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Note to readers

Hello, and thank you for taking the time to read this quick introduction to the book! I
would like to begin with an apology and a warning:

This book is still under development!

That is to say, there are some sections that are incomplete (notably Sections 6.2 and 6.3,
and all of Chapter 8), as well as other sections which are currently much more terse than
I would like them to be.

An up-to-date version of this book is be available from the following web page:

http://infinitedescent.xyz

As the book is undergoing constant changes, I advise that you do not print the notes in
their entirety—if you must print them at all, then I suggest that you do it a few pages at
a time, as required.

This book was designed with inquiry and communication in mind, as they are central to a
good mathematical education. One of the upshots of this is that there are many exercises
throughout the book, requiring a more active approach to learning, rather than passive
reading. These exercises are a fundamental part of the book, and should be completed
even if not required by the course instructor. Another upshot of these design principles is
that solutions to exercises are not provided—a student seeking feedback on their solutions
should speak to someone to get such feedback, be it another student, a teaching assistant
or a course instructor.
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Navigating the book

The material covered in Chapters 1 and 2 can be considered prerequisite for all subsequent
material in the book; any introductory course in pure mathematics should cover at least
these two chapters. The remaining chapters are a preview of other areas of pure math-
ematics. The dependencies between the sections in Chapters 3–8; dashed arrows indicate
that a section is a recommended, rather than required, for another.

3.1 4.1 4.2 4.3 8.2

3.2 8.4 7.1 7.2 7.3

3.3 6.1 6.2 6.3 8.5

8.1 5.1 5.2 5.3 8.3

What the numbers, colours and symbols mean

Much of the material in this book is broken into enumerated items which, broadly speaking,
fall into one of four categories: results (often followed by proofs), definitions, examples
(including exercises for the reader), and remarks. These items are colour-coded as indic-
ated in the previous sentence, and are enumerated according to their section—for example,
Theorem 1.3.10 is in Section 1.3. Particularly important theorems, definitions and so on,
appear in a box .

You will also encounter the symbols �, C and ?, whose meanings are as follows:

� End of proof. It is standard in mathematical documents to identify when a proof
has ended by drawing a small square or by writing ‘Q.E.D.’ (The latter stands for
quod erat demonstrandum, which is Latin for what was to be shown.)

C End of item. This is not a standard usage, and is included only to help you to
identify when an item has finished and the main content of the book continues.

? Optional content. Sections, exercises, results and proofs marked with this symbol
can be skipped over. Usually this is because the content is very challenging, or
is technical in a way that is mathematically necessary but educationally not very
important.
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Licence

This book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 (cc by-nc-sa 4.0) licence. This means you’re welcome to share this book, provided
that you give credit to the author, and that any copies or derivatives of this book are
released under the same licence, are freely available and are not for commercial use. The
full licence is available at the following link:

http://creativecommons.org/licenses/by-nc-sa/4.0/

Comments and corrections

Any feedback, be it from students, teaching assistants, instructors or any other readers,
would be very much appreciated. Particularly useful are corrections of typographical errors,
suggestions for alternative ways to describe concepts or prove theorems, and requests for
new content (e.g. if you know of a nice example that illustrates a concept, or if there is a
relevant concept you wish were included in the book). Such feedback can be sent to me by
email (cnewstead@northwestern.edu).
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14 Chapter 1. Mathematical reasoning

Section 1.1

Getting started

Before we can start proving things, we need to eliminate certain kinds of statements that
we might try to prove. Consider the following statement:

This sentence is false.

Is it true or false? If you think about this for a couple of seconds then you’ll get into a bit
of a pickle.

Now consider the following statement:

The happiest donkey in the world.

Is it true or false? Well it’s not even a sentence; it doesn’t make sense to even ask if it’s
true or false!

Clearly we’ll be wasting our time trying to write proofs of statements like the two listed
above—we need to narrow our scope to statements that we might actually have a chance
of proving (or perhaps refuting)! This motivates the following (informal) definition.

Definition 1.1.1
A proposition is a statement to which it is possible to assign a truth value (‘true’ or
‘false’). If a proposition is true, a proof of the proposition is a logically valid argument
demonstrating that it is true, which is pitched at such a level that a member of the intended
audience can verify its correctness.

Thus the statements given above are not propositions because there is no possible way
of assigning them a truth value. Note that, in Definition 1.1.1, all that matters is that
it makes sense to say that it is true or false, regardless of whether it actually is true or
false—the truth value of many propositions is unknown, even very simple ones.

Exercise 1.1.2
Think of an example of a true proposition, a false proposition, a proposition whose truth
value you don’t know, and a statement that is not a proposition. C

Results in mathematical papers and textbooks may be referred to as propositions, but they
may also be referred to as theorems, lemmas or corollaries depending on their intended
usage.
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Section 1.1. Getting started 15

• A proposition is an umbrella term which can be used for any result.

• A theorem is a key result which is particularly important.

• A lemma is a result which is proved for the purposes of being used in the proof of
a theorem.

• A corollary is a result which follows from a theorem without much additional effort.

These are not precise definitions, and they are not meant to be—you could call every result
a proposition if you wanted to—but using these words appropriately helps readers work
out how to read a paper. For example, if you just want to skim a paper and find its key
results, you’d look for results labelled as theorems.

It is not much good trying to prove results if we don’t have anything to prove results about.
With this in mind, we will now introduce the number sets and prove some results about
them in the context of four topics, namely: division of integers, number bases, rational and
irrational numbers, and polynomials. These topics will provide context for the rest of the
material in Chapters 1 and 2.

We will not go into very much depth in this section. Rather, think of this as a warm-up
exercise—a quick, light introduction, with more proofs to be provided in Chapter 1 and in
future chapters.

Number sets

Later in this section, and then in much more detail in Section 2.2, we will encounter the
notion of a set ; a set can be thought of as being a collection of objects. This seemingly
simple notion is fundamental to mathematics, and is so involved that we will not treat sets
formally in the main body of the text—see Section B.2 for a formal viewpoint. For now,
the following definition will suffice.

Definition 1.1.3 (to be revised in Definition 2.2.1)
A set is a collection of objects. The objects in the set are called elements of the set. If
X is a set and x is an object, then we write x ∈ X (LATEX code: x \in X) to denote the
assertion that x is an element of X.

The sets of concern to us first and foremost are the number sets—that is, sets whose
elements are particular types of number. At this introductory level, many details will be
temporarily swept under the rug; we will work at a level of precision which is appropriate
for our current stage, but still allows us to develop a reasonable amount of intuition.

15



16 Chapter 1. Mathematical reasoning

In order to define the number sets, we will need three things: an infinite line, a fixed point
on this line, and a fixed unit of length.

So here we go. Here is an infinite line:

The arrows indicate that it is supposed to extend in both directions without end. The
points on the line will represent numbers (specifically, real numbers, a misleading term
that will be defined in Definition 1.1.24). Now let’s fix a point on this line, and label it ‘0’:

0

This point can be thought of as representing the number zero; it is the point against which
all other numbers will be measured. Finally, let’s fix a unit of length:

This unit of length will be used, amongst other things, to compare the extent to which the
other numbers differ from zero.

Definition 1.1.4
The above infinite line, together with its fixed zero point and fixed unit length, constitute
the (real) number line.

We will use the number line to construct five sets of numbers of interest to us:

• The set N of natural numbers—Definition 1.1.5;

• The set Z of integers—Definition 1.1.11;

• The set Q of rational numbers—Definition 1.1.23;

• The set R of real numbers—Definition 1.1.24; and

• The set C of complex numbers—Definition 1.1.30.

Each of these sets has a different character and is used for different purposes, as we will
see both later in this section and throughout this book.

16



Section 1.1. Getting started 17

Natural numbers (N)

The natural numbers are the numbers used for counting—they are the answers to questions
of the form ‘how many’—for example, I have three uncles, one dog and zero cats.

Counting is a skill humans have had for a very long time; we know this because there is
evidence of people using tally marks tens of thousands of years ago. Tally marks provide
one method of counting small numbers: starting with nothing, proceed through the objects
you want to count one by one, and make a mark for every object. When you are finished,
there will be as many marks as there are objects. We are taught from a young age to
count with our fingers; this is another instance of making tally marks, where now instead
of making a mark we raise a finger.

Making a tally mark represents an increment in quantity—that is, adding one. On our
number line, we can represent an increment in quantity by moving to the right by the
unit length. Then the distance from zero we have moved, which is equal to the number of
times we moved right by the unit length, is therefore equal to the number of objects being
counted.

Definition 1.1.5
The natural numbers are represented by the points on the number line which can be
obtained by starting at 0 and moving right by the unit length any number of times:

0 1 2 3 4 5

In more familiar terms, they are the non-negative whole numbers. We write N for the set
of all natural numbers; thus, the notation ‘n ∈ N’ means that n is a natural number.

The natural numbers have very important and interesting mathematical structure, and are
central to the material in Sections 1.3, 4.1 and 4.2. A more precise characterisation of the
natural numbers will be provided in Section 1.3, and a mathematical construction of the
set of natural numbers can be found in Definition B.2.3. Central to these more precise
characterisations will be the notions of ‘zero’ and of ‘adding one’—just like making tally
marks.

Aside
Some authors define the natural numbers to be the positive whole numbers (1, 2, 3, . . . ),
excluding zero. We take 0 to be a natural number since our main use of the natural numbers
will be for counting finite sets, and a set with nothing in it is certainly finite! That said, as
with any mathematical definition, the choice about whether 0 ∈ N or 0 6∈ N is a matter of
taste or convenience, and is merely a convention—it is not something that can be proved

17



18 Chapter 1. Mathematical reasoning

or refuted. C

Number bases

Writing numbers down is something that may seem easy to you now, but it likely took
you several years as a child to truly understand what was going on. Historically, there
have been many different systems for representing numbers symbolically, called numeral
systems. First came the most primitive of all, tally marks, appearing in the Stone Age
and still being used for some purposes today. Thousands of years and hundreds of numeral
systems later, there is one dominant numeral system, understood throughout the world:
the Hindu–Arabic numeral system. This numeral system consists of ten symbols,
called digits. It is a positional numeral system, meaning that the position of a symbol in
a string determines its numerical value.

In English, the Arabic numerals are used as the ten digits:

0 1 2 3 4 5 6 7 8 9

The right-most digit in a string is in the units place, and the value of each digit increases
by a factor of ten moving to the left. For example, when we write ‘2812’, the left-most ‘2’
represents the number two thousand, whereas the last ‘2’ represents the number two.

The fact that there are ten digits, and that the numeral system is based on powers of ten,
is a biological accident corresponding with the fact that most humans have ten fingers. For
many purposes, this is inconvenient. For example, ten does not have many positive divisors
(only four)—this has implications for the ease of performing arithmetic; a system based
on the number twelve, which has six positive divisors, might be more convenient. Another
example is in computing and digital electronics, where it is more convenient to work in
a binary system, with just two digits, which represent ‘off’ and ‘on’ (or ‘low voltage’ and
‘high voltage’), respectively; arithmetic can then be performed directly using sequences of
logic gates in an electrical circuit.

It is therefore worthwhile to have some understanding of positional numeral systems based
on numbers other than ten. The mathematical abstraction we make leads to the definition
of base-b expansion.

18



Section 1.1. Getting started 19

Definition 1.1.6
Let b > 1. The base-b expansion of a natural number n is thea string drdr−1 . . . d0 such
that
• n = dr · br + dr−1 · br−1 + · · ·+ d0 · b0;

• 0 6 di < b for each i; and

• If n > 0 then dr 6= 0—the base-b expansion of zero is 0 in all bases b.
Certain number bases have names; for instance, the base-2, 3, 8, 10 and 16 expansions are
respectively called binary, ternary, octal, decimal and hexadecimal.

aThe use of the word ‘the’ is troublesome here, since it assumes that every natural number has only one
base-b expansion. This fact actually requires proof—see Theorem 3.3.51.

Example 1.1.7
Consider the number 1023. Its decimal (base-10) expansion is 1023, since

1023 = 1 · 103 + 0 · 102 + 2 · 101 + 3 · 100

Its binary (base-2) expansion is 1111111111, since

1023 = 1 · 29 + 1 · 28 + 1 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20

We can express numbers in base-36 by using the ten usual digits 0 through 9 and the twenty-
six letters A through Z; for instance, A represents 10, M represents 22 and Z represents
35. The base-36 expansion of 1023 is SF, since

1023 = 28 · 361 + 15 · 360 = S · 361 + F · 360

C

Exercise 1.1.8
Find the binary, ternary, octal, decimal, hexadecimal and base-36 expansions of the number
21127, using the letters A–F as additional digits for the hexadecimal expansion and the
letters A–Z as additional digits for the base-36 expansion. C

We sometimes wish to specify a natural number in terms of its base-b expansion; we have
some notation for this.

Notation 1.1.9
Let b > 1. If the numbers d0, d1, . . . , dr are base-b digits (in the sense of Definition 1.1.6),
then we write

drdr−1 . . . d0(b) = dr · br + dr−1 · br−1 + · · ·+ d0 · b0

for the natural number whose base-b expansion is drdr−1 . . . d0. If there is no subscript (b)
and a base is not specified explicitly, the expansion will be assumed to be in base-10.

19



20 Chapter 1. Mathematical reasoning

Example 1.1.10
Using our new notation, we have

1023 = 1111111111(2) = 1101220(3) = 1777(8) = 1023(10) = 3FF(16) = SF(36)

C

Integers (Z)

The integers can be used for measuring the difference between two instances of counting.
For example, suppose I have five apples and five bananas. Another person, also holding
apples and bananas, wishes to trade. After our exchange, I have seven apples and only one
banana. Thus I have two more apples and four fewer bananas.

Since an increment in quantity can be represented by moving to the right on the number
line by the unit length, a decrement in quantity can therefore be represented by moving to
the left by the unit length. Doing so gives rise to the integers.

Definition 1.1.11
The integers are represented by the points on the number line which can be obtained by
starting at 0 and moving in either direction by the unit length any number of times:

−5 −4 −3 −2 −1 0 1 2 3 4 5

We write Z for the set of all integers; thus, the notation ‘n ∈ Z’ means that n is an integer.

The integers have such a fascinating structure that a whole chapter of this book is devoted
to them—see Chapter 3. This is to do with the fact that, although you can add, subtract
and multiply two integers and obtain another integer, the same is not true of division. This
‘bad behaviour’ of division is what makes the integers interesting. We will now see some
basic results about division.

Division of integers

The motivation we will soon give for the definition of the rational numbers (Definition 1.1.23)
is that the result of dividing one integer by another integer is not necessarily another in-
teger. However, the result is sometimes another integer; for example, I can divide six
apples between three people, and each person will receive an integral number of apples.

20



Section 1.1. Getting started 21

This makes division interesting: how can we measure the failure of one integer’s divisibility
by another? How can we deduce when one integer is divisible by another? What is the
structure of the set of integers when viewed through the lens of division? This motivates
Definition 1.1.12.

Definition 1.1.12 (to be repeated in Definition 3.1.4)
Let a, b ∈ Z. We say b divides a, or that b is a divisor (or factor) of a, if a = qb for some
integer q.

Example 1.1.13
The integer 12 is divisible by 1, 2, 3, 4, 6 and 12, since

12 = 12 · 1 = 6 · 2 = 4 · 3 = 3 · 4 = 2 · 6 = 1 · 12

It is also divisible by the negatives of all of those numbers; for example, 12 is divisible by
−3 since 12 = (−4) · (−3). C

Exercise 1.1.14
Prove that 1 divides every integer, and that every integer divides 0. C

Using Definition 1.1.12, we can prove some general basic facts about divisibility.

Proposition 1.1.15
Let a, b, c ∈ Z. If b divides a and c divides b, then c divides a.

Proof. Suppose that b divides a and c divides b. By Definition 1.1.12, it follows that

a = qb and b = rc

for some integers q and r. Using the second equation, we may substitute rc for b in the
first equation, to obtain

a = q(rc)

But q(rc) = (qr)c, and qr is an integer, so it follows from Definition 1.1.12 that c divides
a.

Exercise 1.1.16
Let a, b ∈ Z. Suppose that d divides a and d divides b. Prove that d divides au+ bv, where
u and v are any integers. C

It is not just interesting to know when one integer does divide another; however, proving
that one integer doesn’t divide another is much harder. Indeed, to prove that an integer b
does not divide an integer a, we must prove that a 6= qb for any integer q at all. We will
look at methods for doing this in Section 1.2; these methods use the following extremely
important result, which will underlie all of Chapter 3.

21



22 Chapter 1. Mathematical reasoning

Theorem 1.1.17 (Division theorem, to be repeated in Theorem 3.1.1)
Let a, b ∈ Z with b 6= 0. There is exactly one way to write

a = qb+ r

such that q and r are integers, and 0 6 r < b (if b > 0) or 0 6 r < −b (if b < 0).

The number q in Theorem 1.1.17 is called the quotient of a when divided by b, and the
number r is called the remainder.

Example 1.1.18
The number 12 leaves a remainder of 2 when divided by 5, since 12 = 2 · 5 + 2. C

Here’s a slightly more involved example.

Proposition 1.1.19
Suppose an integer a leaves a remainder of r when divided by an integer b, and that r > 0.
Then −a leaves a remainder of b− r when divided by b.

Proof. Suppose a leaves a remainder of r when divided by b. Then

a = qb+ r

for some integer q. A bit of algebra yields

−a = −qb− r = −qb− r + (b− b) = −(q + 1)b+ (b− r)

Since 0 < r < b, we have 0 < b− r < b. Hence −(q+ 1) is the quotient of −a when divided
by b, and b− r is the remainder.

Exercise 1.1.20
Prove that if an integer a leaves a remainder of r when divided by an integer b, then a
leaves a remainder of r when divided by −b. C

We will finish this part on division of integers by connecting it with the material on number
bases—we can use the division theorem (Theorem 1.1.17) to find the base-b expansion of
a given natural number. It is based on the following observation: the natural number n
whose base-b expansion is drdr−1 · · · d1d0 is equal to

d0 + b(d1 + b(d2 + · · ·+ b(dr−1 + bdr) · · · ))

Moreover, 0 6 di < b for all i. In particular n leaves a remainder of d0 when divided by b.
Hence

n− d0

b
= d1 + d2b+ · · ·+ drb

r−1

22
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The base-b expansion of n−d0
b is therefore

drdr−1 · · · d1

In other words, the remainder of n when divided by b is the last base-b digit of n, and
then subtracting this number from n and dividing the result by b truncates the final digit.
Repeating this process gives us d1, and then d2, and so on, until we end up with 0.

This suggests the following algorithm for computing the base-b expansion of a number n:

• Step 1. Let d0 be the remainder when n is divided by b, and let n0 = n−d0
b be the

quotient. Fix i = 0.

• Step 2. Suppose ni and di have been defined. If ni = 0, then proceed to Step
3. Otherwise, define di+1 to be the remainder when ni is divided by b, and define
ni+1 = ni−di+1

b . Increment i, and repeat Step 2.

• Step 3. The base-b expansion of n, is

didi−1 · · · d0

Example 1.1.21
We compute the base-17 expansion of 15213, using the letters A–G to represent the numbers
10 through 16.

• 15213 = 894 · 17 + 15, so d0 = 15 = F and n0 = 894.

• 894 = 52 · 17 + 10, so d1 = 10 = A and n1 = 52.

• 52 = 3 · 17 + 1, so d2 = 1 and n2 = 3.

• 3 = 0 · 17 + 3, so d3 = 3 and n3 = 0.

• The base-17 expansion of 15213 is therefore 31AF.

A quick verification gives

31AF(17) = 3 · 173 + 1 · 172 + 10 · 17 + 15 = 15213

as desired. C

Exercise 1.1.22
Find the base-17 expansion of 408 735 787 and the base-36 expansion of 1 442 151 747. C
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24 Chapter 1. Mathematical reasoning

Rational numbers (Q)

Bored of eating apples and bananas, I buy a pizza which is divided into eight slices. A
friend and I decide to share the pizza. I don’t have much of an appetite, so I eat three
slices and my friend eats five. Unfortunately, we cannot represent the proportion of the
pizza each of us has eaten using natural numbers or integers. However, we’re not far off:
we can count the number of equal parts the pizza was split into, and of those parts, we
can count how many we had. On the number line, this could be represented by splitting
the unit line segment from 0 to 1 into eight equal pieces, and proceeding from there. This
kind of procedure gives rise to the rational numbers.

Definition 1.1.23
The rational numbers are represented by the points at the number line which can be
obtained by dividing any of the unit line segments between integers into an equal number
of parts.

−5 −4 −3 −2 −1 0 1 2 3 4 5

The rational numbers are those of the form a
b , where a, b ∈ Z and b 6= 0. We write Q

for the set of all rational numbers; thus, the notation ‘q ∈ Q’ means that q is a rational
number.

The rational numbers are a very important example of a type of algebraic structure known
as a field—they are particularly central to algebraic number theory and algebraic geometry.

Real numbers (R)

Quantity and change can be measured in the abstract using real numbers.

Definition 1.1.24
The real numbers are the points on the number line. We write R for the set of all real
numbers; thus, the notation ‘a ∈ R’ means that a is a real number.

The real numbers are central to real analysis, a branch of mathematics introduced in
Chapter 6. They turn the rationals into a continuum by ‘filling in the gaps’—specifically,
they have the property of completeness, meaning that if a quantity can be approximated
with arbitrary precision by real numbers, then that quantity is itself a real number.

24
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We can define the basic arithmetic operations (addition, subtraction, multiplication and
division) on the real numbers, and a notion of ordering of the real numbers, in terms of
the infinite number line.

• Ordering. A real number a is less than a real number b, written a < b, if a lies to
the left of b on the number line. The usual conventions for the symbols 6 (LATEX
code: \le), > and > (LATEX code: \ge) apply, for instance ‘a 6 b’ means that either
a < b or a = b.

• Addition. Suppose we want to add a real number a to a real number b. To do this,
we translate a by b units to the right—if b < 0 then this amounts to translating a by
an equivalent number of units to the left. Concretely, take two copies of the number
line, one above the other, with the same choice of unit length; move the 0 of the lower
number line beneath the point a of the upper number line. Then a + b is the point
on the upper number line lying above the point b of the lower number line.

Here is an illustration of the fact that (−3) + 5 = 2:

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

• Multiplication. This one is fun. Suppose we want to multiply a real number a
by a real number b. To do this, we scale the number line, and perhaps reflect it.
Concretely, take two copies of the number line, one above the other; align the 0
points on both number lines, and stretch the lower number line evenly until the point
1 on the lower number line is below the point a on the upper number line—note that
if a < 0 then the number line must be reflected in order for this to happen. Then
a · b is the point on the upper number line lying above b on the lower number line.

Here is an illustration of the fact that 5 · 4 = 20.

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4

and here is an illustration of the fact that (−5) · 4 = −20:

25
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-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

01234

Exercise 1.1.25
Interpret the operations of subtraction and division as geometric transformations of the
real number line. C

We will take for granted the arithmetic properties of the real numbers in this section,
waiting until Section 6.1 to sink our teeth into the details. For example, we will take for
granted the basic properties of rational numbers, for instance

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d

=
ac

bd

Rational and irrational numbers

Before we can talk about irrational numbers, we should say what they are.

Definition 1.1.26
An irrational number is a real number that is not rational.

Unlike N,Z,Q,R,C, there is no standard single letter expressing the irrational numbers.
However, by the end of Section 2.2, we will be able to write the set of irrational numbers
as R \Q.

Note in particular that ‘irrational’ does not simply mean ‘not rational’—that would imply
that all complex numbers which are not real are irrational—rather, the term ‘irrational’
means ‘real and not rational’.

Proving that a real number is irrational is not particularly easy. We will get our foot in
the door by allowing ourselves to assume the following result, which is proved in Proposi-
tion 1.3.38.

Proposition 1.1.27
The real number

√
2 is irrational.

We can use the fact that
√

2 is irrational to prove some facts about the relationship between
rational numbers and irrational numbers.
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Proposition 1.1.28
Let a and b be irrational numbers. It is possible that ab be rational.

Proof. Let a = b =
√

2. Then a and b are irrational, and ab = 2 = 2
1 , which is rational.

Exercise 1.1.29
Let r be a rational number and let a be an irrational number. Prove that it is possible
that ra be rational, and it is possible that ra be irrational. C

Complex numbers (C)

We have seen that multiplication by real numbers corresponds with scaling and reflection of
the number line—scaling alone when the multiplicand is positive, and scaling with reflection
when it is negative. We could alternatively interpret this reflection as a rotation by half a
turn, since the effect on the number line is the same. You might then wonder what happens
if we rotate by arbitrary angles, rather than only half turns.

What we end up with is a plane of numbers, not merely a line—see page 28. Moreover, it
happens that the rules that we expect arithmetic operations to satisfy still hold—addition
corresponds with translation, and multiplication corresponds with scaling and rotation.
This resulting number set is that of the complex numbers.

Definition 1.1.30
The complex numbers are those obtained by the non-negative real numbers upon rotation
by any angle about the point 0.

There is a particularly important complex number, i, which is the point in the complex
plane exactly one unit above 0—this is illustrated on page 28. Multiplication by i has
the effect of rotating the plane by a quarter turn anticlockwise. In particular, we have
i2 = i · i = −1; the complex numbers have the astonishing property that square roots of
all complex numbers exist (including all the real numbers).

In fact, every complex number can be written in the form a + bi, where a, b ∈ R; this
number corresponds with the point on the complex plane obtained by moving a units to
the right and b units up, reversing directions as usual if a or b is negative. Arithmetic on
the complex numbers works just as with the real numbers; in particular, using the fact
that i2 = −1, we obtain

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i and (a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i
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-5 -4 -3 -2 -1 0 1 2 3 4 5

i

2i

3i

4i

5i

-2i

-3i

-4i

-5i

-i

Figure 1.1: Illustration of the complex plane, with some points labelled.
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We will discuss complex numbers further in the portion of this section on polynomials
below, and in Sections B.2 and 8.4.

Polynomials

The integers, rational numbers, real numbers and complex numbers are all examples of
rings, which means that they come equipped with nicely behaving notions of addition,
subtraction and multiplication.

Definition 1.1.31
Let A be one Z, Q, R or C. (More generally, A could be any ring—see Section 8.1.) A
(univariate) polynomial over A in the indeterminate x is an expression of the form

a0 + a1x+ · · ·+ anx
n

where n ∈ N and each ak ∈ A. The numbers ak are called the coefficients of the polyno-
mial. If not all coefficients are zero, the largest value of k for which ak 6= 0 is called the
degree of the polynomial. By convention, the degree of the polynomial 0 is −∞.

Polynomials of degree 1, 2 and 3 are called linear, quadratic and cubic polynomials, re-
spectively.

Example 1.1.32
The following expressions are all polynomials:

3 2x− 1 (3 + i)x2 − x

Their degrees are 0, 1 and 2, respectively. The first two are polynomials over Z, and the
third is a polynomial over C. C

Exercise 1.1.33
Write down a polynomial of degree 4 over R which is not a polynomial over Q. C

Notation 1.1.34
Instead of writing out the coefficients of a polynomial each time, we may write something
like p(x) or q(x). The ‘(x)’ indicates that x is the indeterminate of the polynomial. If α
is a number[a] and p(x) is a polynomial in indeterminate x, we write p(α) for the result of
substituting α for x in the expression p(x).

[a]When dealing with polynomials, we will typically reserve the letter x for the indeterminate variable, and
use the Greek letters α, β, γ (LATEX code: \alpha, \beta, \gamma) for numbers to be substituted into a
polynomial.
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Note that, if A is any of the sets Z,Q,R,C and p(x) is a polynomial over A, then p(α) ∈ A
for all α ∈ A.

Example 1.1.35
Let p(x) = x3− 3x2 + 3x− 1. Then p(x) is a polynomial over Z with indeterminate x. For
any integer α, the value p(α) will also be an integer. For example

p(0) = 03 − 3 · 02 + 3 · 0− 1 = −1 and p(3) = 33 − 3 · 32 + 3 · 3− 1 = 8

C

Definition 1.1.36
Let p(x) be a polynomial. A root of p(x) is a complex number α such that p(α) = 0.

The quadratic formula (Theorem 1.2.6) tells us that the roots of the polynomial x2 +ax+b,
where a, b ∈ C, are precisely the complex numbers

−a+
√
a2 − 4b

2
and

−a−
√
a2 − 4b

2

Note our avoidance of the symbol ‘±’, which is commonly found in discussions of quadratic
polynomials. The symbol ‘±’ is dangerous because it may suppress the word ‘and’ or the
word ‘or’, depending on context—this kind of ambiguity is not something that we will want
to deal with when discussing the logical structure of a proposition in Sections 1.2 and 2.1.

Example 1.1.37
Let p(x) = x2 − 2x+ 5. The quadratic formula tells us that the roots of p are

2 +
√

4− 4 · 5
2

= 1 +
√
−4 = 1 + 2i and

2−
√

4− 4 · 5
2

= 1−
√
−4 = 1− 2i

The numbers 1 + 2i and 1 − 2i are related in that their real parts are equal and their
imaginary parts differ only by a sign. Exercise 1.1.38 generalises this observation. C

Exercise 1.1.38
Let α = a+bi be a complex number, where a, b ∈ R. Prove that α is the root of a quadratic
polynomial over R, and find the other root of this polynomial. C

The following exercise proves the well-known result which classifies the number of real roots
of a polynomial over R in terms of its coefficients.
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Exercise 1.1.39
Let a, b ∈ R and let p(x) = x2 +ax+b. The value ∆ = a2−4b is called the discriminant of
p. Prove that p has two roots if ∆ 6= 0 and one root if ∆ = 0. Moreover, if a, b ∈ R, prove
that p has no real roots if ∆ < 0, one real root if ∆ = 0, and two real roots if ∆ > 0. C

Example 1.1.40
Consider the polynomial x2−2x+5. Its discriminant is equal to (−2)2−4 ·5 = −16, which
is negative. Exercise 1.1.39 tells us that it has two roots, neither of which are real. This
was verified by Example 1.1.37, where we found that the roots of x2 − 2x + 5 are 1 + 2i
and 1− 2i.

Now consider the polynomial x2−2x−3. Its discriminant is equal to (−2)2−4 · (−3) = 16,
which is positive. Exercise 1.1.39 tells us that it has two roots, both of which are real; and
indeed

x2 − 2x− 3 = (x+ 1)(x− 3)

so the roots of x2 − 2x− 3 are −1 and 3. C

31
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Section 1.2

Elementary proof techniques

There are many facets to mathematical proof, ranging from questions of how much detail
to provide and what assumptions can be made, to questions of how to go about solving a
particular problem and what steps are logically valid. This section provides some tools for
answering the latter issues, but the proof techniques we will look at here are not exhaustive,
by any means.

If this section is successful, then it will feel somewhat like all we are doing is stating the
obvious. However, when it comes to writing your own proofs, this feeling of obviousness
will likely disappear—it is when this happens that the usefulness of the proof techniques
in this section will become apparent.

Assumptions and goals

Every mathematical proof is written in the context of certain assumptions being made,
and certain goals to be achieved.

• Assumptions are the propositions which are known to be true, or which we are
assuming to be true for the purposes of proving something. They include theorems
that have already been proved, prior knowledge which is assumed of the reader, and
assumptions which are explicitly made using words like ‘suppose’ or ‘assume’.

• Goals are the propositions we are trying to prove in order to complete the proof of
a result, or perhaps just a step in the proof.

With every phrase we write, our assumptions and goals change. This is perhaps best illus-
trated by example. In Example 1.2.1 below, we will examine the proof of Proposition 1.1.15
in detail, so that we can see how the words we wrote affected the assumptions and goals at
each stage in the proof. We will indicate our assumptions and goals at any given stage using
tables—the assumptions listed will only be those assumptions which are made explicitly;
prior knowledge and previously proved theorems will be left implicit.

Example 1.2.1
The statement of Proposition 1.1.15 was as follows:

Let a, b, c ∈ Z. If b divides a and c divides b, then c divides a.

The set-up of the proposition instantly gives us our initial assumptions and goals:
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Assumptions Goals

a, b, c ∈ Z If b divides a and c divides b,
then c divides a

We will now proceed through the proof, line by line, to see what effect the words we wrote
had on the assumptions and goals.

Since our goal was an expression of the form ‘if. . . then. . . ’, it made sense to start by
assuming the ‘if’ statement, and using that assumption to prove the ‘then’ statement. As
such, the first thing we wrote in our proof was:

Suppose that b divides a and c divides b.

Our updated assumptions and goals are reflected in the following table.

Assumptions Goals

a, b, c ∈ R c divides a
b divides a
c divides b

Our next step in the proof was to unpack the definitions of ‘b divides a’ and ‘c divides b’,
giving us more to work with.

Suppose that b divides a and c divides b. By Definition 1.1.12, it follows that

a = qb and b = rc

for some integers q and r.

This introduces two new variables q, r and allows us to replace the assumptions ‘b divides
a’ and ‘c divides b’ with their definitions.

Assumptions Goals

a, b, c, q, r ∈ Z c divides a
a = qb
b = rc

At this point we have pretty much exhausted all of the assumptions we can make, and
so our attention turns towards the goal—that is, we must prove that c divides a. At this
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point, it helps to ‘work backwards’ by unpacking the goal: what does it mean for c to divide
a? Well, by Definition 1.1.12, we need to prove that a is equal to some integer multiplied
by c—this will be reflected in the following table of assumptions and goals.

Since we are now trying to express a in terms of c, it makes sense to use the equations we
have relating a with b, and b with c, to relate a with c.

Suppose that b divides a and c divides b. By Definition 1.1.12, it follows that

a = qb and b = rc

for some integers q and r. Using the second equation, we may substitute rc for
b in the first equation, to obtain

a = q(rc)

We are now very close, as indicated in the following table.

Assumptions Goals

a, b, c, q, r ∈ Z a = [some integer] · c
a = qb
b = rc

a = q(rc)

Our final step was to achieve the goal—namely, to express a as an integer multiplied by c:

Suppose that b divides a and c divides b. By Definition 1.1.12, it follows that

a = qb and b = rc

for some integers q and r. Using the second equation, we may substitute rc for
b in the first equation, to obtain

a = q(rc)

But q(rc) = (qr)c, and qr is an integer,

Assumptions Goals

a, b, c, q, r ∈ Z a = [some integer] · c
a = qb
b = rc

a = q(rc)
a = (qr)c and qr ∈ Z
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It is helpful to the reader to declare when the goal has been achieved; this was the content
of the final sentence.

Suppose that b divides a and c divides b. By Definition 1.1.12, it follows that

a = qb and b = rc

for some integers q and r. Using the second equation, we may substitute rc for
b in the first equation, to obtain

a = q(rc)

But q(rc) = (qr)c, and qr is an integer, so it follows from Definition 1.1.12 that
c divides a.

C

For the rest of this section, we will examine various proof techniques in the context of
assumptions and goals. This will be made more precise when we study proof from a
symbolic perspective in Section 2.1.

Conditional statements

One of the most common kinds of proposition that you will encounter in mathematics
is that of a conditional statement—that is, one of the form ‘if. . . then. . . ’. As we saw in
Example 1.2.1, these can be proved by assuming the statement after the word ‘if’, and
deriving a proof of the statement after the word ‘then’.

Proof tip
To prove a proposition of the form ‘if P , then Q’, assume the proposition P and then derive
a proof of the proposition Q.

Assumptions Goals

if P , then Q
 

Assumptions Goals

P Q

C

Proposition 1.1.15 was an example of a proposition containing a conditional statement.
Proposition 1.2.2 below contains another example.
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Proposition 1.2.2
Let x and y be real numbers. If x and x+ y are rational, then y is rational.

Proof of Proposition 1.2.2. Suppose x and x + y are rational. Then there exist integers
a, b, c, d with b, d 6= 0 such that

x =
a

b
and x+ y =

c

d

It then follows that

y = (x+ y)− x =
c

d
− a

b
=
bc− ad
bd

Since bc− ad and bd are integers, and bd 6= 0, it follows that y is rational.

The key phrase in the above proof was ‘Suppose x and x+y are rational.’ This introduced
the assumptions x ∈ Q and x + y ∈ Q, and reduced our goal to that of deriving a proof
that y is rational—this was the content of the rest of the proof.

Writing tip
A template for writing proofs of propositions of the form ‘if P , then Q’ is as follows:

Suppose [write out P here]. Then [prove Q here].

Words similar in meaning to ‘suppose’, such as ‘assume’, may also be used. C

The following exercises, based on the topics we introduced in Section 1.1, are an opportunity
for you to practise writing proofs of conditional statements.

Exercise 1.2.3
Let p(x) be a polynomial over C. Prove that if α is a root of p(x), and a ∈ C, then α is a
root of (x− a)p(x). C

Another common kind of proposition is that of a biconditional statement ; that is, one of the
form ‘P if and only if Q’ (sometimes abbreviated in writing to ‘P iff Q’). This abbreviates
the longer expression, ‘if P , then Q, and if Q, then P ’, and indicates that P and Q are in
some sense equivalent. The statement ‘if Q, then P ’ is called the converse of the statement
‘if P , then Q’.

Proof tip
To prove a propositions of the form ‘P if and only if Q’, provide separate proofs of the
propositions ‘if P , then Q’ and ‘if Q, then P ’.
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Assumptions Goals

P if and only if Q
 

Assumptions Goals

if P , then Q
if Q, then P

C

In writing, we may sometimes abbreviate ‘if P , then Q’ by writing ‘P ⇒ Q’ (LATEX code:
P \Rightarrow Q), and ‘P if and only ifQ’ by ‘P ⇔ Q’ (LATEX code: P \Leftrightarrow Q).
These symbols will reappear from a formal point of view in Section 2.1.

Many examples of biconditional statements come from solving equations; indeed, to say
that the values α1, . . . , αn are the solutions to a particular equation is precisely to say that

x is a solution ⇔ x = α1 or x = α2 or · · · or x = αn

Example 1.2.4
We find all real solutions x to the equation

√
x− 3 +

√
x+ 4 = 7

Let’s rearrange the equation to find out what the possible solutions may be.

√
x− 3 +

√
x+ 4 = 7⇒ (x− 3) + 2

√
(x− 3)(x+ 4) + (x+ 4) = 49 squaring

⇒ 2
√

(x− 3)(x+ 4) = 48− 2x rearranging

⇒ 4(x− 3)(x+ 4) = (48− 2x)2 squaring

⇒ 4x2 + 4x− 48 = 2304− 192x+ 4x2 expanding

⇒ 196x = 2352 rearranging

⇒ x = 12 dividing by 196

You might be inclined to stop here. Unfortunately, all we have proved is that, given a real
number x, if x solves the equation

√
x− 3 +

√
x+ 4 = 7, then x = 12. This narrows down

the set of possible solutions to just one candidate—but we still need to check the converse,
namely that if x = 12, then x is a solution to the equation.

As such, to finish off the proof, note that

√
12− 3 +

√
12 + 4 =

√
9 +
√

16 = 3 + 4 = 7

and so the value x = 12 is indeed a solution to the equation. C

The last step in Example 1.2.4 may have seemed a little bit silly; but Example 1.2.5
demonstrates that proving the converse when solving equations truly is necessary.
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Example 1.2.5
We find all real solutions x to the equation

x+
√
x = 0

We proceed as before, rearranging the equation to find all possible solutions.

x+
√
x = 0⇒ x = −

√
x rearranging

⇒ x2 = x squaring

⇒ x(x− 1) = 0 rearranging

⇒ x = 0 or x = 1

Now certainly 0 is a solution to the equation, since

0 +
√

0 = 0 + 0 = 0

However, 1 is not a solution, since

1 +
√

1 = 1 + 1 = 2

Hence it is actually the case that, given a real number x, we have

x+
√
x = 0 ⇔ x = 0

Checking the converse here was vital to our success in solving the equation! C

A slightly more involved example of a biconditional statement arising from the solution to
an equation—in fact, a class of equations—is the proof of the quadratic formula.

Theorem 1.2.6 (Quadratic formula)
Let a, b ∈ C. A complex number α is a root of the polynomial x2 + ax+ b if and only if

α =
−a+

√
a2 − 4b

2
or α =

−a−
√
a2 − 4b

2

Proof. First we prove that if α is a root, then α is one of the values given in the statement
of the proposition. So suppose α be a root of the polynomial x2 + ax+ b. Then

α2 + aα+ b = 0

The algebraic technique of ‘completing the square’ tells us that

α2 + aα =
(
α+

a

2

)2
− a2

4
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and hence (
α+

a

2

)2
− a2

4
+ b = 0

Rearranging yields (
α+

a

2

)2
=
a2

4
− b =

a2 − 4b

4
Taking square roots gives

α+
a

2
=

√
a2 − 4b

2
or α+

a

2
=
−
√
a2 − 4b

2

and, finally, subtracting a
2 from both sides gives the desired result.

The proof of the converse is Exercise 1.2.7.

Exercise 1.2.7
Complete the proof of the quadratic formula. That is, for fixed a, b ∈ C, prove that if

α =
−a+

√
a2 − 4b

2
or α =

−a−
√
a2 − 4b

2

then α is a root of the polynomial x2 + ax+ b. C

Writing tip
A template for proving statements of the form ‘P if and only if Q’ is as follows.

Suppose [write out P here]. Then [prove Q here].

Conversely, suppose [write out Q here]. Then [prove P here].

Another template, which more clearly separates the two conditional statements, is as fol-
lows.

• (⇒) Suppose [write out P here]. Then [prove Q here].

• (⇐) Suppose [write out Q here]. Then [prove P here].

C

Example 1.2.8
Let n ∈ N. We will prove that n is divisible by 8 if and only if the number formed of the
last three digits of the base-10 expansion of n is divisible by 8.

First, we will do some ‘scratch work’. Let drdr−1 . . . d0 be the base-10 expansion of n.
Then

n = dr · 10r + dr−1 · 10r−1 + · · ·+ d0
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Define
n′ = d2d1d0 and n′′ = n− n′ = drdr−1 . . . d4d3000

Now n− n′ = 1000 · drdr−1 . . . d4d3 and 1000 = 8 · 125, so it follows that 8 divides n′′.

Our goal is now to prove that 8 divides n if and only if 8 divides n′.

• (⇒) Suppose 8 divides n. Since 8 divides n′′, it follows from Exercise 1.1.16 that 8
divides an+ bn′′ for all a, b ∈ Z. But

n′ = n− (n− n′) = n− n′′ = 1 · n+ (−1) · n′′

so indeed 8 divides n′, as required.

• (⇐) Suppose 8 divides n′. Since 8 divides n′′, it follows from Exercise 1.1.16 that 8
divides an′ + bn′′ for all a, b ∈ Z. But

n = n′ + (n− n′) = n′ + n′′ = 1 · n′ + 1 · n′′

so indeed 8 divides n, as required.

C

Exercise 1.2.9
Prove that a natural number n is divisible by 3 if and only if the sum of its base-10 digits
is divisible by 3. C

Negation and contradiction

Frequently we are tasked with proving that a proposition is not true. For example,
√

2 is
not rational, there is not an integer solution x to the equation 3x = 5, and so on. One way
to prove that a proposition is false is to assume that it is true, and use that assumption to
derive nonsense. The nonsense we derive is more properly called a contradiction.

Definition 1.2.10
A contradiction is a proposition which is known or assumed to be false.

Proof tip
To prove a proposition of the form ‘not P ’, assume that P is true and derive a contradiction.

Assumptions Goals

not P
 

Assumptions Goals

P [contradiction]
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C

The following proposition has a classic proof by contradiction.

Proposition 1.2.11
Let r be a rational number and let a be an irrational number. Then r + a is irrational.

Proof. By Definition 1.1.26, we need to prove that r + a is real and not rational. It is
certainly real, since r and a are real, so it remains to prove that r + a is not rational.

Suppose r + a is rational. Since r is rational, it follows from Proposition 1.2.2 that a is
rational, since

a = (r + a)− r
This contradicts the assumption that a is irrational. It follows that r + a is not rational,
and is therefore irrational.

Writing tip
A template for proving statements of the form ‘not P ’ (or, equivalently, ‘P is false’) is as
follows.

Suppose [write out P here]. Then [derive a contradiction here]. This contradicts
[write out the assumption or known fact that is contradicted ]. It follows that
[write out the assertion that P is false here].

C

Now you can try proving some elementary facts by contradiction.

Exercise 1.2.12
Let x ∈ R. Prove by contradiction that if x is irrational then −x and 1

x are irrational. C

Exercise 1.2.13
Prove by contradiction that there is no least positive real number. That is, prove that
there is not a real number a such that a 6 b for all positive real numbers b. C

A proof need not be a ‘proof by contradiction’ in its entirety—indeed, it may be that only a
small portion of the proof uses contradiction. This is exhibited in the proof of the following
proposition.

Proposition 1.2.14
Let a be an integer. Then a is odd[b] if and only if a = 2b+ 1 for some integer b.
[b]For clarity’s sake, we take ‘even’ to mean ‘divisible by 2’ and ‘odd’ to mean ‘not even’.
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Proof. Suppose a is odd. By the division theorem (Theorem 1.1.17), either a = 2b or
a = 2b+ 1, for some b ∈ Z. If a = 2b, then 2 divides a, contradicting the assumption that
a is odd; so it must be the case that a = 2b+ 1.

Conversely, suppose a = 2b+1. Then a leaves a remainder of 1 when divided by 2. However,
by the division theorem, the even numbers are precisely those that leave a remainder of 0
when divided by 2. It follows that a is not even, so is odd.

Proofs involving cases

The situation often arises where you know that (at least) one of several facts is true, but
you don’t know which of the facts is true. The solution is to do whatever you’re trying to
do in all the possible cases—then it doesn’t matter which case you fall into!

Proof tip
To use an assumption of the form ‘P or Q’ when proving a proposition R, split into cases
based on whether P is true or Q is true—in both cases, prove that P is true.

Assumptions Goals

P or Q R  
Assumptions Goals

if P , then R
if Q, then R

C

As you might guess, this proof technique generalises to more than two cases. The proof of
Proposition 1.2.15 below splits into three cases.

Proposition 1.2.15
Let n ∈ Z. Then n2 leaves a remainder of 0 or 1 when divided by 3.

Proof. Let n ∈ Z. By the division theorem, one of the following must be true for some
k ∈ Z:

n = 3k or n = 3k + 1 or n = 3k + 2

• Suppose n = 3k. Then
n2 = (3k)2 = 9k2 = 3 · (3k2)

So n2 leaves a remainder of 0 when divided by 3.

• Suppose n = 3k + 1. Then

n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1

42



Section 1.2. Elementary proof techniques 43

So n2 leaves a remainder of 1 when divided by 3.

• Suppose n = 3k + 2. Then

n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1

So n2 leaves a remainder of 1 when divided by 3.

In all cases, n2 leaves a remainder of 0 or 1 when divided by 3.

Writing tip
The following is a template for proving a proposition R by using an assumption of the form
‘P or Q’.

There are two possible cases.

• Suppose [write out P here]. Then [prove R here].

• Suppose [write out Q here]. Then [prove R here].

In both cases, R is true.

A similar template can be used for proofs requiring more than two cases. C

Exercise 1.2.16
Let n be an integer. Prove that n2 leaves a remainder of 0, 1 or 4 when divided by 5. C

Exercise 1.2.17
Let a, b ∈ R and suppose a2−4b 6= 0. Let α and β be the (distinct) roots of the polyonomial
x2 +ax+b. Prove that there is a real number c such that either α−β = c or α−β = ci. C

A particularly useful proof principle which allows us to prove propositions by splitting into
cases is the law of excluded middle.

Definition 1.2.18
The law of excluded middle is the assertion that every proposition is either true or it
is false. Put otherwise, it says that if P is any proposition, then the proposition ‘P or not
P ’ is true.

We can therefore use the law of excluded middle to prove facts by splitting into two cases,
based on whether a particular proposition is true or false. The law of excluded middle
is an example of a nonconstructive proof technique—whilst this matter is not an issue in
mainstream mathematics, it can lead to issues in computer science when not kept in check.
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This matter will not concern us in the main body of the text, but will be discussed in
Section B.3.

The proof of Proposition 1.2.19 below makes use of the law of excluded middle.

Proposition 1.2.19
Let a, b ∈ Z. If ab is even, then either a is even or b is even (or both).

Proof. Suppose a, b ∈ Z with ab even.

• Suppose a is even—then we’re done.

• Suppose a is odd. Suppose that b is also odd. Then we can write

a = 2k + 1 and b = 2`+ 1

for some integers k, `. This implies that

ab = (2k + 1)(2`+ 1) = 4k`+ 2k + 2`+ 1 = 2(2k`+ k + `︸ ︷︷ ︸
∈Z

) + 1

so that ab is odd. This contradicts the assumption that ab is even, and so b must in
fact be even.

In both cases, either a or b is even.

Exercise 1.2.20
Reflect on the proof of Proposition 1.2.19. Where in the proof did we use the law of
excluded middle? Where in the proof did we use proof by contradiction? What was the
contradiction in this case? Prove Proposition 1.2.19 twice more, once using contradiction
and not using the law of excluded middle, and once using the law of excluded middle and
not using contradiction. C

Exercise 1.2.21
Let a and b be irrational numbers. Prove that it is possible that ab be rational. C

Reducing a goal to another goal

As indicated above, a huge number of mathematical results take the form ‘if P , then Q’.
We’ve already seen a few, and there are dozens more to come! The reason why we prove
results of this form is because they are useful—any time we know P is true, we also know
that Q is true! In particular, if Q is what we’re trying to prove, and we know that P
implies Q, then we reduce the problem of proving Q to that of proving P .
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Proof tip
To prove a proposition Q using an assumption of the form ‘if P , then Q’, simply prove
that P is true.

Assumptions Goals

if P , then Q Q
 

Assumptions Goals

if P , then Q P

C

The following is a very simple example of using a conditional statement in a proof.

Proposition 1.2.22
The number 1√

2
is irrational.

Proof. We proved in Exercise 1.2.12 that, for any real number x, if x is irrational, then −x
and 1

x are irrational. Since
√

2 is irrational, it follows that 1√
2

is irrational.

Writing tip
The following is a template for proving a proposition Q by using an assumption of the form
‘if P , then Q’.

Since [write out P ⇒ Q here], in order to prove [write out Q here], it suffices
to prove [write out P here]. To this end, [prove P here].

C

Example 1.2.23
Section 1.3 is devoted to induction principles, which are proof techniques used to prove
that a given statement is true of all natural numbers. For example, induction can be used
to prove that

1 + 2 + · · ·+ n =
n(n+ 1)

2
is true for all natural numbers n. Induction principles reduce the problem of proving a
statement is true of all natural numbers to the problem of proving a base case and an
induction step (to be defined in Section 1.3).

Thus, from a mathematical perspective, induction principles are nothing more than state-
ments of the form

if [base case] and [induction step], then [statement is true for all natural numbers]

We will not explore induction any further here, as it is on its way very soon! C
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Dealing with variables

We have made heavy use of variables already in this book, and we will not stop any time
soon. The notion of a variable may seem like a simple concept, but it actually has many
technicalities associated with it—a whole field, called nominal theory, has emerged within
mathematical logic and theoretical computer science in order to deal with variables in a
systematic way. We won’t need to go into quite that amount of detail; instead, we will just
need to focus on two aspects:

• the range of a variable, which tells us what kind of thing it refers to; and

• the quantification of a variable, which tells us how many things it refers to.

Definition 1.2.24
Let x be a variable. The range (or domain of discourse) of x is the set of objects which
x refers to.

In mathematical writing, all variables should have a range, which is either explicitly men-
tioned or is clear from context.

Example 1.2.25
Consider the following statement.

If x2 is rational, then x is rational.

As stated, this statement looks like it is false; for example, letting x =
√

2, we can see that
x2 = 2, which is rational, but x is irrational. However, this is poorly written, since the
range of x is not indicated—indeed, if we’re told in advance that x refers to an integer,
then the statement is automatically true, since all integers are rational; the counterexample
above doesn’t work in this case, since

√
2 is not an integer.

Here is a better way of writing it.

Let x be a real number. If x2 is rational, then x is rational.

The first sentence here indicates to the reader what kind of object the variable x refers
to. As we expected in the first place, this is now a false statement—but it’s a well-written
false statement! C

Exercise 1.2.26
Consider the following statement:
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Let x be an integer. If x = 2k + 1, then x is odd.

Re-word the statement to specify the range of k. With the range of k that you specified,
is the statement true or is it false? Would a different choice of range change its truth or
falsity? C

Unfortunately simply specifying the range of a variable is not sufficient to give statements
mathematical meaning and can lead to ambiguity.

Example 1.2.27
Consider the following statement:

x+ y is even, x, y ∈ Z

The range of the variables x and y is specified—namely, they refer to integers—but we’re
left wondering whether the statement ‘x+ y is even’ is true. It’s certainly sometimes true,
but it can also be false—specifically, it’s true if x and y are both even or both odd, and
false otherwise. C

As Example 1.2.27 demonstrates, simply stating the range of variables is not sufficient.
This is where quantification comes in. We will focus on two kinds of quantification, namely
universal and existential quantification.

Universal quantification is a means of saying that the variable can take any value in its
range—typically, we universally quantify a variable by using the words ‘all’ or ‘every’. In
Section 2.1 we will describe universal quantification more precisely.

Proof tip
To prove a proposition of the form ‘for all x ∈ X, P ’, take an element x ∈ X, and prove
P for that value of x, knowing nothing about x, other than the assumption that x is an
element of X.

Assumptions Goals

for all x ∈ X, P
 

Assumptions Goals

x ∈ X P

C

Proposition 1.2.28
Every integer greater than one has at least four divisors.

Proof. Let n ∈ Z, and suppose n > 1. Then the numbers −n, −1, 1 and n are all distinct,
and moreover

n = (−1) · (−n) = (−n) · (−1) = n · 1 = 1 · n
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so they all divide n.

Writing tip
A template for proving statements of the form ‘for all x, P ’ is as follows.

Let x ∈ X. Then [prove P for x here, using no assumptions about x other than
the fact that x is an element of X].

Other words can be used instead of ‘let’, such as ‘take’ or ‘fix’, or even ‘suppose’. C

Proposition 1.2.29
The base-10 expansion of the square of every natural number ends in one of the digits 0,
1, 4, 5, 6 or 9.

Proof. Fix n ∈ N, and let

n = drdr−1 . . . d0

be its base-10 expansion. Write

n = 10m+ d0

where m ∈ N—that is, m is the natural number obtained by removing the final digit from
n. Then

n2 = 100m2 + 20md0 + d2
0 = 10m(10m+ 2d0) + d2

0

Hence the final digit of n2 is equal to the final digit of d2
0. But the possible values of d2

0 are

0 1 4 9 25 36 49 64 81

all of which end in one of the digits 0, 1, 4, 5, 6 or 9.

Exercise 1.2.30
Prove that every linear polynomial over Q has a rational root. C

Exercise 1.2.31
Prove that, for all real numbers x and y, if x and y are irrational, then x+ y and x− y are
not both rational. C

Sometimes we seek to prove results about existence in mathematics—this just requires
us to find one thing making a statement true. Existential quantification is a means of
expressing that there is at least one value a variable can take which makes a statement
true. We typically existentially quantify a variable using words like ‘there exist’ or ‘there
is’.
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Proof tip
To prove a proposition of the form ‘there exists x ∈ X such that P ’, find a value of x ∈ X
making P true, specify such a value of x, and then prove that P is true for the specified
value of x.

Assumptions Goals

there exists x ∈ X
such that P

 
Assumptions Goals

x = [specified value] P

C

Proposition 1.2.32
Let a ∈ R. The cubic polynomial

x3 + (1− a2)x− a

has a real root.

Proof. Let p(x) = x3 + (1− a2)x− a. Define x = a; then

p(x) = p(a) = a3 + (1− a2)a− a = a3 + a− a3 − a = 0

Hence a is a root of p(x). Since a is real, p(x) has a real root.

Writing tip
A template for proving statements of the form ‘there exists x such that P ’ is as follows.

Define x by [define x here]. Then [prove P for the specified value of x here].

Other words can be used instead of ‘let’, such as ‘take’ or ‘fix’, or even ‘suppose’. C

Exercise 1.2.33
Prove that there is a real number which is irrational but whose square is rational. C

Exercise 1.2.34
Prove that there is an integer which is divisible by zero. C

Statements may involve many variables, which could be universally or existentially quan-
tified, or any combination of the above. In these cases, variables appearing later in a
statement can depend on variables appearing earlier in the statement.

We now revisit Example 1.2.27, this time with quantified variables, and look at how the
choice of quantifier affects its truth values.
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Example 1.2.35
Consider the statement ‘x + y is even’, where x and y are variables ranging over the
integers. There are four ways of quantifying x and y, each yielding a statement with a
different meaning:

(a) For all integers x, and all integers y, x+ y is even;

(b) For all integers x, there exists an integer y such that x+ y is even;

(c) There exists an integer x such that, for all integers y, x+ y is even;

(d) There exists an integer x and an integer y such that x+ y is even.

Statement (a) is false. If it were true, then it would imply that 0 + 1 is even; but that is
nonsense!

Statement (b) is true. To see this, let x ∈ Z. We split into cases based on whether x is
even or odd.

• If x is even, then by letting y = 0, we see that x+ y = x is even.

• If x is odd, then by letting y = 1, we see that x+ y = x+ 1 is even.

In any case, there is an integer y such that x+ y is even, as required. C

Exercise 1.2.36
Prove that (c) is false and (d) is true in Example 1.2.35. C

Exercise 1.2.37
Prove that, for all real numbers x, there exists a real number y such that x+ y ∈ Q. C
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Section 1.3

Induction on the natural numbers

We defined the natural numbers in Definition 1.1.5; to reiterate, they are the non-negative
whole numbers

0, 1, 2, 3, . . .

and we denote the set of natural numbers by N. This was an informal definition: it assumed
that we have an inherent notion in our minds of what a number line is, what 0 is, and so
on. And we probably do have such an inherent notion in our minds; it’s so ingrained that
you wouldn’t think twice about what I mean when I write 3 + 15 or 7× 12, even though I
haven’t defined what + or × mean (or even what 3, 15, 7 and 12 mean).

This informal approach gets us into some trouble if we really want to be precise about
what we’re doing, and so Definition 1.1.5 won’t suffice. However, we can pin down what it
is that the natural numbers ‘should be’ by writing down some basic properties that they
should satisfy—these properties are called axioms. The approach we take is to characterise
the natural numbers in terms of the number 0 and the operation of ‘adding 1’, which we
call the successor operation. A set with a notion of zero and a notion of successor can be
thought of as a set of natural numbers provided it satisfies following five axioms, called the
Peano axioms.

Axioms 1.3.1 (Peano axioms)

(a) N contains a zero element, denoted 0;

(b) If n ∈ N then there is an element n+ ∈ N, called the successor of n;

(c) Zero is not a successor; that is, n+ 6= 0 for all n ∈ N;

(d) For all m,n ∈ N, if m+ = n+, then m = n;

(e) If X is a set such that

(i) 0 ∈ X; and

(ii) for all n ∈ N, if n ∈ X, then n+ ∈ X;

then every natural number is an element of X.

Most of these properties are reasonably self-explanatory. For example, we can interpret
(c) as saying that there isn’t a natural number n such that n+ 1 = 0. . . if there were, then
we’d have n = −1 but −1 isn’t a natural number. And (d) says that if m+ 1 = n+ 1 then
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m = n; this makes sense because we should be able to ‘subtract 1’ from both sides of the
equation.

The property that requires some discussion is (e). In slightly more human terms, it says:
if a set X contains 0 and the successors of all its elements, then it contains all the natural
numbers. Why should this be so? Well, we know 0 ∈ X. Since X contains successors of
all its elements, it contains 0 + 1, which is 1; and so it contains 1 + 1, which is 2; and so it
contains 2 + 1, which is 3; . . . and so on.

From the five Peano axioms, we can recover everything we know about the natural numbers.
For instance:

• Numerals. Define 1 = 0+, 2 = 1+ (= 0++), 3 = 2+ (= 0+++), and so on. Thus the
symbols 0, 1, 2, 3, 4, . . . (called numerals) are given meaning by saying that n is the
nth iterated successor of 0.

• Addition. We can define addition by declaring m+0 = m and m+(n+) = (m+n)+.
Thus, for instance,

m+ 1 = m+ (0+) = (m+ 0)+ = m+

and, then

m+ 2 = m+ (1+) = (m+ 1)+ = m++

and so on.

• Multiplication. We can define multiplication as iterated addition. Precisely, define
m× 0 = 0 and m× (n+) = (m× n) +m (LATEX code: \times).

• Exponentiation. We can define exponentiation as iterated multiplication. Pre-
cisely, define m0 = 1 and mn+

= (mn)×m.

• Order. If you think about it, m 6 n (LATEX code: \le) really just means that there
is some non-negative number you can add to m to obtain n. Thus we can define
‘m 6 n’ to mean

m+ k = n for some k ∈ N

and then we can define ‘m < n’ to mean ‘m 6 n and m 6= n’.

The way we defined addition and multiplication is called recursion: we defined how they
act on zero, and how they act on a successor n+ 1 in terms of how they act on n.

Example 1.3.2
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We prove that 2× 2 = 4 using the recursive definitions of addition and multiplication.

2× 2 = (2× 1) + 2 by definition of ×, since 2 = 1+

= ((2× 0) + 2) + 2 by definition of ×, since 1 = 0+

= (0 + 2) + 2 by definition of ×
= ((0 + 1) + 1) + 2 by definition of +, since 2 = 1+

= (1 + 1) + 2 since 0 + 1 = 0+ = 1

= 2 + 2 since 1 + 1 = 1+ = 2

= (2 + 1) + 1 by definition of +, since 2 = 1+

= 3 + 1 since 2 + 1 = 2+ = 3

= 4 since 3 + 1 = 3+ = 4

Note that, in order to shorten the proof, we used the fact proved earlier, that m+ 1 = m+

for all m, on the fifth, sixth, eighth and ninth lines. C

Exercise 1.3.3
Using the recursive definitions of addition, multiplication and exponentiation, prove that
22 = 4. C

We will not go through the long, arduous process of proving everything we need from the
Peano axioms, as that would take a long time, and would not be very enlightening. Before
moving on, we will make some more recursive definitions that will be useful to us as we
progress through the book.

Definition 1.3.4
For each i ∈ N let xi be a real number.

• The indexed sum
n∑

i=1
xi is defined recursively for n ∈ N by

0∑
i=1

xi = 0 and

n+1∑
i=1

xi =

(
n∑

i=1

xi

)
+ xn+1

• The indexed product
n∏

i=1
xi is defined recursively for n ∈ N by

0∏
i=1

xi = 1 and
n+1∏
i=1

xi =

(
n∏

i=1

xi

)
· xn+1
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Example 1.3.5
Let xi = i2 for each i ∈ N. Then

5∑
i=1

xi = 1 + 4 + 9 + 16 + 25 = 55

and
5∏

i=1

xi = 1 · 4 · 9 · 16 · 25 = 14400

C

Exercise 1.3.6
Let x1, x2 ∈ R. Working strictly from the definitions of indexed sum and indexed product,
prove that

2∑
i=1

xi = x1 + x2 and
2∏

i=1

xi = x1 · x2

C

The remainder of this section concerns induction on the natural numbers. This is a class of
proof techniques which are used for proving statements about natural numbers—Definition
1.3.7 makes this notion slightly more precise, and is a particular instance of a logical
formula, which will be introduced in Definition 2.1.37 (and again formally in Definition
B.1.3).

Definition 1.3.7
A statement about natural numbers is an expression involving a variable, such that
when a natural number is substituted for the variable in the expression, it becomes a
proposition (in the sense of Definition 1.1.1). We will denote statements about natural
numbers as p(n), q(m), and so on; the letter in parentheses denotes the variable.

Example 1.3.8
Let p(n) be the statement

2n+ 1 is divisible by 3

This is a statement about natural numbers. The proposition p(1) says

2 · 1 + 1 is divisible by 3

which is true, since 2 · 1 + 1 = 3 = 1 · 3. The proposition p(2) says

2 · 2 + 1 is divisible by 3
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which is false, since 2 · 2 + 1 = 5 = 1 · 3 + 2, which leaves a remainder of 2 when divided
by 3. For a given natural number n, the proposition p(3n) says

2 · (3n) + 1 is divisible by 3

which will be seen to be false in the following exercise. C

Exercise 1.3.9
Letting p(n) be the statement as in Example 1.3.8. Prove that p(3n + 1) is true for all
n ∈ N, and that p(3n) and p(3n+ 2) are both false for all n ∈ N. C

Weak induction

The first induction principle we encounter says that natural numbers behave like dominoes.
Imagine an infinitely long line of dominoes—one for each natural number—and suppose we
want to prove a statement about natural numbers, say p(n). Proving p(n) will correspond
to the nth domino falling; hence proving p(n) for all n ∈ N corresponds to all the dominoes
falling.

How do we make all the dominoes fall? Well we knock down domino 0, and from there
everything is taken care of: domino 0 knocks down domino 1; then domino 1 knocks down
domino 2; and so on. For n ∈ N, domino n knocks down domino n+ 1.

From a more mathematical perspective, what this means is: we prove p(0); then p(1) will
follow from the fact that p(0) is true; and p(2) will follow from the fact that p(1) is true;
and so on. For n ∈ N, p(n+ 1) will follow from the fact that p(n) is true. In other words,
provided we can prove p(0) is true, and that p(n) ⇒ p(n + 1) for each n, we’ve made all
the dominos fall over and hence proved the proposition for all natural numbers.

Sometimes a statement might be false for a few natural numbers, but true after a certain
point. For example 3n < 2n is true when n = 0, false when n = 1, 2, 3, and then true for
all n > 4. This isn’t a problem—if all we want to do is prove that it is true for n > 4, we
just knock over domino 4 first instead of domino 0!

Now let’s be more precise about what we mean, and prove that we’re correct.

Theorem 1.3.10 (Weak induction principle)
Let p(n) be a statement about natural numbers, and let b ∈ N. If

(i) p(b) is true; and

(ii) For all n > b, if p(n) is true, then p(n+ 1) is true;
then p(n) is true for all n > b.
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Proof. First suppose b = 0. Let X be the set of all natural numbers n for which p(n) is
true. For a natural number n, the proposition n ∈ X is equivalent to the proposition p(n).
Thus, respectively, the hypotheses of the theorem state:

(i) 0 ∈ X; and

(ii) For all n ∈ N, if n ∈ X, then n+ 1 ∈ X;

So by Axiom 1.3.1(e), every natural number is an element of X. Hence p(n) is true for all
n ∈ N.

The case when b > 0 is left for the reader in Exercise 1.3.13.

Proof tip
To prove a statement p(n) is true for all natural numbers n > b, you can:

• (Base case) Prove p(b) is true;

• (Induction step) Fix n > b, and assume that p(n) is true; from this assumption
alone, derive p(n+ 1).

The assumption p(n) is called the induction hypothesis.

This whole process is called proof by (weak) induction (on n). We won’t usually use
the word ‘weak’ unless we really need to specify it. Usually we’ll also omit ‘on n’ unless
there is more than one variable at play, in which case we will specify. C

Example 1.3.11
We will prove that 0 + 1 + 2 + · · ·+ n = n(n+1)

2 for all natural numbers n, by induction.[c]

Note that since we’re proving it for all natural numbers, our base case has b = 0.

Let p(n) be the assertion that 0 + 1 + · · ·+ n = n(n+1)
2 .

• (BC) We prove p(0) is true. Now, p(0) is the expression 0 = 0(0+1)
2 . Since the

right-hand side evaluates to 0, p(0) is true.

• (IS) Let n ∈ N and suppose p(n) is true, i.e. assume

0 + 1 + · · ·+ n = n(n+1)
2 —(IH)

We prove that this implies p(n+ 1), which is the formula

0 + 1 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2

[c]The LATEX code for a
b

is \frac{a}{b}.
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We proceed by calculation:

0 + 1 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1) by (IH)

= (n+ 1)
(n

2
+ 1
)

by factorisation

= (n+ 1)

(
n

2
+

2

2

)
since

2

2
= 1

=
(n+ 1)(n+ 2)

2
combining fractions

Hence p(n) implies p(n+ 1). By induction, we’re done. C

Writing tip
Proofs by induction all follow the same format, so it is good to get into some good habits.
These good habits make your proof more readable and better structured, and they help you
to avoid silly mistakes. With reference to Example 1.3.11, here are some tips for writing
proofs by induction of your own:

• Labelling the steps. Clearly labelling the base case and induction step helps the
reader identify what part of the proof is being done. I used BC and IS to signify
which is which; you are of course welcome to develop your own convention.

