignments
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(x1) 7! x1 and x1 7! (x1) de�ne mutually inverse (hence bijective) functions between
1Q

i =1
X i and X 1, and so

�
�
�
�
�

1Y

i =1

X i

�
�
�
�
�

= jX 1j

� (IS ) Fix n 2 N, and suppose that

�
�
�
�
�

nY

i =1

X i

�
�
�
�
�

= jX 1j � j X 2j � � � � � j X n j

for all sets X i for i 2 [n]. This is our induction hypothesis.

Now let X 1; : : : ; X n ; X n+1 be sets. We de�ne a function

F :
n+1Y

i =1

X i !

 
nY

i =1

X i

!

� X n+1

by letting F ((x1; : : : ; xn ; xn+1 )) = (( x1; : : : ; xn ); xn+1 ). It is again easy to check that
F is a bijection, and hence

�
�
�
�
�

n+1Y

i =1

X i

�
�
�
�
�

=

�
�
�
�
�

nY

i =1

X i

�
�
�
�
�
� jX n+1 j

by Proposition 4.2.7. Applying the induction hypothesis, we obtain the desired result,
namely �

�
�
�
�

n+1Y

i =1

X i

�
�
�
�
�

= jX 1j � j X 2j � � � � � j X n j � j X n+1 j

By induction, we're done.

The multiplication principle is also known as the rule of product.

Problem-solving tip
The multiplication principle allows us to count the number of elements of a �nite set X by
devising a procedure for counting all of its elements exactly once. If this procedure hasn
steps, wheren 2 N, then the procedure establishes a bijection

X !
nY

i =1

Si
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where Si is the set of possible outcomes of thei th step in the procedure. If there areni

possible outcomes of thei th step in the procedure, this therefore implies that

jX j =
nY

i =1

ni

C

Example 4.2.27
You go to an ice cream stand selling the following 
avours:

vanilla, strawberry, chocolate, rum and raisin, mint choc chip, to�ee crunch

You can have your ice cream in a tub, a regular cone or achoco-cone. You can have one,
two or three scoops. We will compute how many options you have.

To select an ice cream, you follow the following procedure:

� Step 1. Choose a 
avour. There are 6 ways to do this.

� Step 2. Choose whether you'd like it in a tub, regular cone or choco-cone. There
are 3 ways to do this.

� Step 3. Choose how many scoops you'd like. There are 3 ways to do this.

Hence there are 6� 3 � 3 = 54 options in total. C

This may feel informal, but really what we are doing is establishing a bijection. Letting X
be the set of options, the above procedure de�nes a bijection

X ! F � C � S

where F is the set of 
avours, C = f tub; regular cone; choco-coneg and S = [3] is the set
of possible numbers of scoops.

Example 4.2.28
We will prove that jP (X )j = 2 jX j for all �nite sets X .[c]

Let X be a �nite set and let n = jX j. Write

X = f xk j k 2 [n]g = f x1; x2; : : : ; xng

[c] Some authors write 2X to refer to the power set of a set X . This is justi�ed by Exercise 4.2.28.
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Intuitively, specifying an element of P(X )|that is, a subset U � X |is equivalent to
deciding, for each k 2 [n], whether xk 2 U or xk 62U (`in or out'), which in turn is
equivalent to specifying an element off in; outgn .

For example, taking X = [7], the subset U = f 1; 2; 6g corresponds with the choices

1 in; 2 in; 3 out; 4 out; 5 out; 6 in; 7 out

and hence the element (in; in; out; out; out; in; out) 2 f in; outg7.

This de�nes a function i : P(X ) ! f in; outgn . This function is injective, since di�erent
subsets determine di�erent sequences; and it is surjective, since each sequence determines
a subset.

The above argument is su�cient for most purposes, but since this is the �rst bijective proof
we have come across, we now give a more formal presentation of the details.

De�ne a function
i : P(X ) ! f in; outgn

by letting the kth component of i (U) be `in' if xk 2 U or `out' if xk 62U, for each k 2 [n].

We prove that i is a bijection.

� i is injective. To see this, takeU; V � X and supposei (U) = i (V ). We prove that
U = V . So �x x 2 X and let k 2 [n] be such that x = xk . Then

x 2 U , the kth component of i (U) is `in' by de�nition of i

, the kth component of i (V ) is `in' since i (U) = i (V )

, x 2 V by de�nition of i

so indeed we haveU = V , as required.

� i is surjective. To see this, let v 2 f in; outgn , and let

U = f xk j the kth component of v is `in'g

Then i (U) = v, since for eachk 2 [n] we havexk 2 U if and only if the kth component
of v is `in', which is precisely the de�nition of i (U).

Hence
jP (X )j = jf in; outgjn = 2 n

as required. C
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Exercise 4.2.29
Let X and Y be �nite sets, and recall that Y X denotes the set of functions fromX to Y .
Prove that jY X j = jY j jX j . C

Example 4.2.30
We count the number of ways we can shu�e a standard deck of cards in such a way that
the colour of the cards alternate between red and black.

A procedure for choosing the order of the cards is as follows:

(i) Choose the colour of the �rst card. There are 2 such choices. This then determines
the colours of the remaining cards, since they have to alternate.

(ii) Choose the order of the red cards. There are 26! such choices.

(iii) Choose the order of the black cards. There are 26! such choices.

By the multiplication principle, there are 2 � (26!)2 such rearrangements. This number is
huge, and in general there is no reason to write it out. Just for fun, though:

2 � (26!)2 = 325 288 005 235 264 929 014 077 766 819 257 214 042 112 000 000 000 000

C

Exercise 4.2.31
Since September 2001, car number plates on the island of Great Britain have taken the
form XX NN XXX, where eachX can be any letter of the alphabet except for `I', `Q' or `Z',
and NNis the last two digits of the year.[d] How many possible number plates are there?
Number plates of vehicles registered in the region of Yorkshire begin with the letter `Y'.
How many Yorkshire number plates can be issued in a given year? C

A sight modi�cation to the multiplication principle allows sets later in the product to
depend somehow on those appearing earlier. Thinking of the elements of a product as
steps in a counting procedure, this means that later steps can depend on the outcome of
earlier steps, which will turn out to be extremely useful!

Corollary 4.2.32 (Multiplication principle (dependent version))
Let n > 1 and for eachi 2 [n] let ki 2 N. De�ne a family of sets X i (x1; : : : ; x i � 1) for i 2 [n]
inductively as follows:

� Let X 1 be a �nite set of size k1;

� Let i < n and supposeX i (x1; : : : ; x i � 1) has been de�ned. For eachx i 2 X i (x1; : : : ; x i � 1),
let X i +1 (x1; : : : ; x i � 1; x i ) be a �nite set of size ki +1 .

[d] This is a slight simpli�cation of what is really the case, but let's not concern ourselves with too many
details!
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Then for each choice of sequence (x1; x2; : : : ; xn ), with x i 2 X i (x1; : : : ; x i � 1) for eachi 2 [n],
the set

X = f (x1; x2; : : : ; xn ) j x i 2 X i (x1; x2; : : : ; x i � 1) for all i 2 [n]g

is �nite, and moreover

jX j =
nY

i =1

ki

Proof. We proceed by induction onn > 1.

� (BC ) When n = 1, this result says precisely that if X 1 is a �nite set of size k1, then
X 1 is a �nite set of size k1. This is true.

� (IS ) Fix n > 1 and suppose that the theorem is true forn.

For i 6 n + 1, let sets X i (x1; : : : ; x i � 1) be de�ned as in the statement of the theorem,
and let

X = f (x1; x2; : : : ; xn ; xn+1 ) j x i 2 X i (x1; x2; : : : ; x i � 1) for all i 2 [n + 1]g

We prove that X is �nite and jX j =
n+1Q

i =1
ki .

Let X 0 = f (x1; x2; : : : ; xn ) j x i 2 X i (x1; x2; : : : ; x i � 1) for all i 2 [n]g. By the induc-

tion hypothesis, we know that jX 0j =
nQ

i =1
ki . Now there is an evident bijection

X !
[

(x1 ;:::;x n )2 X 0

f (x1; x2; : : : ; xn )g � X n+1 (x1; : : : ; xn )

given by the correspondence between

(x1; x2; : : : ; xn ; xn+1 ) and ((x1; x2; : : : ; xn ); xn+1 )

for all i 2 [n + 1] and x i 2 X i (x1; : : : ; x i � 1). Moreover the setsf (x1; x2; : : : ; xn )g �
X n+1 (x1; : : : ; xn ) are pairwise disjoint. Hence by the addition principle (to be proved
soon|see Theorem 4.2.37), we have

jX j =
X

(x1 ;:::;x n )2 X 0

jf (x1; x2; : : : ; xn )g � X n+1 (x1; : : : ; xn )j

But for all ( x1; : : : ; xn ) 2 X 0, we have

jf (x1; x2; : : : ; xn )g � X n+1 (x1; : : : ; xn )j

= jf (x1; x2; : : : ; xn )gj � jX n+1 (x1; : : : ; xn )j by Proposition 4.2.7

= 1 � kn+1 by de�nition of X n+1 (� � � )

= kn+1
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and hence
X

(x1 ;:::;x n )2 X 0

jf (x1; x2; : : : ; xn )g � X n+1 (x1; : : : ; xn )j

=
X

(x1 ;:::;x n )2 X 0

kn+1 as we just saw

= jX 0j � kn+1 since terms in sum are constant

=

 
nY

i =1

ki

!

� kn+1 by the induction hypothesis

=
n+1Y

i =1

ki

as required.

By induction, we're done.

Example 4.2.33
We prove that there are six bijections [3] ! [3]. We can specify a bijectionf : [3] ! [3]
according to the following procedure.

� Step 1. Choose the value off (1). There are 3 choices.

� Step 2. Choose the value off (2). The values f (2) can take depend on the chosen
value of f (1).

� If f (1) = 1, then f (2) can be equal to 2 or 3.

� If f (1) = 2, then f (2) can be equal to 1 or 3.

� If f (1) = 3, then f (2) can be equal to 1 or 2.

In each case, there are 2 choices for the value off (2).

� Step 3. Choose the value off (3). The values f (3) can take depend on the values of
f (1) and f (2). We could split into the (six!) cases based on the values off (1) and
f (2) chosen in Steps 1 and 2; but we won't. Instead, note thatf f (1); f (2)g has two
elements, and by injectivity f (3) must have a distinct value, so that [3]n f f (1); f (2)g
has one element. This element must be the value off (3). Hence there is only possible
choice off (3).

By the multiplication principle, there are 3 � 2 � 1 = 6 bijections [3] ! [3]. C

Exercise 4.2.34
Count the number of injections [3] ! [4]. C
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The addition principle says that if we canpartition a set into smaller chunks, then the size
of the set is the sum of the sizes of the chunks. We will �rst make this notion of `partition'
precise.

De�nition 4.2.35
SetsX and Y are disjoint if X \ Y = ? . More generally, givenn 2 N, a collection of sets
X 1; X 2; : : : ; X n is pairwise disjoint if X i \ X j = ? for all i; j 2 [n] with i 6= j .

De�nition 4.2.36
A ( �nite ) partition of a setX is, for somen 2 N, a collection f Ui j i 2 [n]g of subsets of
X such that:

(i) Each Ui is inhabited;

(ii) The sets U1; U2; : : : ; Un are pairwise disjoint; and

(iii)
S n

i =1 Ui = X .

Theorem 4.2.37 (Addition principle)
Let X be a set and let f U1; : : : ; Ung be a partition of X for somen 2 N, such that each
set Ui is �nite. Then X is �nite, and

jX j = jU1j + jU2j + � � � + jUn j

Exercise 4.2.38
Prove Theorem 4.2.37. The proof follows the same pattern as that of the multiplication
principle (Theorem 4.2.26). Be careful to make sure you identify where you use the hypo-
thesis that the setsUi are pairwise disjoint! C

Problem-solving tip
The addition principle allows us to count the number of elements of a �nite set by �nding
a partition of X , say f U1; U2; : : : ; Ung. If jUi j = ni for each 16 i 6 n, then this means
that

jX j =
nX

i =1

ni

C

Example 4.2.39
We will count the number of inhabited subsets of [7] which either contain only even num-
bers, or contain only odd numbers.
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210 Chapter 4. Finite and in�nite sets

Let O denote the set of inhabited subsets of [7] containing only odd numbers, and letE
denote the set of inhabited subsets of [7] containing only even numbers. Note thatf O; Eg
forms a partition of the set we are counting, and so our set hasjOj + jE j elements.

� An element of O must be a subset off 1; 3; 5; 7g. By Example 4.2.28 there are 24 =
16 such subsets. Thus the number ofinhabited subsets of [7] containing only odd
numbers is 15, since we must exclude the empty set. That is,jOj = 15.

� A subset containing only even numbers must be a subset off 2; 4; 6g. Again by
Example 4.2.28 there are 23 = 8 such subsets. Hence there are 7 inhabited subsets
of [7] containing only even numbers. That is,jE j = 7.

Hence there are 15 + 7 = 22 inhabited subsets of [7] containing only even or only odd
numbers. And here they are:

f 1g f 3g f 5g f 7g f 1; 3g f 2g f 4g f 6g
f 1; 5g f 1; 7g f 3; 5g f 3; 7g f 5; 7g f 2; 4g f 2; 6g f 4; 6g

f 1; 3; 5g f 1; 3; 7g f 1; 5; 7g f 3; 5; 7g f 1; 3; 5; 7g f 2; 4; 6g

C

Exercise 4.2.40
Pick your favourite integer n > 1000. For this value ofn, how many inhabited subsets of
[n] contain either only even or only odd numbers? (You need not evaluate exponents.) C

We now consider some examples of �nite sets which use both the multiplication principle
and the addition principle.

Example 4.2.41
A city has 6n inhabitants. The favourite colour of n of the inhabitants is orange, the
favourite colour of 2n of the inhabitants is pink, and the favourite colour of 3n of the
inhabitants is turquoise. The city government wishes to form a committee with equal
representation from the three colour preference groups to decide how the new city hall
should be painted. We count the number of ways this can be done.

Let X be the set of possible committees. First note that

X =
n[

k=0

X k

whereX k is the set of committees with exactlyk people from each colour preference group.
Indeed, we must havek 6 n, since it is impossible to have a committee with more thann
people from the orange preference group.
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Section 4.2. Counting principles 211

Moreover, if k 6= ` then X k \ X ` = ? , since ifk 6= ` then a committee cannot simultaneously
have exactly k people and exactly` people from each preference group.

By the addition principle, we have

jX j =
nX

k=0

jX k j

We count X k for �xed k using the following procedure:

� Step 1. Choosek people from the orange preference group to be on the committee.
There are

� n
k

�
choices.

� Step 2. Choosek people from the pink preference group to be on the committee.
There are

� 2n
k

�
choices.

� Step 3. Choosek people from the turquoise preference group to be on the committee.
There are

� 3n
k

�
choices.

By the multiplication principle, it follows that jX k j =
� n

k

�� 2n
k

�� 3n
k

�
. Hence

jX j =
nX

k=0

�
n
k

��
2n
k

��
3n
k

�

C

Exercise 4.2.42
In Example 4.2.41, how many ways could a committee be formed with arepresentative
number of people from each colour preference group? That is, the proportion of people on
the committee which prefer any of the three colours should be equal to the corresponding
proportion of the population of the city. C

Counting in two ways

Counting in two ways (also known asdouble counting) is a proof technique that allows us
to prove that two natural numbers are equal by establishing they are two expressions for
the size of the same set. (More generally, by Exercise 4.1.43, we can relate them to the
sizes of two sets which are in bijection.)

The proof of Proposition 4.2.43 illustrates this proof very nicely. We proved it already by
induction in Exercise 1.3.29; the combinatorial proof we now provide is much shorter and
cleaner.
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212 Chapter 4. Finite and in�nite sets

Proposition 4.2.43

Let n 2 N. Then 2n =
nX

k=0

�
n
k

�
.

Proof. We know that jP ([n])j = 2 n by Example 4.2.28 and thatP([n]) =
S n

k=0

� [n]
k

�
by Pro-

position 4.2.17. Moreover, the sets
� [n]

k

�
are pairwise disjoint, so by the addition principle

it follows that

2n = jP ([n])j =

�
�
�
�
�

n[

k=0

�
[n]
k

� �
�
�
�
�

=
nX

k=0

�
�
�
�

�
[n]
k

� �
�
�
� =

nX

k=0

�
n
k

�

Proof tip
To prove that two natural numbers m and n are equal, we can �nd setsX and Y such that
jX j = m, jY j = n and either X = Y or there is a bijection X ! Y . This proof technique is
called counting in two ways , and is very useful for proving identities regarding numbers
that have a combinatorial interpretation (especially binomial coe�cients and factorials,
which will be introduced later). C

The next example counts elements ofdi�erent sets and puts them in bijection to establish
an identity.

Proposition 4.2.44
Let n; k 2 N with n > k. Then

�
n
k

�
=

�
n

n � k

�

Proof. First note that
� n

k

�
=

�
�
�
� [n]

k

� �
�
� and

� n
n� k

�
=

�
�
�
� [n]

n� k

� �
�
� , so it su�ces to �nd a bijection

f :
� [n]

k

�
!

� [n]
n� k

�
. Intuitively, this bijection arises because choosingk elements from [n]

to put into a subset is equivalent to choosingn � k elements from [n] to leave out of the
subset. Speci�cally, we de�ne

f (U) = [ n] n U for all U 2
�

[n]
k

�

Note �rst that f is well-de�ned, since if U � [n] with jUj = k, then [n] n U � [n] and
j[n] n Uj = j[n]j � j Uj = n � k by Exercise 4.2.4. We now provef is a bijection:
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� f is injective. Let U; V � [n] and suppose [n] n U = [ n] n V . Then for all k 2 [n],
we have

k 2 U , k 62[n] n U by de�nition of set di�erence

, k 62[n] n V since [n] n U = [ n] n V

, k 2 V by de�nition of set di�erence

so U = V , as required.

� f is surjective. Let V 2
� [n]

n� k

�
. Then j[n] n V j = n � (n � k) = k by Exercise 4.2.4,

so that [n] n V 2
� [n]

k

�
. But then

f ([n] n V ) = [ n] n ([n] n V ) = V

by Exercise 2.2.39.

Sincef is a bijection, we have
�

n
k

�
=

�
�
�
�

�
[n]
k

� �
�
�
� =

�
�
�
�

�
[n]

n � k

� �
�
�
� =

�
n

n � k

�

as required.

We put a lot of detail into this proof. A slightly less formal proof might simply say
that

� n
k

�
=

� n
n� k

�
since choosingk elements from [n] to put into a subset is equivalent to

choosingn � k elements from [n] to leave out of the subset. This would be �ne as long
as the members of the intended audience of your proof could reasonably by expected to
construct the bijection by themselves.

The proof of Proposition 4.2.45 follows this more informal format.

Proposition 4.2.45
Let n; k; ` 2 N with n > k > `. Then

�
n
k

��
k
`

�
=

�
n
`

��
n � `
k � `

�

Proof. Let's home in on the left-hand side of the equation. By the multiplication principle,� n
k

�� k
`

�
is the number of ways of selecting ak-element subset of [n] and an `-element subset

of [k]. Equivalently, it's the number of ways of selecting ak-element subset of [n] and then
an `-element subsetof the k-element subset that we just selected. To make this slightly
more concrete, let's put it this way:
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� n
k

�� k
`

�
is the number of ways of painting k balls red from a bag ofn balls, and

painting ` of the red balls blue. This leaves us with` blue balls and k � ` red
balls.

Now we need to �nd an equivalent interpretation of
� n

`

�� n� `
k� `

�
. Well, suppose we pick the

` elements to be coloured blue �rst. To make up the rest of thek-element subset, we now
have to selectk � ` elements, and there are nown � ` to choose from. Thus

� n
`

�� n� `
k� `

�
is the number of ways of painting ` balls from a bag of n balls blue,

and painting k � ` of the remaining balls red.

Thus, both numbers represent the number of ways of painting̀ balls blue and k � ` balls
red from a bag ofn balls. Hence they are equal.

Exercise 4.2.46
Make the proof of Proposition 4.2.45 more formal by de�ning a bijection between sets of
the appropriate sizes. C

Exercise 4.2.47
Provide a combinatorial proof that if n; k 2 N with n > k, then

�
n + 1
k + 1

�
=

�
n
k

�
+

�
n

k + 1

�

Deduce that the combinatorial de�nition of binomial coe�cients (De�nition 4.2.18) is equi-
valent to the recursive de�nition (De�nition 1.3.27). C

The following proposition demonstrates that the combinatorial de�nition of factorials
(De�nition 4.2.24) is equivalent to the recursive de�nition (De�nition 1.3.25).

Proposition 4.2.48
0! = 1 and if n 2 N then (n + 1)! = ( n + 1) � n!.

Proof. The only permutation of ? is the empty function e : ? ! ? . HenceS0 = f eg and
0! = jS0j = 1.

Let n 2 N. A permutation of [ n + 1] is a bijection f : [n + 1] ! [n + 1]. Specifying such a
bijection is equivalent to carrying out the following procedure:

� Choose the (unique!) elementk 2 [n + 1] such that f (k) = n + 1. There are n + 1
choices fork.
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� Choose the values off at each ` 2 [n + 1] with ` 6= k. This is equivalent to �nding
a bijection [n + 1] n f kg ! [n]. Since j[n + 1] n f kgj = j[n]j = n, there are n! such
choices.

By the multiplication principle, we have

(n + 1)! = jSn+1 j = ( n + 1) � n!

so we're done.

We now revisit Theorem 1.3.31; this time, our proof will be combinatorial, rather than
inductive.

Theorem 4.2.49
Let n; k 2 N. Then

�
n
k

�
=

8
<

:

n!
k!(n � k)!

if k 6 n

0 if k > n

Proof. Supposek > n . By Exercise 4.2.2, ifU � [n] then jUj 6 n. Hence if k > n , then� [n]
k

�
= ? , and so

� n
k

�
= 0, as required.

Now supposek 6 n. We will prove that n! =
� n

k

�
� k! � (n � k)!; the result then follows by

dividing through by k!(n � k)!. We prove this equation by counting the number of elements
of Sn .

A procedure for de�ning an element of Sn is as follows:

(i) Choose which elements will appear in the �rst k positions of the list. There are
� n

k

�

such choices.

(ii) Choose the order of thesek elements. There arek! such choices.

(iii) Choose the order of the remaining n � k elements. There are (n � k)! such choices.

By the multiplication principle, n! =
� n

k

�
� k! � (n � k)!.

Note that the proof of Theorem 4.2.49 relied only on the combinatorial de�nitions of
binomial coe�cients and factorials; we didn't need to know how to compute them at
all! The proof was much shorter, cleaner and, in some sense, more meaningful, than the
inductive proof we gave in Section 1.3|see Theorem 1.3.31.
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We conclude this section with some more examples and exercises in which counting in two
ways can be used.

Exercise 4.2.50
Let n; k 2 N with k 6 n + 1. Prove that

k
�

n
k

�
= ( n � k + 1)

�
n

k � 1

�

C

Example 4.2.51
Let m; n; k 2 N. We prove that

kX

`=0

�
m
`

��
n

k � `

�
=

�
m + n

k

�

by �nding a procedure for counting the number of k-element subsets of an appropriate
(m + n)-element set. Speci�cally, let X be a set containing m cats and n dogs. Then�
�� m+ n

k

� �
� is the number ofk-element subsetsU � X . We can specify such a subset according

to the following procedure.

� Step 1. Split into cases based on the number̀ of cats in U. Note that we must have
0 6 ` 6 k, since the number of cats must be a natural number and cannot exceed
k as jUj = k. Moreover, these cases are mutually exclusive. Hence by the addition
principle we have

�
m + n

k

�
=

kX

`=0

a`

where a` is the number of subsets ofX containing ` cats and k � ` dogs.

� Step 2. Choose` cats from the m cats in X to be elements ofU. There are
� [m]

`

�

such choices.

� Step 3. Choosek � ` dogs from the n dogs in X to be elements ofU. There are� [n]
k� `

�
such choices.

The multiplication principle shows that a` =
� m

`

�� n
k� `

�
. Hence

�
m + n

k

�
=

kX

`=0

�
m
`

��
n

k � `

�

as required. C
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Exercise 4.2.52
Let n 2 N. Prove that

nX

k=0

�
n
k

� 2

=
�

2n
n

�

C

Exercise 4.2.53
Let n; m 2 N with m 6 n. Prove that

nX

k= m

�
n
k

��
k
m

�
= 2 n� m

�
n
m

�

C

Exercise 4.2.54
Given natural numbers n; a; b; c with a + b + c = n, de�ne the trinomial coe�cient�

n
a; b; c

�
to be the number of ways of partitioning [n] into three sets of sizesa, b and c,

respectively. That is,
�

n
a; b; c

�
is the size of the set

8
<

:
(A; B; C )

�
�
�
�
�
�

A � [n]; B � [n]; C � [n];
jAj = a; jB j = b; jCj = c;

and A [ B [ C = [ n]

9
=

;

By considering trinomial coe�cients, prove that if a; b; c2 N, then (a + b+ c)! is divisible
by a! � b! � c!. C

Here is one nice application of counting in two ways and the multiplication principle to
number theory. We will make use of this in the proof of Theorem 5.3.7, which provides a
general formula for the totient of an integer.

Theorem 4.2.55 (Multiplicativity of Euler's totient function)
Let m; n 2 Z and let ' : Z ! N be Euler's totient function (see De�nition 3.3.31). If m
and n are coprime, then ' (mn) = ' (m)' (n).

Proof. Since' (� k) = ' (k) for all k 2 Z, we may assume thatm > 0 and n > 0. Moreover,
if m = 0 or n = 0, then ' (m)' (n) = 0 and ' (mn) = 0, so the result is immediate. Hence
we may assume thatm > 0 and n > 0.

Given k 2 Z, de�ne
Ck = f a 2 [k] j a ? kg
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By de�nition of Euler's totient function, we thus have jCk j = ' (k) for all k 2 Z. We will
de�ne a bijection

f : Cm � Cn ! Cmn

using the Chinese remainder theorem (Theorem 3.3.46).

Given a 2 Cm and b 2 Cn , let f (a; b) be the elementx 2 [mn] such that
(

x � a mod m

x � b mod n

� f is well-de�ned. We check the properties of totality, existence and uniqueness.

� Totality. We have accounted for all the elements ofCm � Cn in our speci�cation
of f .

� Existence. By the Chinese remainder theorem, there existsx 2 Z such that
x � a mod m and x � b mod n. By adding an appropriate integer multiple
of mn to x, we may additionally require x 2 [mn]. It remains to check that
x ? mn.
So let d = gcd(x; mn ). If d > 1, then there is a positive prime p such that
p j x and p j mn. But then p j m or p j n, meaning that either p j gcd(x; m)
or p j gcd(x; n). But x � a mod m, so gcd(x; m) = gcd( a; m); and likewise
gcd(x; n) = gcd( b; n). So this contradicts the assumption that a ? m and b ? n.
Hencex ? mn after all.

� Uniqueness. Supposex; y 2 Cmn both satisfy the two congruences in question.
By the Chinese remainder theorem, we havex � y mod mn, and hencex =
y + kmn for somek 2 Z. Sincex; y 2 [mn], we have

jkjmn = jkmnj = jx � yj 6 mn � 1 < mn

This implies jkj < 1, so that k = 0 and x = y.

so f is well-de�ned.

� f is injective. Let a; a0 2 Cm and b; b0 2 Cn , and suppose that f (a; b) = f (a0; b0).
Then there is an elementx 2 Cmn such that

8
>>>><

>>>>:

x � a mod m

x � a0 mod m

x � b mod n

x � b0 mod n

Hence a � a0 mod m and b � b0 mod n. Since a; a0 2 [m] and b; b0 2 [n], we must
have a = a0 and b = b0.
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� f is surjective. Let x 2 Cmn . Let a 2 [m] and b 2 [n] be the (unique) elements
such that x � a mod m and x � b mod n, respectively. If a 2 Cm and b 2 Cn , then
we'll have f (a; b) = x by construction, so it remains to check that a ? m and b ? n.

Supposed 2 Z with d j a and d j m. We prove that d = 1. Since x � a mod m,
we haved j x by Theorem 3.1.17. Sincem j mn, we haved j mn. By de�nition of
greatest common divisors, it follows thatd j gcd(x; mn ). But gcd( x; mn ) = 1, so that
d is a unit, and so a ? m as required.

The proof that b ? n is similar.

It was a lot of work to check that it worked, but we have de�ned a bijection f : Cm � Cn !
Cmn . By the multiplication principle, we have

' (m)' (n) = jCm j � j Cn j = jCm � Cn j = jCmn j = ' (mn)

as required.

Exercise 4.2.56
Let n 2 Z and let p > 0 be prime. Prove that if p j n, then ' (pn) = p � ' (n). Deduce that
' (pk ) = pk � pk� 1 for all prime p > 0 and all k > 1. C

Theorem 4.2.57 (Formula for Euler's totient function)
Let n be a nonzero integer. Then

' (n) = jnj �
Y

pjn

�
1 �

1
p

�

where the product is indexed over positive primesp dividing n

Proof. Since ' (n) = ' (� n) for all n 2 Z, we may assume thatn > 0. Moreover

' (1) = 1 = 1 �
Y

pj1

�
1 �

1
p

�

Note that the product here is empty, and hence equal to 1, since there are no positive
primes p which divide 1. So now supposen > 1.

Using the fundamental theorem of arithmetic (Theorem 3.2.12), we can write

n = pk1
1 pk2

2 � � � pkr
r

for primes 0 < p 1 < p 2 < � � � < p r and natural numbers k1; k2; : : : ; kr > 1.
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By repeated application of Theorem 4.2.55, we have

' (n) =
rY

i =1

' (pk i
i )

By Exercise 4.2.56, we have

' (pk i
i ) = pk i

i � pk i � 1
i = pk i

i

�
1 �

1
pi

�

Combining these two results, it follows that

' (n) =
rY

i =1

pk i
i

�
1 �

1
pi

�
=

 
rY

i =1

pk i
i

!  
rY

i =1

�
1 �

1
pi

� !

= n �
rY

i =1

�
1 �

1
pi

�

which is as required.

Inclusion{exclusion principle

The addition principle is useful only for counting unions of pairwise disjoint sets, i.e. sets
that do not overlap. We saw in Proposition 4.2.5 how to compute the size of a union of
two sets which do overlap:

jX [ Y j = jX j + jY j � j X \ Y j

So far so good. But what if we have three or four sets instead of just two?

Exercise 4.2.58
Let X; Y; Z be sets. Show that

jX [ Y [ Z j = jX j + jY j + jZ j � j X \ Y j � j X \ Z j � j Y \ Z j + jX \ Y \ Z j

Let W be another set. Derive a similar formula forjW [ X [ Y [ Z j. C

The inclusion{exclusion principle generalises Exercise 4.2.58 to arbitary �nite collections
of �nite sets.

Theorem 4.2.59 (Inclusion–exclusion principle)
Let n > 2 and let X 1; X 2; : : : ; X n be sets. Then

�
�
�
�
�

n[

i =1

X i

�
�
�
�
�

=
X

J � [n]

(� 1)jJ j+1

�
�
�
�
�
�

\

j 2 J

X j

�
�
�
�
�
�

where for the purposes of the formula we take
T

j 2 ? X j = ? .
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Proof. We proceed by induction.

� (BC ) The proof for the casen = 2 was Proposition 4.2.5.

� (IS ) Fix n > 2 and suppose, for any setsX 1; X 2; : : : ; X n , that
�
�
�
�
�

n[

i =1

X i

�
�
�
�
�

=
X

J � [n]

(� 1)jJ j+1

�
�
�
�
�
�

\

j 2 J

X j

�
�
�
�
�
�

|( IH )

We need to prove that, for any setsX 1; X 2; : : : ; X n ; X n+1 , that

�
�
�
�
�

n+1[

i =1

X i

�
�
�
�
�

=
X

J � [n+1]

(� 1)jJ j+1

�
�
�
�
�
�

\

j 2 J

X j

�
�
�
�
�
�

Write U =
S n

i =1 X i . We know that

jU [ X n+1 j = jUj + jX n+1 j � j U \ X n+1 j |( ?)

Now by (IH ) we know jUj straight away:

jUj =
X

J � [n]

(� 1)jJ j+1

�
�
�
�
�
�

\

j 2 J

X j

�
�
�
�
�
�

This covers the sizes of all theJ � [n + 1] for which n + 1 62J .

Note that U \ X n+1 =
T n

i =1 X i \ X n+1 . Applying ( IH ) again we get

� j U \ X n+1 j

= �
X

J � [n]

(� 1)jJ j+1

�
�
�
�
�
�

0

@
\

j 2 J

X j

1

A \ X n+1

�
�
�
�
�
�

by (IH )

= �
X

J � [n]

(� 1)jJ [f n+1 gj

�
�
�
�
�
�

\

j 2 J [f n+1 g

X j

�
�
�
�
�
�

re-indexing the sum

=
X

J � [n]

(� 1)jJ [f n+1 gj+1

�
�
�
�
�
�

\

j 2 J [f n+1 g

X j

�
�
�
�
�
�

distributing the � sign

This covers the sizes of all theJ � [n + 1] for which n + 1 2 J and which contain
some element of [n].

The only subset of [n + 1] not covered by the above two sums isf n + 1g, and
(� 1)jf n+1 gj+1 = ( � 1)2 = 1, so that

(� 1)jf n+1 gj+1 jX n+1 j = jX n+1 j
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222 Chapter 4. Finite and in�nite sets

Together with ( ?), this yields the equation we wanted to prove was true.

By induction, we're done.

Proof tip
To �nd the size of a union of

S n
i =1 X i :

� Add the sizes of the individual setsX i ;

� Subtract the sizes of the double-intersectionsX i \ X j ;

� Add the sizes of the triple-intersectionsX i \ X j \ X k ;

� Subtract the sizes of the quadruple-intersectionsX i \ X j \ X k \ X ` ;

� . . . and so on . . .

Keep alternating until the intersection of all the sets is covered. C

Example 4.2.60
We count how many subsets of [12] contain a multiple of 3. Precisely, we count the number
of elements of the set

X 3 [ X 6 [ X 9 [ X 12

where X k = f S � [12] j k 2 Sg. We will apply the inclusion{exclusion principle:

(i) An element S 2 X 3 is precisely a set of the formf 3g[ S0, whereS0 � [12]n f 3g. Since
[12] n f 3g has 11 elements, there are 211 such subsets. SojX 3j = 2 11, and likewise
jX 6j = jX 9j = jX 12j = 2 11.

(ii) An element S 2 X 3 \ X 6 is a set of the form f 3; 6g [ S0, where S0 � [12] n f 3; 6g.
Thus there are 210 such subsets, sojX 3 \ X 6j = 2 10. And likewise

jX 3 \ X 9j = jX 3 \ X 12j = jX 6 \ X 9j = jX 6 \ X 12j = jX 9 \ X 12j = 2 10

(iii) Reasoning as in the last two cases, we see that

jX 3 \ X 6 \ X 9j = jX 3 \ X 6 \ X 12j = jX 3 \ X 9 \ X 12j = jX 6 \ X 9 \ X 12j = 2 9

(iv) . . . and jX 3 \ X 6 \ X 9 \ X 12j = 2 8.

Thus the number of subsets of [12] which contain a multiple of 3 is

4 � 211
| {z }

by (i)

� 6 � 210
| {z }

by (ii)

+ 4 � 29
| {z }
by (iii)

� 28
|{z}

by (iv)

which is equal to 3840. C
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Exercise 4.2.61
How many natural numbers less than 1000 are multiples of 2, 3, 5 or 7? C

Exercise 4.2.62
Recall the de�nition of the totient of an integer n (De�nition 3.3.31). Use the inclusion{
exclusion principle to show that ' (100) = 40. Use this fact to prove that the last two digits
of 379 are `67'. C
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Section 4.3

In�nite sets

Indexed families of sets

We begin this section by generalising the indexed union, intersection and product notation
that we saw in De�nition 4.2.8.

De�nition 4.3.1
Let I be a set. A family of sets indexed by I is a choice, for eachi 2 I of a setX i . We
write f X i j i 2 I g for the set of such choices.

De�nition 4.3.2
Let f X i j i 2 I g be a family of sets indexed by some setI . We de�ne. . .

� . . . the indexed union of f X i j i 2 I g is the set
S

i 2 I X i de�ned by

[

i 2 I

X i = f x j x 2 X i for somei 2 I g

� . . . the indexed intersection of f X i j i 2 I g is the set
T

i 2 I X i de�ned by

\

i 2 I

X i = f x j x 2 X i for all i 2 I g

� . . . the indexed product of f X i j i 2 I g is the set
Q

i 2 I
X i de�ned by

Y

i 2 I

X i = f (x i ) i 2 I j x i 2 X i for all i 2 I g

The elements (x i ) i 2 I of
Q

i 2 I
X i are ordered I -tuples . Formally, an ordered I -tuple

is a function f : I !
S

i 2 I X i such that f (i ) 2 X i for all i 2 I |then x i is just
shorthand for f (i ).

Note that when all the sets X i are equal to some setX , the product
Q

i 2 I
X is exactly

the set X I of functions I ! X .
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Example 4.3.3
Let X be a set, and for eachn 2 N, let Sn be the set of subsets ofX of sizen. Then

[

n2 N

Sn

is the set F of all �nite subsets of X . Indeed:

� (� ). Let U 2
S

n2 N Sn . Then U 2 Sn for somen 2 N, so that U � X and U is �nite
(and jUj = n). HenceU 2 F .

� (� ). Let U 2 F . Then U � X is �nite, so that U 2 SjUj , and henceU 2
S

n2 N Sn .

C

Exercise 4.3.4
Find a family f Un j n 2 Ng of subsets ofN such that

� Um \ Un is in�nite for all m; n 2 N; but

�
T

n2 N Un is empty.

C

We can use this new indexed union and intersection notation to prove a general version of
de Morgan's laws for sets.

Theorem 4.3.5 (De Morgan's laws for sets)
Let Z be a set and letf X i j i 2 I g be an indexed family of sets. Then

(a) Z n
S

i 2 I X i =
T

i 2 I (Z n X i );

(b) Z n
T

i 2 I X i =
S

i 2 I (Z n X i ).

Proof 1 of (a). In this proof, we prove (a) directly by unpacking the de�nitions of relative
complement, indexed union and indexed intersection.

Fix z. Note that z 2 Z n
S

i 2 I X i if and only if

z 2 Z ^ :

 

z 2
[

i 2 I

X i

!

by de�nition of relative complement. This holds if and only if

z 2 Z ^ : (9i 2 I; z 2 X i )
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226 Chapter 4. Finite and in�nite sets

by de�nition of indexed union. This holds if and only if

z 2 Z ^ 8 i 2 I; z 62X i

by De Morgan's laws for quanti�ers (Theorem 2.1.46). Since the propositionz 2 Z doesn't
depend oni , this holds if and only if

8i 2 I; (z 2 Z ^ z 62X i )

which is precisely the statement that z 2
T

i 2 I (Z n X i ).

Proof 2 of (a). In this proof, we prove (a) by a double-containment argument.

� Z n
S

i 2 I X i �
T

i 2 I (Z n X i ).

Let z 2 Z n
S

i 2 I X i . We know that z 2 Z and z 62
S

i 2 I X i . We need to prove that
z 2

T
i 2 I (Z n X i ); that is, we need to prove that, for all i 2 I , we havez 2 Z n X i ;

that is, z 2 Z and z 62X i . We have z 2 Z for free, so all we have to prove is that,
for all i 2 I , z 62X i .

So let i 2 I . If z 2 X i then z 2
S

i 2 I X i , contradicting the fact that z 62
S

i 2 I X i .
Therefore it must be the case thatz 62X i . This �nishes this half of the proof.

� Z n
S

i 2 I X i �
T

i 2 I (Z n X i ).

Let z 2
T

i 2 I (Z n X i ). We know that, for all i 2 I , z 2 Z n X i . Hence it's certainly
true that z 2 Z . To prove that z 2 Z n

S
i 2 I X i , it remains to prove that z 62

S
i 2 I X i .

Supposez 2
S

i 2 I X i . Then z 2 X i for some i 2 I . Since we already know that
z 2 Z , it follows that z 62Z n X i , contradicting the fact that z 2 Z n X i for all i 2 I .
This �nishes the second half of the proof.

We have shown containment in both directions, hence equality.

Sizes of �nite sets revisited

We have seen how to use injections, surjections and bijections to study the relative size of
sets:

� If f : X ! Y is injective, then jX j 6 jY j;

� If f : X ! Y is surjective, then jX j > jY j;

� If f : X ! Y is bijective, then jX j = jY j.
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Recall De�nition 4.1.39, where we said a setX is �nite if there is a bijection [n] ! X for
somen 2 N. The next de�nition takes this one step further.

De�nition 4.3.6
A set X is countably in�nite if there exists a bijection N ! X . We say X is countable
if it is �nite or countably in�nite.

Thus a set X is countably in�nite if its elements can be listed, with one entry in the list
for each natural number.

Example 4.3.7
We have already seen many examples of countably in�nite sets.

� The set N is countably in�nite, since by Exercise 4.1.15, idN : N ! N is a bijection.

� The function f : Z ! N de�ned for x 2 Z by

f (x) =

(
2x if x > 0

� (2x + 1) if x < 0

is a bijection. Indeed, it has an inverse is given by

f � 1(x) =

(
x
2 if x is even

� x+1
2 if x is odd

Hence the set of integersZ is countably in�nite. The corresponding list of integers
is given by

0; � 1; 1; � 2; 2; � 3; 3; � 4; 4; : : :

The fact that f � 1 is a bijection means that each integer appears on this list exactly
once.

C

Exercise 4.3.8
Prove that the function p : N � N ! N de�ned by p(x; y) = 2 x (2y + 1) � 1 is a bijection.
Deduce that if X and Y are countably in�nite sets, then X � Y is countably in�nite. C

Exercise 4.3.8 allows us to prove that the product of �nitely many countably in�nite sets
are countably in�nite.

Exercise 4.3.9
Let f : X ! Y be a bijection. Prove that X is countably in�nite if and only if Y is
countably in�nite. C
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Proposition 4.3.10

Let n > 1 and let X 1; : : : ; X n be countably in�nite sets. Then the product
nY

i =1

X i is

countably in�nite.

Proof. We proceed by induction onn.

� (BC ) When n = 1 the assertion is trivial: if X 1 is countably in�nite then X 1 is
countably in�nite.

� (IS ) Fix n > 1 and suppose that for any setsX 1; : : : ; X n , the product
nQ

i =1
X i is

countably in�nite. Fix sets X 1; : : : ; X n+1 . Then
nQ

i =1
X i is countably in�nite by the

induction hypothesis, and X n+1 is countably in�nite by assumption, so by Exercise
4.3.8, the set  

nY

i =1

X i

!

� X n+1

is countably in�nite. But by Exercise 4.2.14 there is a bijection

n+1Y

i =1

X i !

 
nY

i =1

X i

!

� X n+1

and so by Exercise 4.3.9 we have that
n+1Q

i =1
X i is countably in�nite, as required.

By induction, we're done.

Finding a bijection N ! X , or equivalently X ! N, can be a bit of a hassle. However, in
order to prove that a set X is countable, it su�ces to �nd either a surjection N ! X or
an injection X ! N.

Theorem 4.3.11
Let X be an inhabited set. The following are equivalent:

(i) X is countable;

(ii) There exists a surjection f : N ! X ;

(iii) There exists an injection f : X ! N.
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Proof. We'll prove (i) , (ii) and (i) , (iii).

� (i) ) (ii). Suppose X is countable. If X is countably in�nite, then there exists a
bijection f : N ! X , which is a surjection. If X is �nite then there exists a bijection
g : [m] ! X , where m = jX j > 1. De�ne f : N ! X by

f (n) =

(
g(n) if 1 6 n 6 m

g(1) if n = 0 or n > m

Then f is surjective: if x 2 X then there existsn 2 [m] such that g(n) = x, and then
f (n) = g(n) = x.

� (ii) ) (i). Suppose there exists a surjectionf : N ! X . To prove that X is countable,
it su�ces to prove that if X is in�nite then it is countably in�nite. So suppose X is
in�nite, and de�ne a sequence recursively by

� a0 = 0;

� Fix n 2 N and supposea0; : : : ; an have been de�ned. De�nean+1 to be the least
natural number for which f (an+1 ) 62 ff (a0); f (a1); : : : ; f (an )g.

De�ne g : N ! X by g(n) = f (an ) for all n 2 N. Then

� g is injective, since ifm 6 n then f (am ) 6= f (an ) by construction of the sequence
(an )n2 N.

� g is surjective. Indeed, givenx 2 X , by surjectivity there exists m 2 N which
is least such that f (m) = x, and we must havean = m for some n 6 m by
construction of the sequence (an )n2 N. So x = g(an ), and henceg is surjective.

So g is a bijection, and X is countable.

� (i) ) (iii). Suppose X is countable. If X is countably in�nite, then there exists a
bijection f : N ! X , so f � 1 : X ! N is bijective and hence injective. If X is �nite
then there exists a bijection g : [m] ! X , where m = jX j > 1. Then g� 1 : X ! [m]
is injective. Let i : [m] ! N be de�ned by i (k) = k for all k 2 [m]. Then i � g� 1 is
injective; indeed, for x; x 0 2 X we have

i (g� 1(x)) = i (g� 1(x0)) ) g� 1(x) = g� 1(x0) ) x = x0

The �rst implication is by de�nition of i , and the second is by injectivity of g� 1. So
there exists an injection X ! N.

� (iii) ) (i). Suppose there exists an injectionf : X ! N. To prove that X is countable,
it su�ces to prove that if X is in�nite then it is countably in�nite. De�ne a sequence
(an )n2 N recursively as follows:

� Let a0 be the least element off [X ];
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� Fix n 2 N and supposea0; : : : ; an have been de�ned. Let an+1 be the least
element off [X ]nf a0; : : : ; ang. This exists sincef is injective, so f [X ] is in�nite.

De�ne g : N ! X by, for each n 2 N, letting g(n) be the unique value ofx for which
f (x) = an . Then

� g is injective. By construction am 6= an wheneverm 6= n. Let x; y 2 X be such
that f (x) = am and f (y) = an . Since f is injective, we must havex 6= y, and
so g(m) = x 6= y = g(n).

� g is surjective. Fix x 2 X . Then f (x) 2 f [X ], so there existsm 2 N such that
f (x) = am . Henceg(m) = x.

So g is a bijection, and X is countably in�nite.

Hence the equivalences have been proved.

In fact, we needn't even useN as the domain of the surjection or the codomain of the
injection; we can in fact use any countable setC.

Corollary 4.3.12
Let X be an inhabited set. The following are equivalent:

(a) X is countable;

(b) There exists a surjection f : C ! X for some countable setC;

(c) There exists an injection f : X ! C for some countable setC.

Exercise 4.3.13
Prove Corollary 4.3.12. C

Corollary 4.3.12 is useful for proving the countability of many other sets: as we build up
our repertoire of countable sets, all we need to do in order to prove a setX is countable
is �nd a surjection from a set we already know is countable toX , or an injection from X
into a set we already know is countable.

Example 4.3.14
Q is countable. Indeed, by Exercises 4.3.7 and 4.3.8, the setZ � (Z n f 0g) is countable.
Moreover, there exists a surjectionq : Z � (Z n f 0g) ! Q de�ned by

q(a; b) =
a
b

By Corollary 4.3.12, Q is countable. C

Exercise 4.3.15
Let X be a countable set. Prove that

� X
k

�
is countable for eachk 2 N. C

230



Section 4.3. In�nite sets 231

Theorem 4.3.16
A countable union of countable sets is countable. More precisely, letf X n j n 2 Ng be a
family of countable sets. Then the setX de�ned by

X =
[

n2 N

X n

is countable.

Proof. We may assume that the setsX n are all inhabited, since the empty set does not
contribute to the union.

For eachn 2 N there is a surjectionf n : N ! X n . De�ne f : N� N ! X by f (m; n) = f m (n)
for all m; n 2 N. Then f is surjective: if x 2 X then x 2 X m for somem 2 N. Sincef m is
surjective, it follows that x = f m (n) for some n 2 N. But then x = f (m; n). Since N � N
is countable, it follows from Corollary 4.3.12 that X is countable.

Example 4.3.17
Let X be a countable set. The set of all �nite subsets ofX is countable. Indeed, the set of

all �nite subsets of X is equal to
[

k2 N

�
X
k

�
, which is a union of countably many countable

sets by Exercise 4.3.15, so is countable by Theorem 4.3.16. C

We can also use some clever trickery to prove that certain sets areuncountable. The proof
of the following theorem is known asCantor's diagonal argument .

Theorem 4.3.18
The set f 0; 1gN is uncountable.

Proof. Let f : N ! f 0; 1gN be a function. We will prove that f is not surjective by
constructing a sequence which is not contained in the image ofN under f .

De�ne an element b 2 f 0; 1gN, i.e. a function b : N ! f 0; 1g, by

b(n) = 1 � f (n)(n)

Then b(n) 6= f (n)(n) for all n 2 N. If b = f (m) for some m, then by de�nition of function
equality we must have b(m) = f (m)(m); but we just saw that this is necessarily false.
Henceb 62f [N], so f is not surjective.

Hence there does not exist a surjective functionN ! f 0; 1gN. By Theorem 4.3.11, the set
f 0; 1gN is uncountable.
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This result can be used to show that the setR of all real numbers is uncountable, though
this relies on features of the real numbers that we have not developed so far in this course.

Exercise 4.3.19
Let X be a set. Prove that P(X ) is either �nite or uncountable. C
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Section 5.1

Relations

When sets were �rst introduced in Section 2.2, after slewing through several de�nitions of
set operations and set algebra, you probably wondered why you'd ever decided to embark on
your journey into pure mathematics. It may have seemed at �rst like sets were introduced
solely to shorten notation|for instance, instead of saying ` n is an integer but not a natural
number', we could simply write `n 2 Z n N'.

But we soon saw that sets are powerful tools, which can be used to prove interesting results
and solve di�cult problems, largely with the help of functions. When we stopped studying
sets in isolation, and started seeing how they interact with each other using functions in
Section 2.3, their true power became apparent.

This section introduces the notion of arelation, which generalises that of a function.

De�nition 5.1.1
Let X and Y be sets. A (binary ) relation from X to Y is a logical formula R(x; y) with
two free variables x; y, where x has rangeX and y has rangeY . We call X the domain
of R and Y the codomain of R.
Given x 2 X and y 2 Y , if R(x; y) is true then we say x̀ is related to y by R', and write
x R y (LATEX code: xn; Rn; y ).a

aThe LATEX code n; inserts a small space: we use it because `x R y ' looks better and clearer than `xRy '.

In more human terms, a relation from X to Y is a statement about a generic element
x 2 X and a generic elementy 2 Y , which is either true or false depending on the values
of x and y.

Example 5.1.2
We have seen many examples of relations so far. For example:

� Every function f : X ! Y de�nes a relation Rf from X to Y by letting

x R f y , f (x) = y

� Given a set X , equality between elements ofX (`x = y') is a relation from X to X .

� Divisibility (` x j y') is a relation from Z to Z.

� For �xed n 2 Z, congruence modulon (`x � y mod n') is a relation from Z to Z.
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� Order (`x 6 y') is a relation from N to N, or from Z to Z, or from Q to Q, and so on.

� Given setsX and Y , there is anempty relation ? X;Y from X to Y , which is de�ned
simply by declaring ? X;Y (x; y) to be false for all x 2 X and y 2 Y .

C

Exercise 5.1.3
De�ne a relation R from Z to Z which is not on the list given in Example 5.1.2. C

It is possible, and extremely useful, to represent relations as sets. We do this by de�ning
the graph of a relation, which is the set of all pairs of elements which are related by the
relation. You might recognise this as being similar to the graph of afunction (De�nition
2.3.12).

De�nition 5.1.4
Let X and Y be sets, and letR be a relation from X to Y . The graph of R is the set
Gr(R) (LATEX code: nmathrmf Grgf Rg) of pairs (x; y) 2 X � Y for which x R y . That is

Gr(R) = f (x; y) 2 X � Y j x R yg � X � Y

Example 5.1.5
Consider the relation of divisibility from Z to Z, that is R(x; y) is the statement x j y. The
graph Gr(R) of R is the set whose elements are all pairs (m; n) where m; n 2 Z and m j n.
For example, (2; 6) 2 Gr(R) since 2j 6, but (2; 7) 62Gr(R) since 2- 7.