• Writing down the induction hypothesis. Writing down the induction hypo-
thesis p(n) explicitly—which I labelled by IH—makes it very clear what it is you are
assuming. You can then refer back to it later in your proof—as I did in the first line
of the calculation—to specify when you have used it.

• Writing down the goal of the induction step. When proving the induction
step, it is common to fall down the trap of forgetting what you are actually trying
to prove. Writing down p(n + 1) explicitly, prefixed by something like ‘we need to
prove . . . ’, gives you something to look back on as you complete your proof.

• Saying when you’re done. When you have proved p(n + 1) is true, it is a good
idea to conclude the proof by summarising what you did. A quick statement like
‘hence p(n) implies p(n+ 1), so by induction, we’re done’ will suffice.

C

Example 1.3.12
We’ll prove that n3 − n is divisible by 3 for all n ∈ N. Thus, the statement p(n) to be
proved is n3 − n, and the base case is when n = 0.

• (BC) We need to prove that 03 − 0 is divisible by 3. Well 03 − 0 = 0 = 3 × 0, so
03 − 0 is divisible by 3.
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• (IS) Let n ∈ N and suppose that n3 − n is divisible by 3. Specifically, the induction
hypothesis is:

n3 − n = 3k for some k ∈ N —(IH)

We need to prove that (n+ 1)3− (n+ 1) is divisible by 3; in other words, we need to
find some natural number ` such that

(n+ 1)3 − (n+ 1) = 3`

Expanding the brackets, we obtain:

(n+ 1)3 − (n+ 1) = (n3 + 3n2 + 3n+ 1)− n− 1 expand brackets

= n3 − n+ 3n2 + 3n+ 1− 1 rearrange terms

= n3 − n+ 3n2 + 3n since 1− 1 = 0

= 3k + 3n2 + 3n by (IH)

= 3(k + n2 + n) factorise

Thus we have expressed (n+1)3−(n+1) in the form 3` for a natural number `; specifically,
` = k + n2 + n. By induction, we’re done. C

The following exercise completes the proof of the weak induction principle, where the base
case is allowed to be nonzero.

Exercise 1.3.13
Prove the weak induction principle (Theorem 1.3.10) in the case when b > 0. C

Example 1.3.14
Let p(n) be the statement 3n < 2n. We prove p(n) is true for all n > 4 by induction.

• (BC) p(4) is the statement 3 · 4 < 24. This is true, since 12 < 16.

• (IS) Suppose n > 4 and that p(n) is true, i.e. that 3n < 2n (IH). We want to prove
3(n+ 1) < 2n+1. Well

3(n+ 1) = 3n+ 3 expand brackets

< 2n + 3 by (IH)

< 2n + 16 since 3 < 16

= 2n + 24 since 24 = 16

6 2n + 2n since n > 4

= 2 · 2n since x+ x = 2x

= 2n+1 using laws of indices
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So we have proved 3(n+ 1) < 2n+1, as required.

Hence p(n) implies p(n+ 1), so by induction, we’re done. C

Note that the proof in Example 1.3.14 says nothing about the truth or falsity of p(n)
for n = 0, 1, 2, 3. In order to assert that these cases are false, you need to show them
individually; indeed:

• 3× 0 = 0 and 20 = 1, hence p(0) is true;

• 3× 1 = 3 and 21 = 2, hence p(1) is false;

• 3× 2 = 6 and 22 = 4, hence p(2) is false;

• 3× 3 = 9 and 23 = 9, hence p(3) is false.

So we deduce that p(n) is true when n = 0 or n > 4, and false otherwise.

Exercise 1.3.15
Use weak induction to prove that

n∑
k=0

2k = 2n+1 − 1

for all n ∈ N. C

Sometimes a ‘proof’ by induction might appear to be complete nonsense. The following is
a classic example of a ‘fail by induction’:

Example 1.3.16
The following argument supposedly proves that every horse is the same colour.

• (BC) Suppose there is just one horse. This horse is the same colour as itself, so the
base case is immediate.

• (IS) Suppose that every collection of n horses is the same colour (IH). Let X be a
set of n + 1 horses. Removing the first horse from X, we see that the last n horses
are the same colour by (IH). Removing the last horse from X, we see that the first
n horses are the same colour. Hence all the horses in X are the same colour.

By induction, we’re done. C

Exercise 1.3.17
Write down the statement p(n) that Example 1.3.16 attempted to prove for all n > 1. Con-
vince yourself that the proof of the base case is correct, then write down—with quantifiers—
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exactly the proposition that the induction step is meant to prove. Explain why the argu-
ment in the induction step failed to prove this proposition. C

Writing tip
There are several ways to avoid situations like that of Example 1.3.16 by simply putting
more thought into writing the proof. Some tips are:

• State p(n) explicitly. In the statement ‘all horses are the same colour’ it is not
clear exactly what the induction variable is. However, we could have said:

Let p(n) be the statement ‘every set of n horses has the same colour’.

• Refer to the base case b in the induction step. In Example 1.3.16, our induction
hypothesis simply stated ‘assume every set of n horses has the same colour’. Had we
instead said:

Let n > 1 and assume every set of n horses has the same colour.

We may have spotted the error in what was to come.

C

What follows are a couple more examples of proofs by weak induction.

Example 1.3.18
Given any n ∈ N,

n∑
k=0

k3 =

(
n∑

k=0

k

)2

We proved in Example 1.3.11 that
n∑

k=0

k = n(n+1)
2 for all n ∈ N, thus it suffices to prove

that
n∑

k=0

k3 =
n2(n+ 1)2

4

for all n ∈ N.

We proceed by induction.

• (BC) We need to prove that 03 = 02(0+1)2

4 . This is true since both sides of the
equation are equal to 0.
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• (IS) Fix n ∈ N and suppose that
n∑

k=0

k3 = n2(n+1)2

4 . We need to prove that
n+1∑
k=0

k3 =

(n+1)2(n+2)2

4 . This is true since:

n+1∑
i=0

k3 =
n∑

i=0

k3 + (n+ 1)3 by definition of sum

=
n2(n+ 1)2

4
+ (n+ 1)3 by (IH)

=
n2(n+ 1)2 + 4(n+ 1)3

4
(algebra)

=
(n+ 1)2(n2 + 4(n+ 1))

4
(algebra)

=
(n+ 1)2(n+ 2)2

4
(algebra)

By induction, the result follows. C

Example 1.3.19
We will prove the correctness of the following formula for the sum of an arithmetic pro-
gression, that is a sequence of finite length such that the difference between consecutive
terms is constant.

Specifically, let a, d ∈ R. We will prove that

n∑
k=0

(a+ kd) =
(n+ 1)(2a+ nd)

2

for all n ∈ N.

We proceed by induction.

• (BC) We need to prove that
0∑

k=0

(a+ kd) = (0+1)(2a+0d)
2 . This is true, since

0∑
k=0

(a+ kd) = a+ 0d = a =
2a

2
=

1 · (2a)

2
=

(0 + 1)(2a+ 0d)

2

• (IS) Fix n ∈ N and suppose that
n∑

k=0

(a+ kd) = (n+1)(2a+nd)
2 . We need to prove:

n+1∑
k=0

(a+ kd) =
(n+ 2)(2a+ (n+ 1)d)

2
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This is true, since

n+1∑
k=0

(a+ kd)

=

n∑
k=0

(a+ kd) + (a+ (n+ 1)d) by definition of sum

=
(n+ 1)(2a+ nd)

2
+ (a+ (n+ 1)d) by (IH)

=
(n+ 1)(2a+ nd) + 2a+ 2(n+ 1)d

2
(algebra)

=
(n+ 1) · 2a+ (n+ 1) · nd+ 2a+ 2(n+ 1)d

2
(algebra)

=
2a(n+ 1 + 1) + (n+ 1)(nd+ 2d)

2
(algebra)

=
2a(n+ 2) + (n+ 1)(n+ 2)d

2
(algebra)

=
(n+ 2)(2a+ (n+ 1)d)

2
(algebra)

By induction, the result follows. C

Strong induction

Sometimes it is clear that a statement can almost be proved by induction, but a snag
appears; for example, in the following example, the truth of p(n+ 1) seems to depend not
on just p(n), but also on p(n− 1):

Example 1.3.20
Define a sequence of numbers (an)n∈N recursively by:

a0 = 0, a1 = 1, an = 3an−1 − 2an−2 for all n > 2

Thus, continuing the sequence, we have

a2 = 3 · 1− 2 · 0 = 3, a3 = 3 · 3− 2 · 1 = 7, a4 = 15, . . .

Looking at the sequence (0, 1, 3, 7, 15, . . . ), you might hypothesise that an = 2n − 1 for all
n ∈ N. And you would be correct! So let’s try and prove that an = 2n− 1 for all n ∈ N by
induction.
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The statement is demonstrably true for n = 0, 1, since

a0 = 0 = 1− 1 = 20 − 1 and a1 = 1 = 2− 1 = 21 − 1

Fix n > 1 and suppose an = 2n − 1. If this implies that an+1 = 2n+1 − 1, we’ll be done by
induction: indeed, induction gives that p(n) is true for all n > 1, and we checked the case
n = 0 separately.

So let’s see what happens. Since n > 1, we have n+ 1 > 2, so we can apply the recursive
formula for an+1:

an+1 = 3an − 2an−1

Here’s where we get stuck: our induction hypothesis only tells us that an = 2n− 1, so that

an+1 = 3(2n − 1)− 2an−1

but it doesn’t tell us anything at all about an−1. We need to express an−1 in terms of n in
order to get a reasonable formula for an+1. � C

This example illustrates why weak induction is called ‘weak’. But all is not lost: using the
technique of weak induction, we can prove a principle of strong induction. The induction
step in strong induction assumes not just the truth of the proposition for one prior step,
but its truth of all prior steps.

Despite its name, strong induction is no stronger than weak induction; the two principles
are equivalent. In fact, we’ll prove the strong induction principle by weak induction!

Corollary 1.3.21 (Strong induction principle)
Let p(x) be a statement about natural numbers and let b ∈ N. If

(i) p(b) is true; and

(ii) For all n ∈ N, if p(k) is true for all b 6 k 6 n, then p(n+ 1) is true;
then p(n) is true for all n > b.

Proof. We’ll prove this using weak induction. For each n, let q(n) be the statement

‘p(k) is true for all b 6 k 6 n’

Notice that q(n) implies p(n) for all n > b—to see this, let k = n in the statement of q(n).
Thus if we can prove that q(n) is true for all n, then we’ve proved that p(n) is true for all
n.

• (BC) q(b) is equivalent to p(b), since the only natural number k with b 6 k 6 b is b
itself; hence q(b) is true by (i);
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• (IS) Let n > b and suppose q(n) is true. By (ii), p(n+ 1) is true. Since q(n) is true,
p(k) is true for all b 6 k 6 n. Combining these facts, p(k) is true for all b 6 k 6 n+1,
which is precisely the statement that q(n+ 1) is true.

By induction, q(n) is true for all n > b. Hence p(n) is true for all n > b.

Proof tip
To prove a statement p(n) is true for all natural numbers n > b (where b is some fixed
natural number):

• (Base case) Prove p(b) is true;

• (Induction step) Fix n > b, and assume that p(k) is true for all b 6 k 6 n; from
this assumption alone, derive p(n+ 1).

The assumption that p(k) is true for all b 6 k 6 n is called the induction hypothesis.

This whole process is called proof by (strong) induction (on n). We won’t usually use
the word ‘strong’ unless we really need to specify it. Usually we’ll also omit ‘on n’ unless
there is more than one variable at play, in which case we will specify. C

Strong induction is very well suited to proving formulae for sequences where subsequent
terms are defined in terms of more than one previous term, as the next few examples
demonstrate.

Example 1.3.22
Recall from Example 1.3.20 that we defined the sequence

a0 = 0, a1 = 1, an = 3an−1 − 2an−2 for all n > 2

and we wished to prove that an = 2n− 1 for all n ∈ N. We have proved that it’s true when
n = 0, and will show that it’s true for n > 1 by strong induction on n.

• (BC) We have already proved that a1 = 21 − 1.

• (IS) Let n ∈ N, and assume that ak = 2k − 1 for all 1 6 k 6 n. Since a0 = 20 − 1,
this in fact holds for all k 6 n.

We need to prove that this assumption implies that an+1 = 2n+1 − 1. Well, n > 1,
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so n+ 1 > 2 and we can apply the recursive formula to an+1. Thus

an+1 = 3an − 2an−1 by definition of an+1

= 3(2n − 1)− 2(2n−1 − 1) since p(k) holds for all k 6 n

= 3 · 2n − 3− 2 · 2n−1 + 2 expand brackets

= 3 · 2n − 3− 2n + 2 laws of indices

= 2 · 2n − 1 simplifying

= 2n+1 − 1 laws of indices

So we’re done by strong induction. C

Example 1.3.23
Define a sequence recursively by a0 = 4, a1 = 9 and an = 5an−1 − 6an−2 for all n > 2.

We will prove that an = 3 · 2n + 3n for all n ∈ N.

We proceed by strong induction for n > 1, treating the n = 0 case as a second base case.

• (BC) The result holds when n = 0 and when n = 1, since

a0 = 4 = 3 · 20 + 30 and a1 = 9 = 3 · 21 + 31

• (IS) Fix n > 1 and suppose that ak = 3 · 2k + 3k for all k 6 n. We need to prove
that an+1 = 3 · 2n+1 + 3n+1. Well,

an+1 = 5an − 6an−1 by definition of the sequence

= 5(3 · 2n + 3n)− 6(3 · 2n−1 + 3n−1) by the induction hypothesis

= (5 · 3 · 2− 6 · 3)2n−1 + (5 · 3− 6)3n−1 (algebra)

= 12 · 2n−1 + 9 · 3n−1 (algebra)

= 3 · 22 · 2n−1 + 32 · 3n−1 (algebra)

= 3 · 2n+1 + 3n+1 (algebra)

Hence the result we sought to prove is true.

By induction, it follows that an = 3 · 2n + 3n for all n ∈ N. C

Example 1.3.24
Define a sequence recursively by

b0 = 1 and bn+1 = 1 +

n∑
k=0

bk for all n ∈ N

We will prove by strong induction that bn = 2n for all n ∈ N.
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• (BC) By definition of the sequence we have b0 = 1 = 20.

• (IS) Fix n ∈ N, and suppose that bk = 2k for all k 6 n. We need to show that
bn+1 = 2n+1. This is true, since

bn+1 = 1 +

n∑
k=0

bk by the recursive formula for bn+1

= 1 +

n∑
k=0

2k by the induction hypothesis

= 1 + (2n+1 − 1) by Exercise 1.3.15

= 2n+1

By induction, it follows that bn = 2n for all n ∈ N. C

A first look at binomials and factorials

In Section 4.2, two kinds of natural number will turn out to be extremely useful, namely
factorials and binomial coefficients. These numbers allow us to count the number of ele-
ments of certain kinds of sets, and correspond with the ‘real-world’ processes of permutation
and selection, respectively. Everything we do here will be re-defined and re-proved com-
binatorially in Section 3.2. In this section, we will overlook the combinatorial nature, and
instead characterise them recursively. We will prove that the combinatorial and recursive
definitions of binomial coefficients and factorials are equivalent in Section 4.2.

Definition 1.3.25 (to be redefined in Definition 4.2.24)
Let n ∈ N. The factorial of n, written n!, is defined recursively by

0! = 1 and (n+ 1)! = (n+ 1) · n! for all n > 0

Put another way, we have

n! =
n∏

i=1

i

for all n ∈ N—recall 1.3.4 to see why these definitions are really just two ways of wording
the same thing.

Exercise 1.3.26
Prove that

n−1∏
i=0

(3i+ 1)(3i+ 2) =
(3n)!

3nn!
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for all n ∈ N. C

Definition 1.3.27 (to be redefined in Definition 4.2.18)
Let n, k ∈ N. The binomial coefficient

(
n
k

)
(LATEX code: \binom{n}{k}) (read ‘n choose

k’) is defined recursively for n, k ∈ N by(
k

0

)
= 1,

(
0

k + 1

)
= 0,

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)

This definition gives rise to an algorithm for computing binomial coefficients: they fit into
a diagram known as Pascal’s triangle, with each binomial coefficient computed as the
sum of the two lying above it (with zeroes omitted):

(
0
0

)
1(

1
0

) (
1
1

)
1 1(

2
0

) (
2
1

) (
2
2

)
= 1 2 1(

3
0

) (
3
1

) (
3
2

) (
3
3

)
1 3 3 1(

4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
1 4 6 4 1(

5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
1 5 10 10 5 1

...
...

...
...

...
...

...
...

...

Exercise 1.3.28
Write down the next two rows of Pascal’s triangle. C

We can prove lots of identities concerning binomial coefficients and factorials by induction.

Example 1.3.29

We prove that
n∑

i=0

(
n
i

)
= 2n by induction on n.

• (BC) We need to prove
(

0
0

)
= 1 and 20 = 1. These are both true by the definitions

of binomial coefficients and exponents.

• (IS) Fix n > 0 and suppose that

n∑
i=0

(
n

i

)
= 2n

We need to prove
n+1∑
i=0

(
n+ 1

i

)
= 2n+1

67



68 Chapter 1. Mathematical reasoning

This is true, since

n+1∑
i=0

(
n+ 1

i

)

=

(
n+ 1

0

)
+

n+1∑
i=1

(
n+ 1

i

)
splitting the sum

= 1 +
n∑

j=0

(
n+ 1

j + 1

)
letting j = i− 1

= 1 +

n∑
j=0

((
n

j

)
+

(
n

j + 1

))
by Definition 1.3.27

= 1 +

n∑
j=0

(
n

j

)
+

n∑
j=0

(
n

j + 1

)
separating the sums

Now
n∑

j=0

(
n
j

)
= 2n by the induction hypothesis. Moreover, reindexing the sum using

k = j + 1 yields

n∑
j=0

(
n

j + 1

)
=

n+1∑
k=1

(
n

k

)
=

n∑
k=1

(
n

k

)
+

(
n

n+ 1

)

By the induction hypothesis, we have

n∑
k=1

(
n

k

)
=

n∑
k=0

(
n

k

)
−
(
n

0

)
= 2n − 1

and
(

n
n+1

)
= 0, so that

n∑
j=0

(
n

j+1

)
= 2n − 1.

Putting this together, we have

1 +

n∑
j=0

(
n

j

)
+

n∑
j=0

(
n

j + 1

)
= 1 + 2n + (2n − 1)

= 2 · 2n

= 2n+1

so the induction step is finished.
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By induction, we’re done. C

Exercise 1.3.30
Prove by induction on n > 1 that

n∑
i=0

(−1)i
(
n

i

)
= 0

C

Theorem 1.3.31
Let n, k ∈ N. Then (

n

k

)
=

{
n!

k!(n−k)! if k 6 n

0 if k > n

Proof. We proceed by induction on n.

• (BC) When n = 0, we need to prove that
(

0
k

)
= 0!

k!(−k)! for all k 6 0, and that
(

0
k

)
= 0

for all k > 0.

If k 6 0 then k = 0, since k ∈ N. Hence we need to prove(
0

0

)
=

0!

0!0!

But this is true since
(

0
0

)
= 1 and 0!

0!0! = 1
1×1 = 1.

If k > 0 then
(

0
k

)
= 0 by Definition 1.3.27.

• (IS) Fix n ∈ N and suppose that
(
n
k

)
= n!

k!(n−k)! for all k 6 n and
(
n
k

)
= 0 for all

k > n.

We need to prove that, for all k 6 n+ 1, we have(
n+ 1

k

)
=

(n+ 1)!

k!(n+ 1− k)!

and that
(
n+1
k

)
= 0 for all k > n+ 1.

So fix k ∈ N. There are four possible cases: either (i) k = 0, or (ii) 0 < k 6 n, or (iii)
k = n+ 1, or (iv) k > n+ 1. In cases (i), (ii) and (iii), we need to prove the factorial
formula for

(
n+1
k

)
; in case (iv), we need to prove that

(
n+1
k

)
= 0.
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(i) Suppose k = 0. Then
(
n+1

0

)
= 1 by Definition 1.3.27, and

(n+ 1)!

k!(n+ 1− k)!
=

(n+ 1)!

0!(n+ 1)!
= 1

since 0! = 1. So
(
n+1

0

)
= (n+1)!

0!(n+1)! .

(ii) If 0 < k 6 n then k = `+ 1 for some natural number ` < n. Then `+ 1 6 n, so
we can use the induction hypothesis to apply factorial formula to both

(
n
`

)
and(

n
`+1

)
. Hence(
n+ 1

k

)
=

(
n+ 1

`+ 1

)
since k = `+ 1

=

(
n

`

)
+

(
n

`+ 1

)
by Definition 1.3.27

=
n!

`!(n− `)!
+

n!

(`+ 1)!(n− `− 1)!
by induction hypothesis

Now note that

n!

`!(n− `)!
=

n!

`!(n− `)!
· `+ 1

`+ 1
=

n!

(`+ 1)!(n− `)!
· (`+ 1)

and

n!

(`+ 1)!(n− `− 1)!
=

n!

(`+ 1)!(n− `− 1)!
· n− `
n− `

=
n!

(`+ 1)!(n− `)!
· (n− `)

Piecing this together, we have

n!

`!(n− `)!
+

n!

(`+ 1)!(n− `− 1)!

=
n!

(`+ 1)!(n− `)!
· [(`+ 1) + (n− `)]

=
n!(n+ 1)

(`+ 1)!(n− `)!

=
(n+ 1)!

(`+ 1)!(n− `)!

so that
(

n
`+1

)
= (n+1)!

(`+1)!(n−`)! . Now we’re done; indeed,

(n+ 1)!

(`+ 1)!(n− `)!
=

(n+ 1)!

k!(n+ 1− k)!

since k = `+ 1.
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(iii) If k = n+ 1, then

(
n+ 1

k

)
=

(
n+ 1

n+ 1

)
since k = n+ 1

=

(
n

n

)
+

(
n

n+ 1

)
by Definition 1.3.27

=
n!

n!0!
+ 0 by induction hypothesis

= 1

and (n+1)!
(n+1)!0! = 1, so again the two quantities are equal.

(iv) If k > n+ 1, then k = `+ 1 for some ` > n, and so by Definition 1.3.27 and the
induction hypothesis we have

(
n+ 1

k

)
=

(
n+ 1

`+ 1

)
IH
=

(
n

`

)
+

(
n

`+ 1

)
= 0 + 0 = 0

On first reading, this proof is long and confusing, especially in the induction step where we
are required to split into four cases. We will give a much simpler proof in Section 4.2 (see
Theorem 1.3.31), where we prove the statement combinatorially by putting the elements
of two sets in one-to-one correspondence.

We can use 1.3.31 to prove useful identities involving binomial coefficients.

Example 1.3.32
Let n, k, ` ∈ N with ` 6 k 6 n then

(
n

k

)(
k

`

)
=

(
n

`

)(
n− `
k − `

)
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Indeed:(
n

k

)(
k

`

)
=

n!

k!(n− k)!
· k!

`!(k − `!)
by Theorem 1.3.31

=
n!k!

k!`!(n− k)!(k − `)!
combine fractions

=
n!

`!(n− k)!(k − `)!
cancel k!

=
n!(n− `)!

`!(n− k)!(k − `)!(n− `)!
multiply by

(n− `)!
(n− `)!

=
n!

`!(n− `!)
· (n− `)!

(k − `)!(n− k)!
separate fractions

=
n!

`!(n− `!)
· (n− `)!

(k − `)!((n− `)− (k − `))!
rearranging

=

(
n

`

)(
n− `
k − `

)
by Theorem 1.3.31

C

Exercise 1.3.33
Proof that

(
n
k

)
=
(

n
n−k
)

for all n, k ∈ N with k 6 n. C

A very useful application of binomial coefficients in elementary algebra is to the binomial
theorem.

Theorem 1.3.34 (Binomial theorem)
Let n ∈ N and x, y ∈ R. Then

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k

Proof. In the case when y = 0 we have yn−k = 0 for all k < n, and so the equation reduces
to

xn = xnyn−n

which is true, since y0 = 1. So for the rest of the proof, we will assume that y 6= 0.

We will now reduce to the case when y = 1; and extend to arbitrary y 6= 0 afterwards.
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We prove (1 + x)n =
n∑

k=0

(
n
k

)
xk by induction on n.

• (BC) (1 + x)0 = 1 and
(

0
0

)
x0 = 1 · 1 = 1, so the statement is true when n = 0.

• (IS) Fix n ∈ N and suppose that

(1 + x)n =

n∑
k=0

(
n

k

)
xk —(IH)

We need to show that (1 + x)n+1 =
n+1∑
k=0

(
n+1
k

)
xk. Well,

(1 + x)n+1

= (1 + x)(1 + x)n by laws of indices

= (1 + x) ·
n∑

k=0

(
n

k

)
xk by (IH)

=

n∑
k=0

(
n

k

)
xk + x ·

n∑
k=0

(
n

k

)
xk by expanding (x+ 1)

=

n∑
k=0

(
n

k

)
xk +

n∑
k=0

(
n

k

)
xk+1 distributing x

=

n∑
k=0

(
n

k

)
xk +

n+1∑
k=1

(
n

k − 1

)
xk k → k − 1 in second sum

=

(
n

0

)
x0 +

n∑
k=1

((
n

k

)
+

(
n

k − 1

))
xk +

(
n

n

)
xn+1 splitting the sums

=

(
n

0

)
x0 +

n∑
k=1

(
n+ 1

k

)
xk +

(
n

n

)
xn+1 by Definition 1.3.27

=

(
n+ 1

0

)
x0 +

n∑
k=1

(
n+ 1

k

)
xk +

(
n+ 1

n+ 1

)
xn+1 see (∗) below

=

n+1∑
k=0

(
n+ 1

k

)
xk

The step labelled (∗) holds because(
n

0

)
= 1 =

(
n+ 1

0

)
and

(
n

n

)
= 1 =

(
n+ 1

n+ 1

)
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By induction, we’ve shown that (1 + x)n =
n∑

i=0

(
n
k

)
xk for all n ∈ N.

When y 6= 0 is not necessarily equal to 1, we have that

(x+ y)n = yn ·
(

1 +
x

y

)n

= yn ·
n∑

k=0

(
n

k

)(
x

y

)k

=

n∑
k=0

(
n

k

)
xkyn−k

The middle equation follows by what we just proved; the leftmost and rightmost equations
are simple algebraic rearrangements.

Example 1.3.35
In Example 1.3.29 we saw that

n∑
k=0

(
n

k

)
= 2n

This follows quickly from the binomial theorem, since

2n = (1 + 1)n =
n∑

k=0

(
n

k

)
· 1k · 1n−k =

n∑
k=0

(
n

k

)
Likewise, in Exercise 1.3.30 you proved that the alternating sum of binomial coefficients is
zero; that is, for n ∈ N, we have

n∑
k=0

(−1)k
(
n

k

)
= 0

The proof is greatly simplified by applying the binomial theorem. Indeed, by the binomial
theorem, we have

0 = 0n = (−1 + 1)n =

n∑
k=0

(
n

k

)
(−1)k1n−k =

n∑
k=0

(−1)k
(
n

k

)
Both of these identities can be proved much more elegantly, quickly and easily using enu-
merative combinatorics. This will be the topic covered in Section 4.2. C

Well-ordering principle

In a way that we will make precise in Section 5.2, the underlying reason why we can
perform induction and recursion on the natural numbers is because of the way they are
ordered. Specifically, the natural numbers satisfy the well-ordering principle: if a set of
natural numbers has at least one element, then it has a least element. This sets the natural
numbers apart from the other number sets; for example, Z has no least element, since if
a ∈ Z then a− 1 ∈ Z and a− 1 < a.
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Definition 1.3.36
Let X be a set. If X has at least one element, then we say X is inhabited (or nonempty);
otherwise, we say X is empty.

Aside
The term nonempty is more common than inhabited in the mathematical community for
referring to sets which have elements, but there are reasons to prefer latter—in particular,
it avoids a double negative (‘has at least one element’ vs. ‘doesn’t have no elements’)—so
in this book we will typically use the word inhabited. C

Theorem 1.3.37 (Well-ordering principle)
Let X be a set of natural numbers. If X is inhabited, then X has a least element.

Strategy. Under the assumption that X is a set of natural numbers, the proposition we
want to prove has the form p⇒ q. Namely

X is inhabited ⇒ X has a least element

Assuming X is inhabited doesn’t really give us much to work with, so let’s try the contra-
positive:

X has no least element ⇒ X is empty

The assumption that X has no least element does give us something to work with. Under
this assumption we need to deduce that X is empty.

We will do this by ‘forcing X up’ by strong induction. Certainly 0 6∈ X, otherwise it would
be the least element. If none of the numbers 0, 1, . . . , n are elements of X then neither can
n+1 be, since if it were then it would be the least element of X. Let’s make this argument
formal.

Proof. Let X be a set of natural numbers containing no least element. We prove by strong
induction that n 6∈ X for all n ∈ N.

• (BC) 0 6∈ X since if 0 ∈ X then 0 must be the least element of X, as it is the least
natural number.

• (IS) Suppose k 6∈ X for all 0 6 k 6 n. If n+ 1 ∈ X then n+ 1 is the least element of
X; indeed, if ` < n + 1 then 0 6 ` 6 n, so ` 6∈ X by the induction hypothesis. This
contradicts the assumption that X has no least element, so n+ 1 6∈ X.

By strong induction, n 6∈ X for each n ∈ N. Since X is a set of natural numbers, and it
contains no natural numbers, it follows that X is empty.
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Aside
In Section 5.2 we will encounter more general sets with a notion of ‘less than’, for which
any inhabited subset has a ‘least’ element. Any such set has an induction principle, the
proof of which is more or less identical to the proof of Corollary 1.3.21. This has powerful
applications in computer science, where it can be used to formally verify that a computer
program containing various loops will terminate: termination of a program corresponds to
a particular set having a ‘least’ element. C

The following proof that
√

2 is irrational is a classic application of the well-ordering prin-
ciple.

Proposition 1.3.38
The number

√
2 is irrational.

To prove Proposition 1.3.38 we will use the following two lemmas. The first lemma we
prove uses the well-ordering principle to prove that fractions can be ‘cancelled to lowest
terms’.

Lemma 1.3.39
Let q be a positive rational number. There is a pair of nonzero natural numbers a, b such
that q = a

b and such that the only natural number which divides both a and b is 1.

Proof. First note that we can express q as the ratio of two nonzero natural numbers, since
q is a positive rational number. By the well-ordering principle, there is a least natural
number a such that q = a

b for some positive b ∈ N.

Suppose that some natural number d other than 1 divides both a and b. Note that d 6= 0,
since if d = 0 then that would imply a = 0. Since d 6= 1, it follows that d > 2.

Since d divides a and b, there exist natural numbers a′, b′ such that a = a′d and b = b′d.
Moreover, a′, b′ > 0 since a, b, d > 0. It follows that

q =
a

b
=
a′d

b′d
=
a′

b′

But d > 2, and hence

a′ =
a

d
6
a

2
< a

contradicting minimality of a. Hence our assumption that some natural number d other
than 1 divides both a and b was false—it follows that the only natural number dividing
both a and b is 1.
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The next lemma is a technical result that will allow us to derive a contradiction in our
proof that

√
2 is irrational.

Lemma 1.3.40
Let a ∈ Z. If a2 is even then a is even.

Proof. We prove the contrapositive; that is, we prove that if a is odd then a2 is odd.

Odd numbers are precisely those of the form 2k + 1, where k ∈ Z. So suppose a = 2k + 1
for some k ∈ Z. Then

a2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

Letting ` = 2k2 + 2k we see that a2 = 2`+ 1, and since ` ∈ Z, it follows that a2 is odd.

By contraposition, if a2 is even then a is even.

We are now ready to prove that
√

2 is irrational.

Proof of Proposition 1.3.38. Suppose
√

2 is rational. Since
√

2 > 0, this means that we
can write √

2 =
a

b

where a and b are both positive natural numbers. By Lemma 1.3.39, we may assume that
the only natural number dividing a and b is 1.

Multiplying the equation
√

2 = a
b and squaring yields

a2 = 2b2

Hence a2 is even. By Lemma 1.3.40, a is even, so we can write a = 2c for some c > 0.
Then a2 = (2c)2 = 4c2, and hence

4c2 = 2b2

Dividing by 2 yields

2c2 = b2

and hence b2 is even. By Lemma 1.3.40 again, b is even.

But if a and b are both even, the natural number 2 divides both a and b. This contradicts
the fact that the only natural number dividing both a and b is 1. Hence our assumption
that

√
2 is rational is incorrect, and

√
2 is irrational.
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Writing tip
In the proof of Proposition 1.3.38 we could have separately proven that a2 being even
implies a is even, and that b2 being even implies b is even. This would have required
us to repeat the same proof twice, which is somewhat tedious! Proving auxiliary results
(lemmas) separately and then applying them in theorems can improve the readability of
the main proof, particularly when the auxiliary results are particularly technical. Doing
so also helps emphasise the important steps. C

Exercise 1.3.41
What goes wrong in the proof of Proposition 1.3.38 if we try instead to prove that

√
4 is

irrational? C

Exercise 1.3.42
Prove that

√
3 is irrational. C
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Section 2.1

Symbolic logic

Symbolic logic arises from the observation that propositions—that is, results about math-
ematical objects—can themselves be treated as mathematical objects. So that we can study
propositions in an abstract setting, we will represent propositions by symbols, typically the
letters p, q, r and s. (It is rare that we will speak about more than four propositions at the
same time; if we need to, we’ll just use more letters!) We call these propositional vari-
ables: they are ‘propositional’ because they represent propositions, and they are ‘variables’
because we will make no assumptions about their truth value (unless explicitly stated).

This symbolic approach will allow us to decompose complex propositions into simpler ones
and investigate their logical structure, which in turn will help us work out how to structure
our proofs.

For example, consider the following:

Let n be an integer. If n is prime and n > 2 then n is odd.

The three statements ‘n is prime’, ‘n > 2’ and ‘n is odd’ are all propositions in their own
right, despite the fact that they all appear in a more complex proposition. We can really
examine the logical structure of the proposition by replacing these simpler propositions
with symbols. Referring to ‘n is prime’ as p, ‘n > 2’ as q, and ‘n is odd’ as r, the structure
of the second proposition is:

If p and q, then r.

Thus the propositions p, q, r are tied together by language, namely the word ‘and’ and the
construction ‘if–then’. Soon we will give precise definitions of what these words mean; in
the abstract setting they are called logical operators.

Looking at the logical structure of complex propositions allows us to make an educated
guess about how to proceed with a proof of the statement if it is true. Indeed, it is a safe
bet that in order to prove ‘if p and q, then r’, you should derive r from the assumption
that p and q are both true.

The value of reducing statements to symbolic expressions is that it forces us to remove
ambiguity and gives a clear-cut and precise way of knowing when we’ve done what we set
out to do.
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Logical operators

A logical operator, intuitively speaking, is a rule that constructs a new proposition out of
other propositions. For example, as we saw in Section 1.2, from propositions p, q we can
construct several new propositions off the bat:

‘p and q’ ‘p or q’ ‘if p, then q’ ‘p is false’

These constructions correspond with the logical operators of conjunction, disjunction, im-
plication and negation, respectively—and there are many more where they came from!

Relying on our understanding of the English language to interpret what these logical op-
erators mean will cause us some trouble; the next few pages introduce the most commonly
used logical operators, together with their precise definitions. To get us started, we will
need the definition of a propositional formula; these are the symbolic expressions which
represent propositions built from smaller propositions using logical operators.

Definition 2.1.1
A propositional formula is an expression built from propositional variables
p, q, r, s, . . . and logical operators (to be defined individually below).

Intuitively, propositional variables will refer to basic propositions, such as ‘3 is odd’, and
propositional formulae will refer to more complex propositions, such as ‘3 is odd and 6 is
not a perfect square’.

Conjunction (‘and’, ∧)

Conjunction is the logical operator which makes precise what we mean when we say ‘and’.

Definition 2.1.2
Let p and q be propositions. The conjunction of p and q, denoted p ∧ q (read: ‘p and
q’) (LATEX code: \wedge) is a proposition which is true if both p and q are true, and false
otherwise.

Aside
Strictly speaking, the definitions of logical operators should be given in terms of pro-
positional variables, rather than propositions themselves; these truth values then extend
inductively to general propositional formulae, in a sense to be made precise in Section 5.3.
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These propositional formulae only represent propositions—the latter cannot be treated
formally because they are statements in natural language, not mathematical objects. This
perspective is confusing on first exposure, so we will simplify matters by blurring the dis-
tinction between propositional variables, propositional formulae and propositions. C

It is not always obvious when conjunction is being used; sometimes it sneaks in without
the word ‘and’ ever being mentioned! Be on the look-out for occasions like this, such as in
the following exercise.

Example 2.1.3
We can express the proposition ‘7 is an integer greater than 5’ in the form p∧ q, by letting
p represent the proposition ‘7 is an integer’ and let q represent the proposition ‘7 is greater
than 5’. In order to prove that 7 is an integer greater than 5, we would need to give a
proof that 7 is an integer, and a proof that 7 is greater than 5. C

Exercise 2.1.4
Express the proposition ‘Clive is a mathematician who lives in Pittsburgh’ in the form
p ∧ q, for propositions p and q. C

The truth value of a propositional formula is determined by the truth values of the pro-
positional variables it contains. As such, the truth value of p ∧ q is defined in terms of the
truth values of p and of q. An easy way to specify this information isusing a truth table,
which tells us the truth value of p ∧ q for all possible assignments of truth values to p and
q:

p q p ∧ q
X X X ← p ∧ q is true when p is true and q is true
X × × ← p ∧ q is false when p is true and q is false
× X × ← p ∧ q is false when p is false and q is true
× × × ← p ∧ q is false when p is false and q is false

Here X (LATEX code: \checkmark) denotes ‘true’ and × (LATEX code: \times) denotes
‘false’.[a] There is a row for each possible assignment of ‘true’ (X) or ‘false’ (×) to the
propositional variables, and a column for each variable and the proposition we’re interested
in.

Disjunction (‘or’, ∨)

Disjunction is the logical operator that makes precise what we mean by ‘or’.

[a]Instead of X,×, some authors use >,⊥ (LATEX code: \top,\bot) or T, F or 1, 0.
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The word ‘or’ is especially context-dependent in English: if you say to me, ‘you can have
a slice of cake or you can have a chocolate bar,’ does that mean I can have both, or not?
We remove this ambiguity with the following definition; and to clarify, with this definition
of ‘or’, I can have both the cake and the chocolate bar. Yummy.

Definition 2.1.5
Let p and q represent propositions. The disjunction of p and q, denoted p ∨ q (read: ‘p
or q’) (LATEX code: \vee) is the proposition which is true if at least one of p or q is true,
and false otherwise.

Exercise 2.1.6
Using Definition 2.1.5, write down a truth table for p ∨ q (see page 82 for how it was done
for p ∧ q). C

The real power of truth tables comes when investigating how logical operators interact
with each other.

Example 2.1.7
Given propositions p, q, r, when is (p∧ q)∨ (p∧ r) true? It’s not immediately obvious, but
we can work it out by breaking it down into its component parts, namely the propositions
p ∧ q and p ∧ r; we’ll call these auxiliary propositions. We can then make a column
for each variable, each auxiliary proposition, and the main proposition, to find its truth
values.

p q r p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)
X X X X X X
X X × X × X
X × X × X X
X × × × × ×
× X X × × ×
× X × × × ×
× × X × × ×
× × × × × ×︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

variables auxiliary propns main proposition

We can then read off the table precisely when (p ∧ q) ∨ (p ∧ r) is true, by comparing the
entries in its column with the corresponding truth values of p, q, r. C

Aside
If you haven’t already mixed up ∧ and ∨, you probably will soon, so here’s a way of
remembering which is which:
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mac n cheese

If you forget whether it’s ∧ or ∨ that means ‘and’, just write it in place of the ‘n’ in ‘mac
n cheese’:

mac ∧ cheese mac ∨ cheese

Clearly the first looks more correct, so ∧ means ‘and’. (For any Brits among you, the
mnemonic ‘fish n chips’ works just as well.) C

Exercise 2.1.8
Write a truth table for the proposition p ∧ (q ∨ r). Compare it with the truth table for
(p ∧ q) ∨ (p ∧ r). What do you notice? C

Hopefully, if you did the previous exercise correctly, you’ll have noticed that the column
for p ∧ (q ∨ r) is identical to the column for (p ∧ q) ∨ (p ∧ r). So in some sense, these two
propositions are ‘the same’.

Definition 2.1.9
Two propositional formulae depending on the same propositional variables are logically
equivalent if they have the same truth value as each other, no matter what the assignment
of truth values to their propositional variables.

Proof tip
To prove that two propositions are logically equivalent, you can draw a truth table contain-
ing both propositions; if their columns are identical, then they are logically equivalent. C

Example 2.1.10
The propositional formulae p ∧ (q ∧ r) and (p ∧ q) ∧ r are equivalent. To prove this, we’ll
combine the truth tables for both propositions, with auxiliary columns for the propositions
q ∧ r and p ∧ q.

p q r q ∧ r p ∧ (q ∧ r) p ∧ q (p ∧ q) ∧ r
X X X X X X X
X X × × × X ×
X × X × × × ×
X × × × × × ×
× X X X × × ×
× X × × × × ×
× × X × × × ×
× × × × × × ×
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Evidently the two propositional formulae are equivalent since their columns are identical.
Indeed, p ∧ (q ∧ r) and (p ∧ q) ∧ r are both true if all three of p, q and r are true, and
they’re both false if one or more of p, q or r is false. C

Negation (‘not’, ¬)

So far we only officially know how to prove that true propositions are true. The nega-
tion operator makes precise what we mean by ‘not’, which allows us to prove that false
propositions are false.

Definition 2.1.11
Let p be a proposition. The negation of p, denoted ¬p (read: ‘not p’) (LATEX code: \neg)
is the proposition which is true if p is false, and false if p is true.

The truth table for the negation operator is very simple, since it is defined in terms of only
one propositional variable:

p ¬p
X ×
× X

Example 2.1.12
What follows is the truth table for p ∧ (¬q) (read ‘p and not q’); we include a column for
¬q because it appears inside the proposition.

p q ¬q p ∧ (¬q)
X X × ×
X × X X
× X × ×
× × X ×

C

Theoretically we could stop here: the three operators we’ve seen, ∧, ∨ and ¬, can be used
to give any combination of truth values to a compound proposition, in any number of
variables![b] For example, try the following exercise:

[b]Proving this claim and investigating other ‘complete sets’ of operators would make a nice final project!
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Exercise 2.1.13
Using only two variables p, q and the operators ∧,∨,¬, write down a propositional formula
whose truth table column is:

p q ???

X X ×
X × X
× X X
× × ×

Did you use all three of the permitted logical operators? If so, find another equivalent
propositional formula defined using only two of the operators. We will encounter this later
as the exclusive disjunction operator, see Definition 2.1.21. C

The following theorem is our first big result of the course. It is a pair of dual results which
relate conjunction, disjunction and negation. Informally the result says:

• Saying ‘neither p nor q is true’ is the same as saying ‘both p and q are false’;

• Saying ‘p and q are not both true’ is the same as saying ‘at least one of p and q is
false’.

Let’s make this precise:

Theorem 2.1.14 (De Morgan’s laws for logical operators)
Let p and q be propositions. Then

(a) ¬(p ∨ q) is logically equivalent to (¬p) ∧ (¬q);

(b) ¬(p ∧ q) is logically equivalent to (¬p) ∨ (¬q).

Proof. (a) The following truth table demonstrates that ¬(p ∨ q) and (¬p) ∧ (¬q) have the
same truth value for any assignment of truth values to p and q; hence they are logically
equivalent.

p q p ∨ q ¬(p ∨ q) ¬p ¬q (¬p) ∧ (¬q)
X X X × × × ×
X × X × × X ×
× X X × X × ×
× × × X X X X
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The proof of (b) mimics the proof of (a) and is left as an exercise.

Corollary 2.1.15

(a) The operator ∧ can be expressed in terms of ∨ and ¬;

(b) The operator ∨ can be expressed in terms of ∧ and ¬.

Proof. (a) First note that, if p is any proposition, then p is equivalent to ¬(¬p), which we’ll
write simply ¬¬p. This is demonstrated by the following truth table

p ¬p ¬¬p
X × X
× X ×

Therefore, given any propositions p and q,

• p ∧ q is equivalent to (¬¬p) ∧ (¬¬q);

• ...which is equivalent to ¬((¬p) ∨ (¬q)) by De Morgan’s laws applied to the proposi-
tions ¬p and ¬q.

Since p∧ q is equivalent to ¬((¬p)∨ (¬q)), which contains only the operators ¬ and ∨, the
result has been shown.

The proof of (b) mimics the proof of (a) and is left as an exercise.

This means that just two operators, say ∧ and ¬, suffice for expressing all other possible
operators! However, there is no real virtue in being stingy with our operators; after all,
the whole point of everything we’re doing is to communicate mathematical ideas. The
propositional formula

¬((¬p) ∨ (¬q))

is a lot harder to read and much harder to understand than the expression

p ∧ q

So we’ll keep ∧ for now, and we’ll go one step further: there is one especially crucial
operator that we have not yet defined, namely implication.
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Implication (‘if. . . then. . . ’, ⇒)

The implication operator makes precise what we mean when we say ‘if p, then q’ or ‘p
implies q’. The definition of the implication operator might seem unnatural at first, but
this will be discussed as an aside after the definition has been given.

Definition 2.1.16
Let p and q be propositions. The proposition p ⇒ q (read: ‘if p then q’, or ‘p implies q’)
(LATEX code: \Rightarrow) is false if p is true and q is false, and true otherwise.

The truth table for the implication operator is as follows:

p q p⇒ q

X X X
X × ×
× X X
× × X

Exercise 2.1.17
Use a truth table to show that p⇒ q is equivalent to (¬p) ∨ q. C

Exercise 2.1.18
Let p and q be propositional variables. Find a propositional formula which is equivalent
to ¬(p⇒ q), using only the operators ∧, ∨ and ¬. How could you use this equivalence to
prove that an implication p⇒ q is false? C

Aside
The biggest source of confusion for most people about the implication operator is why
p⇒ q is true whenever p is false, even if q is also false.

The reason behind this confusion is that people tend to think of implication in terms of
causation, i.e. that p⇒ q is a statement asserting ‘q is true because of p’. This is not what
‘implies’ means here! The statement p⇒ q says nothing about the truth value of q unless
we know that p is true.

Think of it this way: p⇒ q means that I can give you a proof of q so long as you can give
me a proof of p. If p has no proofs, my job is done before I even started! The only way I
can fail is if you have a proof of p but I have no proof of q. C
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Other operators (⇔, ⊕ ...)

There are many other operators we can define, but we will focus on just two more.

Definition 2.1.19
Let p and q be propositions. The proposition p⇔ q (read ‘p if and only if q’) (LATEX code:
\Leftrightarrow) is true when p and q have the same truth value, and false otherwise.
The operator ⇔ is called the biconditional operator.

Exercise 2.1.20
Show that p⇔ q is logically equivalent to (p⇒ q) ∧ (q ⇒ p). C

Definition 2.1.21
Let p and q be propositions. The proposition p ⊕ q (read ‘p or q but not both’) (LATEX
code: \oplus) is true when p and q have different truth values, and false otherwise. The
operator ⊕ is called the exclusive disjunction operator.

Computer scientists and logicians often refer to ⊕ as ‘xor’ or ‘exclusive or’.

Proof principles

In Section 1.2, we saw how to prove statements using the techniques of proof by contra-
diction and the law of excluded middle. We are now in a position to make these proof
techniques precise from a symbolic perspective. For good measure, we will now also intro-
duce another useful technique, called proof by contraposition.

Definition 2.1.22
The law of excluded middle is the assertion that p ∨ (¬p) is true for all propositions p.

In Section 1.2, we attributed the usefulness of the law of excluded middle to the fact that we
can prove a proposition is true by splitting into cases based on whether another proposition
is true.

Exercise 2.1.23
Let p, q, r be propositions. Prove that (p∨ q)⇒ r is logically equivalent to (p⇒ r)∧ (q ⇒
r). C
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The following corollary is the technical result underpinning the reason why the law of
excluded middle is so useful in proofs.

Corollary 2.1.24
Let p and q be propositions. If p⇒ q and ¬p⇒ q are true, then q is true.

Proof. By Exercise 2.1.23, it suffices to show that if (p ∨ ¬p) ⇒ q is true, then q is true.
By the law of the excluded middle, p ∨ ¬p is true, and hence (p ∨ ¬p) ⇒ q is true if and
only if q is true. But this is precisely what we wanted to prove.

Proof by contradiction can also be proved to be a valid proof technique by considering
truth tables.

Theorem 2.1.25 (Principle of contradiction)
Let p and q be propositions, and suppose that q is false. If p⇒ q is true, then p is false.

Proof. Consider the truth table of the proposition p⇒ q:

p q p⇒ q

X X X
X × ×
× X X
× × X

The only row in which q is false and p⇒ q is true is the fourth row, in which p is false.

We won’t dwell on these proof techniques, since we already saw them in Section 1.1.
However, there is a very useful proof technique that we haven’t seen yet, called proof by
contraposition. This is particularly useful for when you’re trying to prove an implication
and can’t quite get it to work.

Definition 2.1.26
Let p and q be propositions. The contrapositive of the proposition p⇒ q is the proposi-
tion (¬q)⇒ (¬p).

Theorem 2.1.27 (Principle of contraposition)
Let p and q be propositions. Then p⇒ q is logically equivalent to (¬q)⇒ (¬p).
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Proof. Consider the following truth table:

p q p⇒ q ¬q ¬p (¬q)⇒ (¬p)
X X X × × X
X × × X × ×
× X X × X X
× × X X X X

Since the third and sixth columns are identical, the two propositions are logically equivalent.

Proof tip
To prove an implication p ⇒ q, you can instead prove the implication ¬q ⇒ ¬p; that
is, assuming that q is false, show that p must be false. We then say p ⇒ q is true ‘by
contraposition’. C

Example 2.1.28
Fix two natural numbers m and n. We will prove that if mn > 64, then either m > 8 or
n > 8. Letting p be the proposition ‘mn > 64’, q be the proposition ‘m > 8’ and r be the
proposition ‘n > 8’, the statement ‘if mn > 64, then either m > 8 or n > 8’ becomes

p⇒ (q ∨ r)

By contraposition, this is equivalent to

¬(q ∨ r)⇒ ¬p

By de Morgan’s laws, this is equivalent to

((¬q) ∧ (¬r))⇒ ¬p

Let’s spell this out. The proposition ¬p means mn 6 64, and the proposition (¬q) ∧ (¬r)
means that m 6 8 and n 6 8. So what we need to prove is:

If m 6 8 and n 6 8 then mn 6 64.

Well this is certainly true! If you multiply two natural numbers which are less than or
equal to 8, then their product must be less than or equal to 82, which is equal to 64. C

Corollary 2.1.29
Let p and q be propositions. Then p⇔ q is equivalent to

(p⇒ q) ∧ ((¬p)⇒ (¬q))
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Proof. Left as an exercise. You can prove it directly, or apply reasoning you’ve already
acquired to the result of Theorem 2.1.27.

The logical equivalence set up by Corollary 2.1.29 is useful in proofs of some biconditional
statements.

Whilst the contrapositive of an implication p ⇒ q is equivalent to p ⇒ q, its converse is
not.

Definition 2.1.30
Let p and q be propositions. The converse of the proposition p ⇒ q is the proposition
q ⇒ p.

Exercise 2.1.31
Demonstrate by truth table that, for propositional variables p and q, the propositions
p ⇒ q and q ⇒ p are not logically equivalent. Provide an example of an implication and
its converse that demonstrate this. C

? Tautologies

There are many instances when a proposition expressed in terms of propositional variables
is true no matter what truth values are assigned to the variables.

Example 2.1.32
Let p be a proposition. The following propositions are all true, regardless of whether p is
true or false:

p⇒ p, p⇔ (p ∧ p), p⇔ (p ∨ p)

C

Definition 2.1.33
A tautology is a propositional formula which is true regardless of the truth values assigned
to its variables.

Example 2.1.34
Let p and q be propositions. We’ll prove that

p⇒ (q ⇒ p)

is a tautology by looking at its truth table:
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p q q ⇒ p p⇒ (q ⇒ p)

X X X X
X × X X
× X × X
× × X X

The column for p⇒ (q ⇒ p) has Xin every row, so is a tautology.

An alternative proof is as follows. The only way that p⇒ (q ⇒ p) can be false is if p is true
and q ⇒ p is false. But if p is true then q ⇒ p is necessarily true, so this is impossible. C

Exercise 2.1.35
How might fact proved in Exercise 2.1.34, that p ⇒ (q ⇒ p) is a tautology, be useful in
a proof of a conditional statement? Where did we use this in the proof of Proposition
1.2.19? C

Exercise 2.1.36
Let p, q, r be propositions. Prove that

[p⇒ (q ⇒ r)]⇒ [(p⇒ q)⇒ (p⇒ r)]

is a tautology. C

Free and bound variables

If all we have to work with is propositions then our ability to do mathematical reasoning
will be halted pretty quickly. For example, consider the following statement:

x is divisible by 7

This statement seems like the kind of thing we should probably be able to work with if
we’re doing mathematics. It makes sense if x is a whole number, such as 28 or 41; but
it doesn’t make sense at all if x is a parrot called Alex.[c] In any case, even when it does
make sense, its truth depends on the value of x; indeed, ‘28 is divisible by 7’ is a true
proposition, but ‘41 is divisible by 7’ is a false proposition.

This means that the statement ‘x is divisible by 7’ isn’t a proposition—quel horreur ! But
it almost is a proposition: if we know that x refers somehow to a whole number, then it

[c]Alex the parrot is the only non-human animal to have ever been observed to ask an existential question;
he died in September 2007. It is unlikely that Alex was divisible by 7, even when he was alive.
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becomes a proposition as soon as a particular numerical value of x is specified. Such a
symbol x is called a free variable or parameter. To indicate that a statement p contains
x as a free variable, we will write p(x). When we replace x by a specific value, say 28, we
write p(28); this is called substitution of a value for a variable.

Some statements might have several free variables. For example, the statement ‘y = x+ 3’
is a true proposition when x = 3 and y = 6, but it’s a false proposition when x = 1 and
y = 2. What really matters is that we have a notion of what it is appropriate to use
as values of x and y—namely, they should be numbers—and that whenever we use such
values, what comes out is a proposition. To indicate that a statement p contains x and y
as free variables, we will write p(x, y).

Definition 2.1.37
A logical formula is a statement containing some number of free variables, each with
a specified range, such that the statement becomes a proposition when values for all the
variables are substituted from their respective ranges.

Example 2.1.38
As mentioned before, the statement p(x) defined by ‘x is divisible by 7’ is a logical formula
with one free variable x, whose range is the set Z of integers. Then, for example, p(28) is
a true proposition and p(41) is a false proposition. C

Exercise 2.1.39
Write down a logical formula p(x, y) with two free variables x, y with range Z. Is the
proposition p(3, 7) true or false? For what values of y ∈ Z is p(0, y) true? C

We can obtain propositions from logical formulae in ways other than simply substituting
for a variable. For example, the assertion that every substitution for a variable makes the
formula true, is in itself a proposition. This can be done using quantifiers.

Universal quantifier (∀)

The universal quantifier makes precise what we mean when we say ‘for all’, or ‘p(x) is
always true no matter what value x takes’.

Definition 2.1.40
Let p(x) be a logical formula with free variable x, whose range is a set X. The proposition
‘∀x ∈ X, p(x)’ (read ‘for all x in X, p(x)’) (LATEX code: \forall) is true if p(x) is true no
matter what value of x is substituted from X, and false otherwise. The symbol ∀ is called
the universal quantifier.
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Note that the fact that the variable x ranges over the set X is built into the notation
‘∀x ∈ X’.

Exercise 2.1.41
Let p(x) be the formula ‘x is divisible by 7’, where x ranges over the integers. Write out
the propositions ∀x ∈ Z, p(x) and ∀x ∈ Z, ¬p(x) in English. C

Example 2.1.42
Consider the proposition

For all integers n, if n is even then n+ 1 is odd.

This proposition takes the form

∀n ∈ Z, (p(n)⇒ q(n))

where p(n) is the statement ‘n is even’ and q(n) is the statement ‘n+ 1 is odd’.

A proof would proceed as follows:

(i) Let n be an (arbitrary) integer.

(ii) Assume that n is even.

(iii) From the above two assumptions, derive the fact that n+ 1 is odd.

Step (i) is introduction of the variable n. For the rest of the proof we may treat n as if it’s
any old integer, but whatever we say about n must be true no matter what value n takes.
Having introduced n, we now need to prove p(n)⇒ q(n).

Step (ii) uses our proof strategy for proving implications: prove the proposition to the right
of the ⇒ symbol from the assumption that what is to the left of the ⇒ symbol is true.
This means that for the remainder of the proof, we may assume that n is even.

Step (iii) finishes off the proof. C

Common error
Consider the following (non-)proof of the proposition ∀n ∈ Z, n2 > 0.

Let n be an arbitrary integer, say n = 17. Then 172 = 289 > 0, so the statement
is true.

The error made here is that the writer has picked an arbitrary value of n, not the reader.
(In fact, the above argument actually proves ∃n ∈ Z, n2 > 0; see below.)
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Your proof should make no assumptions about the value of n other than its range. Here is
a correct proof:

Let n be an arbitrary integer. Either n > 0 or n < 0. If n > 0 then n2 > 0,
since the product of two nonnegative numbers is nonnegative; if n < 0 then
n2 > 0, since the product of two negative numbers is positive.

C

Existential quantifier (∃)

The existential quantifier makes precise what we mean when we say ‘there exists’, or ‘p(x)
is true for some value of x in its range’.

Definition 2.1.43
Let p(x) be a logical formula with free variable x, ranging over a set X. The proposition
‘∃x ∈ X, p(x)’ (read ‘there exists x in X such that p(x)’) (LATEX code: \exists) is true if
p(x) is true for at least one substitution of the variable x from X. The symbol ∃ is called
the existential quantifier.

Exercise 2.1.44
Let p(x) be the formula ‘x is divisible by 7’, where x ranges over the integers. Write out
the propositions ∃x, p(x) and ∃x, ¬p(x) in English. For each, either prove that it is true,
or prove that it is false. C

Example 2.1.45
Consider the proposition

There exists a natural number which is odd and greater than 3.

This proposition takes the form ∃n ∈ N, (p(n) ∧ q(n)), where p(n) is the statement ‘n is
odd’ and q(n) is the statement ‘n is greater than 3’.

A proof would proceed by finding a particular value of n such that p(n) and q(n) are both
true. Well, we know that 5 is odd, and 5 is certainly greater than 3! This means that
p(5) ∧ q(5) is true. Since we’ve proved the proposition for a value of n, we now know that
∃n ∈ N, (p(n) ∧ q(n)) is true. C
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From now on, if a variable’s range is irrelevant or is clear from context, we will simply omit
reference to its range. For example, if it is clear that the variable n refers to an integer, we
will write ∀n, p(n) and ∃n, p(n) instead of ∀n ∈ Z, p(n) and ∃n ∈ Z, p(n), respectively.

Quantifiers behave in an interesting way with the negation operator. Intuitively this
makes sense: for example, to show ‘x is even’ isn’t true for all x, it suffices to find a
single x for which ‘x is even’ is false. Thus, we can disprove ∀x, (x is even) by proving
∃x, (x is not even). This will be useful when cooking up proof strategies.

Theorem 2.1.46 (De Morgan’s laws for quantifiers)
Let p(x) be a logical formula. Then

(a) ¬(∃x, p(x)) is logically equivalent to ∀x, (¬p(x));

(b) ¬(∀x, p(x)) is logically equivalent to ∃x, (¬p(x)).

Proof. (a) We need to show that ∀x, (¬p(x)) is true when ¬(∃x, p(x)) is true, and false
when it is false.

Suppose ¬(∃x, p(x)) is true. Then ∃x, p(x) is false, which means it is not the case that
at least one value of x makes p(x) true. Since no values of x make p(x) true, this must
mean that all values of x make ¬p(x) true. So from the assumption that x takes any value
whatsoever, we know that ¬p(x) is true. Hence ∀x, (¬p(x)) is true.

Conversely, suppose ¬(∃x, p(x)) is false. Then ∃x, p(x) is true, so there is some fixed value
of x making p(x) true. Therefore it is not the case that ¬p(x) is true for all values of x: if
x takes this special value then p(x) is true, so ¬p(x) is false! Hence ∀x, (¬p(x)) is false.

The proof of (b) mimics the proof of (a) and is left to the reader.

Bound variables

When a variable is quantified, we say it is bound. Bound variables behave differently from
free variables in a number of ways, for example

• Propositions cannot have free variables, but they can have bound variables.

• It is possible to substitute a value for a free variable, but not for a bound variable.

Example 2.1.47
Consider the following formula, in which the variables x, y, z all have range Z:

∀x ∈ Z, ∃y ∈ Z, x2 + y2 + z2 = 1
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In this formula, the variables x and y are bound, but the variable z is free. To see this,
note that we can substitute for z; substituting 2 for z yields:

∀x, ∃y, x2 + y2 + 22 = 1

which is a false proposition. However we cannot substitute for x or y; trying to substitute
2 for x yields:

∀2, ∃y, 22 + y2 + z2 = 1

which must be nonsense: the phrase ‘for all 2, . . . ’ doesn’t even make sense! C

Exercise 2.1.48
For each of the following formulae, where all variables range over the integers, write down
the formula using quantifiers and specify which variables are free and which are bound:

(a) If n is prime and n > 2 then n is odd.

(b) There exist x and y such that ax+ by = 1.

(c) No integer value of x satisfies 0x = 1.

C

Quantifier alternation

Compare the following two statements:

(i) For every door, there is a key that can unlock it.

(ii) There is a key that can unlock every door.

Letting the variables x and y refer to doors and keys, respectively, and letting p(x, y) be
the statement ‘door x can be unlocked by key y’, we can formulate these statements as:

(i) ∀x, ∃y, p(x, y)

(ii) ∃y, ∀x, p(x, y)

This is a typical ‘real-world’ example of what is known as quantifier alternation—the two
statements differ only by the order of the front-loaded quantifiers, and yet they say very
different things. Statement (i) requires every door to be unlockable, but the keys might be
different for different doors; statement (ii), however, implies the existence of some kind of
‘master key’ that can unlock all the doors.

Here’s another example with a more mathematical nature:
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Exercise 2.1.49
Let p(x, y) be the statement ‘x+ y is even’.

• Prove that ∀x ∈ Z, ∃y ∈ Z, p(x, y) is true.

• Prove that ∃y ∈ Z, ∀x ∈ Z, p(x, y) is false.

C

In both of the foregoing examples, you might have noticed that the ‘∀∃’ statement says
something weaker than the ‘∃∀’ statement—in some sense, it is easier to make a ∀∃ state-
ment true than it is to make an ∃∀ statement true.

This idea is formalised in Theorem 2.1.50 below, which despite its abstract nature, has an
extremely simple proof.

Theorem 2.1.50
Let p(x, y) be a logical formula. Then

∃y, ∀x, p(x, y)⇒ ∀x, ∃y, p(x, y)

Proof. Suppose ∃y, ∀x, p(x, y) is true. We need to prove that ∀x, ∃y, p(x, y) is true.

Using our assumption ∃y, ∀x, p(x, y), we may choose y∗ such that ∀x, p(x, y∗) is true.

Now to prove ∀x, ∃y, p(x, y), fix x. We need to find y such that p(x, y) is true. But p(x, y∗)
is true by our above assumption! So we’re done.

Statements of the form ∃y, ∀x, p(x, y) imply some kind of uniformity : a value of y making
∀x, p(x, y) true can be thought of as a ‘one size fits all’ solution to the problem of proving
p(x, y) for a given x. Later in your studies, it is likely that you will encounter the word
‘uniform’ many times—it is precisely this notion of quantifier alternation that the word
‘uniform’ refers to.
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Section 2.2

Sets and set operations

With a system of logical notation under our belt, we’re now ready to introduce the notion
of a set with a notch more precision than in Section 1.1. At their core, sets seem extremely
simple—a set is just collections of objects—except this characterisation of a set leads to
logical inconsistencies.[d] We overcome these inconsistencies by restricting ourselves to
working inside a universe U , which we consider to be a set which is so big that it contains
all of the mathematical objects that we want to talk about. This definition seems circular—
Section B.2 aims to clear up this confusion.

Definition 2.2.1
A set is a collection of elements from a specified universe of discourse. The collection
of everything in the universe of discourse is called the universal set (or just universe),
denoted U (LATEX code: \mathcal{U}).
The formula x ∈ X (LATEX code: \in) denotes the statement that x is an element of X,
where the range of x is the universe of discourse. We write x 6∈ X (LATEX code: \not\in)
to mean ¬(x ∈ X), i.e. that x is not an element of X.

This definition seems a bit weird—and it is—so if you’re confused, then don’t worry, as
we will avoid reference to it as much as possible. The only property of U that we’ll need
is that if we speak about any mathematical object at all, except for U itself, then this
mathematical object is an element of U (rather than just floating around in space without
being an element of anything).

Example 2.2.2
In Section 1.1, we introduced five sets: the empty set ∅, the set N of natural numbers, the
set Z of integers, the set Q of rational numbers, the set R of real numbers and the set C of
complex numbers. C

Exercise 2.2.3
Which of the following propositions are true, and which are false?

1

2
∈ Z

1

2
∈ Q Z ∈ Q Z ∈ U 1

2
∈ U

C

Another fundamental example of a set is the empty set.

[d]Read about Russell’s paradox for more information.
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Definition 2.2.4
The empty set, denoted ∅ (LATEX code: \varnothing), is the set with no elements.

The empty set may seem trivial—and it is—but owing to its canonicity, it arises all over
the place, and will be especially important when we come to talk about functions and
cardinality in Section 4.3.

Exercise 2.2.5
Let p(x) be any formula. Show that the proposition ∀x, (x ∈ ∅ ⇒ p(x)) is true. What
does the proposition ∀x, (x ∈ ∅⇒ x 6= x) mean in English? Is it true? C

Specifying a set

One way of defining a set is simply to describe it in words, like we have done up to now.
There are other, more concise ways, of specifying sets, which also remove such ambiguity
from the process.

Lists. One way is simply to provide a list the elements of the set. To specify that the
list denotes a set, we enclose the list with curly brackets {, } (LATEX code: \{,\}). For
example, the following is a specification of a set X, whose elements are the natural numbers
between 0 and 5 (inclusive):

X = {0, 1, 2, 3, 4, 5}

Implied lists. Sometimes a list might be too long to write out—maybe even infinite—or
the length of the list might depend on a variable. In these cases it will be convenient to
use an implied list, in which some elements of the list are written, and the rest are left
implicit by writing an ellipsis ‘. . . ’ (LATEX code: \dots). For example, the statement

X = {1, 4, 9, . . . , n2}

means that X is the set whose elements are all the square numbers from 1 to n2, where n
is some number. Implied lists can be ambiguous, since they rely on the reader’s ability to
infer the pattern being followed, so use with caution!

Set-builder notation. In general, implied lists can be ambiguous, so in practice they
are avoided unless the implied list is very simple, such as a set of consecutive numbers like
{3, 4, . . . , 9}. In fact, many sets can’t even be listed in this way.