Sincem j n if and only if n = qm for someq 2 Z, we thus have

Gr(R) = f (m; qm) j m; q 2 Zg � Z � Z

C

Exercise 5.1.6
Let X and Y be sets. What is the graph of the empty relation fromX to Y? C

Exercise 5.1.7
Let f : X ! Y be a function, and de�ne the relation Rf from X to Y as in Example 5.1.2.
Prove that Gr( Rf ) = Gr( f )|that is, the graph of the relation Rf is equal to the graph of
the function f . C

As with functions, the graph of a relation R from a setX to a setY can often be represented
graphically: draw a pair of axes, with the horizontal axis representing the elements ofX
and the vertical axis representing the elements ofY , and plot the point ( x; y) if and only
if R(x; y) is true.
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Example 5.1.8
Consider the relation S from R to R de�ned by x S y , x2 + y2 = 1. Then

Gr(S) = f (x; y) 2 R � R j x2 + y2 = 1g

Plotting Gr( S) on a standard pair of axes yields a circle with radius 1 centred at the point
(0; 0). Note that Gr( S) is not the graph of a function s : [0; 1] ! R. Indeed, since for
example both 0S 1 and 0S � 1, the value s(0) would not be uniquely de�ned. C

Example 5.1.9
Let X be a set. The graph of the equality relation fromX to X is very simple:

Gr(=) = f (x; y) 2 X � X j x = yg = f (x; x ) j x 2 X g � X � X

This set is often denoted � X (LATEX code: nDelta f Xg), and called the diagonal subset
of X � X . The reason for the word `diagonal' is because|provided the horizontal and
vertical axes have the same ordering of the elements ofX |the points plotted are precisely
those on the diagonal line. C

Since we de�ned relations as particular logical formulae, and we have not de�ned a notion
of equality between logical formulae, if we want to say that two relations are equal then
�rst we need to de�ne what we mean by equal. As with sets, this raises some subtleties:
should two relations be equal when they're described by the same formula? Or should two
relations be equal when they relate the same elements, even if their underlying descriptions
are somewhat di�erent? As with equality between sets (De�nition 2.2.20), our notion of
equality between relations will be extensional: for the purposes of deciding whether two
relations are equal, we forget their descriptions and look only at whether or not they relate
the same pairs elements.

De�nition 5.1.10
Let X and Y be sets, and letR and S be relations from X to Y . We say R and S are
equal , and write R = S, if

8x 2 X; 8y 2 Y; (x R y , x S y)

That is, R = S if they relate exactly the same pairs of elements.

Note that two relations R and S from a set X to a set Y are equal as relations if and only if
their graphs Gr(R) and Gr(S) are equal as sets. This fact, together with the correspondence
between relations fromX to Y and subsets ofX � Y (Theorem 5.1.11 below) is incredibly
convenient, because it makes the notion of a relation more concrete.
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Theorem 5.1.11
Let X and Y be sets. Any subsetG � X � Y is the graph of exactly one relationR from
X to Y .

Proof. Fix G � X � Y . De�ne a relation R by

8x 2 X; 8y 2 Y; x R y , (x; y) 2 G

Then certainly G = Gr( R).

Moreover, if S is a relation from X to Y such that G = Gr( S), then, for all x 2 X and
y 2 Y

x S y , (x; y) 2 Gr(S) , (x; y) 2 Gr(R) , x R y

so S = R. Hence there is exactly one relation fromX to Y whose graph isG.

Theorem 5.1.11 allows us to use the counting principles from Section 4.2 to �nd the number
of relations from one �nite set to another.

Exercise 5.1.12
Let X and Y be �nite sets with jX j = m and jY j = n. Prove that there are 2mn relations
from X to Y . C

Aside
It is very common to identify a relation with its graph, saying that a relation from a set
X to a set Y `is' a subset ofX � Y . This practice is justi�ed by Theorem 5.1.11, which
says precisely that there is a correspondence between relations fromX to Y and subsets
of X � Y . C

Relations on a set

In most of the examples of relations we've seen so far, the domain of the relation is equal
to its codomain. The remainder of this section|in fact, the remainder of this chapter|is
dedicated to such relations. So let's simplify the terminology slightly.

De�nition 5.1.13
Let X be a set. A relation on X is a relation from X to X .

We have seen many such relations so far, such as: equality on any set, congruence modulo
n on Z, divisibility, on Z inclusion of subsets (� ) on P(X ), and comparison of size (6 ) on
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N, Z, Q or R. Remarkably, each of these relations can be characterised in one of two ways:
either as anequivalence relationor as apartial order .

Equivalence relations are those that behave in some sense like equality, and partial orders
are those that behave in some way like6 .

� Equality. If X is any set, then equality on X satis�es:

� Given x 2 X , we havex = x;

� Given x; y 2 X , if x = y, then y = x;

� Given x; y; z 2 X , if x = y and y = z, then x = z.

Note that these are all true if we replaceX by Z and � = � by � � � mod n for some
�xed n > 0.

� Order. If X = N (or Z or Q or R), then the order relation 6 on X satis�es:

� Given x 2 X , we havex 6 x;

� Given x; y 2 X , if x 6 y and y 6 x, then x = y;

� Given x; y; z 2 X , if x 6 y and y 6 z, then x 6 z.

Note that these are all true if we replace (X; 6 ) by ( P(X ); � ) or (N; j ).

For both equality and order, the �rst condition states that every element is related to itself,
and the third condition states that in some sense we can cut out intermediate steps. These
conditions are known asre
exivity and transitivity . The second condition for equality states
that the direction of the relation doesn't matter; this condition is called symmetry. The
second condition for the order relation states that the only way two objects can be related
to each other in both directions is if they are equal; this condition is calledantisymmetry.

The remainder of this section will develop the language needed to talk about equivalence
relations and partial orders. We will �nish the section with a discussion of equivalence
relations, and then study partial orders in depth in Section 5.2.

Re
exive relations are those that relate everything to itself.

De�nition 5.1.14
Let X be a set. A relation R on X is re
exive if x R x for all x 2 X .

Example 5.1.15
Given a set X , the equality relation on X is re
exive since x = x for all x 2 X . C

Example 5.1.16
The divisibility relation on N, or on Z, is re
exive. Given n 2 Z we haven = 1 � n, and
so n j n. C
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The following exercise demonstrates the importance of specifying the (co)domain of a
relation: it shows that a logical formula may de�ne a re
exive relation on one set, but not
on another.

Exercise 5.1.17
Prove that coprimality (` x ? y') is not a re
exive relation on Z, but that it is a re
exive
relation on the set f� 1; 1g.

As such, it doesn't make sense to say `coprimality is a re
exive relation' or `coprimality is
not a re
exive relation': we must specify on which set we are considering the coprimality
relation. C

The result of the next exercise characterises re
exive relations in terms of their graph.

Exercise 5.1.18
Let X be a set and let R be a relation on X . Prove that R is re
exive if and only if
� X � Gr(R), where � X is the diagonal subset ofX � X (see Example 5.1.9). Deduce that
if X is �nite and jX j = n, then there are 2n(n� 1) re
exive relations on X . C

Symmetric relations are those for which thedirection of the relation doesn't matter.

De�nition 5.1.19
Let X be a set. A relation R on X is symmetric if, for all x; y 2 X , x R y implies y R x.

Example 5.1.20
Some examples of symmetric relations include:

� Equality is a symmetric relation on any set X . Indeed, if x; y 2 X and x = y, then
y = x.

� Coprimality is a symmetric relation on Z, since if a; b 2 Z then a ? b if and only if
b ? a.

� Divisibility is not a symmetric relation on Z, since for instance 1j 2 but 2 - 1.
However, divisibility is a symmetric relation on f� 1; 1g, since 1j � 1 and � 1 j 1.

C

Exercise 5.1.21
Let X be a �nite set with jX j = n. Prove that there are 2(n

2) � 2n symmetric relations on
X . C

A related condition a relation may possess isantisymmetry.
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De�nition 5.1.22
Let X be a set. A relation R on X is antisymmetric if, for all x; y 2 X , if x R y and
y R x, then x = y.

A word of warning here is that `antisymmetric' does not mean the same thing as `not
symmetric'|indeed, we we will see, equality is both symmetric and antisymmetric, and
many relations are neither symmetric nor antisymmetric.[a]

Example 5.1.23
Some examples of antisymmetric relations include are as follows.

� Let X be a set. The equality relation onX is antisymmetric: it is immediate that if
x; y 2 X and x = y and y = x, then x = y.

� The relation 6 on the set N (or Z or Q or R) is antisymmetric: if m; n 2 N and
m 6 n and n 6 m, then m = n.

� The divisibility relation on N is antisymmetric. Indeed, let m; n 2 N and suppose
m j n and n j m. Then n = km for somek 2 Z and m = `n for some` 2 Z. It follows
that n = k`n . If n = 0 then m = n trivially; otherwise, we have k` = 1. Hence k is
a unit; moreover, sincem; n > 0 and n = km, we must havek = 1. Hence m = n.

C

Exercise 5.1.24
Show that the divisibility relation on Z is not antisymmetric. C

Exercise 5.1.25
Let X be a set and let R be a relation on X . Prove that R is both symmetric and
antisymmetric if and only if Gr( R) � � X , where � X is the diagonal subset ofX � X (see
Exercise 5.1.9). Deduce that the only re
exive, symmetric and antisymmetric relation on
a set X is the equality relation on X . C

Exercise 5.1.26
Let X be a �nite set with jX j = n. Prove that there are 3(n

2) � 2n antisymmetric relations
on X . C

Transitivity is the property of 6 that allows us to deduce, for example, that 06 4, from
the information that 0 6 1 6 2 6 3 6 4.

De�nition 5.1.27
Let X be a set. A relation R on X is transitive if, for all x; y; z 2 X , if x R y and y R z,
then x R z.
[a] Even more confusingly, there is a notion of asymmetric relation , which also does not mean `not symmetric'.
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Example 5.1.28
Some examples of transitive relations include:

� Equality is a transitive relation on any set X , since it is immediate that if x; y; z 2 X
with x = y and y = z, then x = z.

� Divisibility is a transitive relation on N, or on Z. Indeed, if a; b; c2 N with a j b and
b j c, then there exist k; ` 2 Z such that b = ka and c = `b. Then c = ( k`)a, so a j c.

� Inclusion is a transitive relation on P(X ), for any set X . Indeed, Proposition 2.2.11
implies that if U; V; W � X with U � V and V � W , then U � W .

C

A fundamental property of transitive relations is that we can prove two elements a and b
are related by �nding a chain of related elements starting at a and �nishing at b. This is
the content of the following proposition.

Proposition 5.1.29
Let R be a relation on a setX . Then R is transitive if and only if, for any �nite sequence
x0; x1; : : : ; xn of elements ofX such that x i � 1 R x i for all i 2 [n], we havex0 R xn .

Proof. For the sake of abbreviation, let p(n) be the assertion that, for any n > 1 and
any sequencex0; x1; : : : ; xn of elements ofX such that x i � 1 R x i for all i 2 [n], we have
x0 R xn .

We prove the two directions of the proposition separately.

� () ) SupposeR is transitive. For n > 1. We prove p(n) is true for all n > 1 by
induction.

� (BC ) When n = 1 this is immediate, since we assume thatx0 R x1.

� (IS ) Fix n > 1 and supposep(n) is true. Let x0; : : : ; xn ; xn+1 is a sequence such
that x i � 1 R x i for all i 2 [n + 1]. We need to prove that x0 R xn+1 .

By the induction hypothesis we know that x0 R xn . By de�nition of the sequence
we havexn R xn+1 . By transitivity, we have x0 R xn+1 .

So by induction, we have proved the) direction.

� (( ) Supposep(n) is true for all n > 1. Then in particular p(2) is true, which is
precisely the assertion thatR is transitive.

So we're done.
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That is, Proposition 5.1.29 states that for a transitive relation R on a setX , if x0; x1; : : : ; xn 2
X , then

x0 R x1 R � � � R xn ) x0 R xn

where x̀0 R x1 R � � � R xn ' abbreviates the assertion that x i R x i +1 for each i < n .

Exercise 5.1.30
For each of the eight subsets

P � f re
exive ; symmetric; transitive g

�nd a relation satisfying (only) the properties in P. C

Equivalence relations

We will now study what it is for a relation to be equality-like.

De�nition 5.1.31
A relation R on a set X is an equivalence relation if R is re
exive, symmetric and
transitive.

When we talk about arbitrary equivalence relations, we usually use a symbol like `� ' (LATEX
code: nsim) or `� ' (LATEX code: nequiv ) or `� ' (LATEX code: napprox) instead of R̀'.

Example 5.1.32
Recall Theorem 3.3.6. With our new language of relations, we could succinctly re-state it
as follows:

Let n be a modulus. Congruence modulon is an equivalence relation onZ.

Indeed, part (a) of Theorem 3.3.6 proved re
exivity, part (b) proved symmetry, and part
(c) proved transitivity. C

Exercise 5.1.33
Use the de�nition of equality of sets (De�nition 2.2.20) to prove that equality of sets is an
equivalence relation on the universe of discourseU. C

Exercise 5.1.34
De�ne a relation � on Z by declaring, for m; n 2 Z,

m � n , ' (m) = ' (n)

Prove that � is an equivalence relation. C
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In the following exercise, we construct a particular equivalence relation� R out of an
arbitrary relation R and prove that � R is, in a suitable sense, the `smallest' equivalence
relation extending R.

? Exercise 5.1.35
Let R be any relation on a set X . De�ne a new relation � R on X as follows. Given
x; y 2 X , say x � R y if and only if for some k 2 N there is a sequence (a0; a1; : : : ; ak ) of
elements ofX such that a0 = x, ak = y and, for all 0 6 i < k , either ai R ai +1 or ai +1 R ai .

First we'll work out a couple of examples.

(a) Fix a modulus n and let R be the relation on Z de�ned by x R y if and only if
y = x + n. Prove that � R is the relation of congruence modulon.

(b) Let X be a set and letR be the subset relation onP(X ). Prove that � R is the set
equality relation on P(X ).

(c) Let X be a set, �x two distinct elements a; b 2 X , and de�ne a relation R on X by
declaring a R b only|that is, for all x; y 2 X , we havex R y if and only if x = a and
y = b. Prove that the relation � R is de�ned by x � R y if and only if either x = y or
f x; yg = f a; bg. (Intuitively, � R `glues' the elementsa and b together.)

Next we prove the fundamental facts about� R that we mentioned before the statement of
this exercise.

(d) Prove that � R is an equivalence relation onX

(e) Prove that x R y ) x � R y for all x; y 2 X .

(f) Prove that, furthermore, if � is any equivalence relation onX and x R y ) x � y for
all x; y 2 X , then x � R y ) x � y for all x; y 2 X .

(g) Use parts (e) and (f) to prove that if R is already an equivalence relation, then the
relation � R is equal to R.

We say that the relation � R is the equivalence relation onX generated by R. C

Equivalence relations are useful because they allow us to ignore irrelevant information
about elements of a set. As an example, suppose we want to prove that, fora 2 Z, if
3 - a then a2 leaves a remainder of 1 when divided by 3. Before we learnt about modular
arithmetic in Section 3.3, in order to prove this, we would have written a = 3k � 1 for some
k 2 Z and done some tedious algebra to deduce thata2 = 3(3k2 � 2k) + 1. This required
us to use more information than we need: the value ofk doesn't make any di�erence
to the truth of the result, the expression 3(3k2 � 2k) + 1 is ugly and, more importantly,
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keeping track of k made the proof longer and more di�cult than it has to be. When we
learnt modular arithmetic, everything was simpli�ed: if 3 - a then a � � 1 mod 3, so that
a2 � (� 1)2 � 1 mod 3. This proof was shorter and simpler because we didn't need to
keep track of exactly which integera was|all we cared about was its value modulo 3. We
could just as well have replaceda with any other integer which leaves the same remainder
modulo 3.

This motivates the following de�nition, which provides a means of identifying two elements
of a set that are related by an equivalence relation.

De�nition 5.1.36
Let X be a set and let� be an equivalence relation onX . The � -equivalence class of
x 2 X is the set [x]� (LATEX code: [x] fn simg) de�ned by

[x]� = f y 2 X j x � yg

The quotient of X by � is the set X=� (LATEX code: X/ fn simg) of all � -equivalence
classes of elements ofX ; that is

X=� = f [x]� j x 2 X g

Formatting tip
Putting braces (f and g) around a symbol like � tells LATEX to consider the symbol on its
own, rather than in the context of its surrounding variables. Compare:

LATEX code: output:

Without braces: X/nsim = Y X= � = Y

With braces: X/ fn simg = Y X=� = Y

This is because, without braces, LATEX thinks you're saying `X= is related to is equal to
Y ', which clearly makes no sense; putt braces aroundnsim signi�es to LATEX that the �
symbol is being considered as an object in its own right. C

Example 5.1.37
Let � be the relation of congruence modulo 5 on the set of integers. Then

[0]� = f a 2 Z j a � 0g

Now, a � 0 if and only if 5 j a, so we can also write

[0]� = f : : : ; � 10; � 5; 0; 5; 10; : : : g = f 5k j k 2 Zg
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So in fact [0]� = [5k]� for any k 2 Z. And likewise

[r ]� = [ r + 5k]�

for all r; k 2 Z. It follows that Z=� = f [0]� ; [1]� ; [2]� ; [3]� ; [4]� g. C

De�nition 5.1.38
Consider the relation of congruence modulon on the set Z of integers. We call the equi-
valence class ofa 2 Z the congruence class of a modulo n, denoted [a]n , and we write
Z=nZ to denote the quotient of Z by the relation of congruence modulon.

Example 5.1.39
The set Z=5Z has �ve elements:

Z=5Z = f [0]5; [1]5; [2]5; [3]5; [4]5g

Example 5.1.37 demonstrates that for alln 2 Z and all 0 6 r < 5, we have [n]5 = [ r ]5 if
and only if n leaves a remainder ofr when divided by 5. For example, [7]5 = [2] 5. C

Exercise 5.1.40
Let n be a modulus. Prove that Z=nZ is �nite and jZ=nZj = n. C

Exercise 5.1.40 doesn't tell us much more than we already know: namely, that there are
only �nitely many possible remainders modulo n. But it makes our lives signi�cantly easier
for doing modular arithmetic, because now there are only �nitely many objects to work
with.

One last word on equivalence relations is that they are essentially the same thing as par-
titions (see De�nition 4.2.36).

Exercise 5.1.41
If � be an equivalence relation onX , then X=� is a partition X . Deduce that, for x; y 2 X ,
we havex � y if and only if [ x]� = [ y]� . C

In fact, the converse of 5.1.41 is also true, as we prove next.

Proposition 5.1.42
Let X be a set and letU be a partition of X . Then U = X=� for exactly one equivalence
relation � on X .

Proof. De�ne a relation � by

x � y , 9 U 2 U; x 2 U and y 2 U
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for all x; y 2 X . That is, x � y if and only if x and y are elements of the same set of the
partition. We check that � is an equivalence relation.

� Re
exivity. Let x 2 X . Then x 2 U for someU 2 U since
S

U2U U = X . Hence
x � x.

� Symmetry. Let x; y 2 X and supposex � y. Then there is someU 2 U with x 2 U
and y 2 U. But then it is immediate that y � x.

� Transitivity. Let x; y; z 2 X and suppose thatx � y and y � z. Then there exist
U; V 2 U with x; y 2 U and y; z 2 V . Thus y 2 U \ V . SinceU is a partition of X ,
its elements are pairwise disjoint; thus if U 6= V then U \ V = ? . Hence U = V .
Thus x 2 U and z 2 U, so x � z.

The de�nition of � makes it immediate that X=� = U.

To prove that � is the only such relation, suppose� is another equivalence relation onX
for which X=� = U. Then, given x; y 2 X , we have:

x � y , [x]� = [ y]� by Exercise 5.1.41

, 9 U 2 U; x 2 U ^ y 2 U by de�nition of �

, 9 z 2 X; x 2 [z]� ^ y 2 [z]� sinceU = X=�

, 9 z 2 X; x � z ^ y � z by de�nition of [ z]�
, x � y by symmetry and transitivity

So � = � .
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Section 5.2

Orders and lattices

We saw in Section 5.1 how equivalence relations behave like `=', in the sense that they are
re
exive, symmetric and transitive.

This section explores a new kind of relation which behaves like6̀ '. This kind of relation
proves to be extremely useful for making sense of mathematical structures, and has powerful
applications throughout mathematics, computer science and even linguistics.

De�nition 5.2.1
A relation R on a setX is a partial order if R is re
exive, antisymmetric and transitive.
That is, if:

� (Re
exivity) x R x for all x 2 X ;

� (Antisymmetry) For all x; y 2 X , if x R y and y R x, then x = y;

� (Transitivity) For all x; y; z 2 X , if x R y and y R z, then x R z.
A set X together with a partial order R on X is called apartially ordered set , or poset
for short, and is denoted (X; R ).

When we talk about partial orders, we usually use a suggestive symbol like `4 ' (LATEX
code: npreceq) or `v ' (LATEX code: nsqsubseteq ).

Example 5.2.2
We have seen many examples of posets so far:

� Any of the sets N, Z, Q or R, with the usual order relation 6 .

� Given a set X , its power set P(X ) is partially ordered by � . Indeed:

� Re
exivity. If U 2 P (X ) then U � U.

� Antisymmetry. If U; V 2 P (X ) with U � V and V � U, then U = V by
de�nition of set equality.

� Transitivity. If U; V; W 2 P (X ) with U � V and V � W , then U � W by
Proposition 2.2.11.

� The set N of natural numbers is partially ordered by divisibility (see Examples 5.1.16,
5.1.23 and 5.1.28). However, by Exercise 5.1.24, the setZ of integers is not partially
ordered by divisibility, since divisibility is not antisymmetric on Z.
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� Any set X is partially ordered by its equality relation. This is called the discrete
order on X .

C

Much like the di�erence between the relations 6 and < on N, or between � and $ on
P(X ), every partial order can be stricti�ed , in a precise sense outlined in the following
de�nition and proposition.

De�nition 5.2.3
A relation R on a set X is a strict partial order if it is irre
exive, asymmetric and
transitive. That is, if:

� (Irre
exivity) : (x R x ) for all x 2 X ;

� (Asymmetry) For all x; y 2 X , if x R y , then : (y R x);

� (Transitivity) For all x; y; z 2 X , if x R y and y R z, then x R z.

Proposition 5.2.4
Let X be a set. Partial orders4 on X are in natural correspondence with strict partial
orders � on X , according to the rule:

x 4 y , (x � y _ x = y) and x � y , (x 4 y ^ x 6= y)

Proof. Let P be the set of all partial orders onX and let S be the set of all strict partial
orders onX . De�ne functions

f : P ! S and g : S ! P

as in the statement of the proposition, namely:

� Given a partial order 4 , let f (4 ) be the relation � de�ned for x; y 2 X by letting
x � y be true if and only if x 4 y and x 6= y;

� Given a strict partial order � , let g(� ) be the relation 4 de�ned for x; y 2 X by
letting x 4 y be true if and only if x � y or x = y.

We'll prove that f and g are mutually inverse functions. Indeed:

� f is well-de�ned. To see this, �x 4 and � = f (4 ) and note that:

� � is irre
exive, since for x 2 X if x � x then x 6= x, which is a contradiction.
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� � is asymmetric. To see this, letx; y 2 X and supposex � y. Then x 4 y and
x 6= y. If also y � x, then we'd have y 4 x, so that x = y by antisymmetry of
4 . But x 6= y, so this is a contradiction.

� � is transitive. To see this, let x; y; z 2 X and supposex � y and y � z. Then
x 4 y and y 4 z, so that x 4 z. Moreover, if x = z then we'd also havez 4 x by
re
exivity of 4 , soz 4 y by transitivity of 4 , and hencey = z by antisymmetry
of 4 . But this contradicts y � z.

So � is a strict partial order on X .

� g is well-de�ned. To see this, �x � and 4 = g(� ) and note that:

� 4 is re
exive. This is built into the de�nition of 4 .

� 4 is symmetric. To see this, �x x; y 2 X and supposex 4 y and y 4 x. Now
if x 6= y then x � y and y � x, but this contradicts asymmetry of � . Hence
x = y.

� 4 is transitive. To see this, �x x; y; z 2 X and supposex 4 y and y 4 z. Then
one of the following four cases must be true:

� x = y = z. In this case, x = z, so x 4 z.
� x = y � z. In this case, x � z, so x 4 z.
� x � y = z. In this case, x � z, so x 4 z.
� x � y � z. In this case, x � z by transitivity of � , so x 4 z.

In any case, we have thatx 4 z.

So 4 is a partial order on X .

� g � f = id P . To see this, let � = f (4 ) and v = g(� ). For x; y 2 X , we havex v y if
and only if x � y or x = y, which in turn occurs if and only if x = y or both x 4 y
and x 6= y. This is equivalent to x 4 y, since if x = y then x 4 y by re
exivity.
Hencev and 4 are equal relations, sog � f = id P .

� f � g = id S. To see this, let 4 = g(� ) and @= f (4 ). For x; y 2 X , we havex @y
if and only if x 4 y and x 6= y, which in turn occurs if and only if x 6= y and either
x � y or x = y. Since x 6= y precludesx = y, this is equivalent to x � y. Hence�
and @are equal relations, sof � g = id S.

So f and g are mutually inverse functions, and we have established the required bijection.

In light of Proposition 5.2.4, we will freely translate between partial orders and strict
partial orders wherever necessary. When we do so, we will use� (LATEX code: nprec ) to
denote the `strict' version, and 4 to denote the `weak' version. (Likewise for@ (LATEX
code: nsqsubet ).)
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De�nition 5.2.5
Let (X; 4 ) be a poset. A4 -least element of X (or a least element of X with respect
to 4 ) is an element ? 2 X (LATEX code: nbot ) such that ? 4 x for all x 2 X . A 4 -
greatest element of X (or a greatest element of X with respect to 4 ) is an element
> 2 X (LATEX code: ntop ) such that x 4 > for all x 2 X .

Example 5.2.6
Some examples of least and greatest elements that we have already seen are:

� In (N; 6 ), 0 is a least element; there is no greatest element.

� Let n 2 N with n > 0. Then 1 is a least element of ([n]; 6 ), and n is a greatest
element.

� (Z; 6 ) has no greatest or least elements.

C

Proposition 5.2.7 says that least and greatest elements of posets are unique, if they exist.
This allows us to talk about `the' least or `the' greatest element of a poset.

Proposition 5.2.7
Let (X; 4 ) be a poset. If X has a least element, then it is unique; and ifX has a greatest
element, then it is unique.