To get around this, we can use set-builder notation, which is a means of specifying a set
in terms of the properties its elements satisfy. Given a set X, the set of elements of X
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satisfying some property p(x) is denoted

{x ∈ X | p(x)}

The bar ‘|’ (LATEX code: \mid) separates the variable name from the formula that they
make true. Some authors use a colon ‘{x ∈ X : p(x)}’ or semicolon ‘{x ∈ X; p(x)}’
instead.[e]

Example 2.2.6
The set of all even integers can be written as

{n ∈ Z | n is even} = {. . . ,−4,−2, 0, 2, 4, 6, . . . }

For comparison, the set of all even natural numbers can be written as

{n ∈ N | n is even} = {0, 2, 4, 6, . . . }

C

Proof tip
When a set X is expressed in set-builder notation, say X = {x | p(x)}, then the statement
x ∈ X is true precisely when p(x) is true. In other words, to prove x ∈ X, you can prove
p(x). Likewise, to prove x 6∈ X, you can prove ¬p(x). C

Exercise 2.2.7
Express the set of all integers which are perfect squares in set-builder notation and as an
implied list. C

You’re probably tired of worrying about ranges and universes—and so am I. We can use the
language of set theory to avoid them completely by specifying the ranges of the variables
we use as soon as they appear. For example, given a set X:

• The proposition ∀x ∈ X, p(x) means that x has range X and ∀x, p(x). It is equivalent
to ∀x, x ∈ X ⇒ p(x), so long as the range of x contains all the elements of X.

• The proposition ∃x ∈ X, p(x) means that x has range X and ∃x, p(x). It is equivalent
to ∃x, x ∈ X ∧ p(x), so long as the range of x contains all the elements of X.

• The set {x ∈ X | p(x)} denotes the set {x | p(x)}, where the range of x is X.

From now on, this is the style that we will use, and the universe U will be assumed to
include all the mathematical objects that we define or need.

[e]When X = U , we abbreviate this by simply writing {x | p(x)} instead of {x ∈ U | p(x)}.
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We can also use set-builder notation to specify the form of the elements of a set. For
example, the set

Z = {3x+ 2 | x is an integer}
denotes the set of things of the form 3x+ 2 where x is an integer. Thus

Z = {. . . ,−7,−4,−1, 2, 5, 8, 11, . . . }

From now on our universe of discourse will, unless otherwise specified, include all math-
ematical objects that we define. With this in mind, there are some very important sets to
be defined.

Subsets and set equality

Much of the discussion above concerned when an element of one set is or is not an element
of another. For example, every integer is a rational number; that is

∀n, (n ∈ Z⇒ n ∈ Q)

We can say this more concisely by saying that Z is a subset of Q.

Definition 2.2.8
Let X and Y be sets. We say X is a subset of Y if ∀x ∈ X, x ∈ Y , or equivalently, if

∀x, (x ∈ X ⇒ x ∈ Y )

We abbreviate this proposition by writing X ⊆ Y (LATEX code: \subseteq), and we write
X * Y (LATEX code: \nsubseteq) for its negation.

Note that we could also

Proof tip
A proof that X is a subset of Y typically proceeds as follows. Let x ∈ X be arbitrary; then
knowing nothing about x other than the fact that x ∈ X, prove that x ∈ Y . C

Exercise 2.2.9
Let X be a set. Prove that ∅ ⊆ X and that X ⊆ X. C

Example 2.2.10
We know from Section 1.1 that there is a chain of subsets given by:

∅ ⊆ N ⊆ Z ⊆ Q ⊆ R

C
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The following proposition proves a property of subsethood known as transitivity—we’ll
revisit this property in Sections 5.1 and 5.2.

Proposition 2.2.11
Let X,Y, Z be sets. If X ⊆ Y and Y ⊆ Z, then X ⊆ Z.

Strategy. The result we want to prove is an implication. Thus we assume X ⊆ Y and
Y ⊆ Z, and our goal is to derive that X ⊆ Z. Spelling this out slightly more, the goal
is to derive ∀x, x ∈ X ⇒ x ∈ Z; so we can introduce a variable x and assume that
x ∈ X. Then our goal is to use our assumptions to prove that x ∈ Z. Well, X ⊆ Y means
∀x, x ∈ X ⇒ x ∈ Y . Since we’re assuming x ∈ X, substituting it into this assumption
yields that x ∈ Y . Likewise, the assumption that Y ⊆ Z yields that x ∈ Z.

Proof. Suppose that X ⊆ Y and Y ⊆ Z. We need to prove that every element of X is an
element of Z. So let x ∈ X. Since X ⊆ Y , it follows that x ∈ Y ; and since Y ⊆ Z, it
follows that x ∈ Z. Hence X ⊆ Z.

Aside
Notice how in the proof of Proposition 2.2.11 we omitted many of the details of the thought
process that went into coming up with the proof: decomposing the logical structure of the
proposition to be proved, spelling out what our goal is at every step, and so on. We left
enough of an argument to convince a mathematically literate reader that we’re correct, but
kept it concise enough that attention is drawn to the important steps. C

Definition 2.2.12
Let X be a set. The power set of X, denoted P(X) (LATEX code: \mathcal{P}), is the
set of all subsets of X.

Example 2.2.13
There are four subsets of {1, 2}, namely

∅, {1}, {2}, {1, 2}

so P(X) = {∅, {1}, {2}, {1, 2}}. C

Exercise 2.2.14
Write out the elements of P({1, 2, 3}). C

Exercise 2.2.15
Let X be a set. Show that ∅ ∈ P(X) and X ∈ P(X). C

Exercise 2.2.16
Write out the elements of P(∅), P(P(∅)) and P(P(P(∅))). C
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Power sets are often a point of confusion because they bring the property of being a subset
of one set to that of being an element of another, in the sense that for all sets U and X
we have

U ⊆ X ⇔ U ∈ P(X)

This distinction looks easy to grasp, but when the sets U and X look alike, it’s easy to fall
into various traps. Here’s a simple example.

Example 2.2.17
It is true that ∅ ⊆ ∅, but false that ∅ ∈ ∅. Indeed,

• ∅ ⊆ ∅ means ∀x ∈ ∅, x ∈ ∅; but propositions of the form ∀x ∈ ∅, p(x) are always
true, as discussed in Exercise 2.2.5.

• The empty set has no elements; if ∅ ∈ ∅ were true, it would mean that ∅ had an
element (that element being ∅). So it must be the case that ∅ 6∈ ∅.

C

The following exercise is intended to help you overcome similar potential kinds of confusion
by means of practice. Try to think precisely about what the definitions involved are.

Exercise 2.2.18
Write out the elements of P(∅) and of P(P(∅)). Determine, with proof, whether or not
each of the following statements is true:

P(∅) ∈ P(P(∅)), P(∅) ⊆ P(P(∅)), ∅ ∈ {{∅}}, ∅ ⊆ {{∅}}, {∅} ∈ {{∅}}

C

Set equality

Discussion 2.2.19
Let X and Y be sets. What should it mean to say that X and Y are equal? Try to provide
a precise definition of equality of sets before reading on. C

There are different possible notions of ‘sameness’ for sets: maybe X = Y when X and Y
have the same elements (this is called extensional equality), or maybe X = Y when they’re
described by the same criteria (this is called intensional equality). In mathematics, it is
more useful to know when two sets have the same elements, regardless of how they are
described; so we take extensional equality as our notion of sameness for sets. This doesn’t
mean intensional equality should be ignored—if you want to implement mathematics in a
computer, the sets’ descriptions have a much more important role to play.
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Definition 2.2.20
Let X and Y be sets. We say X is equal to Y if X ⊆ Y and Y ⊆ X, and we write X = Y .
If X ⊆ Y and X 6= Y then we say X is a proper subset of Y and write X $ Y (LATEX
code: \subsetneqq).

Example 2.2.21
Let E = {n ∈ Z | n is even}. Then:

• E $ Z. Indeed, E ⊆ Z since every element of E is an element of Z by definition; but
E 6= Z since, for instance, 1 ∈ Z but 1 6∈ E.

• N * E since, for instance, 1 ∈ N but 1 6∈ E.

• E * N since, for instance, −2 ∈ E but −2 6∈ N.

C

Exercise 2.2.22
Define a set X such that:

N $ X ∧ X $ Q ∧ X * Z ∧ Z * X

C

Proof tip
To prove X = Y , you can prove that X ⊆ Y and Y ⊆ X. This proof strategy is called
double-containment. More specifically, such a proof is split into two parts:

(i) Let x ∈ X; from this assumption alone, prove that x ∈ Y .

(ii) Let x ∈ Y ; from this assumption alone, prove that x ∈ X.

C

Set operations

In Example 2.2.21 we defined E to be the set of all even integers. What if we wanted to
talk about the set of all even natural numbers instead? It would be nice if there was some
expression in terms of E and N to denote this set. This is where set operations come in.

Intersection (∩)

The intersection of two sets is the set of things which are elements of both sets.
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Definition 2.2.23
Let X and Y be sets. The (pairwise) intersection of X and Y , denoted X ∩ Y (LATEX
code: \cap), is defined by

X ∩ Y = {x | x ∈ X ∧ x ∈ Y }

Example 2.2.24
Let E be the set of all even integers. Then E ∩ N refers to the set of things which are
both even integers and natural numbers. . . in other words, it is the set of even natural
numbers. C

Exercise 2.2.25
Write down the elements of the set

{0, 1, 4, 7} ∩ {1, 2, 3, 4, 5}

C

Proof tip
To prove x ∈ X ∩ Y you can give two proofs: one that x ∈ X and one that x ∈ Y . For
example, if X = {x | p(x)} and Y = {x | q(x)}, then X ∩ Y = {x | p(x) ∧ q(x)}. C

Example 2.2.26
Let X = {x ∈ Z | x > 5} and Y = {x ∈ N | x 6 10}. Then

X ∩ Y = {x ∈ Z | 5 6 x 6 10} = {5, 6, 7, 8, 9, 10}

C

Exercise 2.2.27
Let X and Y be sets. Prove that X ⊆ Y if and only if X ∩ Y = X. C

Union (∪)

The union of two sets is the set of things which are elements of at least one of the sets.

Definition 2.2.28
Let X and Y be sets. The (pairwise) union of X and Y , denoted X ∪ Y (LATEX code:
\cup), is defined by

X ∪ Y = {x | x ∈ X ∨ x ∈ Y }

Example 2.2.29
Let E be the set of even integers and O be the set of odd integers. Since every integer is
either even or odd, E ∪ O = Z. Note that E ∩ O = ∅, thus {E,O} is an example of a
partition of Z; see Definition 4.2.36. C
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Exercise 2.2.30
Write down the elements of the set

{0, 1, 4, 7} ∪ {1, 2, 3, 4, 5}

C

The union operation allows us to define the following class of sets that will be particularly
useful for us when studying counting principles in Section 4.2.

Definition 2.2.31
Define [n] recursively for n ∈ N by

[0] = ∅ and [n+ 1] = [n] ∪ {n+ 1} for all n ∈ N

Exercise 2.2.32
Prove that if n > 0 then the elements of [n] are the natural numbers from 1 up to n
(inclusive). In implied list notation, this is to say that

[n] = {1, 2, . . . , n}

whenever n > 1. C

Exercise 2.2.33
Let X and Y be sets. Prove that X ⊆ Y if and only if X ∪ Y = Y . C

Example 2.2.34
Let X,Y, Z be sets. We prove that X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z).

• (⊆) Let x ∈ X ∩ (Y ∪ Z). Then x ∈ X, and either x ∈ Y or x ∈ Z. If x ∈ Y then
x ∈ X∩Y , and if x ∈ Z then x ∈ X∩Z. In either case, we have x ∈ (X∩Y )∪(X∩Z).

• (⊇) Let x ∈ (X ∩ Y ) ∪ (X ∩ Z). Then either x ∈ X ∩ Y or x ∈ X ∩ Z. In both
cases we have x ∈ X by definition of intersection. In the first case we have x ∈ Y ,
and in the second case we have x ∈ Z; in either case, we have x ∈ Y ∪ Z, so that
x ∈ X ∩ (Y ∪ Z).

C

Exercise 2.2.35
Let X,Y, Z be sets. Prove that X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z). C
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Relative complement (\) and complement (−c)

Definition 2.2.36
Let X and Y be sets. The relative complement of Y in X, denoted X \ Y (LATEX code:
\setminus), is defined by

X \ Y = {x ∈ X | x 6∈ Y }

If X is a set then the complement of X, denoted Xc (LATEX code: X^c), is simply the
relative complement of X in the universal set: Xc = U \X.

Example 2.2.37
Let E be the set of all even integers. Then n ∈ Z \ E if and only if n is an integer and
n is not an even integer; that is, if and only if n is odd. Thus Z \ E is the set of all odd
integers.

Moreover, n ∈ N \ E if and only if n is a natural number and n is not an even integer.
Since the even integers which are natural numbers are precisely the even natural numbers,
N \ E is precisely the set of all odd natural numbers. C

Exercise 2.2.38
Write down the elements of the set

{0, 1, 4, 7} \ {1, 2, 3, 4, 5}

C

Exercise 2.2.39
Let X and Y be sets. Prove that X ⊆ Y if and only if Y \ (Y \X) = X. C

Comparison with logical operators and quantifiers

The astute reader will have noticed some similarities between set operations and the logical
operators and quantifiers that we saw in Section 2.1. Indeed, this can be summarised in
the following table. In each row, the expressions in both columns are equivalent, where p
denotes ‘x ∈ X’, q denotes ‘x ∈ Y ’, and r(i) denotes ‘x ∈ Xi’:

sets logic

x ∈ X ∩ Y p ∧ q
x ∈ X ∪ Y p ∨ q
x ∈ Xc ¬p

x ∈ X \ Y p ∧ (¬q)
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This translation between logic and set theory does not stop there; in fact, as the following
theorem shows, De Morgan’s laws for the logical operators ∧ and ∨ also carry over to the
set operations ∩ and ∪.

Theorem 2.2.40 (De Morgan’s laws for sets—pairwise version)
Let X,Y, Z be sets. Then

(a) Z \ (X ∪ Y ) = (Z \X) ∩ (Z \ Y );

(b) Z \ (X ∩ Y ) = (Z \X) ∪ (Z \ Y ).

Proof of (a). Let x ∈ Z \ (X ∪ Y ). Then x ∈ Z and x 6∈ X ∪ Y . The formula x 6∈ X ∪ Y
says precisely

¬(x ∈ X ∨ x ∈ Y )

By de Morgan’s laws for logical operators (Theorem 2.1.14), this is equivalent to

x 6∈ X ∧ x 6∈ Y

Since x ∈ Z and x 6∈ X, we have x ∈ Z \X. Since x ∈ Z and x 6∈ Y , we have x ∈ Z \ Y .
Hence, by definition of intersection, it follows that x ∈ (Z \X) ∩ (Z \ Y ).

Hence Z \ (X ∪ Y ) ⊆ (Z \X) ∩ (Z \ Y ).

The proof of (Z \X)∩ (Z \ Y ) ⊆ Z \ (X ∪ Y ) is similar, and is left as an exercise, as is the
proof of (b).

The following exercise derives perhaps a more familiar statement of de Morgan’s laws for
sets.

Exercise 2.2.41
Let X and Y be sets. Prove that

(X ∪ Y )c = Xc ∩ Y c and (X ∩ Y )c = Xc ∪ Y c

C

Product (×)

Definition 2.2.42
Let X and Y be sets. The (Cartesian) product of X and Y , denoted X × Y (LATEX
code: \times), is the set of all ordered pairs (x, y), where x ∈ X and y ∈ Y . That is,

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y }
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Example 2.2.43
If you have ever taken calculus, you will probably be familiar with the set R× R.

R× R = {(x, y) | x, y ∈ R}

Formally, this is the set of ordered pairs of real numbers. Geometrically, if we interpret R
as an infinite line, the set R × R is the (real) plane: an element (x, y) ∈ R × R describes
the point in the plane with coordinates (x, y).

We can investigate this further. For example, the following set:

R× {0} = {(x, 0) | x ∈ R}

is precisely the x-axis. We can describe graphs as subsets of R × R. Indeed, the graph of
y = x2 is given by

G = {(x, y) ∈ R× R | y = x2} = {(x, x2) | x ∈ R} ⊆ R× R

C

Exercise 2.2.44
Write down the elements of the set {1, 2} × {1, 3, 4}. C

Exercise 2.2.45
Let X be a set. Prove that X ×∅ = ∅. C

Exercise 2.2.46
Let X, Y and Z be sets. Is it true that X × Y = Y ×X? Is it true that (X × Y )× Z =
X × (Y × Z)? C

Aside
Aaand breathe! All this new notation can be overwhelming at first, but it will be worth it
in the end. This chapter was all about teaching you a new language—new symbols, new
terminology—because without it, our future pursuits will be impossible. If you’re stuck
now, then don’t worry: you’ll soon get the hang of it, especially when we start using this
new language in context. You can, of course, refer back to the results in this chapter for
reference at any point in the future. C
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Section 2.3

Functions

One way of studying interactions between sets is by studying functions between them,
which we will define informally in Definition 2.3.9. Functions are mathematical objects
which assign, to each element of one set, exactly one element of another. Almost every
branch of mathematics studies functions, be it directly or indirectly, and almost every
application of mathematics arises from a translation of the abstract notion of a function to
the real world. Just one example of this is the theory of computation—functions provide
precisely the language necessary to describe the deterministic input-output behaviour of
algorithms.

Existence and uniqueness

When discussing functions, it is useful to isolate the logical principles at work. To do so,
it will help us to introduce a new quantifier ‘∃!’.

Definition 2.3.1
Let p(x) be a logical formula. The proposition ‘∃!x, p(x)’ (read ‘there exists a unique x
such that p(x)’) (LATEX code: \exists!) is true if p(x) is true for exactly one value of x.
The symbol ∃! is called the unique existential quantifier.

Example 2.3.2
There is only one set with no elements, namely the empty set. Symbolically, we could write

∃!X ∈ U , (X is a set ∧ ∀x ∈ U , x 6∈ X)

C

Example 2.3.3
Every positive real number has a unique positive square root. We can write this symbol-
ically as

∀a ∈ R, (a > 0⇒ ∃!b ∈ R, (b > 0 ∧ b2 = a))

Reading this from left to right, this says: for every real number a, if a is positive, then
there exists a unique real number b, which is positive and whose square is a. C

Exercise 2.3.4
The following propositions are all true. For each of the propositions, write it out using the
∃! quantifier, and consider how you might prove it. Do you notice any patterns in your
proof techniques?
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(a) For each real number a, the equation x2 + 2ax+ a2 = 0 has exactly one real solution
x.

(b) There is a unique real number a for which the equation x2 +a2 = 0 has a real solution
x.

(c) There is a unique natural number with exactly one positive divisor.

C

The following exercise shows that the ∃! quantifier is really just shorthand for a more
complicated expression.

Exercise 2.3.5
Let p(x) be a logical formula. Prove that the following are equivalent:

(a) ∃!x, p(x)

(b) [∃x, p(x)] ∧ [∀y, ∀z, (p(y) ∧ p(z)⇒ y = z)]

(c) ∃x, (p(x) ∧ ∀y, (p(y)⇒ y = x))

C

The expressions (b) and (c) in Exercise 2.3.5 is particularly informative, as they breaks
down a proof of existence and uniqueness into two chunks.

Proof tip
A proof of a statement of the form ∃!x, p(x) can be split into two proofs:

• Existence. Prove ∃x, p(x). That is, find a value of x making p(x) true.

• Uniqueness. Either. . .

� . . . prove ∀y, ∀z, (p(y) ∧ p(z) ⇒ y = z). That is, fix y, z and assume that p(y)
and p(z) are true. Derive that it must be the case that y = z.

. . . or. . .

� . . . prove ∀y, (p(y)⇒ y = x). That is, fix y and assume that p(y) is true. Derive
that it must be the case that y = x, where x is as in your proof of existence.

From these two parts, you can conclude that ∃!x, p(x) is true.

Note that you only need to use one of the above techniques for proving uniqueness; the
first corresponds to (b) in Exercise 2.3.5, and the second corresponds to (c). C
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Example 2.3.6
An example of this proof structure in action is in a proof of the statement in part (a) of
Exercise 2.3.4, that is, for each real number a there exists a unique x such that x2 + 2ax+
a2 = 0.

Fix a ∈ R. We prove existence and uniqueness of an element x ∈ R for which x2+2ax+a2 =
0 separately.

• (Existence) Let x = −a. Then

x2 + 2ax+ a2 = (−a)2 + 2a(−a) + a2 = a2 − 2a2 + a2 = 0

so a solution exists.

• (Uniqueness) Fix y ∈ R and suppose that y2 + 2ay + a2 = 0. We will prove that is
must be the case that y = −a. Well, factorising the expression yields (y+ a)2 = 0. If
y+a were nonzero then its square would also be nonzero, hence y+a = 0. Therefore,
y = −a, as required.

Hence x = −a is the unique solution to the equation x2 + 2ax+ a2 = 0. C

This followed pattern (c) from Exercise 2.3.5. The following follows pattern (b).

Example 2.3.7
We prove Exercise 2.3.3, namely that for each real a > 0 there is a unique b > 0 such that
b2 = a. So first fix a > 0.

• (Existence) The real number
√
a is positive and satisfies (

√
a)2 = a by definition. Its

existence will be deferred to a later time, but an informal argument for its existence
could be provided using ‘number line’ arguments as in Section 1.1.

• (Uniqueness) Let y, z > 0 be real numbers such that y2 = a and z2 = a. Then
y2 = z2. Rearranging and factorising yields

(y − z)(y + z) = 0

so either y − z = 0 or y + z = 0. If y + z = 0 then z = −y, and since y > 0, this
means that z < 0. But this contradicts the assumption that z > 0. As such, it must
be the case that y − z = 0, and hence y = z, as required.

C

Exercise 2.3.8
Prove the statements in parts (b) and (c) of Exercise 2.3.4. C
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The unique existence quantifier clarifies the process of solving equations: when solving
equations, there are typically two steps:

• Step 1. Start with the equation, and derive some set of potential solutions.

• Step 2. For each of the potential solutions, check whether each solves the equation—
the set of those that do is precisely the set of all solutions to the equation.

In the case when an equation has a unique solution, and this solution is the only one
which is derived algebraically from the equation, we recognise ‘Step 1’ as being a proof of
uniqueness of a solution, and ‘Step 2’ as a proof of existence of a solution.

To wit, let’s revisit the equation

x2 + 2ax+ a2 = 0

from Example 2.3.6, where a and x refer to real numbers. We established that, for a given
real number a, there is a unique real solution x. Instead of proving existence and uniqueness
seprately, we could have instead solved this equation using a sequence of reversible steps:

x2 + 2ax+ a2 = 0⇔ (x+ a)2 = 0 by factorising

⇔ x+ a = 0 since 0 is the only square root of 0

⇔ x = −a rearranging

Working from top to bottom, this says if there is a solution x, then it is equal to −a.
Working from bottom to top, this says that −a is a solution. Thus the ‘bottom to top’
direction proves existence, and the ‘top to bottom’ direction proves uniqueness.

Functions

You might have come across the notion of a function before now. In schools, functions are
often introduced as being like machines—they have inputs and outputs, and on a given
input they always return the same output. For instance, there is a function which takes
integers as inputs and gives integers as outputs, which on the input x returns the integer
x+ 3.

This, however, is clearly not a precise definition. A next approximation to a precise defin-
ition of a function might look something like this:
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Definition 2.3.9
Let X and Y be sets. A function f from X to Y is a mathematical object which assigns
to each element of X exactly one element of Y . Given x ∈ X, the element of Y associated
with x by f is denoted f(x), and is called the value of f at x. We write

f : X → Y (LATEX code: f : X \to Y)
to denote that f is a function from X to Y . We say X is the domain (or source) of f
and Y is the codomain (or target) of f .

This is better—for instance, we’re now talking about sets (and not mysterious ‘machines’),
which we have explored with in Section 2.2. Moreover, this definition establishes the
relationship between functions and the ∃! quantifier: indeed, to say that f assigns to each
element of X a unique element of Y is to say precisely that

∀x ∈ X, ∃!y ∈ Y, y = f(x)

Functions arise whenever there is a true proposition of the form ∀x ∈ X, ∃!y ∈ Y, p(x, y)—
this defines a function f : X → Y which assigns to each x ∈ X the unique y ∈ Y such that
p(x, y) is true. In other words, ∀x ∈ X, p(x, f(x)) is true! We can use this to generate
some examples.

Example 2.3.10
Example 2.3.3 said that every positive real number has a unique positive square root; we
proved this in Example 2.3.7. What this means is that there is a function

r : R>0 → R>0 where R>0 = {x ∈ R | x > 0}

defined by letting r(x) be the (unique) positive square root of x, for each x ∈ R>0. That
is, we have a function r defined by r(x) =

√
x. C

Exercise 2.3.11
Recall Exercise 2.3.4. Which of the statements (a), (b) or (c) is of the form ∀x ∈ X, ∃!y ∈
Y, p(x, y)? For each statement of this form, determine the domain and codomain of the
corresponding function, and write an expression defining this function. C

There are many ways to specify a function f : X → Y . Before we move too far in this
direction, it is worth noting a very important point regarding what should be written in
the specification of a function.

Writing tip
When specifying a function, make sure that you specify its domain and its codomain
and, if you use any variables, make sure they’re all quantified! C

With this in mind, let’s look at a few ways of specifying a function.
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• Lists. If X is finite, then we can specify a function f : X → Y by simply listing the
values of f at all possible elements x ∈ X. For example, we can define a function

f : {1, 2, 3} → {red, yellow, green, blue, purple}

by declaring
f(1) = red, f(2) = purple, f(3) = green

Note that the function is at this point completely specified: we know its values at
all elements of the domain {1, 2, 3}. It doesn’t matter that some of the elements of
the codomain (yellow and blue) are unaccounted for—all that matters is that each
element of the domain is associated with exactly one element of the codomain.

Unfortunately, most of the sets that we work with will be infinite, or of an unspecified
finite size; in these cases, simply writing a list of values isn’t sufficient. Fortunately
for us, there are other ways of specifying functions.

• Formulae. In many cases, particularly when the domain X and codomain Y are
number sets, we can define a function by giving a formula for the value of f(x) for
each x ∈ X. For example, we can define a function f : R→ R by letting

f(x) = x2 + 3 for all x ∈ R

• By cases. It will at times be convenient to define a function using different specific-
ations for different elements of the domain. A very simple example is the absolute
value function |−| : R→ R, defined for x ∈ R

|x| =

{
x if x > 0

−x if x 6 0

Here we have split into two cases based on the conditions x > 0 and x 6 0.

When specifying a function f : X → Y by cases, it is important that the conditions
be:

� exhaustive: given x ∈ X, at least one of the conditions on X must hold; and

� compatible: if any x ∈ X satisfies more than one condition, the specified value
must be the same no matter which condition is picked.

For the absolute value function defined above, these conditions are satisfied. Indeed,
for x ∈ R, it is certainly the case that x > 0 or x 6 0, so the conditions are exhaustive.
Moreover, given x ∈ R, if both x > 0 and x 6 0, then x = 0—so we need to check
that the specification yields the same value when x = 0 regardless of which condition
we pick. The x > 0 condition yields the value 0, and the x 6 0 condition yields the
value −0, which is equal to 0—so the conditions are compatible. We could have used
x < 0 instead of x 6 0; in this case the conditions are mutually exclusive, so certainly
compatible because they do not overlap.

117



118 Chapter 2. Logic, sets and functions

• Algorithms. You might, on first exposure to functions, have been taught to think
of a function as a machine which, when given an input, produces an output. This
‘machine’ is defined by saying what the possible inputs and outputs are, and then
providing a list of instructions (an algorithm) for the machine to follow, which on
any input produces an output—and, moreover, if fed the same input, the machine
always produces the same output.

For example, we might instruct a machine to take rational numbers as inputs and
give rational numbers as outputs, and to follow the following sequence of steps on a
given input

multiply by 2 → add 5 → square the result → divide by 6

This ‘machine’ defines a function M : Q→ Q which, in equation form, is specified by

M(x) =
(2x+ 5)2

6
for all x ∈ Q

In our more formal set-up, therefore, we can define a function M : I → O by specify-
ing:

� a set I of all inputs;

� a set O of potential outputs; and

� a deterministic[f] algorithm which describes how an input x ∈ I is transformed
into an output M(x) ∈ O.

That is, the domain is the set I of all possible ‘inputs’, the codomain is a set O
containing all the possible ‘outputs’, and the function M is a rule specifying how an
input is associated with the corresponding output.

For now, we will use algorithmic specifications of functions only sparingly—this is
because it is much harder to make formal what is meant by an ‘algorithm’, and it is
important to check that a given algorithm is deterministic.

• Graphs. Given sets X and Y , each function X → Y is uniquely determined by its
graph (see Definition 2.3.12), which is a particular subset of X×Y , thought of as the
set of all ‘input-output’ pairs of the function—this equivalence will be the content of
Theorem 2.3.15. The elements of the graph G of a function f are pairs (x, y), with
x ∈ X and y ∈ Y , and the assertion that (x, y) ∈ G will be equivalent to the assertion
that f(x) = y.

[f]The word ‘deterministic’ just means that the algorithm always produces the same output on a single
input.
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Definition 2.3.12
Let f : X → Y be a function. The graph of f is the subset Gr(f) ⊆ X × Y (LATEX
code: \mathrm{Gr}) defined by

Gr(f) = {(x, f(x)) | x ∈ X} = {(x, y) ∈ X × Y | y = f(x)}

Example 2.3.13
Given a (sufficiently well-behaved) function f : R → R, we can represent Gr(f) ⊆
R× R by plotting it on a pair of axes using Cartesian coordinates in the usual way.
For example, if f is defined by f(x) = x

2 for all x ∈ R, then its graph

Gr(f) =

{(
x,
x

2

) ∣∣∣∣ x ∈ R
}

can be represented by graph plot in Figure 2.1.

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−3

−2

−1

1

2

3

Figure 2.1: Graph (in blue) of the function f : R→ R defined by f(x) = x
2 for all x ∈ R

C

Exercise 2.3.14
Find a function f : Z→ Z whose graph is equal to the set

{. . . , (−2,−5), (−1,−2), (0, 1), (1, 4), (2, 7), (3, 10), . . . }

C
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Well-definedness

We must be careful when specifying functions that what we write really does define a
function! This correctness of specification is known as well-definedness.

There are three things to check when it comes to well-definedness of a function f : X → Y ,
namely totality, existence and uniqueness:

• Totality. A value f(x) should be specified for each x ∈ X.

• Existence. For each x ∈ X, the specified value f(x) should actually exist, and
should be an element of Y .

• Uniqueness. For each x ∈ X, the specified value f(x) should refer to only one
element of Y . That is, if x = x′ ∈ X then we should have f(x) = f(x′). This issue
usually arises when elements of X can be described in different ways.

When specifying a function, you should justify each of these components of well-definedness
unless they are extremely obvious. You will probably find that, in most cases, the only
component in need of justification is uniqueness, but keep all three in mind.

Theorem 2.3.15 below provides a way of verifying that a function is well-defined by char-
acterising their graphs.

Theorem 2.3.15
Let X and Y be sets. A subset G ⊆ X × Y is the graph of a function if and only if

∀x ∈ X, ∃!y ∈ Y, (x, y) ∈ G

Proof. (⇒). Suppose G ⊆ X × Y is the graph of a function, say G = Gr(f) for some
f : X → Y . Then for each x ∈ X, it follows from well-definedness of f that f(x) is the
unique element y ∈ Y for which (x, y) ∈ G. That is, (x, f(x)) ∈ G, and if y ∈ Y with
(x, y) ∈ G, then y = f(x).

(⇐). Suppose G ⊆ X × Y is satisfies ∀x ∈ X, ∃!y ∈ Y, (x, y) ∈ G. Define a function
f : X → Y by, for each x ∈ X, defining the value f(x) to be the unique element y ∈ Y
for which (x, y) ∈ G. Well-definedness of f is then immediate from our assumption of the
existence and uniqueness of such a value of y for each x ∈ X.

Example 2.3.16
The set G defined by

G = {(1, red), (2, red), (3, green)}
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is the graph of a function f : {1, 2, 3} → {red, green, blue}. The function f is defined by

f(1) = red, f(2) = red, f(3) = green

However, G is not the graph of a function {1, 2, 3, 4} → {red, green, blue}, since G contains
no elements of the form (4, y) for y ∈ {red, green, blue}. Moreover, the set G′ defined by

G′ = {(1, red), (2, red), (2, blue), (3, green)}

does not define the graph of a function {1, 2, 3} → {red, green, blue}, since there is not a
unique element of the form (2, y) in G′—rather, there are two of them! C

Exercise 2.3.17
For each of the following specifications of sets X, Y , G, determine whether or not G is the
graph of a function from X to Y .

(a) X = R, Y = R, G = {(a, a2) | a ∈ R};

(b) X = R, Y = R, G = {(a2, a) | a ∈ R};

(c) X = R>0, Y = R>0, G = {(a2, a) | a ∈ R}, where R>0 = {x ∈ R | x > 0};

(d) X = Q, Y = Q, G = {(x, y) ∈ Q×Q | xy = 1}.

(e) X = Q, Y = Q, G = {(a, a) | a ∈ Z};

C

Aside
In light of Theorem 2.3.15, some people choose to define functions X → Y as particular
subsets of X × Y—that is, they identify functions with their graphs. This is particularly
useful when studying the logical foundations of mathematics. We avoid this practice here,
because it is not conceptually necessary, and it would preclude other possible ways of
encoding functions. C

We will now look at some more examples (and non-examples) of functions.

Example 2.3.18
Example 2.3.3 gives a prime example of a function: it says that for every positive real
number a there is a unique positive real number b such that b2 = a. This unique b
is precisely the positive square root

√
a of a. Writing R>0 for the set of positive real

numbers, we have thus established that taking the positive square root defines a function
R>0 → R>0. C

There is a class of functions called identity functions that, despite being very simple, are
so important that we will give them a numbered definition!
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Definition 2.3.19
Let X be a set. The identity function on X is the function idX : X → X (LATEX code:
\mathrm{id} X) defined by idX(x) = x for all x ∈ X.

You should convince yourself that the specification of idX given in Definition 2.3.19 is
well-defined.

Another interesting example of a function is the empty function, which is useful in coming
up with counterexamples and proving combinatorial identities (see Section 4.2).

Definition 2.3.20
Let X be a set. The empty function with codomain X is the (unique!) function ∅→ X.
It has no values, since there are no elements of its domain.

Again, you should convince yourself that this specification is well-defined. Conceptually,
convincing yourself of this is not easy; but writing down the proof of well-definedness is
extremely easy—you will find that there is simply nothing to prove!

Example 2.3.21
Define f : R → R by the equation f(x)2 = x for all x ∈ R. This is not well-defined for a
few reasons. First, if x < 0 then there is no real number y such that y2 = x, so for x < 0
there are no possible values of f(x) in the codomain of f , so existence fails. Second, if
x > 0 then there are in fact two real numbers y such that y2 = x, namely the positive
square root

√
x and the negative square root −

√
x. The specification of f does not indicate

which of these values to take, so uniqueness fails.

Notice that the function r : R>0 → R>0 from Example 2.3.10 is (well-)defined by the
equation r(x)2 = x for all x ∈ R>0. This illustrates why it is very important to specify the
domain and codomain when defining a function. C

Exercise 2.3.22
Which of the following specifications of functions are well-defined?

(a) g : Q→ Q defined by the equation (x+ 1)g(x) = 1 for all x ∈ Q;

(b) h : N→ Q defined by (x+ 1)h(x) = 1 for all x ∈ N;

(c) k : N→ N defined by (x+ 1)k(x) = 1 for all x ∈ N;

(d) ` : N→ N defined by `(x) = `(x) for all x ∈ N.
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Under what conditions on sets X and Y is a function i : X ∪ Y → {0, 1} defined by

i(z) =

{
0 if z ∈ X
1 if z ∈ Y

well-defined? C

Composition of functions

In our section on sets, we talked about various operations that can be performed on sets—
union, intersection, and so on. There are also operations on functions, by far the most
important of which is composition. To understand how composition works, let’s revisit the
algorithmically defined function M : Q→ Q from page 118:

multiply by 2 → add 5 → square the result → divide by 6

The function M is, in some sense, a sequence of functions, performed one-by-one until the
desired result is reached. This is precisely composition of functions.

Definition 2.3.23
Given functions f : X → Y and g : Y → Z, their composite g ◦ f (LATEX code: g \circ
f) (read ‘g composed with f ’ or ‘g after f ’ or even just ‘g f ’) is the function g ◦ f : X → Z
defined by

(g ◦ f)(x) = g(f(x)) for all x ∈ X

Intuitively, g ◦f is the function resulting from first applying f , and then applying g, to the
given input.

Common error
Function composition is in some sense written ‘backwards’: in the expression g ◦ f , the
function which is applied first is written last—there is a good reason for this: the argument
to the function is written after the function! However, this mis-match often trips students
up on their first exposure to function composition, so be careful! C

Example 2.3.24
The function M from page 118 can be defined as the composite

M = ((k ◦ h) ◦ g) ◦ f

where
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• f : Q→ Q is defined by f(x) = 2x for all x ∈ Q;

• g : Q→ Q is defined by g(x) = x+ 5 for all x ∈ Q;

• h : Q→ Q is defined by h(x) = x2 for all x ∈ Q;

• k : Q→ Q is defined by k(x) = x
6 for all x ∈ Q.

C

Exercise 2.3.25
Let f, g, h, k : Q → Q be as in Exercise 2.3.24. Compute equations defining the following
composites:

(a) f ◦ g;

(b) g ◦ f ;

(c) ((f ◦ g) ◦ h) ◦ k;

(d) f ◦ (g ◦ (h ◦ k));

(e) (g ◦ g) ◦ (g ◦ g).

C

Example 2.3.26
Let f : X → Y be any function. Then

idY ◦ f = f = f ◦ idX

To see this, let x ∈ X. Then

(idY ◦ f)(x) = idY (f(x)) by definition of composition

= f(x) by definition of idY

= f(idX(x)) by definition of idX

= (f ◦ idX)(x) by definition of composition

Equality of the three functions in question follows. C

Exercise 2.3.27
Prove that composition of functions is associative, that is, if f : X → Y , g : Y → Z and
h : Z →W are functions, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f : X →W

As a consequence of associativity, when we want to compose more than two functions,
it doesn’t matter what order we compose the functions in. As such, we can just write
h ◦ g ◦ f . C
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Exercise 2.3.28
Let f : X → Y and g : Z → W be functions, and suppose that Y $ Z. Note that there is
a function h : X →W defined by h(x) = g(f(x)) for all x ∈ X. Write h as a composite of
functions involving f and g. C

Images and preimages

Definition 2.3.29
Let f : X → Y be a function and let U ⊆ X. The image of U under f is the subset
f [U ] ⊆ Y (also written f∗(U) (LATEX code: f *) or even just f(U)) is defined by

f [U ] = {f(x) | x ∈ U} = {y ∈ Y | ∃x ∈ U, y = f(x)}

That is, f [U ] is the set of values that the function f takes when given inputs from U .
The image of f is the image of the entire domain, i.e. the set f [X].

Example 2.3.30
Let f : R→ R be defined by f(x) = x2. The image of f is the set R>0 of all nonnegative
real numbers. Let’s prove this:

• (f [R] ⊆ R>0). Let y ∈ f [R]. Then y = x2 for some x ∈ R. But x2 > 0, so we must
have y ∈ R>0, as required.

• (R>0 ⊆ f [R]). Let y ∈ R>0. Then
√
y ∈ R, and y = (

√
y)2 = f(

√
y). Hence y ∈ f [R],

as required.

We have shown by double containment that f [R] = R>0. C

Exercise 2.3.31
For each of the following functions f and subsets U of their domain, describe the image
f [U ].

(a) f : Z→ Z defined by f(n) = 3n, with U = N;

(b) f : X → X ×X (where X is any set) defined by f(x) = (x, x) with U = X;

(c) f : {a, b, c} → {1, 2, 3} defined by f(a) = 1, f(b) = 3 and f(c) = 1, with U = {a, b, c}.

C

Exercise 2.3.32
Prove that f [∅] = ∅ for all functions f . C
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Example 2.3.33
Let f : X → Y be a function and let U, V ⊆ X. Then f [U ∩V ] ⊆ f [U ]∩ f [V ]. To see this,
let y ∈ f [U ∩ V ]. Then y = f(x) for some x ∈ U ∩ V . By definition of intersection, x ∈ U
and x ∈ V . Since x ∈ U and y = f(x), we have y ∈ f [U ]; likewise, since x ∈ V , we have
y ∈ f [V ]. But then by definition of intersection, we have y ∈ f [U ] ∩ f [V ]. C

Exercise 2.3.34
Let f : X → Y be a function and let U, V ⊆ X. We saw in Example 2.3.33 that f [U ∩V ] ⊆
f [U ] ∩ f [V ]. Determine which of the following is true, and for each, provide a proof of its
truth or falsity:

(a) f [U ] ∩ f [V ] ⊆ f [U ∩ V ];

(b) f [U ∪ V ] ⊆ f [U ] ∪ f [V ];

(c) f [U ] ∪ f [V ] ⊆ f [U ∪ V ].

C

Definition 2.3.35
Let f : X → Y be a function and let V ⊆ Y . The preimage of V under f is the subset
f−1[V ] (LATEX code: f^{-1}) (also written f∗(V ) (LATEX code: f^*)) is defined by

f−1[V ] = {x ∈ X | f(x) ∈ V } = {x ∈ X | ∃y ∈ V, f(x) = y}

That is, f−1[V ] is the set of all the elements of its domain X that the function f sends to
elements of V .

Example 2.3.36
Let f : Z→ Z be the function defined by f(x) = x2 for all x ∈ X. Then

• f−1[{1, 4, 9}] = {−3,−2,−1, 1, 2, 3};

• f−1[{1, 2, 3, 4, 5, 6, 7, 8, 9}] = {−3,−2,−1, 1, 2, 3} too, since the other elements of [9]
are not perfect squares, and hence not of the form f(x) for x ∈ Z;

• f−1[N] = Z, since for any x ∈ Z we have f(x) > 0, so that f(x) ∈ N.

C

Example 2.3.37
Let f : X → Y be a function, let U ⊆ X and let V ⊆ Y . Then f [U ] ⊆ V if and only if
U ⊆ f−1[V ]. The proof is as follows.

(⇒). Suppose f [U ] ⊆ V ; we’ll prove U ⊆ f−1[V ]. So fix x ∈ U . Then f(x) ∈ f [U ]
by definition of image. But then f(x) ∈ V by our assumption that f [U ] ⊆ V , and so
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x ∈ f−1[V ] by definition of preimage. Since x was arbitrarily chosen from U , it follows
that U ⊆ f−1[V ].

(⇐). Suppose U ⊆ f−1[V ]; we’ll prove f [U ] ⊆ V . So fix y ∈ f [U ]. Then y = f(x) for some
x ∈ U by definition of image. But then x ∈ f−1[V ] by our assumption that U ⊆ f−1[V ],
and so f(x) ∈ V by definition of preimage. But y = f(x), so y ∈ V , and since y was
arbitrarily chosen, it follows that f [U ] ⊆ V . C

The following exercise demonstrates that preimages interact very nicely with the basic set
operations (intersection, union and relative complement):

Exercise 2.3.38
Let f : X → Y be a function and let U, V ⊆ Y . Prove that

f−1[U∩V ] = f−1[U ]∩f−1[V ] and f−1[U∪V ] = f−1[U ]∪f−1[V ] and f−1[Y \U ] = X\f−1[U ]

C

Exercise 2.3.39
Let f : X → Y be a function. Prove that f−1[∅] = ∅ and f−1[Y ] = X. C

Exercise 2.3.40
Let f : X → Y be a function. Provide a proof of the truth or falsity of each of the following
statements:

• U ⊆ f−1[f [U ]] for all U ⊆ X;

• f−1[f [U ]] ⊆ U for all U ⊆ X;

• V ⊆ f [f−1[V ]] for all V ⊆ Y ;

• f [f−1[V ]] ⊆ V for all V ⊆ Y .

C
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Section 3.1

Division

This section introduces the notion of divisibility. As we have already mentioned, it is not
always the case that one integer can divide another. As you read through this section, note
that we never use fractions; everything we do is internal to Z, and does not require that
we ‘spill over’ to Q at any point. This will help you when you study ring theory in the
future, and is a good practice to mimic in your own work.

The following theorem, called the division theorem, is the crux of everything that is to
follow.

Theorem 3.1.1 (Division theorem)
Let a, b ∈ Z with b 6= 0. There exist unique q, r ∈ Z such that

a = qb+ r and 0 6 r < |b|

Strategy. Let’s look at the simple case when a > 0 and b > 0. We can always find q, r such
that a = qb+ r, for example q = 0 and r = a. Moreover, by increasing q we can reduce r,
since

qb+ r = (q + 1)b+ (r − b)
We will keep doing this until the ‘remainder’ is as small as it can be without being negative.
As an example, consider the case when a = 14 and b = 5. This procedure gives

14 = 0× 5 + 14

= 1× 5 + 9

= 2× 5 + 4 ← least nonnegative remainder

= 3× 5 + (−1)

= · · ·

This procedure shows that in this case we should take q = 2 and r = 4, since 14 = 2×5+4
and 0 6 4 < |5|.

We can show that such a descending sequence of remainders terminates using the well-
ordering principle, and then we must argue that the quotient and remainder that we obtain
are unique.

? Proof. We may assume that b > 0: if not, replace b by −b and q by −q. We may also
assume that a > 0. Otherwise, replace a by −a, q by −(q + 1) and r by b− r.
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Thus, what follows assumes that a > 0 and b > 0.

• Existence. We prove that such integers q, r exist by the well-ordering principle.
Namely, we define a sequence (rn)n∈N such that a = nb+ rn and r0 > r1 > r2 > · · · ,
and use this sequence to find the values of q, r.

� Let r0 = a. Then a = 0b+ r0, as required.

� Suppose rn has been defined, and let rn+1 = rn − b. Then

(n+ 1)b+ rn+1 = (n+ 1)b+ rn − b
= nb+ b+ rn − b
= nb+ r = a

Since b > 0, we must have rn+1 < rn for all n.

Let R = N ∩ {rn | n ∈ N}. That is, R is the set of terms of the sequence which are
non-negative. Since r0 = a > 0, we have that r0 ∈ R and hence R is inhabited. By
the well-ordering principle, R has a least element rk for some k ∈ N.

Define q = k and r = rk. By construction we have a = qb+r and r > 0, so it remains
to show that r < b. Well, if r > b then r − b > 0, but r − b = rk+1, so this would
imply rk+1 ∈ R, contradicting minimality of r. Hence r < b, so q, r are as required.

• Uniqueness. Suppose q′, r′ also satisfy a = q′b+ r′ and 0 6 r′ < b. If we can show
that r′ = r then this proves that q = q′: indeed, if qb + r = q′b + r then we can
subtract r and then divide by b, since b > 0.

First note that q′ > 0. If q′ < 0 then q′ 6 −1, so

a = q′b+ r′ 6 −b+ r′

and hence r′ > a + b > b since a > 0. This contradicts the assumption that r < b.
So q′ > 0.

Since q′ > 0, we also know that a = q′b+ rq′ , and hence r′ = rq′ ∈ R. By minimality
of r we have r 6 r′. It remains to show that r = r′. If not then r < r′. Thus

qb+ r = q′b+ r′ > q′b+ r ⇒ qb > q′b ⇒ q > q′

and hence q = q′ + t for some t > 1. But then

q′b+ r′ = a = qb+ r = (q′ + t)b+ r = q′b+ (tb+ r)

so r′ = tb+ r > b, contradicting r′ < b. So r = r′ as desired, and hence q = q′.

At long last, we are done.
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Definition 3.1.2
Let a, b ∈ Z with b 6= 0, and let q, r be the unique integers such that

a = qb+ r and 0 6 r < |b|

We say q is the quotient and r is the remainder of a divided by b.

Example 3.1.3
Some examples of division include:

14 = 2× 5 + 4, −14 = −3× 5 + 1, 15 = 3× 5 + 0

C

Definition 3.1.4
Let a, b ∈ Z. We say b divides a, or that b is a divisor (or factor) of a, if there exists
q ∈ Z such that a = qb. To denote the fact that b divides a we write b | a (LATEX code:
\mid). For the negation ¬(b | a) write b - a (LATEX code: \nmid).

Thus, when b 6= 0, saying b | a is equivalent to saying that the remainder of a divided by b
is 0.

Example 3.1.5
5 divides 15 since 15 = 3× 5. However, 5 does not divide 14: we know that the remainder
of 14 divided by 5 is 4, not 0—and it can’t be both since we proved in the division theorem
that remainders are unique! C

Exercise 3.1.6
Show that if a ∈ Z then 1 | a, −1 | a and a | 0. For which integers a does a | 1? For which
integers a does 0 | a? C

We now introduce the very basic notion of a unit. This notion is introduced to rule out
trivialities. Units become interesting when talking about general rings, but in Z, the units
are very familiar.

Definition 3.1.7
Let u ∈ Z. We say u is a unit if u | 1; that is, u is a unit if there exists v ∈ Z such that
uv = 1.

Proposition 3.1.8
The only units in Z are 1 and −1.
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Proof. First note that 1 and −1 are units, since 1 ·1 = 1 and (−1) · (−1) = 1. Now suppose
that u ∈ Z is a unit, and let v ∈ Z be such that uv = 1. Certainly u 6= 0, since 0v = 0 6= 1.
If u > 1 or u < −1 then v = 1

u 6∈ Z. So we must have u ∈ {−1, 1}.

Exercise 3.1.6 shows that −1, 0 and 1 are, from the point of view of divisibility, fairly
trivial. For this reason, most of the results we discuss regarding divisibility will concern
non-zero non-units, i.e. all integers except −1, 0 or 1.

Greatest common divisors

Definition 3.1.9
Let a, b ∈ Z. An integer d is a greatest common divisor of a and b if:

(a) d | a and d | b;

(b) If q is another integer such that q | a and q | b, then q | d.

Example 3.1.10
2 is a greatest common divisor of 4 and 6; indeed:

(a) 4 = 2× 2, and 6 = 3× 2, so 2 | 4 and 2 | 6;

(b) Suppose q | 4 and q | 6. The divisors of 4 are ±1,±2,±4 and the divisors of 6 are
±1, ±2, ±3, ±6. Since q divides both, it must be the case that q ∈ {−2,−1, 1, 2}; in
any case, q | 2.

Likewise, −2 is a greatest common divisor of 4 and 6. C

Exercise 3.1.11
There are two greatest common divisors of 6 and 15; find both. C

We will now prove that greatest common divisors exist—that is, any two integers have a
greatest common divisor—and that they are unique up to sign.

Theorem 3.1.12
Every pair of integers a, b has a greatest common divisor.

Proof. First note that if a = b = 0, then 0 is a greatest common divisor for a and b.
Moreover, we may take a, b to be non-negative, since divisibility is insensitive to sign. So
suppose that a, b > 0 and that a, b are not both zero.
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Define a set X ⊆ Z by

X = {au+ bv | u, v ∈ Z, au+ bv > 0}

That is, X is the set of positive integers of the form au+ bv.

X is inhabited. To see this, note that a2 > 0 or b2 > 0 since a 6= 0 or b 6= 0, so letting
u = a and v = b in the expression au+ bv, we see that

au+ bv = a2 + b2 > 0 ⇒ a2 + b2 ∈ X

By the well-ordering principle, X has a least element d, and by definition of X there exist
u, v ∈ Z such that d = au+ bv.

We will prove that d is a greatest common divisor for a and b.

• d | a. If a = 0, then this is immediate, so suppose that a > 0. Let q, r ∈ Z be such
that

a = qd+ r and 0 6 r < d

Now a = a · 1 + b · 0, so a ∈ X, and hence d 6 a.

r = a− qd = a− q(au+ bv) = a(1− qu) + b(−qv)

If r > 0 then this implies that r ∈ X; but this would contradict minimality of d,
since r < d. So we must have r = 0 after all.

• d | b. The proof of this is identical to the proof that d | a.

• Suppose q is an integer dividing both a and b. Then q | au + bv by Exercise 1.1.16.
Since au+ bv = d, we have q | d.

So d is a greatest common divisor of a and b after all.

Exercise 3.1.13
Let a, b ∈ Z. If d and d′ are two greatest common divisors of a and b, then either d = d′ or
d = −d′. C

Aside
A consequence of Theorem 3.1.12 and Exercise 3.1.13 is that every pair of integers has a
unique non-negative greatest common divisor! Written symbolically, we can say

∀(a, b) ∈ Z× Z, ∃!d ∈ Z,
(

d > 0 and d is a greatest
common divisor for a and b

)
As discussed in Section 2.3, since this is a formula of the form ‘for all . . . there exists a
unique . . . ’, this defines a function gcd : Z× Z→ Z. We won’t explicitly refer to the fact
that gcd is a function; rather, we’ll just concern ourselves with its values, as in Notation
3.1.14. C
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Exercise 3.1.13 justifies our use of the following notation to refer to greatest common
divisors.

Notation 3.1.14
Let a, b ∈ Z. Denote by gcd(a, b) (LATEX code: \mathrm{gcd}) the (unique!) non-negative
greatest common divisor of a and b.

Example 3.1.15
In Example 3.1.10, we saw that both 2 and −2 are greatest common divisors of 4 and 6.
Using Notation 3.1.14, we can now write gcd(4, 6) = 2. C

Exercise 3.1.16
For each n ∈ Z, let Dn ⊆ Z be the set of divisors of n. Prove that Da ∩Db = Dgcd(a,b) for
all a, b ∈ Z. C

Our goal for the rest of this subsection is to investigate the behaviour of greatest common
divisors, find out how to compute them, and look into the implications they have for
solutions to certain kinds of equations.

Theorem 3.1.17
Let a, b, q, r ∈ Z, and suppose that a = qb+ r. Then

gcd(a, b) = gcd(b, r)

Proof. Let d = gcd(a, b). We check that d satisfies the conditions required to be a greatest
common divisor of b and r.

Note that d | a and d | b, so let s, t ∈ Z be such that a = sd and b = td.

• d | b by definition, and d | r since

r = a− qb = sd− qtd = (s− qt)d

• Suppose d′ | b and d′ | r; say b = ud′ and r = vd′ with u, v ∈ Z. Then d′ | a, since

a = qb+ r = qud′ + vd′ = (qu+ v)d′

so d′ | d since d = gcd(a, b).

So d is a greatest common divisor of b and r. Since d > 0, the result is shown.

Combined with the division theorem (Theorem 3.1.1), Theorem 3.1.17 gives a relatively
fast algorithm for computing the greatest common divisor of two integers, known as the
Euclidean algorithm.
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Proof tip
Euclidean algorithm. Let a, b ∈ Z. To find gcd(a, b), proceed as follows.

• Set r0 = |a| and r1 = |b|.

• Given rn−2 and rn−1, define rn to be the remainder of rn−2 divided by rn−1.

• Stop when rn = 0; then rn−1 = gcd(a, b).

C

Example 3.1.18
We will find the greatest common divisor of 148 and 28.

148 = 5× 28 + 8

28 = 3× 8 + 4

8 = 2× 4 + 0 ← Stop!

Hence gcd(148, 28) = 4. Here the sequence of remainders is given by:

r0 = 148, r1 = 28, r2 = 8, r3 = 4, r4 = 0

C

Example 3.1.19
The Euclidean algorithm works surprisingly quickly, even for relatively large numbers.
Consider the problem of computing gcd(1311, 5757) for example:

5757 = 4× 1311 + 513

1311 = 2× 513 + 285

513 = 1× 285 + 228

285 = 1× 228 + 57

228 = 4× 57 + 0 ← Stop!

Hence gcd(1311, 5757) = 57. Here the sequence of remainders is given by:

r0 = 5757, r1 = 1311, r2 = 513, r3 = 285, r4 = 228, r5 = 57, r6 = 0

C

Example 3.1.20
Here’s an example where one of the numbers is negative: we compute the value of gcd(−420, 76):

−420 = (−6)× 76 + 36

76 = 2× 36 + 4

36 = 9× 4 + 0 ← Stop!

Hence gcd(−420, 76) = 4. C
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Exercise 3.1.21
Use the Euclidean algorithm to compute the greatest common divisors of the following
pairs of integers

(12, 9), (100, 35), (7125, 1300), (1010, 101010), (−4, 14)

C

The following theorem will be useful when we study modular arithmetic in Section 3.3; it
is called a ‘lemma’ for historical reasons, and is really an important result in its own right.

Theorem 3.1.22 (Bézout’s lemma)
Let a, b, c ∈ Z, and let d = gcd(a, b). The equation

ax+ by = c

has a solution (x, y) ∈ Z× Z if and only if d | c.

Proof. (⇒) Write a = a′d and b = b′d, for a′, b′ ∈ Z. If there exist x, y ∈ Z such that
ax+ by = c, then

c = ax+ by = a′dx+ b′dy = (a′x+ b′y)d

and so d | c.

(⇐) Suppose d | c, and let c = kd for some k ∈ Z.

If c = 0, then a solution is x = y = 0. If c < 0, then ax + by = c if and only if
a(−x) + b(−y) = −c; so we may assume that c > 0.

We proved in Theorem 3.1.12 that a greatest common divisor of a and b is a least element
of the set

X = {au+ bv | u, v ∈ Z, au+ bv > 0}
So let u, v ∈ Z be such that au+ bv = d. Then

a(ku) + b(kv) = k(au+ bv) = kd = c

and so letting x = ku and y = kv, we see that the equation ax + by = c has a solution
(x, y) ∈ Z× Z.

Bézout’s lemma completely characterises when the equation ax + by = c has a solution.
An easy generalisation of Bézout’s lemma provides a complete characterisation of when
solutions to linear Diophantine equations exist, that is equations of the form

ax+ by = c
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where a, b, c ∈ Z. We will soon develop an algorithm for computing all solutions to these
equations.

Example 3.1.23
Here are some examples of applications of Bézout’s lemma.

• Consider the equation 1311x+ 5757y = 12963. We computed in Example 3.1.19 that
gcd(1311, 5757) = 57. But 57 - 12963 since 12963 = 227 × 57 + 24. By Bézout’s
lemma, the equation 1311x+ 5757y = 12963 has no integer solutions.

• For fixed z, the equation 4u + 6v = z has solutions exactly when z is even, since
gcd(4, 6) = 2.

• For fixed a, b, the equation au + bv = 0 always has solution. Indeed, setting u = b
and v = −a gives a solution; but we knew one had to exist since by Exercise 3.1.6
we know that d | 0 for all d ∈ Z.

C

Exercise 3.1.24
Which of the following equations have solutions?

(a) 12u+ 9v = −18

(b) 12u+ 9v = 1

(c) 100u+ 35v = 125

(d) 7125u+ 1300v = 0

(e) 1010u+ 101010v = 1010101010101010

(f) 14u− 4v = 12

C

Coprimality

Definition 3.1.25
Let a, b ∈ Z. We say a and b are coprime (or relatively prime), and write a ⊥ b (LATEX
code: \perp) (read ‘a is coprime to b’), if gcd(a, b) = 1.

Example 3.1.26
4 ⊥ 9. To see this, note that if d | 4 then d ∈ {−4,−2,−1, 1, 2, 4}, and if d | 9 then
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d ∈ {−9,−3,−1, 1, 3, 9}. Hence if d | 4 and d | 9, then d = 1 or d = −1. It follows that
gcd(4, 9) = 1. C

Exercise 3.1.27
Which integers in the set [15] are coprime to 15? C

Proposition 3.1.28
Let a, b ∈ Z. The following are equivalent:

(1) a and b are coprime;

(2) If d ∈ Z with d | a and d | b, then d is a unit.

Proof. We prove that condition (1) implies condition (2), and vice versa.

• (1)⇒(2). Suppose a and b are coprime, and fix d ∈ Z with d | a and d | b. Then
d | gcd(a, b) = 1, so d is a unit.

• (2)⇒(1). Suppose condition (2) above holds. We prove that 1 satisfies the conditions
required to be a greatest common divisor of a and b. The fact that 1 | a and 1 | b is
automatic; and the fact that if d | a and d | b implies d | 1 is precisely the condition
(2) that we are assuming.

Hence the two conditions are equivalent.

Proposition 3.1.29
Let a and b be integers, not both zero, and let d = gcd(a, b). The integers a

d and b
d are

coprime.

Exercise 3.1.30
Prove Proposition 3.1.29. C

The following corollary is a specialisation of Bézout’s lemma to the case when a and b are
coprime.

Corollary 3.1.31
Let a, b ∈ Z. The equation au + bv = 1 has a solution if and only if a and b are coprime.
Moreover, if a and b are coprime, then the equation au+bv = z has a solution for all z ∈ Z.

Proof. By Bézout’s lemma (Theorem 3.1.22), the equation au + bv = 1 has a solution if
and only if gcd(a, b) | 1. But the only positive divisor of 1 is 1, so a solution exists if and
only if gcd(a, b) = 1, which is precisely the assertion that a and b are coprime.
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If a and b are coprime, then 1 = gcd(a, b) | z for all z ∈ Z. So by Bézout’s lemma again,
the equation au+ bv = z has a solution for all z ∈ Z.

A useful consequence of Bézout’s lemma is the following result:

Proposition 3.1.32
Let a, b, c ∈ Z. If a and b are coprime and a | bc, then a | c.

Proof. By Bézout’s lemma (Theorem 3.1.22) there exist integers u and v such that au+bv =
1. Multiplying by c gives acu+ bcv = c. Since a | bc, we can write bc = ka for some k ∈ Z,
and so acu+ kav = c. But then

(cu+ kv)a = c

which proves that a | c.

Linear Diophantine equations

We have now seen two important results:

• The Euclidean algorithm, which was a procedure for computing the greatest com-
mon divisor of two integers.

• Bézout’s lemma, which provides a necessary and sufficient condition for equations
of the form ax+ by = c to have an integer solution.

We will now develop the reverse Euclidean algorithm, which provides a method for
computing a solutions to (bivariate) linear Diophantine equations, when such a solution
exists. Then we will prove a theorem that characterises all integer solutions in terms of a
given solution.

Example 3.1.33
Suppose we want to find integers x and y such that 327x + 114y = 18. Running the
Euclidean algorithm yields that gcd(327, 114) = 3 — see below. For reasons soon to
become apparent, we rearrange each equation to express the remainder on its own.

327 = 2× 114 + 99 ⇒ 99 = 327− 2× 114 (1)

114 = 1× 99 + 15 ⇒ 15 = 114− 1× 99 (2)

99 = 6× 15 + 9 ⇒ 9 = 99− 6× 15 (3)

15 = 1× 9 + 6 ⇒ 6 = 15− 1× 9 (4)

9 = 1× 6 + 3 ⇒ 3 = 9− 1× 6 (5)

6 = 2× 3 + 0
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We can then express 3 in the form 327u+ 114v by successively substituting the equations
into each other:

• Equation (5) expresses 3 as a linear combination of 6 and 9. Substituting equation
(4) yields:

3 = 9− 1× (15− 1× 9) ⇒ 3 = 2× 9− 1× 15

• This now expresses 3 as a linear combination of 9 and 15. Substituting equation (3)
yields:

3 = 2× (99− 6× 15)− 1× 15 ⇒ 3 = (−13)× 15 + 2× 99

• This now expresses 3 as a linear combination of 15 and 99. Substituting equation (2)
yields:

3 = (−13)× (114− 1× 99) + 2× 99 ⇒ 3 = 15× 99− 13× 114

• This now expresses 3 as a linear combination of 99 and 114. Substituting equation
(1) yields:

3 = 15× (327− 2× 114)− 13× 114 ⇒ 3 = (−43)× 114 + 15× 327

Now that we’ve expressed 3 as a linear combination of 114 and 327, we’re nearly done: we
know that 18 = 6× 3, so multiplying through by 6 gives

18 = (−258)× 114 + 90× 327

Hence (x, y) = (90,−258) is a solution to the equation 327x+ 114y = 18. C

Proof tip
Let a, b ∈ Z and let d = gcd(a, b). To find integers x, y such that ax+ by = d:

(i) Run the Euclidean algorithm on the pair (a, b), keeping track of all quotients and
remainders.

(ii) Rearrange each equation of the form rn−2 = qnrn−1 + rn to isolate rn.

(iii) Substitute for the remainders rk in reverse order until gcd(a, b) is expressed in the
form ax+ by for some x, y ∈ Z.

This process is called the reverse Euclidean algorithm. C

Exercise 3.1.34
Find a solution (x, y) ∈ Z× Z to the equation 630x+ 385y = 4340. C
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Now that we have a procedure for computing one solution to the equation ax + by = c,
we need to come up with a procedure for computing all solutions. This can be done by
proving the following theorem.

Theorem 3.1.35
Let a, b, c ∈ Z, where a and b are not both zero. Suppose that x0 and y0 are integers such
that ax0 + by0 = c. Then, (x, y) ∈ Z×Z is another solution to the equation ax+ by = c if
and only if

x = x0 + k · b

gcd(a, b)
and y = y0 − k ·

a

gcd(a, b)

for some k ∈ Z.

Thus, as soon as we’ve found one solution (x, y) = (x0, y0) to the equation ax + by = c,
this theorem tells us what all other solutions must look like.

Proof of Theorem 3.1.35. We prove the two directions separately.

(⇒). First suppose that (x0, y0) is an integer solution to the equation ax + by = c. Let
k ∈ Z and let

x = x0 + k · b

gcd(a, b)
and y = y0 − k ·

a

gcd(a, b)

Then

ax+ by

= a

(
x0 + k · b

gcd(a, b)

)
+ b

(
y0 − k ·

a

gcd(a, b)

)
by definition of x and y

= (ax0 + by0) + ak · b

gcd(a, b)
− kb · a

gcd(a, b)
rearranging

= (ax0 + by0) +
kab− kab
gcd(a, b)

combining the fractions

= ax0 + by0 since kab− kab = 0

= c since (x0, y0) is a solution

so (x, y) is indeed a solution to the equation.

(⇐). First suppose that a ⊥ b. Fix a solution (x0, y0) to the equation ax+ by = c, and let
(x, y) be another solution. Then

a(x− x0) + b(y − y0) = (ax0 + by0)− (ax+ by) = c− c = 0
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so that

a(x− x0) = b(y0 − y)

Now a and b are coprime, so by Proposition 3.1.32, we have a | y0 − y and b | x − x0.
Let k, ` ∈ Z be such that x − x0 = kb and y0 − y = `a. Then substituting into the above
equation yields

a · kb = b · `a

and hence (k − `)ab = 0. Since ab 6= 0, we have k = `, so that

x = x0 + kb and y = y0 − ka

Now we drop the assumption that a ⊥ b. Let gcd(a, b) = d > 1. We know that d | c, by
Bézout’s lemma (Theorem 3.1.22), and so

a

d
x+

b

d
y =

c

d

is another linear Diophantine equations, and moreover a
d ⊥

b
d by Proposition 3.1.29. By

what we proved above, we have

x = x0 + k · b
d

and y = y0 − k ·
a

d

for some k ∈ Z. But this is exactly what we sought to prove!

Example 3.1.36
We know that (x, y) = (90,−258) is a solution to the equation 327x+ 114y = 18, and

327

gcd(327, 114)
=

327

3
= 109 and

114

gcd(327, 114)
=

114

3
= 38

so this theorem tells us that (x, y) ∈ Z× Z is a solution to the equation 327x+ 114y = 18
if and only if

x = 90 + 38k and y = −258− 109k

for some k ∈ Z. C

Exercise 3.1.37
Find all integers x, y such that

630x+ 385y = 4340

C
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Least common multiples

You would be forgiven for wondering why so much of the foregoing section was devoted to
greatest common divisors, with no mention of least common multiples. We will now give
the latter some attention.

Definition 3.1.38
Let a, b ∈ Z. An integer m is a least common multiple of a and b if:

(a) a | m and b | m;

(b) If n is another integer such that a | n and b | n, then m | n.

In a sense that can be made precise, the definition of least common multiple is dual to
that of greatest common divisor (Definition 3.1.9).[a] This means that many properties of
greatest common divisors have corresponding ‘dual’ properties, which hold of least common
multiples. As such, we will not say much here about least common multiples, and that
which we do say is in the form of exercises.