Proof. SupposeX has a least element̀ . We prove that if `0 is another least element, then
`0 = `.

So take another least element̀ 0. Since ` is a least element, we havè 4 `0. Since `0 is a
least element, we havè 0 4 `. By antisymmetry of 4 , it follows that ` = `0.

Hence least elements are unique. The proof for greatest elements is similar, and is left as
an exercise.

Exercise 5.2.8
Let X be a set. The poset (P(X ); � ) has a least element and a greatest element; �nd
both. C

Exercise 5.2.9
Prove that the least element ofN with respect to divisibility is 1, and the greatest element
is 0. C
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De�nition 5.2.10
Let (X; 4 ) be a poset and letA � X . A 4 -supremum of A is an elements 2 X such that

� a 4 s for each a 2 A; and

� If s0 2 X with a 4 s0 for all a 2 A, then s 4 s0.
A 4 -in�mum of A is an elementi 2 X such that

� i 4 a for each a 2 A; and

� If i 0 2 X with i 0 4 a for all a 2 A, then i 0 4 i .

Example 5.2.11
The well-ordering principle states that if U � N is inhabited then U has a6 -in�mum, and
moreover the in�num of U is an element ofU. C

Exercise 5.2.12
Let X be a set, and letU; V 2 P (X ). Prove that the � -supremum of f U; Vg is U [ V , and
the � -in�mum of f U; Vg is U \ V . C

Exercise 5.2.13
Let a; b2 N. Show that gcd(a; b) is an in�mum of f a; bg and that lcm( a; b) is a supremum
of f a; bg with respect to divisbility. C

Example 5.2.14
De�ne U = [0 ; 1) = f x 2 R j 0 6 x < 1g. We prove that U has both an in�mum and a
supremum in the poset (R; 6 ).

� In�mum. 0 is an in�mum for U. Indeed:

(i) Let x 2 U. Then 0 6 x by de�nition of U.

(ii) Let y 2 R and suppose thaty 6 x for all x 2 U. Then y 6 0, since 02 U.

so 0 is as required.

� Supremum. 1 is a supremum forU. Indeed:

(i) Let x 2 U. Then x < 1 by de�nition of U, so certainly x 6 1.

(ii) Let y 2 R and suppose that x 6 y for all x 2 U. We prove that 1 6 y by
contradiction. So suppose it is not the case that 16 y. Then y < 1. Since
x 6 y for all x 2 U, we have 06 y. But then

0 6 y =
y + y

2
<

y + 1
2

<
1 + 1

2
= 1

But then y+1
2 2 U and y < y+1

2 . This contradicts the assumption that x 6 y
for all x 2 U. So it must in fact have been the case that 16 y.

so 1 is as required.
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C

The following proposition proves that suprema and in�ma are unique, provided they exist.

Proposition 5.2.15
Let (X; 4 ) is a poset, and letA � X .

(i) If s; s0 2 X are suprema ofA, then s = s0;

(ii) If i; i 0 2 X are in�ma of A, then i = i 0.

Proof. Supposes; s0 are suprema ofA. Then:

� a 4 s0 for all a 2 A, so s0 4 s sinces is a supremum ofA;

� a 4 s for all a 2 A, so s 4 s0 sinces0 is a supremum ofA.

Since4 is antisymmetric, it follows that s = s0. This proves (i).

The proof of (ii) is almost identical and is left as an exercise to the reader.

Notation 5.2.16
Let (X; 4 ) be a poset and letU � X . Denote the 4 -in�mum of U, if it exists, by

V
U

(LATEX code: nbigwedge); and denote the 4 -supremum of U, if it exists, by
W

U (LATEX
code: nbigvee ). Moreover, for x; y 2 X , write

^
f x; yg = x ^ y (LATEX code: nwedge);

_
f x; yg = x _ y (LATEX code: nvee)

Example 5.2.17
Some examples of Notation 5.2.16 are as follows.

� Let X be a set. In (P(X ); � ) we have U ^ V = U \ V and U _ V = U [ V for all
U; V 2 P (X ).

� We have seen that, in (N; j), we have a ^ b = gcd(a; b) and a _ b = lcm( a; b) for all
a; b2 N.

� In (R; 6 ), we havea ^ b = min f a; bg and a _ b = max f a; bg.

C

De�nition 5.2.18
A lattice is a poset (X; 4 ) such that every pair of elements ofX has a4 -supremum and
a 4 -in�mum.
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Example 5.2.19
We have seen that (P(X ); � ), (R; 6 ) and (N; j) are lattices. C

Proposition 5.2.20 (Associativity laws for lattices)
Let (X; 4 ) be a lattice, and let x; y; z 2 X . Then

x ^ (y ^ z) = ( x ^ y) ^ z and x _ (y _ z) = ( x _ y) _ z

Proof. We prove x ^ (y^ z) = ( x ^ y) ^ z; the other equation is dual and is left as an exercise.
We prove that the sets f x; y ^ zg and f x ^ y; zg have the same sets of lower bounds, and
hence the same in�ma. So let

L 1 = f i 2 X j i 4 x and i 4 y ^ zg and L 2 = f i 2 X j i 4 x ^ y and i 4 zg

We prove L 1 = L = L 2, where

L = f i 2 X j i 4 x; i 4 y and i 4 zg

First we prove L 1 = L. Indeed:

� L 1 � L . To see this, supposei 2 L 1. Then i 4 x by de�nition of L 1. Sincei 4 y ^ z,
and y ^ z 4 y and y ^ z 4 z, we havei 4 y and i 4 z by transitivity of 4 .

� L � L 1. To see this, supposei 2 L . Then i 4 x by de�nition of L . Moreover, i 4 y
and i 4 z by de�nition of L , so that i 4 y ^ z by de�nition of ^ . Hencei 2 L .

The proof that L 2 = L is similar. HenceL 1 = L 2. But x ^ (y ^ z) is, by de�nition of ^ ,
the 4 -greatest element ofL 1, which exists since (X; 4 ) is a lattice. Likewise, (x ^ y) ^ z is
the 4 -greatest element ofL 2.

SinceL 1 = L 2, it follows that x ^ (y ^ z) = ( x ^ y) ^ z, as required.

Exercise 5.2.21 (Commutativity laws for lattices)
Let (X; 4 ) be a lattice. Prove that, for all x; y 2 X , we have

x ^ y = y ^ x and x _ y = y _ x

C

Exercise 5.2.22 (Absorption laws for lattices)
Let (X; 4 ) be a lattice. Prove that, for all x; y 2 X , we have

x _ (x ^ y) = x and x ^ (x _ y) = x

C
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Example 5.2.23
It follows from what we've proved that if a; b; c2 Z then

gcd(a; gcd(b; c)) = gcd(gcd( a; b); c)

For example, take a = 882, b = 588 and c = 252. Then

� gcd(b; c) = 84, so gcd(a; gcd(b; c)) = gcd(882; 84) = 42;

� gcd(a; b) = 294, so gcd(gcd(a; b); c) = gcd(294; 252) = 42.

These are indeed equal. C

Distributive lattices and Boolean algebras

One particularly important class of lattice is that of a distributive lattice, in which suprema
and in�ma interact in a particularly convenient way. This makes algebraic manipulations
of expressions involving suprema and in�ma particularly simple.

De�nition 5.2.24
A lattice ( X; 4 ) is distributive if

x ^ (y _ z) = ( x ^ y) _ (x ^ z) and x _ (y ^ z) = ( x _ y) ^ (x _ z)

for all x; y; z 2 X .

Example 5.2.25
For any set X , the power set lattice (P(X ); � ) is distributive. That is to say that for all
U; V; W � X we have

U \ (V [ W ) = ( U \ V ) [ (U \ W ) and U [ (V \ W ) = ( U [ V ) \ (U [ W )

This was the content of Example 2.2.34 and Exercise 2.2.35. C

Exercise 5.2.26
Prove that ( N; j) is a distributive lattice. C

De�nition 5.2.27
Let (X; 4 ) be a lattice with a greatest element> and a least element? , and let x 2 X . A
complement for x is an elementy such that

x ^ y = ? and x _ y = >

254



Section 5.2. Orders and lattices 255

Example 5.2.28
Let X be a set. We show that every elementU 2 P (X ) has a complement. C

Exercise 5.2.29
Let (X; 4 ) be a distributive lattice with a greatest element and a least element, and let
x 2 X . Prove that, if a complement for x exists, then it is unique; that is, prove that if
y; y0 2 X are complements forX , then y = y0. C

Exercise 5.2.29 justi�es the following notation.

Notation 5.2.30
Let (X; 4 ) be a distributive lattice with greatest and least elements. If x 2 X has a
complement, denote it by : x.

De�nition 5.2.31
A lattice ( X; 4 ) is complemented if every elementx 2 X has a complement. ABoolean
algebra is a complemented distributive lattice with a greatest element and a least element.

The many preceding examples and exercises concerning (P(X ); � ) piece together to provide
a proof of the following theorem.

Theorem 5.2.32
Let X be a set. Then (P(X ); � ) is a Boolean algebra.

Another extremely important example of a Boolean algebra is known as theLindenbaum{
Tarski algebra, which we de�ne in De�nition 5.2.35. In order to de�ne it, we need to prove
that the de�nition will make sense. First of all, we �x some notation.

De�nition 5.2.33
Let P be a set, thought of as a set of propositional variables. WriteL (P) to denote the
set of propositional formulae with propositional variables in P|that is, the elements of
L (P) are strings built from the elements of P, using the operations of conjunction (̂ ),
disjunction ( _) and negation (: ).

Lemma 5.2.34
Logical equivalence� is an equivalence relation onL(P).

Proof. This is immediate from de�nition of equivalence relation, since fors; t 2 L(P), s � t
is de�ned to mean that s and t have the same truth values for all assignments of truth
values to their propositional variables.
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In what follows, the set P of propositional variables is �xed; we may moreover take it to
be countably in�nite, since all strings in L(P) are �nite.

De�nition 5.2.35
The Lindenbaum{Tarski algebra (for propositional logic ) over P is the pair (A; ` ),
where A = L(P)=� and ` is the relation on A de�ned by [s]� ` [t]� if and only if s ) t is
a tautology.

In what follows, we will simply write [ � ] for [� ]� .

Theorem 5.2.36
The Lindenbaum{Tarski algebra is a Boolean algebra.

Sketch proof. There is lots to prove here! Indeed, we must prove:

� ` is a well-de�ned relation on A; that is, if s � s0 and t � t0 then we must have
[s] ` [t] if and only if [ s0] ` [t0].

� ` is a partial order on A; that is, it is re
exive, antisymmetric and transitive.

� The poset (A; ` ) is a lattice; that is, it has suprema and in�ma.

� The lattice ( A; ` ) is distributive, has a greatest element and a least element, and is
complemented.

We will omit most of the details, which are left as an exercise; instead, we outline what
the components involved are.

The fact that ` is a partial order can be proved as follows.

� Re
exivity of ` follows from the fact that s ) s is a tautology for all propositional
formulae s.

� Symmetry of ` follows from the fact that, for all propositional formulae s; t, if s , t
is a tautology then s and t are logically equivalent.

� Transitivity of ` follows immediately from transitivity of ) .

The fact that ( A; ` ) is a lattice can be proved by verifying that:

� Given [s]; [t] 2 A, the in�mum [ s]^ [t] is given by conjunction, namely [s]^ [t] = [ s^ t].

� Given [s]; [t] 2 A, the supremum [s]_ [t] is given by disjunction, namely [s]_ [t] = [ s_ t].
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Finally, distributivity of suprema and in�ma in ( A; ` ) follows from the corresponding prop-
erties of conjunction and disjunction; (A; ` ) has greatest element [p ) p] and least element
[: (p ) p)], where p is some �xed propositional variable; and the complement of [s] 2 A is
given by [: s].

We �nish this section on orders and lattices with a general version of de Morgan's laws for
Boolean algebras, which by Theorems 5.2.32 and 5.2.36 implies the versions we proved for
logical formulae (Theorem 2.1.14) and for sets (Theorem 2.2.40).

Theorem 5.2.37 (De Morgan's laws)
Let (X; 4 ) be a Boolean algebra, and letx; y 2 X . Then

: (x ^ y) = ( : x) _ (: y) and : (x _ y) = ( : x) ^ (: y)

Proof. We prove : (x ^ y) = ( : x) _ (: y)
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Section 5.3

Well-foundedness and structural induction

Warning!
This section is not yet �nished|do not rely on its correctness or completeness.

Section 1.3 introduced induction as a technique for proving statements which are true of
all natural numbers. We saw induction in three 
avours: weak induction, strong induction
and the well-ordering principle.

� The principle of weak induction exploited the inductively de�ned structure of N.
Every natural number can be obtained from 0 by repeatedly applying the successor
(`plus one') operation, so if a statementp(n) is true of 0, and its truth is preserved
by the successor operation (i.e. ifp(n) ) p(n + 1) is true for all n 2 N), then it must
be true of all natural numbers

� The well-ordering principle exploited the well-foundednature of the order relation
< on N. It says that every inhabited subset ofN, so that any proposition p(n) which
is not true of all natural numbers n must have a least counterexample|this led to
the technique of proof by in�nite descent.

In this section, we will generalise these techniques to other sets with aninductively de�ned
or a well-founded structure.

� An inductively de�ned set will, intuitively, be a set X built from some set of basic
elements (like zero) using a set ofconstructors (like the successor operation). We
will be able to perform induction on these sets to prove that a statementp(x) is true
for all x 2 X by proving that it is true for the basic elements, and then proving
that its truth is preserved by the constructors. This proof technique generalises weak
induction and is called structural induction .

� A set X with a well-founded relation R will allow us to generalise proof by in�nite
descent: if there is a counterexample to a logical formulap(x), then there must be
one which is `minimal' with respect to R. This leads to a proof technique called
well-founded induction, which has similarities with strong induction.

Structural induction is conceptually easier to comprehend than well-founded induction, so
we will introduce it �rst. However, we will not be able to prove that it is a valid proof
technique until after we have introduced well-founded induction.
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Inductively de�ned sets

In Section 1.3, we formalised the idea that the set of natural numbers should be what
is obtained by starting with zero and repeating the successor (`plus one') operation. In a
sense, zero was abasic element|we posited its existence from the outset|and the successor
operation constructed the remaining elements.

Although hidden beneath the surface, this method of de�ning a set was implicitly used in
Section 2.1 when de�ning propositional formulae. Here, ourbasic elementswere proposi-
tional variables p; q; r; s; : : : , and the remaining propositional formulae could beconstructed
by repeatedly applying the logical connectiveŝ , _ , : and ) .

De�nition 5.3.1
An inductively de�ned set is a setX equipped with a subsetB � X of basic elements
and a setC of constructors , with the following properties:

(i) Each constructor f 2 C is a function f : X n ! X for some n 2 N. The natural
number n is called the arity of f .

(ii) For all constructors f; g 2 C if m; n are the arities of f; g , respectively, and
x1; x2; : : : ; xm , y1; y2; : : : ; yn 2 X are such that

f (x1; x2; : : : ; xm ) = g(y1; y2; : : : ; yn )

then m = n, f = g and x i = yi for all i 2 [m].

(iii) For all constructors f 2 C, the image of f is a subset of X n B . That is, no
basic element is of the formf (x1; x2; : : : ; xn ) for any constructor f and elements
x1; x2; : : : ; xn 2 X .

(iv) For all x 2 X n B , then x = f (x1; x2; : : : ; xn ) for some constructor f 2 C of arity n.

Example 5.3.2
The set N of natural number is inductively de�ned by taking B = f 0g and C = f sg, where
s : N ! N is de�ned by s(n) = n + 1 for all n 2 N. Indeed:

(i) s : N ! N is a constructor of arity 1.

(ii) Let f; g 2 C. Then f = g = s; and if x; y 2 N with s(x) = s(y), then x + 1 = y + 1,
so x = y.

(iii) s[N] � N n f 0g since 06= x + 1 for any x 2 N.

(iv) For all x 2 N n f 0g we havex = x0+ 1 for some x0 2 N|namely, x0 = x � 1|and so
x = s(x0).
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C

Exercise 5.3.3
Prove that the set E = f 1; 2; 4; 8; 16: : : g of powers of 2 is inductively de�ned by taking
B = f 1g and C = f dg, where d : E ! E is de�ned by d(n) = 2 n for all n 2 N. C

Exercise 5.3.4
Prove that N is inductively de�ned by taking B = 0 and C = f f g, where f : N ! N is
de�ned by

f (n) =

8
><

>:

1 if n = 0

2(n � 1) if n = 2 k + 1 for some k 2 N

n � 1 otherwise

for all n 2 N. C

To do: Example: propositional formulae

Theorem 5.3.5 (Principle of structural induction)
Let X be an inductively de�ned set, and let p(x) be a logical formula concerning elements
of X . Suppose that

� p(b) is true for all basic elementsb 2 X ; and

� For all constructors f of arity n and all x1; x2; : : : ; xn 2 X , if p(x1); p(x2); : : : ; p(xn )
are all true, then p(f (x1; x2; : : : ; xn )) is true.

Then p(x) is true for all x 2 X .

We will prove Theorem 5.3.5 on page 268.

Example 5.3.6
To do: Structural induction on N is weak induction. C

To do: Disjunctive normal form

To do: Generalise to quotients of inductive structures induction on Z using 0 and +; �
and on Z> 0 using 1 andp � (� ).

We saw in Proposition 5.3.13 that the relation R on the setZ> 0 of positive integers de�ned
for m; n 2 Z> 0 by

m R n , n = pm for some primep > 0

is well-founded. We can use well-founded induction to prove a general formula for the
totient of an integer n.
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Theorem 5.3.7 (Formula for Euler's totient function)
Let n 2 Z be nonzero, and let' : Z ! N be Euler's totient function (see De�nition 3.3.31).
Then

' (n) = jnj �
Y

pjn prime

�
1 �

1
p

�

where the product is indexed over the distinct positive prime factorsp of n.

Proof. If n < 0 then ' (n) = ' (� n), jnj = � n and p j n if and only if p j � n, so the
theorem holds for negative integers if and only if it holds for positive integers.

We prove the formula for n > 0 by well-founded induction on Z> 0 with respect to the
relation R de�ned in Proposition 5.3.13.

� (BC ) ' (1) = 1 and, since no prime p divides 1, we have
Q

pj1 prime

�
1 � 1

p

�
= 1. Hence

1 �
Y

pj1 prime

�
1 �

1
p

�
= 1 � 1 = 1

as erquired.

� (IS ) Fix n > 1 and suppose that

' (n) = n �
Y

pjn prime

�
1 �

1
p

�

Let q > 0 be prime. We prove that

' (qn) = qn �
Y

pjqn prime

�
1 �

1
p

�

� Supposeq j n. Then by we have

' (qn) = q' (n) by Exercise 4.2.56

= qn �
Y

pjn prime

�
1 �

1
p

�
by induction hypothesis

= qn �
Y

pjqn prime

�
1 �

1
p

�

The last equation holds because the fact thatq j n implies that, for all positive
primes p, we havep j n if and only if p j qn.
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� Supposeq - n. Then q ? n, so we have

' (qn) = ' (q)' (n) by Theorem 4.2.55

= ' (q) � n �
Y

pjn prime

�
1 �

1
p

�
by induction hypothesis

= ( q � 1) � n �
Y

pjn prime

�
1 �

1
q

�
by Example 3.3.32

= q
�

1 �
1
p

�
n �

Y

pjn prime

�
1 �

1
p

�
rearranging

= qn �

0

@
Y

pjn prime

�
1 �

1
p

�
1

A �
�

1 �
1
q

�
rearranging

= qn �
Y

pjqn

�
1 �

1
p

�
reindexing the product

In both cases, we have shown that the formula holds.

By induction, we're done.

Well-founded relations

First, we introduce the notion of a well-founded relation.

De�nition 5.3.8
Let X be a set. A relation R on X is well-founded if every inhabited subset of X has
an R-minimal element, in the following sense: for each inhabitedU � X , there exists
m 2 U such that : (x R m ) for all x 2 U. A relation that is not well-founded is called
ill-founded .

Example 5.3.9
The relation < on N is well-founded|this is just a fancy way of stating the well-ordering
principle (Theorem 1.3.37). Indeed, letU � N be an inhabited subset. By the well-ordering
principle, there exists an elementm 2 U such that m 6 x for all x 2 U. But this says
precisely that : (x < m ) for all x 2 U. C

Example 5.3.10
However, the relation < on Z is not well-founded|indeed, Z is an inhabited subset ofZ
with no < -least element. C
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Exercise 5.3.11
Let < 1 be the relation on N de�ned for m; n 2 N by

m < 1 n , n = m + 1

Prove that < 1 is a well-founded relation onN. C

Proposition 5.3.12
Let X be a set and letR be a relation on X . R is well-founded if and only if there is no
in�nite R-descending chains; that is, there does not exist a sequence (xn )n2 N of elements
of X such that xn+1 R xn for all n 2 N.

Proof. We prove the contrapositives of the two directions; that is, R is ill-founded if and
only if R has an in�nite descending R-chain.

� () ) Suppose that R is ill-founded, and let U � X be an inhabited subset with no
R-minimal element. De�ne a sequence (xn )n2 N of elements ofX |in fact, of U|
recursively as follows:

� Let x0 2 U be arbitrarily chosen.

� Fix n 2 N and supposex0; x1; : : : ; xn 2 U have been de�ned. SinceU has no
R-minimal element, it contains an element which is related toxn by R; de�ne
xn+1 to be such an element.

Then (xn )n2 N is an in�nite R-descending chain

� (( ) Suppose there is an in�nite R-descending chain (xn )n2 N. De�ne U = f xn j n 2
Ng to be the set of elements in this sequence. ThenU has no R-minimal element.
Indeed, givenm 2 U, we must havem = xn for somen 2 N; but then xn+1 2 U and
xn+1 R m. HenceR is ill-founded.

Proposition 5.3.13
Let Z> 0 be the set of positive integers and de�ne a relationR on Z> 0 by

m R n , n = pm for some primep > 0

for all m; n > 0. Then R is a well-founded relation onZ> 0.

Proof. Suppose that (xn )n2 N is an in�nite R-descending chain inZ> 0. Sincexn+1 R xn for
all n 2 N, we havexn = pxn+1 for some positive primep for all n 2 N. Since all positive
primes are greater than or equal to 2, this implies thatxn > 2xn+1 for all n 2 N.

We prove by strong induction on n 2 N that x0 > 2nxn+1 for all n 2 N.
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� (BC ) We proved above that x0 > 2x1. Hencex0 > x 1 = 2 0x1, as required.

� (IS ) Fix n 2 N and supposex0 > 2nxn+1 . We want to show x0 > 2n+1 xn+2 . Well
xn+1 > 2xn+2 , as proved above, and hence

x0
IH
> 2nxn+1 > 2n � 2xn+2 = 2 n+1 xn+2

as required.

By induction, we've shown that x0 > 2nxn+1 for all n 2 N. But xn+1 > 0 for all n 2 N,
so x0 > 2n for all n 2 N. This implies that x0 is greater than every integer, which is a
contradiction.

So such a sequence (xn )n2 N cannot exist, and by Proposition 5.3.12, the relation R is
well-founded.

Exercise 5.3.14
Let X be a set and letR be a well-founded relation onX . Given x; y 2 X , prove that not
both x R y and y R x are true. C

Theorem 5.3.15 (Principle of well-founded induction)
Let X be a set, let R be a well-founded relation onX , and let p(x) be a logical formula
concerning elements ofX . Suppose that for eachx 2 X , the following is true:

If p(y) is true for all R-predecessorsy of x, then p(x) is true.

That is, suppose for eachx 2 X that

[8y 2 X; (y R x ) p(y))] ) p(x)

Then p(x) is true for all x 2 X .

Proof. Suppose that, for eachx 2 X , if p(y) is true for all R-predecessorsy of x, then p(x)
is true. Let

U = f x 2 X j : p(x)g

Towards a contradiction, suppose thatp(x) is false for somex 2 X . Then U is inhabited.
SinceR is well-founded, U has anR-minimal element m 2 U. Now

(i) p(m) is false, sincem 2 U.

(ii) p(x) is true for all x 2 X with x R m . To see this, note that if p(x) is false and
x R m , then x 2 U, so that m R x by R-minimality of m in U. Since alsox R m ,
this contradicts Exercise 5.3.14.
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Sincep(x) is true for all x 2 X with x R m , by assumption we also have thatp(m) is true.
But this contradicts our assumption that m 2 U.

So it must in fact be the case that U = ? , so that p(x) is true for all x 2 X .

Exercise 5.3.16
Prove that the principle of < -induction on N is precisely strong induction. Speci�cally,
prove that the following two statements are equivalent:

(i) p(0) is true and, for all n 2 N, if p(k) is true for all k 6 n, then p(n + 1) is true;

(ii) For all n 2 N, if p(k) is true for all k < n , then p(n) is true.

Strong induction says that we can deduce thatp(n) is true for all n 2 N from the knowledge
that (i) is true for all n 2 N; and < -induction tells us that p(n) is true for all n 2 N from
the knowledge that (ii) is true for all n 2 N. You should prove that (i) and (ii) are
equivalent. C

Example 5.3.17
Let < 1 be the relation on N de�ned in Exercise 5.3.11. We prove that the principle of
< 1-induction on N is precisely strong induction. Speci�cally, prove that the following two
statements are equivalent:

(i) p(0) is true and, for all n 2 N, if p(n) is true then p(n + 1) is true;

(ii) For all n 2 N, if p(k) is true for all k 2 N with k + 1 = n, then p(n) is true.

Weak induction says that we can deduce thatp(n) is true for all n 2 N from the knowledge
that (i) is true for all n 2 N; and < 1-induction tells us that p(n) is true for all n 2 N from
the knowledge that (ii) is true for all n 2 N. We prove that (i) and (ii) are equivalent.

� (i) ) (ii). Suppose that p(0) and, for all n 2 N, if p(n) is true then p(n + 1) is true.
We will prove that

[8m 2 N; (n = m + 1 ) p(m))] ) p(n)

is true for all n 2 N.

So �x n 2 N, and assume8m 2 N; (n = m + 1 ) p(m)). We prove p(n) is true.

� If n = 0 then we're done, sincep(0) is true by assumption.