Exercise 3.1.39
Let a, b ∈ Z. Prove that a and b have a least common multiple. Furthermore, prove that
least common multiples are unique up to sign, in the sense that if m,m′ are two least
common multiples of a and b, then m = m′ or m = −m′. C

As with greatest common divisors, Exercise 3.1.39 justifies the following definition.

Definition 3.1.40
Given a, b ∈ Z, denote by lcm(a, b) (LATEX code: \mathrm{lcm}) the non-negative least
common multiple of a and b.

Exercise 3.1.41
Let a, b ∈ Z. Prove that gcd(a, b) · lcm(a, b) = |ab|. C

[a]Specifically, we refer here to the dual of a preorder, i.e. a reflexive, transitive relation—see Chapter 5 for
more on this!
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Section 3.2

Prime numbers

Thinking of divisibility as a way of breaking down an integer, for example 12 = 2× 2× 3,
our goal now is to show that:

• There are numbers which are atomic, in the sense that they can’t be broken down
any further by division;

• . . . and every non-zero non-unit can be written as a product of these atomic numbers;

• . . . and this product is essentially unique.

There are a couple of fairly vague terms used here: ‘atomic’ and ‘essentially unique’. We
will soon make these precise; the atomic numbers will be the irreducible and prime numbers
(two notions which coincide for the integers), and ‘essentially unique’ will mean unique up
to reordering and multiplication by units.

Primes and irreducibles

Definition 3.2.1
Let p be a non-zero non-unit. We say p is prime if for all a, b ∈ Z, if p | ab then p | a or
p | b.

Example 3.2.2
Here are some examples of prime and non-prime numbers:

• 2 is prime. Suppose not; then there exist a, b ∈ Z such that 2 | ab but 2 divides
neither a nor b. Thus a and b are both odd, meaning that ab is odd. . . but this
contradicts the assumption that 2 | ab.

• 6 is not prime. Indeed, 6 | 2× 3 but 6 divides neither 2 nor 3.

C

Exercise 3.2.3
Using Definition 3.2.1, prove that 3 and 5 are prime and that 4 is not prime. C

Recall the definition of binomial coefficients (Definition 1.3.27).

Example 3.2.4
Let k ∈ Z with 0 < k < 5. We’ll show that 5 |

(
5
k

)
.
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Well, by Theorem 1.3.31 we know that

5! =

(
5

k

)
k!(5− k)!

By Theorem 1.3.31, we have

5× 4!︸ ︷︷ ︸
=5!

=

(
5

k

)
× 1× · · · × k︸ ︷︷ ︸

=k!

× 1× · · · × (5− k)︸ ︷︷ ︸
=(5−k)!

Since 5 is prime, it must divide one of the factors on the right-hand side of this equation.
Thus, either 5 divides

(
5
k

)
, or it divides ` for some 1 6 ` 6 k or 1 6 ` 6 5 − k. But

k < 5 and 5− k < 5, so it cannot divide any of these values of `—if it did, it would imply
5 6 ` 6 k or 5 6 ` 6 5− k, which is nonsense. Hence 5 must divide

(
5
k

)
. C

Exercise 3.2.5
Let p ∈ Z be a positive prime and let 0 < k < p. Show that p |

(
p
k

)
. C

Aside
Most people are introduced to primes with a definition along the lines of ‘p is prime if p has
exactly two positive divisors’. We have avoided this to elucidate the fact that the integers
together with their arithmetic structure are the canonical example of a mathematical object
called a ring. The notion of a prime element can be defined in any ring as in Definition
3.2.1. Secondly, these two definitions are equivalent in Z, but not in all rings. C

Definition 3.2.6
Let a be a non-zero non-unit. We say a is reducible if a = mn for some non-units m,n;
otherwise it is irreducible.

Proposition 3.2.7
A non-zero non-unit p is irreducible if and only if the only divisors of p are p, −p, 1 and
−1.

Proof. Suppose p is irreducible and that a | p. Then p = ab for some b ∈ Z. Since p is
irreducible, either a or b is a unit. If a is a unit then b = ±p, and if b is a unit then a = ±p.
So the only divisors of p are ±1 and ±p.

Conversely, suppose that the only divisors of p are ±1 and ±p, and let a, b ∈ Z with p = ab.
We want to prove that a or b is a unit. Since a | p, we have a ∈ {1,−1, p,−p}. If a = ±1,
then a is a unit; if a = ±p, then b = ±1, so that b is a unit. In any case, either a or b is a
unit, and hence p is irreducible.

Example 3.2.8
A couple of examples of reducible and irreducible numbers are:
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• 2 is irreducible: if 2 = mn then either m or n is even, otherwise we’d be expressing
an even number as the product of two odd numbers. We may assume m is even, say
m = 2k; then 2 = 2kn, so kn = 1 and hence n is a unit.

• 6 is reducible since 6 = 2× 3 and both 2 and 3 are non-zero non-units.

C

Exercise 3.2.9
Prove that if p ∈ Z is prime then p is irreducible. C

Lemma 3.2.10
Let a ∈ Z be a non-zero non-unit. Then there are irreducibles p1, . . . , pn such that a =
p1 × · · · × pn.

Proof. We may assume a > 0, since if a < 0 we can just multiply by −1.

We proceed by strong induction on a > 2. The base case has a = 2 since we consider only
non-units.

• (BC) We have shown that 2 is irreducible, so setting p1 = 2 yields a product of
primes.

• (IS) Let a > 2 and suppose that each integer k with 2 6 k 6 a has an expression as
a product of irreducibles. If a + 1 is irreducible then we’re done; otherwise we can
write a+ 1 = st, where s, t ∈ Z are non-zero non-units. We may assume further that
s and t are positive. Moreover, s < a+ 1 and t < a+ 1 since s, t > 2.

By the induction hypothesis, s and t have expressions as products of irreducibles.
Write

s = p1 × · · · × pm, t = q1 × · · · × qn

This gives rise to an expression of a as a product of irreducibles:

a = st = p1 × · · · × pm︸ ︷︷ ︸
=s

× q1 × · · · × qn︸ ︷︷ ︸
=t

By induction, we’re done.

Theorem 3.2.11
Let p ∈ Z. Then p is prime if and only if p is irreducible.

Proof. We prove the two directions separately.
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• Prime ⇒ irreducible. This was Exercise 3.2.9.

• Irreducible ⇒ prime. Suppose p is irreducible. Let a, b ∈ Z and suppose p | ab.
We need to show that p | a or p | b. It suffices to show that if p - a then p | b.
So suppose p - a. Let d = gcd(p, a). Since d | p and p is irreducible, we must have
d = 1 or d = p by Proposition 3.2.7. Since p - a and d | a, we must therefore have
d = 1.

By Bézout’s lemma (Theorem 3.1.22), there exist u, v ∈ Z such that au + pv = 1.
Multiplying by b gives abu + pbv = b. Since p | ab, there exists k ∈ Z such that
pk = ab. Then

b = abu+ pbv = pku+ pbv = p(ku+ bv)

so p | b, as required.

So we’re done.

Since primes and irreducibles are the same thing in Z, we will refer to them as ‘primes’,
unless we need to emphasise a particular aspect of them.

Prime factorisation

Having described prime numbers in two ways, each of which emphasises their nature of
being ‘unbreakable’ by multiplication, we will extend Lemma 3.2.10 to prove that every
integer can be expressed as a product of primes in an essentially unique way.

Theorem 3.2.12 (Fundamental theorem of arithmetic)
Let a ∈ Z be a non-zero non-unit. There exist primes p1, . . . , pk ∈ Z such that

a = p1 × · · · × pk

Moreover, this expression is essentially unique: if a = q1× · · · × q` is another expression of
a as a product of primes, then k = ` and, re-ordering the qi if necessary, for each i there is
a unit ui such that qi = uipi.

Proof. We showed that such a factorisation exists in Lemma 3.2.10, with the word ‘prime’
replaced by the word ‘irreducible’. It remains to prove (essential) uniqueness.

Let k be least such that there is an expression of a as a product of k primes, namely
a = p1×· · ·×pk. Let a = q1×· · ·×q` be any other such expression. We prove by induction
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on k that ` = k and, after re-ordering if necessary, for each i there is a unit ui such that
qi = uipi.

• (BC) If k = 1 then a = p1 is itself prime. Then we have p1 = q1 × · · · × q`. Since p1

is prime, p1 | qj for some j; by swapping q1 and qj we may take j = 1, so that p1 | q1.
By irreducibility of q1 we have q1 = u1p1 for some unit u1.

• (IS) Let k > 1 and suppose that any integer which can be expressed as a product
of k primes is (essentially) uniquely expressible in such a way. Suppose a has an
expression as a product of k + 1 primes, and that k + 1 is the least such number.
Suppose also that

a = p1 × · · · × pk × pk+1 = q1 × · · · × q`
Note that ` > k + 1. Since pk+1 is prime we must have pk+1 | qj for some j; by
swapping qj and q` if necessary, we may take j = `, so that pk+1 | q`. As before,
q` = uk+1pk+1 for some unit uk+1. Dividing through by pk+1 gives

p1 × · · · × pk = q1 × · · · × q`−1 × uk+1

Replacing q`−1 by q`−1uk+1, which is still prime, we can apply the induction hypo-
thesis to obtain k = ` − 1, so k + 1 = `, and, after reordering if necessary qi = uipi
for all i 6 k. Since this also holds for i = k + 1, we’re done.

By induction, we’re done.

Example 3.2.13
Here are some examples of numbers written as products of primes:

• 12 = 2× 2× 3. We could also write this as 2× 3× 2 or (−2)× (−3)× 2, and so on.

• 53 = 53 is an expression of 53 as a product of primes.

• −1000 = 2× 5× (−2)× 5× 2× 5.

C

Exercise 3.2.14
Express the following numbers as products of primes:

16 −240 5050 111111 −123456789

C

To make things slightly more concise, we introduce a standard way of expressing a number
as a product of primes:
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Definition 3.2.15
The canonical prime factorisation of a non-zero non-unit a ∈ Z is the expression in the
form

a = upj11 · · · p
jr
r

where:
• u = 1 if a > 0, and u = −1 if a < 0;

• The numbers pi are all positive primes;

• p1 < p2 < · · · < pr;

• ji > 1 for all i.
We call ji the multiplicity of pi in the factorisation of a, and we call u the sign of a.

Typically we omit u if u = 1, and just write a minus sign (−) if u = −1.

Example 3.2.16
The canonical prime factorisations of the integers given in Example 3.2.13 are:

• 12 = 22 · 3.

• 53 = 53.

• −1000 = −23 · 53.

C

Exercise 3.2.17
Write out the canonical prime factorisations of the numbers from Exercise 3.2.14, which
were:

16 −240 5050 111111 −123456789

C

The following exercise provides another tool for computing reastgreatest common divisors
of pairs of integers by looking at their prime factorisations.

Exercise 3.2.18
Let p1, p2, . . . , pr be distinct primes, and let ki, `i ∈ N for all 1 6 i 6 r. Define

m = pk11 × p
k2
2 × · · · × p

kr
r and n = p`11 × p

`2
2 × · · · × p

`r
r

Prove that
gcd(m,n) = pu1

1 × p
u2
2 × · · · × p

ur
r

where ui = min{ki, `i} for all 1 6 i 6 r. C
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Example 3.2.19
We use Exercise 3.2.18 to compute the greatest common divisor of 17640 and 6468.

First we compute the prime factorisations of 17640 and 6468:

17640 = 23 · 32 · 5 · 72 and 6468 = 22 · 3 · 72 · 11

It now follows from Exercise 3.2.18 that

gcd(17640, 6468) = 22 · 31 · 50 · 72 · 110

= 4 · 3 · 1 · 49 · 1
= 588

C

Distribution of primes

So far we have seen several examples of prime numbers; to name a few, we’ve seen 2, 3, 5
and 53. It might seem like the prime numbers go on forever, but proving this is less than
obvious.

Exercise 3.2.20
Let P be an inhabited finite set of positive prime numbers and let m be the product of all
the elements of P . That is, for some n > 1 let

P = {p1, . . . , pn} and m = p1 × · · · × pn

where each pk ∈ P is a positive prime. Using the fundamental theorem of arithmetic, show
that m+ 1 has a positive prime divisor which is not an element of P . C

Theorem 3.2.21
There are infinitely many primes.

Proof. We prove that there are infinitely many positive prime numbers—the result then
follows immediately. Let P be the set of all positive prime numbers. Then P is inhabited,
since 2 ∈ P , for example. If P were finite, then by Exercise 3.2.20, there would be a
positive prime which is not an element of P—but P contains all positive primes, so that
is impossible. Hence there are infinitely many positive primes.

This is one proof of many, which is due to Euclid around 2300 years ago. We might
hope that a proof of the infinitude of primes gives some insight into how the primes are
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distributed. That is, we might ask questions like: how frequently do primes occur? How
fast does the sequence of primes grow? How likely is there to be a prime number in a given
set of integers?

As a starting point, Euclid’s proof gives an algorithm for writing an infinite list of primes:

• Let p1 = 2; we know that 2 is prime;

• Given p1, . . . , pn, let pn+1 be the smallest positive prime factor of p1 × · · · × pn + 1.

The first few terms produced would be:

• p1 = 2 by definition;

• 2 + 1 = 3, which is prime, so p2 = 3;

• 2× 3 + 1 = 7, which is prime, so p3 = 7;

• 2× 3× 7 + 1 = 43, which is prime, so p4 = 43;

• 2× 3× 7× 43 + 1 = 1807 = 13× 139, so p5 = 13;

• 2× 3× 7× 43× 13 + 1 = 23479 = 53× 443, so p6 = 53;

• . . . and so on.

The sequence obtained, called the Euclid–Mullin sequence, is a bit bizarre:

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, . . .

Big primes like 38709183810571 often appear before small primes like 11. It remains
unknown whether or not every positive prime number appears in this list!

The chaotic nature of this sequence makes it difficult to extract information about how the
primes are distributed: the numbers p1 × · · · × pn + 1 grow very quickly—indeed, it must
be the case that p1 × · · · × pn + 1 > 2n for all n—so the upper bounds for the sequence
grow at least exponentially.

Another proof of the infinitude of primes that gives a (slightly) tighter bound can be
obtained using the following exercise.

Exercise 3.2.22
Let n ∈ Z with n > 2. Prove that the set {k ∈ Z | n < k < n!} contains a prime
number. C
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Section 3.3

Modular arithmetic

It turns out that much arithmetic can be done by considering only the remainders of
integers when divided by a fixed integer. Here is a simple example:

Example 3.3.1
Suppose a1 has remainder r1 and a2 has remainder r2 when divided by 7. That is, there
exist q1, q2 ∈ Z such that

a1 = 7q1 + r1 and a2 = 7q2 + r2

Then a1 + a2 has the same remainder as r1 + r2 when divided by 7. Indeed, suppose
a1 + a2 = 7q + r, where 0 6 r < 7. Then

r1 + r2 = (a1 − 7q1) + (a2 − 7q2)

= (a1 + a2) + 7(−q1 − q2)

= (7q + r) + 7(−q1 − q1)

= 7(q − q1 − q2) + r

An example of this in action: 41 = 5× 7 + 6 and 240 = 34× 7 + 2, so the remainders of 41
and 240 when divided by 7 are 6 and 2, respectively. Now

41 + 240 = 281 = 40× 7 + 1 and 6 + 2 = 8 = 1× 7 + 1

which demonstrates that 41 + 240 and 6 + 2 have the same remainder when divided by
7. C

In this section we will study the extent to which we can do arithmetic with integers knowing
only their remainders upon division by a given integer.

Definition 3.3.2
Fix n ∈ Z. Given integers a, b ∈ Z, we say a is congruent to b modulo n, and write

a ≡ b mod n (LATEX code: a \equiv b \bmod{n})

if n | a− b. If a is not congruent to b modulo n, write

a 6≡ b mod n (LATEX code: \not\equiv)

The number n is called the modulus of the congruence.
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Convention 3.3.3
When talking about modular arithmetic, we will restrict our attention to positive integers.
This is because for any integers a, b, n we have

a ≡ b mod n ⇔ a ≡ b mod (−n)

and a ≡ b mod 0 if and only if a = b. Thus, whenever we write ‘modn’ or specify that a
variable n is a ‘modulus’, it is implicit that n is an integer and n > 0. This will shorten
some of our proofs. C

Example 3.3.4
Some examples of congruence modulo n are as follows:

• 16 ≡ 30 mod 2 since 30− 16 = 14, which is a multiple of 2.

• 44 ≡ 20 mod 6 since 20− 44 = −24, which is a multiple of 6.

C

Exercise 3.3.5
Show that if a, b ∈ Z with a, b > 0 then a ≡ b mod 10 if and only if the decimal expressions
of a and b end in the same digit. What happens when a and b are allowed to be negative? C

It is important from the outset to point out that, although congruence is written with
a symbol that looks like that of equality (‘≡’ vs. ‘=’), we can only treat congruence like
equality inasmuch as we have proved we can. Specifically, the ways in which congruence
can be treated like equality will be proved in two theorems:

• Theorem 3.3.6 tells us that congruence satisfies three extremely basic properties of
equality.[b] One useful consequence of this is that it is valid to use strings of congru-
ences, for example

−5 ≡ 18 ≡ 41 ≡ 64 mod 23 ⇒ −5 ≡ 64 mod 23

• Theorem 3.3.9 tells us that we can treat congruence like equality for the purposes of
addition, multiplication and subtraction. Thus it will be valid to write things like

x ≡ 7 mod 12 ⇒ 2x+ 5 ≡ 19 mod 12

and we’ll be able to replace values by congruent values in congruences, provided
they’re only being added, subtracted or multiplied. For example, from the knowledge
that 260 ≡ 1 mod 61 and 60! ≡ −1 mod 61, we will be able to deduce

260 · 3 ≡ 60! · x mod 61 ⇒ 3 ≡ −x mod 61
[b]Using the language of Definition 5.1.31, Theorem 3.3.6 says precisely that congruence is an equivalence
relation.
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Don’t let these properties shared by congruence and equality lull you into a false sense
of security! We will soon see that for other purposes, such as division and various other
algebraic operations, congruence does not behave like equality.

Theorem 3.3.6
Let a, b, c ∈ Z and let n be a modulus. Then

(a) a ≡ a mod n;

(b) If a ≡ b mod n, then b ≡ a mod n;

(c) If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

Proof.

(a) Note that a− a = 0, which is divisible by n since 0 = 0× n, and hence a ≡ a mod n.

(b) Suppose a ≡ b mod n. Then n | a − b, so that a − b = kn for some k ∈ Z. Hence
b− a = −kn, and so n | b− a, so that b ≡ a mod n as required.

(c) Suppose a ≡ b mod n and b ≡ c mod n. Then n | a − b and n | b − c, so there exist
k, ` ∈ Z such that

a− b = kn and b− c = `n

Hence a− c = (a− b) + (b− c) = (k + `)n, so that n | a− c. Hence a ≡ c mod n, as
required.

There is a slightly simpler characterisation of congruence modulo n, as seen in Proposition
3.3.7 below.

Proposition 3.3.7
Fix a modulus n and let a, b ∈ Z. The following are equivalent:

(i) a and b leave the same remainder when divided by n;

(ii) a = b+ kn for some k ∈ Z;

(iii) a ≡ b mod n.

Proof. We prove (i) ⇔ (iii) and (ii) ⇔ (iii).
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• (i) ⇒ (iii). Suppose a and b leave the same remainder when divided by n, and let
q1, q2, r ∈ Z be such that

a = q1n+ r, b = q2n+ r and 0 6 r < n

Then a− b = (q1 − q2)n, which proves that n | a− b, and so a ≡ b mod n.

• (iii) ⇒ (i). Suppose that a ≡ b mod n, so that b− a = qn for some q ∈ Z. Write

a = q1n+ r1, b = q2n+ r2 and 0 6 r1, r2 < n

We may further assume that r1 6 r2. (If not, swap the roles of a and b—this is fine,
since n | b− a if and only if n | a− b.) Now we have

b− a = qn⇒ (q2n+ r2)− (q1n+ r1) = qn

⇒ (q2 − q1 − q)n+ (r2 − r1) = 0 rearranging

since 0 6 r1 6 r2 < n we have 0 6 r2 − r1 < n, so that r2 − r1 is the remainder of 0
when divided by n. That is, r2 − r1 = 0, so r1 = r2. Hence a and b have the same
remainder when divided by n.

• (ii)⇔ (iii). We unpack the definitions of (ii) and (iii) to see that they are equivalent.
Indeed

(ii)⇔ a = b+ kn for some k ∈ Z
⇔ a− b = kn for some k ∈ Z rearranging

⇔ n | a− b by definition of divisibility

⇔ a ≡ b mod n by definition of congruence

⇔ (iii)

Discussion 3.3.8
Where in the proof of Proposition 3.3.7 did we rely on the convention that the modulus n
is positive? Is the result still true if n is negative? C

The following theorem tells us that, in a very limited sense, the≡ symbol can be treated as a
= symbol for the purposes of doing addition, subtraction and multiplication. Emphatically,
it does not say that we can treat ‘≡’ like ‘=’ for the purposes of doing division.
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Theorem 3.3.9 (Modular arithmetic)
Fix a modulus n, and let a1, a2, b1, b2 ∈ Z be such that

a1 ≡ b1 mod n and a2 ≡ b2 mod n

Then the following congruences hold:
(a) a1 + a2 ≡ b1 + b2 mod n;

(b) a1a2 ≡ b1b2 mod n;

(c) a1 − a2 ≡ b1 − b2 mod n.

Proof. By Definition 3.3.2 that n | a1 − b1 and n | a2 − b2, so there exist q1, q2 ∈ Z such
that

a1 − b1 = q1n and a2 − b2 = q2n

This implies that

(a1 + a2)− (b1 + b2) = (a1 − b1) + (a2 − b2) = q1n+ q2n = (q1 + q2)n

so n | (a1 + a2)− (b1 + b2). This proves (a).

The algebra for (b) is slightly more involved:

a1a2 − b1b2 = (q1n+ b1)(q2n+ b2)− b1b2
= q1q2n

2 + b1q2n+ b2q1n+ b1b2 − b1b2
= q1q2n

2 + b1q2n+ b2q1n

= (q1q2n+ b1q2 + b2q1)n

This shows that n | a1a2 − b1b2, thus proving (b).

Now (a) and (b) together imply (c). Indeed, we know that −1 ≡ −1 mod n and b1 ≡
b2 mod n, so by (b) we have −b1 ≡ −b2 mod n. We also know that a1 ≡ a2 mod n, and
hence a1 − b1 ≡ a2 − b2 mod n by (a).

Theorem 3.3.9 allows us to perform algebraic manipulations with congruences as if they
were equations, provided all we’re doing is adding, multiplying and subtracting.

Example 3.3.10
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We will solve the congruence 3x− 5 ≡ 2x+ 3 mod 7 for x:

3x− 5 ≡ 2x+ 3 mod 7

⇔ x− 5 ≡ 3 mod 7 (⇒) subtract 2x (⇐) add 2x

⇔ x ≡ 8 mod 7 (⇒) add 5 (⇐) subtract 5

⇔ x ≡ 1 mod 7 since 8 ≡ 1 mod 7

So the integers x for which 3x − 5 and 2x + 3 leave the same remainder when divided by
7, are precisely the integers x which leave a remainder of 1 when divided by 7:

3x− 5 ≡ 2x+ 3 mod 7 ⇔ x = 7q + 1 for some q ∈ Z

C

Exercise 3.3.11
For which integers x does the congruence 5x + 1 ≡ x + 8 mod 3 hold? Characterise such
integers x in terms of their remainder when divided by 3. C

So far this all feels like we haven’t done very much: we’ve just introduced a new symbol
≡ which behaves just like equality. . . but does it really? The following exercises should
expose some more ways in which congruence does behave like equality, and some in which
it doesn’t.

Exercise 3.3.12
Fix a modulus n. Is it true that

a ≡ b mod n ⇒ ak ≡ bk mod n

for all a, b ∈ Z and k ∈ N? If so, prove it; if not, provide a counterexample. C

Exercise 3.3.13
Fix a modulus n. Is it true that

k ≡ ` mod n ⇒ ak ≡ a` mod n

for all k, ` ∈ N and a ∈ Z? If so, prove it; if not, provide a counterexample. C

Exercise 3.3.14
Fix a modulus n. Is it true that

qa ≡ qb mod n ⇒ a ≡ b mod n

for all a, b, q ∈ Z with q 6≡ 0 mod n? If so, prove it; if not, provide a counterexample. C
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Common error
The false sense of security that Theorem 3.3.9 induces often leads students new to all this
to the belief that ≡ and = are interchangeable concepts. This is emphatically not the case.
In particular:

• Fractions don’t make sense in modular arithmetic; for instance, it is invalid to say
2x ≡ 1 mod 5 implies x ≡ 1

2 mod 5.

• Square roots don’t make sense in modular arithmetic; for instance, it is invalid to say
x2 ≡ 3 mod 4 implies x ≡ ±

√
3 mod 4.

• Numbers in exponents cannot be replaced by congruent numbers; for instance, it is
invalid to say x3 ≡ 23 mod 4 implies x ≡ 2 mod 4.

C

Multiplicative inverses

We made a big deal about the fact that fractions don’t make sense in modular arithmetic.
That is, it is invalid to say

2x ≡ 1 mod 5 ⇒ x ≡ 1

2
mod 5

Despite this, we can still make sense of ‘division’, provided we change what we mean when
we say ‘division’. Indeed, the congruence 2x ≡ 1 mod 5 has a solution:

2x ≡ 1 mod 5

⇔ 6x ≡ 3 mod 5 (⇒) multiply by 3 (⇐) subtract 3

⇔ x ≡ 3 mod 5 since 6 ≡ 1 mod 5

Here we didn’t divide by 2, but we still managed to cancel the 2 by instead multiplying
through by 3. For the purposes of solving the equation this had the same effect as division
by 2 would have had if we were allowed to divide. The key here was that 2× 3 ≡ 1 mod 5.

Definition 3.3.15
Fix a modulus n. Given a ∈ Z, a multiplicative inverse for a modulo n is an integer u
such that au ≡ 1 mod n.

Example 3.3.16
Some examples of multiplicative inverses are as follows:
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• 2 is a multiplicative inverse of itself modulo 3, since 2× 2 ≡ 4 ≡ 1 mod 3.

• 2 is a multiplicative inverse of 3 modulo 5, since 2× 3 ≡ 6 ≡ 1 mod 5.

• 7 is also a multiplicative inverse of 3 modulo 5, since 3× 7 ≡ 21 ≡ 1 mod 5.

• 3 has no multiplicative inverse modulo 6. Indeed, suppose u ∈ Z with 3u ≡ 1 mod 6.
Then 6 | 3u− 1, so 3u− 1 = 6q for some q ∈ Z. But then

1 = 3u− 6q = 3(u− 2q)

which implies that 3 | 1, which is nonsense.

C

Knowing when multiplicative inverses exist is very important for solving congruences: if
u is a multiplicative inverse for a modulo n, then we can solve equations of the form
ax ≡ b mod n extremely easily:

ax ≡ b mod n ⇒ x ≡ ub mod n

Exercise 3.3.17
For n = 7, 8, 9, 10, 11, 12, either find a multiplicative inverse for 6 modulo n, or show that
no multiplicative inverse exists. Can you spot a pattern? C

Some authors write a−1 to denote multiplicative inverses. We refrain from this, since
it suggests that multiplicative inverses are unique—but they’re not, as you’ll see in the
following exercise.

Exercise 3.3.18
Let n be a modulus and let a ∈ Z. Suppose that u is a multiplicative inverse for a modulo
n. Prove that, for all k ∈ Z, u+ kn is a multiplicative inverse for a modulo n. C

Proposition 3.3.19
Let a ∈ Z and let n be a modulus. Then a has a multiplicative inverse modulo n if and
only if a ⊥ n.

Proof. Note that a has a multiplicative inverse u modulo n if and only if there is a solution
(u, v) to the equation au+ nv = 1. Indeed, au ≡ 1 mod n if and only if n | au− 1, which
occurs if and only if there is some q ∈ Z such that au − 1 = nq. Setting q = −v and
rearranging yields the desired equivalence.

By Bézout’s lemma (Theorem 3.1.22), such a solution (u, v) exists if and only if gcd(a, n) | 1.
This occurs if and only if gcd(a, n) = 1, i.e. if and only if a ⊥ n.
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Proof tip
To solve a congruence of the form ax ≡ b mod n when a ⊥ n, first find a multiplicative
inverse u for a modulo n, and then simply multiply through by u to obtain x ≡ ub mod
n. C

Corollary 3.3.20
Let a, p ∈ Z, where p is a positive prime. If p - a then a has a multiplicative inverse modulo
p.

Proof. Suppose p - a, and let d = gcd(a, p). Since d | p and p is prime we have d = 1 or
d = p. Since d | a and p - a we can’t have d = p; therefore d = 1. By Proposition 3.3.19, a
has a multiplicative inverse modulo p.

Example 3.3.21
11 is prime, so each of the integers a with 1 6 a 6 10 should have a multiplicative inverse
modulo 11. And indeed, the following are all congruent to 1 modulo 11:

1× 1 = 1 2× 6 = 12 3× 4 = 12 4× 3 = 12 5× 9 = 45
6× 2 = 12 7× 8 = 56 8× 7 = 56 9× 5 = 45 10× 10 = 100

C

Exercise 3.3.22
Find all integers x such that 25x− 4 ≡ 4x+ 3 mod 13. C

Orders and totients

For any modulus n, there are only finitely many possible remainders modulo n. A nice
consequence of this finiteness is that, when a ⊥ n, we can choose some power of a to be its
multiplicative inverse, as proved in the following exercise.

Exercise 3.3.23
Let n be a modulus and let a ∈ Z with a ⊥ n. Prove that there exists k > 1 such that
ak ≡ 1 mod n. C

Exercise 3.3.23, together with the well-ordering principle, justify the following definition.

Definition 3.3.24
Let n be a modulus and let a ∈ Z with a ⊥ n. The order of a modulo n is the least k > 1
such that ak ≡ 1 mod n.

Note that this definition makes sense by Exercise 3.3.23 and the well-ordering principle.

161



162 Chapter 3. Number theory

Example 3.3.25
The powers of 7 modulo 100 are:

• 71 = 7, so 71 ≡ 7 mod 100;

• 72 = 49, so 72 ≡ 49 mod 100;

• 73 = 343, so 73 ≡ 43 mod 100;

• 74 = 2401, so 74 ≡ 1 mod 100.

Hence the order of 7 modulo 100 is 4, and 73 and 43 are multiplicative inverses of 7 modulo
100. C

Our focus turns to computing specific values of k such that ak ≡ 1 mod n, whenever a ∈ Z
and a ⊥ n. We first focus on the case when n is prime; then we develop the machinery of
totients to study the case when n is not prime.

Lemma 3.3.26
Let a, b ∈ Z and let p ∈ Z be a positive prime. Then (a+ b)p ≡ ap + bp mod p.

Proof. By the binomial theorem (Theorem 1.3.34), we have

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k

By Exercise 3.2.5, p |
(
p
k

)
for all 0 < k < p, and hence

(
p
k

)
akbp−k ≡ 0 mod p for all

0 < k < p. Thus

(a+ b)p ≡
(
p

0

)
a0bp−0 +

(
p

p

)
apbp−p ≡ ap + bp mod p

as desired.

Theorem 3.3.27 (Fermat’s little theorem)
Let a, p ∈ Z with p a positive prime. Then ap ≡ a mod p.

Proof. We may assume that a > 0, otherwise replace a by its remainder modulo p.

We will prove that ap ≡ a mod p by induction on a.

• (BC) Since p > 0 we have 0p = 0, hence 0p ≡ 0 mod p.
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• (IS) Fix a > 0 and suppose ap ≡ a mod p. Then (a+ 1)p ≡ ap + 1p mod p by Lemma
3.3.26. Now ap ≡ a mod p by the induction hypothesis, and 1p = 1, so we have
(a+ 1)p ≡ a+ 1 mod p.

By induction, we’re done.

Corollary 3.3.28
Let a, p ∈ Z with p a positive prime and p - a. then ap−1 ≡ 1 mod p.

Proof. Since p - a, it follows that a ⊥ p. Fermat’s little theorem (Theorem 3.3.27) tells
us that a|p| ≡ a mod p. By Proposition 3.3.19, a has a multiplicative inverse b modulo p.
Hence

apb ≡ ab mod p

But apb ≡ ap−1ab mod p, and ab ≡ 1 mod p, so we get

ap−1 ≡ 1 mod p

as required.

This can be useful for computing remainders of humongous numbers when divided by
smaller primes.

Example 3.3.29
We compute the remainder of 21000 when divided by 7. By Fermat’s little theorem (The-
orem 3.3.27), we know that 27 ≡ 2 mod 7. Since 7 - 2, it follows that 2 has a multiplicative
inverse modulo 7, so we can cancel it from both sides to obtain 26 ≡ 1 mod 7. Now
1000 = 166× 6 + 4, so

21000 ≡ 2166×6+4 ≡ (26)166 · 24 ≡ 24 ≡ 16 ≡ 2 mod 7

so the remainder of 21000 when divided by 7 is 2. C

Exercise 3.3.30
Find the remainder of 3244886 when divided by 13. C

Unfortunately, the hypothesis that p is prime in Fermat’s little theorem is necessary. For
example, 6 is not prime, and 56−1 = 55 = 3125 = 520× 6 + 5, so 55 ≡ 5 mod 6.

Definition 3.3.31
Let n ∈ Z. The totient of n is the natural number ϕ(n) (LATEX code: \varphi(n)), which
is the number of integers from 1 up to |n| which are coprime to n.a

aMore succinctly, we have ϕ(n) = |{k ∈ [|n|] | k ⊥ n}|, where the notation |X| is defined in Definition 4.1.39.

163
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Example 3.3.32
Here are some examples of totients:

• The elements of [6] which are coprime to 6 are 1 and 5, so ϕ(6) = 2.

• If p is a positive prime, then every element of [p] is coprime to p except for p itself.
Hence if p is a positive prime then ϕ(p) = p − 1. More generally, if p is prime then
ϕ(p) = |p| − 1.

C

Exercise 3.3.33
Prove that if p is a positive prime and k > 1 then

ϕ(pk) = pk − pk−1

C

Theorem 3.3.34 (Euler’s theorem)
Let n be a modulus and let a ∈ Z with a ⊥ n. Then

aϕ(n) ≡ 1 mod n

Proof. By definition of totient, the set X defined by

X = {k ∈ [n] | k ⊥ n}

has ϕ(n) elements. List the elements as

X = {x1, x2, . . . , xϕ(n)}

Note that axi ⊥ n for all i, so let yi be the (unique) element of X such that axi ≡ yi mod n.

Note that if i 6= j then yi 6= yj . We prove this by contraposition; indeed, since a ⊥ n, by
Proposition 3.3.19, a has a multiplicative inverse, say b. Then

yi ≡ yj mod n ⇒ axi ≡ axj mod n ⇒ baxi ≡ baxj mod n ⇒ xi ≡ xj mod n

and xi ≡ xj mod n if and only if i = j. Thus

X = {x1, x2, . . . , xϕ(n)} = {y1, y2, . . . , yϕ(n)}
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This means that the product of the ‘xi’s is equal to the product of the ‘yi’s, and hence

x1 · . . . · xϕ(n)

≡ y1 · . . . · yϕ(n) mod n since {x1, . . . } = {y1, . . . }
≡ (ax1) · . . . · (axϕ(n)) mod n since yi ≡ axi mod n

≡ aϕ(n) · x1 · . . . · xϕ(n) mod n rearranging

Since each xi is coprime to n, we can cancel the xi terms (by multiplying by their multi-
plicative inverses) to obtain

aϕ(n) ≡ 1 mod n

as required.

Example 3.3.35
Some examples of Euler’s theorem in action are as follows:

• We have seen that ϕ(6) = 2, and we know that 5 ⊥ 6. And, indeed,

5ϕ(6) = 52 = 25 = 4× 6 + 1

so 5ϕ(6) ≡ 1 mod 6.

• By Exercise 3.3.33, we have

ϕ(121) = ϕ(112) = 112 − 111 = 121− 11 = 110

Moreover, given a ∈ Z, a ⊥ 121 if and only if 11 - a. Hence a110 ≡ 1 mod 121
whenever 11 - a.

C

Wilson’s theorem

We conclude this chapter on number theory with Wilson’s theorem, which is a nice result
that completely characterises prime numbers in the sense that we can tell when a number
is prime by computing the remainder of (n− 1)! when divided by n.

Let’s test a few numbers first:
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n (n− 1)! remainder

2 1 1
3 2 2
4 6 2
5 24 4
6 120 0
7 720 6
8 5040 0

n (n− 1)! remainder

9 40320 0
10 362880 0
11 3628800 10
12 39916800 0
13 479001600 12
14 6227020800 0
15 87178291200 0

It’s tempting to say that an integer n > 1 is prime if and only if n - (n− 1)!, but this isn’t
true since it fails when n = 4. But it’s extremely close to being true.

Theorem 3.3.36 (Wilson’s theorem)
Let n > 1 be a modulus. Then n is prime if and only if (n− 1)! ≡ −1 mod n.

The following sequence of exercises will piece together into a proof of Wilson’s theorem.

Exercise 3.3.37
Let n ∈ Z be composite. Prove that if n > 4, then n | (n− 1)!. C

Exercise 3.3.38
Let p be a positive prime and let a ∈ Z. Prove that, if a2 ≡ 1 mod p, then a ≡ 1 mod p or
a ≡ −1 mod p. C

Exercise 3.3.38 implies that the only elements of [p − 1] that are their own multiplicative
inverses are 1 and p−1; this morsel of information allows us to deduce result in the following
exercise.

Exercise 3.3.39
Let p be a positive prime. Prove that (p− 1)! ≡ −1 mod p. C

Proof of Wilson’s theorem (Theorem 3.3.36). Let n > 1 be a modulus.

• If n is prime, then (n− 1)! ≡ −1 mod n by Exercise 3.3.39.

• If n is composite, then either n = 4 or n > 4. If n = 4 then

(n− 1)! = 3! = 6 ≡ 2 mod 4

and so (n− 1)! 6≡ −1 mod n. If n > 4, then

(n− 1)! ≡ 0 mod n

by Exercise 3.3.37.
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Hence (n− 1)! ≡ −1 mod n if and only if n is prime, as desired.

Since Wilson’s theorem completely characterises the positive prime numbers, we could have
defined ‘n is prime’, for n > 1, to mean that (n−1)! ≡ −1 mod n. We don’t do this because,
although this is an interesting result, it is not particularly useful in applications. We might
even hope that Wilson’s theorem gives us an easy way to test whether a number is prime,
but unfortunately even this is a bust: computing the remainder (n − 1)! on division by n
is not particularly efficient.

However, there are some nice applications of Wilson’s theorem, which we will explore now.

Example 3.3.40
We’ll compute the remainder of 345 ·44! when divided by 47. Note that 345 ·44! is equal to a
monstrous number with 76 digits; I don’t recommend doing the long division! Anyway. . .

• 47 is prime, so we can apply both Fermat’s little theorem (Theorem 3.3.27) and
Wilson’s theorem (Theorem 3.3.36).

• By Fermat’s little theorem, we know that 346 ≡ 1 mod 47. Since 3 · 16 = 48 ≡
1 mod 47, we have

345 ≡ 345 · (3 · 16) ≡ 346 · 16 ≡ 16 mod 47

• By Wilson’s theorem, we have 46! ≡ −1 mod 47. Now

� 46 ≡ −1 mod 47, so 46 is its own multiplicative inverse modulo 47.

� The extended Euclidean algorithm yields 45 · 23 ≡ 1 mod 47.

So we have

44! = 44! · (45 · 23) · (46 · 46) ≡ 46! · 23 · 46 ≡ (−1) · 23 · (−1) ≡ 23 mod 47

Putting this information together yields

345 · 44! ≡ 16 · 23 = 368 ≡ 39 mod 47

So the remainder left when 345 · 44! is divided by 47 is 39. C

Exercise 3.3.41
Let p be an odd positive prime. Prove that[(

p− 1

2

)
!

]2

≡ (−1)
p+1
2 mod p

C

167



168 Chapter 3. Number theory

Chinese remainder theorem

We introduce the Chinese remainder theorem with an example.

Example 3.3.42
We find all integer solutions x to the system of congruences

x ≡ 2 mod 5 and x ≡ 4 mod 8

Note that x ≡ 4 mod 8 if and only if x = 4 + 8k for some k ∈ Z. Now, for all k ∈ Z we
have

x ≡ 2 mod 5

⇔ 4 + 8k ≡ 2 mod 5 since x = 4 + 8k

⇔ 8k ≡ −2 mod 5 subtracting 4

⇔ 3k ≡ 3 mod 5 since 8 ≡ −2 ≡ 3 mod 5

⇔ k ≡ 1 mod 5 multiplying by a multiplicative inverse for 3 modulo 5

So 4 + 8k ≡ 2 mod 5 if and only if k = 1 + 5` for some ` ∈ Z.

Combining this, we see that x satisfies both congruences if and only if

x = 4 + 8(1 + 5`) = 12 + 40`

for some ` ∈ Z.

Hence the integers x for which both congruences are satisfied are precisely those integers
x such that x ≡ 12 mod 40. C

Exercise 3.3.43
Find all integer solutions x to the system of congruences:

x ≡ −1 mod 4

x ≡ 1 mod 9

x ≡ 5 mod 11

Express your solution in the form x ≡ a mod n for suitable n > 0 and 0 6 a < n. C

Exercise 3.3.44
Let m,n be coprime moduli and let a, b ∈ Z. Let u, v ∈ Z be such that

mu ≡ 1 mod n and nv ≡ 1 mod m

In terms of a, b,m, n, u, v, find an integer x such that

x ≡ a mod m and x ≡ b mod n

C
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Exercise 3.3.45
Let m,n be coprime moduli and let x, y ∈ Z. Prove that if x ≡ y mod m and x ≡ y mod n,
then x ≡ y mod mn. C

Theorem 3.3.46 (Chinese remainder theorem)
Let m,n be moduli and let a, b ∈ Z. If m and n are coprime, then there exists an integer
solution x to the simultaneous congruences

x ≡ a mod m and x ≡ b mod n

Moreover, if x, y ∈ Z are two such solutions, then x ≡ y mod mn.

Proof. Existence of a solution x is precisely the content of Exercise 3.3.44.

Now let x, y ∈ Z be two solutions to the two congruences. Then{
x ≡ a mod m

y ≡ a mod m ⇒ x ≡ y mod m{
x ≡ b mod n

y ≡ b mod n ⇒ x ≡ y mod n

so by Exercise 3.3.45, we have x ≡ y mod mn, as required.

We now generalise the Chinese remainder theorem to the case when the moduli m,n are not
assumed to be coprime. There are two ways we could make this generalisation: either we
could reduce the more general version of the theorem to the version we proved in Theorem
3.3.46, or we could prove the more general version from scratch. We opt for the latter
approach, but you might want to consider what a ‘reductive’ proof would look like.

Theorem 3.3.47
Let m,n be moduli and let a, b ∈ Z. There exists an integer solution x to the system of
congruences

x ≡ a mod m and x ≡ b mod n

if and only if a ≡ b mod gcd(m,n).
Moreover, if x, y ∈ Z are two such solutions, then x ≡ y mod lcm(m,n)

Proof. Let d = gcd(m,n), and write m = m′d and n = n′d for some m′, n′ ∈ Z.

We prove that an integer solution x to the system of congruences exists if and only if
a ≡ b mod d.
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• (⇒) Suppose an integer solution x to the system of congruences exists. Then there
exist integers k, ` such that

x = a+mk = b+ n`

But m = m′d and n = n′d, so we have a+m′dk = b+ n′d`, and so

a− b = (n′`−m′k)d

so that a ≡ b mod d, as required.

• (⇐) Suppose a ≡ b mod d, and let t ∈ Z be such that a − b = td. Let u, v ∈ Z be
solutions to the congruence mu+nv = d, which exists by Bézout’s lemma (Theorem
3.1.22). Note also that, since m = m′d and n = n′d, dividing through by d yields
m′u+ n′v = 1.

Define
x = an′v + bm′u

Now we have

x = an′v + bm′u by definition of x

= an′v + (a− td)m′u since a− b = td

= a(m′u+ n′v)− tdm′u rearranging

= a− tdm′u since m′u+ n′v = 1

= a− tum since m = m′d

so x ≡ a mod m. Likewise

x = an′v + bm′u by definition of x

= (b+ td)n′v + bm′u since a− b = td

= b(m′u+ n′v) + tdn′v rearranging

= b+ tdn′v since m′u+ n′v = 1

= b+ tvn since n = n′d

so x ≡ b mod n.

Hence x = an′v + bm′u is a solution to the system of congruences.

We now prove that if x, y are two integer solutions to the system of congruences, then they
are congruent modulo lcm(a, b). First note that we must have

x ≡ y mod m and x ≡ y mod n
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so that x = y + km and x = y + `n for some k, ` ∈ Z. But then

x− y = km = `n

Writing m = m′d and n = n′d, we see that km′d = `n′d, so that km′ = `n′. But m′, n′ are
coprime by Proposition 3.1.29, and hence m′ | ` by Proposition 3.1.32. Write ` = `′m′ for
some `′ ∈ Z. Then we have

x− y = `n = `′m′n

and hence x ≡ y mod m′n. But m′n = lcm(m,n) by Exercise 3.1.41.

This theorem is in fact constructive, in that it provides an algorithm for finding all integer
solutions x to a system of congruences

x ≡ a mod m and x ≡ b mod n

as follows:

• Use the Euclidean algorithm to compute d = gcd(m,n).

• If d - a− b then there are no solutions, so stop. If d | a− b, then proceed to the next
step.

• Use the extended Euclidean algorithm to compute u, v ∈ Z such that mu+ nv = d.

• The integer solutions x to the system of congruences are precisely those of the form

x =
anv + bmu+ kmn

d
for some k ∈ Z

Exercise 3.3.48
Verify that the algorithm outlined above is correct. Use it to compute the solutions to the
system of congruences

x ≡ 3 mod 12 and x ≡ 15 mod 20

C

? Exercise 3.3.49
Generalise the Chinese remainder theorem to systems of arbitrarily (finitely) many con-
gruences. That is, given r ∈ N, find precisely the conditions on moduli n1, n2, . . . , nr and
integers a1, a2, . . . , ar such that an integer solution exists to the congruences

x ≡ a1 mod n1, x ≡ a2 mod n2, · · · xr ≡ ar mod nr

Find an explicit formula for such a value of x, and find a suitable modulus n in terms
of n1, n2, . . . , nr such that any two solutions to the system of congruences are congruent
modulo n. C
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Exercise 3.3.50
Prove that gaps between consecutive primes can be made arbitrarily large. That is, prove
that for all n ∈ N, there exists an integer a such that the numbers

a, a+ 1, a+ 2, . . . , a+ n

are all composite. C

Application: tests for divisibility

The language of modular arithmetic provides a practical setting for proving tests for divis-
ibility using number bases. Number bases were introduced in Section 1.1, and we gave a
preliminary definition in Definition 1.1.6 of what a number base is. Our first job will be to
justify why this definition makes sense at all—that is, we need to prove that every natural
number has a base-b expansion, and moreover, that it only has one of them. Theorem
3.3.51 says exactly this.

Theorem 3.3.51
Let n ∈ N and let b ∈ N with b > 2. Then there exist unique r ∈ N and d0, d1, . . . , dr ∈
{0, 1, . . . , b− 1} such that

n =
r∑

i=0

dib
i

and such that dr 6= 0, except n = 0, in which case r = 0 and d0 = 0.

Proof. We proceed by strong induction on n.

• (BC) We imposed the requirement that if n = 0 then r = 0 and d0 = 0; and this

evidently satisfies the requirement that n =
r∑

i=0
dib

i.

• (IS) Fix n > 0 and suppose that the requirements of the theorem are satisfied for all
the natural numbers up to and including n.

By the division theorem (Theorem 3.1.1), there exist unique u, v ∈ N such that

n+ 1 = ub+ v and v ∈ {0, 1, . . . , b− 1}

Since b > 2, we have u < n+1, and so u 6 n. It follows from the induction hypothesis
that there exist unique r ∈ N and d1, . . . , dr ∈ {0, 1, . . . , b− 1} such that

u =

r∑
i=0

di+1b
i
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and dr 6= 0. Writing d0 = v yields

n = ub+ v =

r∑
i=0

di+1b
i+1 + d0 =

r∑
i=0

dib
i

Since dr 6= 0, this proves existence.

For uniqueness, suppose that there exists s ∈ N and e0, . . . , es ∈ {0, 1, . . . , b−1} such
that

n+ 1 =

s∑
j=0

ejb
j

and es 6= 0. Then

n+ 1 =

 s∑
j=1

ejb
j−1

 b+ e0

so by the division theorem we have e0 = d0 = v. Hence

u =
n+ 1− v

b
=

s∑
j=1

ejb
j−1 =

r∑
i=1

dib
j−1

so by the induction hypothesis, it follows that r = s and di = ei for all 1 6 i 6 r.
This proves uniqueness.

By induction, we’re done.

We now re-state the definition of base-b expansion, confident in the knowledge that this
definition makes sense.

Definition 3.3.52
Let n ∈ N. The base-b expansion of n is the unique string drdr−1 . . . d0 such that the
conditions in Theorem 3.3.51 are satisfied. The base-2 expansion is also known as the
binary expansion, and the base-10 expansion is called the decimal expansion.

Example 3.3.53
Let n ∈ N. Then n is divisible by 3 if and only if the sum of the digits in the decimal
expansion of n is divisible by 3. Likewise, n is divisible by 9 if and only if the sum of the
digits in the decimal expansion n is divisible by 9.

We prove this for divisibility by 3. Let

n = drdr−1 · · · d1d0
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be the decimal expansion of n, and let s =
r∑

i=0
di be the sum of the digits of n.

Then we have

n ≡
r∑

i=0

di10i mod 3 since n =
∑
i

di10i

≡
r∑

i=0

di1
i mod 3 since 10 ≡ 1 mod 3

≡
r∑

i=0

di since 1i = 1 for all i

≡ s by definition of s

Since n ≡ s mod 3, it follows that n is divisible by 3 if and only if s is divisible by 3. C

Exercise 3.3.54
Let n ∈ N. Prove that n is divisible by 5 if and only if the final digit in the decimal
expansion of n is 5 or 0.

More generally, fix k > 1 and let m be the number whose decimal expansion is given by
the last k digits of that of n. Prove that n is divisible by 5k if and only if m is divisible by
5k. For example, we have

125 | 9 550 828 230 495 875 ⇔ 125 | 875

C

Exercise 3.3.55
Let n ∈ N. Prove that n is divisible by 11 if and only if the alternating sum of the digits of
n is divisible by 11. That is, prove that if the decimal expansion of n is drdr−2 · · · d0, then

11 | n ⇔ 11 | d0 − d1 + d2 − · · ·+ (−1)rdr

C

Exercise 3.3.56
Let n ∈ N. Find a method for testing if n is divisible by 7 based on the decimal expansion
of n. C

Application: public-key cryptography

Public-key cryptography is a method of encryption and decryption that works according
to the following principles:
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• Encryption is done using a public key that is available to anyone.

• Decryption is done using a private key that is only known to the recipient.

• Knowledge of the private key should be extremely difficult to derive from knowledge
of the public key.

Specifically, suppose that Alice wants to securely send Bob a message. As the recipient of
the message, Bob has a public key and a private key. So:

• Bob sends the public key to Alice.

• Alice uses the public key to encrypt the message.

• Alice sends the encrypted message, which is visible (but encrypted) to anyone who
intercepts it.

• Bob keeps the private key secret, and uses it upon receipt of the message to decrypt
the message.

Notice that, since the public key can only be used to encrypt messages, a hacker has no
useful information upon intercepting the message or the public key.

RSA encryption is an algorithm which provides one means of doing public-key crypto-
graphy using the theory of modular arithmetic. It works as follows.

Step 1. Let p and q be distinct positive prime numbers, and let n = pq. Then ϕ(n) =
(p− 1)(q − 1).

Step 2. Choose e ∈ Z with 1 < e < ϕ(n) and e ⊥ ϕ(n). The pair (n, e) is called the public
key.

Step 3. Choose d ∈ Z with de ≡ 1 mod ϕ(n). The pair (n, d) is called the private key.

Step 4. To encrypt a message M (which is encoded as an integer), compute K ∈ [n] such
that K ≡M e mod n. Then K is the encrypted message.

Step 5. The original message M can be recovered since M ≡ Kd mod n.

Computing the private key (n, d) from the knowledge of (n, e) would allow a hacker to
decrypt an encrypted message. However, doing so is typically very difficult when the
prime factors of n are large. So if we choose p and q to be very large primes—which we can
do without much hassle at all—then it becomes computationally infeasible for a hacker to
compute the private key.
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Example. Suppose I want to encrypt the message M , which I have encoded as the integer
32. Let p = 13 and q = 17. Then n = 221 and ϕ(n) = 192. Let e = 7, and note that
7 ⊥ 192. Now 7× 55 ≡ 1 mod 192, so we can define d = 55.

• The public key is (221, 7), which Bob sends to Alice. Now Alice can encrypt the
message:

327 ≡ 59 mod 221

Alice then sends Bob the encrypted message 59.

• The private key is (221, 55), so Bob can decrypt the message:

5955 ≡ 32 mod 221

so Bob has received Alice’s message 32.

Exercise 3.3.57
Prove that the RSA algorithm is correct. Specifically, prove:

(a) If n = pq, for distinct positive primes p and q, then ϕ(n) = (p− 1)(q − 1);

(b) Given 1 < e < ϕ(n) with e ⊥ ϕ(n), there exists d ∈ Z with de ≡ 1 mod ϕ(n).

(c) Given M,K ∈ Z with K ≡M e mod n, it is indeed the case that Kd ≡M mod n.

C
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Finite and infinite sets

177



178 Chapter 4. Finite and infinite sets

Section 4.1

Functions revisited

To motivate some of the definitions to come, look at the dots (•) and stars (?) below. Are
there more dots or more stars?

• • • • • • • • • • • • • • • • • • •

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Pause for a second and think about how you knew the answer to this question.

Indeed, there are more dots than stars. There are a couple of ways to arrive at this
conclusion:

(i) You could count the number of dots, count the number of stars, and then compare
the two numbers; or

(ii) You could notice that the dots and the stars are evenly spaced, but that the line of
dots is longer than the line of stars.

It is likely that you chose method (ii). In fact, it is likely that you haven’t even counted
the number of dots or the number of stars yet—and you don’t need to! We can conclude
that there are more dots than stars by simply pairing up dots with stars—we eventually
run out of stars, and there are still dots left over, so there must have been more dots than
stars.

Injectivity

One way of formalising this act of pairing up stars with dots mathematically is to define a
function f : S → D from the set S of stars to the set D of dots, where the value of f at
each star is the dot that it is paired with. We of course must do this in such a way that
each dot is paired with at most one star:
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• • • • • • • • • • • • • • • • • • •

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

It is a property of this function—called injectivity—that allows us to deduce that there are
more dots than stars.

Intuitively, a function f : X → Y is injective if it puts the elements of X in one-to-
one correspondence[a] with the elements of a subset of Y—just like how the stars are in
one-to-one correspondence with a subset of the dots in the example above.

Definition 4.1.1
A function f : X → Y is injective (or one-to-one) if

f(x) = f(x′) ⇒ x = x′ for all x, x′ ∈ X

An injective function is said to be an injection.

Proof tip
The definition of injectivity makes it easy to see how to prove that a function f : X → Y
is injective: let x, x′ ∈ X, assume that f(x) = f(x′), then derive x = x′. C

By contraposition, f : X → Y being injective is equivalent to saying that if x, x′ ∈ X and
x 6= x′, then f(x) 6= f(x′).

The following is a very simple example from elementary arithmetic:

Example 4.1.2
Define f : Z → Z by letting f(x) = 2x + 1 for all x ∈ Z. We’ll prove that f is injective.
Fix x, x′ ∈ Z, and assume that f(x) = f(x′). By definition of f , we have 2x+ 1 = 2x′ + 1.
Subtracting 1 yields 2x = 2x′, and dividing by 2 yields x = x′. Hence f is injective. C

The following example is slightly more sophisticated.

Proposition 4.1.3
Let f : X → Y and g : Y → Z be functions. If f and g are injective, then g ◦ f is injective.

Proof. Let x, x′ ∈ X. We need to prove that

(g ◦ f)(x) = (g ◦ f)(x′) ⇒ x = x′

[a]In fact, some authors use the term ‘one-to-one’ to mean ‘injective’.
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So assume (g ◦ f)(x) = (g ◦ f)(x′). By definition of function composition, this implies that
g(f(x)) = g(f(x′)). By injectivity of g, we have f(x) = f(x′); and by injectivity of f , we
have x = x′.

Exercise 4.1.4
Let f : X → Y and g : Y → Z be functions. Prove that if g ◦ f is injective, then f is
injective. C

Exercise 4.1.5
Write out what it means to say a function f : X → Y is not injective, and say how you
would prove that a given function is not injective. Give an example of a function which is
not injective, and use your proof technique to write a proof that it is not injective. C

Exercise 4.1.6
For each of the following functions, determine whether it is injective or not injective.

• f : N→ Z, defined by f(n) = n2 for all n ∈ N.

• g : Z→ N, defined by g(n) = n2 for all n ∈ Z.

• h : N× N× N→ N, defined by h(x, y, z) = 2x · 3y · 5z for all x, y, z ∈ N.

C

Surjectivity

Let’s revisit the rows of dots and stars that we saw earlier. Beforehand, we made our
idea that there are more dots than stars formal by proving the existence of an injection
f : S → D from the set S of stars to the set D of dots.

However, we could have drawn the same conclusion instead from defining a function D → S,
which in some sense covers the stars with dots—that is, every star is paired up with at
least one dot.

• • • • • • • • • • • • • • • • • • •

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

This property is called surjectivity—a function f : X → Y is surjective if every element of
Y is a value of f . This is made precise in Definition 4.1.7.
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Definition 4.1.7
A function f : X → Y is surjective (or onto) if

∀y ∈ Y, ∃x ∈ X, f(x) = y

A surjective function is said to be a surjection.

Proof tip
To prove that a function f : X → Y is surjective, prove that each element y ∈ Y is a
value of f . That is, fix y ∈ Y , and demonstrate that there exist some x ∈ X such that
f(x) = y. C

Example 4.1.8
Fix n ∈ N with n > 0, and define a function function r : Z → {0, 1, . . . , n − 1} by letting
r(a) be the remainder of a when divided by n. This function is surjective, since for each
k ∈ {0, 1, . . . , n− 1} we have r(k) = k. C

Exercise 4.1.9
For each of the following pairs of sets (X,Y ), determine whether the function f : X → Y
defined by f(x) = 2x+ 1 is surjective.

(a) X = Z and Y = {x ∈ Z | x is odd};

(b) X = Z and Y = Z;

(c) X = Q and Y = Q;

(d) X = R and Y = R.

C

Exercise 4.1.10
Let f : X → Y be a function. Find a subset V ⊆ Y and a surjection g : X → V agreeing
with f (that is, such that g(x) = f(x) for all x ∈ X). C

Exercise 4.1.11
Let f : X → Y be a function. Prove that f is surjective if and only if Y = f [X] C

Exercise 4.1.12
Let f : X → Y be a function. Prove that there is a set Z and functions

p : X → Z and i : Z → Y

such that p is surjective, i is injective, and f = i ◦ p. C

181



182 Chapter 4. Finite and infinite sets

Bijectivity

Bijective functions formalise the idea of putting sets into one-to-one correspondence—each
element of one set is paired with exactly one element of another.

Definition 4.1.13
A function f : X → Y is bijective if it is injective and surjective. A bijective function is
said to be a bijection.

Proof tip
To prove that a function f is bijective, prove that it is injective and surjective. C

Example 4.1.14
Let D ⊆ Q be the set of dyadic rational numbers, that is

D =

{
x ∈ Q

∣∣∣∣ x =
a

2n
for some a ∈ Z and n ∈ N

}
Let k ∈ N, and define f : D→ D by f(x) = x

2k
. We will prove that f is a bijection.

• (Injectivity) Fix x, y ∈ D and suppose that f(x) = f(y). Then x
2k

= y
2k

, so that
x = y, as required.

• (Surjectivity) Fix y ∈ D. We need to find x ∈ D such that f(x) = y. Well certainly
if 2ky ∈ D then we have

f(2ky) =
2ky

2k
= y

so it suffices to prove that 2ky ∈ D. Since y ∈ D, we must have y = a
2n for some

n ∈ N.

� If k 6 n then n− k ∈ N and so 2ky = a
2n−k ∈ D.

� If k > n then k − n > 0 and 2ky = 2k−na ∈ Z; but Z ⊆ D since if a ∈ Z then
a = a

20
. So again we have 2ky ∈ D.

In any case we have 2ky ∈ D and f(2ky) = y, so that f is surjective.

Since f is both injective and surjective, it is bijective. C

Exercise 4.1.15
Let X be a set. Prove that the identity function idX : X → X is a bijection. C

Exercise 4.1.16
Let m,n ∈ N. Find a bijection [m]× [n]→ [mn]. C
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Exercise 4.1.17
Let f : X → Y and g : Y → Z be bijections. Prove that g ◦ f is a bijection. C

We will soon see a way to characterise injections, surjections and bijections in terms of
other functions, called inverses. Before we do that, though, we will make precise our
intuition that an injection X → Y tells us that X has at most as many elements as Y ,
that a surjection X → Y tells us that X has at least as many elements as Y , and that a
bijection X → Y tells us that X has exactly as many elements as Y .

Inverses

Recall Definition 4.1.1, which says that a function f : X → Y is injective if, for all x, x′ ∈ X,
if f(x) = f(x′) then x = x′.

Exercise 4.1.18
Let f : X → Y be a function. Prove that f is injective if and only if

∀y ∈ f [X], ∃!x ∈ X, y = f(x)

C

Thinking back to Section 2.3, you might notice that this means that the logical formula
‘y = f(x)’ defines a function f [X] → X—specifically, if f is injective then there is a
function g : f [X] → X which is (well-)defined by the equation x = g(f(x)). Thinking of
f as an encoding function, we then have that g is the corresponding decoding function—
decoding is possible by injectivity of f . (If f were not injective then distinct elements of
X might have the same encoding, in which case we’re stuck if we try to decode them!)

Exercise 4.1.19
Define a function e : N × N → N by e(m,n) = 2m · 3n. Prove that e is injective. We can
think of e as encoding pairs of natural numbers as single natural numbers—for example,
the pair (4, 1) is encoded as 24 · 31 = 48. For each of the following natural numbers k, find
the pairs of natural numbers encoded by e as k:

1 24 7776 59049 396718580736

C

In Exercise 4.1.19, we were able to decode any natural number of the form 2m · 3n for
m,n ∈ N. This process of decoding yields a function

d : {k ∈ N | k = 2m · 3n for some m,n ∈ N} → N× N
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What would happen if we tried to decode a natural number not of the form 2m · 3n for
m,n ∈ N, say 5 or 100? Well. . . it doesn’t really matter! All we need to be true is that
d(e(m,n)) = (m,n) for all (m,n) ∈ N × N; the value of d on other natural numbers is
irrelevant.

Definition 4.1.20
Let f : X → Y be a function. A left inverse (or post-inverse) for f is a function
g : Y → X such that g ◦ f = idX .

Example 4.1.21
Let e : N× N→ N be as in Exercise 4.1.19. Define a function d : N→ N× N by

d(k) =

{
(m,n) if k = 2m · 3n for some m,n ∈ N
(0, 0) otherwise

Note that d is well-defined by the fundamental theorem of arithmetic (Theorem 3.2.12).
Moreover, given m,n ∈ N, we have

d(e(m,n)) = d(2m · 3n) = (m,n)

and so d is a left inverse for e. C

Exercise 4.1.22
Let f : X → Y be a function with X 6= ∅. Prove that f is injective if and only if f has a
left inverse. C

What about surjections? Definition 4.1.7 said that a function f : X → Y is surjective if

∀y ∈ Y, ∃x ∈ X, f(x) = y

This isn’t quite of the form ∀y ∈ Y, ∃!x ∈ X, p(y, x)—we assume a value of x making
‘f(x) = y’ true exists, but we don’t assume that it is unique. However, we can be cun-
ning[b]—just make an arbitrary (but fixed) choice amongst the y values that work!

Definition 4.1.23
Let f : X → Y be a function. A right inverse (or pre-inverse) for f is a function
g : Y → X such that f ◦ g = idY .

Example 4.1.24
Define f : R → R>0 by f(x) = x2. Note that f is surjective, since for each y ∈ R>0 we
have

√
y ∈ R and f(

√
y) = y. However f is not injective; for instance

f(−1) = 1 = f(1)

Here are three right inverses for f :

[b]We can only be cunning if we accept the axiom of choice—see Appendix B.2 for more details!
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• The positive square root function g : R>0 → R defined by g(y) =
√
y for all y ∈ R>0.

Indeed, for each y ∈ R>0 we have

f(g(y)) = f(
√
y) = (

√
y)2 = y

• The negative square root function h : R>0 → R defined by h(y) = −√y for all
y ∈ R>0. Indeed, for each y ∈ R>0 we have

f(h(y)) = f(−√y) = (−√y)2 = y

• The function k : R>0 → R defined by

k(y) =

{√
y if 2n 6 y < 2n+ 1 for some n ∈ N
−√y otherwise

Note that k is well-defined, and again f(k(y)) = y for all y ∈ R>0 since no matter
what value k(y) takes, it is equal to either

√
y or −√y.

There are many more right inverses for f—in fact, there are infinitely many more! C

Exercise 4.1.25
Prove that a function f : X → Y is surjective if and only if it has a right inverse. C

Exercises 4.1.22 and 4.1.25 establish that a function f : X → Y is. . .

• injective if and only if it has a left inverse (provided X is inhabited);

• surjective if and only if it has a right inverse.

It seems logical that we might be able to classify bijections as being those functions which
have a left inverse and a right inverse. We can actually say something stronger—the left and
right inverse can be taken to be the same function! (In fact, Proposition 4.1.30 establishes
that they are necessarily the same function.)

Definition 4.1.26
Let f : X → Y be a function. A (two-sided) inverse for f is a function g : Y → X which
is both a left inverse and a right inverse for f .

It is customary to simply say ‘inverse’ rather than ‘two-sided inverse’.

Example 4.1.27
Let D be the set of dyadic rational numbers, as defined in Example 4.1.14. There, we
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defined a function f : D → D defined by f(x) = x
2k

for all x ∈ D, where k is some fixed
natural number. We find an inverse for f .

Define g : D → D by g(x) = 2kx. Then

• g is a left inverse for f . To see this, note that for all x ∈ D we have

g(f(x)) = g(
x

2k
) = 2k · x

2k
= x

• g is a right inverse for f . To see this, note that for all y ∈ D we have

f(g(y)) = f(2ky) =
2ky

2k
= y

Since g is a left inverse for f and a right inverse for f , it is a two-sided inverse for f . C

Exercise 4.1.28
The following functions have two-sided inverses. For each, find its inverse and prove that
it is indeed an inverse.

(a) f : R→ R defined by f(x) = 2x+1
3 .

(b) g : P(N)→ P(N) defined by g(X) = N \X.

(c) h : N× N→ N defined by h(m,n) = 2m(2n+ 1)− 1 for all m,n ∈ N.

C

Exercises 4.1.22 and 4.1.25 can be pieced together to prove the following result.

Exercise 4.1.29
Let f : X → Y be a function. Prove that f is bijective if and only if f has an inverse. C

Common error
When proving a function f : X → Y is bijective by finding an inverse g : Y → X, it is
important to check that g is both a left inverse and a right inverse for f . If you only prove
that g is a left inverse for f , for example, then you have only proved that f is injective! C

As indicated above, if a function has both a left and a right inverse, then they must be
equal.

Proposition 4.1.30
Let f : X → Y be a function and suppose ` : Y → X is a left inverse for f and r : Y → X
is a right inverse for f . Then ` = r.
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Proof. The proof is deceptively simple:

` = ` ◦ idY by definition of identity functions

= ` ◦ (f ◦ r) since r is a right inverse for f

= (` ◦ f) ◦ r by Exercise 2.3.27

= idX ◦ r since ` is a left inverse for f

= r by definition of identity functions

It follows from Proposition 4.1.30 that, for any function f : X → Y , any two inverses for
f are equal—that is, every bijective function has a unique inverse!

Notation 4.1.31
Let f : X → Y be a function. Write f−1 : Y → X to denote the (unique) inverse for f , if
it exists.

Proposition 4.1.32
Let f : X → Y be a bijection. A function g : Y → X is a left inverse for f if and only if it
is a right inverse for f .

Proof. We will prove the two directions separately.

• (⇒) Suppose g : Y → X is a left inverse for f—that is, g(f(x)) = x for all x ∈ X.
We prove that f(g(y)) = y for all y ∈ Y , thus establishing that g is a right inverse
for f . So let y ∈ Y . Since f is a bijection, it is in particular a surjection, so there
exists x ∈ X such that y = f(x). But then

f(g(y)) = f(g(f(x))) since y = f(x)

= f(x) since g(f(x)) = x

= y since y = f(x)

So indeed g is a right inverse for f .

• (⇐) Suppose g : Y → X is a right inverse for f—that is, f(g(y)) = y for all y ∈ Y .
We prove that g(f(x)) = x for all x ∈ X, thus establishing that g is a left inverse for
f . So let x ∈ X. Letting y = f(x), we have f(g(y)) = y since g is a right inverse for
f . This says precisely that f(g(f(x)) = f(x), since y = f(x). By injectivity of f , we
have g(f(x)) = x, as required.
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Exercise 4.1.33
Let f : X → Y be a bijection. Prove that f−1 : Y → X is a bijection. C

Exercise 4.1.34
Let f : X → Y and g : Y → Z be bijections. Prove that g ◦ f : X → Z is a bijection, and
write an expression for its inverse in terms of f−1 and g−1. C

First look at counting

We’ll very soon (Section 4.2) make heavy use of functions to count the number of elements
of a finite set. Before we do that, let’s look at how injections, surjections and bijections
can be used to compare sizes of particular finite sets—namely, those of the form [n] for
n ∈ N, as defined in Definition 2.2.31.

When we used dots and stars to motivate the definitions of injective and surjective func-
tions, we suggested the following intuition:

• If there is an injection f : X → Y , then X has ‘at most as many elements as Y ’; and

• If there is a surjection g : X → Y , then X has ‘at least as many elements as Y ’.

Let’s make this intuition formal in the case when X and Y are sets of the form [n] for
n ∈ N.

Theorem 4.1.35
Let m,n ∈ N.

(a) If there exists an injection f : [m]→ [n], then m 6 n.

(b) If there exists a surjection g : [m]→ [n], then m > n.

(c) If there exists a bijection h : [m]→ [n], then m = n.

Let’s think about how we might prove part (a); part (b) is left as an exercise, and part (c)
follows immediately from (a), (b) and the definition of a bijection. The intuition behind
(a) is clear: if we can pair up the natural numbers from 1 up to m with a subset of the
numbers from 1 up to n, then n should be at least as large as m.

Our hypothesis is that an injection f : [m] → [n] exists—but, unfortunately for us, we
have no control over what values this function takes. If it were as simple as f(k) = k for
all k ∈ [m], then this would be an incredibly easy result to prove. But it might be the case
that, say, f(1) = 3, and f(2) = 5, and f(3) = 2, and f(4) = 1, and so on.
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Since we’re working with natural numbers (m and n), let’s use the canonical technique for
proving results about natural numbers—induction! We’ll proceed by induction on n, but
you could think about how you might prove the claim by induction on m.

Proof of Theorem 4.1.35(a). We’ll prove the following statement by induction on n ∈ N:

For all m ∈ N, if there exists an injection f : [m]→ [n], then m 6 n.

• (Base case) Fix m ∈ N and suppose there exists an injection f : [m]→ [0]. We need
to prove that m 6 0, or equivalently that m = 0, since m can’t be negative.

Well, if m > 1, then 1 ∈ [m], and so f(1) ∈ [0]. But [0] = ∅, so this would imply
that the empty set has an element, which is nonsense. So m < 1, and hence m = 0.

• (Induction step) Fix n ∈ N and suppose that, for all m ∈ N, if there exists an
injection f : [m]→ [n], then m 6 n. This assumption is our induction hypothesis.

Now fix m ∈ N and suppose there is an injection f : [m]→ [n+ 1]. We need to prove
that m 6 n+ 1.

We can use our induction hypothesis to prove that things are 6 n, so we need to
prove m − 1 6 n. But the number to the left-hand side of the 6 symbol must be a
natural number—so let’s consider the case when m = 0 separately. Well, if m = 0
then 0 6 n+1. (That was easy!) So let’s now assume that m > 1, so that m−1 ∈ N.

In order to use the induction hypothesis to prove m − 1 6 n, we need to find an
injection [m − 1] → [n]. We’re given an injection f : [m] → [n + 1], so let’s use this
to construct an injection g : [m− 1]→ [n]. There are two cases to consider:

� Suppose f(k) 6= n+ 1 for all k ∈ [m− 1]. Then we can define g : [m− 1]→ [n]
by g(k) = f(k) for all k ∈ [m − 1]. Injectivity of g then follows immediately
from injectivity of f : indeed, given k, ` ∈ [m− 1], we have

g(k) = g(`) ⇒ f(k) = f(`) ⇒ k = `

where the second implication follows from injectivity of f .

� Suppose f(r) = n+ 1 for some r ∈ [m− 1]. Since f is injective, we have f(k) 6=
n + 1 for all k 6= r; in particular, f(m) 6= n + 1. We’ll define g : [m − 1] → [n]
to be the same as f , except it exchanges the values at r and at m. This ensures
that g(k) ∈ [n] for all k ∈ [m− 1]. Specifically, for k ∈ [m− 1], define

g(k) =

{
f(k) if k 6= r

f(m) if k = r
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We just noted that g defines a function [m− 1]→ [n]. Now let’s prove that g is
injective.

Fix k, ` ∈ [m−1] and suppose g(k) = g(`). We’ll split into some cases and prove
that k = ` in each case:

∗ Suppose k 6= r and ` 6= r. Then g(k) = f(k) and g(`) = f(`), so f(k) = f(`)
and k = ` by injectivity of f .

∗ Suppose k = r or ` = r. (We may in fact assume k = r, otherwise swap the
roles of k and ` in what follows.) Then g(k) = g(r) = f(m) by definition of
g. Moreover, we know that g(`) = f(t) for some t ∈ [m] and, by definition
of g, we must have t = ` (if t 6= r) or t = m. But then f(t) = f(m), so
t = m by injectivity of f , so ` = r = k.

Either way, we have k = `. So g is injective. Now that we’ve proved that there exists
an injective function g : [m− 1]→ [n], it follows from the induction hypothesis that
m− 1 6 n, and so m 6 n+ 1 as required.

This completes the inductive step, so the theorem is proved.

Exercise 4.1.36
Prove part (b) of Theorem 4.1.35. C

Exercise 4.1.37
Let m,n ∈ N with m 6 n. Does there exist an injection [m] → [n]? Does there exist a
surjection [n]→ [m]? Prove your answers. C

Proposition 4.1.35 showed us that we can compare natural numbersm and n by determining
if there is an injection, surjection or bijection [m] → [n]. We can use this result, together
with our intuition, to motivate the definition of what it is for a set to be finite. Intuitively,
a set is finite if we can label its elements using the elements of [n] for some n ∈ N. This
labelling process can be formalised using bijections. Exercise 4.1.38 shows that this n is
unique.

Exercise 4.1.38
Let X be a set and let m,n ∈ N. Prove that, if there exist bijections f : [m] → X and
g : [n]→ X, then m = n. C

Definition 4.1.39
A set X is finite if there is a bijection [n] → X for some n ∈ N, called the size of X.
Write |X| for the size of X. If X is not finite we say it is infinite.

In more intuitive terms: a set X is finite if the number of elements of X is a natural
number; the size X is simply the number of elements of X.
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Example 4.1.40
Let X = {cat,dog, rabbit,horse, sheep}. Then |X| = 5. To see this, define f : [5]→ X by

f(1) = cat, f(2) = dog, f(3) = rabbit, f(4) = horse, f(5) = sheep

Then f is a bijection, as can easily be checked by noting that the function g : X → 5
defined by

g(cat) = 1, g(dog) = 2, g(rabbit) = 3, g(horse) = 4, g(sheep) = 5

is an inverse for f . C

Example 4.1.41
For each n ∈ N the set [n] is finite, and |[n]| = n. This is because the identity function
id[n] : [n]→ [n] is a bijection. C

Exercise 4.1.42
Let X be a finite set with |X| = n > 1. Let x ∈ X and let y 6∈ X. Prove that

|X \ {x}| = n− 1 and |X ∪ {y}| = n+ 1

Demonstrate that the hypotheses that x ∈ X and y 6∈ X are necessary—in other words,
find a set X with |X| = n > 1 and elements x, y such that |X \ {x}| 6= n − 1 and
|X ∪ {y}| 6= n+ 1. C

The following exercise is straightforward to prove, but is extremely powerful. We will make
heavy use of it in Section 4.2, where it can be used to prove combinatorial identities.

Exercise 4.1.43
Let X and Y be finite sets. Prove that if there exists a bijection h : X → Y , then
|X| = |Y |. C

We conclude this section by proving that not all sets are finite—specifically, we’ll prove
that N is infinite. Intuitively this seems extremely easy: of course N is infinite! But in
mathematical practice, this isn’t good enough: we need to use our definition of ‘infinite’ to
prove that N is infinite. Namely, we need to prove that there is no bijection [n] → N for
any n ∈ N. We will use Lemma 4.1.44 below in our proof.

Lemma 4.1.44
Every inhabited finite set of natural numbers has a greatest element.

Proof. We’ll prove by induction on n > 1 that, for all sets X with |X| = n, X has a
greatest element.

191



192 Chapter 4. Finite and infinite sets

• (BC) Fix a set X with |X| = 1. then X = {x} for some x ∈ N. Since x is the only
element of X, it is certainly the greatest element!

• (IS) Let n ∈ N and suppose that every set of natural numbers of size n has a greatest
element (IH).

Let X = {x1, x2, . . . , xn, xn+1} be a set with n + 1 elements. We wish to show that
X has a greatest element.

To do this, let Y = X \ {xn+1}. Then |Y | = n, so by (IH) it has a greatest element,
say xi. If xi > xn+1 then xi is the greatest element of X; otherwise, xn+1 is the
greatest element of X. In either case, X has a greatest element.

By induction, we’re done.

Theorem 4.1.45
The set N is infinite.

Proof. We proceed by contradiction. Suppose N is finite. Then |N| = n for some n ∈ N,
and hence N is either empty (nonsense) or, by Lemma 4.1.44, it has a greatest element g.
But g + 1 ∈ N since every natural number has a successor, contradicting maximality of g.
Hence N is infinite.
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Section 4.2

Counting principles

Recall from Definition 4.1.39 that a set X is finite if there is a bijection [n]→ X for some
n ∈ N; moreover, this n is unique, and is called the size of X, which we denote by |X|.

The main portion of this section focuses on the problem of computing |X| given a de-
scription of X. The field of mathematics that concerns itself with this problem is called
enumerative combinatorics.

The next few results allow us to deduce that subsets, binary intersections, binary unions
and binary products of finite sets are finite.

Proposition 4.2.1
Let i : U → X be an injection. If X is finite, then U is finite, and moreover |U | 6 |X|.

Proof. We prove by induction on n that, for all finite sets X of size n, and all injections
i : U → X, the set U is finite and |U | 6 n.

• (BC) Suppose |X| = 0. Then X = ∅. The only function whose codomain is the
empty set is the empty function ∅→ ∅; in other words, if i : U → ∅ is an injection,
then U = ∅. Hence U is finite and |U | = 0 6 0 as required.

• (IS) Fix n > 0 and suppose that, for any set Y with |Y | = n, and any injection
j : V → Y , we have V finite and |V | 6 n.

Let X be a set with |X| = n+ 1, and let f : [n+ 1]→ X be a bijection.

Fix an injection i : U → X. For simplicity of notation, write X ′ = X \ {f(n + 1)}.
Note that |X ′| = n by Exercise 4.1.42.

We split into cases based on whether or not f(n+ 1) ∈ i[U ].

� If f(n+1) 6∈ i[U ], then there is a function i′ : U → X ′ defined by i′(x) = i(x) for
all x ∈ U . Moreover, this function is injective, since if x, y ∈ U and i′(x) = i′(y),
then i(x) = i(y) by definition of i′, and so x = y by injectivity of i. Moreover
|X ′| = n, so the induction hypothesis applies to the injection i′ : U → X ′. It
follows that U is finite and

|U | 6 |X ′| = n < n+ 1 = |X|

as required.

� If f(n+ 1) ∈ i[U ], then there is some u? ∈ U such that i(u?) = f(n+ 1). Write
U ′ = U \ {u?}, and define i′ : U ′ → X ′ by i′(x) = i(x) for all x ∈ U ′. Again
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i′ is injective, and |X ′| = n, so the induction hypothesis yields that U ′ is finite
and |U ′| 6 n; say |U ′| = k ∈ N. But then |U | = k + 1 by Exercise 4.1.42, and
k + 1 6 n+ 1 since k 6 n.

In either case, we’ve proved that U is finite and |U | 6 |X|, so the induction step is
complete.

By induction, it follows that any injection with finite codomain has a finite domain.

Exercise 4.2.2
Let X be a finite set. Prove that every subset U ⊆ X is finite. C

Exercise 4.2.3
Let X and Y be finite sets. Prove that X ∩ Y is finite. C

Exercise 4.2.4
Let X be a finite set and let U ⊆ X. Prove that X \ U is finite, and moreover |X \ U | =
|X| − |U |. C

Proposition 4.2.5
Let X and Y be finite sets. Then X ∪ Y is finite, and moreover

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |

Proof. We will prove this in the case when X and Y are disjoint. The general case, when
X and Y are not assumed to be disjoint, will be Exercise 4.2.6.

If X = ∅ then X ∪ Y = Y and X ∩ Y = ∅, so that

|X ∪ Y | = |Y | and |X|+ |Y | − |X ∩ Y | = 0 + |Y | − 0 = |Y |

so the result is proved. The proof is similar when Y = ∅. So for the remainder of the
proof, we assume that both X and Y are inhabited.

Let m = |X| > 0 and n = |Y | > 0, and let f : [m]→ X and g : [n]→ Y be bijections.

Since X and Y are disjoint, we have X ∩ Y = ∅. Define h : [m + n] → X ∪ Y as follows;
given k ∈ [m+ n], let

h(k) =

{
f(k) if k 6 m

g(k −m) if k > m

Note that h is well-defined: the cases k 6 m and k > m are mutually exclusive, they cover
all possible cases, and k −m ∈ [n] for all m+ 1 6 k 6 n so that g(k −m) is defined. It is
then straightforward to check that h has an inverse h−1 : X ∪ Y → [m+ n] defined by

h−1(z) =

{
f−1(z) if z ∈ X
g−1(z) +m if z ∈ Y
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Well-definedness of h−1 relies fundamentally on the assumption that X ∩Y = ∅, as this is
what ensures that the cases x ∈ X and x ∈ Y are mutually exclusive.

Hence |X ∪ Y | = m+ n = |X|+ |Y |, which is as required since |X ∩ Y | = 0.

Exercise 4.2.6
The following steps complete the proof of Proposition 4.2.5:

(a) Given sets A and B, prove that the sets A× {0} and B × {1} are disjoint, and find
bijections A → A × {0} and B → B × {1}. Write A t B (LATEX code: \sqcup) to
denote the set (A× {0})∪ (B × {1}). The set AtB is called the disjoint union of
A and B.

(b) Prove that, if A and B are finite then A tB is finite and

|A tB| = |A|+ |B|

(c) Let X and Y be sets. Find a bijection

(X ∪ Y ) t (X ∩ Y )→ X t Y

(d) Complete the proof of Proposition 4.2.5—that is, prove that if X and Y are finite
sets, not necessarily disjoint, then X ∪ Y is finite and

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |

C

Proposition 4.2.7
Let X and Y be finite sets. Then X × Y is finite, and moreover

|X × Y | = |X| · |Y |

Proof. If X = ∅ or Y = ∅, then X × Y = ∅, so that |X| = |Y | = |X × Y | = 0 and the
result is immediate. As such, we assume for the rest of the proof that X and Y are both
inhabited.

Let X and Y be sets with |X| = m > 0 and |Y | = n > 0, and let f : [m] → X and
g : [n]→ Y be bijections. Define a function h : [m]× [n]→ X × Y by

h(k, `) = (f(k), g(`))

for each k ∈ [m] and ` ∈ [n]. It is easy to see that this is a bijection, with inverse defined
by

h−1(x, y) = (f−1(x), g−1(y))
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for all x ∈ X and y ∈ Y . By Exercise 4.1.16 there is a bijection p : [mn]→ [m]× [n], and by
Exercise 4.1.17 the composite h◦p : [mn]→ X×Y is a bijection. Hence |X×Y | = mn.

In summary, we have shown that if X and Y are finite sets, then so are X ∪ Y , X ∩ Y ,
X×Y , any subset U ⊆ X, and more generally any set U for which there exists an injection
U → X.

Indexed unions, intersections and products — finite version

Since we will be dealing with arbitrary finite collections of sets, it will help us to introduce
some new notation to make notation more concise. For example, writing

X1 ∪X2 ∪ · · · ∪Xn

again and again will be cumbersome.
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Definition 4.2.8
Let n ∈ N and, for each i ∈ [n], let Xi be a set. We define. . .
• . . . the indexed union of {Xi | i ∈ [n]} is the set

⋃n
i=1Xi defined by

n⋃
i=1

Xi = {x | x ∈ Xi for some i ∈ [n]}

• . . . the indexed intersection of {Xi | i ∈ [n]} is the set
⋂n

i=1Xi defined by

n⋂
i=1

Xi = {x | x ∈ Xi for all i ∈ [n]}

• . . . the indexed product of {Xi | i ∈ [n]} is the set
n∏

i=1
Xi defined by

n∏
i=1

Xi = {(x1, x2 . . . , xn) | xi ∈ Xi for each i ∈ [n]}

The notation (x1, x2 . . . , xn) refers to an ordered n-tuple; formally, this is a function
x : [n] →

⋃n
i=1Xi such that x(i) ∈ Xi for all i ∈ [n]—then xi is just shorthand for

x(i). But for our purposes, it will suffice to think of (x1, . . . , xn) as simply being an
ordered list of n elements, with the ith component of the list being an element of Xi.

We write Xn =
n∏

i=1
X. For example, N4 is the set of ordered sequences of natural

numbers of length 4, such as (1, 5, 7, 3) or (2, 2, 2, 2).

In Section 4.3 we will generalise Definition 4.2.8 even further to define indexed unions,
intersections and products of arbitrary families of sets, not just finite ones. Everything we
do now generalises to that scenario, but it is instructive to work in the finite case first.

Example 4.2.9
If X1 and X2 are sets, then {X1, X2} is a family of sets indexed by the index set I = {1, 2}.
Then x ∈

⋂
i∈I Xi if and only if x ∈ X1 and x ∈ X2. This proves that

2⋂
i=1

Xi = X1 ∩X2

In other words, pairwise intersection is a special case of indexed intersection. The proof
that

⋃2
i=1Xi = X1 ∪X2 is similar. C
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Example 4.2.10
Let Xi be a set for all i ∈ N. Notice that according to our definition we have

0⋃
i=1

Xi = ∅

since, for given x, we have x ∈
⋃0

i=1Xi if and only if x ∈ Xi for some i ∈ [0]; since [0] = ∅,
there are no such values of i, and so the expression x ∈

⋃0
i=1Xi can never be true.

Moreover, given n ∈ N we have

n+1⋃
i=1

Xi =

(
n⋃

i=1

Xi

)
∪Xn+1

This is because, for given x, we have

x ∈
n+1⋃
i=1

Xi ⇔ x ∈ Xi for some i ∈ [n+ 1]

⇔ x ∈ Xi for some i ∈ [n], or x ∈ Xn+1

⇔ x ∈
n⋃

i=1

Xi or x ∈ Xn+1

⇔ x ∈

(
n⋃

i=1

Xi

)
∪Xn+1

This yields an inductive proof that, when n > 1, we have

n⋃
i=1

Xi = X1 ∪X2 ∪ · · · ∪Xn

C

Exercise 4.2.11
Let Xi be a set for each i ∈ N. Prove that

0⋂
i=1

Xi = U and

n+1⋂
i=1

Xi =

(
n⋂

i=1

Xi

)
∩Xn+1 for all n ∈ N

where U is the universe. Deduce that if n > 1 then

n⋂
i=1

Xi = X1 ∩X2 ∩ · · · ∩Xn

C
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To tie up this portion on finite indexed families of sets, we note a new version of de Morgan’s
laws for sets which generalises the version you saw in Theorem 2.2.40. This theorem will
be generalised even further in Theorem 4.3.5.

Theorem 4.2.12 (de Morgan’s laws for sets (finite version))
Let n ∈ N. For each i ∈ [n] let Xi be a set, and let Z be a set. Then

(a) Z \ (
⋃n

i=1Xi) =
⋂n

i=1(Z \Xi);

(b) Z \ (
⋂n

i=1Xi) =
⋃n

i=1(Z \Xi).

Exercise 4.2.13
Prove Theorem 4.2.12 by induction on n, using Theorem 2.2.40 for the induction step. C

Exercise 4.2.14

Let n ∈ N and let Xi be a set for each i ∈ [n + 1]. Note that the elements of
n+1∏
i=1

Xi are

ordered (n + 1)-tuples, and that the elements of

(
n∏

i=1
Xi

)
× Xn+1 are ordered pairs, the

first component of which is an ordered n-tuple. Prove that these are essentially the same
thing, by showing that the function

f :

n+1∏
i=1

Xi →

(
n∏

i=1

Xi

)
×Xn+1

defined by

f(x1, x2, . . . , xn, xn+1) = ((x1, x2, . . . , xn), xn+1)

for all xi ∈ Xi and i ∈ [n+ 1], is a bijection. C

Binomials and factorials revisited

We defined binomial coefficients
(
n
k

)
and factorials n! recursively in Section 1.3, and proved

elementary facts about them by induction. We will now re-define them combinatorially—
that is, we give them meaning in terms of sizes of particular finite sets. We will prove that
the combinatorial and recursive definitions are equivalent, and prove facts about them
using combinatorial arguments.

The reasons for doing so are manifold. The combinatorial definitions allow us to reason
about binomials and factorials with direct reference to descriptions of finite sets, which
will be particularly useful when we prove identities about them using counting in two
ways. Moreover, the combinatorial definitions remove the seeming arbitrary nature of the
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recursive definitions—for example, they provide a reason why it makes sense to define
0! = 1 and

(
0
0

)
= 1.

Definition 4.2.15
Let X be a set and let k ∈ N. A k-element subset of X is a subset U ⊆ X such that
|U | = k. The set of all k-element subsets of X is denoted

(
X
k

)
(read: ‘X choose k’) (LATEX

code: \binom{X}{k}).

Intuitively,
(
X
k

)
is the set of ways of picking k elements from X, without repetitions, in

such a way that order doesn’t matter. (If order mattered, the elements would be sequences
instead of subsets.)

Example 4.2.16
We find

([4]
k

)
for all k ∈ N.

•
(

[4]
0

)
= {∅} since the only set with 0 elements is ∅;

•
(

[4]
1

)
= {{1}, {2}, {3}, {4}};

•
(

[4]
2

)
= {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}};

•
(

[4]
3

)
= {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}};

•
(

[4]
4

)
= {{1, 2, 3, 4}};

• If k > 5 then
([4]
k

)
= ∅, since by Exercise 4.2.2, no subset of [4] can have more than

4 elements.

C

Proposition 4.2.17
If X is a finite set, then P(X) =

⋃
k6|X|

(
X
k

)
.

Proof. Let U ⊆ X. By Exercise 4.2.2, U is finite and |U | 6 |X|. Thus U ∈
(
X
|U |
)
, and hence

U ∈
⋃

k6|X|
(
X
k

)
. This proves that P(X) ⊆

⋃
k6|X|

(
X
k

)
.

The fact that
⋃

k6|X|
(
X
k

)
⊆ P(X) is immediate, since elements of

(
X
k

)
are defined to be

subsets of X, and hence elements of P(X).
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Definition 4.2.18
Let n, k ∈ N. Denote by

(
n
k

)
(read: ‘n choose k’) (LATEX code: \binom{n}{k}) the number

of k-element subsets of a set of size n. That is, we define
(
n
k

)
=
∣∣∣([n]

k

)∣∣∣. The numbers
(
n
k

)
are called binomial coefficients.a

aSome authors use the notation nCk or nCk instead of
(
n
k

)
. We avoid this, as it is unnecessarily clunky.

Intuitively,
(
n
k

)
is the number of ways of selecting k things from n, without repetitions, in

such a way that order doesn’t matter.

The value behind this notation is that it allows us to express huge numbers in a concise
and meaningful way. For example,(

4000

11

)
= 103 640 000 280 154 258 645 590 429 564 000

Although these two numbers are equal, their expressions are very different; the expression
on the left is meaningful, but the expression on the right is completely meaningless out of
context.

Writing tip
When expressing the sizes of finite sets described combinatorially, it is best to avoid eval-
uating the expression; that is, leave in the powers, products, sums, binomial coefficients
and factorials! The reason for this is that performing the calculations takes the meaning
away from the expressions. C

Example 4.2.19
In Example 4.2.16 we proved that:(

4

0

)
= 1,

(
4

1

)
= 4,

(
4

2

)
= 6,

(
4

3

)
= 4,

(
4

4

)
= 1

and that
(

4
k

)
= 0 for all k > 5. C

Exercise 4.2.20
Fix n ∈ N. Prove that

(
n
0

)
= 1,

(
n
1

)
= n and

(
n
n

)
= 1. C

Definition 4.2.21
Let X be a set. A permutation of X is a bijection X → X. Denote the set of all
permutations of X by SX (LATEX code: S X),a and write S[n] = Sn for n ∈ N.

aThe ‘S’ comes from ‘symmetry’. The set SX comes with the natural structure of a group.

201



202 Chapter 4. Finite and infinite sets

Example 4.2.22
There are six permutations of the set [3]. Representing each f ∈ S[3] by the ordered triple
(f(1), f(2), f(3)), these permutations are thus given by

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

For example, (2, 3, 1) represents the permutation f : [3]→ [3] defined by f(1) = 2, f(2) = 3
and f(3) = 1. C

Exercise 4.2.23
List all the permutations of the set [4]. C

Definition 4.2.24
Let n ∈ N. Denote by n! (read: ‘n factorial’) the number of permutations of a set of size
n. That is, n! = |Sn|. The numbers n! are called factorials.

Example 4.2.25
Example 4.2.22 shows that 3! = 6. C

Counting products and partitions

We saw in Proposition 4.2.7 and Proposition 4.2.5 that, given two finite sets X and Y ,
the product X × Y and the union X ∪ Y are finite. We also found formulae for their size.
The multiplication principle (Theorem 4.2.26) and addition principle (Theorem 4.2.37)
generalise these formulae, extending to products and (disjoint) unions of any finite number
of finite sets.

Theorem 4.2.26 (Multiplication principle (independent version))

Let {X1, . . . , Xn} be a family of finite sets, with n > 1. Then
n∏

i=1
Xi is finite, and

∣∣∣∣∣
n∏

i=1

Xi

∣∣∣∣∣ = |X1| · |X2| · · · · · |Xn|

Proof. We proceed by induction on n.

• (BC) When n = 1, an element of
1∏

i=1
Xi is ‘officially’ 1-ary sequence (x1) with x1 ∈

X1. This is the same as an element of X1: it is easy to check that the assignments
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(x1) 7→ x1 and x1 7→ (x1) define mutually inverse (hence bijective) functions between
1∏

i=1
Xi and X1, and so ∣∣∣∣∣

1∏
i=1

Xi

∣∣∣∣∣ = |X1|

• (IS) Fix n ∈ N, and suppose that∣∣∣∣∣
n∏

i=1

Xi

∣∣∣∣∣ = |X1| · |X2| · · · · · |Xn|

for all sets Xi for i ∈ [n]. This is our induction hypothesis.

Now let X1, . . . , Xn, Xn+1 be sets. We define a function

F :

n+1∏
i=1

Xi →

(
n∏

i=1

Xi

)
×Xn+1

by letting F ((x1, . . . , xn, xn+1)) = ((x1, . . . , xn), xn+1). It is again easy to check that
F is a bijection, and hence ∣∣∣∣∣

n+1∏
i=1

Xi

∣∣∣∣∣ =

∣∣∣∣∣
n∏

i=1

Xi

∣∣∣∣∣ · |Xn+1|

by Proposition 4.2.7. Applying the induction hypothesis, we obtain the desired result,
namely ∣∣∣∣∣

n+1∏
i=1

Xi

∣∣∣∣∣ = |X1| · |X2| · · · · · |Xn| · |Xn+1|

By induction, we’re done.

The multiplication principle is also known as the rule of product.

Problem-solving tip
The multiplication principle allows us to count the number of elements of a finite set X by
devising a procedure for counting all of its elements exactly once. If this procedure has n
steps, where n ∈ N, then the procedure establishes a bijection

X →
n∏

i=1

Si
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where Si is the set of possible outcomes of the ith step in the procedure. If there are ni
possible outcomes of the ith step in the procedure, this therefore implies that

|X| =
n∏

i=1

ni

C

Example 4.2.27
You go to an ice cream stand selling the following flavours:

vanilla, strawberry, chocolate, rum and raisin, mint choc chip, toffee crunch

You can have your ice cream in a tub, a regular cone or a choco-cone. You can have one,
two or three scoops. We will compute how many options you have.

To select an ice cream, you follow the following procedure:

• Step 1. Choose a flavour. There are 6 ways to do this.

• Step 2. Choose whether you’d like it in a tub, regular cone or choco-cone. There
are 3 ways to do this.

• Step 3. Choose how many scoops you’d like. There are 3 ways to do this.

Hence there are 6× 3× 3 = 54 options in total. C

This may feel informal, but really what we are doing is establishing a bijection. Letting X
be the set of options, the above procedure defines a bijection

X → F × C × S

where F is the set of flavours, C = {tub, regular cone, choco-cone} and S = [3] is the set
of possible numbers of scoops.

Example 4.2.28
We will prove that |P(X)| = 2|X| for all finite sets X.[c]

Let X be a finite set and let n = |X|. Write

X = {xk | k ∈ [n]} = {x1, x2, . . . , xn}

[c]Some authors write 2X to refer to the power set of a set X. This is justified by Exercise 4.2.28.

204



Section 4.2. Counting principles 205

Intuitively, specifying an element of P(X)—that is, a subset U ⊆ X—is equivalent to
deciding, for each k ∈ [n], whether xk ∈ U or xk 6∈ U (‘in or out’), which in turn is
equivalent to specifying an element of {in, out}n.

For example, taking X = [7], the subset U = {1, 2, 6} corresponds with the choices

1 in, 2 in, 3 out, 4 out, 5 out, 6 in, 7 out

and hence the element (in, in, out, out, out, in, out) ∈ {in, out}7.

This defines a function i : P(X) → {in, out}n. This function is injective, since different
subsets determine different sequences; and it is surjective, since each sequence determines
a subset.

The above argument is sufficient for most purposes, but since this is the first bijective proof
we have come across, we now give a more formal presentation of the details.

Define a function

i : P(X)→ {in, out}n

by letting the kth component of i(U) be ‘in’ if xk ∈ U or ‘out’ if xk 6∈ U , for each k ∈ [n].

We prove that i is a bijection.

• i is injective. To see this, take U, V ⊆ X and suppose i(U) = i(V ). We prove that
U = V . So fix x ∈ X and let k ∈ [n] be such that x = xk. Then

x ∈ U ⇔ the kth component of i(U) is ‘in’ by definition of i

⇔ the kth component of i(V ) is ‘in’ since i(U) = i(V )

⇔ x ∈ V by definition of i

so indeed we have U = V , as required.

• i is surjective. To see this, let v ∈ {in, out}n, and let

U = {xk | the kth component of v is ‘in’}

Then i(U) = v, since for each k ∈ [n] we have xk ∈ U if and only if the kth component
of v is ‘in’, which is precisely the definition of i(U).

Hence

|P(X)| = |{in, out}|n = 2n

as required. C
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Exercise 4.2.29
Let X and Y be finite sets, and recall that Y X denotes the set of functions from X to Y .
Prove that |Y X | = |Y ||X|. C

Example 4.2.30
We count the number of ways we can shuffle a standard deck of cards in such a way that
the colour of the cards alternate between red and black.

A procedure for choosing the order of the cards is as follows:

(i) Choose the colour of the first card. There are 2 such choices. This then determines
the colours of the remaining cards, since they have to alternate.

(ii) Choose the order of the red cards. There are 26! such choices.

(iii) Choose the order of the black cards. There are 26! such choices.

By the multiplication principle, there are 2 · (26!)2 such rearrangements. This number is
huge, and in general there is no reason to write it out. Just for fun, though:

2 · (26!)2 = 325 288 005 235 264 929 014 077 766 819 257 214 042 112 000 000 000 000

C

Exercise 4.2.31
Since September 2001, car number plates on the island of Great Britain have taken the
form XX NN XXX, where each X can be any letter of the alphabet except for ‘I’, ‘Q’ or ‘Z’,
and NN is the last two digits of the year.[d] How many possible number plates are there?
Number plates of vehicles registered in the region of Yorkshire begin with the letter ‘Y’.
How many Yorkshire number plates can be issued in a given year? C

A sight modification to the multiplication principle allows sets later in the product to
depend somehow on those appearing earlier. Thinking of the elements of a product as
steps in a counting procedure, this means that later steps can depend on the outcome of
earlier steps, which will turn out to be extremely useful!

Corollary 4.2.32 (Multiplication principle (dependent version))
Let n > 1 and for each i ∈ [n] let ki ∈ N. Define a family of sets Xi(x1, . . . , xi−1) for i ∈ [n]
inductively as follows:

• Let X1 be a finite set of size k1;

• Let i < n and supposeXi(x1, . . . , xi−1) has been defined. For each xi ∈ Xi(x1, . . . , xi−1),
let Xi+1(x1, . . . , xi−1, xi) be a finite set of size ki+1.

[d]This is a slight simplification of what is really the case, but let’s not concern ourselves with too many
details!
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Then for each choice of sequence (x1, x2, . . . , xn), with xi ∈ Xi(x1, . . . , xi−1) for each i ∈ [n],
the set

X = {(x1, x2, . . . , xn) | xi ∈ Xi(x1, x2, . . . , xi−1) for all i ∈ [n]}
is finite, and moreover

|X| =
n∏

i=1

ki

Proof. We proceed by induction on n > 1.

• (BC) When n = 1, this result says precisely that if X1 is a finite set of size k1, then
X1 is a finite set of size k1. This is true.

• (IS) Fix n > 1 and suppose that the theorem is true for n.

For i 6 n+ 1, let sets Xi(x1, . . . , xi−1) be defined as in the statement of the theorem,
and let

X = {(x1, x2, . . . , xn, xn+1) | xi ∈ Xi(x1, x2, . . . , xi−1) for all i ∈ [n+ 1]}

We prove that X is finite and |X| =
n+1∏
i=1

ki.

Let X ′ = {(x1, x2, . . . , xn) | xi ∈ Xi(x1, x2, . . . , xi−1) for all i ∈ [n]}. By the induc-

tion hypothesis, we know that |X ′| =
n∏

i=1
ki. Now there is an evident bijection

X →
⋃

(x1,...,xn)∈X′
{(x1, x2, . . . , xn)} ×Xn+1(x1, . . . , xn)

given by the correspondence between

(x1, x2, . . . , xn, xn+1) and ((x1, x2, . . . , xn), xn+1)

for all i ∈ [n + 1] and xi ∈ Xi(x1, . . . , xi−1). Moreover the sets {(x1, x2, . . . , xn)} ×
Xn+1(x1, . . . , xn) are pairwise disjoint. Hence by the addition principle (to be proved
soon—see Theorem 4.2.37), we have

|X| =
∑

(x1,...,xn)∈X′
|{(x1, x2, . . . , xn)} ×Xn+1(x1, . . . , xn)|

But for all (x1, . . . , xn) ∈ X ′, we have

|{(x1, x2, . . . , xn)} ×Xn+1(x1, . . . , xn)|
= |{(x1, x2, . . . , xn)}| · |Xn+1(x1, . . . , xn)| by Proposition 4.2.7

= 1 · kn+1 by definition of Xn+1(· · · )
= kn+1
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and hence∑
(x1,...,xn)∈X′

|{(x1, x2, . . . , xn)} ×Xn+1(x1, . . . , xn)|

=
∑

(x1,...,xn)∈X′
kn+1 as we just saw

= |X ′| · kn+1 since terms in sum are constant

=

(
n∏

i=1

ki

)
· kn+1 by the induction hypothesis

=
n+1∏
i=1

ki

as required.

By induction, we’re done.

Example 4.2.33
We prove that there are six bijections [3] → [3]. We can specify a bijection f : [3] → [3]
according to the following procedure.

• Step 1. Choose the value of f(1). There are 3 choices.

• Step 2. Choose the value of f(2). The values f(2) can take depend on the chosen
value of f(1).

� If f(1) = 1, then f(2) can be equal to 2 or 3.

� If f(1) = 2, then f(2) can be equal to 1 or 3.

� If f(1) = 3, then f(2) can be equal to 1 or 2.

In each case, there are 2 choices for the value of f(2).

• Step 3. Choose the value of f(3). The values f(3) can take depend on the values of
f(1) and f(2). We could split into the (six!) cases based on the values of f(1) and
f(2) chosen in Steps 1 and 2; but we won’t. Instead, note that {f(1), f(2)} has two
elements, and by injectivity f(3) must have a distinct value, so that [3] \ {f(1), f(2)}
has one element. This element must be the value of f(3). Hence there is only possible
choice of f(3).

By the multiplication principle, there are 3× 2× 1 = 6 bijections [3]→ [3]. C

Exercise 4.2.34
Count the number of injections [3]→ [4]. C
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The addition principle says that if we can partition a set into smaller chunks, then the size
of the set is the sum of the sizes of the chunks. We will first make this notion of ‘partition’
precise.

Definition 4.2.35
Sets X and Y are disjoint if X ∩ Y = ∅. More generally, given n ∈ N, a collection of sets
X1, X2, . . . , Xn is pairwise disjoint if Xi ∩Xj = ∅ for all i, j ∈ [n] with i 6= j.

Definition 4.2.36
A (finite) partition of a set X is, for some n ∈ N, a collection {Ui | i ∈ [n]} of subsets of
X such that:

(i) Each Ui is inhabited;

(ii) The sets U1, U2, . . . , Un are pairwise disjoint; and

(iii)
⋃n

i=1 Ui = X.

Theorem 4.2.37 (Addition principle)
Let X be a set and let {U1, . . . , Un} be a partition of X for some n ∈ N, such that each
set Ui is finite. Then X is finite, and

|X| = |U1|+ |U2|+ · · ·+ |Un|

Exercise 4.2.38
Prove Theorem 4.2.37. The proof follows the same pattern as that of the multiplication
principle (Theorem 4.2.26). Be careful to make sure you identify where you use the hypo-
thesis that the sets Ui are pairwise disjoint! C

Problem-solving tip
The addition principle allows us to count the number of elements of a finite set by finding
a partition of X, say {U1, U2, . . . , Un}. If |Ui| = ni for each 1 6 i 6 n, then this means
that

|X| =
n∑

i=1

ni

C

Example 4.2.39
We will count the number of inhabited subsets of [7] which either contain only even num-
bers, or contain only odd numbers.
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Let O denote the set of inhabited subsets of [7] containing only odd numbers, and let E
denote the set of inhabited subsets of [7] containing only even numbers. Note that {O,E}
forms a partition of the set we are counting, and so our set has |O|+ |E| elements.

• An element of O must be a subset of {1, 3, 5, 7}. By Example 4.2.28 there are 24 =
16 such subsets. Thus the number of inhabited subsets of [7] containing only odd
numbers is 15, since we must exclude the empty set. That is, |O| = 15.

• A subset containing only even numbers must be a subset of {2, 4, 6}. Again by
Example 4.2.28 there are 23 = 8 such subsets. Hence there are 7 inhabited subsets
of [7] containing only even numbers. That is, |E| = 7.

Hence there are 15 + 7 = 22 inhabited subsets of [7] containing only even or only odd
numbers. And here they are:

{1} {3} {5} {7} {1, 3} {2} {4} {6}
{1, 5} {1, 7} {3, 5} {3, 7} {5, 7} {2, 4} {2, 6} {4, 6}
{1, 3, 5} {1, 3, 7} {1, 5, 7} {3, 5, 7} {1, 3, 5, 7} {2, 4, 6}

C

Exercise 4.2.40
Pick your favourite integer n > 1000. For this value of n, how many inhabited subsets of
[n] contain either only even or only odd numbers? (You need not evaluate exponents.) C

We now consider some examples of finite sets which use both the multiplication principle
and the addition principle.

Example 4.2.41
A city has 6n inhabitants. The favourite colour of n of the inhabitants is orange, the
favourite colour of 2n of the inhabitants is pink, and the favourite colour of 3n of the
inhabitants is turquoise. The city government wishes to form a committee with equal
representation from the three colour preference groups to decide how the new city hall
should be painted. We count the number of ways this can be done.

Let X be the set of possible committees. First note that

X =

n⋃
k=0

Xk

where Xk is the set of committees with exactly k people from each colour preference group.
Indeed, we must have k 6 n, since it is impossible to have a committee with more than n
people from the orange preference group.
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Moreover, if k 6= ` then Xk∩X` = ∅, since if k 6= ` then a committee cannot simultaneously
have exactly k people and exactly ` people from each preference group.

By the addition principle, we have

|X| =
n∑

k=0

|Xk|

We count Xk for fixed k using the following procedure:

• Step 1. Choose k people from the orange preference group to be on the committee.
There are

(
n
k

)
choices.

• Step 2. Choose k people from the pink preference group to be on the committee.
There are

(
2n
k

)
choices.

• Step 3. Choose k people from the turquoise preference group to be on the committee.
There are

(
3n
k

)
choices.

By the multiplication principle, it follows that |Xk| =
(
n
k

)(
2n
k

)(
3n
k

)
. Hence

|X| =
n∑

k=0

(
n

k

)(
2n

k

)(
3n

k

)
C

Exercise 4.2.42
In Example 4.2.41, how many ways could a committee be formed with a representative
number of people from each colour preference group? That is, the proportion of people on
the committee which prefer any of the three colours should be equal to the corresponding
proportion of the population of the city. C

Counting in two ways

Counting in two ways (also known as double counting) is a proof technique that allows us
to prove that two natural numbers are equal by establishing they are two expressions for
the size of the same set. (More generally, by Exercise 4.1.43, we can relate them to the
sizes of two sets which are in bijection.)

The proof of Proposition 4.2.43 illustrates this proof very nicely. We proved it already by
induction in Exercise 1.3.29; the combinatorial proof we now provide is much shorter and
cleaner.
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Proposition 4.2.43

Let n ∈ N. Then 2n =
n∑

k=0

(
n

k

)
.

Proof. We know that |P([n])| = 2n by Example 4.2.28 and that P([n]) =
⋃n

k=0

([n]
k

)
by Pro-

position 4.2.17. Moreover, the sets
([n]
k

)
are pairwise disjoint, so by the addition principle

it follows that

2n = |P([n])| =

∣∣∣∣∣
n⋃

k=0

(
[n]

k

)∣∣∣∣∣ =

n∑
k=0

∣∣∣∣([n]

k

)∣∣∣∣ =

n∑
k=0

(
n

k

)

Proof tip
To prove that two natural numbers m and n are equal, we can find sets X and Y such that
|X| = m, |Y | = n and either X = Y or there is a bijection X → Y . This proof technique is
called counting in two ways, and is very useful for proving identities regarding numbers
that have a combinatorial interpretation (especially binomial coefficients and factorials,
which will be introduced later). C

The next example counts elements of different sets and puts them in bijection to establish
an identity.

Proposition 4.2.44
Let n, k ∈ N with n > k. Then (

n

k

)
=

(
n

n− k

)

Proof. First note that
(
n
k

)
=
∣∣∣([n]

k

)∣∣∣ and
(

n
n−k
)

=
∣∣∣( [n]

n−k
)∣∣∣, so it suffices to find a bijection

f :
([n]
k

)
→
( [n]
n−k
)
. Intuitively, this bijection arises because choosing k elements from [n]

to put into a subset is equivalent to choosing n − k elements from [n] to leave out of the
subset. Specifically, we define

f(U) = [n] \ U for all U ∈
(

[n]

k

)
Note first that f is well-defined, since if U ⊆ [n] with |U | = k, then [n] \ U ⊆ [n] and
|[n] \ U | = |[n]| − |U | = n− k by Exercise 4.2.4. We now prove f is a bijection:
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• f is injective. Let U, V ⊆ [n] and suppose [n] \ U = [n] \ V . Then for all k ∈ [n],
we have

k ∈ U ⇔ k 6∈ [n] \ U by definition of set difference

⇔ k 6∈ [n] \ V since [n] \ U = [n] \ V
⇔ k ∈ V by definition of set difference

so U = V , as required.

• f is surjective. Let V ∈
( [n]
n−k
)
. Then |[n] \ V | = n− (n− k) = k by Exercise 4.2.4,

so that [n] \ V ∈
([n]
k

)
. But then

f([n] \ V ) = [n] \ ([n] \ V ) = V

by Exercise 2.2.39.

Since f is a bijection, we have(
n

k

)
=

∣∣∣∣([n]

k

)∣∣∣∣ =

∣∣∣∣( [n]

n− k

)∣∣∣∣ =

(
n

n− k

)
as required.

We put a lot of detail into this proof. A slightly less formal proof might simply say
that

(
n
k

)
=
(

n
n−k
)

since choosing k elements from [n] to put into a subset is equivalent to
choosing n − k elements from [n] to leave out of the subset. This would be fine as long
as the members of the intended audience of your proof could reasonably by expected to
construct the bijection by themselves.

The proof of Proposition 4.2.45 follows this more informal format.

Proposition 4.2.45
Let n, k, ` ∈ N with n > k > `. Then(

n

k

)(
k

`

)
=

(
n

`

)(
n− `
k − `

)

Proof. Let’s home in on the left-hand side of the equation. By the multiplication principle,(
n
k

)(
k
`

)
is the number of ways of selecting a k-element subset of [n] and an `-element subset

of [k]. Equivalently, it’s the number of ways of selecting a k-element subset of [n] and then
an `-element subset of the k-element subset that we just selected. To make this slightly
more concrete, let’s put it this way:
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(
n
k

)(
k
`

)
is the number of ways of painting k balls red from a bag of n balls, and

painting ` of the red balls blue. This leaves us with ` blue balls and k − ` red
balls.

Now we need to find an equivalent interpretation of
(
n
`

)(
n−`
k−`
)
. Well, suppose we pick the

` elements to be coloured blue first. To make up the rest of the k-element subset, we now
have to select k − ` elements, and there are now n− ` to choose from. Thus

(
n
`

)(
n−`
k−`
)

is the number of ways of painting ` balls from a bag of n balls blue,
and painting k − ` of the remaining balls red.

Thus, both numbers represent the number of ways of painting ` balls blue and k − ` balls
red from a bag of n balls. Hence they are equal.

Exercise 4.2.46
Make the proof of Proposition 4.2.45 more formal by defining a bijection between sets of
the appropriate sizes. C

Exercise 4.2.47
Provide a combinatorial proof that if n, k ∈ N with n > k, then(

n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)

Deduce that the combinatorial definition of binomial coefficients (Definition 4.2.18) is equi-
valent to the recursive definition (Definition 1.3.27). C

The following proposition demonstrates that the combinatorial definition of factorials
(Definition 4.2.24) is equivalent to the recursive definition (Definition 1.3.25).

Proposition 4.2.48
0! = 1 and if n ∈ N then (n+ 1)! = (n+ 1) · n!.

Proof. The only permutation of ∅ is the empty function e : ∅→ ∅. Hence S0 = {e} and
0! = |S0| = 1.

Let n ∈ N. A permutation of [n+ 1] is a bijection f : [n+ 1]→ [n+ 1]. Specifying such a
bijection is equivalent to carrying out the following procedure:

• Choose the (unique!) element k ∈ [n + 1] such that f(k) = n + 1. There are n + 1
choices for k.
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• Choose the values of f at each ` ∈ [n + 1] with ` 6= k. This is equivalent to finding
a bijection [n + 1] \ {k} → [n]. Since |[n + 1] \ {k}| = |[n]| = n, there are n! such
choices.

By the multiplication principle, we have

(n+ 1)! = |Sn+1| = (n+ 1) · n!

so we’re done.

We now revisit Theorem 1.3.31; this time, our proof will be combinatorial, rather than
inductive.

Theorem 4.2.49
Let n, k ∈ N. Then (

n

k

)
=


n!

k!(n− k)!
if k 6 n

0 if k > n

Proof. Suppose k > n. By Exercise 4.2.2, if U ⊆ [n] then |U | 6 n. Hence if k > n, then([n]
k

)
= ∅, and so

(
n
k

)
= 0, as required.

Now suppose k 6 n. We will prove that n! =
(
n
k

)
· k! · (n − k)!; the result then follows by

dividing through by k!(n−k)!. We prove this equation by counting the number of elements
of Sn.

A procedure for defining an element of Sn is as follows:

(i) Choose which elements will appear in the first k positions of the list. There are
(
n
k

)
such choices.

(ii) Choose the order of these k elements. There are k! such choices.

(iii) Choose the order of the remaining n− k elements. There are (n− k)! such choices.

By the multiplication principle, n! =
(
n
k

)
· k! · (n− k)!.

Note that the proof of Theorem 4.2.49 relied only on the combinatorial definitions of
binomial coefficients and factorials; we didn’t need to know how to compute them at
all! The proof was much shorter, cleaner and, in some sense, more meaningful, than the
inductive proof we gave in Section 1.3—see Theorem 1.3.31.
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We conclude this section with some more examples and exercises in which counting in two
ways can be used.

Exercise 4.2.50
Let n, k ∈ N with k 6 n+ 1. Prove that

k

(
n

k

)
= (n− k + 1)

(
n

k − 1

)
C

Example 4.2.51
Let m,n, k ∈ N. We prove that

k∑
`=0

(
m

`

)(
n

k − `

)
=

(
m+ n

k

)
by finding a procedure for counting the number of k-element subsets of an appropriate
(m + n)-element set. Specifically, let X be a set containing m cats and n dogs. Then∣∣(m+n

k

)∣∣ is the number of k-element subsets U ⊆ X. We can specify such a subset according
to the following procedure.

• Step 1. Split into cases based on the number ` of cats in U . Note that we must have
0 6 ` 6 k, since the number of cats must be a natural number and cannot exceed
k as |U | = k. Moreover, these cases are mutually exclusive. Hence by the addition
principle we have (

m+ n

k

)
=

k∑
`=0

a`

where a` is the number of subsets of X containing ` cats and k − ` dogs.

• Step 2. Choose ` cats from the m cats in X to be elements of U . There are
([m]

`

)
such choices.

• Step 3. Choose k − ` dogs from the n dogs in X to be elements of U . There are( [n]
k−`
)

such choices.

The multiplication principle shows that a` =
(
m
`

)(
n

k−`
)
. Hence

(
m+ n

k

)
=

k∑
`=0

(
m

`

)(
n

k − `

)
as required. C
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Exercise 4.2.52
Let n ∈ N. Prove that

n∑
k=0

(
n

k

)2

=

(
2n

n

)
C

Exercise 4.2.53
Let n,m ∈ N with m 6 n. Prove that

n∑
k=m

(
n

k

)(
k

m

)
= 2n−m

(
n

m

)
C

Exercise 4.2.54
Given natural numbers n, a, b, c with a + b + c = n, define the trinomial coefficient(

n

a, b, c

)
to be the number of ways of partitioning [n] into three sets of sizes a, b and c,

respectively. That is,

(
n

a, b, c

)
is the size of the set

(A,B,C)

∣∣∣∣∣∣
A ⊆ [n], B ⊆ [n], C ⊆ [n],
|A| = a, |B| = b, |C| = c,

and A ∪B ∪ C = [n]


By considering trinomial coefficients, prove that if a, b, c ∈ N, then (a+ b+ c)! is divisible
by a! · b! · c!. C

Here is one nice application of counting in two ways and the multiplication principle to
number theory. We will make use of this in the proof of Theorem 5.3.7, which provides a
general formula for the totient of an integer.

Theorem 4.2.55 (Multiplicativity of Euler’s totient function)
Let m,n ∈ Z and let ϕ : Z → N be Euler’s totient function (see Definition 3.3.31). If m
and n are coprime, then ϕ(mn) = ϕ(m)ϕ(n).

Proof. Since ϕ(−k) = ϕ(k) for all k ∈ Z, we may assume that m > 0 and n > 0. Moreover,
if m = 0 or n = 0, then ϕ(m)ϕ(n) = 0 and ϕ(mn) = 0, so the result is immediate. Hence
we may assume that m > 0 and n > 0.

Given k ∈ Z, define
Ck = {a ∈ [k] | a ⊥ k}
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By definition of Euler’s totient function, we thus have |Ck| = ϕ(k) for all k ∈ Z. We will
define a bijection

f : Cm × Cn → Cmn

using the Chinese remainder theorem (Theorem 3.3.46).

Given a ∈ Cm and b ∈ Cn, let f(a, b) be the element x ∈ [mn] such that{
x ≡ a mod m

x ≡ b mod n

• f is well-defined. We check the properties of totality, existence and uniqueness.

� Totality. We have accounted for all the elements of Cm×Cn in our specification
of f .

� Existence. By the Chinese remainder theorem, there exists x ∈ Z such that
x ≡ a mod m and x ≡ b mod n. By adding an appropriate integer multiple
of mn to x, we may additionally require x ∈ [mn]. It remains to check that
x ⊥ mn.

So let d = gcd(x,mn). If d > 1, then there is a positive prime p such that
p | x and p | mn. But then p | m or p | n, meaning that either p | gcd(x,m)
or p | gcd(x, n). But x ≡ a mod m, so gcd(x,m) = gcd(a,m); and likewise
gcd(x, n) = gcd(b, n). So this contradicts the assumption that a ⊥ m and b ⊥ n.
Hence x ⊥ mn after all.

� Uniqueness. Suppose x, y ∈ Cmn both satisfy the two congruences in question.
By the Chinese remainder theorem, we have x ≡ y mod mn, and hence x =
y + kmn for some k ∈ Z. Since x, y ∈ [mn], we have

|k|mn = |kmn| = |x− y| 6 mn− 1 < mn

This implies |k| < 1, so that k = 0 and x = y.

so f is well-defined.

• f is injective. Let a, a′ ∈ Cm and b, b′ ∈ Cn, and suppose that f(a, b) = f(a′, b′).
Then there is an element x ∈ Cmn such that

x ≡ a mod m

x ≡ a′ mod m

x ≡ b mod n

x ≡ b′ mod n

Hence a ≡ a′ mod m and b ≡ b′ mod n. Since a, a′ ∈ [m] and b, b′ ∈ [n], we must
have a = a′ and b = b′.
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• f is surjective. Let x ∈ Cmn. Let a ∈ [m] and b ∈ [n] be the (unique) elements
such that x ≡ a mod m and x ≡ b mod n, respectively. If a ∈ Cm and b ∈ Cn, then
we’ll have f(a, b) = x by construction, so it remains to check that a ⊥ m and b ⊥ n.

Suppose d ∈ Z with d | a and d | m. We prove that d = 1. Since x ≡ a mod m,
we have d | x by Theorem 3.1.17. Since m | mn, we have d | mn. By definition of
greatest common divisors, it follows that d | gcd(x,mn). But gcd(x,mn) = 1, so that
d is a unit, and so a ⊥ m as required.

The proof that b ⊥ n is similar.

It was a lot of work to check that it worked, but we have defined a bijection f : Cm×Cn →
Cmn. By the multiplication principle, we have

ϕ(m)ϕ(n) = |Cm| · |Cn| = |Cm × Cn| = |Cmn| = ϕ(mn)

as required.

Exercise 4.2.56
Let n ∈ Z and let p > 0 be prime. Prove that if p | n, then ϕ(pn) = p · ϕ(n). Deduce that
ϕ(pk) = pk − pk−1 for all prime p > 0 and all k > 1. C

Theorem 4.2.57 (Formula for Euler’s totient function)
Let n be a nonzero integer. Then

ϕ(n) = |n| ·
∏
p|n

(
1− 1

p

)

where the product is indexed over positive primes p dividing n

Proof. Since ϕ(n) = ϕ(−n) for all n ∈ Z, we may assume that n > 0. Moreover

ϕ(1) = 1 = 1 ·
∏
p|1

(
1− 1

p

)

Note that the product here is empty, and hence equal to 1, since there are no positive
primes p which divide 1. So now suppose n > 1.

Using the fundamental theorem of arithmetic (Theorem 3.2.12), we can write

n = pk11 p
k2
2 · · · p

kr
r

for primes 0 < p1 < p2 < · · · < pr and natural numbers k1, k2, . . . , kr > 1.
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By repeated application of Theorem 4.2.55, we have

ϕ(n) =
r∏

i=1

ϕ(pkii )

By Exercise 4.2.56, we have

ϕ(pkii ) = pkii − p
ki−1
i = pkii

(
1− 1

pi

)
Combining these two results, it follows that

ϕ(n) =
r∏

i=1

pkii

(
1− 1

pi

)
=

(
r∏

i=1

pkii

)(
r∏

i=1

(
1− 1

pi

))
= n ·

r∏
i=1

(
1− 1

pi

)
which is as required.

Inclusion–exclusion principle

The addition principle is useful only for counting unions of pairwise disjoint sets, i.e. sets
that do not overlap. We saw in Proposition 4.2.5 how to compute the size of a union of
two sets which do overlap:

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |

So far so good. But what if we have three or four sets instead of just two?

Exercise 4.2.58
Let X,Y, Z be sets. Show that

|X ∪ Y ∪ Z| = |X|+ |Y |+ |Z| − |X ∩ Y | − |X ∩ Z| − |Y ∩ Z|+ |X ∩ Y ∩ Z|

Let W be another set. Derive a similar formula for |W ∪X ∪ Y ∪ Z|. C

The inclusion–exclusion principle generalises Exercise 4.2.58 to arbitary finite collections
of finite sets.

Theorem 4.2.59 (Inclusion–exclusion principle)
Let n > 2 and let X1, X2, . . . , Xn be sets. Then∣∣∣∣∣

n⋃
i=1

Xi

∣∣∣∣∣ =
∑
J⊆[n]

(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣
where for the purposes of the formula we take

⋂
j∈∅Xj = ∅.
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Proof. We proceed by induction.

• (BC) The proof for the case n = 2 was Proposition 4.2.5.

• (IS) Fix n > 2 and suppose, for any sets X1, X2, . . . , Xn, that∣∣∣∣∣
n⋃

i=1

Xi

∣∣∣∣∣ =
∑
J⊆[n]

(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣ —(IH)

We need to prove that, for any sets X1, X2, . . . , Xn, Xn+1, that

∣∣∣∣∣
n+1⋃
i=1

Xi

∣∣∣∣∣ =
∑

J⊆[n+1]

(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣
Write U =

⋃n
i=1Xi. We know that

|U ∪Xn+1| = |U |+ |Xn+1| − |U ∩Xn+1| —(?)

Now by (IH) we know |U | straight away:

|U | =
∑
J⊆[n]

(−1)|J |+1

∣∣∣∣∣∣
⋂
j∈J

Xj

∣∣∣∣∣∣
This covers the sizes of all the J ⊆ [n+ 1] for which n+ 1 6∈ J .

Note that U ∩Xn+1 =
⋂n

i=1Xi ∩Xn+1. Applying (IH) again we get

− |U ∩Xn+1|

= −
∑
J⊆[n]

(−1)|J |+1

∣∣∣∣∣∣
⋂

j∈J
Xj

 ∩Xn+1

∣∣∣∣∣∣ by (IH)

= −
∑
J⊆[n]

(−1)|J∪{n+1}|

∣∣∣∣∣∣
⋂

j∈J∪{n+1}

Xj

∣∣∣∣∣∣ re-indexing the sum

=
∑
J⊆[n]

(−1)|J∪{n+1}|+1

∣∣∣∣∣∣
⋂

j∈J∪{n+1}

Xj

∣∣∣∣∣∣ distributing the − sign

This covers the sizes of all the J ⊆ [n + 1] for which n + 1 ∈ J and which contain
some element of [n].

The only subset of [n + 1] not covered by the above two sums is {n + 1}, and
(−1)|{n+1}|+1 = (−1)2 = 1, so that

(−1)|{n+1}|+1|Xn+1| = |Xn+1|
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222 Chapter 4. Finite and infinite sets

Together with (?), this yields the equation we wanted to prove was true.

By induction, we’re done.

Proof tip
To find the size of a union of

⋃n
i=1Xi:

• Add the sizes of the individual sets Xi;

• Subtract the sizes of the double-intersections Xi ∩Xj ;

• Add the sizes of the triple-intersections Xi ∩Xj ∩Xk;

• Subtract the sizes of the quadruple-intersections Xi ∩Xj ∩Xk ∩X`;

• . . . and so on . . .

Keep alternating until the intersection of all the sets is covered. C

Example 4.2.60
We count how many subsets of [12] contain a multiple of 3. Precisely, we count the number
of elements of the set

X3 ∪X6 ∪X9 ∪X12

where Xk = {S ⊆ [12] | k ∈ S}. We will apply the inclusion–exclusion principle:

(i) An element S ∈ X3 is precisely a set of the form {3}∪S′, where S′ ⊆ [12]\{3}. Since
[12] \ {3} has 11 elements, there are 211 such subsets. So |X3| = 211, and likewise
|X6| = |X9| = |X12| = 211.

(ii) An element S ∈ X3 ∩ X6 is a set of the form {3, 6} ∪ S′, where S′ ⊆ [12] \ {3, 6}.
Thus there are 210 such subsets, so |X3 ∩X6| = 210. And likewise

|X3 ∩X9| = |X3 ∩X12| = |X6 ∩X9| = |X6 ∩X12| = |X9 ∩X12| = 210

(iii) Reasoning as in the last two cases, we see that

|X3 ∩X6 ∩X9| = |X3 ∩X6 ∩X12| = |X3 ∩X9 ∩X12| = |X6 ∩X9 ∩X12| = 29

(iv) . . . and |X3 ∩X6 ∩X9 ∩X12| = 28.

Thus the number of subsets of [12] which contain a multiple of 3 is

4× 211︸ ︷︷ ︸
by (i)

− 6× 210︸ ︷︷ ︸
by (ii)

+ 4× 29︸ ︷︷ ︸
by (iii)

− 28︸︷︷︸
by (iv)

which is equal to 3840. C
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Exercise 4.2.61
How many natural numbers less than 1000 are multiples of 2, 3, 5 or 7? C

Exercise 4.2.62
Recall the definition of the totient of an integer n (Definition 3.3.31). Use the inclusion–
exclusion principle to show that ϕ(100) = 40. Use this fact to prove that the last two digits
of 379 are ‘67’. C
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Section 4.3

Infinite sets

Indexed families of sets

We begin this section by generalising the indexed union, intersection and product notation
that we saw in Definition 4.2.8.

Definition 4.3.1
Let I be a set. A family of sets indexed by I is a choice, for each i ∈ I of a set Xi. We
write {Xi | i ∈ I} for the set of such choices.

Definition 4.3.2
Let {Xi | i ∈ I} be a family of sets indexed by some set I. We define. . .
• . . . the indexed union of {Xi | i ∈ I} is the set

⋃
i∈I Xi defined by⋃

i∈I
Xi = {x | x ∈ Xi for some i ∈ I}

• . . . the indexed intersection of {Xi | i ∈ I} is the set
⋂

i∈I Xi defined by⋂
i∈I

Xi = {x | x ∈ Xi for all i ∈ I}

• . . . the indexed product of {Xi | i ∈ I} is the set
∏
i∈I

Xi defined by

∏
i∈I

Xi = {(xi)i∈I | xi ∈ Xi for all i ∈ I}

The elements (xi)i∈I of
∏
i∈I

Xi are ordered I-tuples. Formally, an ordered I-tuple

is a function f : I →
⋃

i∈I Xi such that f(i) ∈ Xi for all i ∈ I—then xi is just
shorthand for f(i).

Note that when all the sets Xi are equal to some set X, the product
∏
i∈I

X is exactly

the set XI of functions I → X.
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Example 4.3.3
Let X be a set, and for each n ∈ N, let Sn be the set of subsets of X of size n. Then⋃

n∈N
Sn

is the set F of all finite subsets of X. Indeed:

• (⊆). Let U ∈
⋃

n∈N Sn. Then U ∈ Sn for some n ∈ N, so that U ⊆ X and U is finite
(and |U | = n). Hence U ∈ F .

• (⊇). Let U ∈ F . Then U ⊆ X is finite, so that U ∈ S|U |, and hence U ∈
⋃

n∈N Sn.

C

Exercise 4.3.4
Find a family {Un | n ∈ N} of subsets of N such that

• Um ∩ Un is infinite for all m,n ∈ N; but

•
⋂

n∈N Un is empty.

C

We can use this new indexed union and intersection notation to prove a general version of
de Morgan’s laws for sets.

Theorem 4.3.5 (De Morgan’s laws for sets)
Let Z be a set and let {Xi | i ∈ I} be an indexed family of sets. Then

(a) Z \
⋃

i∈I Xi =
⋂

i∈I(Z \Xi);

(b) Z \
⋂

i∈I Xi =
⋃

i∈I(Z \Xi).

Proof 1 of (a). In this proof, we prove (a) directly by unpacking the definitions of relative
complement, indexed union and indexed intersection.

Fix z. Note that z ∈ Z \
⋃

i∈I Xi if and only if

z ∈ Z ∧ ¬

(
z ∈

⋃
i∈I

Xi

)

by definition of relative complement. This holds if and only if

z ∈ Z ∧ ¬(∃i ∈ I, z ∈ Xi)
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226 Chapter 4. Finite and infinite sets

by definition of indexed union. This holds if and only if

z ∈ Z ∧ ∀i ∈ I, z 6∈ Xi

by De Morgan’s laws for quantifiers (Theorem 2.1.46). Since the proposition z ∈ Z doesn’t
depend on i, this holds if and only if

∀i ∈ I, (z ∈ Z ∧ z 6∈ Xi)

which is precisely the statement that z ∈
⋂

i∈I(Z \Xi).

Proof 2 of (a). In this proof, we prove (a) by a double-containment argument.

• Z \
⋃

i∈I Xi ⊆
⋂

i∈I(Z \Xi).

Let z ∈ Z \
⋃

i∈I Xi. We know that z ∈ Z and z 6∈
⋃

i∈I Xi. We need to prove that
z ∈

⋂
i∈I(Z \Xi); that is, we need to prove that, for all i ∈ I, we have z ∈ Z \Xi;

that is, z ∈ Z and z 6∈ Xi. We have z ∈ Z for free, so all we have to prove is that,
for all i ∈ I, z 6∈ Xi.

So let i ∈ I. If z ∈ Xi then z ∈
⋃

i∈I Xi, contradicting the fact that z 6∈
⋃

i∈I Xi.
Therefore it must be the case that z 6∈ Xi. This finishes this half of the proof.

• Z \
⋃

i∈I Xi ⊇
⋂

i∈I(Z \Xi).

Let z ∈
⋂

i∈I(Z \Xi). We know that, for all i ∈ I, z ∈ Z \Xi. Hence it’s certainly
true that z ∈ Z. To prove that z ∈ Z \

⋃
i∈I Xi, it remains to prove that z 6∈

⋃
i∈I Xi.