� If n > 0 then n = m + 1 for some m 2 N. By our assumption, we have
8m 2 N; (n = m + 1 ) p(m)), and so in particular, p(m) is true. By the weak
induction step, we havep(m) ) p(m + 1) is true. But then p(m + 1) is true.
Sincen = m + 1, we have that p(n) is true.
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In any case, we've proved thatp(n) is true, as required.

� (ii) ) (i). For n 2 N, denote the following statement by H (n)

[8m 2 N; (n = m + 1 ) p(m))] ) p(n)

AssumeH (n) is true for all n 2 N. We prove that p(0) is true and, for all n 2 N, if
p(n) is true then p(n + 1) is true.

� p(0) is true. Indeed, for any m 2 N we have that 0 = m + 1 is false, so the
statement 0 = m + 1 ) p(m) is true. Hence 8m 2 N; (0 = m + 1 ) p(m)) is
true. Since H (0) is true, it follows that p(0) is true.

� Fix n 2 N and supposep(n) is true. By H (n + 1), we have that if p(n + 1) is
true for all m 2 N with m + 1 = n + 1, then p(n + 1) is true. But the only
m 2 N such that m + 1 = n + 1 is n itself, and p(n) is true by assumption; so
by H (n + 1), we have p(n + 1), as required.

Hence the two induction principles are equivalent. C

Example 5.3.18
C

Structural induction from well-founded induction

We will now derive the principle of structural induction in terms of the principle of well-
founded induction. To do this, we need to associate to each inductively de�ned setX a
corresponding well-founded relationRX , such that well-founded induction on RX corres-
ponds with structural induction on X .

De�nition 5.3.19
Let X be an inductively de�ned set. De�ne a relation RX on X as follows: for all x; y 2 X ,
x RX y if and only if

y = f (x1; x2; : : : ; xn )

for some constructor f of arity n and elementsx1; x2; : : : ; xn , such that x i = x for some
i 2 [n].

Example 5.3.20
Let N be the set of natural numbers, taken to be inductively de�ned in the usual way.
Since the only constructor is the successor operation, we must have form; n 2 N that

m RN n , n = m + 1
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This is precisely the relation < 1 from Exercise 5.3.11. We already established that struc-
tural induction on N is precisely weak induction (Example 5.3.6), and that well-founded
induction on < 1 is also precisely weak induction (Example 5.3.17). C

Example 5.3.21
Let P be a set of propositional variables and letL (P) be the set of propositional formulae
built from variables in P and the logical operators^ , _, ) and : .

Then R = RL (P ) is the relation de�ned for s; t 2 L (P) by letting s R t if and only if

t 2 f s ^ u; u ^ s; s _ u; u _ s; s ) u; u ) s; : sg

for someu 2 L(P). C

The plan for the rest of this section is to demonstrate that structural induction follows
from well-founded induction. To do this, we prove that the relation RX associated with an
inductively de�ned set X is well-founded, and then we prove that structural induction on
X is equivalent to well-founded induction on RX .

To simplify our proofs, we introduce the notion of rank. The rank of an element x of an
inductively de�ned set X is a natural number which says how many constructors need to
be applied in order to obtain x.

De�nition 5.3.22
Let X be an inductively de�ned set. The function rank : X ! N is de�ned recursively as
follows:

� If b is a basic element ofX , then rank(b) = 0.

� Let f be a constructor of arity n and let x1; x2; : : : ; xn 2 X . Then

rank(f (x1; x2; : : : ; xn )) = max f rank(x1); rank(x2); : : : ; rank(xn )g + 1

Note that rank : X ! N is a well-de�ned function, since by the conditions listed in
De�nition 5.3.1, every element of X is either basic or has a unique representation in the
form f (x1; x2; : : : ; xn ) for some constructor f and elementsx1; x2; : : : ; xn 2 X .

Example 5.3.23
The rank function on the inductively de�ned set of natural numbers is fairly boring. Indeed,
it tells us that

� rank(0) = 0; and

� rank(n + 1) = rank( n) + 1 for all n 2 N.
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It can easily be seen that rank(n) = n for all n 2 N. This makes sense, sincen can be
obtained from 0 by iterating the successor operationn times. C

Lemma 5.3.24
Let X be an inductively de�ned set. The relation RX de�ned in De�nition 5.3.19 is well-
founded.

Proof.

Proof of Theorem 5.3.5. To do: Write proof

To do: Examples and exercises
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Section 6.1

Inequalities and bounds

We �rst encountered the real numbers in Section 1.1, when the real numbers were intro-
duced using a vague (but intuitive) notion of an in�nite number line (De�nition 1.1.24):

� 5 � 4 � 3 � 2 � 1 0 1 2 3 4 5

This section will scrutinise the set of real numbers in its capacity as acomplete ordered
�eld . Decomposing what this means:

� A �eld is a set with a notion of `zero' and `one', in which it makes sense to talk
about addition, subtraction, multiplication, and division by everything except zero.
Examples areQ, R, and Z=pZ when p is a prime number (but not when p is compos-
ite). However, Z is not a �eld, since we can't freely divide by nonzero elements|for
example, 12 Z and 2 2 Z, but no integer n satis�es 2n = 1.

� An ordered �eld is a �eld which is equipped with a well-behaved notion of order.
Both Q and R are ordered �elds, but Z=pZ is not. We'll see why soon.

� A complete ordered �eld is an ordered �eld in which every set with an upper bound
has aleast upper bound. As we will see,Q is not a complete ordered �eld, but R is.

We will �rst establish a small set of rules (axioms) that a set (with appropriate structure)
should follow in order to be considered a complete ordered �eld. The rest of the section will
be concerned with proving some theorems that will be extremely useful in real analysis.
Most of these theorems areinequalities, that is statements that exploit the order structure
of the reals. Later in the section, we will considersuprema and in�ma , which exploit the
completeness of the reals.

? Axiomatising the real numbers

First on our agenda is establishing a set of rules that characterise the reals.

First and foremost, we should be able to perform arithmetic with real numbers|real
numbers can be added, subtracted, multiplied and divided (except by zero). This is to say
that the real numbers are a �eld |Axioms 6.1.1 make this precise.
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Axioms 6.1.1 (Field axioms)
Let X be a set equipped with elements 0 (`zero') and 1 (`unit'), and binary operations +
(`addition') and � (`multiplication'). The structure ( X; 0; 1; + ; �) is a �eld if it satis�es the
following axioms:

� Zero and unit

(F1) 0 6= 1.

� Axioms for addition

(F2) (Associativity) x + ( y + z) = ( x + y) + z for all x; y; z 2 X .

(F3) (Identity) x + 0 = x for all x 2 X .

(F4) (Inverse) For all x 2 X , there exists y 2 X such that x + y = 0.

(F5) (Commutativity) x + y = y + x for all x; y 2 X .

� Axioms for multiplication

(F6) (Associativity) x � (y � z) = ( x � y) � z for all x; y; z 2 X .

(F7) (Identity) x � 1 = x for all x 2 X .

(F8) (Inverse) For all x 2 X with x 6= 0, there exists y 2 X such that x � y = 1.

(F9) (Commutativity) x � y = y � x for all x; y 2 X .

� Distributivity

(F10) x � (y + z) = ( x � y) + ( x � z) for all x; y; z 2 X .

Example 6.1.2
The rationals Q and the reals R both form �elds with their usual notions of zero, unit,
addition and multiplication. However, the integers Z do not, since for example 2 has no
multiplicative inverse. C

Example 6.1.3
Let p > 0 be prime. The setZ=pZ (see De�nition 5.1.38) is a �eld, with zero element [0]p
and unit element [1]p, and with addition and multiplication de�ned by

[a]p + [ b]p = [ a + b]p and [a]p � [b]p = [ ab]p

for all a; b2 Z. Well-de�nedness of these operations is immediate from Theorem 3.3.6 and
the modular arithmetic theorem (Theorem 3.3.9).

The only axiom which is not easy to verify is the multiplicative inverse axiom (F8). Indeed,
if [a]p 2 Z=pZ then [a]p 6= [0] p if and only if p - a. But if p - a then a ? p, so a has a
multiplicative inverse u modulo p. This implies that [ a]p � [u]p = [ au]p = [1] p. So (F8)
holds. C
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Exercise 6.1.4
Let n > 0 be composite. Prove thatZ=nZ is not a �eld, where zero, unit, addition and
multiplication are de�ned as in Example 6.1.3. C

Axioms 6.1.1 tell us that every element of a �eld has an additive inverse, and everynonzero
element of a �eld has a multiplicative inverse. It would be convenient if inverses wereunique
whenever they exist. Proposition 6.1.5 proves that this is the case.

Proposition 6.1.5 (Uniqueness of inverses)
Let (X; 0; 1; + ; �) be a �eld and let x 2 X . Then

(a) Supposey; z 2 X are such that x + y = 0 and x + z = 0. Then y = z.

(b) Supposex 6= 0 and y; z 2 X are such that x � y = 1 and x � z = 1. Then y = z.

Proof of (a). By calculation, we have

y = y + 0 by (F3)

= y + ( x + z) by de�nition of z

= ( y + x) + z by associativity (F2)

= ( x + y) + z by commutativity (F5)

= 0 + z by de�nition of y

= z + 0 by commutativity (F5)

= z by (F3)

so indeedy = z.

The proof of (b) is essentially the same and is left as an exercise.

Since inverses are unique, it makes sense to have notation to refer to them.

Notation 6.1.6
Let (X; 0; 1; + ; �) be a �eld and let x 2 X . Write � x for the (unique) additive inverse of x
and, if x 6= 0 write x � 1 for the (unique) multiplicative inverse of x.

Example 6.1.7
In the �elds Q and R, the additive inverse � x of an elementx is simply its negative, and
the multiplicative inverse x � 1 of somex 6= 0 is simply its reciprocal 1

x . C

Example 6.1.8
Let p > 0 be prime and let [a]p 2 Z=pZ. Then � [a]p = [ � a]p and, if p - a, then [a]� 1

p = [ u]p,
where u is any integer satisfying au � 1 mod p. C
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Exercise 6.1.9
Let (X; 0; 1; + ; �) be a �eld. Prove that � (� x) = x for all x 2 X , and that ( x � 1) � 1 = x for
all nonzero x 2 X . C

Example 6.1.10
Let (X; 0; 1; + ; �) be a �eld. We prove that if x 2 X then x � 0 = 0. Well, 0 = 0 + 0 by (F3).
Hencex � 0 = x � (0+0). By distributivity (F10), we have x � (0+0) = ( x � 0)+ ( x � 0). Hence

x � 0 = ( x � 0) + ( x � 0)

Let y = � (x � 0). Then

0 = x � 0 + y by (F4)

= (( x � 0) + ( x � 0)) + y as above

= ( x � 0) + (( x � 0) + y) by associativity (F2)

= ( x � 0) + 0 by (F4)

= x � 0 by (F3)

so indeed we havex � 0 = 0. C

Exercise 6.1.11
Let (X; 0; 1; + ; �) be a �eld. Prove that ( � 1) � x = � x for all x 2 X , and that ( � x) � 1 =
� (x � 1) for all nonzero x 2 X . C

What makes the real numbers useful is not simply our ability to add, subtract, multiply
and divide them; we can also compare their size|indeed, this is what gives rise to the
informal notion of a number line. Axioms 6.1.12 make precise exactly what it means for
the elements of a �eld to be assembled into a `number line'.

Axioms 6.1.12 (Ordered �eld axioms)
Let X be a set, 0; 1 2 X be elements, +; � be binary operations, and6 be a relation on X .
The structure (X; 0; 1; + ; �; 6 ) is an ordered �eld if it satis�es the �eld axioms (F1){(F10)
(see Axioms 6.1.1) and, additionally, it satis�es the following axioms:

� Linear order axioms

(PO1) (Re
exivity) x 6 x for all x 2 X .

(PO2) (Antisymmetry) For all x; y 2 X , if x 6 y and y 6 x, then x = y.

(PO3) (Transitivity) For all x; y; z 2 X , if x 6 y and y 6 z, then x 6 z.

(PO4) (Linearity) For all x; y 2 X , either x 6 y or y 6 x.

� Interaction of order with arithmetic

(OF1) For all x; y; z 2 X , if x 6 y, then x + z 6 y + z.
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(OF2) For all x; y 2 X , if 0 6 x and 0 6 y, then 0 6 xy.

Example 6.1.13
The �eld Q of rational numbers and and the �eld R of real numbers, with their usual
notions of ordering, can easily be seen to form ordered �elds. C

Example 6.1.14
We prove that, in any ordered �eld, we have 0 6 1. Note �rst that either 0 6 1 or 1 6 0
by linearity (PO4). If 0 6 1 then we're done, so suppose 16 0. Then 0 6 � 1; indeed:

0 = 1 + ( � 1) by (F4)

6 0 + ( � 1) by (OF1), since 16 0

= ( � 1) + 0 by commutativity (F5)

= � 1 by (F3)

By (OF2), it follows that 0 6 (� 1)(� 1). But ( � 1)(� 1) = 1 by Exercise 6.1.11, and hence
0 6 1. Since 16 0 and 06 1, we have 0 = 1 by antisymmetry (PO2). But this contradicts
axiom (F1). Hence 06 1. In fact, 0 < 1 since 06= 1. C

We have seen thatQ and R are ordered �elds (Examples 6.1.7 and 6.1.13), and thatZ=pZ
is a �eld for p > 0 prime (Example 6.1.3). The following proposition is an interesting result
proving that there is no notion of `ordering' under which the �eld Z=pZ can be made into
an ordered �eld!

Proposition 6.1.15
Let p > 0 be prime. There is no relation 6 on Z=pZ which satis�es the ordered �eld
axioms.

Proof. We just showed that [0] 6 [1]. It follows that, for all a 2 Z, we have [a] 6 [a] + [1];
indeed:

[a] = [ a] + [0] by (F3)

6 [a] + [1] by (OF1), since [0] 6 [1]

= [ a + 1] by de�nition of + on Z=pZ

It is a straightforward induction to prove that [ a] 6 [a+ n] for all n 2 N. But then we have

[1] 6 [1 + ( p � 1)] = [ p] = [0]

so [0] 6 [1] and [1] 6 [0]. This implies [0] = [1] by antisymmetry (PO2), contradicting
axiom (F1).
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Exercise 6.1.16
Let (X; 0; 1; + ; �) be a �eld. Prove that if X is �nite, then there is no relation 6 on X such
that ( X; 0; 1; + ; �; 6 ) is an ordered �eld. C

Theorem 6.1.17 below summarises some properties of ordered �elds which will be useful
in our proofs. Note, however, that this is certainly not an exhaustive list of elementary
properties of ordered �elds that we will use in our subsequent proofs|to explicitly state
and prove all of these would not make for a scintillating read.

Theorem 6.1.17
Let (X; 0; 1; + ; �; 6 ) be an ordered �eld. Then

(a) For all x; y 2 X , x 6 y if and only if 0 6 y � x;

(b) For all x 2 X , � x 6 0 6 x or x 6 0 6 � x;

(c) For all x; x 0; y; y0 2 X , if x 6 x0 and y 6 y0, then x + y 6 x0+ y0;

(d) For all x; y; z 2 X , if 0 6 x and y 6 z, then xy 6 xz;

(e) For all nonzero x 2 X , if 0 6 x, then 0 6 x � 1.

(f) For all nonzero x; y 2 X , if x 6 y, then y� 1 6 x � 1.

Proof of (a), (b) and (e).

(a) ( ) ) Supposex 6 y. Then by additivity (OF1), x+( � x) 6 y+( � x), that is 0 6 y� x.
(( ) Suppose 06 y � x. By additivity (OF1), 0 + x 6 (y � x) + x; that is, x 6 y.

(b) We know by linearity (PO4) that either 0 6 x or x 6 0. If 0 6 x, then by (OF1) we
have 0 + (� x) 6 x + ( � x), that is � x 6 0. Likewise, if x 6 0 then 0 6 � x.

(e) Suppose 06 x. By linearity (PO4), either 0 6 x � 1 or x � 1 6 0. If x � 1 6 0, then by
(d) we have x � 1 � x 6 0 � x, that is 1 6 0. This contradicts Example 6.1.14, so we
must have 06 x � 1.

The proofs of the remaining properties are left as an exercise.

We wanted to characterise the reals completely, but so far we have failed to do so|indeed,
Exercise 6.1.13 showed that bothQ and R are ordered �elds, so the ordered �eld axioms
do not su�ce to distinguish Q from R. The �nal piece in the puzzle is completeness. This
single additional axiom distinguishesQ from R, and in fact completely characterisesR (see
Theorem 6.1.19).
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Axioms 6.1.18 (Complete ordered �eld axioms)
Let X be a set, 0; 1 2 X be elements, +; � be binary operations, and6 be a relation on X .
The structure (X; 0; 1; + ; �; 6 ) is a complete ordered �eld if it is an ordered �eld|that
is, it satis�es axioms (F1){(F10), (PO1){(PO4) and (OF1){(OF2) (see Axioms 6.1.1 and
6.1.12)|and, in addition, it satis�es the following completeness axiom :

(C1) Let A � X . If A has an upper bound, then it has a least upper bound. Speci�cally,
if there exists u 2 X such that a 6 u for all a 2 A, then there existss 2 X such that

� a 6 s for all a 2 A; and

� If s0 2 X is such that a 6 s0 for all a 2 A, then s 6 s0.

We call such a values 2 X a supremum for A.

Theorem 6.1.19
The real numbers (R; 0; 1; + ; �; 6 ) form a complete ordered �eld. Moreover, any two com-
plete ordered �elds are essentially the same.a

aThe notion of `sameness' here isisomorphism (speci�cally, isomorphism of ordered �elds), a concept which
is beyond the scope of these notes.

The proof of Theorem 6.1.19 is intricate and far beyond the scope of these notes, so is
omitted. What it tells us is that it doesn't matter exactly how we de�ne the reals, since
any complete ordered �eld will do. We can therefore proceed with con�dence that, no
matter what notion of `real numbers' we settle on, everything we prove will be true of that
notion. This is for the best, since we haven't actually de�ned the setR of real numbers at
all!

The two most common approaches to constructing a set of real numbers are:

� Dedekind reals. In this approach, real numbers are identi�ed with particular sub-
sets ofQ|informally speaking, r 2 R is identi�ed with the set of rational numbers
less thanr .

� Cauchy reals. In this approach, real numbers are identi�ed with equivalence classes
of sequences of rational numbers|informally speaking, r 2 R is identi�ed with the
set of sequences of rational numbers which converge tor (in the sense of De�nition
6.2.7).

Discussion of Dedekind and Cauchy reals is relegated to the appendices of these notes|see
Section B.2.

We will focus on the reals in their capacity as a complete ordered �eld towards the end of
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this section, when we study suprema and in�ma. However, the completeness axiom (C1)
will not be needed in any of our proofs until that point.

Magnitude and scalar product

In this part of the section, we home in on sets of the formRn , for n 2 N. Elements ofRn are
sequences of the form (x1; x2; : : : ; xn ), where eachx i 2 R. With our interpretation of the
reals R as a line, we can interpret a sequence (x1; x2; : : : ; xn ) as a point in n-dimensional
space:

� 0-dimensional space is a single point. The setR0 has one element, namely the empty
sequence (), so this makes sense.

� 1-dimensional space is a line. This matches our intuition thatR = R1 forms a line.

� 2-dimensional space is aplane. The elements ofR2 are pairs (x; y), where x and y
are both real numbers. We can interpret the pair (x; y) as coordinates for a point
which is situated x units to the right of (0 ; 0) and y units above (0; 0) (where negative
values ofx or y reverse this direction)|see Figure 6.1.

(� 3; � 1)

(� 3; 0)

(� 3; 1)

(� 3; 2)

(� 2; � 1)

(� 2; 0)

(� 2; 1)

(� 2; 2)

(� 1; � 1)

(� 1; 0)

(� 1; 1)

(� 1; 2)

(0; � 1)

(0; 0)

(0; 1)

(0; 2)

(1; � 1)

(1; 0)

(1; 1)

(1; 2)

(2; � 1)

(2; 0)

(2; 1)

(2; 2)

(3; � 1)

(3; 0)

(3; 1)

(3; 2)

Figure 6.1: Some points inR2

With this intuition in mind, we set up the following notation.

Notation 6.1.20
Let n 2 N. Elements of Rn will be denoted ~x; ~y; ~z; : : : (LATEX code: nvec) and called
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(n-dimensional ) vectors . Given a vector ~x 2 Rn , we write x i for the i th component of
~x, so that

~x = ( x1; x2; : : : ; xn )

The element (0; 0; : : : ; 0) 2 Rn is called the origin or zero vector of Rn , and is denoted
by ~0.

Moreover, if ~x; ~y 2 Rn and a 2 R we write

~x + ~y = ( x1 + y1; x2 + y2; : : : ; xn + yn ) and a~x = ( ax1; ax2; : : : ; axn )

Example 6.1.21
For all ~x 2 Rn , we have

~x + ~0 = ~x and 1~x = ~x

C

De�nition 6.1.22
Let ~x 2 Rn . The magnitude of ~x is the real number k~xk (LATEX code: nlVert nvec x
nrVert ) de�ned by

k~xk =

vu
u
t

nX

i =1

x2
i =

q
x2

1 + x2
2 + � � � + x2

n

Given vectors ~x; ~y 2 Rn , the distance from ~x to ~y is de�ned to be k~y � ~xk. Thus the
magnitude of a vector can be thought of as the distance from that vector to the origin.

Example 6.1.23
In R2, De�nition 6.1.22 says that

k(x; y)k =
p

x2 + y2

This matches the intuition obtained from the Pythagorean theorem on the sides of right-
hand triangles. For example, consider the triangle with vertices (0; 0), (4; 0) and (4; 3):

(0; 0) (4; 0)

(4; 3)
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The hypotenuse of the triangle has magnitude

k(4; 3)k =
p

42 + 3 2 =
p

25 = 5

C

Exercise 6.1.24
Let ~x; ~y 2 Rn . Prove that k~x � ~yk = k~y � ~xk. That is, the distance from ~x to ~y is equal to
the distance from ~y to ~x. C

Exercise 6.1.25
Prove that if x 2 R then the magnitude k(x)k is equal to the absolute valuejxj. C

Exercise 6.1.26
Let ~x 2 Rn . Prove that k~xk = 0 if and only if ~x = ~0. C

The triangle inequality and the Cauchy{Schwarz inequality

The �rst, and simplest, inequality that we investigate is the (one-dimensional version of
the) triangle inequality (Theorem 6.1.28). It is so named because of a generalisation to
higher dimensions (Theorem 6.1.38), which can be interpreted geometrically as saying that
the sum of two side lengths of a triangle is greater than or equal to the third side length.

The triangle inequality is used very frequently in mathematical proofs|you will encounter
it repeatedly in Sections 6.2 and 6.3|yet its proof is surprisingly simple.

Before we can prove the triangle inequality, we need the following fact about square roots
of real numbers.

Lemma 6.1.27
Let x; y 2 R. If 0 6 x 6 y, then

p
x 6

p
y.

Proof. Suppose 06 x 6 y. Note that, by de�nition of the square root symbol, we havep
x > 0 and

p
y > 0.

Suppose
p

x >
p

y. By two applications of Theorem 6.1.17(d), we have

y =
p

y �
p

y <
p

x �
p

y <
p

x �
p

x = x

so that y < x . But this contradicts the assumption that x 6 y. Hence
p

x 6
p

y, as
required.

Theorem 6.1.28 (Triangle inequality in one dimension)
Let x; y 2 R. Then jx + yj 6 jxj + jyj. Moreover, jx + yj = jxj + jyj if and only if x and y
have the same sign.
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Proof. Note �rst that xy 6 jxyj; indeed, xy and jxyj are equal if xy is non-negative, and
otherwise we havexy < 0 < jxyj. Also x2 = jxj2 and y2 = jyj2. Hence

(x + y)2 = x2 + 2xy + y2 6 jxj2 + 2 jxyj + jyj2 = ( jxj + jyj)2

Taking (nonnegative) square roots yields

jx + yj 6 jjxj + jyjj

by Lemma 6.1.27. But jxj + jyj > 0, so jjxj + jyjj = jxj + jyj. This completes the �rst part
of the proof.

Equality holds in the above if and only if xy = jxyj, which occurs if and only if xy > 0.
But this is true if and only if x and y are both non-negative or both non-positive|that is,
they have the same sign.

Example 6.1.29
Let x; y 2 R. We prove that

jx + yj
1 + jx + yj

6
jxj

1 + jxj
+

jyj
1 + jyj

First note that, if 0 6 s 6 t, then
s

1 + s
6

t
1 + t

To see this, note that

s 6 t ) 1 + s 6 1 + t rearranging

)
1

1 + t
6

1
1 + s

since 1 + s;1 + t > 0

) 1 �
1

1 + s
6 1 �

1
1 + t

rearranging

)
s

1 + s
6

t
1 + t

rearranging

Now letting s = jx + yj and t = jxj + jyj, we have s 6 t by the triangle inequality, and
hence

jx + yj
1 + jx + yj

6
jxj

1 + jxj + jyj
+

jyj
1 + jxj + jyj

6
jxj

1 + jxj
+

jyj
1 + jyj

as required. C

Exercise 6.1.30
Let n 2 N and let x i 2 R for each i 2 [n]. Prove that

�
�
�
�
�

nX

i =1

x i

�
�
�
�
�

6
nX

i =1

jx i j

with equality if and only if the numbers x i are either all positive or all negative. C
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Exercise 6.1.31
Let x; y 2 R. Prove that

jjxj � j yjj 6 jx � yj

C

We will generalise the triangle inequality to arbitrary dimensions in Theorem 6.1.38. Our
proof will go via the Cauchy{Schwarz inequality (Theorem 6.1.35). To motivate the
Cauchy{Schwarz inequality, we introduce another geometric notion called thescalar product
of two vectors.

De�nition 6.1.32
Let ~x; ~y 2 Rn . The scalar product (or dot product ) of ~x with ~y is the real number~x � ~y
(LATEX code: ncdot ) de�ned by

~x � ~y =
nX

i =1

x i yi = x1y1 + x2y2 + � � � + xnyn

Example 6.1.33
Let ~x 2 Rn . Then ~x � ~x = k~xk2. Indeed

~x � ~x =
nX

i =1

x2
i = k~xk2

C

Exercise 6.1.34
Let ~x; ~y; ~z; ~w2 Rn and let a; b; c; d2 R. Prove that

(a~x + b~y) � (c~z+ d~w) = ac(~x � ~z) + ad(~x � ~w) + bc(~y � ~z) + bd(~y � ~w)

C

Intuitively, the scalar product of two vectors ~x and ~y measures the extent to which~x and
~y fail to be orthogonal. In fact, if � is the acute angle formed between the lines̀1 and `2,
where `1 passes through~0 and ~x and `2 passes through~0 and ~y, then a formula for the
scalar product of ~x and ~y is given by

~x � ~y = k~xkk~yk cos�
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~0

~x

~y

kxk cos�

�

Evidently, ~x and ~y are orthogonal if and only if cos� = 0, in which case ~x � ~y = 0 as well.
We cannot prove this yet, though, as we have not yet de�ned trigonometric functions or
explored their properties, but hopefully this provides some useful intuition.