Suppose z ∈
⋃

i∈I Xi. Then z ∈ Xi for some i ∈ I. Since we already know that
z ∈ Z, it follows that z 6∈ Z \Xi, contradicting the fact that z ∈ Z \Xi for all i ∈ I.
This finishes the second half of the proof.

We have shown containment in both directions, hence equality.

Sizes of finite sets revisited

We have seen how to use injections, surjections and bijections to study the relative size of
sets:

• If f : X → Y is injective, then |X| 6 |Y |;

• If f : X → Y is surjective, then |X| > |Y |;

• If f : X → Y is bijective, then |X| = |Y |.
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Recall Definition 4.1.39, where we said a set X is finite if there is a bijection [n]→ X for
some n ∈ N. The next definition takes this one step further.

Definition 4.3.6
A set X is countably infinite if there exists a bijection N→ X. We say X is countable
if it is finite or countably infinite.

Thus a set X is countably infinite if its elements can be listed, with one entry in the list
for each natural number.

Example 4.3.7
We have already seen many examples of countably infinite sets.

• The set N is countably infinite, since by Exercise 4.1.15, idN : N→ N is a bijection.

• The function f : Z→ N defined for x ∈ Z by

f(x) =

{
2x if x > 0

−(2x+ 1) if x < 0

is a bijection. Indeed, it has an inverse is given by

f−1(x) =

{
x
2 if x is even

−x+1
2 if x is odd

Hence the set of integers Z is countably infinite. The corresponding list of integers
is given by

0, −1, 1, −2, 2, −3, 3, −4, 4, . . .

The fact that f−1 is a bijection means that each integer appears on this list exactly
once.

C

Exercise 4.3.8
Prove that the function p : N × N → N defined by p(x, y) = 2x(2y + 1) − 1 is a bijection.
Deduce that if X and Y are countably infinite sets, then X × Y is countably infinite. C

Exercise 4.3.8 allows us to prove that the product of finitely many countably infinite sets
are countably infinite.

Exercise 4.3.9
Let f : X → Y be a bijection. Prove that X is countably infinite if and only if Y is
countably infinite. C
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Proposition 4.3.10

Let n > 1 and let X1, . . . , Xn be countably infinite sets. Then the product
n∏

i=1

Xi is

countably infinite.

Proof. We proceed by induction on n.

• (BC) When n = 1 the assertion is trivial: if X1 is countably infinite then X1 is
countably infinite.

• (IS) Fix n > 1 and suppose that for any sets X1, . . . , Xn, the product
n∏

i=1
Xi is

countably infinite. Fix sets X1, . . . , Xn+1. Then
n∏

i=1
Xi is countably infinite by the

induction hypothesis, and Xn+1 is countably infinite by assumption, so by Exercise
4.3.8, the set (

n∏
i=1

Xi

)
×Xn+1

is countably infinite. But by Exercise 4.2.14 there is a bijection

n+1∏
i=1

Xi →

(
n∏

i=1

Xi

)
×Xn+1

and so by Exercise 4.3.9 we have that
n+1∏
i=1

Xi is countably infinite, as required.

By induction, we’re done.

Finding a bijection N→ X, or equivalently X → N, can be a bit of a hassle. However, in
order to prove that a set X is countable, it suffices to find either a surjection N → X or
an injection X → N.

Theorem 4.3.11
Let X be an inhabited set. The following are equivalent:

(i) X is countable;

(ii) There exists a surjection f : N→ X;

(iii) There exists an injection f : X → N.
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Proof. We’ll prove (i)⇔(ii) and (i)⇔(iii).

• (i)⇒(ii). Suppose X is countable. If X is countably infinite, then there exists a
bijection f : N→ X, which is a surjection. If X is finite then there exists a bijection
g : [m]→ X, where m = |X| > 1. Define f : N→ X by

f(n) =

{
g(n) if 1 6 n 6 m

g(1) if n = 0 or n > m

Then f is surjective: if x ∈ X then there exists n ∈ [m] such that g(n) = x, and then
f(n) = g(n) = x.

• (ii)⇒(i). Suppose there exists a surjection f : N→ X. To prove that X is countable,
it suffices to prove that if X is infinite then it is countably infinite. So suppose X is
infinite, and define a sequence recursively by

� a0 = 0;

� Fix n ∈ N and suppose a0, . . . , an have been defined. Define an+1 to be the least
natural number for which f(an+1) 6∈ {f(a0), f(a1), . . . , f(an)}.

Define g : N→ X by g(n) = f(an) for all n ∈ N. Then

� g is injective, since if m 6 n then f(am) 6= f(an) by construction of the sequence
(an)n∈N.

� g is surjective. Indeed, given x ∈ X, by surjectivity there exists m ∈ N which
is least such that f(m) = x, and we must have an = m for some n 6 m by
construction of the sequence (an)n∈N. So x = g(an), and hence g is surjective.

So g is a bijection, and X is countable.

• (i)⇒(iii). Suppose X is countable. If X is countably infinite, then there exists a
bijection f : N → X, so f−1 : X → N is bijective and hence injective. If X is finite
then there exists a bijection g : [m]→ X, where m = |X| > 1. Then g−1 : X → [m]
is injective. Let i : [m] → N be defined by i(k) = k for all k ∈ [m]. Then i ◦ g−1 is
injective; indeed, for x, x′ ∈ X we have

i(g−1(x)) = i(g−1(x′))⇒ g−1(x) = g−1(x′)⇒ x = x′

The first implication is by definition of i, and the second is by injectivity of g−1. So
there exists an injection X → N.

• (iii)⇒(i). Suppose there exists an injection f : X → N. To prove that X is countable,
it suffices to prove that if X is infinite then it is countably infinite. Define a sequence
(an)n∈N recursively as follows:

� Let a0 be the least element of f [X];
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� Fix n ∈ N and suppose a0, . . . , an have been defined. Let an+1 be the least
element of f [X]\{a0, . . . , an}. This exists since f is injective, so f [X] is infinite.

Define g : N→ X by, for each n ∈ N, letting g(n) be the unique value of x for which
f(x) = an. Then

� g is injective. By construction am 6= an whenever m 6= n. Let x, y ∈ X be such
that f(x) = am and f(y) = an. Since f is injective, we must have x 6= y, and
so g(m) = x 6= y = g(n).

� g is surjective. Fix x ∈ X. Then f(x) ∈ f [X], so there exists m ∈ N such that
f(x) = am. Hence g(m) = x.

So g is a bijection, and X is countably infinite.

Hence the equivalences have been proved.

In fact, we needn’t even use N as the domain of the surjection or the codomain of the
injection; we can in fact use any countable set C.

Corollary 4.3.12
Let X be an inhabited set. The following are equivalent:

(a) X is countable;

(b) There exists a surjection f : C → X for some countable set C;

(c) There exists an injection f : X → C for some countable set C.

Exercise 4.3.13
Prove Corollary 4.3.12. C

Corollary 4.3.12 is useful for proving the countability of many other sets: as we build up
our repertoire of countable sets, all we need to do in order to prove a set X is countable
is find a surjection from a set we already know is countable to X, or an injection from X
into a set we already know is countable.

Example 4.3.14
Q is countable. Indeed, by Exercises 4.3.7 and 4.3.8, the set Z × (Z \ {0}) is countable.
Moreover, there exists a surjection q : Z× (Z \ {0})→ Q defined by

q(a, b) =
a

b

By Corollary 4.3.12, Q is countable. C

Exercise 4.3.15
Let X be a countable set. Prove that

(
X
k

)
is countable for each k ∈ N. C
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Theorem 4.3.16
A countable union of countable sets is countable. More precisely, let {Xn | n ∈ N} be a
family of countable sets. Then the set X defined by

X =
⋃
n∈N

Xn

is countable.

Proof. We may assume that the sets Xn are all inhabited, since the empty set does not
contribute to the union.

For each n ∈ N there is a surjection fn : N→ Xn. Define f : N×N→ X by f(m,n) = fm(n)
for all m,n ∈ N. Then f is surjective: if x ∈ X then x ∈ Xm for some m ∈ N. Since fm is
surjective, it follows that x = fm(n) for some n ∈ N. But then x = f(m,n). Since N× N
is countable, it follows from Corollary 4.3.12 that X is countable.

Example 4.3.17
Let X be a countable set. The set of all finite subsets of X is countable. Indeed, the set of

all finite subsets of X is equal to
⋃
k∈N

(
X

k

)
, which is a union of countably many countable

sets by Exercise 4.3.15, so is countable by Theorem 4.3.16. C

We can also use some clever trickery to prove that certain sets are uncountable. The proof
of the following theorem is known as Cantor’s diagonal argument.

Theorem 4.3.18
The set {0, 1}N is uncountable.

Proof. Let f : N → {0, 1}N be a function. We will prove that f is not surjective by
constructing a sequence which is not contained in the image of N under f .

Define an element b ∈ {0, 1}N, i.e. a function b : N→ {0, 1}, by

b(n) = 1− f(n)(n)

Then b(n) 6= f(n)(n) for all n ∈ N. If b = f(m) for some m, then by definition of function
equality we must have b(m) = f(m)(m); but we just saw that this is necessarily false.
Hence b 6∈ f [N], so f is not surjective.

Hence there does not exist a surjective function N→ {0, 1}N. By Theorem 4.3.11, the set
{0, 1}N is uncountable.
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232 Chapter 4. Finite and infinite sets

This result can be used to show that the set R of all real numbers is uncountable, though
this relies on features of the real numbers that we have not developed so far in this course.

Exercise 4.3.19
Let X be a set. Prove that P(X) is either finite or uncountable. C
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Section 5.1

Relations

When sets were first introduced in Section 2.2, after slewing through several definitions of
set operations and set algebra, you probably wondered why you’d ever decided to embark on
your journey into pure mathematics. It may have seemed at first like sets were introduced
solely to shorten notation—for instance, instead of saying ‘n is an integer but not a natural
number’, we could simply write ‘n ∈ Z \ N’.

But we soon saw that sets are powerful tools, which can be used to prove interesting results
and solve difficult problems, largely with the help of functions. When we stopped studying
sets in isolation, and started seeing how they interact with each other using functions in
Section 2.3, their true power became apparent.

This section introduces the notion of a relation, which generalises that of a function.

Definition 5.1.1
Let X and Y be sets. A (binary) relation from X to Y is a logical formula R(x, y) with
two free variables x, y, where x has range X and y has range Y . We call X the domain
of R and Y the codomain of R.
Given x ∈ X and y ∈ Y , if R(x, y) is true then we say ‘x is related to y by R’, and write
x R y (LATEX code: x\; R\; y).a

aThe LATEX code \; inserts a small space: we use it because ‘x R y’ looks better and clearer than ‘xRy’.

In more human terms, a relation from X to Y is a statement about a generic element
x ∈ X and a generic element y ∈ Y , which is either true or false depending on the values
of x and y.

Example 5.1.2
We have seen many examples of relations so far. For example:

• Every function f : X → Y defines a relation Rf from X to Y by letting

x Rf y ⇔ f(x) = y

• Given a set X, equality between elements of X (‘x = y’) is a relation from X to X.

• Divisibility (‘x | y’) is a relation from Z to Z.

• For fixed n ∈ Z, congruence modulo n (‘x ≡ y mod n’) is a relation from Z to Z.
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• Order (‘x 6 y’) is a relation from N to N, or from Z to Z, or from Q to Q, and so on.

• Given sets X and Y , there is an empty relation ∅X,Y from X to Y , which is defined
simply by declaring ∅X,Y (x, y) to be false for all x ∈ X and y ∈ Y .

C

Exercise 5.1.3
Define a relation R from Z to Z which is not on the list given in Example 5.1.2. C

It is possible, and extremely useful, to represent relations as sets. We do this by defining
the graph of a relation, which is the set of all pairs of elements which are related by the
relation. You might recognise this as being similar to the graph of a function (Definition
2.3.12).

Definition 5.1.4
Let X and Y be sets, and let R be a relation from X to Y . The graph of R is the set
Gr(R) (LATEX code: \mathrm{Gr}{R}) of pairs (x, y) ∈ X × Y for which x R y. That is

Gr(R) = {(x, y) ∈ X × Y | x R y} ⊆ X × Y

Example 5.1.5
Consider the relation of divisibility from Z to Z, that is R(x, y) is the statement x | y. The
graph Gr(R) of R is the set whose elements are all pairs (m,n) where m,n ∈ Z and m | n.
For example, (2, 6) ∈ Gr(R) since 2 | 6, but (2, 7) 6∈ Gr(R) since 2 - 7.

Since m | n if and only if n = qm for some q ∈ Z, we thus have

Gr(R) = {(m, qm) | m, q ∈ Z} ⊆ Z× Z

C

Exercise 5.1.6
Let X and Y be sets. What is the graph of the empty relation from X to Y ? C

Exercise 5.1.7
Let f : X → Y be a function, and define the relation Rf from X to Y as in Example 5.1.2.
Prove that Gr(Rf ) = Gr(f)—that is, the graph of the relation Rf is equal to the graph of
the function f . C

As with functions, the graph of a relation R from a set X to a set Y can often be represented
graphically: draw a pair of axes, with the horizontal axis representing the elements of X
and the vertical axis representing the elements of Y , and plot the point (x, y) if and only
if R(x, y) is true.
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Example 5.1.8
Consider the relation S from R to R defined by x S y ⇔ x2 + y2 = 1. Then

Gr(S) = {(x, y) ∈ R× R | x2 + y2 = 1}

Plotting Gr(S) on a standard pair of axes yields a circle with radius 1 centred at the point
(0, 0). Note that Gr(S) is not the graph of a function s : [0, 1] → R. Indeed, since for
example both 0 S 1 and 0 S −1, the value s(0) would not be uniquely defined. C

Example 5.1.9
Let X be a set. The graph of the equality relation from X to X is very simple:

Gr(=) = {(x, y) ∈ X ×X | x = y} = {(x, x) | x ∈ X} ⊆ X ×X

This set is often denoted ∆X (LATEX code: \Delta {X}), and called the diagonal subset
of X × X. The reason for the word ‘diagonal’ is because—provided the horizontal and
vertical axes have the same ordering of the elements of X—the points plotted are precisely
those on the diagonal line. C

Since we defined relations as particular logical formulae, and we have not defined a notion
of equality between logical formulae, if we want to say that two relations are equal then
first we need to define what we mean by equal. As with sets, this raises some subtleties:
should two relations be equal when they’re described by the same formula? Or should two
relations be equal when they relate the same elements, even if their underlying descriptions
are somewhat different? As with equality between sets (Definition 2.2.20), our notion of
equality between relations will be extensional : for the purposes of deciding whether two
relations are equal, we forget their descriptions and look only at whether or not they relate
the same pairs elements.

Definition 5.1.10
Let X and Y be sets, and let R and S be relations from X to Y . We say R and S are
equal, and write R = S, if

∀x ∈ X, ∀y ∈ Y, (x R y ⇔ x S y)

That is, R = S if they relate exactly the same pairs of elements.

Note that two relations R and S from a set X to a set Y are equal as relations if and only if
their graphs Gr(R) and Gr(S) are equal as sets. This fact, together with the correspondence
between relations from X to Y and subsets of X ×Y (Theorem 5.1.11 below) is incredibly
convenient, because it makes the notion of a relation more concrete.
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Theorem 5.1.11
Let X and Y be sets. Any subset G ⊆ X × Y is the graph of exactly one relation R from
X to Y .

Proof. Fix G ⊆ X × Y . Define a relation R by

∀x ∈ X, ∀y ∈ Y, x R y ⇔ (x, y) ∈ G

Then certainly G = Gr(R).

Moreover, if S is a relation from X to Y such that G = Gr(S), then, for all x ∈ X and
y ∈ Y

x S y ⇔ (x, y) ∈ Gr(S)⇔ (x, y) ∈ Gr(R)⇔ x R y

so S = R. Hence there is exactly one relation from X to Y whose graph is G.

Theorem 5.1.11 allows us to use the counting principles from Section 4.2 to find the number
of relations from one finite set to another.

Exercise 5.1.12
Let X and Y be finite sets with |X| = m and |Y | = n. Prove that there are 2mn relations
from X to Y . C

Aside
It is very common to identify a relation with its graph, saying that a relation from a set
X to a set Y ‘is’ a subset of X × Y . This practice is justified by Theorem 5.1.11, which
says precisely that there is a correspondence between relations from X to Y and subsets
of X × Y . C

Relations on a set

In most of the examples of relations we’ve seen so far, the domain of the relation is equal
to its codomain. The remainder of this section—in fact, the remainder of this chapter—is
dedicated to such relations. So let’s simplify the terminology slightly.

Definition 5.1.13
Let X be a set. A relation on X is a relation from X to X.

We have seen many such relations so far, such as: equality on any set, congruence modulo
n on Z, divisibility, on Z inclusion of subsets (⊆) on P(X), and comparison of size (6) on
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N, Z, Q or R. Remarkably, each of these relations can be characterised in one of two ways:
either as an equivalence relation or as a partial order.

Equivalence relations are those that behave in some sense like equality, and partial orders
are those that behave in some way like 6.

• Equality. If X is any set, then equality on X satisfies:

� Given x ∈ X, we have x = x;

� Given x, y ∈ X, if x = y, then y = x;

� Given x, y, z ∈ X, if x = y and y = z, then x = z.

Note that these are all true if we replace X by Z and · = · by · ≡ · mod n for some
fixed n > 0.

• Order. If X = N (or Z or Q or R), then the order relation 6 on X satisfies:

� Given x ∈ X, we have x 6 x;

� Given x, y ∈ X, if x 6 y and y 6 x, then x = y;

� Given x, y, z ∈ X, if x 6 y and y 6 z, then x 6 z.

Note that these are all true if we replace (X,6) by (P(X),⊆) or (N, | ).

For both equality and order, the first condition states that every element is related to itself,
and the third condition states that in some sense we can cut out intermediate steps. These
conditions are known as reflexivity and transitivity. The second condition for equality states
that the direction of the relation doesn’t matter; this condition is called symmetry. The
second condition for the order relation states that the only way two objects can be related
to each other in both directions is if they are equal; this condition is called antisymmetry.

The remainder of this section will develop the language needed to talk about equivalence
relations and partial orders. We will finish the section with a discussion of equivalence
relations, and then study partial orders in depth in Section 5.2.

Reflexive relations are those that relate everything to itself.

Definition 5.1.14
Let X be a set. A relation R on X is reflexive if x R x for all x ∈ X.

Example 5.1.15
Given a set X, the equality relation on X is reflexive since x = x for all x ∈ X. C

Example 5.1.16
The divisibility relation on N, or on Z, is reflexive. Given n ∈ Z we have n = 1 × n, and
so n | n. C
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The following exercise demonstrates the importance of specifying the (co)domain of a
relation: it shows that a logical formula may define a reflexive relation on one set, but not
on another.

Exercise 5.1.17
Prove that coprimality (‘x ⊥ y’) is not a reflexive relation on Z, but that it is a reflexive
relation on the set {−1, 1}.

As such, it doesn’t make sense to say ‘coprimality is a reflexive relation’ or ‘coprimality is
not a reflexive relation’: we must specify on which set we are considering the coprimality
relation. C

The result of the next exercise characterises reflexive relations in terms of their graph.

Exercise 5.1.18
Let X be a set and let R be a relation on X. Prove that R is reflexive if and only if
∆X ⊆ Gr(R), where ∆X is the diagonal subset of X×X (see Example 5.1.9). Deduce that
if X is finite and |X| = n, then there are 2n(n−1) reflexive relations on X. C

Symmetric relations are those for which the direction of the relation doesn’t matter.

Definition 5.1.19
Let X be a set. A relation R on X is symmetric if, for all x, y ∈ X, x R y implies y R x.

Example 5.1.20
Some examples of symmetric relations include:

• Equality is a symmetric relation on any set X. Indeed, if x, y ∈ X and x = y, then
y = x.

• Coprimality is a symmetric relation on Z, since if a, b ∈ Z then a ⊥ b if and only if
b ⊥ a.

• Divisibility is not a symmetric relation on Z, since for instance 1 | 2 but 2 - 1.
However, divisibility is a symmetric relation on {−1, 1}, since 1 | −1 and −1 | 1.

C

Exercise 5.1.21
Let X be a finite set with |X| = n. Prove that there are 2(n2) · 2n symmetric relations on
X. C

A related condition a relation may possess is antisymmetry.
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Definition 5.1.22
Let X be a set. A relation R on X is antisymmetric if, for all x, y ∈ X, if x R y and
y R x, then x = y.

A word of warning here is that ‘antisymmetric’ does not mean the same thing as ‘not
symmetric’—indeed, we we will see, equality is both symmetric and antisymmetric, and
many relations are neither symmetric nor antisymmetric.[a]

Example 5.1.23
Some examples of antisymmetric relations include are as follows.

• Let X be a set. The equality relation on X is antisymmetric: it is immediate that if
x, y ∈ X and x = y and y = x, then x = y.

• The relation 6 on the set N (or Z or Q or R) is antisymmetric: if m,n ∈ N and
m 6 n and n 6 m, then m = n.

• The divisibility relation on N is antisymmetric. Indeed, let m,n ∈ N and suppose
m | n and n | m. Then n = km for some k ∈ Z and m = `n for some ` ∈ Z. It follows
that n = k`n. If n = 0 then m = n trivially; otherwise, we have k` = 1. Hence k is
a unit; moreover, since m,n > 0 and n = km, we must have k = 1. Hence m = n.

C

Exercise 5.1.24
Show that the divisibility relation on Z is not antisymmetric. C

Exercise 5.1.25
Let X be a set and let R be a relation on X. Prove that R is both symmetric and
antisymmetric if and only if Gr(R) ⊆ ∆X , where ∆X is the diagonal subset of X ×X (see
Exercise 5.1.9). Deduce that the only reflexive, symmetric and antisymmetric relation on
a set X is the equality relation on X. C

Exercise 5.1.26
Let X be a finite set with |X| = n. Prove that there are 3(n2) · 2n antisymmetric relations
on X. C

Transitivity is the property of 6 that allows us to deduce, for example, that 0 6 4, from
the information that 0 6 1 6 2 6 3 6 4.

Definition 5.1.27
Let X be a set. A relation R on X is transitive if, for all x, y, z ∈ X, if x R y and y R z,
then x R z.
[a]Even more confusingly, there is a notion of asymmetric relation, which also does not mean ‘not symmetric’.
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Example 5.1.28
Some examples of transitive relations include:

• Equality is a transitive relation on any set X, since it is immediate that if x, y, z ∈ X
with x = y and y = z, then x = z.

• Divisibility is a transitive relation on N, or on Z. Indeed, if a, b, c ∈ N with a | b and
b | c, then there exist k, ` ∈ Z such that b = ka and c = `b. Then c = (k`)a, so a | c.

• Inclusion is a transitive relation on P(X), for any set X. Indeed, Proposition 2.2.11
implies that if U, V,W ⊆ X with U ⊆ V and V ⊆W , then U ⊆W .

C

A fundamental property of transitive relations is that we can prove two elements a and b
are related by finding a chain of related elements starting at a and finishing at b. This is
the content of the following proposition.

Proposition 5.1.29
Let R be a relation on a set X. Then R is transitive if and only if, for any finite sequence
x0, x1, . . . , xn of elements of X such that xi−1 R xi for all i ∈ [n], we have x0 R xn.

Proof. For the sake of abbreviation, let p(n) be the assertion that, for any n > 1 and
any sequence x0, x1, . . . , xn of elements of X such that xi−1 R xi for all i ∈ [n], we have
x0 R xn.

We prove the two directions of the proposition separately.

• (⇒) Suppose R is transitive. For n > 1. We prove p(n) is true for all n > 1 by
induction.

� (BC) When n = 1 this is immediate, since we assume that x0 R x1.

� (IS) Fix n > 1 and suppose p(n) is true. Let x0, . . . , xn, xn+1 is a sequence such
that xi−1 R xi for all i ∈ [n+ 1]. We need to prove that x0 R xn+1.

By the induction hypothesis we know that x0 R xn. By definition of the sequence
we have xn R xn+1. By transitivity, we have x0 R xn+1.

So by induction, we have proved the ⇒ direction.

• (⇐) Suppose p(n) is true for all n > 1. Then in particular p(2) is true, which is
precisely the assertion that R is transitive.

So we’re done.
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That is, Proposition 5.1.29 states that for a transitive relationR on a setX, if x0, x1, . . . , xn ∈
X, then

x0 R x1 R · · · R xn ⇒ x0 R xn

where ‘x0 R x1 R · · · R xn’ abbreviates the assertion that xi R xi+1 for each i < n.

Exercise 5.1.30
For each of the eight subsets

P ⊆ {reflexive, symmetric, transitive}

find a relation satisfying (only) the properties in P . C

Equivalence relations

We will now study what it is for a relation to be equality-like.

Definition 5.1.31
A relation R on a set X is an equivalence relation if R is reflexive, symmetric and
transitive.

When we talk about arbitrary equivalence relations, we usually use a symbol like ‘∼’ (LATEX
code: \sim) or ‘≡’ (LATEX code: \equiv) or ‘≈’ (LATEX code: \approx) instead of ‘R’.

Example 5.1.32
Recall Theorem 3.3.6. With our new language of relations, we could succinctly re-state it
as follows:

Let n be a modulus. Congruence modulo n is an equivalence relation on Z.

Indeed, part (a) of Theorem 3.3.6 proved reflexivity, part (b) proved symmetry, and part
(c) proved transitivity. C

Exercise 5.1.33
Use the definition of equality of sets (Definition 2.2.20) to prove that equality of sets is an
equivalence relation on the universe of discourse U . C

Exercise 5.1.34
Define a relation ∼ on Z by declaring, for m,n ∈ Z,

m ∼ n ⇔ ϕ(m) = ϕ(n)

Prove that ∼ is an equivalence relation. C

242



Section 5.1. Relations 243

In the following exercise, we construct a particular equivalence relation ∼R out of an
arbitrary relation R and prove that ∼R is, in a suitable sense, the ‘smallest’ equivalence
relation extending R.

? Exercise 5.1.35
Let R be any relation on a set X. Define a new relation ∼R on X as follows. Given
x, y ∈ X, say x ∼R y if and only if for some k ∈ N there is a sequence (a0, a1, . . . , ak) of
elements of X such that a0 = x, ak = y and, for all 0 6 i < k, either aiRai+1 or ai+1Rai.

First we’ll work out a couple of examples.

(a) Fix a modulus n and let R be the relation on Z defined by xR y if and only if
y = x+ n. Prove that ∼R is the relation of congruence modulo n.

(b) Let X be a set and let R be the subset relation on P(X). Prove that ∼R is the set
equality relation on P(X).

(c) Let X be a set, fix two distinct elements a, b ∈ X, and define a relation R on X by
declaring aR b only—that is, for all x, y ∈ X, we have xR y if and only if x = a and
y = b. Prove that the relation ∼R is defined by x ∼R y if and only if either x = y or
{x, y} = {a, b}. (Intuitively, ∼R ‘glues’ the elements a and b together.)

Next we prove the fundamental facts about ∼R that we mentioned before the statement of
this exercise.

(d) Prove that ∼R is an equivalence relation on X

(e) Prove that xR y ⇒ x ∼R y for all x, y ∈ X.

(f) Prove that, furthermore, if ≈ is any equivalence relation on X and xR y ⇒ x ≈ y for
all x, y ∈ X, then x ∼R y ⇒ x ≈ y for all x, y ∈ X.

(g) Use parts (e) and (f) to prove that if R is already an equivalence relation, then the
relation ∼R is equal to R.

We say that the relation ∼R is the equivalence relation on X generated by R. C

Equivalence relations are useful because they allow us to ignore irrelevant information
about elements of a set. As an example, suppose we want to prove that, for a ∈ Z, if
3 - a then a2 leaves a remainder of 1 when divided by 3. Before we learnt about modular
arithmetic in Section 3.3, in order to prove this, we would have written a = 3k±1 for some
k ∈ Z and done some tedious algebra to deduce that a2 = 3(3k2 ± 2k) + 1. This required
us to use more information than we need: the value of k doesn’t make any difference
to the truth of the result, the expression 3(3k2 ± 2k) + 1 is ugly and, more importantly,
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keeping track of k made the proof longer and more difficult than it has to be. When we
learnt modular arithmetic, everything was simplified: if 3 - a then a ≡ ±1 mod 3, so that
a2 ≡ (±1)2 ≡ 1 mod 3. This proof was shorter and simpler because we didn’t need to
keep track of exactly which integer a was—all we cared about was its value modulo 3. We
could just as well have replaced a with any other integer which leaves the same remainder
modulo 3.

This motivates the following definition, which provides a means of identifying two elements
of a set that are related by an equivalence relation.

Definition 5.1.36
Let X be a set and let ∼ be an equivalence relation on X. The ∼-equivalence class of
x ∈ X is the set [x]∼ (LATEX code: [x] {\sim}) defined by

[x]∼ = {y ∈ X | x ∼ y}

The quotient of X by ∼ is the set X/∼ (LATEX code: X/{\sim}) of all ∼-equivalence
classes of elements of X; that is

X/∼ = {[x]∼ | x ∈ X}

Formatting tip
Putting braces ({ and }) around a symbol like ∼ tells LATEX to consider the symbol on its
own, rather than in the context of its surrounding variables. Compare:

LATEX code: output:

Without braces: X/\sim = Y X/ ∼= Y

With braces: X/{\sim} = Y X/∼ = Y

This is because, without braces, LATEX thinks you’re saying ‘X/ is related to is equal to
Y ’, which clearly makes no sense; putt braces around \sim signifies to LATEX that the ∼
symbol is being considered as an object in its own right. C

Example 5.1.37
Let ∼ be the relation of congruence modulo 5 on the set of integers. Then

[0]∼ = {a ∈ Z | a ∼ 0}

Now, a ∼ 0 if and only if 5 | a, so we can also write

[0]∼ = {. . . ,−10,−5, 0, 5, 10, . . . } = {5k | k ∈ Z}
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So in fact [0]∼ = [5k]∼ for any k ∈ Z. And likewise

[r]∼ = [r + 5k]∼

for all r, k ∈ Z. It follows that Z/∼ = {[0]∼, [1]∼, [2]∼, [3]∼, [4]∼}. C

Definition 5.1.38
Consider the relation of congruence modulo n on the set Z of integers. We call the equi-
valence class of a ∈ Z the congruence class of a modulo n, denoted [a]n, and we write
Z/nZ to denote the quotient of Z by the relation of congruence modulo n.

Example 5.1.39
The set Z/5Z has five elements:

Z/5Z = {[0]5, [1]5, [2]5, [3]5, [4]5}

Example 5.1.37 demonstrates that for all n ∈ Z and all 0 6 r < 5, we have [n]5 = [r]5 if
and only if n leaves a remainder of r when divided by 5. For example, [7]5 = [2]5. C

Exercise 5.1.40
Let n be a modulus. Prove that Z/nZ is finite and |Z/nZ| = n. C

Exercise 5.1.40 doesn’t tell us much more than we already know: namely, that there are
only finitely many possible remainders modulo n. But it makes our lives significantly easier
for doing modular arithmetic, because now there are only finitely many objects to work
with.

One last word on equivalence relations is that they are essentially the same thing as par-
titions (see Definition 4.2.36).

Exercise 5.1.41
If ∼ be an equivalence relation on X, then X/∼ is a partition X. Deduce that, for x, y ∈ X,
we have x ∼ y if and only if [x]∼ = [y]∼. C

In fact, the converse of 5.1.41 is also true, as we prove next.

Proposition 5.1.42
Let X be a set and let U be a partition of X. Then U = X/∼ for exactly one equivalence
relation ∼ on X.

Proof. Define a relation ∼ by

x ∼ y ⇔ ∃U ∈ U , x ∈ U and y ∈ U
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for all x, y ∈ X. That is, x ∼ y if and only if x and y are elements of the same set of the
partition. We check that ∼ is an equivalence relation.

• Reflexivity. Let x ∈ X. Then x ∈ U for some U ∈ U since
⋃

U∈U U = X. Hence
x ∼ x.

• Symmetry. Let x, y ∈ X and suppose x ∼ y. Then there is some U ∈ U with x ∈ U
and y ∈ U . But then it is immediate that y ∼ x.

• Transitivity. Let x, y, z ∈ X and suppose that x ∼ y and y ∼ z. Then there exist
U, V ∈ U with x, y ∈ U and y, z ∈ V . Thus y ∈ U ∩ V . Since U is a partition of X,
its elements are pairwise disjoint; thus if U 6= V then U ∩ V = ∅. Hence U = V .
Thus x ∈ U and z ∈ U , so x ∼ z.

The definition of ∼ makes it immediate that X/∼ = U .

To prove that ∼ is the only such relation, suppose ≈ is another equivalence relation on X
for which X/≈ = U . Then, given x, y ∈ X, we have:

x ∼ y ⇔ [x]∼ = [y]∼ by Exercise 5.1.41

⇔ ∃U ∈ U , x ∈ U ∧ y ∈ U by definition of ∼
⇔ ∃z ∈ X, x ∈ [z]≈ ∧ y ∈ [z]≈ since U = X/≈
⇔ ∃z ∈ X, x ≈ z ∧ y ≈ z by definition of [z]≈

⇔ x ≈ y by symmetry and transitivity

So ∼ = ≈.
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Section 5.2

Orders and lattices

We saw in Section 5.1 how equivalence relations behave like ‘=’, in the sense that they are
reflexive, symmetric and transitive.

This section explores a new kind of relation which behaves like ‘6’. This kind of relation
proves to be extremely useful for making sense of mathematical structures, and has powerful
applications throughout mathematics, computer science and even linguistics.

Definition 5.2.1
A relation R on a set X is a partial order if R is reflexive, antisymmetric and transitive.
That is, if:
• (Reflexivity) x R x for all x ∈ X;

• (Antisymmetry) For all x, y ∈ X, if x R y and y R x, then x = y;

• (Transitivity) For all x, y, z ∈ X, if x R y and y R z, then x R z.
A set X together with a partial order R on X is called a partially ordered set, or poset
for short, and is denoted (X,R).

When we talk about partial orders, we usually use a suggestive symbol like ‘4’ (LATEX
code: \preceq) or ‘v’ (LATEX code: \sqsubseteq).

Example 5.2.2
We have seen many examples of posets so far:

• Any of the sets N, Z, Q or R, with the usual order relation 6.

• Given a set X, its power set P(X) is partially ordered by ⊆. Indeed:

� Reflexivity. If U ∈ P(X) then U ⊆ U .

� Antisymmetry. If U, V ∈ P(X) with U ⊆ V and V ⊆ U , then U = V by
definition of set equality.

� Transitivity. If U, V,W ∈ P(X) with U ⊆ V and V ⊆ W , then U ⊆ W by
Proposition 2.2.11.

• The set N of natural numbers is partially ordered by divisibility (see Examples 5.1.16,
5.1.23 and 5.1.28). However, by Exercise 5.1.24, the set Z of integers is not partially
ordered by divisibility, since divisibility is not antisymmetric on Z.
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• Any set X is partially ordered by its equality relation. This is called the discrete
order on X.

C

Much like the difference between the relations 6 and < on N, or between ⊆ and $ on
P(X), every partial order can be strictified, in a precise sense outlined in the following
definition and proposition.

Definition 5.2.3
A relation R on a set X is a strict partial order if it is irreflexive, asymmetric and
transitive. That is, if:
• (Irreflexivity) ¬(x R x) for all x ∈ X;

• (Asymmetry) For all x, y ∈ X, if x R y, then ¬(y R x);

• (Transitivity) For all x, y, z ∈ X, if x R y and y R z, then x R z.

Proposition 5.2.4
Let X be a set. Partial orders 4 on X are in natural correspondence with strict partial
orders ≺ on X, according to the rule:

x 4 y ⇔ (x ≺ y ∨ x = y) and x ≺ y ⇔ (x 4 y ∧ x 6= y)

Proof. Let P be the set of all partial orders on X and let S be the set of all strict partial
orders on X. Define functions

f : P → S and g : S → P

as in the statement of the proposition, namely:

• Given a partial order 4, let f(4) be the relation ≺ defined for x, y ∈ X by letting
x ≺ y be true if and only if x 4 y and x 6= y;

• Given a strict partial order ≺, let g(≺) be the relation 4 defined for x, y ∈ X by
letting x 4 y be true if and only if x ≺ y or x = y.

We’ll prove that f and g are mutually inverse functions. Indeed:

• f is well-defined. To see this, fix 4 and ≺ = f(4) and note that:

� ≺ is irreflexive, since for x ∈ X if x ≺ x then x 6= x, which is a contradiction.
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� ≺ is asymmetric. To see this, let x, y ∈ X and suppose x ≺ y. Then x 4 y and
x 6= y. If also y ≺ x, then we’d have y 4 x, so that x = y by antisymmetry of
4. But x 6= y, so this is a contradiction.

� ≺ is transitive. To see this, let x, y, z ∈ X and suppose x ≺ y and y ≺ z. Then
x 4 y and y 4 z, so that x 4 z. Moreover, if x = z then we’d also have z 4 x by
reflexivity of 4, so z 4 y by transitivity of 4, and hence y = z by antisymmetry
of 4. But this contradicts y ≺ z.

So ≺ is a strict partial order on X.

• g is well-defined. To see this, fix ≺ and 4 = g(≺) and note that:

� 4 is reflexive. This is built into the definition of 4.

� 4 is symmetric. To see this, fix x, y ∈ X and suppose x 4 y and y 4 x. Now
if x 6= y then x ≺ y and y ≺ x, but this contradicts asymmetry of ≺. Hence
x = y.

� 4 is transitive. To see this, fix x, y, z ∈ X and suppose x 4 y and y 4 z. Then
one of the following four cases must be true:

∗ x = y = z. In this case, x = z, so x 4 z.

∗ x = y ≺ z. In this case, x ≺ z, so x 4 z.

∗ x ≺ y = z. In this case, x ≺ z, so x 4 z.

∗ x ≺ y ≺ z. In this case, x ≺ z by transitivity of ≺, so x 4 z.

In any case, we have that x 4 z.

So 4 is a partial order on X.

• g ◦ f = idP . To see this, let ≺ = f(4) and v = g(≺). For x, y ∈ X, we have x v y if
and only if x ≺ y or x = y, which in turn occurs if and only if x = y or both x 4 y
and x 6= y. This is equivalent to x 4 y, since if x = y then x 4 y by reflexivity.
Hence v and 4 are equal relations, so g ◦ f = idP .

• f ◦ g = idS . To see this, let 4 = g(≺) and @ = f(4). For x, y ∈ X, we have x @ y
if and only if x 4 y and x 6= y, which in turn occurs if and only if x 6= y and either
x ≺ y or x = y. Since x 6= y precludes x = y, this is equivalent to x ≺ y. Hence ≺
and @ are equal relations, so f ◦ g = idS .

So f and g are mutually inverse functions, and we have established the required bijection.

In light of Proposition 5.2.4, we will freely translate between partial orders and strict
partial orders wherever necessary. When we do so, we will use ≺ (LATEX code: \prec) to
denote the ‘strict’ version, and 4 to denote the ‘weak’ version. (Likewise for @ (LATEX
code: \sqsubet).)
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Definition 5.2.5
Let (X,4) be a poset. A 4-least element of X (or a least element of X with respect
to 4) is an element ⊥ ∈ X (LATEX code: \bot) such that ⊥ 4 x for all x ∈ X. A 4-
greatest element of X (or a greatest element of X with respect to 4) is an element
> ∈ X (LATEX code: \top) such that x 4 > for all x ∈ X.

Example 5.2.6
Some examples of least and greatest elements that we have already seen are:

• In (N,6), 0 is a least element; there is no greatest element.

• Let n ∈ N with n > 0. Then 1 is a least element of ([n],6), and n is a greatest
element.

• (Z,6) has no greatest or least elements.

C

Proposition 5.2.7 says that least and greatest elements of posets are unique, if they exist.
This allows us to talk about ‘the’ least or ‘the’ greatest element of a poset.

Proposition 5.2.7
Let (X,4) be a poset. If X has a least element, then it is unique; and if X has a greatest
element, then it is unique.

Proof. Suppose X has a least element `. We prove that if `′ is another least element, then
`′ = `.

So take another least element `′. Since ` is a least element, we have ` 4 `′. Since `′ is a
least element, we have `′ 4 `. By antisymmetry of 4, it follows that ` = `′.

Hence least elements are unique. The proof for greatest elements is similar, and is left as
an exercise.

Exercise 5.2.8
Let X be a set. The poset (P(X),⊆) has a least element and a greatest element; find
both. C

Exercise 5.2.9
Prove that the least element of N with respect to divisibility is 1, and the greatest element
is 0. C
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Definition 5.2.10
Let (X,4) be a poset and let A ⊆ X. A 4-supremum of A is an element s ∈ X such that
• a 4 s for each a ∈ A; and

• If s′ ∈ X with a 4 s′ for all a ∈ A, then s 4 s′.
A 4-infimum of A is an element i ∈ X such that
• i 4 a for each a ∈ A; and

• If i′ ∈ X with i′ 4 a for all a ∈ A, then i′ 4 i.

Example 5.2.11
The well-ordering principle states that if U ⊆ N is inhabited then U has a 6-infimum, and
moreover the infinum of U is an element of U . C

Exercise 5.2.12
Let X be a set, and let U, V ∈ P(X). Prove that the ⊆-supremum of {U, V } is U ∪V , and
the ⊆-infimum of {U, V } is U ∩ V . C

Exercise 5.2.13
Let a, b ∈ N. Show that gcd(a, b) is an infimum of {a, b} and that lcm(a, b) is a supremum
of {a, b} with respect to divisbility. C

Example 5.2.14
Define U = [0, 1) = {x ∈ R | 0 6 x < 1}. We prove that U has both an infimum and a
supremum in the poset (R,6).

• Infimum. 0 is an infimum for U . Indeed:

(i) Let x ∈ U . Then 0 6 x by definition of U .

(ii) Let y ∈ R and suppose that y 6 x for all x ∈ U . Then y 6 0, since 0 ∈ U .

so 0 is as required.

• Supremum. 1 is a supremum for U . Indeed:

(i) Let x ∈ U . Then x < 1 by definition of U , so certainly x 6 1.

(ii) Let y ∈ R and suppose that x 6 y for all x ∈ U . We prove that 1 6 y by
contradiction. So suppose it is not the case that 1 6 y. Then y < 1. Since
x 6 y for all x ∈ U , we have 0 6 y. But then

0 6 y =
y + y

2
<
y + 1

2
<

1 + 1

2
= 1

But then y+1
2 ∈ U and y < y+1

2 . This contradicts the assumption that x 6 y
for all x ∈ U . So it must in fact have been the case that 1 6 y.

so 1 is as required.
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C

The following proposition proves that suprema and infima are unique, provided they exist.

Proposition 5.2.15
Let (X,4) is a poset, and let A ⊆ X.

(i) If s, s′ ∈ X are suprema of A, then s = s′;

(ii) If i, i′ ∈ X are infima of A, then i = i′.

Proof. Suppose s, s′ are suprema of A. Then:

• a 4 s′ for all a ∈ A, so s′ 4 s since s is a supremum of A;

• a 4 s for all a ∈ A, so s 4 s′ since s′ is a supremum of A.

Since 4 is antisymmetric, it follows that s = s′. This proves (i).

The proof of (ii) is almost identical and is left as an exercise to the reader.

Notation 5.2.16
Let (X,4) be a poset and let U ⊆ X. Denote the 4-infimum of U , if it exists, by

∧
U

(LATEX code: \bigwedge); and denote the 4-supremum of U , if it exists, by
∨
U (LATEX

code: \bigvee). Moreover, for x, y ∈ X, write∧
{x, y} = x ∧ y (LATEX code: \wedge),

∨
{x, y} = x ∨ y (LATEX code: \vee)

Example 5.2.17
Some examples of Notation 5.2.16 are as follows.

• Let X be a set. In (P(X),⊆) we have U ∧ V = U ∩ V and U ∨ V = U ∪ V for all
U, V ∈ P(X).

• We have seen that, in (N, |), we have a ∧ b = gcd(a, b) and a ∨ b = lcm(a, b) for all
a, b ∈ N.

• In (R,6), we have a ∧ b = min{a, b} and a ∨ b = max{a, b}.

C

Definition 5.2.18
A lattice is a poset (X,4) such that every pair of elements of X has a 4-supremum and
a 4-infimum.
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Example 5.2.19
We have seen that (P(X),⊆), (R,6) and (N, |) are lattices. C

Proposition 5.2.20 (Associativity laws for lattices)
Let (X,4) be a lattice, and let x, y, z ∈ X. Then

x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z

Proof. We prove x∧(y∧z) = (x∧y)∧z; the other equation is dual and is left as an exercise.
We prove that the sets {x, y ∧ z} and {x ∧ y, z} have the same sets of lower bounds, and
hence the same infima. So let

L1 = {i ∈ X | i 4 x and i 4 y ∧ z} and L2 = {i ∈ X | i 4 x ∧ y and i 4 z}

We prove L1 = L = L2, where

L = {i ∈ X | i 4 x, i 4 y and i 4 z}

First we prove L1 = L. Indeed:

• L1 ⊆ L. To see this, suppose i ∈ L1. Then i 4 x by definition of L1. Since i 4 y ∧ z,
and y ∧ z 4 y and y ∧ z 4 z, we have i 4 y and i 4 z by transitivity of 4.

• L ⊆ L1. To see this, suppose i ∈ L. Then i 4 x by definition of L. Moreover, i 4 y
and i 4 z by definition of L, so that i 4 y ∧ z by definition of ∧. Hence i ∈ L.

The proof that L2 = L is similar. Hence L1 = L2. But x ∧ (y ∧ z) is, by definition of ∧,
the 4-greatest element of L1, which exists since (X,4) is a lattice. Likewise, (x∧ y)∧ z is
the 4-greatest element of L2.

Since L1 = L2, it follows that x ∧ (y ∧ z) = (x ∧ y) ∧ z, as required.

Exercise 5.2.21 (Commutativity laws for lattices)
Let (X,4) be a lattice. Prove that, for all x, y ∈ X, we have

x ∧ y = y ∧ x and x ∨ y = y ∨ x

C

Exercise 5.2.22 (Absorption laws for lattices)
Let (X,4) be a lattice. Prove that, for all x, y ∈ X, we have

x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x

C
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Example 5.2.23
It follows from what we’ve proved that if a, b, c ∈ Z then

gcd(a, gcd(b, c)) = gcd(gcd(a, b), c)

For example, take a = 882, b = 588 and c = 252. Then

• gcd(b, c) = 84, so gcd(a, gcd(b, c)) = gcd(882, 84) = 42;

• gcd(a, b) = 294, so gcd(gcd(a, b), c) = gcd(294, 252) = 42.

These are indeed equal. C

Distributive lattices and Boolean algebras

One particularly important class of lattice is that of a distributive lattice, in which suprema
and infima interact in a particularly convenient way. This makes algebraic manipulations
of expressions involving suprema and infima particularly simple.

Definition 5.2.24
A lattice (X,4) is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

for all x, y, z ∈ X.

Example 5.2.25
For any set X, the power set lattice (P(X),⊆) is distributive. That is to say that for all
U, V,W ⊆ X we have

U ∩ (V ∪W ) = (U ∩ V ) ∪ (U ∩W ) and U ∪ (V ∩W ) = (U ∪ V ) ∩ (U ∪W )

This was the content of Example 2.2.34 and Exercise 2.2.35. C

Exercise 5.2.26
Prove that (N, |) is a distributive lattice. C

Definition 5.2.27
Let (X,4) be a lattice with a greatest element > and a least element ⊥, and let x ∈ X. A
complement for x is an element y such that

x ∧ y = ⊥ and x ∨ y = >

254



Section 5.2. Orders and lattices 255

Example 5.2.28
Let X be a set. We show that every element U ∈ P(X) has a complement. C

Exercise 5.2.29
Let (X,4) be a distributive lattice with a greatest element and a least element, and let
x ∈ X. Prove that, if a complement for x exists, then it is unique; that is, prove that if
y, y′ ∈ X are complements for X, then y = y′. C

Exercise 5.2.29 justifies the following notation.

Notation 5.2.30
Let (X,4) be a distributive lattice with greatest and least elements. If x ∈ X has a
complement, denote it by ¬x.

Definition 5.2.31
A lattice (X,4) is complemented if every element x ∈ X has a complement. A Boolean
algebra is a complemented distributive lattice with a greatest element and a least element.

The many preceding examples and exercises concerning (P(X),⊆) piece together to provide
a proof of the following theorem.

Theorem 5.2.32
Let X be a set. Then (P(X),⊆) is a Boolean algebra.

Another extremely important example of a Boolean algebra is known as the Lindenbaum–
Tarski algebra, which we define in Definition 5.2.35. In order to define it, we need to prove
that the definition will make sense. First of all, we fix some notation.

Definition 5.2.33
Let P be a set, thought of as a set of propositional variables. Write L(P ) to denote the
set of propositional formulae with propositional variables in P—that is, the elements of
L(P ) are strings built from the elements of P , using the operations of conjunction (∧),
disjunction (∨) and negation (¬).

Lemma 5.2.34
Logical equivalence ≡ is an equivalence relation on L(P ).

Proof. This is immediate from definition of equivalence relation, since for s, t ∈ L(P ), s ≡ t
is defined to mean that s and t have the same truth values for all assignments of truth
values to their propositional variables.

255



256 Chapter 5. Relations

In what follows, the set P of propositional variables is fixed; we may moreover take it to
be countably infinite, since all strings in L(P ) are finite.

Definition 5.2.35
The Lindenbaum–Tarski algebra (for propositional logic) over P is the pair (A,`),
where A = L(P )/≡ and ` is the relation on A defined by [s]≡ ` [t]≡ if and only if s⇒ t is
a tautology.

In what follows, we will simply write [−] for [−]≡.

Theorem 5.2.36
The Lindenbaum–Tarski algebra is a Boolean algebra.

Sketch proof. There is lots to prove here! Indeed, we must prove:

• ` is a well-defined relation on A; that is, if s ≡ s′ and t ≡ t′ then we must have
[s] ` [t] if and only if [s′] ` [t′].

• ` is a partial order on A; that is, it is reflexive, antisymmetric and transitive.

• The poset (A,`) is a lattice; that is, it has suprema and infima.

• The lattice (A,`) is distributive, has a greatest element and a least element, and is
complemented.

We will omit most of the details, which are left as an exercise; instead, we outline what
the components involved are.

The fact that ` is a partial order can be proved as follows.

• Reflexivity of ` follows from the fact that s ⇒ s is a tautology for all propositional
formulae s.

• Symmetry of ` follows from the fact that, for all propositional formulae s, t, if s⇔ t
is a tautology then s and t are logically equivalent.

• Transitivity of ` follows immediately from transitivity of ⇒.

The fact that (A,`) is a lattice can be proved by verifying that:

• Given [s], [t] ∈ A, the infimum [s]∧ [t] is given by conjunction, namely [s]∧ [t] = [s∧t].

• Given [s], [t] ∈ A, the supremum [s]∨[t] is given by disjunction, namely [s]∨[t] = [s∨t].
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Finally, distributivity of suprema and infima in (A,`) follows from the corresponding prop-
erties of conjunction and disjunction; (A,`) has greatest element [p⇒ p] and least element
[¬(p⇒ p)], where p is some fixed propositional variable; and the complement of [s] ∈ A is
given by [¬s].

We finish this section on orders and lattices with a general version of de Morgan’s laws for
Boolean algebras, which by Theorems 5.2.32 and 5.2.36 implies the versions we proved for
logical formulae (Theorem 2.1.14) and for sets (Theorem 2.2.40).

Theorem 5.2.37 (De Morgan’s laws)
Let (X,4) be a Boolean algebra, and let x, y ∈ X. Then

¬(x ∧ y) = (¬x) ∨ (¬y) and ¬(x ∨ y) = (¬x) ∧ (¬y)

Proof. We prove ¬(x ∧ y) = (¬x) ∨ (¬y)
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Section 5.3

Well-foundedness and structural induction

Warning!
This section is not yet finished—do not rely on its correctness or completeness.

Section 1.3 introduced induction as a technique for proving statements which are true of
all natural numbers. We saw induction in three flavours: weak induction, strong induction
and the well-ordering principle.

• The principle of weak induction exploited the inductively defined structure of N.
Every natural number can be obtained from 0 by repeatedly applying the successor
(‘plus one’) operation, so if a statement p(n) is true of 0, and its truth is preserved
by the successor operation (i.e. if p(n)⇒ p(n+ 1) is true for all n ∈ N), then it must
be true of all natural numbers

• The well-ordering principle exploited the well-founded nature of the order relation
< on N. It says that every inhabited subset of N, so that any proposition p(n) which
is not true of all natural numbers n must have a least counterexample—this led to
the technique of proof by infinite descent.

In this section, we will generalise these techniques to other sets with an inductively defined
or a well-founded structure.

• An inductively defined set will, intuitively, be a set X built from some set of basic
elements (like zero) using a set of constructors (like the successor operation). We
will be able to perform induction on these sets to prove that a statement p(x) is true
for all x ∈ X by proving that it is true for the basic elements, and then proving
that its truth is preserved by the constructors. This proof technique generalises weak
induction and is called structural induction.

• A set X with a well-founded relation R will allow us to generalise proof by infinite
descent: if there is a counterexample to a logical formula p(x), then there must be
one which is ‘minimal’ with respect to R. This leads to a proof technique called
well-founded induction, which has similarities with strong induction.

Structural induction is conceptually easier to comprehend than well-founded induction, so
we will introduce it first. However, we will not be able to prove that it is a valid proof
technique until after we have introduced well-founded induction.
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Inductively defined sets

In Section 1.3, we formalised the idea that the set of natural numbers should be what
is obtained by starting with zero and repeating the successor (‘plus one’) operation. In a
sense, zero was a basic element—we posited its existence from the outset—and the successor
operation constructed the remaining elements.

Although hidden beneath the surface, this method of defining a set was implicitly used in
Section 2.1 when defining propositional formulae. Here, our basic elements were proposi-
tional variables p, q, r, s, . . . , and the remaining propositional formulae could be constructed
by repeatedly applying the logical connectives ∧, ∨, ¬ and ⇒.

Definition 5.3.1
An inductively defined set is a set X equipped with a subset B ⊆ X of basic elements
and a set C of constructors, with the following properties:

(i) Each constructor f ∈ C is a function f : Xn → X for some n ∈ N. The natural
number n is called the arity of f .

(ii) For all constructors f, g ∈ C if m,n are the arities of f, g, respectively, and
x1, x2, . . . , xm, y1, y2, . . . , yn ∈ X are such that

f(x1, x2, . . . , xm) = g(y1, y2, . . . , yn)

then m = n, f = g and xi = yi for all i ∈ [m].

(iii) For all constructors f ∈ C, the image of f is a subset of X \ B. That is, no
basic element is of the form f(x1, x2, . . . , xn) for any constructor f and elements
x1, x2, . . . , xn ∈ X.

(iv) For all x ∈ X \B, then x = f(x1, x2, . . . , xn) for some constructor f ∈ C of arity n.

Example 5.3.2
The set N of natural number is inductively defined by taking B = {0} and C = {s}, where
s : N→ N is defined by s(n) = n+ 1 for all n ∈ N. Indeed:

(i) s : N→ N is a constructor of arity 1.

(ii) Let f, g ∈ C. Then f = g = s; and if x, y ∈ N with s(x) = s(y), then x+ 1 = y + 1,
so x = y.

(iii) s[N] ⊆ N \ {0} since 0 6= x+ 1 for any x ∈ N.

(iv) For all x ∈ N \ {0} we have x = x′ + 1 for some x′ ∈ N—namely, x′ = x− 1—and so
x = s(x′).
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C

Exercise 5.3.3
Prove that the set E = {1, 2, 4, 8, 16 . . . } of powers of 2 is inductively defined by taking
B = {1} and C = {d}, where d : E → E is defined by d(n) = 2n for all n ∈ N. C

Exercise 5.3.4
Prove that N is inductively defined by taking B = 0 and C = {f}, where f : N → N is
defined by

f(n) =


1 if n = 0

2(n− 1) if n = 2k + 1 for some k ∈ N
n− 1 otherwise

for all n ∈ N. C

To do: Example: propositional formulae

Theorem 5.3.5 (Principle of structural induction)
Let X be an inductively defined set, and let p(x) be a logical formula concerning elements
of X. Suppose that
• p(b) is true for all basic elements b ∈ X; and

• For all constructors f of arity n and all x1, x2, . . . , xn ∈ X, if p(x1), p(x2), . . . , p(xn)
are all true, then p(f(x1, x2, . . . , xn)) is true.

Then p(x) is true for all x ∈ X.

We will prove Theorem 5.3.5 on page 268.

Example 5.3.6
To do: Structural induction on N is weak induction. C

To do: Disjunctive normal form

To do: Generalise to quotients of inductive structures induction on Z using 0 and +,−
and on Z>0 using 1 and p× (−).

We saw in Proposition 5.3.13 that the relation R on the set Z>0 of positive integers defined
for m,n ∈ Z>0 by

m R n ⇔ n = pm for some prime p > 0

is well-founded. We can use well-founded induction to prove a general formula for the
totient of an integer n.
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Theorem 5.3.7 (Formula for Euler’s totient function)
Let n ∈ Z be nonzero, and let ϕ : Z→ N be Euler’s totient function (see Definition 3.3.31).
Then

ϕ(n) = |n| ·
∏

p|n prime

(
1− 1

p

)
where the product is indexed over the distinct positive prime factors p of n.

Proof. If n < 0 then ϕ(n) = ϕ(−n), |n| = −n and p | n if and only if p | −n, so the
theorem holds for negative integers if and only if it holds for positive integers.

We prove the formula for n > 0 by well-founded induction on Z>0 with respect to the
relation R defined in Proposition 5.3.13.

• (BC) ϕ(1) = 1 and, since no prime p divides 1, we have
∏

p|1 prime

(
1− 1

p

)
= 1. Hence

1 ·
∏

p|1 prime

(
1− 1

p

)
= 1 · 1 = 1

as erquired.

• (IS) Fix n > 1 and suppose that

ϕ(n) = n ·
∏

p|n prime

(
1− 1

p

)
Let q > 0 be prime. We prove that

ϕ(qn) = qn ·
∏

p|qn prime

(
1− 1

p

)

� Suppose q | n. Then by we have

ϕ(qn) = qϕ(n) by Exercise 4.2.56

= qn ·
∏

p|n prime

(
1− 1

p

)
by induction hypothesis

= qn ·
∏

p|qn prime

(
1− 1

p

)

The last equation holds because the fact that q | n implies that, for all positive
primes p, we have p | n if and only if p | qn.
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� Suppose q - n. Then q ⊥ n, so we have

ϕ(qn) = ϕ(q)ϕ(n) by Theorem 4.2.55

= ϕ(q) · n ·
∏

p|n prime

(
1− 1

p

)
by induction hypothesis

= (q − 1) · n ·
∏

p|n prime

(
1− 1

q

)
by Example 3.3.32

= q

(
1− 1

p

)
n ·

∏
p|n prime

(
1− 1

p

)
rearranging

= qn ·

 ∏
p|n prime

(
1− 1

p

) · (1− 1

q

)
rearranging

= qn ·
∏
p|qn

(
1− 1

p

)
reindexing the product

In both cases, we have shown that the formula holds.

By induction, we’re done.

Well-founded relations

First, we introduce the notion of a well-founded relation.

Definition 5.3.8
Let X be a set. A relation R on X is well-founded if every inhabited subset of X has
an R-minimal element, in the following sense: for each inhabited U ⊆ X, there exists
m ∈ U such that ¬(x R m) for all x ∈ U . A relation that is not well-founded is called
ill-founded.

Example 5.3.9
The relation < on N is well-founded—this is just a fancy way of stating the well-ordering
principle (Theorem 1.3.37). Indeed, let U ⊆ N be an inhabited subset. By the well-ordering
principle, there exists an element m ∈ U such that m 6 x for all x ∈ U . But this says
precisely that ¬(x < m) for all x ∈ U . C

Example 5.3.10
However, the relation < on Z is not well-founded—indeed, Z is an inhabited subset of Z
with no <-least element. C
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Exercise 5.3.11
Let <1 be the relation on N defined for m,n ∈ N by

m <1 n ⇔ n = m+ 1

Prove that <1 is a well-founded relation on N. C

Proposition 5.3.12
Let X be a set and let R be a relation on X. R is well-founded if and only if there is no
infinite R-descending chains; that is, there does not exist a sequence (xn)n∈N of elements
of X such that xn+1 R xn for all n ∈ N.

Proof. We prove the contrapositives of the two directions; that is, R is ill-founded if and
only if R has an infinite descending R-chain.

• (⇒) Suppose that R is ill-founded, and let U ⊆ X be an inhabited subset with no
R-minimal element. Define a sequence (xn)n∈N of elements of X—in fact, of U—
recursively as follows:

� Let x0 ∈ U be arbitrarily chosen.

� Fix n ∈ N and suppose x0, x1, . . . , xn ∈ U have been defined. Since U has no
R-minimal element, it contains an element which is related to xn by R; define
xn+1 to be such an element.

Then (xn)n∈N is an infinite R-descending chain

• (⇐) Suppose there is an infinite R-descending chain (xn)n∈N. Define U = {xn | n ∈
N} to be the set of elements in this sequence. Then U has no R-minimal element.
Indeed, given m ∈ U , we must have m = xn for some n ∈ N; but then xn+1 ∈ U and
xn+1 R m. Hence R is ill-founded.

Proposition 5.3.13
Let Z>0 be the set of positive integers and define a relation R on Z>0 by

m R n ⇔ n = pm for some prime p > 0

for all m,n > 0. Then R is a well-founded relation on Z>0.

Proof. Suppose that (xn)n∈N is an infinite R-descending chain in Z>0. Since xn+1 R xn for
all n ∈ N, we have xn = pxn+1 for some positive prime p for all n ∈ N. Since all positive
primes are greater than or equal to 2, this implies that xn > 2xn+1 for all n ∈ N.

We prove by strong induction on n ∈ N that x0 > 2nxn+1 for all n ∈ N.
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• (BC) We proved above that x0 > 2x1. Hence x0 > x1 = 20x1, as required.

• (IS) Fix n ∈ N and suppose x0 > 2nxn+1. We want to show x0 > 2n+1xn+2. Well
xn+1 > 2xn+2, as proved above, and hence

x0
IH
> 2nxn+1 > 2n · 2xn+2 = 2n+1xn+2

as required.

By induction, we’ve shown that x0 > 2nxn+1 for all n ∈ N. But xn+1 > 0 for all n ∈ N,
so x0 > 2n for all n ∈ N. This implies that x0 is greater than every integer, which is a
contradiction.

So such a sequence (xn)n∈N cannot exist, and by Proposition 5.3.12, the relation R is
well-founded.

Exercise 5.3.14
Let X be a set and let R be a well-founded relation on X. Given x, y ∈ X, prove that not
both x R y and y R x are true. C

Theorem 5.3.15 (Principle of well-founded induction)
Let X be a set, let R be a well-founded relation on X, and let p(x) be a logical formula
concerning elements of X. Suppose that for each x ∈ X, the following is true:

If p(y) is true for all R-predecessors y of x, then p(x) is true.

That is, suppose for each x ∈ X that

[∀y ∈ X, (y R x⇒ p(y))]⇒ p(x)

Then p(x) is true for all x ∈ X.

Proof. Suppose that, for each x ∈ X, if p(y) is true for all R-predecessors y of x, then p(x)
is true. Let

U = {x ∈ X | ¬p(x)}

Towards a contradiction, suppose that p(x) is false for some x ∈ X. Then U is inhabited.
Since R is well-founded, U has an R-minimal element m ∈ U . Now

(i) p(m) is false, since m ∈ U .

(ii) p(x) is true for all x ∈ X with x R m. To see this, note that if p(x) is false and
x R m, then x ∈ U , so that m R x by R-minimality of m in U . Since also x R m,
this contradicts Exercise 5.3.14.
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Since p(x) is true for all x ∈ X with x R m, by assumption we also have that p(m) is true.
But this contradicts our assumption that m ∈ U .

So it must in fact be the case that U = ∅, so that p(x) is true for all x ∈ X.

Exercise 5.3.16
Prove that the principle of <-induction on N is precisely strong induction. Specifically,
prove that the following two statements are equivalent:

(i) p(0) is true and, for all n ∈ N, if p(k) is true for all k 6 n, then p(n+ 1) is true;

(ii) For all n ∈ N, if p(k) is true for all k < n, then p(n) is true.

Strong induction says that we can deduce that p(n) is true for all n ∈ N from the knowledge
that (i) is true for all n ∈ N; and <-induction tells us that p(n) is true for all n ∈ N from
the knowledge that (ii) is true for all n ∈ N. You should prove that (i) and (ii) are
equivalent. C

Example 5.3.17
Let <1 be the relation on N defined in Exercise 5.3.11. We prove that the principle of
<1-induction on N is precisely strong induction. Specifically, prove that the following two
statements are equivalent:

(i) p(0) is true and, for all n ∈ N, if p(n) is true then p(n+ 1) is true;

(ii) For all n ∈ N, if p(k) is true for all k ∈ N with k + 1 = n, then p(n) is true.

Weak induction says that we can deduce that p(n) is true for all n ∈ N from the knowledge
that (i) is true for all n ∈ N; and <1-induction tells us that p(n) is true for all n ∈ N from
the knowledge that (ii) is true for all n ∈ N. We prove that (i) and (ii) are equivalent.

• (i) ⇒ (ii). Suppose that p(0) and, for all n ∈ N, if p(n) is true then p(n+ 1) is true.
We will prove that

[∀m ∈ N, (n = m+ 1⇒ p(m))]⇒ p(n)

is true for all n ∈ N.

So fix n ∈ N, and assume ∀m ∈ N, (n = m+ 1⇒ p(m)). We prove p(n) is true.

� If n = 0 then we’re done, since p(0) is true by assumption.

� If n > 0 then n = m + 1 for some m ∈ N. By our assumption, we have
∀m ∈ N, (n = m+ 1⇒ p(m)), and so in particular, p(m) is true. By the weak
induction step, we have p(m) ⇒ p(m + 1) is true. But then p(m + 1) is true.
Since n = m+ 1, we have that p(n) is true.

265



266 Chapter 5. Relations

In any case, we’ve proved that p(n) is true, as required.

• (ii) ⇒ (i). For n ∈ N, denote the following statement by H(n)

[∀m ∈ N, (n = m+ 1⇒ p(m))]⇒ p(n)

Assume H(n) is true for all n ∈ N. We prove that p(0) is true and, for all n ∈ N, if
p(n) is true then p(n+ 1) is true.

� p(0) is true. Indeed, for any m ∈ N we have that 0 = m + 1 is false, so the
statement 0 = m + 1 ⇒ p(m) is true. Hence ∀m ∈ N, (0 = m + 1 ⇒ p(m)) is
true. Since H(0) is true, it follows that p(0) is true.

� Fix n ∈ N and suppose p(n) is true. By H(n + 1), we have that if p(n + 1) is
true for all m ∈ N with m + 1 = n + 1, then p(n + 1) is true. But the only
m ∈ N such that m + 1 = n + 1 is n itself, and p(n) is true by assumption; so
by H(n+ 1), we have p(n+ 1), as required.

Hence the two induction principles are equivalent. C

Example 5.3.18
C

Structural induction from well-founded induction

We will now derive the principle of structural induction in terms of the principle of well-
founded induction. To do this, we need to associate to each inductively defined set X a
corresponding well-founded relation RX , such that well-founded induction on RX corres-
ponds with structural induction on X.

Definition 5.3.19
Let X be an inductively defined set. Define a relation RX on X as follows: for all x, y ∈ X,
x RX y if and only if

y = f(x1, x2, . . . , xn)

for some constructor f of arity n and elements x1, x2, . . . , xn, such that xi = x for some
i ∈ [n].

Example 5.3.20
Let N be the set of natural numbers, taken to be inductively defined in the usual way.
Since the only constructor is the successor operation, we must have for m,n ∈ N that

m RN n ⇔ n = m+ 1
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This is precisely the relation <1 from Exercise 5.3.11. We already established that struc-
tural induction on N is precisely weak induction (Example 5.3.6), and that well-founded
induction on <1 is also precisely weak induction (Example 5.3.17). C

Example 5.3.21
Let P be a set of propositional variables and let L(P ) be the set of propositional formulae
built from variables in P and the logical operators ∧, ∨, ⇒ and ¬.

Then R = RL(P ) is the relation defined for s, t ∈ L(P ) by letting s R t if and only if

t ∈ {s ∧ u, u ∧ s, s ∨ u, u ∨ s, s⇒ u, u⇒ s, ¬s}

for some u ∈ L(P ). C

The plan for the rest of this section is to demonstrate that structural induction follows
from well-founded induction. To do this, we prove that the relation RX associated with an
inductively defined set X is well-founded, and then we prove that structural induction on
X is equivalent to well-founded induction on RX .

To simplify our proofs, we introduce the notion of rank. The rank of an element x of an
inductively defined set X is a natural number which says how many constructors need to
be applied in order to obtain x.

Definition 5.3.22
Let X be an inductively defined set. The function rank : X → N is defined recursively as
follows:
• If b is a basic element of X, then rank(b) = 0.

• Let f be a constructor of arity n and let x1, x2, . . . , xn ∈ X. Then

rank(f(x1, x2, . . . , xn)) = max{rank(x1), rank(x2), . . . , rank(xn)}+ 1

Note that rank : X → N is a well-defined function, since by the conditions listed in
Definition 5.3.1, every element of X is either basic or has a unique representation in the
form f(x1, x2, . . . , xn) for some constructor f and elements x1, x2, . . . , xn ∈ X.

Example 5.3.23
The rank function on the inductively defined set of natural numbers is fairly boring. Indeed,
it tells us that

• rank(0) = 0; and

• rank(n+ 1) = rank(n) + 1 for all n ∈ N.
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It can easily be seen that rank(n) = n for all n ∈ N. This makes sense, since n can be
obtained from 0 by iterating the successor operation n times. C

Lemma 5.3.24
Let X be an inductively defined set. The relation RX defined in Definition 5.3.19 is well-
founded.

Proof.

Proof of Theorem 5.3.5. To do: Write proof

To do: Examples and exercises
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Section 6.1

Inequalities and bounds

We first encountered the real numbers in Section 1.1, when the real numbers were intro-
duced using a vague (but intuitive) notion of an infinite number line (Definition 1.1.24):

−5 −4 −3 −2 −1 0 1 2 3 4 5

This section will scrutinise the set of real numbers in its capacity as a complete ordered
field. Decomposing what this means:

• A field is a set with a notion of ‘zero’ and ‘one’, in which it makes sense to talk
about addition, subtraction, multiplication, and division by everything except zero.
Examples are Q, R, and Z/pZ when p is a prime number (but not when p is compos-
ite). However, Z is not a field, since we can’t freely divide by nonzero elements—for
example, 1 ∈ Z and 2 ∈ Z, but no integer n satisfies 2n = 1.

• An ordered field is a field which is equipped with a well-behaved notion of order.
Both Q and R are ordered fields, but Z/pZ is not. We’ll see why soon.

• A complete ordered field is an ordered field in which every set with an upper bound
has a least upper bound. As we will see, Q is not a complete ordered field, but R is.

We will first establish a small set of rules (axioms) that a set (with appropriate structure)
should follow in order to be considered a complete ordered field. The rest of the section will
be concerned with proving some theorems that will be extremely useful in real analysis.
Most of these theorems are inequalities, that is statements that exploit the order structure
of the reals. Later in the section, we will consider suprema and infima, which exploit the
completeness of the reals.

? Axiomatising the real numbers

First on our agenda is establishing a set of rules that characterise the reals.

First and foremost, we should be able to perform arithmetic with real numbers—real
numbers can be added, subtracted, multiplied and divided (except by zero). This is to say
that the real numbers are a field—Axioms 6.1.1 make this precise.
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Axioms 6.1.1 (Field axioms)
Let X be a set equipped with elements 0 (‘zero’) and 1 (‘unit’), and binary operations +
(‘addition’) and · (‘multiplication’). The structure (X, 0, 1,+, ·) is a field if it satisfies the
following axioms:

• Zero and unit

(F1) 0 6= 1.

• Axioms for addition

(F2) (Associativity) x+ (y + z) = (x+ y) + z for all x, y, z ∈ X.

(F3) (Identity) x+ 0 = x for all x ∈ X.

(F4) (Inverse) For all x ∈ X, there exists y ∈ X such that x+ y = 0.

(F5) (Commutativity) x+ y = y + x for all x, y ∈ X.

• Axioms for multiplication

(F6) (Associativity) x · (y · z) = (x · y) · z for all x, y, z ∈ X.

(F7) (Identity) x · 1 = x for all x ∈ X.

(F8) (Inverse) For all x ∈ X with x 6= 0, there exists y ∈ X such that x · y = 1.

(F9) (Commutativity) x · y = y · x for all x, y ∈ X.

• Distributivity

(F10) x · (y + z) = (x · y) + (x · z) for all x, y, z ∈ X.

Example 6.1.2
The rationals Q and the reals R both form fields with their usual notions of zero, unit,
addition and multiplication. However, the integers Z do not, since for example 2 has no
multiplicative inverse. C

Example 6.1.3
Let p > 0 be prime. The set Z/pZ (see Definition 5.1.38) is a field, with zero element [0]p
and unit element [1]p, and with addition and multiplication defined by

[a]p + [b]p = [a+ b]p and [a]p · [b]p = [ab]p

for all a, b ∈ Z. Well-definedness of these operations is immediate from Theorem 3.3.6 and
the modular arithmetic theorem (Theorem 3.3.9).

The only axiom which is not easy to verify is the multiplicative inverse axiom (F8). Indeed,
if [a]p ∈ Z/pZ then [a]p 6= [0]p if and only if p - a. But if p - a then a ⊥ p, so a has a
multiplicative inverse u modulo p. This implies that [a]p · [u]p = [au]p = [1]p. So (F8)
holds. C
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Exercise 6.1.4
Let n > 0 be composite. Prove that Z/nZ is not a field, where zero, unit, addition and
multiplication are defined as in Example 6.1.3. C

Axioms 6.1.1 tell us that every element of a field has an additive inverse, and every nonzero
element of a field has a multiplicative inverse. It would be convenient if inverses were unique
whenever they exist. Proposition 6.1.5 proves that this is the case.

Proposition 6.1.5 (Uniqueness of inverses)
Let (X, 0, 1,+, ·) be a field and let x ∈ X. Then

(a) Suppose y, z ∈ X are such that x+ y = 0 and x+ z = 0. Then y = z.

(b) Suppose x 6= 0 and y, z ∈ X are such that x · y = 1 and x · z = 1. Then y = z.

Proof of (a). By calculation, we have

y = y + 0 by (F3)

= y + (x+ z) by definition of z

= (y + x) + z by associativity (F2)

= (x+ y) + z by commutativity (F5)

= 0 + z by definition of y

= z + 0 by commutativity (F5)

= z by (F3)

so indeed y = z.

The proof of (b) is essentially the same and is left as an exercise.

Since inverses are unique, it makes sense to have notation to refer to them.

Notation 6.1.6
Let (X, 0, 1,+, ·) be a field and let x ∈ X. Write −x for the (unique) additive inverse of x
and, if x 6= 0 write x−1 for the (unique) multiplicative inverse of x.

Example 6.1.7
In the fields Q and R, the additive inverse −x of an element x is simply its negative, and
the multiplicative inverse x−1 of some x 6= 0 is simply its reciprocal 1

x . C

Example 6.1.8
Let p > 0 be prime and let [a]p ∈ Z/pZ. Then −[a]p = [−a]p and, if p - a, then [a]−1

p = [u]p,
where u is any integer satisfying au ≡ 1 mod p. C
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Exercise 6.1.9
Let (X, 0, 1,+, ·) be a field. Prove that −(−x) = x for all x ∈ X, and that (x−1)−1 = x for
all nonzero x ∈ X. C

Example 6.1.10
Let (X, 0, 1,+, ·) be a field. We prove that if x ∈ X then x · 0 = 0. Well, 0 = 0 + 0 by (F3).
Hence x ·0 = x · (0+0). By distributivity (F10), we have x · (0+0) = (x ·0)+(x ·0). Hence

x · 0 = (x · 0) + (x · 0)

Let y = −(x · 0). Then

0 = x · 0 + y by (F4)

= ((x · 0) + (x · 0)) + y as above

= (x · 0) + ((x · 0) + y) by associativity (F2)

= (x · 0) + 0 by (F4)

= x · 0 by (F3)

so indeed we have x · 0 = 0. C

Exercise 6.1.11
Let (X, 0, 1,+, ·) be a field. Prove that (−1) · x = −x for all x ∈ X, and that (−x)−1 =
−(x−1) for all nonzero x ∈ X. C

What makes the real numbers useful is not simply our ability to add, subtract, multiply
and divide them; we can also compare their size—indeed, this is what gives rise to the
informal notion of a number line. Axioms 6.1.12 make precise exactly what it means for
the elements of a field to be assembled into a ‘number line’.

Axioms 6.1.12 (Ordered field axioms)
Let X be a set, 0, 1 ∈ X be elements, +, · be binary operations, and 6 be a relation on X.
The structure (X, 0, 1,+, ·,6) is an ordered field if it satisfies the field axioms (F1)–(F10)
(see Axioms 6.1.1) and, additionally, it satisfies the following axioms:

• Linear order axioms

(PO1) (Reflexivity) x 6 x for all x ∈ X.

(PO2) (Antisymmetry) For all x, y ∈ X, if x 6 y and y 6 x, then x = y.

(PO3) (Transitivity) For all x, y, z ∈ X, if x 6 y and y 6 z, then x 6 z.

(PO4) (Linearity) For all x, y ∈ X, either x 6 y or y 6 x.

• Interaction of order with arithmetic

(OF1) For all x, y, z ∈ X, if x 6 y, then x+ z 6 y + z.
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(OF2) For all x, y ∈ X, if 0 6 x and 0 6 y, then 0 6 xy.

Example 6.1.13
The field Q of rational numbers and and the field R of real numbers, with their usual
notions of ordering, can easily be seen to form ordered fields. C

Example 6.1.14
We prove that, in any ordered field, we have 0 6 1. Note first that either 0 6 1 or 1 6 0
by linearity (PO4). If 0 6 1 then we’re done, so suppose 1 6 0. Then 0 6 −1; indeed:

0 = 1 + (−1) by (F4)

6 0 + (−1) by (OF1), since 1 6 0

= (−1) + 0 by commutativity (F5)

= −1 by (F3)

By (OF2), it follows that 0 6 (−1)(−1). But (−1)(−1) = 1 by Exercise 6.1.11, and hence
0 6 1. Since 1 6 0 and 0 6 1, we have 0 = 1 by antisymmetry (PO2). But this contradicts
axiom (F1). Hence 0 6 1. In fact, 0 < 1 since 0 6= 1. C

We have seen that Q and R are ordered fields (Examples 6.1.7 and 6.1.13), and that Z/pZ
is a field for p > 0 prime (Example 6.1.3). The following proposition is an interesting result
proving that there is no notion of ‘ordering’ under which the field Z/pZ can be made into
an ordered field!

Proposition 6.1.15
Let p > 0 be prime. There is no relation 6 on Z/pZ which satisfies the ordered field
axioms.

Proof. We just showed that [0] 6 [1]. It follows that, for all a ∈ Z, we have [a] 6 [a] + [1];
indeed:

[a] = [a] + [0] by (F3)

6 [a] + [1] by (OF1), since [0] 6 [1]

= [a+ 1] by definition of + on Z/pZ

It is a straightforward induction to prove that [a] 6 [a+n] for all n ∈ N. But then we have

[1] 6 [1 + (p− 1)] = [p] = [0]

so [0] 6 [1] and [1] 6 [0]. This implies [0] = [1] by antisymmetry (PO2), contradicting
axiom (F1).
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Exercise 6.1.16
Let (X, 0, 1,+, ·) be a field. Prove that if X is finite, then there is no relation 6 on X such
that (X, 0, 1,+, ·,6) is an ordered field. C

Theorem 6.1.17 below summarises some properties of ordered fields which will be useful
in our proofs. Note, however, that this is certainly not an exhaustive list of elementary
properties of ordered fields that we will use in our subsequent proofs—to explicitly state
and prove all of these would not make for a scintillating read.

Theorem 6.1.17
Let (X, 0, 1,+, ·,6) be an ordered field. Then

(a) For all x, y ∈ X, x 6 y if and only if 0 6 y − x;

(b) For all x ∈ X, −x 6 0 6 x or x 6 0 6 −x;

(c) For all x, x′, y, y′ ∈ X, if x 6 x′ and y 6 y′, then x+ y 6 x′ + y′;

(d) For all x, y, z ∈ X, if 0 6 x and y 6 z, then xy 6 xz;

(e) For all nonzero x ∈ X, if 0 6 x, then 0 6 x−1.

(f) For all nonzero x, y ∈ X, if x 6 y, then y−1 6 x−1.

Proof of (a), (b) and (e).

(a) (⇒) Suppose x 6 y. Then by additivity (OF1), x+(−x) 6 y+(−x), that is 0 6 y−x.
(⇐) Suppose 0 6 y − x. By additivity (OF1), 0 + x 6 (y − x) + x; that is, x 6 y.

(b) We know by linearity (PO4) that either 0 6 x or x 6 0. If 0 6 x, then by (OF1) we
have 0 + (−x) 6 x+ (−x), that is −x 6 0. Likewise, if x 6 0 then 0 6 −x.

(e) Suppose 0 6 x. By linearity (PO4), either 0 6 x−1 or x−1 6 0. If x−1 6 0, then by
(d) we have x−1 · x 6 0 · x, that is 1 6 0. This contradicts Example 6.1.14, so we
must have 0 6 x−1.

The proofs of the remaining properties are left as an exercise.

We wanted to characterise the reals completely, but so far we have failed to do so—indeed,
Exercise 6.1.13 showed that both Q and R are ordered fields, so the ordered field axioms
do not suffice to distinguish Q from R. The final piece in the puzzle is completeness. This
single additional axiom distinguishes Q from R, and in fact completely characterises R (see
Theorem 6.1.19).
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Axioms 6.1.18 (Complete ordered field axioms)
Let X be a set, 0, 1 ∈ X be elements, +, · be binary operations, and 6 be a relation on X.
The structure (X, 0, 1,+, ·,6) is a complete ordered field if it is an ordered field—that
is, it satisfies axioms (F1)–(F10), (PO1)–(PO4) and (OF1)–(OF2) (see Axioms 6.1.1 and
6.1.12)—and, in addition, it satisfies the following completeness axiom:

(C1) Let A ⊆ X. If A has an upper bound, then it has a least upper bound. Specifically,
if there exists u ∈ X such that a 6 u for all a ∈ A, then there exists s ∈ X such that

� a 6 s for all a ∈ A; and

� If s′ ∈ X is such that a 6 s′ for all a ∈ A, then s 6 s′.

We call such a value s ∈ X a supremum for A.

Theorem 6.1.19
The real numbers (R, 0, 1,+, ·,6) form a complete ordered field. Moreover, any two com-
plete ordered fields are essentially the same.a

aThe notion of ‘sameness’ here is isomorphism (specifically, isomorphism of ordered fields), a concept which
is beyond the scope of these notes.

The proof of Theorem 6.1.19 is intricate and far beyond the scope of these notes, so is
omitted. What it tells us is that it doesn’t matter exactly how we define the reals, since
any complete ordered field will do. We can therefore proceed with confidence that, no
matter what notion of ‘real numbers’ we settle on, everything we prove will be true of that
notion. This is for the best, since we haven’t actually defined the set R of real numbers at
all!

The two most common approaches to constructing a set of real numbers are:

• Dedekind reals. In this approach, real numbers are identified with particular sub-
sets of Q—informally speaking, r ∈ R is identified with the set of rational numbers
less than r.

• Cauchy reals. In this approach, real numbers are identified with equivalence classes
of sequences of rational numbers—informally speaking, r ∈ R is identified with the
set of sequences of rational numbers which converge to r (in the sense of Definition
6.2.7).

Discussion of Dedekind and Cauchy reals is relegated to the appendices of these notes—see
Section B.2.

We will focus on the reals in their capacity as a complete ordered field towards the end of
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this section, when we study suprema and infima. However, the completeness axiom (C1)
will not be needed in any of our proofs until that point.

Magnitude and scalar product

In this part of the section, we home in on sets of the form Rn, for n ∈ N. Elements of Rn are
sequences of the form (x1, x2, . . . , xn), where each xi ∈ R. With our interpretation of the
reals R as a line, we can interpret a sequence (x1, x2, . . . , xn) as a point in n-dimensional
space:

• 0-dimensional space is a single point. The set R0 has one element, namely the empty
sequence (), so this makes sense.

• 1-dimensional space is a line. This matches our intuition that R = R1 forms a line.

• 2-dimensional space is a plane. The elements of R2 are pairs (x, y), where x and y
are both real numbers. We can interpret the pair (x, y) as coordinates for a point
which is situated x units to the right of (0, 0) and y units above (0, 0) (where negative
values of x or y reverse this direction)—see Figure 6.1.

(−3,−1)

(−3, 0)

(−3, 1)

(−3, 2)

(−2,−1)

(−2, 0)

(−2, 1)

(−2, 2)

(−1,−1)

(−1, 0)

(−1, 1)

(−1, 2)

(0,−1)

(0, 0)

(0, 1)

(0, 2)

(1,−1)

(1, 0)

(1, 1)

(1, 2)

(2,−1)

(2, 0)

(2, 1)

(2, 2)

(3,−1)

(3, 0)

(3, 1)

(3, 2)

Figure 6.1: Some points in R2

With this intuition in mind, we set up the following notation.

Notation 6.1.20
Let n ∈ N. Elements of Rn will be denoted ~x, ~y, ~z, . . . (LATEX code: \vec) and called

277



278 Chapter 6. Real analysis

(n-dimensional) vectors. Given a vector ~x ∈ Rn, we write xi for the ith component of
~x, so that

~x = (x1, x2, . . . , xn)

The element (0, 0, . . . , 0) ∈ Rn is called the origin or zero vector of Rn, and is denoted
by ~0.

Moreover, if ~x, ~y ∈ Rn and a ∈ R we write

~x+ ~y = (x1 + y1, x2 + y2, . . . , xn + yn) and a~x = (ax1, ax2, . . . , axn)

Example 6.1.21
For all ~x ∈ Rn, we have

~x+~0 = ~x and 1~x = ~x

C

Definition 6.1.22
Let ~x ∈ Rn. The magnitude of ~x is the real number ‖~x‖ (LATEX code: \lVert \vec x

\rVert) defined by

‖~x‖ =

√√√√ n∑
i=1

x2
i =

√
x2

1 + x2
2 + · · ·+ x2

n

Given vectors ~x, ~y ∈ Rn, the distance from ~x to ~y is defined to be ‖~y − ~x‖. Thus the
magnitude of a vector can be thought of as the distance from that vector to the origin.

Example 6.1.23
In R2, Definition 6.1.22 says that

‖(x, y)‖ =
√
x2 + y2

This matches the intuition obtained from the Pythagorean theorem on the sides of right-
hand triangles. For example, consider the triangle with vertices (0, 0), (4, 0) and (4, 3):

(0, 0) (4, 0)

(4, 3)
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The hypotenuse of the triangle has magnitude

‖(4, 3)‖ =
√

42 + 32 =
√

25 = 5

C

Exercise 6.1.24
Let ~x, ~y ∈ Rn. Prove that ‖~x− ~y‖ = ‖~y − ~x‖. That is, the distance from ~x to ~y is equal to
the distance from ~y to ~x. C

Exercise 6.1.25
Prove that if x ∈ R then the magnitude ‖(x)‖ is equal to the absolute value |x|. C

Exercise 6.1.26
Let ~x ∈ Rn. Prove that ‖~x‖ = 0 if and only if ~x = ~0. C

The triangle inequality and the Cauchy–Schwarz inequality

The first, and simplest, inequality that we investigate is the (one-dimensional version of
the) triangle inequality (Theorem 6.1.28). It is so named because of a generalisation to
higher dimensions (Theorem 6.1.38), which can be interpreted geometrically as saying that
the sum of two side lengths of a triangle is greater than or equal to the third side length.

The triangle inequality is used very frequently in mathematical proofs—you will encounter
it repeatedly in Sections 6.2 and 6.3—yet its proof is surprisingly simple.

Before we can prove the triangle inequality, we need the following fact about square roots
of real numbers.

Lemma 6.1.27
Let x, y ∈ R. If 0 6 x 6 y, then

√
x 6
√
y.

Proof. Suppose 0 6 x 6 y. Note that, by definition of the square root symbol, we have√
x > 0 and

√
y > 0.

Suppose
√
x >
√
y. By two applications of Theorem 6.1.17(d), we have

y =
√
y · √y <

√
x · √y <

√
x ·
√
x = x

so that y < x. But this contradicts the assumption that x 6 y. Hence
√
x 6

√
y, as

required.

Theorem 6.1.28 (Triangle inequality in one dimension)
Let x, y ∈ R. Then |x+ y| 6 |x|+ |y|. Moreover, |x+ y| = |x|+ |y| if and only if x and y
have the same sign.
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Proof. Note first that xy 6 |xy|; indeed, xy and |xy| are equal if xy is non-negative, and
otherwise we have xy < 0 < |xy|. Also x2 = |x|2 and y2 = |y|2. Hence

(x+ y)2 = x2 + 2xy + y2 6 |x|2 + 2|xy|+ |y|2 = (|x|+ |y|)2

Taking (nonnegative) square roots yields

|x+ y| 6 ||x|+ |y||

by Lemma 6.1.27. But |x|+ |y| > 0, so ||x|+ |y|| = |x|+ |y|. This completes the first part
of the proof.

Equality holds in the above if and only if xy = |xy|, which occurs if and only if xy > 0.
But this is true if and only if x and y are both non-negative or both non-positive—that is,
they have the same sign.

Example 6.1.29
Let x, y ∈ R. We prove that

|x+ y|
1 + |x+ y|

6
|x|

1 + |x|
+
|y|

1 + |y|
First note that, if 0 6 s 6 t, then

s

1 + s
6

t

1 + t
To see this, note that

s 6 t⇒ 1 + s 6 1 + t rearranging

⇒ 1

1 + t
6

1

1 + s
since 1 + s, 1 + t > 0

⇒ 1− 1

1 + s
6 1− 1

1 + t
rearranging

⇒ s

1 + s
6

t

1 + t
rearranging

Now letting s = |x + y| and t = |x| + |y|, we have s 6 t by the triangle inequality, and
hence

|x+ y|
1 + |x+ y|

6
|x|

1 + |x|+ |y|
+

|y|
1 + |x|+ |y|

6
|x|

1 + |x|
+
|y|

1 + |y|
as required. C

Exercise 6.1.30
Let n ∈ N and let xi ∈ R for each i ∈ [n]. Prove that∣∣∣∣∣

n∑
i=1

xi

∣∣∣∣∣ 6
n∑

i=1

|xi|

with equality if and only if the numbers xi are either all positive or all negative. C
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Exercise 6.1.31
Let x, y ∈ R. Prove that

||x| − |y|| 6 |x− y|

C

We will generalise the triangle inequality to arbitrary dimensions in Theorem 6.1.38. Our
proof will go via the Cauchy–Schwarz inequality (Theorem 6.1.35). To motivate the
Cauchy–Schwarz inequality, we introduce another geometric notion called the scalar product
of two vectors.

Definition 6.1.32
Let ~x, ~y ∈ Rn. The scalar product (or dot product) of ~x with ~y is the real number ~x · ~y
(LATEX code: \cdot) defined by

~x · ~y =
n∑

i=1

xiyi = x1y1 + x2y2 + · · ·+ xnyn

Example 6.1.33
Let ~x ∈ Rn. Then ~x · ~x = ‖~x‖2. Indeed

~x · ~x =

n∑
i=1

x2
i = ‖~x‖2

C

Exercise 6.1.34
Let ~x, ~y, ~z, ~w ∈ Rn and let a, b, c, d ∈ R. Prove that

(a~x+ b~y) · (c~z + d~w) = ac(~x · ~z) + ad(~x · ~w) + bc(~y · ~z) + bd(~y · ~w)

C

Intuitively, the scalar product of two vectors ~x and ~y measures the extent to which ~x and
~y fail to be orthogonal. In fact, if θ is the acute angle formed between the lines `1 and `2,
where `1 passes through ~0 and ~x and `2 passes through ~0 and ~y, then a formula for the
scalar product of ~x and ~y is given by

~x · ~y = ‖~x‖‖~y‖ cos θ
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~0

~x

~y

‖x‖ cos θ

θ

Evidently, ~x and ~y are orthogonal if and only if cos θ = 0, in which case ~x · ~y = 0 as well.
We cannot prove this yet, though, as we have not yet defined trigonometric functions or
explored their properties, but hopefully this provides some useful intuition.

The Cauchy–Schwarz inequality provides a useful comparison of the size of a scalar product
of two vectors with the magnitudes of the vectors.

Theorem 6.1.35 (Cauchy–Schwarz inequality)
Let n ∈ N and let xi, yi ∈ R for each i ∈ [n]. Then

|~x · ~y| 6 ‖~x‖‖~y‖

with equality if and only if a~x = b~y for some a, b ∈ R which are not both zero.

Proof. If ~y = ~0, then this is trivial: both sides of the equation are equal to zero! So assume
that ~y 6= ~0. In particular, by Exercise 6.1.26, we have ‖~y‖ > 0.

Define k =
~x · ~y
‖~y‖2

. Then

0 6 ‖~x− k~y‖2 since squares are nonnegative

= (~x− k~y) · (~x− k~y) by Example 6.1.33

= (~x · ~x)− 2k(~x · ~y) + k2(~y · ~y) by Exercise 6.1.34

= ‖~x‖2 − (~x · ~y)2

‖y‖2
by definition of k
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Multiplying through by ‖~y‖2, which is non-negative and therefore doesn’t change the sign
of the inequality, yields

0 6 ‖~x‖2‖~y‖2 − (~x · ~y)2

which is equivalent to what was to be proved.

Evidently, equality holds if and only if ‖~x − k~y‖ = 0, which by Exercise 6.1.26 occurs if
and only if ~x− k~y = 0. Now:

• If ~x− k~y = 0, then we have

~x− k~y = 0

⇔ ~x− ~x · ~y
‖~y‖2

~y = 0 by definition of k

⇔ ‖~y‖2~x = (~x · ~y)~y rearranging

If ~y 6= ~0 then let a = ‖~y‖2 and b = ~x · ~y; otherwise, let a = 0 and b = 1. In both
cases, we have a~x = b~y and a, b are not both zero.

If a~x = b~y for some a, b ∈ R not both zero, then either:

� a = 0 and b 6= 0, in which case ~y = 0 and we have equality in the Cauchy–
Schwarz inequality; or

� a 6= 0, in which case ~y = b
a~x. Write c = b

a . Then

|~x · ~y| = |~x · (c~x)|
= |c(~x · ~x)| by Exercise 6.1.34

= |c|‖~x‖2 by Example 6.1.33

= ‖~x‖‖c~x‖ rearranging

= ‖~x‖‖~y‖

In either case, we have equality in the Cauchy–Schwarz inequality.

So equality holds if and only if a~x = b~y for some a, b ∈ R not both zero.

Example 6.1.36
Let a, b, c ∈ R. We’ll prove that

ab+ bc+ ca 6 a2 + b2 + c2

and examine when equality holds.

Letting ~x = (a, b, c) and ~y = (b, c, a) yields

~x · ~y = ab+ bc+ ca
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and

‖~x‖ =
√
a2 + b2 + c2 =

√
b2 + c2 + a2 = ‖~y‖

Hence ‖~x‖‖~y‖ = a2 + b2 + c2. By the Cauchy–Schwarz inequality, it follows that

~x · ~y = ab+ bc+ ca 6 a2 + b2 + c2 = ‖~x‖‖~y‖

as required. Equality holds if and only if k(a, b, c) = `(b, c, a) for some k, ` ∈ R not both
zero. We may assume k 6= 0—otherwise, swap the vectors ~x and ~y in what follows. Then,
letting t = `

k , we have

k(a, b, c) = `(b, c, a)

⇔ (a, b, c) = (tb, tc, ta) by definition of t

⇔ (a, b, c) = (t2c, t2a, t2b) substituting a = tb etc.

⇔ (a, b, c) = (t3a, t3b, t3c) substituting a = tb etc. again

⇔ ~x = t3~x

This occurs if and only if either (a, b, c) = (0, 0, 0), or t = 1, in which case

(a, b, c) = (tb, tc, ta) = (b, c, a)

So equality holds if and only if a = b = c. C

Exercise 6.1.37
Let r ∈ N and let a1, a2, . . . , ar ∈ R be such that a2

1 + a2
2 + · · ·+ a2

n = 6. Prove that

(a1 + 2a2 + · · ·+ nan)2 6 n(n+ 1)(2n+ 1)

and determine when equality holds. C

We now use the Cauchy–Schwarz inequality to generalise the one-dimensional version of
the triangle inequality (Theorem 6.1.28) to arbitrary (finite) dimensions.

Theorem 6.1.38 (Triangle inequality)
Let ~x, ~y ∈ Rn. Then

‖~x+ ~y‖ 6 ‖~x‖+ ‖~y‖

with equality if and only if a~x = b~y for some real numbers a, b > 0.
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Proof. We proceed by calculation:

‖~x+ ~y‖2 = (~x+ ~y) · (~x+ ~y) by Example 6.1.33

= (~x · ~x) + 2(~x · ~y) + (~y · ~y) by Exercise 6.1.34

6 (~x · ~x) + 2|~x · ~y|+ (~y · ~y) since a 6 |a| for all a ∈ R
6 ‖~x‖2 + 2‖x‖‖y‖+ ‖~y‖2 by Exercise 6.1.33 and Cauchy–Schwarz

= (‖~x‖+ ‖~y‖)2 rearranging

Taking (nonnegative) square roots of both sides yields

‖~x+ ~y‖ 6 ‖~x‖+ ‖~y‖

by Lemma 6.1.27, as required.

Equality holds if and only if the two ‘6’ symbols in the above derivation are in fact ‘=’
symbols.

• The first inequality is equality if and only if ~x · ~y = |~x · ~y|, which holds if and only if
~x · ~y > 0.

• The second inequality is equality if and only if equality holds in the Cauchy–Schwarz
inequality. In turn, this occurs if and only if a~x = b~y for some a, b ∈ R. We may,
moreover, assume that a > 0—if not, replace a and b by their negatives.

If a = 0 then we can take b = 0. If a > 0, then by Example 6.1.33 and Exercise 6.1.34, we
have

~x ·
(
b

a
~x

)
=
b

a
‖~x‖2

which is non-negative if and only if b > 0, since we are assuming that a > 0.

Thus, equality holds in the triangle inequality if and only if a~x = b~y for some a, b > 0.

This general version of the triangle inequality has a geometric interpretation in terms of—
you guessed it—triangles. Any three points ~a,~b,~c ∈ Rn form a (potentially flat) triangle:
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~a

u

~b

v

~c

w

The side lengths u, v, w are given by the following equations:

u = ‖~b− ~a‖, v = ‖~c−~b‖, w = ‖~a− ~c‖

The triangle inequality says tells us that u 6 v + w. Indeed:

u = ‖~b− ~a‖ by definition of u

= ‖(~b− ~c) + (~c− ~a)‖ rearranging

6 ‖~b− ~c‖+ ‖~c− ~a‖ by the triangle inequality

= ‖~c−~b‖+ ‖~a− ~c‖ by Exercise 6.1.24

= v + w by definition of v and w

That is, the triangle inequality says that the sum of two side lengths of a triangle is greater
than or equal to the third side length. Moreover, it tells us u = v + w precisely when
k(~a− ~c) = `(~c−~b) for some k, ` > 0. If k = 0 then

~c = ~b = 0~a+ (1− 0)~b

if k > 0, then k + ` > 0, so we have

~c =
k

k + `
~a+

`

k + `
~b =

k

k + `
~a+

(
1− k

k + `

)
~b

Examining this a bit more closely yields that u = v + w if and only if

~c = t~a+ (1− t)~b

for some 0 6 t 6 1, which is to say precisely that ~c lies on the line segment between ~a and
~b. In other words, equality holds in the triangle inequality only if the three vertices of the
triangle are collinear, which is to say that the triangle whose vertices are the points ~a, ~b
and ~c, is flat.
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Inequalities of means

Our goal now is to explore different kinds of average—specifically, means—of finite sets of
non-negative real numbers. We will compare the relative sizes of these means with respect
to one-another, with emphasis on three particular kinds of mean: the arithmetic mean
(Definition 6.1.39), the geometric mean (Definition 6.1.41) and the harmonic mean (Defin-
ition 6.1.49). These means in fact assemble into a continuum of means, called generalised
means (Definition 6.1.57), all of which can be compared with one another.

Definition 6.1.39
Let n > 1. The (arithmetic) mean of real numbers x1, . . . , xn is

1

n

n∑
i=1

xi =
x1 + x2 + · · ·+ xn

n

Example 6.1.40
The arithmetic mean of the numbers C

Definition 6.1.41
Let n > 1. The geometric mean of non-negative real numbers x1, . . . , xn is

n

√√√√ n∏
i=1

xi = n
√
x1 · x2 · · · · · xn

The following theorem is commonly known as the AM–GM inequality.

Theorem 6.1.42 (Inequality of arithmetic and geometric means)
Let n ∈ N and x1, x2, . . . , xn > 0. Then

n
√
x1 · · ·xn︸ ︷︷ ︸

geometric mean

6
x1 + · · ·+ xn

n︸ ︷︷ ︸
arithmetic mean

with equality if and only if x1 = · · · = xn.

Proof when n = 2. We need to show that, if x, y ∈ R with x, y > 0, then

√
xy 6

x+ y

2
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with equality if and only if x = y.

First note that the square roots of x and y exist since they are non-negative. Now

0 6 (
√
x−√y)2 since squares are nonnegative

= (
√
x)2 − 2

√
x
√
y + (

√
y)2 expanding

= x− 2
√
xy + y rearranging

Rearranging the inequality 0 6 x− 2
√
xy + y yields the desired result.

If
√
xy = x+y

2 , then we can rearrange the equation as follows:

√
xy =

x+ y

2
⇒ 2
√
xy = x+ y multiplying by 2

⇒ 4xy = x2 + 2xy + y2 squaring both sides

⇒ x2 − 2xy + y2 = 0 rearranging

⇒ (x− y)2 = 0 factorising

⇒ x− y = 0 since a2 = 0⇒ a = 0 for a ∈ R
⇒ x = y rearranging

So we have proved both parts of the theorem.

Example 6.1.43
We use the AM–GM inequality to prove that the area of a rectangle with fixed perimeter
is maximised when the rectangle is a square.

Indeed, fix a perimeter p > 0, and let x, y > 0 be side lengths of a rectangle with perimeter
p—that is, x and y satisfy the equation 2x+ 2y = p. The area a of the rectangle satisfies
a = xy. By the AM–GM inequality, we have

a = xy 6

(
x+ y

2

)2

=
p2

16

Equality holds if and only if x = y, in other words, if and only if the rectangle is a
square. C

Exercise 6.1.44

Let a, b > 0 be real numbers. Prove that
a2 + b2

2
> ab. C

Example 6.1.45
Let x > 0. We find the minimum possible value of x+ 9

x . By the AM–GM inequality, we
have

x+
9

x
> 2

√
x · 9

x
= 2
√

9 = 6
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with equality if and only if x = 9
x , which occurs if and only if x = 3. Hence the minimum

value of x+ 9
x when x > 0 is 6. C

Exercise 6.1.46

Let x > 0 and let n ∈ N. Find the minimum possible value of
n∑

k=−n
xk. C

Exercises 6.1.47 and 6.1.48 complete the proof of the AM–GM inequality (Theorem 6.1.42).
Before proceeding with the exercises, let’s fix some notation: for each n ∈ N, let pAM–GM(n)
be the assertion that the AM–GM inequality holds for collections of n numbers; that is,
pAM–GM(n) is the assertion:

For all x1, x2, . . . , xn > 0, we have

1

n

n∑
i=1

xi 6 n

√√√√ n∏
i=1

xi

with equality if and only if x1 = x2 = · · · = xn.

Note that we already proved pAM–GM(2).

Exercise 6.1.47
Let r ∈ N and let x1, x2, . . . , x2r ∈ R. Write

a =
1

r

r∑
i=1

xi and g = r

√√√√ r∏
i=1

xi

for the arithmetic and geometric means, respectively, of the numbers x1, . . . , xr; write

a′ =
1

r

2r∑
i=r+1

xi and g′ = r

√√√√ 2r∏
i=r+1

xi

for the arithmetic and geometric means, respectively, of the numbers xr+1, . . . , x2r; and
write

A =
1

2r

2r∑
i=1

xi and G = 2r

√√√√ 2r∏
i=1

xi

for the arithmetic and geometric means, respectively, of all the numbers x1, . . . , x2r.

Prove that

A =
a+ a′

2
and G =

√
gg′
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Deduce that, for each r ∈ N, if pAM–GM(r) is true then pAM–GM(2r) is true. Deduce further
than pAM–GM(2m) is true for all m ∈ N. C

Exercise 6.1.48
Let r > 2 and let x1, . . . , xr−1 ∈ N. Define

xr =
1

r − 1

r−1∑
i=1

xi

Prove that
1

r

r∑
i=1

xi = xr

Assuming pAM–GM(r), deduce that

xrr 6
r∏

i=1

xi =

(
r−1∏
i=1

xi

)
· xr

with equality if and only if x1 = x2 = · · · = xr. Deduce that pAM–GM(r) implies pAM–GM(r−
1). Use Exercise 6.1.47 to deduce further that pAM–GM(n) is true for all n > 1. C

We now introduce another kind of mean, called the harmonic mean.

Definition 6.1.49
Let n ∈ N. The harmonic mean of nonzero real numbers x1, x2, . . . , xn is(

1

n

n∑
i=1

x−1
i

)−1

=
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

The harmonic mean of two nonzero real numbers x and y has a simpler expression:(
x−1 + y−1

2

)−1

=
2xy

x+ y

The harmonic mean arises naturally when considering

Example 6.1.50
The cities of York and Leeds are located d > 0 miles apart. Two cars drive from York to
Leeds, then immediately turn around and drive back. The two cars depart from York at
the same time and arrive back in York at the same time.
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• The first car drives from York to Leeds at a constant speed of u miles per hour, and
drives back to York at a constant speed of v miles per hour.

• The second car drives from York to Leeds and back again at the same constant speed
of w miles per hour.

According to the following formula from physics:

speed× time = distance

the time spent driving by the first car is d
u + d

v , and the time spent driving by the second

car is 2d
w .

Since the cars spend the same amount of time driving, it follows that

2d

w
=
d

u
+
d

v
⇒ w =

2uv

u+ v

That is, the second car’s speed is the harmonic mean of the two speeds driven by the first
car. C

As might be expected, we now prove a theorem relating the harmonic means with the other
means we have established so far—this theorem is known as the GM–HM inequality.

Theorem 6.1.51 (Inequality of geometric and harmonic means)
Let n ∈ N and x1, x2, . . . , xn > 0. Then

n
1
x1

+ 1
x2

+ · · ·+ 1
xn︸ ︷︷ ︸

harmonic mean

6 n
√
x1x2 · · ·xn︸ ︷︷ ︸

geometric mean

with equality if and only if x1 = · · · = xn.

Proof when n = 2. We need to prove that if x, y > 0, then

2
1
x + 1

y

6
√
xy

This is almost immediate from the AM–GM inequality (Theorem 6.1.42). Indeed, since
all numbers in sight are positive, we can take reciprocals to see that this inequality is
equivalent to the assertion that

1
√
xy
6
x−1 + y−1

2

But 1√
xy =

√
x−1y−1, so this is immediate from the AM–GM inequality.
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Exercise 6.1.52
Prove the GM–HM inequality for general values of n ∈ N. C

Another example of a mean that has applications in probability theory and statistics is
that of the quadratic mean.

Definition 6.1.53
Let n ∈ N. The quadratic mean (or root-mean-square) of real numbers x1, x2, . . . , xn
is (

1

n

n∑
i=1

x2
i

) 1
2

=

√
x2

1 + x2
2 + · · ·+ x2

n

n

The following theorem is, predictably, known as the QM–AM inequality (or RMS–AM
inequality); it is a nice application of the Cauchy–Schwarz inequality.

Theorem 6.1.54 (Inequality of quadratic and arithmetic means)
Let n > 0 and x1, x2, . . . , xn > 0. Then

x1 + · · ·+ xn
n︸ ︷︷ ︸

arithmetic mean

6

√
x2

1 + x2
2 + · · ·+ x2

n

n︸ ︷︷ ︸
quadratic mean

with equality if and only if x1 = · · · = xn.

Proof. Define

~x = (x1, x2, . . . , xn) and ~y = (1, 1, . . . , 1)

Then

x1 + x2 + · · ·+ xn = ~x · ~y by definition of scalar product

6 ‖~x‖‖~y‖ by Cauchy–Schwarz

=
√
x2

1 + x2
2 + · · ·+ x2

n ·
√
n evaluating the magnitudes

Dividing through by n yields

x1 + x2 + · · ·+ xn
n

6

√
x2

1 + x2
2 + · · ·+ x2

n

n
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as required. Equality holds if and only if equality holds in the Cauchy–Schwarz inequality,
which occurs if and only if

(ax1, ax2, . . . , axn) = (b, b, . . . , b)

for some a, b ∈ R not both zero. If a = 0 then b = 0, so we must have a 6= 0. Hence equality
holds if and only if xi = b

a for all i ∈ [n]—in particular, if and only if x1 = x2 = · · · = xn.

To summarise, what we have proved so far is

harmonic
mean

(6.1.51)

6
geometric

mean

(6.1.42)

6
arithmetic

mean

(6.1.54)

6
quadratic

mean

with equality in each case if and only if the real numbers whose means we are taking are
all equal.

The following exercise allows us to bookend our chain of inequalities with the minimum
and maximum of the collections of numbers.

Exercise 6.1.55
Let n > 0 and let x1, x2, . . . , xn be positive real numbers. Prove that

min{x1, x2, . . . , xn} 6

(
1

n

n∑
i=1

x−1
i

)−1

and max{x1, x2, . . . , xn} >

(
1

n

n∑
i=1

x2
i

) 1
2

with equality in each case if and only if x1 = x2 = · · · = xn. C

? Generalised means

We conclude this section by mentioning a generalisation of the results we have proved
about means. We are not yet ready to prove the results that we mention; they are only
here for the sake of interest.

Definition 6.1.56
The extended real number line is the (ordered) set [−∞,∞], defined by

[−∞,∞] = R ∪ {−∞,∞}

where R is the set of real numbers with its usual ordering, and −∞,∞ are new elements
ordered in such a way that −∞ < x <∞ for all x ∈ R.
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Note that the extended real line does not form a field—the arithmetic operations are not
defined on −∞ or ∞, and we will at no point treat −∞ and ∞ as real numbers; they are
merely elements which extend the reals to add a least element and a greatest element.

Definition 6.1.57
Let p ∈ [−∞,∞], let n ∈ N, and let x1, x2, . . . , xn be positive real numbers. The gen-
eralised mean with exponent p (or simply p-mean) x1, x2, . . . , xn is the real number
Mp(x1, x2, . . . , xn) defined by

Mp(x1, x2, . . . , xn) =

(
1

n

n∑
i=1

xpi

) 1
p

if p 6∈ {−∞, 0,∞}, and by

Mp(x1, x2, . . . , xn) = lim
q→p

Mq(x1, x2, . . . , xn)

if p ∈ {−∞, 0,∞}, where the notation lim
q→p

refers to the limit, to be defined in Section 8.5.

We can see immediately that the harmonic, arithmetic and quadratic means of a finite set
of positive real numbers are the p-means for a suitable value of p: the harmonic mean is
the (−1)-mean, the arithmetic mean is the 1-mean, and the quadratic mean is the 2-mean.
Furthermore, Proposition 6.1.58 exhibits the minimum as the (−∞)-mean, the geometric
mean as the 0-mean, and the maximum as the ∞-mean.

Proposition 6.1.58
Let n > 0 and let x1, x2, . . . , xn > 0. Then

• M−∞(x1, x2, . . . , xn) = min{x1, x2, . . . , xn};

• M0(x1, x2, . . . , xn) = n
√
x1x2 · · ·xn; and

• M∞(x1, x2, . . . , xn) = min{x1, x2, . . . , xn}.

All of the inequalities of means we have seen so far will be subsumed by Theorem 6.1.59,
which compares the p-mean and q-mean of a set of numbers for all values of p, q ∈ [−∞,∞].
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Theorem 6.1.59
Let n > 0, let x1, x2, . . . , xn > 0 and let p, q ∈ [−∞,∞] with p < q. Then

Mp(x1, x2, . . . , xn) 6Mq(x1, x2, . . . , xn)

with equality if and only if x1 = x2 = · · · = xn.

Theorem 6.1.59 implies each of the following:

• HM–min inequality (Exercise 6.1.55): take p = −∞ and q = −1;

• GM–HM inequality (Theorem 6.1.51): take p = −1 and q = 0;

• AM–GM inequality (Theorem 6.1.42): take p = 0 and q = 1;

• QM–AM inequality (Theorem 6.1.54): take p = 1 and q = 2;

• max–QM inequality (Exercise 6.1.55): take p = 2 and q =∞.
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Section 6.2

Sequences and convergence

Warning!
This section is not yet finished—do not rely on its correctness or completeness.

As we saw at the beginning of Section 6.1, the property of the real numbers that really
sets them apart from the rational numbers is completeness (see Axioms 6.1.18), which says
that every set of real numbers with an upper bound has a supremum.

This seemingly innocuous statement turns out to form the basis of all of real analysis. It
allows us to reason about mathematical objects involving real numbers by studying their
local behaviour. The word ‘local’ here is supposed to contrast with ‘global’—it refers to
studying properties by zooming in on arbitrarily small regions, rather than concerning
ourselves with behaviour on a large scale.

Sequences of real numbers

Definition 6.2.1
A sequence of real numbers is a function x : N→ R. Given a sequence x, we write xn
instead of x(n) and write (xn)n>0, or even just (xn), instead of x : N→ R. The values xn
are called the terms of the sequence, and the variable n is called the index of the term
xn.

Example 6.2.2
Some very basic but very boring examples of sequences are constant sequences. For ex-
ample, the constant sequence with value 0 is

(0, 0, 0, 0, 0, 0, . . . )

More generally, for fixed a ∈ R, the constant sequence with value a is defined by xn = a
for all n ∈ N. C

Example 6.2.3
Sequences can be defined just like functions. For example, there is a sequence defined by
xn = 2n for all n ∈ N. Writing out the first few terms, this sequence is

(1, 2, 4, 8, 16, . . . )

C

296



Section 6.2. Sequences and convergence 297

Sometimes it will be convenient to start the indexing of our sequence from numbers other
than 0, particularly when an expression involving a variable n isn’t defined when n = 0.
We’ll denote such sequences by (xn)n>1 or (xn)n>2, and so on.

Example 6.2.4
Let (zn)n>2 be the sequence defined by zn = (n+1)(n+2)

(n−1)n for all n > 2:

(
6,

10

3
,
5

2
,
21

10
, . . .

)

The indexing of this sequence begins at 2, rather than 0, since when n = 0 or n = 1,
the expression (n+1)(n+2)

(n−1)n is undefined. We could reindex the sequence: by letting z′n =

zn+2 for all n > 0, we obtain a new sequence (z′n)n>0 defined by z′n = (n+3)(n+4)
(n+1)(n+2) whose

indexing starts from 0. Fortunately for us, such matters won’t cause any problems—it’s
just important to make sure that whenever we define a sequence, we make sure the terms
make sense for all of the indices. C

Of particular interest to us will be sequences whose terms get closer and closer to a fixed
real number.

Example 6.2.5
Consider the sequence (yn)n>1 defined by yn = 1

n for all n > 1:

(
1,

1

2
,
1

3
,
1

4
,
1

5
, . . .

)

It is fairly clear that the terms yn become closer and closer to 0 as n grows; the following
diagram is a plot of yn against n for a few values of n. C

Example 6.2.6
Define a sequence (rn)n>0 by rn = 2n

n+1 for all n ∈ N. Some of the values of this sequence
are illustrated in the following table:
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n rn decimal expansion

0 0 0
1 1 1
2 4

3 1.333 . . .
3 3

2 1.5
...

...
...

10 20
11 1.818 . . .

...
...

...
100 200

101 1.980 . . .
...

...
...

1000 2000
1001 1.998 . . .

...
...

...

As n increases, the values of rn become closer and closer to 2. C

The precise sense in which the terms of the sequences in Examples 6.2.5 and 6.2.6 ‘get
closer’ to 0 and 2, respectively, is called convergence, which we will define momentarily in
Definition 6.2.7.

First, let’s try to work out what the definition should be for a sequence (xn) to converge
to a real number a.

A näıve answer might be to say that the sequence is ‘eventually equal to a’—that is, after
some point in the sequence, all terms are equal to a. Unfortunately, this isn’t quite good
enough: if it were, then the values rn = 2n

n+1 from Example 6.2.6 would be equal to 2 for

sufficiently large n. However, if for some n ∈ N we have 2n
n+1 = 2, then it follows that

2n = 2(n+ 1); rearranging this gives 1 = 0, which is a contradiction.

However, this answer isn’t too far from giving us what we need. Instead of saying that the
terms xn are eventually equal to a, we might want to say that they become infinitely close
to a, whatever that means.

We can’t really make sense of an ‘infinitely small positive distance’ (e.g. Exercise 1.2.13),
so we might instead make sense of ‘infinitely close’ by saying that the terms xn eventually
become as close to a as we could possibly want them to be. Spelling this out, this means
that for any positive distance ε (LATEX code: \varepsilon) (read: ‘epsilon’)[a] no matter
how small, the terms xn are eventually within distance ε of a. In summary:

[a]The lower case Greek letter epsilon (ε) is traditionally used in analysis to denote a positive quantity
whose value can be made arbitrarily small. We will encounter this letter frequently in this section and
the next when discussing convergence.
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Definition 6.2.7
Let (xn) be a sequence and let a ∈ R. We say that (xn) converges to a, and write
(xn)→ a (LATEX code: \to), if the following condition holds:

∀ε > 0, ∃N ∈ N, ∀n > N, |xn − a| < ε

The value a is called a limit of (xn). Moreover, we say that a sequence (xn) converges if
it has a limit, and diverges otherwise.

Before we move onto some examples, let’s quickly digest the definition of the expression
(xn)→ a. The following table presents a suggestion of how you might read the expression
‘∀ε > 0, ∃N ∈ N, ∀n > N, |xn − a| < ε’ in English.

Symbols English

∀ε > 0. . . For any positive distance ε (no matter how small). . .
. . . ∃N ∈ N . . . . . . there is a stage in the sequence. . .
. . . ∀n > N . . . . . . after which all terms in the sequence. . .
. . . |xn − a| < ε. . . . are within distance ε of a.

Thus, a sequence (xn) converges to a if ‘for any positive distance ε (no matter how small),
there is a stage in the sequence after which all terms in the sequence are within ε of a’.
After reading this a few times, you should hopefully be content that this definition captures
what is meant by saying that the terms in the sequence are eventually as close to a as we
could possibly want them to be.

We are now ready to see some examples of convergent (and divergent) sequences. When
reading the following proofs, keep in mind the logical structure—that is, the alternating
quantifiers ∀ε . . .∃N . . .∀n . . .—in the definition of (xn)→ a.

Example 6.2.8
The sequence (yn) defined by yn = 1

n for all n > 1 converges to 0. To see this, by Definition
6.2.7, we need to prove

∀ε > 0, ∃N ∈ N, ∀n > N,
∣∣∣∣ 1n − 0

∣∣∣∣ < ε

So fix ε > 0. Our goal is to find N ∈ N such that
∣∣ 1
n

∣∣ < ε for all n > N .
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Let N be any natural number which is greater than 1
ε . Then for all n > N , we have

∣∣∣∣ 1n
∣∣∣∣ =

1

n
since

1

n
> 0 for all n > 1

6
1

N
since n > N

<
1

1/ε
since N >

1

ε

= ε

Hence |yn| < ε for all n > N . Thus we have proved that (yn)→ 0. C

Remark 6.2.9
The value of N you need to find in the proof of convergence will usually depend on the
parameter ε. (For instance, in Example 6.2.8, we defined N to be some natural number
greater than 1

ε .) This is to be expected—remember that ε is the distance away from the
limit that the terms are allowed to vary after the N th term. If you make this distance
smaller, you’ll probably have to go further into the sequence before your terms are all close
enough to a. In particular, the value of N will usually grow as the value of ε gets smaller.
This was the case in Example 6.2.8: note that 1

ε increases as ε decreases. C

Example 6.2.10
Let (rn) be the sequence from Example 6.2.6 defined by rn = 2n

n+1 for all n ∈ N. We’ll
prove that (rn)→ 2. So fix ε > 0. We need to find N ∈ N such that

∣∣∣∣ 2n

n+ 1
− 2

∣∣∣∣ < ε for all n > N

To find such a value of n, we’ll first do some algebra. Note first that for all n ∈ N we have

∣∣∣∣ 2n

n+ 1
− 2

∣∣∣∣ =

∣∣∣∣2n− 2(n+ 1)

n+ 1

∣∣∣∣ =

∣∣∣∣ −2

n+ 1

∣∣∣∣ =
2

n+ 1

Rearranging the inequality 2
n+1 < ε gives n+1

2 > 1
ε , and hence n > 2

ε − 1.

To be clear, what we’ve shown so far is that a necessary condition for |rn − 2| < ε to hold
is that n > 2

ε − 1. This informs us what the desired value of N might look like—we will
then verify that the desired inequality holds.
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So define N = 2
ε − 1. For all n > N , we have∣∣∣∣ 2n

n+ 1
− 2

∣∣∣∣ =
2

n+ 1
by the above work

6
2

N + 1
since n > N

<
2(

2
ε − 1

)
+ 1

since N >
2

ε
− 1

=
2

2/ε
rearranging

= ε rearranging

Thus, as claimed, we have |rn − 2| < ε for all n > N . It follows that (rn) → 2, as
required. C

Exercise 6.2.11
Let (xn) be the constant sequence with value a ∈ R. Prove that (xn)→ a. C

Exercise 6.2.12
Prove that the sequence (zn) defined by zn = n+1

n+2 converges to 1. C

The following proposition is a technical tool, which proves that convergence of sequences
is unaffected by changing finitely many terms at the beginning of a sequence.

Proposition 6.2.13
Let (xn) be a sequence and suppose that (xn) → a. Let (yn) be another sequence and
suppose that there is some k ∈ N such that xn = yn for all n > k. Prove that (yn)→ a.

Proof. Fix ε > 0. We need to find N ∈ N such that |yn − a| < ε for all n > N .

Since (xn) → a, there is some M ∈ N such that |xn − a| < ε for all n > M . Let N be
the greater of M and k. Then for all n > N , we have yn = xn, since n > k, and hence
|yn − a| = |xn − a| < ε, since n >M .

Hence (yn)→ a, as required.

Before we go too much further, let’s see some examples of sequences which diverge. Recall
(Definition 6.2.7) that a sequence (xn) converges if (xn)→ a for some a ∈ R. Spelling this
out symbolically, to say ‘(xn) converges’ is to say the following:

∃a ∈ R, ∀ε > 0, ∃N ∈ N, ∀n > N, |xn − a| < ε
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We can negate this using the tools of Section 2.1: to say that a sequence (xn) diverges is
to say the following:

∀a ∈ R, ∃ε > 0, ∀N ∈ N, ∃n > N, |xn − a| > ε

In more intuitive terms: for all possible candidates for a limit a ∈ R, there is a positive
distance ε such that, no matter how far down the sequence you go (say xN ), you can find
a term xn beyond that point which is at distance > ε away from a.

Example 6.2.14
Let (xn) be the sequence defined by xn = (−1)n for all n ∈ N:

(1,−1, 1,−1, 1,−1, . . . )

We’ll prove that (xn) diverges. Fix a ∈ R. Intuitively, if a is non-negative, then it must be
at distance > 1 away from −1, and if a is negative, then it must be at distance > 1 away
from 1. We’ll now make this precise.

So let ε = 1, and fix N ∈ N. We need to find n > N such that |(−1)n − a| > 1. We’ll split
into cases based on whether a is non-negative or negative.

• Suppose a > 0. Then −1− a 6 −1 < 0, so that we have

|−1− a| = a− (−1) = a+ 1 > 1

So let n = 2N + 1. Then n > N and n is odd, so that

|xn − a| = |(−1)n − a| = |−1− a| > 1

• Suppose a < 0. Then 1− a > 1 > 0, so that we have

|1− a| = 1− a > 1

So let n = 2N . Then n > N and n is even, so that

|xn − a| = |(−1)n − a| = |1− a| > 1

In both cases, we’ve found n > N such that |xn− a| > 1. It follows that (xn) diverges. C

Example 6.2.14 is an example of a periodic sequence—that is, it’s a sequence that repeats
itself. It is difficult for such sequences to converge since, intuitively speaking, they jump
up and down a lot. (In fact, the only way that a period sequence can converge is if it is a
constant sequence!)
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Exercise 6.2.15
Let (yn) be the sequence defined by yn = n for all n ∈ N:

(0, 1, 2, 3, . . . )

Prove that (yn) diverges. C

Finding limits of sequences can be tricky. Theorem 6.2.17 makes it slightly easier by
saying that if a sequence is built up using arithmetic operations—addition, subtraction,
multiplication and division—from sequences whose limits you know, then you can simply
apply those arithmetic operations to the limits.

In order to prove part of Theorem 6.2.17, however, the following lemma will be useful.

Lemma 6.2.16
Let (xn) be a sequence of real numbers. If (xn) converges, then (xn) is bounded—that is,
there is some real number k such that |xn| 6 k for all n ∈ N.

Proof. Let a ∈ R be such that (xn)→ a. Letting ε = 1 in the definition of convergence, it
follows that there exists some N ∈ N such that |xn − a| < 1 for all n > N . It follows that
−1 < xn − a < 1 for all n > N , and hence −(1− a) < xn < 1 + a for all n > N .

Now define
k = max{|x0|, |x1|, . . . , |xN−1|, |1− a|, |1 + a|}+ 1

For all n < N , we have
−k < −|xn| 6 xn 6 |xn| < k

so that |xn| < k. For all n > N , we have

−k < −|1− a| 6 −(1− a) < xn < 1 + a 6 |1 + a| < k

so that |xn| < k.

Hence |xn| < k for all n ∈ N, as required.

Theorem 6.2.17
Let (xn) and (yn) be sequences of real numbers, let a, b ∈ R, and suppose that (xn) → a
and (yn)→ b. Then

(a) (xn + yn)→ a+ b;

(b) (xn − yn)→ a− b;

(c) (xnyn)→ ab; and

(d) (xn
yn

)→ a
b , so long as yn 6= 0 for all n ∈ N and b 6= 0.
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Proof of (a) and (c). (a). Fix ε > 0. We need to prove that there is some N ∈ N such
that |(xn + yn)− (a+ b)| < ε for all n > N .

• Since (xn)→ a, there is some N1 ∈ N such that |xn − a| < ε
2 for all n > N1;

• Since (yn)→ b, there is some N2 ∈ N such that |xn − b| < ε
2 for all n > N2.

Let N be the greatest of N1 and N2. Then for all n > N , we have n > N1 and n > N2; it
follows from the triangle inequality (Theorem 6.1.28), that

|(xn + yn)− (a+ b)| = |(xn − a) + (yn − b)| 6 |xn − a|+ |yn − b| <
ε

2
+
ε

2

as required.

(c). This one is a little harder. Fix ε > 0. Since (xn) converges, it follows from Lemma
6.2.16 that there is some real number k with |xn| < k for all n ∈ N.

• Since (xn)→ a, there is some N1 ∈ N such that |xn − a| < ε
2|b| for all n > N1;

• Since (yn)→ b, there is some N2 ∈ N such that |xn − b| < ε
2k for all n > N2.

Let N be the greatest of N1 and N2. Then for all n > N , we have

|xnyn − ab| = |xn(yn − b) + b(xn − a)| rearranging

6 |xn(yn − b)|+ |b(xn − a)| by the triangle inequality

= |xn||yn − b|+ |b||xn − a| rearranging

< k|yn − b|+ |b||xn − a| since |xn| < k for all n

< k
ε

2k
+ |b| ε

2|b|
since n > N1 and n > N2

= ε rearranging

Hence (xnyn)→ ab, as required.

Exercise 6.2.18
Prove parts (b) and (d) of Theorem 6.2.17. C

Theorem 6.2.17 appears obvious, but as you can see in the proof, it is more complicated
than perhaps expected. It was worth the hard work, though, because we can now compute
more complicated limits formed in terms of arithmetic operations by taking the limits
of the individual components. The following example uses Theorem 6.2.17 to prove that(

2n
n+1

)
→ 2 in a much simpler way than we saw in Example 6.2.10.
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Example 6.2.19
We provide another proof that the sequence (rn) of Example 6.2.6, defined by rn = 2n

n+1
for all n ∈ N, converges to 2.

For all n > 1, dividing by the top and bottom gives

rn =
2

1 + 1
n

The constant sequences (2) and (1) converge to 2 and 1, respectively; and by Example
6.2.8, we know that ( 1

n)→ 0. It follows that

(rn)→ 2

1 + 0
= 2

as required. C

Exercise 6.2.20
To do: Write exercise C

To do: Motivate

Theorem 6.2.21 (Uniqueness of limits)
Let (xn) be a sequence and let a, b ∈ R. If (xn)→ a and (xn)→ b, then a = b.

Proof. We’ll prove that |a − b| = 0, which will imply that a = b. To do this, we’ll prove
that |a− b| is not positive: we already know it’s non-negative, so this will imply that it is
equal to zero. To prove that |a − b| is not positive, we’ll prove that it is less than every
positive number.

So fix ε > 0. Then also ε
2 > 0. The definition of convergence (Definition 6.2.7) tells us

that:

• There exists N1 ∈ N such that |xn − a| < ε
2 for all n > N1; and

• There exists N2 ∈ N such that |xn − b| < ε
2 for all n > N2.

Let n be the greatest of N1 and N2. Then n > N1 and n > N2, and hence

|xn − a| <
ε

2
and |xn − b| <

ε

2
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By the triangle inequality (Theorem 6.1.28), it follows that

|a− b| = |(a− xn) + (xn − b)| by cancelling the xn terms

6 |a− xn|+ |xn − b| by the triangle inequality

= |xn − a|+ |xn − b| by Exercise 6.1.24

<
ε

2
+
ε

2
= ε since n > N1 and n > N2

Since |a− b| < ε for all ε > 0, it follows that |a− b| is a non-negative real number that is
less than every positive real number, so that it is equal to zero.

Since |a− b| = 0, we have a− b = 0, and so a = b.

Theorem 6.2.21 tells us that if a sequence converges, then its limit is uniquely determined.
This allows us to talk about the limit of a convergent sequence, and in particular justifies
the following notation.

Notation 6.2.22
Let (xn) be a convergent sequence. Write lim

n→∞
xn for its (unique) limit.

To do: Warn about the symbol ∞.

Example 6.2.23
Examples 6.2.8 and 6.2.10 tell us that

lim
n→∞

1

n
= 0 and lim

n→∞

2n

n+ 1
→ 2

C

To do: Introduce squeeze theorem

Theorem 6.2.24 (Squeeze theorem)
Let (xn), (yn) and (zn) be sequences of real numbers such that:

(i) (xn)→ a and (zn)→ a; and

(ii) xn 6 yn 6 zn for all n ∈ N.
Then (yn)→ a.

Proof. Fix ε > 0. We need to find N ∈ N such that |yn − a| < ε for all n > N .

Since (xn)→ a and (zn)→ a, there exist N1, N2 ∈ N such that
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• |xn − a| < ε for all n > N1;

• |zn − a| < ε for all n > N2.

Letting N be the greatest of N1 and N2 then tells us that both |xn − a| and |zn − a| are
less than ε whenever n > N .

We will prove that |yn − a| < ε for all n > N . To see this let n > N . Either yn > a or
yn 6 a.

• If yn > a, then we have a 6 yn 6 zn. It follows that

|yn − a| = yn − a 6 zn − a = |zn − a| < ε

• If yn 6 a, then we have xn 6 yn 6 a. It follows that

|yn − a| = a− yn 6 a− xn = |xn − a| < ε

Since in both cases we have proved |yn − a| < ε, we may conclude that (yn)→ a.

Example 6.2.25
To do: C

Example 6.2.26
To do: C

Exercise 6.2.27
To do: C

Exercise 6.2.28
To do: C

Existence of limits

It is often useful to know that a sequence converges, but not necessary to go to the arduous
lengths of computing its limit. However, as it currently stands, we don’t really have any
tools for proving that a sequence converges other than finding a limit for it! This section
explores the properties of R that allow us to know when a sequence does or does not
converge.

First, recall from Section 6.1 that R is a complete ordered field (see Axioms 6.1.18). In
fact, it’s the only one—this was the content of Theorem 6.1.19. To repeat, this means is
that every subset A ⊆ R that has a (real) upper bound has a least (real) upper bound,
called a supremum. This property is called completeness.
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Exercise 6.2.29
Let A ⊆ R. Write down the definitions of what it means for a real number u to be an
upper bound of A, and what it means for a real number s to be a supremum of A. C

We can use the completeness axiom to prove results about existence of limits of sequences.

Perhaps the most fundamental result is the monotone convergence theorem (Theorem
6.2.34), since it underlies the proofs of all the other results that we will prove. What
it says is that if the terms in a sequence always increase, or always decrease, and the set
of terms in the sequence is bounded, then the sequence converges to a limit.

The sequence (rn) from Example 6.2.6, defined by rn = 2n
n+1 for all n ∈ N, is an example

of such a sequence. We proved that it converged by computing its limit in Example 6.2.10
and again in Example 6.2.19. We will soon (Example 6.2.36) use the monotone convergence
theorem to give yet another proof that it converges, but this time without going to the
trouble of first finding its limit.

Before we can state the monotone convergence theorem, we must first define what we mean
by a monotonic sequence.

Definition 6.2.30
A sequence of real numbers (xn) is. . .
• . . . increasing if m 6 n implies xm 6 xn for all m,n ∈ N;

• . . . decreasing if m 6 n implies xm > xn for all m,n ∈ N.
If a sequence is either increasing or decreasing, we say it is monotonic.

Example 6.2.31
The sequence (xn) defined by xn = n2 for all n ∈ N is increasing, since for all m,n ∈ N, if
m 6 n, then m2 6 n2. To see this, note that if m 6 n, then n−m > 0 and n+m > 0, so
that

n2 −m2 = (n−m)(n+m) > 0 · 0 = 0

and hence n2 > m2, as required. C

Example 6.2.32
The sequence (rn) from Example 6.2.6, defined by rn = 2n

n+1 for all n ∈ N, is increasing.
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To see this, suppose m 6 n. Then n = m+ k for some k > 0. Now

0 6 k by assumption

⇔ m2 + km+m 6 m2 + km+m+ k adding m2 + km+m to both sides

⇔ m(m+ k + 1) 6 (m+ 1)(m+ k) factorising

⇔ m(n+ 1) 6 (m+ 1)n since n = m+ k

⇔ m

m+ 1
6

n

n+ 1
dividing both sides by (m+ 1)(n+ 1)

⇔ rm 6 rn by definition of (rn)

Note that the step where we divided through by (m+1)(n+1) is justified since this quantity
is positive.

It is perhaps useful to add that to come up with this proof, it is more likely that you
would start with the assumption rm 6 rn and derive that k > 0—noting that all steps are
reversible then allows us to write it in the ‘correct’ order. C

Exercise 6.2.33
To do: C

Theorem 6.2.34 (Monotone convergence theorem)
Let (xn) be a sequence of real numbers.