The Cauchy{Schwarz inequality provides a useful comparison of the size of a scalar product
of two vectors with the magnitudes of the vectors.

Theorem 6.1.35 (Cauchy–Schwarz inequality)
Let n 2 N and let x i ; yi 2 R for each i 2 [n]. Then

j~x � ~yj 6 k~xkk~yk

with equality if and only if a~x = b~y for somea; b2 R which are not both zero.

Proof. If ~y = ~0, then this is trivial: both sides of the equation are equal to zero! So assume
that ~y 6= ~0. In particular, by Exercise 6.1.26, we havek~yk > 0.

De�ne k =
~x � ~y
k~yk2 . Then

0 6 k~x � k~yk2 since squares are nonnegative

= ( ~x � k~y) � (~x � k~y) by Example 6.1.33

= ( ~x � ~x) � 2k(~x � ~y) + k2(~y � ~y) by Exercise 6.1.34

= k~xk2 �
(~x � ~y)2

kyk2 by de�nition of k
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Multiplying through by k~yk2, which is non-negative and therefore doesn't change the sign
of the inequality, yields

0 6 k~xk2k~yk2 � (~x � ~y)2

which is equivalent to what was to be proved.

Evidently, equality holds if and only if k~x � k~yk = 0, which by Exercise 6.1.26 occurs if
and only if ~x � k~y = 0. Now:

� If ~x � k~y = 0, then we have

~x � k~y = 0

, ~x �
~x � ~y
k~yk2 ~y = 0 by de�nition of k

, k ~yk2~x = ( ~x � ~y)~y rearranging

If ~y 6= ~0 then let a = k~yk2 and b = ~x � ~y; otherwise, let a = 0 and b = 1. In both
cases, we havea~x = b~y and a; b are not both zero.

If a~x = b~y for somea; b2 R not both zero, then either:

� a = 0 and b 6= 0, in which case ~y = 0 and we have equality in the Cauchy{
Schwarz inequality; or

� a 6= 0, in which case ~y = b
a~x. Write c = b

a . Then

j~x � ~yj = j~x � (c~x)j

= jc(~x � ~x)j by Exercise 6.1.34

= jcjk~xk2 by Example 6.1.33

= k~xkkc~xk rearranging

= k~xkk~yk

In either case, we have equality in the Cauchy{Schwarz inequality.

So equality holds if and only if a~x = b~y for somea; b2 R not both zero.

Example 6.1.36
Let a; b; c2 R. We'll prove that

ab+ bc+ ca 6 a2 + b2 + c2

and examine when equality holds.

Letting ~x = ( a; b; c) and ~y = ( b; c; a) yields

~x � ~y = ab+ bc+ ca
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and

k~xk =
p

a2 + b2 + c2 =
p

b2 + c2 + a2 = k~yk

Hencek~xkk~yk = a2 + b2 + c2. By the Cauchy{Schwarz inequality, it follows that

~x � ~y = ab+ bc+ ca 6 a2 + b2 + c2 = k~xkk~yk

as required. Equality holds if and only if k(a; b; c) = `(b; c; a) for some k; ` 2 R not both
zero. We may assumek 6= 0|otherwise, swap the vectors ~x and ~y in what follows. Then,
letting t = `

k , we have

k(a; b; c) = `(b; c; a)

, (a; b; c) = ( tb; tc; ta) by de�nition of t

, (a; b; c) = ( t2c; t2a; t2b) substituting a = tb etc.

, (a; b; c) = ( t3a; t3b; t3c) substituting a = tb etc. again

, ~x = t3~x

This occurs if and only if either (a; b; c) = (0 ; 0; 0), or t = 1, in which case

(a; b; c) = ( tb; tc; ta) = ( b; c; a)

So equality holds if and only if a = b = c. C

Exercise 6.1.37
Let r 2 N and let a1; a2; : : : ; ar 2 R be such that a2

1 + a2
2 + � � � + a2

n = 6. Prove that

(a1 + 2a2 + � � � + nan )2 6 n(n + 1)(2 n + 1)

and determine when equality holds. C

We now use the Cauchy{Schwarz inequality to generalise the one-dimensional version of
the triangle inequality (Theorem 6.1.28) to arbitrary (�nite) dimensions.

Theorem 6.1.38 (Triangle inequality)
Let ~x; ~y 2 Rn . Then

k~x + ~yk 6 k~xk + k~yk

with equality if and only if a~x = b~y for some real numbersa; b> 0.
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Proof. We proceed by calculation:

k~x + ~yk2 = ( ~x + ~y) � (~x + ~y) by Example 6.1.33

= ( ~x � ~x) + 2( ~x � ~y) + ( ~y � ~y) by Exercise 6.1.34

6 (~x � ~x) + 2 j~x � ~yj + ( ~y � ~y) since a 6 jaj for all a 2 R

6 k~xk2 + 2kxkkyk + k~yk2 by Exercise 6.1.33 and Cauchy{Schwarz

= ( k~xk + k~yk)2 rearranging

Taking (nonnegative) square roots of both sides yields

k~x + ~yk 6 k~xk + k~yk

by Lemma 6.1.27, as required.

Equality holds if and only if the two ` 6 ' symbols in the above derivation are in fact `='
symbols.

� The �rst inequality is equality if and only if ~x � ~y = j~x � ~yj, which holds if and only if
~x � ~y > 0.

� The second inequality is equality if and only if equality holds in the Cauchy{Schwarz
inequality. In turn, this occurs if and only if a~x = b~y for some a; b 2 R. We may,
moreover, assume thata > 0|if not, replace a and b by their negatives.

If a = 0 then we can take b = 0. If a > 0, then by Example 6.1.33 and Exercise 6.1.34, we
have

~x �
�

b
a

~x
�

=
b
a

k~xk2

which is non-negative if and only if b > 0, since we are assuming thata > 0.

Thus, equality holds in the triangle inequality if and only if a~x = b~y for somea; b> 0.

This general version of the triangle inequality has a geometric interpretation in terms of|
you guessed it|triangles. Any three points ~a;~b;~c2 Rn form a (potentially 
at) triangle:
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~a

u

~b

v

~c

w

The side lengthsu; v; w are given by the following equations:

u = k~b� ~ak; v = k~c� ~bk; w = k~a� ~ck

The triangle inequality says tells us that u 6 v + w. Indeed:

u = k~b� ~ak by de�nition of u

= k(~b� ~c) + ( ~c� ~a)k rearranging

6 k~b� ~ck + k~c� ~ak by the triangle inequality

= k~c� ~bk + k~a� ~ck by Exercise 6.1.24

= v + w by de�nition of v and w

That is, the triangle inequality says that the sum of two side lengths of a triangle is greater
than or equal to the third side length. Moreover, it tells us u = v + w precisely when
k(~a� ~c) = `(~c� ~b) for some k; ` > 0. If k = 0 then

~c = ~b = 0~a+ (1 � 0)~b

if k > 0, then k + ` > 0, so we have

~c =
k

k + `
~a+

`
k + `

~b =
k

k + `
~a+

�
1 �

k
k + `

�
~b

Examining this a bit more closely yields that u = v + w if and only if

~c= t~a + (1 � t)~b

for some 06 t 6 1, which is to say precisely that~c lies on the line segment between~a and
~b. In other words, equality holds in the triangle inequality only if the three vertices of the
triangle are collinear, which is to say that the triangle whose vertices are the points~a, ~b
and ~c, is 
at.
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Inequalities of means

Our goal now is to explore di�erent kinds of average|speci�cally, means|of �nite sets of
non-negative real numbers. We will compare the relative sizes of these means with respect
to one-another, with emphasis on three particular kinds of mean: thearithmetic mean
(De�nition 6.1.39), the geometric mean(De�nition 6.1.41) and the harmonic mean (De�n-
ition 6.1.49). These means in fact assemble into a continuum of means, calledgeneralised
means (De�nition 6.1.57), all of which can be compared with one another.

De�nition 6.1.39
Let n > 1. The (arithmetic ) mean of real numbersx1; : : : ; xn is

1
n

nX

i =1

x i =
x1 + x2 + � � � + xn

n

Example 6.1.40
The arithmetic mean of the numbers C

De�nition 6.1.41
Let n > 1. The geometric mean of non-negative real numbersx1; : : : ; xn is

n

vu
u
t

nY

i =1

x i = n
p

x1 � x2 � � � � � xn

The following theorem is commonly known as theAM{GM inequality .

Theorem 6.1.42 (Inequality of arithmetic and geometric means)
Let n 2 N and x1; x2; : : : ; xn > 0. Then

n
p

x1 � � � xn| {z }
geometric mean

6
x1 + � � � + xn

n| {z }
arithmetic mean

with equality if and only if x1 = � � � = xn .

Proof when n = 2 . We need to show that, if x; y 2 R with x; y > 0, then

p
xy 6

x + y
2
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with equality if and only if x = y.

First note that the square roots of x and y exist since they are non-negative. Now

0 6 (
p

x �
p

y)2 since squares are nonnegative

= (
p

x)2 � 2
p

x
p

y + (
p

y)2 expanding

= x � 2
p

xy + y rearranging

Rearranging the inequality 0 6 x � 2
p

xy + y yields the desired result.

If
p

xy = x+ y
2 , then we can rearrange the equation as follows:

p
xy =

x + y
2

) 2
p

xy = x + y multiplying by 2

) 4xy = x2 + 2xy + y2 squaring both sides

) x2 � 2xy + y2 = 0 rearranging

) (x � y)2 = 0 factorising

) x � y = 0 since a2 = 0 ) a = 0 for a 2 R

) x = y rearranging

So we have proved both parts of the theorem.

Example 6.1.43
We use the AM{GM inequality to prove that the area of a rectangle with �xed perimeter
is maximised when the rectangle is a square.

Indeed, �x a perimeter p > 0, and let x; y > 0 be side lengths of a rectangle with perimeter
p|that is, x and y satisfy the equation 2x + 2y = p. The area a of the rectangle satis�es
a = xy. By the AM{GM inequality, we have

a = xy 6
�

x + y
2

� 2

=
p2

16

Equality holds if and only if x = y, in other words, if and only if the rectangle is a
square. C

Exercise 6.1.44

Let a; b > 0 be real numbers. Prove that
a2 + b2

2
> ab. C

Example 6.1.45
Let x > 0. We �nd the minimum possible value of x + 9

x . By the AM{GM inequality, we
have

x +
9
x

> 2

r

x �
9
x

= 2
p

9 = 6
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with equality if and only if x = 9
x , which occurs if and only if x = 3. Hence the minimum

value of x + 9
x when x > 0 is 6. C

Exercise 6.1.46

Let x > 0 and let n 2 N. Find the minimum possible value of
nX

k= � n

xk . C

Exercises 6.1.47 and 6.1.48 complete the proof of the AM{GM inequality (Theorem 6.1.42).
Before proceeding with the exercises, let's �x some notation: for eachn 2 N, let pAM{GM (n)
be the assertion that the AM{GM inequality holds for collections of n numbers; that is,
pAM{GM (n) is the assertion:

For all x1; x2; : : : ; xn > 0, we have

1
n

nX

i =1

x i 6 n

vu
u
t

nY

i =1

x i

with equality if and only if x1 = x2 = � � � = xn .

Note that we already proved pAM{GM (2).

Exercise 6.1.47
Let r 2 N and let x1; x2; : : : ; x2r 2 R. Write

a =
1
r

rX

i =1

x i and g = r

vu
u
t

rY

i =1

x i

for the arithmetic and geometric means, respectively, of the numbersx1; : : : ; xr ; write

a0 =
1
r

2rX

i = r +1

x i and g0 = r

vu
u
t

2rY

i = r +1

x i

for the arithmetic and geometric means, respectively, of the numbersxr +1 ; : : : ; x2r ; and
write

A =
1
2r

2rX

i =1

x i and G = 2r

vu
u
t

2rY

i =1

x i

for the arithmetic and geometric means, respectively, of all the numbersx1; : : : ; x2r .

Prove that

A =
a + a0

2
and G =

p
gg0

289



290 Chapter 6. Real analysis

Deduce that, for eachr 2 N, if pAM{GM (r ) is true then pAM{GM (2r ) is true. Deduce further
than pAM{GM (2m ) is true for all m 2 N. C

Exercise 6.1.48
Let r > 2 and let x1; : : : ; xr � 1 2 N. De�ne

xr =
1

r � 1

r � 1X

i =1

x i

Prove that
1
r

rX

i =1

x i = xr

Assuming pAM{GM (r ), deduce that

xr
r 6

rY

i =1

x i =

 
r � 1Y

i =1

x i

!

� xr

with equality if and only if x1 = x2 = � � � = xr . Deduce that pAM{GM (r ) implies pAM{GM (r �
1). Use Exercise 6.1.47 to deduce further thatpAM{GM (n) is true for all n > 1. C

We now introduce another kind of mean, called theharmonic mean.

De�nition 6.1.49
Let n 2 N. The harmonic mean of nonzero real numbersx1; x2; : : : ; xn is

 
1
n

nX

i =1

x � 1
i

! � 1

=
n

1
x1

+ 1
x2

+ � � � + 1
xn

The harmonic mean of two nonzero real numbersx and y has a simpler expression:

�
x � 1 + y� 1

2

� � 1

=
2xy

x + y

The harmonic mean arises naturally when considering

Example 6.1.50
The cities of York and Leeds are locatedd > 0 miles apart. Two cars drive from York to
Leeds, then immediately turn around and drive back. The two cars depart from York at
the same time and arrive back in York at the same time.
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� The �rst car drives from York to Leeds at a constant speed ofu miles per hour, and
drives back to York at a constant speed ofv miles per hour.

� The second car drives from York to Leeds and back again at the same constant speed
of w miles per hour.

According to the following formula from physics:

speed� time = distance

the time spent driving by the �rst car is d
u + d

v , and the time spent driving by the second
car is 2d

w .

Since the cars spend the same amount of time driving, it follows that

2d
w

=
d
u

+
d
v

) w =
2uv

u + v
That is, the second car's speed is the harmonic mean of the two speeds driven by the �rst
car. C

As might be expected, we now prove a theorem relating the harmonic means with the other
means we have established so far|this theorem is known as theGM{HM inequality .

Theorem 6.1.51 (Inequality of geometric and harmonic means)
Let n 2 N and x1; x2; : : : ; xn > 0. Then

n
1

x1
+ 1

x2
+ � � � + 1

xn| {z }
harmonic mean

6 n
p

x1x2 � � � xn| {z }
geometric mean

with equality if and only if x1 = � � � = xn .

Proof when n = 2 . We need to prove that if x; y > 0, then

2
1
x + 1

y

6
p

xy

This is almost immediate from the AM{GM inequality (Theorem 6.1.42). Indeed, since
all numbers in sight are positive, we can take reciprocals to see that this inequality is
equivalent to the assertion that

1
p

xy
6

x � 1 + y� 1

2

But 1p
xy =

p
x � 1y� 1, so this is immediate from the AM{GM inequality.
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Exercise 6.1.52
Prove the GM{HM inequality for general values of n 2 N. C

Another example of a mean that has applications in probability theory and statistics is
that of the quadratic mean.

De�nition 6.1.53
Let n 2 N. The quadratic mean (or root-mean-square ) of real numbers x1; x2; : : : ; xn

is  
1
n

nX

i =1

x2
i

! 1
2

=

r
x2

1 + x2
2 + � � � + x2

n

n

The following theorem is, predictably, known as theQM{AM inequality (or RMS{AM
inequality ); it is a nice application of the Cauchy{Schwarz inequality.

Theorem 6.1.54 (Inequality of quadratic and arithmetic means)
Let n > 0 and x1; x2; : : : ; xn > 0. Then

x1 + � � � + xn

n| {z }
arithmetic mean

6

r
x2

1 + x2
2 + � � � + x2

n

n| {z }
quadratic mean

with equality if and only if x1 = � � � = xn .

Proof. De�ne
~x = ( x1; x2; : : : ; xn ) and ~y = (1 ; 1; : : : ; 1)

Then

x1 + x2 + � � � + xn = ~x � ~y by de�nition of scalar product

6 k~xkk~yk by Cauchy{Schwarz

=
q

x2
1 + x2

2 + � � � + x2
n �

p
n evaluating the magnitudes

Dividing through by n yields

x1 + x2 + � � � + xn

n
6

r
x2

1 + x2
2 + � � � + x2

n

n
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as required. Equality holds if and only if equality holds in the Cauchy{Schwarz inequality,
which occurs if and only if

(ax1; ax2; : : : ; axn ) = ( b; b; : : : ; b)

for somea; b2 R not both zero. If a = 0 then b = 0, so we must havea 6= 0. Hence equality
holds if and only if x i = b

a for all i 2 [n]|in particular, if and only if x1 = x2 = � � � = xn .

To summarise, what we have proved so far is

harmonic
mean

(6:1:51)
6

geometric
mean

(6:1:42)
6

arithmetic
mean

(6:1:54)
6

quadratic
mean

with equality in each case if and only if the real numbers whose means we are taking are
all equal.

The following exercise allows us to bookend our chain of inequalities with the minimum
and maximum of the collections of numbers.

Exercise 6.1.55
Let n > 0 and let x1; x2; : : : ; xn be positive real numbers. Prove that

minf x1; x2; : : : ; xng 6

 
1
n

nX

i =1

x � 1
i

! � 1

and maxf x1; x2; : : : ; xng >

 
1
n

nX

i =1

x2
i

! 1
2

with equality in each case if and only if x1 = x2 = � � � = xn . C

? Generalised means

We conclude this section by mentioning a generalisation of the results we have proved
about means. We are not yet ready to prove the results that we mention; they are only
here for the sake of interest.

De�nition 6.1.56
The extended real number line is the (ordered) set [�1 ; 1 ], de�ned by

[�1 ; 1 ] = R [ f�1 ; 1g

where R is the set of real numbers with its usual ordering, and�1 ; 1 are new elements
ordered in such a way that �1 < x < 1 for all x 2 R.
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Note that the extended real line doesnot form a �eld|the arithmetic operations are not
de�ned on �1 or 1 , and we will at no point treat �1 and 1 as real numbers; they are
merely elements which extend the reals to add a least element and a greatest element.

De�nition 6.1.57
Let p 2 [�1 ; 1 ], let n 2 N, and let x1; x2; : : : ; xn be positive real numbers. Thegen-
eralised mean with exponent p (or simply p-mean ) x1; x2; : : : ; xn is the real number
M p(x1; x2; : : : ; xn ) de�ned by

M p(x1; x2; : : : ; xn ) =

 
1
n

nX

i =1

xp
i

! 1
p

if p 62 f�1 ; 0; 1g , and by

M p(x1; x2; : : : ; xn ) = lim
q! p

M q(x1; x2; : : : ; xn )

if p 2 f�1 ; 0; 1g , where the notation lim
q! p

refers to the limit , to be de�ned in Section 8.5.

We can see immediately that the harmonic, arithmetic and quadratic means of a �nite set
of positive real numbers are thep-means for a suitable value ofp: the harmonic mean is
the (� 1)-mean, the arithmetic mean is the 1-mean, and the quadratic mean is the 2-mean.
Furthermore, Proposition 6.1.58 exhibits the minimum as the (�1 )-mean, the geometric
mean as the 0-mean, and themaximum as the 1 -mean.

Proposition 6.1.58
Let n > 0 and let x1; x2; : : : ; xn > 0. Then

� M �1 (x1; x2; : : : ; xn ) = min f x1; x2; : : : ; xng;

� M 0(x1; x2; : : : ; xn ) = n
p

x1x2 � � � xn ; and

� M 1 (x1; x2; : : : ; xn ) = min f x1; x2; : : : ; xng.

All of the inequalities of means we have seen so far will be subsumed by Theorem 6.1.59,
which compares thep-mean andq-mean of a set of numbers for all values ofp; q 2 [�1 ; 1 ].
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Theorem 6.1.59
Let n > 0, let x1; x2; : : : ; xn > 0 and let p; q 2 [�1 ; 1 ] with p < q. Then

M p(x1; x2; : : : ; xn ) 6 M q(x1; x2; : : : ; xn )

with equality if and only if x1 = x2 = � � � = xn .

Theorem 6.1.59 implies each of the following:

� HM{min inequality (Exercise 6.1.55): takep = �1 and q = � 1;

� GM{HM inequality (Theorem 6.1.51): takep = � 1 and q = 0;

� AM{GM inequality (Theorem 6.1.42): takep = 0 and q = 1;

� QM{AM inequality (Theorem 6.1.54): takep = 1 and q = 2;

� max{QM inequality (Exercise 6.1.55): takep = 2 and q = 1 .
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Section 6.2

Sequences and convergence

Warning!
This section is not yet �nished|do not rely on its correctness or completeness.

As we saw at the beginning of Section 6.1, the property of the real numbers that really
sets them apart from the rational numbers iscompleteness(see Axioms 6.1.18), which says
that every set of real numbers with an upper bound has a supremum.

This seemingly innocuous statement turns out to form the basis of all of real analysis. It
allows us to reason about mathematical objects involving real numbers by studying their
local behaviour. The word `local' here is supposed to contrast with `global'|it refers to
studying properties by zooming in on arbitrarily small regions, rather than concerning
ourselves with behaviour on a large scale.

Sequences of real numbers

De�nition 6.2.1
A sequence of real numbers is a function x : N ! R. Given a sequencex, we write xn

instead of x(n) and write ( xn )n> 0, or even just (xn ), instead of x : N ! R. The values xn

are called the terms of the sequence, and the variablen is called the index of the term
xn .

Example 6.2.2
Some very basic but very boring examples of sequences areconstant sequences. For ex-
ample, the constant sequence with value 0 is

(0; 0; 0; 0; 0; 0; : : : )

More generally, for �xed a 2 R, the constant sequence with valuea is de�ned by xn = a
for all n 2 N. C

Example 6.2.3
Sequences can be de�ned just like functions. For example, there is a sequence de�ned by
xn = 2 n for all n 2 N. Writing out the �rst few terms, this sequence is

(1; 2; 4; 8; 16; : : : )

C

296



Section 6.2. Sequences and convergence 297

Sometimes it will be convenient to start the indexing of our sequence from numbers other
than 0, particularly when an expression involving a variable n isn't de�ned when n = 0.
We'll denote such sequences by (xn )n> 1 or (xn )n> 2, and so on.

Example 6.2.4
Let (zn )n> 2 be the sequence de�ned byzn = (n+1)( n+2)

(n� 1)n for all n > 2:

�
6;

10
3

;
5
2

;
21
10

; : : :
�

The indexing of this sequence begins at 2, rather than 0, since whenn = 0 or n = 1,
the expression (n+1)( n+2)

(n� 1)n is unde�ned. We could reindex the sequence: by lettingz0
n =

zn+2 for all n > 0, we obtain a new sequence (z0
n )n> 0 de�ned by z0

n = (n+3)( n+4)
(n+1)( n+2) whose

indexing starts from 0. Fortunately for us, such matters won't cause any problems|it's
just important to make sure that whenever we de�ne a sequence, we make sure the terms
make sense for all of the indices. C

Of particular interest to us will be sequences whose terms get closer and closer to a �xed
real number.

Example 6.2.5
Consider the sequence (yn )n> 1 de�ned by yn = 1

n for all n > 1:

�
1;

1
2

;
1
3

;
1
4

;
1
5

; : : :
�

It is fairly clear that the terms yn become closer and closer to 0 asn grows; the following
diagram is a plot of yn against n for a few values ofn. C

Example 6.2.6
De�ne a sequence (rn )n> 0 by rn = 2n

n+1 for all n 2 N. Some of the values of this sequence
are illustrated in the following table:
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n rn decimal expansion
0 0 0
1 1 1
2 4

3 1:333: : :
3 3

2 1:5
...

...
...

10 20
11 1:818: : :

...
...

...
100 200

101 1:980: : :
...

...
...

1000 2000
1001 1:998: : :

...
...

...

As n increases, the values ofrn become closer and closer to 2. C

The precise sense in which the terms of the sequences in Examples 6.2.5 and 6.2.6 `get
closer' to 0 and 2, respectively, is calledconvergence, which we will de�ne momentarily in
De�nition 6.2.7.

First, let's try to work out what the de�nition should befor a sequence (xn ) to converge
to a real number a.

A na•�ve answer might be to say that the sequence is `eventually equal toa'|that is, after
some point in the sequence, all terms are equal toa. Unfortunately, this isn't quite good
enough: if it were, then the valuesrn = 2n

n+1 from Example 6.2.6 would be equal to 2 for
su�ciently large n. However, if for somen 2 N we have 2n

n+1 = 2, then it follows that
2n = 2( n + 1); rearranging this gives 1 = 0, which is a contradiction.

However, this answer isn't too far from giving us what we need. Instead of saying that the
terms xn are eventually equal to a, we might want to say that they become in�nitely close
to a, whatever that means.

We can't really make sense of an `in�nitely small positive distance' (e.g. Exercise 1.2.13),
so we might instead make sense of `in�nitely close' by saying that the termsxn eventually
become as close toa as we could possibly want them to be. Spelling this out, this means
that for any positive distance " (LATEX code: nvarepsilon ) (read: `epsilon')[a] no matter
how small, the terms xn are eventually within distance " of a. In summary:

[a] The lower case Greek letter epsilon (" ) is traditionally used in analysis to denote a positive quantity
whose value can be made arbitrarily small. We will encounter this letter frequently in this section and
the next when discussing convergence.
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De�nition 6.2.7
Let (xn ) be a sequence and leta 2 R. We say that (xn ) converges to a, and write
(xn ) ! a (LATEX code: nto ), if the following condition holds:

8" > 0; 9N 2 N; 8n > N; jxn � aj < "

The value a is called alimit of (xn ). Moreover, we say that a sequence (xn ) converges if
it has a limit, and diverges otherwise.

Before we move onto some examples, let's quickly digest the de�nition of the expression
(xn ) ! a. The following table presents a suggestion of how you might read the expression
`8" > 0; 9N 2 N; 8n > N; jxn � aj < " ' in English.

Symbols English
8" > 0. . . For any positive distance" (no matter how small). . .
. . . 9N 2 N . . . . . . there is a stage in the sequence. . .
. . . 8n > N . . . . . . after which all terms in the sequence. . .
. . . jxn � aj < " . . . . are within distance " of a.

Thus, a sequence (xn ) converges toa if `for any positive distance" (no matter how small),
there is a stage in the sequence after which all terms in the sequence are within" of a'.
After reading this a few times, you should hopefully be content that this de�nition captures
what is meant by saying that the terms in the sequence are eventually as close toa as we
could possibly want them to be.

We are now ready to see some examples of convergent (and divergent) sequences. When
reading the following proofs, keep in mind the logical structure|that is, the alternating
quanti�ers 8" : : : 9N : : : 8n : : : |in the de�nition of ( xn ) ! a.

Example 6.2.8
The sequence (yn ) de�ned by yn = 1

n for all n > 1 converges to 0. To see this, by De�nition
6.2.7, we need to prove

8" > 0; 9N 2 N; 8n > N;

�
�
�
�
1
n

� 0

�
�
�
� < "

So �x " > 0. Our goal is to �nd N 2 N such that
�
� 1

n

�
� < " for all n > N .
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Let N be any natural number which is greater than 1
" . Then for all n > N , we have

�
�
�
�
1
n

�
�
�
� =

1
n

since
1
n

> 0 for all n > 1

6
1
N

sincen > N

<
1

1="
sinceN >

1
"

= "

Hencejyn j < " for all n > N . Thus we have proved that (yn ) ! 0. C

Remark 6.2.9
The value of N you need to �nd in the proof of convergence will usually depend on the
parameter " . (For instance, in Example 6.2.8, we de�nedN to be some natural number
greater than 1

" .) This is to be expected|remember that " is the distance away from the
limit that the terms are allowed to vary after the N th term. If you make this distance
smaller, you'll probably have to go further into the sequence before your terms are all close
enough to a. In particular, the value of N will usually grow as the value of " gets smaller.
This was the case in Example 6.2.8: note that1" increases as" decreases. C

Example 6.2.10
Let ( rn ) be the sequence from Example 6.2.6 de�ned byrn = 2n

n+1 for all n 2 N. We'll
prove that ( rn ) ! 2. So �x " > 0. We need to �nd N 2 N such that

�
�
�
�

2n
n + 1

� 2

�
�
�
� < " for all n > N

To �nd such a value of n, we'll �rst do some algebra. Note �rst that for all n 2 N we have

�
�
�
�

2n
n + 1

� 2

�
�
�
� =

�
�
�
�
2n � 2(n + 1)

n + 1

�
�
�
� =

�
�
�
�

� 2
n + 1

�
�
�
� =

2
n + 1

Rearranging the inequality 2
n+1 < " gives n+1

2 > 1
" , and hencen > 2

" � 1.

To be clear, what we've shown so far is that anecessarycondition for jrn � 2j < " to hold
is that n > 2

" � 1. This informs us what the desired value ofN might look like|we will
then verify that the desired inequality holds.
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So de�ne N = 2
" � 1. For all n > N , we have

�
�
�
�

2n
n + 1

� 2

�
�
�
� =

2
n + 1

by the above work

6
2

N + 1
sincen > N

<
2

� 2
" � 1

�
+ 1

sinceN >
2
"

� 1

=
2

2="
rearranging

= " rearranging

Thus, as claimed, we havejrn � 2j < " for all n > N . It follows that ( rn ) ! 2, as
required. C

Exercise 6.2.11
Let (xn ) be the constant sequence with valuea 2 R. Prove that ( xn ) ! a. C

Exercise 6.2.12
Prove that the sequence (zn ) de�ned by zn = n+1

n+2 converges to 1. C

The following proposition is a technical tool, which proves that convergence of sequences
is una�ected by changing �nitely many terms at the beginning of a sequence.

Proposition 6.2.13
Let (xn ) be a sequence and suppose that (xn ) ! a. Let (yn ) be another sequence and
suppose that there is somek 2 N such that xn = yn for all n > k. Prove that ( yn ) ! a.

Proof. Fix " > 0. We need to �nd N 2 N such that jyn � aj < " for all n > N .

Since (xn ) ! a, there is someM 2 N such that jxn � aj < " for all n > M . Let N be
the greater of M and k. Then for all n > N , we haveyn = xn , since n > k, and hence
jyn � aj = jxn � aj < " , sincen > M .

Hence (yn ) ! a, as required.

Before we go too much further, let's see some examples of sequences whichdiverge. Recall
(De�nition 6.2.7) that a sequence (xn ) converges if (xn ) ! a for somea 2 R. Spelling this
out symbolically, to say `(xn ) converges' is to say the following:

9a 2 R; 8" > 0; 9N 2 N; 8n > N; jxn � aj < "
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We can negate this using the tools of Section 2.1: to say that a sequence (xn ) diverges is
to say the following:

8a 2 R; 9" > 0; 8N 2 N; 9n > N; jxn � aj > "

In more intuitive terms: for all possible candidates for a limit a 2 R, there is a positive
distance " such that, no matter how far down the sequence you go (sayxN ), you can �nd
a term xn beyond that point which is at distance > " away from a.

Example 6.2.14
Let (xn ) be the sequence de�ned byxn = ( � 1)n for all n 2 N:

(1; � 1; 1; � 1; 1; � 1; : : : )

We'll prove that ( xn ) diverges. Fix a 2 R. Intuitively, if a is non-negative, then it must be
at distance > 1 away from � 1, and if a is negative, then it must be at distance> 1 away
from 1. We'll now make this precise.

So let " = 1, and �x N 2 N. We need to �nd n > N such that j(� 1)n � aj > 1. We'll split
into cases based on whethera is non-negative or negative.

� Supposea > 0. Then � 1 � a 6 � 1 < 0, so that we have

j� 1 � aj = a � (� 1) = a + 1 > 1

So let n = 2N + 1. Then n > N and n is odd, so that

jxn � aj = j(� 1)n � aj = j� 1 � aj > 1

� Supposea < 0. Then 1� a > 1 > 0, so that we have

j1 � aj = 1 � a > 1

So let n = 2N . Then n > N and n is even, so that

jxn � aj = j(� 1)n � aj = j1 � aj > 1

In both cases, we've foundn > N such that jxn � aj > 1. It follows that ( xn ) diverges. C

Example 6.2.14 is an example of aperiodic sequence|that is, it's a sequence that repeats
itself. It is di�cult for such sequences to converge since, intuitively speaking, they jump
up and down a lot. (In fact, the only way that a period sequencecan converge is if it is a
constant sequence!)
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Exercise 6.2.15
Let (yn ) be the sequence de�ned byyn = n for all n 2 N:

(0; 1; 2; 3; : : : )

Prove that ( yn ) diverges. C

Finding limits of sequences can be tricky. Theorem 6.2.17 makes it slightly easier by
saying that if a sequence is built up using arithmetic operations|addition, subtraction,
multiplication and division|from sequences whose limits you know, then you can simply
apply those arithmetic operations to the limits.

In order to prove part of Theorem 6.2.17, however, the following lemma will be useful.

Lemma 6.2.16
Let (xn ) be a sequence of real numbers. If (xn ) converges, then (xn ) is bounded|that is,
there is some real numberk such that jxn j 6 k for all n 2 N.

Proof. Let a 2 R be such that (xn ) ! a. Letting " = 1 in the de�nition of convergence, it
follows that there exists someN 2 N such that jxn � aj < 1 for all n > N . It follows that
� 1 < x n � a < 1 for all n > N , and hence� (1 � a) < x n < 1 + a for all n > N .

Now de�ne
k = max fj x0j; jx1j; : : : ; jxN � 1j; j1 � aj; j1 + ajg + 1

For all n < N , we have
� k < �j xn j 6 xn 6 jxn j < k

so that jxn j < k . For all n > N , we have

� k < �j 1 � aj 6 � (1 � a) < x n < 1 + a 6 j1 + aj < k

so that jxn j < k .

Hencejxn j < k for all n 2 N, as required.

Theorem 6.2.17
Let (xn ) and (yn ) be sequences of real numbers, leta; b 2 R, and suppose that (xn ) ! a
and (yn ) ! b. Then

(a) (xn + yn ) ! a + b;

(b) ( xn � yn ) ! a � b;

(c) (xnyn ) ! ab; and

(d) ( xn
yn

) ! a
b, so long asyn 6= 0 for all n 2 N and b 6= 0.
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Proof of (a) and (c). (a). Fix " > 0. We need to prove that there is someN 2 N such
that j(xn + yn ) � (a + b)j < " for all n > N .

� Since (xn ) ! a, there is someN1 2 N such that jxn � aj < "
2 for all n > N1;

� Since (yn ) ! b, there is someN2 2 N such that jxn � bj < "
2 for all n > N2.

Let N be the greatest ofN1 and N2. Then for all n > N , we haven > N1 and n > N2; it
follows from the triangle inequality (Theorem 6.1.28), that

j(xn + yn ) � (a + b)j = j(xn � a) + ( yn � b)j 6 jxn � aj + jyn � bj <
"
2

+
"
2

as required.

(c). This one is a little harder. Fix " > 0. Since (xn ) converges, it follows from Lemma
6.2.16 that there is some real numberk with jxn j < k for all n 2 N.

� Since (xn ) ! a, there is someN1 2 N such that jxn � aj < "
2jbj for all n > N1;

� Since (yn ) ! b, there is someN2 2 N such that jxn � bj < "
2k for all n > N2.

Let N be the greatest ofN1 and N2. Then for all n > N , we have

jxnyn � abj = jxn (yn � b) + b(xn � a)j rearranging

6 jxn (yn � b)j + jb(xn � a)j by the triangle inequality

= jxn jj yn � bj + jbjjxn � aj rearranging

< k jyn � bj + jbjjxn � aj since jxn j < k for all n

< k
"

2k
+ jbj

"
2jbj

sincen > N1 and n > N2

= " rearranging

Hence (xnyn ) ! ab, as required.

Exercise 6.2.18
Prove parts (b) and (d) of Theorem 6.2.17. C

Theorem 6.2.17appears obvious, but as you can see in the proof, it is more complicated
than perhaps expected. It was worth the hard work, though, because we can now compute
more complicated limits formed in terms of arithmetic operations by taking the limits
of the individual components. The following example uses Theorem 6.2.17 to prove that�

2n
n+1

�
! 2 in a much simpler way than we saw in Example 6.2.10.
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Example 6.2.19
We provide another proof that the sequence (rn ) of Example 6.2.6, de�ned by rn = 2n

n+1
for all n 2 N, converges to 2.

For all n > 1, dividing by the top and bottom gives

rn =
2

1 + 1
n

The constant sequences (2) and (1) converge to 2 and 1, respectively; and by Example
6.2.8, we know that (1

n ) ! 0. It follows that

(rn ) !
2

1 + 0
= 2

as required. C

Exercise 6.2.20
To do: Write exercise C

To do: Motivate

Theorem 6.2.21 (Uniqueness of limits)
Let (xn ) be a sequence and leta; b2 R. If ( xn ) ! a and (xn ) ! b, then a = b.

Proof. We'll prove that ja � bj = 0, which will imply that a = b. To do this, we'll prove
that ja � bj is not positive: we already know it's non-negative, so this will imply that it is
equal to zero. To prove that ja � bj is not positive, we'll prove that it is less than every
positive number.

So �x " > 0. Then also "
2 > 0. The de�nition of convergence (De�nition 6.2.7) tells us

that:

� There exists N1 2 N such that jxn � aj < "
2 for all n > N1; and

� There exists N2 2 N such that jxn � bj < "
2 for all n > N2.

Let n be the greatest ofN1 and N2. Then n > N1 and n > N2, and hence

jxn � aj <
"
2

and jxn � bj <
"
2
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By the triangle inequality (Theorem 6.1.28), it follows that

ja � bj = j(a � xn ) + ( xn � b)j by cancelling the xn terms

6 ja � xn j + jxn � bj by the triangle inequality

= jxn � aj + jxn � bj by Exercise 6.1.24

<
"
2

+
"
2

= " sincen > N1 and n > N2

Since ja � bj < " for all " > 0, it follows that ja � bj is a non-negative real number that is
less than every positive real number, so that it is equal to zero.

Sinceja � bj = 0, we have a � b = 0, and so a = b.

Theorem 6.2.21 tells us that if a sequence converges, then its limit is uniquely determined.
This allows us to talk about the limit of a convergent sequence, and in particular justi�es
the following notation.

Notation 6.2.22
Let (xn ) be a convergent sequence. Write lim

n!1
xn for its (unique) limit.

To do: Warn about the symbol 1 .

Example 6.2.23
Examples 6.2.8 and 6.2.10 tell us that

lim
n!1

1
n

= 0 and lim
n!1

2n
n + 1

! 2

C

To do: Introduce squeeze theorem

Theorem 6.2.24 (Squeeze theorem)
Let (xn ), (yn ) and (zn ) be sequences of real numbers such that:

(i) ( xn ) ! a and (zn ) ! a; and

(ii) xn 6 yn 6 zn for all n 2 N.
Then (yn ) ! a.

Proof. Fix " > 0. We need to �nd N 2 N such that jyn � aj < " for all n > N .

Since (xn ) ! a and (zn ) ! a, there exist N1; N2 2 N such that
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� j xn � aj < " for all n > N1;

� j zn � aj < " for all n > N2.

Letting N be the greatest ofN1 and N2 then tells us that both jxn � aj and jzn � aj are
less than" whenevern > N .

We will prove that jyn � aj < " for all n > N . To see this let n > N . Either yn > a or
yn 6 a.

� If yn > a, then we havea 6 yn 6 zn . It follows that

jyn � aj = yn � a 6 zn � a = jzn � aj < "

� If yn 6 a, then we havexn 6 yn 6 a. It follows that

jyn � aj = a � yn 6 a � xn = jxn � aj < "

Since in both cases we have provedjyn � aj < " , we may conclude that (yn ) ! a.

Example 6.2.25
To do: C

Example 6.2.26
To do: C

Exercise 6.2.27
To do: C

Exercise 6.2.28
To do: C

Existence of limits

It is often useful to know that a sequence converges, but not necessary to go to the arduous
lengths of computing its limit. However, as it currently stands, we don't really have any
tools for proving that a sequence converges other than �nding a limit for it! This section
explores the properties ofR that allow us to know when a sequence does or does not
converge.

First, recall from Section 6.1 that R is a complete ordered �eld (see Axioms 6.1.18). In
fact, it's the only one|this was the content of Theorem 6.1.19. To repeat, this means is
that every subset A � R that has a (real) upper bound has a least (real) upper bound,
called a supremum. This property is called completeness.
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Exercise 6.2.29
Let A � R. Write down the de�nitions of what it means for a real number u to be an
upper bound of A, and what it means for a real numbers to be a supremum of A. C

We can use the completeness axiom to prove results about existence of limits of sequences.

Perhaps the most fundamental result is the monotone convergence theorem(Theorem
6.2.34), since it underlies the proofs of all the other results that we will prove. What
it says is that if the terms in a sequence always increase, or always decrease, and the set
of terms in the sequence is bounded, then the sequence converges to a limit.

The sequence (rn ) from Example 6.2.6, de�ned by rn = 2n
n+1 for all n 2 N, is an example

of such a sequence. We proved that it converged by computing its limit in Example 6.2.10
and again in Example 6.2.19. We will soon (Example 6.2.36) use the monotone convergence
theorem to give yet another proof that it converges, but this time without going to the
trouble of �rst �nding its limit.

Before we can state the monotone convergence theorem, we must �rst de�ne what we mean
by a monotonic sequence.

De�nition 6.2.30
A sequence of real numbers (xn ) is. . .

� . . . increasing if m 6 n implies xm 6 xn for all m; n 2 N;

� . . . decreasing if m 6 n implies xm > xn for all m; n 2 N.
If a sequence is either increasing or decreasing, we say it ismonotonic .

Example 6.2.31
The sequence (xn ) de�ned by xn = n2 for all n 2 N is increasing, since for allm; n 2 N, if
m 6 n, then m2 6 n2. To see this, note that if m 6 n, then n � m > 0 and n + m > 0, so
that

n2 � m2 = ( n � m)(n + m) > 0 � 0 = 0

and hencen2 > m2, as required. C

Example 6.2.32
The sequence (rn ) from Example 6.2.6, de�ned by rn = 2n

n+1 for all n 2 N, is increasing.
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To see this, supposem 6 n. Then n = m + k for somek > 0. Now

0 6 k by assumption

, m2 + km + m 6 m2 + km + m + k adding m2 + km + m to both sides

, m(m + k + 1) 6 (m + 1)( m + k) factorising

, m(n + 1) 6 (m + 1) n sincen = m + k

,
m

m + 1
6

n
n + 1

dividing both sides by (m + 1)( n + 1)

, rm 6 rn by de�nition of ( rn )

Note that the step where we divided through by (m+1)( n+1) is justi�ed since this quantity
is positive.

It is perhaps useful to add that to come up with this proof, it is more likely that you
would start with the assumption rm 6 rn and derive that k > 0|noting that all steps are
reversible then allows us to write it in the `correct' order. C

Exercise 6.2.33
To do: C

Theorem 6.2.34 (Monotone convergence theorem)
Let (xn ) be a sequence of real numbers.

(a) If ( xn ) is increasing and has an upper bound,a then it converges;

(b) If ( xn ) is decreasing and has a lower bound, then it converges.

aO�cially, what it means to say a sequence(xn ) has an upper (or lower) bound is to say that the set
f xn : n 2 Ng has an upper (or lower) bound.

Proof of (a). We prove (a) here|part (b) is Exercise 6.2.35.

So suppose (xn ) is increasing and has an upper bound. Then:

(i) xm 6 xn for all m 6 n; and

(ii) There is some real numberu such that u > xn for all n 2 N.

Condition (ii) tells us that the set f xn j n 2 Ng � R has an upper bound. By the
completeness axiom, it has a supremuma. We prove that (xn ) ! a.

So let " > 0. We need to �nd N 2 N such that jxn � aj < " for all n > N .

Sincea is a supremum off xn j n 2 Ng, there is someN 2 N such that xN > a � " .
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Since (xn ) is increasing, by (i) we havexN 6 xn for all n > N . Moreover, sincea is an
upper bound for the sequence, we actually havexN 6 xn 6 a for all n > N .

Putting this together, for all n > N , we have

jxn � aj = a � xn sincexn � a 6 0

6 a � xN sincexN 6 xn for all n > N

< " sincexN > a � "

It follows that ( xn ) ! a, as required.

Exercise 6.2.35
Prove part (b) of the monotone convergence theorem (Theorem 6.2.34). That is, prove
that if a sequence (xn ) is decreasing and has a lower bound, then it converges. C

Example 6.2.36
To do: C

Example 6.2.37
To do: C

Exercise 6.2.38
To do: C

Exercise 6.2.39
To do: C

To do: subsequences, Cauchy sequences, Bolzano{Weierstrass theorem
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Section 6.3

Series and sums

Warning!
This section is not yet �nished|do not rely on its correctness or completeness.

To do: Lots of stu�

Proposition 6.3.1

Let x 2 R with � 1 < x < 1. Then
X

n2 N

xn =
1

1 � x
.

Proof. Given N 2 N, the N th partial sum SN of the series is given by by

SN =
NX

n=0

xn = 1 + x + x2 + � � � + xN

Note that

xSN =
nX

n=0

xn+1 = x + x2 + � � � + xN +1 = SN +1 � 1

and hence

(1 � x)SN = SN � xSN = SN � (SN +1 � 1) = 1 � (SN +1 � SN ) = 1 � xN +1

and hence dividing by 1� x, which is permissible sincex 6= 1, yields

SN =
1 � xN +1

1 � x

To do: Finish proof

Proposition 6.3.2

Let x 2 R with � 1 < x < 1. Then
X

n2 N

nxn� 1 =
1

(1 � x)2

311



312 Chapter 6. Real analysis

312



Chapter 7

Discrete probability theory

313



314 Chapter 7. Discrete probability theory

Section 7.1

Discrete probability spaces

Probability theory is a �eld of mathematics which attempts to model randomness and
uncertainty in the `real world'. The mathematical machinery it develops allows us to
understand how this randomness behaves and to extract information which is useful for
making predictions.

Discrete probability theory, in particular, concerns situations in which the possible out-
comes form acountable set. This simpli�es matters considerably: if there are only count-
ably many outcomes, then the probability that any event occurs is determined entirely by
the probabilities that the individual outcomes comprised by the event occur.

For example, the number N of words spoken by a child over the course of a year takes
values in N, so is discrete. To eachn 2 N, we may assign a probability that N = n, which
can take positive values in a meaningful way, and from these probabilities we can compute
the probabilities of more general events occurring (e.g. the probability that the child says
under a million words). However, the height H grown by the child over the same period
takes values in [0; 1 ), which is uncountable; for each h 2 [0; 1 ), the probability that
H = h is zero, so these probabilities give us no information. We must study the behaviour
of H through some other means.

In this chapter, we will concern ourselves only with the discrete setting.

It is important to understand from the outset that, although we use language like outcome,
event, probability and random, and although we use real-world examples, everything we
do concerns mathematical objects: sets, elements of sets, and functions. If we say, for
example, \the probability that a roll of a fair six-sided die shows 3 or 4 is 1

3 ," we are actually
interpreting the situation mathematically|the outcomesof the die rolls are interpreted as
the elements of the set [6]; theevent that the die shows 3 or 4 is interpreted as the subset
f 3; 4g � [6]; and the probability that this event occurs is the value of a particular function
P : P([6]) ! [0; 1] on input f 3; 4g. The mathematical interpretation is called a model of
the real-world situation.
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De�nition 7.1.1
A discrete probability space is a pair (
 ; P) (LATEX code: ( nOmega,nmathbbf Pg) ),
consisting of a countable set 
 and a function P : P(
) ! [0; 1], such that

(i) P(
) = 1; and

(ii) ( Countable additivity ) If f A i j i 2 I g is any family of pairwise disjoint subsets of

, indexed by a countable set I , then

P

 
[

i 2 I

A i

!

=
X

i 2 I

P(A i )

The set 
 is called the sample space ; the elements ! 2 
 are called outcomes ;a the
subsetsA � 
 are called events ; and the function P is called the probability measure .
Given an event A, the value P(A) is called the probability of A.

aThe symbols 
 ; ! (LATEX code: nOmega,nomega) are the upper- and lower-case forms, respectively, of the
Greek letter omega.

There is a general notion of a probability space, which does not require the sample space 

to be countable. This de�nition is signi�cantly more technical, so we restrict our attention
in this section to discrete probability spaces. Thus, whenever we say `probability space'
in this chapter, the probability space can be assumed to be discrete. However, when
our proofs do not speci�cally use countability of 
, they typically are true of arbitrary
probability spaces. As such, we will specify discreteness in the statement of results only
when countability of the sample space is required.

Example 7.1.2
We model the roll of a fair six-sided die.

The possibleoutcomes of the roll are 1, 2, 3, 4, 5 and 6, so we can take 
 = [6] to be the
sample space.

The events correspond with subsets of [6]. For example:

� f 4g is the event that the die roll shows 4. This event occurs with probability 1
6 .

� f 1; 3; 5g is the event that the die roll is odd. This event occurs with probability 1
2

� f 1; 4; 6g is the event that the die roll is not prime. This event occurs with probability
1
2 .

� f 3; 4; 5; 6g is the event that the die roll shows a number greater than 2. This event
occurs with probability 2

3 .
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� f 1; 2; 3; 4; 5; 6g is the event that anything happens. This event occurs with probability
1.

� ? is the event that nothing happens. This event occurs with probability 0.

More generally, since each outcome occurs with equal probability16 , we can de�ne

P(A) =
jAj
6

for all events A

We will verify that P de�nes a probability measure on [6] in Example 7.1.6. C

Example 7.1.3
Let (
 ; P) be a probability space. We prove that P(? ) = 0.

Note that 
 and ? are disjoint, so by countable additivity, we have

1 = P(
) = P(
 [ ? ) = P(
) + P(? ) = 1 + P(? )

Subtracting 1 throughout yields P(? ) = 0, as required. C

Exercise 7.1.4
Let (
 ; P) be a probability space. Prove that

P(
 n A) = 1 � P(A)

for all events A. C

Countable additivity of probability measures|that is, condition (ii) in De�nition 7.1.1|
implies that probabilities of events are determined by probabilities of individual outcomes.
This is made precise in Proposition 7.1.5.

Proposition 7.1.5
Let 
 be a countable set and let P : P(
) ! [0; 1] be a function such that P(
) = 1. The
following are equivalent:

(i) P is a probability measure on 
;

(ii)
P

! 2 A
P(f ! g) = P(A) for all A � 
.

Proof. SinceP(
) = 1, it su�ces to prove that condition (ii) of Proposition 7.1.5 is equi-
valent to countable additivity of P.

� (i) ) (ii). Suppose P is a probability measure on 
. Let A � 
.
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Note that since A � 
 and 
 is countably in�nite, it follows that ff ! g j ! 2 Ag is a
countable family of pairwise disjoint sets. By countable additivity, we have

P(A) = P

 
[

! 2 A

f ! g

!

=
X

! 2 A

P(f ! g)

as required. Hence condition (ii) of the proposition is satis�ed.

� (ii) ) (i). Suppose that
P

! 2 A
P(f ! g) = P(A) for all A � 
. We prove that P is a

probability measure on 
.

So let f A i j i 2 I g be a family of pairwise disjoint events, indexed by a countable set
I . De�ne A =

S
i 2 I A i . Since the setsA i partition A, summing over elements ofA

is the same as summing over each of the setsA i individually, and then adding those
results together; speci�cally, for eachA-tuple (p! )! 2 A , we have

X

! 2 A

p! =
X

i 2 I

X

! 2 A i

p!

Hence

P(A) =
X

! 2 A

P(f ! g) by condition (ii) of the proposition

=
X

i 2 I

X

! 2 A i

P(f ! g) by the above observation

=
X

i 2 I

P(A i ) by condition (ii) of the proposition

So P satis�es the countable additivity condition. Thus P is a probability measure on

.

Hence the two conditions are equivalent.

Example 7.1.6
We prove that the function P from Exercise 7.1.2 truly does de�ne a probability measure.
Indeed, let 
 = [6] and let P : P(
) ! [0; 1] be de�ned by

P(A) =
jAj
6

for all events A

Then P(
) = 6
6 = 1, so condition (i) in De�nition 7.1.1 is satis�ed. Moreover, for each

A � [6] we have
X

! 2 A

P(f ! g) =
X

! 2 A

1
6

=
jAj
6

= P(A)

so, by Proposition 7.1.5,P de�nes a probability measure on [6]. C
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Proposition 7.1.5 makes de�ning probability measures much easier, since it implies that
probability measures are determined entirely by their values on individual outcomes. This
means that, in order to de�ne a probability measure, we only need to specify its values on
individual outcomes and check that the sum of these probabilities is equal to 1. This is
signi�cantly easier than de�ning P(A) on all eventsA � 
 and checking the two conditions
of De�nition 7.1.1.

This is made precise in Proposition 7.1.7 below.

Proposition 7.1.7
Let 
 be a countable set and, for each ! 2 
, let p! 2 [0; 1]. If

P

! 2 

p! = 1, then there is a

unique probability measure P on 
 such that P(f ! g) = p! for each ! 2 
.

Proof. We prove existence and uniqueness ofP separately.

� Existence. De�ne P : P(
) ! [0; 1] be de�ned by

P(A) =
X

! 2 A

p!

for all events A � 
. Then condition (ii) of Proposition 7.1.5 is automatically satis-
�ed, and indeed P(f ! g) = p! for each ! 2 
. Moreover

P(
) =
X

! 2 


P(f ! g) =
X

! 2 


p! = 1

and so condition (i) of De�nition 7.1.1 is satis�ed. Hence P de�nes a probability
measure on 
.

� Uniqueness. Suppose that P0 : P(
) ! [0; 1] is another probability measure such
that P0(f ! g) = p! for all ! 2 
. For each event A � 
, condition (ii) of Proposition
7.1.5 implies that

P0(A) =
X

! 2 A

P0(f ! g) =
X

! 2 A

p! = P(A)

henceP0 = P.

So P is uniquely determined by the valuesp! .

The assignments ofp! 2 [0; 1] to each ! 2 
 in fact de�nes something that we will later
de�ned to be a probability mass function (De�nition 7.2.6).

With Proposition 7.1.7 proved, we will henceforth specify probability measuresP on sample
spaces 
 by specifying only the values ofP(f ! g) for ! 2 
.

318



Section 7.1. Discrete probability spaces 319

Example 7.1.8
Let p 2 [0; 1]. A coin, which shows heads with probability p, is repeatedly 
ipped until
heads shows.

The outcomes of such a sequence of coin 
ips all take the form

(tails ; tails; � � � ; tails
| {z }

n `tails'

; heads)

for somen 2 N. Identifying such a sequence with the numbern of 
ips before heads shows,
we can take 
 = N to be the sample space.

For each n 2 N, we can de�ne

P(f ng) = (1 � p)np

This will de�ne a probability measure on N, provided these probabilities all sum to 1; and
indeed by Proposition 6.3.1, we have

X

n2 N

P(f ng) =
X

n2 N

(1 � p)np = p �
1

1 � (1 � p)
= p �

1
p

= 1

By Proposition 7.1.7, it follows that (
 ; P) is a probability space. C

Exercise 7.1.9
A fair six-sided die is rolled twice. De�ne a probability space (
 ; P) that models this
situation. C

Exercise 7.1.10
Let (
 ; P) be a probability space and let A; B be events with A � B . Prove that P(A) 6
P(B ). C

Set operations on events

In the real world, we might want to talk about the probability that two events both happen,
or the probability that an event doesn't happen, or the probability that at least one of some
collection of events happens. This is interpreted mathematically in terms of set operations.

Example 7.1.11
Let (
 ; P) be the probability space modelling two rolls of a fair six-sided die|that is, the
sample space 
 = [6] � [6] with probability measure P de�ned by P(f (a; b)g) = 1

36 for each
(a; b) 2 
.
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Let A be the event that the sum of the die rolls is even, that is

A =

8
<

:

(1; 1); (1; 3); (1; 5); (2; 2); (2; 4); (2; 6);
(3; 1); (3; 3); (3; 5); (4; 2); (4; 4); (4; 6);
(5; 1); (5; 3); (5; 5); (6; 2); (6; 4); (6; 6)

9
=

;

and let B be the event that the sum of the die rolls is greater than or equal to 9, that is

B = f (3; 6); (4; 5); (4; 6); (5; 4); (5; 5); (5; 6); (6; 3); (6; 4); (6; 5); (6; 6)g

Then

� Consider the event that the sum of the die rolls is evenor greater than or equal to
9. An outcome ! gives rise to this event precisely when either! 2 A or ! 2 B ; so
the event in question isA [ B ;

� Consider the event that the sum of the die rolls is evenand greater than or equal to
9. An outcome ! gives rise to this event precisely when both! 2 A and ! 2 B ; so
the event in question isA \ B ;

� Consider the event that the sum of the die rolls isnot even. An outcome! gives rise
to this event precisely when! 62A; so the event in question is is ([6]� [6]) n A.

Thus we can interpret `or' as union, `and' as intersection, and `not' as relative complement
in the sample space. C

The intuition provided by Example 7.1.11 is formalised in Exercise 7.1.13. Before we do
this, we adopt a convention that simpli�es notation when discussing events in probability
spaces.

Notation 7.1.12
Let (
 ; P) be a probability space. When a subsetA � 
 is interpreted as an event, we will
write Ac for 
 n A (instead of U nA where U is the universe of discourse).

That is, when we talk about the complement of an event, we really mean their relative
complement inside the sample space.

Exercise 7.1.13
Let (
 ; P) be a probability space, and let p(! ); q(! ) be logical formulae with free variable
! ranging over 
. Let

A = f ! 2 
 j p(! )g and B = f ! 2 
 j q(! )g

Prove that
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� f ! 2 
 j p(! ) ^ q(! )g = A \ B ;

� f ! 2 
 j p(! ) _ q(! )g = A [ B ;

� f ! 2 
 j : p(! )g = Ac.

For reference, in Example 7.1.11, we had 
 = [6] � [6] and we de�ned p(a; b) to be `a + b
is even' andq(a; b) to be `a + b > 7'. C

With this in mind, it will be useful to know how set operations on events interact with
probabilities. A useful tool in this investigation is that of an indicator function .

De�nition 7.1.14
Let 
 be a set and let A � 
. The indicator function of A in 
 is the function
i A : 
 ! f 0; 1g de�ned by

i A (! ) =

(
1 if ! 2 A

0 if ! 62A

Proposition 7.1.15
Let 
 be a set and let A; B � 
. Then for all ! 2 
 we have

(i) i A\ B (! ) = i A (! )i B (! );

(ii) i A[ B (! ) = i A (! ) + i B (! ) � i A\ B (! ); and

(iii) i A c (! ) = 1 � i A (! ).

Proof. Proof of (i) Let ! 2 
. If ! 2 A \ B then ! 2 A and ! 2 B , so that i A\ B (! ) =
i A (! ) = i B (! ) = 1. Hence

i A (! )i B (! ) = 1 = i A\ B (! )

If ! 62A \ B then either ! 62A or ! 62B . Hence i A\ B (! ) = 0, and either i A (! ) = 0 or
i B (! ) = 0. Thus

i A (! )i B (! ) = 0 = i A\ B (! )

In both cases, we havei A\ B (! ) = i A (! )i B (! ), as required.

Exercise 7.1.16
Prove parts (ii) and (iii) of Proposition 7.1.15. C

Exercise 7.1.17
Let (
 ; P) be a discrete probability space, and for each! 2 
 let p! = P(f ! g). Prove that,
for each eventA, we have

P(A) =
X

! 2 


p! i A (! )
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C

Theorem 7.1.18
Let (
 ; P) be a probability space and let A; B � 
. Then

P(A [ B ) = P(A) + P(B ) � P(A \ B )

Proof. For each ! 2 
, let p! = P(f ! g). Then

P(A [ B ) =
X

! 2 


p! i A[ B (! ) by Exercise 7.1.17

=
X

! 2 


p! (i A (! ) + i B (! ) � i A\ B (! )) by Proposition 7.1.15(ii)

=
X

! 2 


p! i A (! ) +
X

! 2 


p! i B (! ) +
X

! 2 


p! i A\ B (! ) rearranging

= P(A) + P(B ) � P(A \ B ) by Exercise 7.1.17

as required.

Although there are nice expressions for unions and complements of events, it is not always
the case that intersection of events corresponds with multiplication of probabilities.

Example 7.1.19
Let 
 = [3] and de�ne a probability measure P on 
 by letting

P(f 1g) =
1
4

; P(f 2g) =
1
2

and P(f 3g) =
1
4

Then we have

P(f 1; 2g \ f 2; 3g) = P(f 2g) =
1
2

6=
9
16

=
3
4

�
3
4

= P(f 1; 2g) � P(f 2; 3g)

C

This demonstrates that it is not always the case thatP(A \ B ) = P(A)P(B ) for events A; B
in a given probability space. Pairs of eventsA; B for which this equation is true are said
to be independent.

De�nition 7.1.20
Let (
 ; P) be a probability space and letA; B be events. We sayA and B are independent
if P(A \ B ) = P(A)P(B ); otherwise, we say they aredependent . More generally, events
A1; A2; : : : ; An are mutually independent if

P(A1 \ A2 \ � � � \ An ) = P(A1)P(A2) � � � P(An )
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Example 7.1.21
A fair six-sided die is rolled twice. Let A be the event that the �rst roll shows 4, and let
B be the event that the second roll is even. Then

A = f (4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6)g

so P(A) = 6
36 = 1

6 ; and
B = f (a; 2); (a; 4); (a; 6) j a 2 [6]g

so P(B ) = 18
36 = 1

2 . Moreover A \ B = f (4; 2); (4; 4); (4; 6)g, so it follows that

P(A \ B ) =
3
36

=
1
12

=
1
6

�
1
2

= P(A)P(B )

so the eventsA and B are independent.

Let C be the event that the sum of the two dice rolls is equal to 5. Then

C = f (1; 4); (2; 3); (3; 2); (4; 1)g

so P(C) = 4
36 = 1

9 . Moreover A \ C = f (4; 1)g, so it follows that

P(A \ C) =
1
36

6=
1
54

=
1
6

�
1
9

= P(A)P(C)

so the eventsA and C are dependent. C

Exercise 7.1.22
Let (
 ; P) be a probability space. Under what conditions is an eventA independent from
itself? C

Conditional probability

Suppose we model a real-world situation, such as the roll of a die or the 
ip of a coin, using
a probability (
 ; P). When we receive new information, the situation might change, and
we might want to model this new situation by updating our probabilities to re
ect the fact
that we know that B has occurred. This is done by de�ning a new probability measureeP
on 
. What follows is an example of this.

Example 7.1.23
Two cards are drawn at random, in order, without replacement, from a 52-card deck.
We can model this situation by letting the sample space 
 be the set of ordered pairs of
distinct cards, and letting P assign an equal probability (of 1

j
 j ) to each outcome. Note
that j
 j = 52 � 51, and so

P(f ! g) =
1

52� 51
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for each outcome! .

We will compute two probabilities:

� The probability that the second card drawn is a heart.

� The probability that the second card drawn is a heart given that the �rst card drawn
is a diamond.

Let A � 
 be the event that the second card drawn is a heart, and let B � 
 be the event
that the �rst card drawn is a diamond.

To compute P(A), note �rst that A = A0[ A00, where

� A0 is the event that both cards are hearts, so thatjA0j = 13 � 12; and

� A00is the event that only the second card is a heart, so thatjA00j = 39 � 13.

SinceA0\ A00= ? , it follows from countable additivity that

P(A) = P(A0) + P(A00) =
13� 12 + 39 � 13

52� 51
=

13� (12 + 39)
52� 51

=
1
4

Now suppose we know that �rst card drawn is a diamond|that is, event B has occurred|
and we wish to update our probability that A occurs. We do this by de�ning a new
probability measure

eP : P(
) ! [0; 1]

such that:

(a) The outcomes that do not give rise to the eventB are assigned probability zero; that
is, eP(f ! g) = 0 for all ! 62B ; and

(b) The outcomes that give rise to the event B are assigned probabilities proportional
to their old probability; that is, there is some k 2 R such that eP(! ) = kP(! ) for all
! 2 B .

In order for eP to be a probability measure on 
, we need condition (i) of De�nition 7.1.1
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to occur.

eP(
) =
X

! 2 


eP(f ! g) by condition (ii) of Proposition 7.1.5

=
X

! 2 B

eP(f ! g) since eP(f ! g) = 0 for ! 62B

=
X

! 2 B

kP(f ! g) since eP(f ! g) = kP(f ! g for ! 2 B

= kP(B ) by condition (ii) of Proposition 7.1.5

Since we needeP(
) = 1, we must therefore take k = 1
P(B ) . (In particular, we need P(B ) > 0

for this notion to be well-de�ned.)

Recall that, before we knew that the �rst card was a diamond, the probability that the
second card is a heart was1

4 . We now calculate how this probability changes with the
updated information that the �rst card was a diamond.

The event that the second card is a heart in the new probability space is preciselyA \ B ,
since it is the subset ofB consisting of all the outcomes! giving rise to the event A. As
such, the new probability that the second card is a heart is given by

eP(A) =
P(A \ B )

P(B )

Now:

� A \ B is the event that the �rst card is a diamond and the second is a heart. To specify
such an event, we need only specify the ranks of the two cards, sojA \ B j = 13 � 13
and henceP(A \ B ) = 13�13

52�51.

� B is the event that the �rst card is a diamond. A similar procedure as with A yields
P(B ) = 1

4 .

Hence
eP(A) =

P(A \ B )
P(B )

=
13� 13� 4

52� 51
=

13
51

Thus the knowledge that the �rst card drawn is a diamond very slightly increases the
probability that the second card is a heart from 1

4 = 13
52 to 13

51. C

Example 7.1.23 suggests the following schema: upon discovering that an eventB occurs,
the probability that event A occurs should change fromP(A) to P(A\ B )

P(B ) . This motivates
the following de�nition of conditional probability.
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De�nition 7.1.24
Let (
 ; P) be a probability space and let A; B be events such thatP(B ) > 0. The condi-
tional probability of A given B is the number P(A j B ) (LATEX code: nmathbbf Pg(A
nmid B)) de�ned by

P(A j B ) =
P(A \ B )

P(B )

Example 7.1.25
A fair six-sided die is rolled twice. We compute the probability that the �rst roll showed
a 2 given that the sum of the die rolls is less than 5.

We can model this situation by taking the sample space to be [6]� [6], with each outcome
having an equal probability of 1

36.

Let A be the event that the �rst die roll shows a 2, that is

A = f (2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6)g

and let B be the event that the sum of the die rolls is less than 5, that is

B = f (1; 1); (1; 2); (1; 3); (2; 1); (2; 2); (3; 1)g

We need to computeP(A j B ). Well,

A \ B = f (2; 1); (2; 2)g

so P(A \ B ) = 2
36; and P(B ) = 6

36. Hence

P(A j B ) =
2
36
6
36

=
2
6

=
1
3

C

Exercise 7.1.26
A fair six-sided die is rolled three times. What is the probability that the sum of the die
rolls is less than or equal to 12, given that each die roll shows a power of 2? C

Exercise 7.1.27
Let (
 ; P) be a probability space and let A; B be events with P(B ) > 0. Prove that

P(A j B ) = P(A \ B j B )

C

Exercise 7.1.28
Let (
 ; P) be a probability space and let A; B be events such thatP(B ) > 0. Prove that
P(A j B ) = P(A) if and only if A and B are independent. C
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We will soon see some useful real-world applications of probability theory usingBayes's
theorem (Theorem 7.1.33). Before we do so, some technical results will be useful in our
proofs.

Proposition 7.1.29
Let (
 ; P) be a probability space and let A; B be events with 0< P(B ) < 1. Then

P(A) = P(A j B )P(B ) + P(A j B c)P(B c)

Proof. Note �rst that we can write

A = A \ 
 = A \ (B [ B c) = ( A \ B ) [ (A \ B c)

and moreover the eventsA \ B and A \ B c are mutually exclusive. Hence

P(A) = P(A \ B ) + P(A \ B c)

by countable additivity. The de�nition of conditional probability (De�nition 7.1.24) then
gives

P(A) = P(A j B )P(B ) + P(A j B c)P(B c)

as required.

Example 7.1.30
An animal rescue centre houses a hundred animals, sixty of which are dogs and forty
of which are cats. Ten of the dogs and ten of the cats hate humans. We compute the
probability that a randomly selected animal hates humans.

Let A be the event that a randomly selected animal hates humans, and letB be the event
that the animal is a dog. Note that B c is precisely the event that the animal is a cat. The
information we are given says that:

� P(B ) = 60
100, since 60 of the 100 animals are dogs;

� P(B c) = 40
100, since 40 of the 100 animals are cats;

� P(A j B ) = 10
60, since 10 of the 60 dogs hate humans;

� P(A j B c) = 10
40, since 10 of the 40 cats hate humans.

By Proposition 7.1.29, it follows that the probability that a randomly selected animal hates
humans is

P(A) = P(A j B )P(B ) + P(A j B c)P(B c) =
60
100

�
10
60

+
40
100

�
10
40

=
20
100

=
1
5

C
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The following exercise generalises Proposition 7.1.29 to arbitrary partitions of a sample
space into events with positive probabilities.

Example 7.1.31
The animal rescue centre from Example 7.1.30 acquires twenty additional rabbits, of whom
sixteen hate humans. We compute the probability that a randomly selected animal hates
humans, given the new arrivals.

A randomly selected animal must be either a dog, a cat or a rabbit, and each of these
occurs with positive probability. Thus, letting D be the event that the selected animal is
a dog, C be the event that the animal is a cat, and R be the event that the animal is a
rabbit, we see that the setsD; C; R form a partition of the sample space.

Letting A be the event that the selected animal hates humans. Then

P(A) = P(A j D )P(D)+ P(A j C)P(C)+ P(A j R)P(R) =
10
60

�
60
120

+
10
40

�
40
120

+
16
20

�
20
120

=
3
10

C

Proposition 7.1.32 below is a technical result which proves that conditional probability
truly does yield a new probability measure on a given sample space.

Proposition 7.1.32
Let (
 ; P) be a discrete probability space and letB be an event such thatP(B ) > 0. The
function eP : P(
) ! [0; 1] de�ned by

eP(A) = P(A j B ) for all A � 


de�nes a probability measure on 
.

Proof. First note that

eP(
) = P(
 j B ) =
P(
 \ B )

P(B )
=

P(B )
P(B )

= 1

so condition (i) of De�nition 7.1.1 is satis�ed.
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Moreover, for eachA � 
 we have

eP(A) = P(A j B ) by de�nition of eP

=
P(A \ B )

P(B )
by De�nition 7.1.24

=
1

P(B )

X

! 2 A \ B

P(f ! g) byProposition 7.1.5

=
X

! 2 A \ B

P(f ! g j B ) by De�nition 7.1.24

=
X

! 2 A

P(f ! g j B ) since P(f ! g j B ) = 0 for ! 2 A n B

=
X

! 2 A

eP(f ! g) by de�nition of eP

so condition (ii) of Proposition 7.1.5 is satis�ed. HenceeP de�nes a probability measure on

.

Proposition 7.1.32 implies that we can use all the results we've proved about probability
measures to conditional probability given a �xed event B . For example, Theorem 7.1.18
implies that

P(A [ A0 j B ) = P(A j B ) + P(A0 j B ) � P(A \ A0 j B )

for all events A; A 0; B in a probability space (
 ; P) such that P(B ) > 0.

The next theorem we prove has a very short proof, but is extremely important in applied
probability theory.

Theorem 7.1.33 (Bayes's theorem)
Let (
 ; P) be a probability space and let A; B be events with positive probabilities. Then

P(B j A) =
P(A j B )P(B )

P(A)

Proof. De�nition 7.1.24 gives

P(A j B )P(B ) = P(A \ B ) = P(B \ A) = P(B j A)P(A)

Dividing through by P(A) yields the desired equation.
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As stated, Bayes's theorem is not necessarily particularly enlightening, but its usefulness
increases sharply when combined with Proposition 7.1.29 to express the denominator of
the fraction in another way.

Corollary 7.1.34
Let (
 ; P) be a probability space and let A; B be events such that P(A) > 0 and 0 <
P(B ) < 1. Then

P(B j A) =
P(A j B )P(B )

P(A j B )P(B ) + P(A j B c)P(B c)

Proof. Bayes's theorem tells us that

P(B j A) =
P(A j B )P(B )

P(A)

By Proposition 7.1.29 we have

P(A) = P(A j B )P(B ) + P(A j B c)P(B c)

Substituting for P(A) therefore yields

P(B j A) =
P(A j B )P(B )

P(A j B )P(B ) + P(A j B c)P(B c)

as required.

The following example is particularly counterintuitive.

Example 7.1.35
A town has 10000 people, 30 of whom are infected with Disease X. Medical scientists
develop a test for Disease X, which is accurate 99% of the time. A person takes the test,
which comes back positive. We compute the probability that the person truly is infected
with Disease X.

Let A be the event that the person tests positive for Disease X, and letB be the event
that the person is infected with Disease X. We need to computeP(B j A).

By Corollary 7.1.34, we have

P(B j A) =
P(A j B )P(B )

P(A j B )P(B ) + P(A j B c)P(B c)

It remains to compute the individual probabilities on the right-hand side of this equation.
Well,
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� P(A j B ) is the probability that the person tests positive for Disease X, given that
they are infected. This is equal to 99

100, since the test is accurate with probability
99%.

� P(A j B c) is the probability that the person tests positive for Disease X, given that
they are not infected. This is equal to 1

100, since the test isinaccurate with probability
1%.

� P(B ) = 30
10000, since 30 of the 10000 inhabitants are infected with Disease X.

� P(B c) = 9970
10000, since 9970 of the 10000 inhabitants arenot infected with Disease X.

Piecing this together gives

P(B j A) =
99
100 � 30

10000
99
100 � 30

10000 + 1
100 � 9970

10000

=
297
1294

� 0:23

Remarkably, the probability that the person is infected with Disease X given that the test
is positive is only 23%, even though the test is accurate 99% of the time! C

The following result generalises Corollary 7.1.34 to arbitrary partitions of the sample space
into sets with positive probabilities.

Corollary 7.1.36
Let (
 ; P) be a probability space, let A be an event with P(A) > 0, and let f B i j i 2 I g be
a family of mutually exclusive events indexed by a countable setI such that

P(B i ) > 0 for all i 2 I and
[

i 2 I

P(B i ) = 


Then

P(B i j A) =
P(A j B i )P(B i )P

i 2 I
P(A j B i )P(B i )

for each i 2 I .

Proof. Bayes's theorem tells us that

P(B j A) =
P(A j B )P(B )

P(A)

By countable additivity, we have

P(A) = P

 
[

i 2 I

A \ B i

!

=
X

i 2 I

P(A \ B i ) =
X

i 2 I

P(A j B i )P(B i )
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Substituting for P(A) therefore yields

P(B i j A) =
P(A j B i )P(B i )P

i 2 I
P(A j B i )P(B i )

as required.

Example 7.1.37
A car company, Cars N'At , makes three models of cars, which it imaginatively named
Model A, Model B and Model C. It made 3000 Model As, 6500 Model Bs, and 500 Model
Cs. In a given day, a Model A breaks down with probability 1

100, a Model B breaks down
with probability 1

200, and the notoriously unreliable Model C breaks down with probability
1
20. An angry driver calls Cars N'At to complain that their car has broken down. We
compute the probability that the driver was driving a Model C car.

Let A be the event that the car is a Model A, let B be the event that the car is a Model
B, and let C be the event that the car is a Model C. Then

P(A) =
3000
10000

; P(B ) =
6500
10000

; P(C) =
500

10000

Let D be the event that the car broke down. Then

P(D j A) =
1

100
; P(D j B ) =

1
200

; P(D j C) =
1
20

We need to computeP(C j D). Since the eventsA; B; C partition the sample space and
have positive probabilities, we can use Corollary 7.1.36, which tells us that

P(C j D) =
P(D j C)P(C)

P(D j A)P(A) + P(D j B )P(B ) + P(D j C)P(C)

Substituting the probabilities that we computed above, it follows that

P(C j D) =
1
20 � 500

10000
1

100 � 3000
10000 + 1

200 � 6500
10000 + 1

20 � 500
10000

=
2
7

� 0:29

C

Exercise 7.1.38
In Example 7.1.37, �nd the probabilities that the car was a Model A and that the car was
a Model B. C
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Section 7.2

Discrete random variables

Events in a probability space are sometimes unenlightening when looked at in isolation.
For example, suppose we roll a fair six-sided die twice. The outcomes are elements of the
set [6]� [6], each occurring with equal probability 1

36. The event that the die rolls sum to
7 is precisely the subset

f (1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)g � [6] � [6]

and so we can say that the probability that the two rolls sum to 7 is

P(f (1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)g) =
1
6

However, it is not at all clear from the expressionf (1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)g
that, when we wrote it down, what we had in mind was the event that the sum of the die
rolls is 7. Moreover, the expression of the event in this way does not make it clear how to
generalise to other possible sums of die rolls.

Note that the sum of the die rolls de�nes a function S : [6] � [6] ! [12], de�ned by

S(a; b) = a + b for all ( a; b) 2 [6] � [6]

The function S allows us to express our event in a more enlightening way: indeed,

f (1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)g = f (a; b) 2 [6] � [6] j a + b = 7g = S� 1[f 7g]

(Recall the de�nition of preimage in De�nition 2.3.35.) Thus the probability that the sum
of the two die rolls is 7 is equal toP(S� 1[f 7g]).

If we think of S not as a function [6] � [6] ! [12], but as a [12]-valuedrandom variable,
which varies according to a random outcome in [6]� [6], then we can informally say

Pf S = 7g =
1
6

which formally means P(S� 1[f 7g]) =
1
6

This a�ords us much more generality. Indeed, we could ask what the probability is that
the die rolls sum to a value greater than or equal to 7. In this case, note that the die rolls
(a; b) sum to a number greater than or equal to 7 if and only if a + b 2 f 7; 8; 9; 10; 11; 12g,
which occurs if and only if (a; b) 2 S� 1[f 7; 8; 9; 10; 11; 12g]. Thus, we might informally say

Pf S > 7g =
7
12

which formally means P(S� 1[f 7; 8; 9; 10; 11; 12g]) =
7
12
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