(a) If (xn) is increasing and has an upper bound,a then it converges;

(b) If (xn) is decreasing and has a lower bound, then it converges.

aOfficially, what it means to say a sequence (xn) has an upper (or lower) bound is to say that the set
{xn : n ∈ N} has an upper (or lower) bound.

Proof of (a). We prove (a) here—part (b) is Exercise 6.2.35.

So suppose (xn) is increasing and has an upper bound. Then:

(i) xm 6 xn for all m 6 n; and

(ii) There is some real number u such that u > xn for all n ∈ N.

Condition (ii) tells us that the set {xn | n ∈ N} ⊆ R has an upper bound. By the
completeness axiom, it has a supremum a. We prove that (xn)→ a.

So let ε > 0. We need to find N ∈ N such that |xn − a| < ε for all n > N .

Since a is a supremum of {xn | n ∈ N}, there is some N ∈ N such that xN > a− ε.
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Since (xn) is increasing, by (i) we have xN 6 xn for all n > N . Moreover, since a is an
upper bound for the sequence, we actually have xN 6 xn 6 a for all n > N .

Putting this together, for all n > N , we have

|xn − a| = a− xn since xn − a 6 0

6 a− xN since xN 6 xn for all n > N

< ε since xN > a− ε

It follows that (xn)→ a, as required.

Exercise 6.2.35
Prove part (b) of the monotone convergence theorem (Theorem 6.2.34). That is, prove
that if a sequence (xn) is decreasing and has a lower bound, then it converges. C

Example 6.2.36
To do: C

Example 6.2.37
To do: C

Exercise 6.2.38
To do: C

Exercise 6.2.39
To do: C

To do: subsequences, Cauchy sequences, Bolzano–Weierstrass theorem
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Section 6.3

Series and sums

Warning!
This section is not yet finished—do not rely on its correctness or completeness.

To do: Lots of stuff

Proposition 6.3.1

Let x ∈ R with −1 < x < 1. Then
∑
n∈N

xn =
1

1− x
.

Proof. Given N ∈ N, the N th partial sum SN of the series is given by by

SN =

N∑
n=0

xn = 1 + x+ x2 + · · ·+ xN

Note that

xSN =
n∑

n=0

xn+1 = x+ x2 + · · ·+ xN+1 = SN+1 − 1

and hence

(1− x)SN = SN − xSN = SN − (SN+1 − 1) = 1− (SN+1 − SN ) = 1− xN+1

and hence dividing by 1− x, which is permissible since x 6= 1, yields

SN =
1− xN+1

1− x

To do: Finish proof

Proposition 6.3.2

Let x ∈ R with −1 < x < 1. Then
∑
n∈N

nxn−1 =
1

(1− x)2
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Section 7.1

Discrete probability spaces

Probability theory is a field of mathematics which attempts to model randomness and
uncertainty in the ‘real world’. The mathematical machinery it develops allows us to
understand how this randomness behaves and to extract information which is useful for
making predictions.

Discrete probability theory, in particular, concerns situations in which the possible out-
comes form a countable set. This simplifies matters considerably: if there are only count-
ably many outcomes, then the probability that any event occurs is determined entirely by
the probabilities that the individual outcomes comprised by the event occur.

For example, the number N of words spoken by a child over the course of a year takes
values in N, so is discrete. To each n ∈ N, we may assign a probability that N = n, which
can take positive values in a meaningful way, and from these probabilities we can compute
the probabilities of more general events occurring (e.g. the probability that the child says
under a million words). However, the height H grown by the child over the same period
takes values in [0,∞), which is uncountable; for each h ∈ [0,∞), the probability that
H = h is zero, so these probabilities give us no information. We must study the behaviour
of H through some other means.

In this chapter, we will concern ourselves only with the discrete setting.

It is important to understand from the outset that, although we use language like outcome,
event, probability and random, and although we use real-world examples, everything we
do concerns mathematical objects: sets, elements of sets, and functions. If we say, for
example, “the probability that a roll of a fair six-sided die shows 3 or 4 is 1

3 ,” we are actually
interpreting the situation mathematically—the outcomes of the die rolls are interpreted as
the elements of the set [6]; the event that the die shows 3 or 4 is interpreted as the subset
{3, 4} ⊆ [6]; and the probability that this event occurs is the value of a particular function
P : P([6]) → [0, 1] on input {3, 4}. The mathematical interpretation is called a model of
the real-world situation.
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Definition 7.1.1
A discrete probability space is a pair (Ω,P) (LATEX code: (\Omega, \mathbb{P})),
consisting of a countable set Ω and a function P : P(Ω)→ [0, 1], such that

(i) P(Ω) = 1; and

(ii) (Countable additivity) If {Ai | i ∈ I} is any family of pairwise disjoint subsets of
Ω, indexed by a countable set I, then

P

(⋃
i∈I

Ai

)
=
∑
i∈I

P(Ai)

The set Ω is called the sample space; the elements ω ∈ Ω are called outcomes;a the
subsets A ⊆ Ω are called events; and the function P is called the probability measure.
Given an event A, the value P(A) is called the probability of A.

aThe symbols Ω, ω (LATEX code: \Omega,\omega) are the upper- and lower-case forms, respectively, of the
Greek letter omega.

There is a general notion of a probability space, which does not require the sample space Ω
to be countable. This definition is significantly more technical, so we restrict our attention
in this section to discrete probability spaces. Thus, whenever we say ‘probability space’
in this chapter, the probability space can be assumed to be discrete. However, when
our proofs do not specifically use countability of Ω, they typically are true of arbitrary
probability spaces. As such, we will specify discreteness in the statement of results only
when countability of the sample space is required.

Example 7.1.2
We model the roll of a fair six-sided die.

The possible outcomes of the roll are 1, 2, 3, 4, 5 and 6, so we can take Ω = [6] to be the
sample space.

The events correspond with subsets of [6]. For example:

• {4} is the event that the die roll shows 4. This event occurs with probability 1
6 .

• {1, 3, 5} is the event that the die roll is odd. This event occurs with probability 1
2

• {1, 4, 6} is the event that the die roll is not prime. This event occurs with probability
1
2 .

• {3, 4, 5, 6} is the event that the die roll shows a number greater than 2. This event
occurs with probability 2

3 .

315
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• {1, 2, 3, 4, 5, 6} is the event that anything happens. This event occurs with probability
1.

• ∅ is the event that nothing happens. This event occurs with probability 0.

More generally, since each outcome occurs with equal probability 1
6 , we can define

P(A) =
|A|
6

for all events A

We will verify that P defines a probability measure on [6] in Example 7.1.6. C

Example 7.1.3
Let (Ω,P) be a probability space. We prove that P(∅) = 0.

Note that Ω and ∅ are disjoint, so by countable additivity, we have

1 = P(Ω) = P(Ω ∪∅) = P(Ω) + P(∅) = 1 + P(∅)

Subtracting 1 throughout yields P(∅) = 0, as required. C

Exercise 7.1.4
Let (Ω,P) be a probability space. Prove that

P(Ω \A) = 1− P(A)

for all events A. C

Countable additivity of probability measures—that is, condition (ii) in Definition 7.1.1—
implies that probabilities of events are determined by probabilities of individual outcomes.
This is made precise in Proposition 7.1.5.

Proposition 7.1.5
Let Ω be a countable set and let P : P(Ω)→ [0, 1] be a function such that P(Ω) = 1. The
following are equivalent:

(i) P is a probability measure on Ω;

(ii)
∑
ω∈A

P({ω}) = P(A) for all A ⊆ Ω.

Proof. Since P(Ω) = 1, it suffices to prove that condition (ii) of Proposition 7.1.5 is equi-
valent to countable additivity of P.

• (i)⇒(ii). Suppose P is a probability measure on Ω. Let A ⊆ Ω.
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Note that since A ⊆ Ω and Ω is countably infinite, it follows that {{ω} | ω ∈ A} is a
countable family of pairwise disjoint sets. By countable additivity, we have

P(A) = P

(⋃
ω∈A
{ω}

)
=
∑
ω∈A

P({ω})

as required. Hence condition (ii) of the proposition is satisfied.

• (ii)⇒(i). Suppose that
∑
ω∈A

P({ω}) = P(A) for all A ⊆ Ω. We prove that P is a

probability measure on Ω.

So let {Ai | i ∈ I} be a family of pairwise disjoint events, indexed by a countable set
I. Define A =

⋃
i∈I Ai. Since the sets Ai partition A, summing over elements of A

is the same as summing over each of the sets Ai individually, and then adding those
results together; specifically, for each A-tuple (pω)ω∈A, we have∑

ω∈A
pω =

∑
i∈I

∑
ω∈Ai

pω

Hence

P(A) =
∑
ω∈A

P({ω}) by condition (ii) of the proposition

=
∑
i∈I

∑
ω∈Ai

P({ω}) by the above observation

=
∑
i∈I

P(Ai) by condition (ii) of the proposition

So P satisfies the countable additivity condition. Thus P is a probability measure on
Ω.

Hence the two conditions are equivalent.

Example 7.1.6
We prove that the function P from Exercise 7.1.2 truly does define a probability measure.
Indeed, let Ω = [6] and let P : P(Ω)→ [0, 1] be defined by

P(A) =
|A|
6

for all events A

Then P(Ω) = 6
6 = 1, so condition (i) in Definition 7.1.1 is satisfied. Moreover, for each

A ⊆ [6] we have ∑
ω∈A

P({ω}) =
∑
ω∈A

1

6
=
|A|
6

= P(A)

so, by Proposition 7.1.5, P defines a probability measure on [6]. C
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Proposition 7.1.5 makes defining probability measures much easier, since it implies that
probability measures are determined entirely by their values on individual outcomes. This
means that, in order to define a probability measure, we only need to specify its values on
individual outcomes and check that the sum of these probabilities is equal to 1. This is
significantly easier than defining P(A) on all events A ⊆ Ω and checking the two conditions
of Definition 7.1.1.

This is made precise in Proposition 7.1.7 below.

Proposition 7.1.7
Let Ω be a countable set and, for each ω ∈ Ω, let pω ∈ [0, 1]. If

∑
ω∈Ω

pω = 1, then there is a

unique probability measure P on Ω such that P({ω}) = pω for each ω ∈ Ω.

Proof. We prove existence and uniqueness of P separately.

• Existence. Define P : P(Ω)→ [0, 1] be defined by

P(A) =
∑
ω∈A

pω

for all events A ⊆ Ω. Then condition (ii) of Proposition 7.1.5 is automatically satis-
fied, and indeed P({ω}) = pω for each ω ∈ Ω. Moreover

P(Ω) =
∑
ω∈Ω

P({ω}) =
∑
ω∈Ω

pω = 1

and so condition (i) of Definition 7.1.1 is satisfied. Hence P defines a probability
measure on Ω.

• Uniqueness. Suppose that P′ : P(Ω) → [0, 1] is another probability measure such
that P′({ω}) = pω for all ω ∈ Ω. For each event A ⊆ Ω, condition (ii) of Proposition
7.1.5 implies that

P′(A) =
∑
ω∈A

P′({ω}) =
∑
ω∈A

pω = P(A)

hence P′ = P.

So P is uniquely determined by the values pω.

The assignments of pω ∈ [0, 1] to each ω ∈ Ω in fact defines something that we will later
defined to be a probability mass function (Definition 7.2.6).

With Proposition 7.1.7 proved, we will henceforth specify probability measures P on sample
spaces Ω by specifying only the values of P({ω}) for ω ∈ Ω.
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Example 7.1.8
Let p ∈ [0, 1]. A coin, which shows heads with probability p, is repeatedly flipped until
heads shows.

The outcomes of such a sequence of coin flips all take the form

(tails, tails, · · · , tails︸ ︷︷ ︸
n ‘tails’

,heads)

for some n ∈ N. Identifying such a sequence with the number n of flips before heads shows,
we can take Ω = N to be the sample space.

For each n ∈ N, we can define

P({n}) = (1− p)np

This will define a probability measure on N, provided these probabilities all sum to 1; and
indeed by Proposition 6.3.1, we have

∑
n∈N

P({n}) =
∑
n∈N

(1− p)np = p · 1

1− (1− p)
= p · 1

p
= 1

By Proposition 7.1.7, it follows that (Ω,P) is a probability space. C

Exercise 7.1.9
A fair six-sided die is rolled twice. Define a probability space (Ω,P) that models this
situation. C

Exercise 7.1.10
Let (Ω,P) be a probability space and let A,B be events with A ⊆ B. Prove that P(A) 6
P(B). C

Set operations on events

In the real world, we might want to talk about the probability that two events both happen,
or the probability that an event doesn’t happen, or the probability that at least one of some
collection of events happens. This is interpreted mathematically in terms of set operations.

Example 7.1.11
Let (Ω,P) be the probability space modelling two rolls of a fair six-sided die—that is, the
sample space Ω = [6]× [6] with probability measure P defined by P({(a, b)}) = 1

36 for each
(a, b) ∈ Ω.
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Let A be the event that the sum of the die rolls is even, that is

A =


(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6),
(3, 1), (3, 3), (3, 5), (4, 2), (4, 4), (4, 6),
(5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)


and let B be the event that the sum of the die rolls is greater than or equal to 9, that is

B = {(3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6)}

Then

• Consider the event that the sum of the die rolls is even or greater than or equal to
9. An outcome ω gives rise to this event precisely when either ω ∈ A or ω ∈ B; so
the event in question is A ∪B;

• Consider the event that the sum of the die rolls is even and greater than or equal to
9. An outcome ω gives rise to this event precisely when both ω ∈ A and ω ∈ B; so
the event in question is A ∩B;

• Consider the event that the sum of the die rolls is not even. An outcome ω gives rise
to this event precisely when ω 6∈ A; so the event in question is is ([6]× [6]) \A.

Thus we can interpret ‘or’ as union, ‘and’ as intersection, and ‘not’ as relative complement
in the sample space. C

The intuition provided by Example 7.1.11 is formalised in Exercise 7.1.13. Before we do
this, we adopt a convention that simplifies notation when discussing events in probability
spaces.

Notation 7.1.12
Let (Ω,P) be a probability space. When a subset A ⊆ Ω is interpreted as an event, we will
write Ac for Ω \A (instead of U \A where U is the universe of discourse).

That is, when we talk about the complement of an event, we really mean their relative
complement inside the sample space.

Exercise 7.1.13
Let (Ω,P) be a probability space, and let p(ω), q(ω) be logical formulae with free variable
ω ranging over Ω. Let

A = {ω ∈ Ω | p(ω)} and B = {ω ∈ Ω | q(ω)}

Prove that
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• {ω ∈ Ω | p(ω) ∧ q(ω)} = A ∩B;

• {ω ∈ Ω | p(ω) ∨ q(ω)} = A ∪B;

• {ω ∈ Ω | ¬p(ω)} = Ac.

For reference, in Example 7.1.11, we had Ω = [6] × [6] and we defined p(a, b) to be ‘a + b
is even’ and q(a, b) to be ‘a+ b > 7’. C

With this in mind, it will be useful to know how set operations on events interact with
probabilities. A useful tool in this investigation is that of an indicator function.

Definition 7.1.14
Let Ω be a set and let A ⊆ Ω. The indicator function of A in Ω is the function
iA : Ω→ {0, 1} defined by

iA(ω) =

{
1 if ω ∈ A
0 if ω 6∈ A

Proposition 7.1.15
Let Ω be a set and let A,B ⊆ Ω. Then for all ω ∈ Ω we have

(i) iA∩B(ω) = iA(ω)iB(ω);

(ii) iA∪B(ω) = iA(ω) + iB(ω)− iA∩B(ω); and

(iii) iAc(ω) = 1− iA(ω).

Proof. Proof of (i) Let ω ∈ Ω. If ω ∈ A ∩ B then ω ∈ A and ω ∈ B, so that iA∩B(ω) =
iA(ω) = iB(ω) = 1. Hence

iA(ω)iB(ω) = 1 = iA∩B(ω)

If ω 6∈ A ∩ B then either ω 6∈ A or ω 6∈ B. Hence iA∩B(ω) = 0, and either iA(ω) = 0 or
iB(ω) = 0. Thus

iA(ω)iB(ω) = 0 = iA∩B(ω)

In both cases, we have iA∩B(ω) = iA(ω)iB(ω), as required.

Exercise 7.1.16
Prove parts (ii) and (iii) of Proposition 7.1.15. C

Exercise 7.1.17
Let (Ω,P) be a discrete probability space, and for each ω ∈ Ω let pω = P({ω}). Prove that,
for each event A, we have

P(A) =
∑
ω∈Ω

pωiA(ω)

321



322 Chapter 7. Discrete probability theory

C

Theorem 7.1.18
Let (Ω,P) be a probability space and let A,B ⊆ Ω. Then

P(A ∪B) = P(A) + P(B)− P(A ∩B)

Proof. For each ω ∈ Ω, let pω = P({ω}). Then

P(A ∪B) =
∑
ω∈Ω

pωiA∪B(ω) by Exercise 7.1.17

=
∑
ω∈Ω

pω(iA(ω) + iB(ω)− iA∩B(ω)) by Proposition 7.1.15(ii)

=
∑
ω∈Ω

pωiA(ω) +
∑
ω∈Ω

pωiB(ω) +
∑
ω∈Ω

pωiA∩B(ω) rearranging

= P(A) + P(B)− P(A ∩B) by Exercise 7.1.17

as required.

Although there are nice expressions for unions and complements of events, it is not always
the case that intersection of events corresponds with multiplication of probabilities.

Example 7.1.19
Let Ω = [3] and define a probability measure P on Ω by letting

P({1}) =
1

4
, P({2}) =

1

2
and P({3}) =

1

4

Then we have

P({1, 2} ∩ {2, 3}) = P({2}) =
1

2
6= 9

16
=

3

4
· 3

4
= P({1, 2}) · P({2, 3})

C

This demonstrates that it is not always the case that P(A∩B) = P(A)P(B) for events A,B
in a given probability space. Pairs of events A,B for which this equation is true are said
to be independent.

Definition 7.1.20
Let (Ω,P) be a probability space and let A,B be events. We say A and B are independent
if P(A ∩ B) = P(A)P(B); otherwise, we say they are dependent. More generally, events
A1, A2, . . . , An are mutually independent if

P(A1 ∩A2 ∩ · · · ∩An) = P(A1)P(A2) · · ·P(An)
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Example 7.1.21
A fair six-sided die is rolled twice. Let A be the event that the first roll shows 4, and let
B be the event that the second roll is even. Then

A = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}

so P(A) = 6
36 = 1

6 ; and
B = {(a, 2), (a, 4), (a, 6) | a ∈ [6]}

so P(B) = 18
36 = 1

2 . Moreover A ∩B = {(4, 2), (4, 4), (4, 6)}, so it follows that

P(A ∩B) =
3

36
=

1

12
=

1

6
· 1

2
= P(A)P(B)

so the events A and B are independent.

Let C be the event that the sum of the two dice rolls is equal to 5. Then

C = {(1, 4), (2, 3), (3, 2), (4, 1)}

so P(C) = 4
36 = 1

9 . Moreover A ∩ C = {(4, 1)}, so it follows that

P(A ∩ C) =
1

36
6= 1

54
=

1

6
· 1

9
= P(A)P(C)

so the events A and C are dependent. C

Exercise 7.1.22
Let (Ω,P) be a probability space. Under what conditions is an event A independent from
itself? C

Conditional probability

Suppose we model a real-world situation, such as the roll of a die or the flip of a coin, using
a probability (Ω,P). When we receive new information, the situation might change, and
we might want to model this new situation by updating our probabilities to reflect the fact
that we know that B has occurred. This is done by defining a new probability measure P̃
on Ω. What follows is an example of this.

Example 7.1.23
Two cards are drawn at random, in order, without replacement, from a 52-card deck.
We can model this situation by letting the sample space Ω be the set of ordered pairs of
distinct cards, and letting P assign an equal probability (of 1

|Ω|) to each outcome. Note

that |Ω| = 52 · 51, and so

P({ω}) =
1

52 · 51
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for each outcome ω.

We will compute two probabilities:

• The probability that the second card drawn is a heart.

• The probability that the second card drawn is a heart given that the first card drawn
is a diamond.

Let A ⊆ Ω be the event that the second card drawn is a heart, and let B ⊆ Ω be the event
that the first card drawn is a diamond.

To compute P(A), note first that A = A′ ∪A′′, where

• A′ is the event that both cards are hearts, so that |A′| = 13 · 12; and

• A′′ is the event that only the second card is a heart, so that |A′′| = 39 · 13.

Since A′ ∩A′′ = ∅, it follows from countable additivity that

P(A) = P(A′) + P(A′′) =
13 · 12 + 39 · 13

52 · 51
=

13 · (12 + 39)

52 · 51
=

1

4

Now suppose we know that first card drawn is a diamond—that is, event B has occurred—
and we wish to update our probability that A occurs. We do this by defining a new
probability measure

P̃ : P(Ω)→ [0, 1]

such that:

(a) The outcomes that do not give rise to the event B are assigned probability zero; that
is, P̃({ω}) = 0 for all ω 6∈ B; and

(b) The outcomes that give rise to the event B are assigned probabilities proportional
to their old probability; that is, there is some k ∈ R such that P̃(ω) = kP(ω) for all
ω ∈ B.

In order for P̃ to be a probability measure on Ω, we need condition (i) of Definition 7.1.1
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to occur.

P̃(Ω) =
∑
ω∈Ω

P̃({ω}) by condition (ii) of Proposition 7.1.5

=
∑
ω∈B

P̃({ω}) since P̃({ω}) = 0 for ω 6∈ B

=
∑
ω∈B

kP({ω}) since P̃({ω}) = kP({ω} for ω ∈ B

= kP(B) by condition (ii) of Proposition 7.1.5

Since we need P̃(Ω) = 1, we must therefore take k = 1
P(B) . (In particular, we need P(B) > 0

for this notion to be well-defined.)

Recall that, before we knew that the first card was a diamond, the probability that the
second card is a heart was 1

4 . We now calculate how this probability changes with the
updated information that the first card was a diamond.

The event that the second card is a heart in the new probability space is precisely A ∩B,
since it is the subset of B consisting of all the outcomes ω giving rise to the event A. As
such, the new probability that the second card is a heart is given by

P̃(A) =
P(A ∩B)

P(B)

Now:

• A∩B is the event that the first card is a diamond and the second is a heart. To specify
such an event, we need only specify the ranks of the two cards, so |A ∩ B| = 13 · 13
and hence P(A ∩B) = 13·13

52·51 .

• B is the event that the first card is a diamond. A similar procedure as with A yields
P(B) = 1

4 .

Hence

P̃(A) =
P(A ∩B)

P(B)
=

13 · 13 · 4
52 · 51

=
13

51

Thus the knowledge that the first card drawn is a diamond very slightly increases the
probability that the second card is a heart from 1

4 = 13
52 to 13

51 . C

Example 7.1.23 suggests the following schema: upon discovering that an event B occurs,
the probability that event A occurs should change from P(A) to P(A∩B)

P(B) . This motivates
the following definition of conditional probability.
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Definition 7.1.24
Let (Ω,P) be a probability space and let A,B be events such that P(B) > 0. The condi-
tional probability of A given B is the number P(A | B) (LATEX code: \mathbb{P}(A
\mid B)) defined by

P(A | B) =
P(A ∩B)

P(B)

Example 7.1.25
A fair six-sided die is rolled twice. We compute the probability that the first roll showed
a 2 given that the sum of the die rolls is less than 5.

We can model this situation by taking the sample space to be [6]× [6], with each outcome
having an equal probability of 1

36 .

Let A be the event that the first die roll shows a 2, that is

A = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}

and let B be the event that the sum of the die rolls is less than 5, that is

B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}

We need to compute P(A | B). Well,

A ∩B = {(2, 1), (2, 2)}

so P(A ∩B) = 2
36 ; and P(B) = 6

36 . Hence

P(A | B) =
2
36
6
36

=
2

6
=

1

3

C

Exercise 7.1.26
A fair six-sided die is rolled three times. What is the probability that the sum of the die
rolls is less than or equal to 12, given that each die roll shows a power of 2? C

Exercise 7.1.27
Let (Ω,P) be a probability space and let A,B be events with P(B) > 0. Prove that

P(A | B) = P(A ∩B | B)

C

Exercise 7.1.28
Let (Ω,P) be a probability space and let A,B be events such that P(B) > 0. Prove that
P(A | B) = P(A) if and only if A and B are independent. C
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We will soon see some useful real-world applications of probability theory using Bayes’s
theorem (Theorem 7.1.33). Before we do so, some technical results will be useful in our
proofs.

Proposition 7.1.29
Let (Ω,P) be a probability space and let A,B be events with 0 < P(B) < 1. Then

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc)

Proof. Note first that we can write

A = A ∩ Ω = A ∩ (B ∪Bc) = (A ∩B) ∪ (A ∩Bc)

and moreover the events A ∩B and A ∩Bc are mutually exclusive. Hence

P(A) = P(A ∩B) + P(A ∩Bc)

by countable additivity. The definition of conditional probability (Definition 7.1.24) then
gives

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc)

as required.

Example 7.1.30
An animal rescue centre houses a hundred animals, sixty of which are dogs and forty
of which are cats. Ten of the dogs and ten of the cats hate humans. We compute the
probability that a randomly selected animal hates humans.

Let A be the event that a randomly selected animal hates humans, and let B be the event
that the animal is a dog. Note that Bc is precisely the event that the animal is a cat. The
information we are given says that:

• P(B) = 60
100 , since 60 of the 100 animals are dogs;

• P(Bc) = 40
100 , since 40 of the 100 animals are cats;

• P(A | B) = 10
60 , since 10 of the 60 dogs hate humans;

• P(A | Bc) = 10
40 , since 10 of the 40 cats hate humans.

By Proposition 7.1.29, it follows that the probability that a randomly selected animal hates
humans is

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc) =
60

100
· 10

60
+

40

100
· 10

40
=

20

100
=

1

5

C
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The following exercise generalises Proposition 7.1.29 to arbitrary partitions of a sample
space into events with positive probabilities.

Example 7.1.31
The animal rescue centre from Example 7.1.30 acquires twenty additional rabbits, of whom
sixteen hate humans. We compute the probability that a randomly selected animal hates
humans, given the new arrivals.

A randomly selected animal must be either a dog, a cat or a rabbit, and each of these
occurs with positive probability. Thus, letting D be the event that the selected animal is
a dog, C be the event that the animal is a cat, and R be the event that the animal is a
rabbit, we see that the sets D,C,R form a partition of the sample space.

Letting A be the event that the selected animal hates humans. Then

P(A) = P(A | D)P(D)+P(A | C)P(C)+P(A | R)P(R) =
10

60
· 60

120
+

10

40
· 40

120
+

16

20
· 20

120
=

3

10

C

Proposition 7.1.32 below is a technical result which proves that conditional probability
truly does yield a new probability measure on a given sample space.

Proposition 7.1.32
Let (Ω,P) be a discrete probability space and let B be an event such that P(B) > 0. The
function P̃ : P(Ω)→ [0, 1] defined by

P̃(A) = P(A | B) for all A ⊆ Ω

defines a probability measure on Ω.

Proof. First note that

P̃(Ω) = P(Ω | B) =
P(Ω ∩B)

P(B)
=

P(B)

P(B)
= 1

so condition (i) of Definition 7.1.1 is satisfied.
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Moreover, for each A ⊆ Ω we have

P̃(A) = P(A | B) by definition of P̃

=
P(A ∩B)

P(B)
by Definition 7.1.24

=
1

P(B)

∑
ω∈A∩B

P({ω}) byProposition 7.1.5

=
∑

ω∈A∩B
P({ω} | B) by Definition 7.1.24

=
∑
ω∈A

P({ω} | B) since P({ω} | B) = 0 for ω ∈ A \B

=
∑
ω∈A

P̃({ω}) by definition of P̃

so condition (ii) of Proposition 7.1.5 is satisfied. Hence P̃ defines a probability measure on
Ω.

Proposition 7.1.32 implies that we can use all the results we’ve proved about probability
measures to conditional probability given a fixed event B. For example, Theorem 7.1.18
implies that

P(A ∪A′ | B) = P(A | B) + P(A′ | B)− P(A ∩A′ | B)

for all events A,A′, B in a probability space (Ω,P) such that P(B) > 0.

The next theorem we prove has a very short proof, but is extremely important in applied
probability theory.

Theorem 7.1.33 (Bayes’s theorem)
Let (Ω,P) be a probability space and let A,B be events with positive probabilities. Then

P(B | A) =
P(A | B)P(B)

P(A)

Proof. Definition 7.1.24 gives

P(A | B)P(B) = P(A ∩B) = P(B ∩A) = P(B | A)P(A)

Dividing through by P(A) yields the desired equation.
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As stated, Bayes’s theorem is not necessarily particularly enlightening, but its usefulness
increases sharply when combined with Proposition 7.1.29 to express the denominator of
the fraction in another way.

Corollary 7.1.34
Let (Ω,P) be a probability space and let A,B be events such that P(A) > 0 and 0 <
P(B) < 1. Then

P(B | A) =
P(A | B)P(B)

P(A | B)P(B) + P(A | Bc)P(Bc)

Proof. Bayes’s theorem tells us that

P(B | A) =
P(A | B)P(B)

P(A)

By Proposition 7.1.29 we have

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc)

Substituting for P(A) therefore yields

P(B | A) =
P(A | B)P(B)

P(A | B)P(B) + P(A | Bc)P(Bc)

as required.

The following example is particularly counterintuitive.

Example 7.1.35
A town has 10000 people, 30 of whom are infected with Disease X. Medical scientists
develop a test for Disease X, which is accurate 99% of the time. A person takes the test,
which comes back positive. We compute the probability that the person truly is infected
with Disease X.

Let A be the event that the person tests positive for Disease X, and let B be the event
that the person is infected with Disease X. We need to compute P(B | A).

By Corollary 7.1.34, we have

P(B | A) =
P(A | B)P(B)

P(A | B)P(B) + P(A | Bc)P(Bc)

It remains to compute the individual probabilities on the right-hand side of this equation.
Well,

330



Section 7.1. Discrete probability spaces 331

• P(A | B) is the probability that the person tests positive for Disease X, given that
they are infected. This is equal to 99

100 , since the test is accurate with probability
99%.

• P(A | Bc) is the probability that the person tests positive for Disease X, given that
they are not infected. This is equal to 1

100 , since the test is inaccurate with probability
1%.

• P(B) = 30
10000 , since 30 of the 10000 inhabitants are infected with Disease X.

• P(Bc) = 9970
10000 , since 9970 of the 10000 inhabitants are not infected with Disease X.

Piecing this together gives

P(B | A) =
99
100 ·

30
10000

99
100 ·

30
10000 + 1

100 ·
9970
10000

=
297

1294
≈ 0.23

Remarkably, the probability that the person is infected with Disease X given that the test
is positive is only 23%, even though the test is accurate 99% of the time! C

The following result generalises Corollary 7.1.34 to arbitrary partitions of the sample space
into sets with positive probabilities.

Corollary 7.1.36
Let (Ω,P) be a probability space, let A be an event with P(A) > 0, and let {Bi | i ∈ I} be
a family of mutually exclusive events indexed by a countable set I such that

P(Bi) > 0 for all i ∈ I and
⋃
i∈I

P(Bi) = Ω

Then

P(Bi | A) =
P(A | Bi)P(Bi)∑

i∈I
P(A | Bi)P(Bi)

for each i ∈ I.

Proof. Bayes’s theorem tells us that

P(B | A) =
P(A | B)P(B)

P(A)

By countable additivity, we have

P(A) = P

(⋃
i∈I

A ∩Bi

)
=
∑
i∈I

P(A ∩Bi) =
∑
i∈I

P(A | Bi)P(Bi)
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Substituting for P(A) therefore yields

P(Bi | A) =
P(A | Bi)P(Bi)∑

i∈I
P(A | Bi)P(Bi)

as required.

Example 7.1.37
A car company, Cars N’At, makes three models of cars, which it imaginatively named
Model A, Model B and Model C. It made 3000 Model As, 6500 Model Bs, and 500 Model
Cs. In a given day, a Model A breaks down with probability 1

100 , a Model B breaks down
with probability 1

200 , and the notoriously unreliable Model C breaks down with probability
1
20 . An angry driver calls Cars N’At to complain that their car has broken down. We
compute the probability that the driver was driving a Model C car.

Let A be the event that the car is a Model A, let B be the event that the car is a Model
B, and let C be the event that the car is a Model C. Then

P(A) =
3000

10000
, P(B) =

6500

10000
, P(C) =

500

10000

Let D be the event that the car broke down. Then

P(D | A) =
1

100
, P(D | B) =

1

200
, P(D | C) =

1

20

We need to compute P(C | D). Since the events A,B,C partition the sample space and
have positive probabilities, we can use Corollary 7.1.36, which tells us that

P(C | D) =
P(D | C)P(C)

P(D | A)P(A) + P(D | B)P(B) + P(D | C)P(C)

Substituting the probabilities that we computed above, it follows that

P(C | D) =
1
20 ·

500
10000

1
100 ·

3000
10000 + 1

200 ·
6500
10000 + 1

20 ·
500

10000

=
2

7
≈ 0.29

C

Exercise 7.1.38
In Example 7.1.37, find the probabilities that the car was a Model A and that the car was
a Model B. C
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Section 7.2

Discrete random variables

Events in a probability space are sometimes unenlightening when looked at in isolation.
For example, suppose we roll a fair six-sided die twice. The outcomes are elements of the
set [6]× [6], each occurring with equal probability 1

36 . The event that the die rolls sum to
7 is precisely the subset

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} ⊆ [6]× [6]

and so we can say that the probability that the two rolls sum to 7 is

P({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}) =
1

6

However, it is not at all clear from the expression {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
that, when we wrote it down, what we had in mind was the event that the sum of the die
rolls is 7. Moreover, the expression of the event in this way does not make it clear how to
generalise to other possible sums of die rolls.

Note that the sum of the die rolls defines a function S : [6]× [6]→ [12], defined by

S(a, b) = a+ b for all (a, b) ∈ [6]× [6]

The function S allows us to express our event in a more enlightening way: indeed,

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} = {(a, b) ∈ [6]× [6] | a+ b = 7} = S−1[{7}]

(Recall the definition of preimage in Definition 2.3.35.) Thus the probability that the sum
of the two die rolls is 7 is equal to P(S−1[{7}]).

If we think of S not as a function [6] × [6] → [12], but as a [12]-valued random variable,
which varies according to a random outcome in [6]× [6], then we can informally say

P{S = 7} =
1

6
which formally means P(S−1[{7}]) =

1

6

This affords us much more generality. Indeed, we could ask what the probability is that
the die rolls sum to a value greater than or equal to 7. In this case, note that the die rolls
(a, b) sum to a number greater than or equal to 7 if and only if a+ b ∈ {7, 8, 9, 10, 11, 12},
which occurs if and only if (a, b) ∈ S−1[{7, 8, 9, 10, 11, 12}]. Thus, we might informally say

P{S > 7} =
7

12
which formally means P(S−1[{7, 8, 9, 10, 11, 12}]) =

7

12
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We might also ask what the probability is that the sum of the die rolls is prime. In this
case, we might informally say

P{S is prime} =
5

12
which formally means P(S−1[{2, 3, 5, 7, 11}]) =

5

12

and so on. In each of these cases, we’re defining events—which are subsets of the sample
space—in terms of conditions on the values of a random variable (which is, formally, a
function).

We make the above intuition formal in Definition 7.2.1.

Definition 7.2.1
Let (Ω,P) be a probability space and let E be a set. An E-valued random variable on
(Ω,P) is a function X : Ω→ E such that the image

X[Ω] = {X(ω) | ω ∈ Ω}

is countable. The set E is called the state space of X. A random variable with countable
state space is called a discrete random variable.

Before we proceed with examples, some notation for events regarding values of random
variables will be particularly useful.

Notation 7.2.2
Let (Ω,P) be a probability space, let E be a set and let X be an E-valued random variable
on (Ω,P). For each e ∈ E, write

{X = e} = {ω ∈ Ω | X(ω) = e} = X−1[{e}]

to denote the event that X takes the value e. More generally, for each logical formula p(x)
with free variable x ranging over E, we write

{p(X)} = {ω ∈ Ω | p(X(ω))} = X−1[{e ∈ E | p(e)}]

for the event that the value of X satisfies p(x).

We will usually write P{X = e} instead of P({X = e}) for the probability that a random
variable X takes a value e, and so on.

Example 7.2.3
We can model a sequence of three coin flips using the probability space (Ω,P), where
Ω = {H,T}3 and P({ω}) = 1

8 for all ω ∈ Ω.
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Let N be the real-valued random variable representing number of heads that show. This
is formalised as a function

N : Ω→ R where N(i1, i2, i3) = the number of heads amongst i1, i2, i3

for example, N(H,T,H) = 2. Now

• The probability that exactly two heads show is

P{N = 2} = P(N−1[{2}]) by Notation 7.2.2

= P({(H,H,T), (H,T,H), (T,H,H)}) evaluating event N−1[{2}]

=
3

23
=

3

8

• The probability that at least two heads show is

P{N > 2} = P({ω ∈ Ω | N(ω) > 2}) by Notation 7.2.2

= P
({

(H,H,T), (H,T,H),
(T,H,H), (H,H,H)

})
evaluating event

=
4

23
=

1

2

C

Exercise 7.2.4
With probability space (Ω,P) and random variable N defined as in Example 7.2.3, compute
P{N is odd} and P{N = 4}. C

Exercise 7.2.5
Let (Ω,P) be a probability space, let E be a set, let X be an E-valued random variable
and let U ⊆ E. Prove that the event {X ∈ U} is equal to the preimage X−1[U ]. Deduce
that

P{X ∈ U} =
∑
e∈U

fX(e)

C

Each random variable comes with an associated probability mass function, which allows us
to ‘forget’ the underlying probability space for the purposes of studying only the random
variable.

Definition 7.2.6
Let (Ω,P) be a probability space, let X : Ω → E be an E-valued random variable. The
probability mass function of X is the function fX : S → [0, 1] defined by

fX(e) = P{X = e} for all e ∈ S
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Example 7.2.7
The probability mass function of the random variable N from Exercise 7.2.3 is the function
fN : R→ [0, 1] defined by

fN (e) = P{N = e} =
1

8

(
3

e

)
for all e ∈ {0, 1, 2, 3}, and fN (e) = 0 otherwise. Indeed, there are 23 = 8 possible outcomes,
each equally likely, and

(
3
e

)
of those outcomes show exactly e heads for e ∈ {0, 1, 2, 3}. C

In the previous exercise, we could have just specified the value of fN on {0, 1, 2, 3}, with the
understanding that N does not take values outside of this set and hence that P{N = e} = 0
for all e 6∈ {0, 1, 2, 3}. This issue arises frequently when dealing with real-valued discrete
random variables, and it will be useful to ignore most (or all) of those real numbers which
are not values of the random variable.

As such, for E ⊆ R, we will from now on blur the distinction between the following concepts:

(i) E-valued random variables;

(ii) real-valued random variables X such that P{X = x} = 0 for all x 6∈ E.

Example 7.2.8
The probability mass function of the random variable N from Example 7.2.3 can be taken
to be the function fX : {0, 1, 2, 3} → [0, 1] defined by

fX(k) =
1

8

(
3

k

)
for all k ∈ {0, 1, 2, 3}

C

Lemma 7.2.9
Let (Ω,P) be a probability space, let E be a set and let X be an E-valued random variable.
The sets {X = e} for e ∈ E are mutually exclusive, and their union is Ω.

Proof. If e, e′ ∈ E, then for all ω ∈ Ω we have

ω ∈ {X = e} ∩ {X = e′} ⇔ ω ∈ X−1[{e}] ∩X−1[{e′}] by Notation 7.2.2

⇔ X(ω) = e and X(ω) = e′ by definition of preimage

⇒ e = e′

so if e 6= e′ then {X = e} ∩ {X = e′} = ∅. So the events are mutually exclusive.

Moreover, if ω ∈ Ω, then ω ∈ {X = X(ω)}. Hence

Ω =
⋃
e∈E
{X = e}
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as required.

Theorem 7.2.10
Let (Ω,P) be a probability space, let E be a countable set, and let X be an E-valued
random variable. Then ∑

e∈E
fX(e) = 1

Proof. Since fX(e) = P{X = e} for all e ∈ E, we need to check that∑
e∈E

P{X = e} = 1

By Lemma 7.2.9, we have

∑
e∈E

P{X = e} = P

(⋃
e∈E
{X = e}

)
= P(Ω) = 1

as required.

The following corollary follows immediately.

Corollary 7.2.11
Let (Ω,P) be a probability space, let E be a countable set, and let X be an E-valued
random variable. The function X∗P : P(E)→ [0, 1] defined by

(X∗P)(A) =
∑
e∈A

fX(e) = P{X ∈ A}

for all A ⊆ E defines a probability measure on E. The space (E,X∗P) is called the
pushforward probability measure of X.

Corollary 7.2.11 implies that any statement about probability measures can be applied to
the pushforward measure. For example,

P{X ∈ A ∪B} = P{X ∈ A}+ P{X ∈ B} − P{X ∈ A ∩B}

for all subsets A,B ⊆ E.

As with events, there is a notion of independence for random variables.
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Definition 7.2.12
Let (Ω,P) be a discrete probability space and letX,Y : Ω→ E be discrete random variables
on (Ω,P). We say X and Y are independent if, for all e, e′ ∈ E, the events {X = e} and
{Y = e′} are independent. More generally, random variables X1, X2, . . . , Xn are mutually
independent if, for all e1, e2, . . . , en ∈ E, the events {Xi = ei} are mutually independent.

Example 7.2.13
A fair six-sided die is rolled twice. Let X be the value shown on the first roll and Y be the
value shown on the second roll.

We can model this situation by letting Ω = [6]× [6] with P({(a, b)}) = 1
36 for all (a, b) ∈ Ω.

The random variables X,Y can thus be taken to be functions Ω→ [6] defined by

X(a, b) = a and Y (a, b) = b for all (a, b) ∈ Ω

So let e, e′ ∈ [6]. Note first that

{X = e} ∩ {Y = e′} = {(a, b) ∈ Ω | a = e} ∩ {(a, b) ∈ Ω | b = e′} by Notation 7.2.2

= {(a, b) ∈ Ω | a = e and b = e′}
= {(e, e′)}

Hence

P({X = e} ∩ {Y = e′}) = P({(e, e′)}) =
1

36
=

1

6
· 1

6
= P{X = e}P{Y = e′}

The events {X = e} and {Y = e′} are independent, and so X and Y are independent. C

Exercise 7.2.14
A coin which shows heads with probability p ∈ [0, 1], and tails otherwise, is flipped five
times. For each i ∈ [5], let

Xi =

{
0 if the ith flip shows tails

1 if the ith flip shows heads

Prove that the random variables X1, X2, X3, X4, X5 are mutually independent. C

One final technicality that we mention before continuing concerns performing arithmetic
with random variables which assume real values.

Notation 7.2.15
Let (Ω,P) be a probability space, and let X,Y be real-valued random variables on (Ω,P).
Then we can define a new real-valued random variable X + Y by

(X + Y )(ω) = X(ω) + Y (ω) for all ω ∈ Ω
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Likewise for multipication, scalar multiplication and constants: for each ω ∈ Ω, define

(XY )(ω) = X(ω)Y (ω), (aX)(ω) = a ·X(ω), a(ω) = a

where a ∈ R. Note that the random variables X + Y,XY, aX, a are all supported on a
countable set.

Example 7.2.16
A coin which shows heads with probability p ∈ [0, 1], and tails otherwise, is flipped n times.
For each i ∈ [n], let

Xi =

{
0 if the ith flip shows tails

1 if the ith flip shows heads

Then each Xi is a {0, 1}-valued random variable.

Define X = X1 +X2 + · · ·+Xn. Then X is a {0, 1, . . . , n}-valued random variable repres-
enting the number of heads that show in total after the coin is flipped n times. C

Probability distributions

Most of the random variables we are interested in are characterised by one of a few prob-
ability distributions. We won’t define the term ‘probability distribution’ precisely—indeed,
its use in the mathematical literature is often ambiguous and informal—instead, we will
take it to mean any description of the random behaviour of a probability space or random
variable.

The uniform distribution models the real-world situation in which any of a fixed number
of outcomes occurs with equal probability.

Definition 7.2.17 (Uniform distribution)
Let (Ω,P) be a probability space, let E be a finite set, and let X : Ω → E be a ran-
dom variable. We say X follows the uniform distribution on E, or X is uniformly
distributed on E, if fX is constant—that is, if

fX(e) =
1

|E|
for all e ∈ E

If X is uniformly distributed on E, we write X ∼ Unif(E) (LATEX code: \sim).

Example 7.2.18
Let (Ω,P) be the probability space modelling the roll of a fair six-sided die, and let X be
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the [6]-valued random variable representing the number shown. Then for each k ∈ [6] we
have

fX(k) = P{X = k} = P({k}) =
1

6

so X is uniformly distributed on [6]. C

Exercise 7.2.19
Let (Ω,P) be the probability space modelling the roll of a fair six-sided die, and let X be
the {0, 1}-valued random variable which is equal to 0 if the die shows an even number and
1 if the die shows an odd number. Prove that X ∼ Unif({0, 1}). C

Before we continue, we prove that the notion of ‘uniform distribution’ does not make sense
for countably infinite sets.

Theorem 7.2.20
Let (Ω,P) be a probability space and let E be a countably infinite set. There is no notion of
a uniformly E-valued random variable X—that is, there is no p ∈ [0, 1] such that fX(e) = p
for all e ∈ E.

Proof. We may assume E = N; otherwise, re-index the sums accordingly.

Let p ∈ [0, 1]. Note that

∑
n∈N

fX(n) =
∑
n∈N

p = lim
N→∞

N∑
n=0

p = lim
N→∞

(N + 1)p

If p = 0 then

lim
N→∞

(N + 1)p = lim
N→∞

0 = 0

If p > 0 then, for all K > 0, letting N = K
p yields (N + 1)p = K + p > K, and hence

lim
N→∞

(N + 1)p =∞

Thus
∑
n∈N

p 6= 1 for all p ∈ [0, 1].

In both cases, we have contradicted Theorem 7.2.10. As such, there can be no random
variable X : Ω→ N such that fX is constant.

The Bernoulli distribution models real-world situations in which one of two outcomes
occurs, but not necessarily with the same probability.
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Definition 7.2.21 (Bernoulli distribution)
Let (Ω,P) be a probability space. A {0, 1}-valued random variable X follows the Bernoulli
distribution with parameter p if its probability mass function fX : {0, 1} → [0, 1]
satisfies

fX(0) = 1− p and fX(1) = p

If X follows the Bernoulli distribution with parameter p, we write X ∼ B(1, p).

The reason behind the notation B(1, p) will become clear soon—the Bernoulli distribution
is a specific instance of a more general distribution, which we will see in Definition 7.2.24.

Example 7.2.22
A coin shows ‘heads’ with probability p and ‘tails’ with probability 1 − p. Let X be the
random variable which takes the value 0 if the coin shows tails and 1 if the coin shows
heads. Then X ∼ B(1, p). C

Exercise 7.2.23
Let X be a {0, 1}-valued random variable. Prove that X ∼ U({0, 1}) if and only if X ∼
B(1, 1

2). C

Suppose that, instead of flipping a coin just once, as in Example 7.2.22, you flip it n times.
The total number of heads that show must be an element of {0, 1, . . . , n}, and each such
element occurs with some positive probability. The resulting probability distribution is
called the binomial distribution.

Definition 7.2.24 (Binomial distribution)
Let (Ω,P) be a probability space. A {0, 1, . . . , n}-valued random variable X follows
the binomial distribution with parameters n, p if its probability mass function
fX : {0, 1, . . . , n} → [0, 1] satisfies

fX(k) =

(
n

k

)
pk(1− p)n−k

for all k ∈ {0, 1, . . . , n}. If X follows the binomial distribution with parameters n, p, we
write X ∼ B(n, p).

Example 7.2.25
A coin which shows heads with probability p ∈ [0, 1], and tails otherwise, is flipped n times.
We will prove that the number of heads that show is binomially distributed.

We can model this situation with probability space (Ω,P) defined by taking Ω = {H,T}n,
and letting P({ω}) = ph(1 − p)t for all ω ∈ Ω, where h is the number of heads that show
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and t is the number of tails that show in outcome ω. For example, if n = 5 then

P({HTHHT}) = p3(1− p)2 and P({TTTTT}) = (1− p)5

Note in particular that h+ t = n.

Let X be the random variable which counts the number of heads that show. Formally, we
can define X : {H,T}n → {0, 1, . . . , n} by letting X(ω) be the number of heads that show
in outcome ω. For example if n = 5 then

X(HTHHT) = 3 and X(TTTTT) = 0

The event {X = k} is the set of n-tuples of ‘H’s and ‘T’s which contain exactly k ‘H’.
Hence |{X = k}| =

(
n
k

)
, since such an n-tuple can be specified by choosing the k positions

of the ‘H’s, and putting ‘T’s in the remaining positions. Since each outcome in this event
occurs with equal probability pk(1− p)n−k, it follows that

fX(k) =

(
n

k

)
pk(1− p)n−k

for all k ∈ {0, 1, . . . , n}. Hence X ∼ B(n, p). C

The following theorem proves that the sum of Bernoulli random variables follows the bi-
nomial distribution.

Theorem 7.2.26
Let (Ω,P) be a probability space, let p ∈ [0, 1] and let X1, X2, . . . , Xn : Ω → {0, 1} be
independent random variables such that Xi ∼ B(1, p). Then

X1 +X2 + · · ·+Xn ∼ B(n, p)

Proof. Let X = X1 + X2 + · · · + Xn. For each outcome ω and each k ∈ {0, 1, . . . , n}, we
have X(ω) = k if and only if exactly k of the values X1(ω), X2(ω), . . . , Xn(ω) are equal to
1.

For each specification S of which of the random variables Xi is equal to 1, let AS ⊆ Ω be
the event that this occurs. Formally, this is to say that, for each S ⊆ [n], we define

AS = {ω ∈ Ω | Xi(ω) = 0 for all i 6∈ S and Xi(ω) = 1 for all i ∈ S}

Then P(AS) = pk(1 − p)n−k, since the random variables X1, X2, . . . , Xn are mutually
independent.
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As argued above sets {AS | U ⊆ [n], |S| = k} form a partition of {X = k}, and hence

fX(k) =
∑

S∈([n]
k )

P(AS) =
∑

S∈([n]
k )

pk(1− p)n−k =

(
n

k

)
pk(1− p)n−k

which is to say that X ∼ B(n, p).

We will make heavy use of Theorem 7.2.26 in Section 7.3, when we will study the expectation
of binomially distributed random variables. First, let’s will look at a couple of scenarios
in which a binomially distributed random variable is expressed as a sum of independent
Bernoulli random variables.

Example 7.2.27
In Example 7.2.25, we could have defined {0, 1}-valued random variables X1, X2, . . . , Xn

by letting

Xi(ω) =

{
0 if the ith coin flip shows tails

1 if the ith coin flip shows heads

Then the number of heads shown in total is the random variable X = X1 +X2 + · · ·+Xn.
Note that each random variable Xi follows the Bernoulli distribution with parameter p,
and they are independent, so that X ∼ B(n, p) by Theorem 7.2.26. C

In Example 7.2.25, we flipped a coin a fixed number of times and counted how many heads
showed. Now suppose that we flip a coin repeatedly until heads show, and then stop.
The number of times the coin was flipped before heads shows could, theoretically, be any
natural number. This situation is modelled by the geometric distribution.

Definition 7.2.28 (Geometric distribution on N)
Let (Ω,P) be a probability space. An N-valued random variable X follows the geometric
distribution with parameter p if its probability mass function fX : N→ [0, 1] satisfies

fX(k) = (1− p)kp for all k ∈ N

If X follows the geometric distribution with parameter p, we write X ∼ Geom(p).

Example 7.2.29
A coin which shows heads with probability p ∈ [0, 1], and tails otherwise, is flipped re-
peatedly until heads shows. C

Exercise 7.2.30
Let p ∈ [0, 1] and let X ∼ Geom(p). Prove that

P{X is even} =
1

1− p
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What is the probability that X is odd? C

Occasionally, it will be useful to consider geometrically distributed random variables which
are valued in the set

N+ = {1, 2, 3, . . . }

of all positive natural numbers. The probability mass function of such a random variable
is slightly different.

Definition 7.2.31 (Geometric distribution on N+)
Let (Ω,P) be a probability space. An N+-valued random variable X follows the geometric
distribution with parameter p if its probability mass function fX : N→ [0, 1] satisfies

fX(k) = (1− p)k−1p for all k ∈ N+

If X follows the geometric distribution with parameter p, we write X ∼ Geom(p).

It is to be understood from context whether a given geometric random variable is N-valued
or N+-valued.

Example 7.2.32
An urn contains n > 1 distinct coupons. Each time you draw a coupon that you have not
drawn before, you get a stamp. When you get all n stamps, you win. Let X be the number
of coupons drawn up to, and including, a winning draw.

For each k ∈ [n], let Xk be the random variable representing the number of draws required
to draw the kth new coupon, after k − 1 coupons have been collected. Then the total
number of times a coupon must be drawn is X = X1 +X2 + · · ·+Xn.

After k−1 coupons have been collected, there are n−k+1 uncollected coupons remaining
in the urn, and hence on any given draw, an uncollected coupon is drawn with probability
n−k+1

n , and a coupon that has already been collected is drawn with probability k−1
n . Hence

for each r ∈ N+ we have

P[Xk = r] =

(
k − 1

n

)r−1(n− k + 1

n

)
That is to say, Xk is geometrically distributed on N+ with parameter n−k+1

n .

We will use this in Example 7.3.15 to compute the number of times a person should expect
to have to draw coupons from the urn until they win. C
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Section 7.3

Expectation

We motivate the definition of expectation (Definition 7.3.2) with the following example.

Example 7.3.1
For each n > 1, let Xn be the average value shown when a fair six-sided die is rolled n
times.

When n is small, the value of Xn is somewhat unpredictable. For example, X1 is uniformly
distributed, since it takes each of the values 1, 2, 3, 4, 5, 6 with equal probability. This is
summarised in the following table:

e 1 2 3 4 5 6

P{X1 = e} 1
6

1
6

1
6

1
6

1
6

1
6

The distribution of X2 is shown in the following table:

e 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

P{X2 = e} 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

As can be seen, the probabilities increase towards the middle of the table; the extreme
values occur with low probability. This effect is exaggerated as n increases. Indeed,

P{Xn = 1} = P{Xn = 6} =
1

6n

which is extremely small when n is large; however, it can be shown that for all ε > 0, we
have

P{3.5− ε < Xn < 3.5 + ε} → 1

Thus when we roll a die repeatedly, we can expect its value to approach 3.5 with arbitrary
precision. This is an instance of a theorem called the law of large numbers, which we will
not prove here. C

The value 3.5 in Example 7.3.1 is special because it is the average of the numbers 1, 2, 3, 4, 5, 6.
More generally, assignments of different probabilities to different values of a random vari-
able X yields a weighted average of the possible values. This weighted average, known as
the expectation of the random variable, behaves in the same way as the number 3.5 did in
Example 7.3.1.
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Definition 7.3.2
Let (Ω,P) be a probability space, let E ⊆ R be countable, and let X be an E-valued
random variable on (Ω,P). The expectation (or expected value) of X, if it exists, is
the real number E[X] (LATEX code: \mathbb{E}) defined by

E[X] =
∑
e∈E

efX(e)

Example 7.3.3
Let X be a random variable representing the value shown when a fair six-sided die is rolled.
Then X ∼ U([6]), so that fX(k) = 1

6 for all k ∈ [6], and hence

E[X] = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

21

6
= 3.5

so the expected value of the die roll is 3.5. C

Example 7.3.4
Let p ∈ [0, 1] and let X ∼ B(1, p). Then

E[X] = 0 · (1− p) + 1 · p = p

So the expected value of a Bernoulli random variable is equal to the parameter. C

Exercise 7.3.5
Let (Ω,P) be a probability space and let c ∈ R. Thinking of c as a constant real-valued
random variable,[a] prove that E[c] = c. C

The following lemma provides an alternative method for computing the expectation of a
random variable. It will be useful for proving that expectation is linear in Theorem 7.3.11.

Lemma 7.3.6
Let (Ω,P) be a probability space, let E be a countable set and let X be an E-valued
random variable on (Ω,P). Then

E[X] =
∑
ω∈Ω

X(ω)P({ω})

Proof. Recall from Lemma 7.2.9 that

Ω =
⋃
e∈E
{X = e}

[a]Formally, we should define X : Ω→ R by letting X(ω) = c for all ω ∈ Ω; then compute E[X].
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and the events {X = e} are mutually exclusive. Hence∑
ω∈Ω

X(ω)P({ω}) =
∑
e∈E

∑
ω∈{X=e}

X(ω)P({ω}) by Lemma 7.2.9

=
∑
e∈E

eP{X = e} by (ii) in Proposition 7.1.5

=
∑
e∈E

efX(e) by Definition 7.2.6

as required.

Proposition 7.3.7
Let n ∈ N and p ∈ [0, 1], and suppose that X is a random variable such that X ∼ B(n, p).
Then E[X] = np.

Proof. Since X ∼ B(n, p), we have fX(k) =
(
n
k

)
pk(1− p)n−k for all 0 6 k 6 n. Hence

E[X] =
n∑

k=0

k ·
(
n

k

)
pk(1− p)n−k by definition of expectation

=
n∑

k=1

k ·
(
n

k

)
pk(1− p)n−k since the k = 0 term is zero

=
n∑

k=1

n

(
n− 1

k − 1

)
pk(1− p)n−k by Proposition 4.2.45

=

n−1∑
`=0

n

(
n− 1

`

)
p`+1(1− p)(n−1)−` writing ` = k + 1

= np ·
n−1∑
`=0

(
n− 1

`

)
p`(1− p)(n−1)−` pulling out constant factors

= np(p+ (1− p))n−1 by the binomial theorem

= np since p+ (1− p) = 1

as required.

Example 7.3.8
A coin which shows heads with probability 1

3 , and tails otherwise, is tossed 12 times.
Letting X be the random variable represent the number of heads that show, we see that
X ∼ B(12, 1

3), and hence the expected number of heads that show is equal to

E[X] = 12 · 1

3
= 4
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C

Exercise 7.3.9
Use Proposition 6.3.2 to prove that the expectation of a N-valued random variable which
is geometrically distributed with parameter p ∈ [0, 1] is equal to 1−p

p . Use this to compute
the expected number of times a coin must be flipped before the first time heads shows,
given that heads shows with probability 2

7 . C

Exercise 7.3.10
Prove that the expectation of a N+-valued random variable which is geometrically distrib-
uted with parameter p ∈ [0, 1] is equal to 1

p . C

Theorem 7.3.11 (Linearity of expectation)
Let (Ω,P) be a probability space, let E ⊆ R be countable, let X and Y be E-valued random
variables on (Ω,P), and let a, b ∈ R. Then

E[aX + bY ] = aE[X] + bE[Y ]

Proof. This follows directly from the fact that summation is linear. Indeed,

E[aX + bY ] =
∑
ω∈Ω

(aX + bY )(ω)P({ω}) by Lemma 7.3.6

=
∑
ω∈Ω

(
aX(ω)P({ω}) + bY (ω)P({ω})

)
expanding

= a
∑
ω∈Ω

X(ω)P({ω}) + b
∑
ω∈Ω

Y (ω)P({ω}) by linearity of summation

= aE[X] + bE[Y ] by Lemma 7.3.6

as required.

Example 7.3.12
Let X be a random variable representing the sum of the numbers shown when a fair six-
sided die is rolled twice. We can write X = Y +Z, where Y is the value of the first die roll
and Z is the value of the second die roll. By Example 7.3.3, we have E[Y ] = E[Z] = 3.5.
Linearity of expectation then yields

E[X] = E[Y ] + E[Z] = 3.5 + 3.5 = 7

so the expected value of the sum of the two die rolls is 7. C

Example 7.3.13
A coin, when flipped, shows heads with probability p ∈ [0, 1]. The coin is flipped. If it
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shows heads, I gain $10; if it shows tails, I lose $20. We compute the least value of p that
ensures that I do not expect to lose money.

Let X be the random variable which is equal to 0 if tails shows, and 1 if heads shows. then
X ∼ B(1, p), so that E[X] = p by Example 7.3.4. Let Y be the amount of money I gain.
Then

Y = 10X − 20(1−X) = 30X − 20

Hence my expected winnings are

E[Y ] = 30E[X]− 20 = 30p− 20

In order for this number to be non-negative, we require p > 2
3 . C

Theorem 7.3.11 generalises by induction to linear combinations of countably many random
variables; this is proved in the following exercise

Exercise 7.3.14
Let (Ω,P) be a probability space, let E ⊆ R be countable, let {Xi | i ∈ I} be a family of
E-valued random variables on (Ω,P), indexed by some countable set I, and let {an | n ∈ N}
be an I-indexed family of real numbers. Prove that

E

[∑
i∈I

aiXi

]
=
∑
i∈I

aiE[Xi]

C

Example 7.3.15
Recall Exercise 7.2.32: an urn contains n > 1 distinct coupons. Each time you draw a
coupon that you have not drawn before, you get a stamp. When you get all n stamps, you
win. We find the expected number of times you need to draw a coupon from the urn in
order to win.

For each k ∈ [n], let Xk be the random variable representing the number of draws required
to draw the kth new coupon, after k − 1 coupons have been collected. Then the total
number of times a coupon must be drawn is X = X1 +X2 + · · ·+Xn.

We already saw that Xk ∼ Geom
(
n−k+1

n

)
for each k ∈ [n]. By Exercise 7.3.10, we have

E[Xk] = n
n−k+1 for all k ∈ [n]. By linearity of expectation, it follows that

E[X] =
n∑

k=1

E[Xk] =
n∑

k=1

n

n− k + 1
= n

n∑
i=1

1

i

C
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Section 8.1

Ring theory

In Chapter 3 we examined the integers by pushing their arithmetic structure to their limits.
Everything we did—including the definition and study of divisibility—was done in terms
of addition, subtraction and multiplication.

Given a set R, provided we can make sense of addition, subtraction and multiplication, we
can make all the same basic definitions—like divisibility, greatest common divisors, and so
on—and ask ourselves to what extent the results that held true of integers hold for R.

This motivates the definition of a ring.

Definition 8.1.1
A (commutative) ring (with unity) is a set R equipped with:
• An addition function a : R×R→ R; we write a(r, s) = r + s for r, s ∈ R;

• A negation function n : R→ R; we write n(r) = −r for r ∈ R;

• A multiplication function m : R×R→ R; we write m(r, s) = r · s for r, s ∈ R;

• An additive identity element 0R ∈ R;

• A multiplicative identity element 1R ∈ R
such that the following conditions hold:
• Properties of addition

� (Associativity) If r, s, t ∈ R then (r + s) + t = r + (s+ t);

� (Identity) If r ∈ R then r + 0R = 0R + r = r;

� (Inverse) If r ∈ R then r + (−r) = (−r) + r = 0R;

� (Commutativity) If r, s ∈ R then r + s = s+ r.

• Properties of multiplication

� (Associativity) If r, s, t ∈ R then (r · s) · t = r · (s · t);
� (Identity) If r ∈ R then r · 1R = 1R · r = r;

� (Commutativity) If r, s ∈ R then r · s = s · r.

• Relationship between addition and multiplication

� (Distributivity) If r, s, t ∈ R then r · (s+ t) = (r · s) + r · t.
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Example 8.1.2
The number sets Z, Q and R are all rings with their usual notions of addition and multi-
plication and so on. The ring Z of integers was our focus in Chapter 3. C

Example 8.1.3
Let X be a set. Then the power set P(X) is a ring, with:

• U + V = U4V ; that is, addition is given by the symmetric difference.

• −U = U ;

• U · V = U ∩ V ; that is, multiplication is given by intersection;

• 0P(X) = ∅;

• 1P(X) = X.

C

Exercise 8.1.4
Verify that P(X), as described in Example 8.1.3, is a ring. C

Example 8.1.5
There are many other rings. Some commonly occuring ones are:

• Given a ring R, there is a ring R[x] of polynomials over R. That is, expressions
of the form

r0 + r1x+ · · ·+ rnx
n

where n ∈ N and r0, . . . , rn ∈ R.

• If n ∈ Z is not a perfect square, we can define

Z[
√
n] = {a+ b

√
n | a, b ∈ Z}

with addition and multiplication defined as you’d expect; in particular

(a+ b
√
n)(c+ d

√
n) = (ac+ bdn) + (ad+ bc)

√
n

This is defined even when n < 0. For example in Z[
√
−5] we have

(1−
√
−5)(1 +

√
−5) = (1 + 5) + (1− 1)

√
−5 = 6

• Given n > 0, the set Zn = {0, 1, . . . , n − 1} can be given the structure of a ring by
declaring a+ b to be the remainder of a+ b when divided by n, and likewise for a · b.

C

Many of the definitions that we provided for integers can then be carried over to arbitrary
rings; we’ll spend most of the rest of this section comparing them.
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Units and zero divisors

Definition 8.1.6
Let R be a ring.
• Let r, s ∈ R. We say r divides s, and write r | s if there exists q ∈ R such that
s = qr.

• u ∈ R is a unit if u | 1R.

Example 8.1.7
Some examples of divisors and units in rings are as follows:

• We showed above that 1 +
√

5 | 6 in Z[
√
−5].

• The number 1 +
√

2 is a unit in Z[
√

2]: indeed, 1 +
√

2 | 1 since

(1 +
√

2)(−1 +
√

2) = (−1 + 2) + (−1 + 1)
√

2 = 1

• In Q and R, every non-zero element is a unit. Indeed, if x ∈ Q and x 6= 0 then 1
x ∈ Q,

so x · 1
x = 1, so x | 1. Likewise with R.

• We know that if a ⊥ n then a has a multiplicative inverse modulo n; this is precisely
the assertion that a ⊥ n if and only if a is a unit in Zn. (Contrast this to the situation
of Z, where the only units are −1 and 1.)

C

One definition that we didn’t give for the integers, because it would have been silly, is that
of a zero divisor.

Definition 8.1.8
Let R be a ring. A zero divisor in R is an element r ∈ R such that r | 0R. We say R is
an integral domain if the only zero divisor in R is 0R itself.

So for example Z is an integral domain, since if r ∈ Z and r | 0, then r = 0.

Proposition 8.1.9
Let n > 1. Then Zn is an integral domain if and only if n is prime.

Proof. Suppose n is composite, say n = ab where 0 < a < n and 0 < b < n. Then ab = 0
in Zn, so a | 0, even though a 6= 0. Hence Zn is not an integral domain.
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Conversely, suppose n is prime. Then a ⊥ n for all a ∈ Zn with a 6= 0, so a has a
multiplicative inverse b ∈ Zn modulo n. That is, ab = 1 in Zn. Suppose, furthermore, that
a is a zero divisor. Then ac = 0 for some c ∈ Zn with c 6= 0. Hence

c = 1 · c = (ab)c = (ac)b = 0b = 0

contradicting the fact that c 6= 0. So a must not be a zero divisor. So Zn is an integral
domain.

Primes and irreducibles

The definitions of primes and irreducibles in Z carry over to arbitrary integral domains.

Definition 8.1.10
Let R be an integral domain and let p ∈ R. Then
• p is prime if p is a non-zero non-unit and, for all r, s ∈ R, if p | rs then p | r or p | s;

• p is irreducible if p is a non-zero non-unit and, for all r, s ∈ R, if p = rs then either
r is a unit or s is a unit.

Primes and irreducibles coincide in the ring Z, as we proved in Theorem 3.2.11, but this is
not necessarily the case in an arbitrary ring.

Example 8.1.11
In Z[

√
−5], the element 2 is irreducible. Moreover, since (1+

√
−5)(1−

√
−5) = 6, we have

2× 3 = (1 +
√
−5)(1−

√
−5)

However, 2 - 1+
√
−5 and 2 - 1−

√
−5. Indeed, if 2 | 1+

√
−5, then there will exist a, b ∈ Z

such that

1 +
√
−5 = 2(a+ b

√
−5) = 2a+ 2b

√
−5

But this implies that 1 = 2a, and hence 2 | 1 in Z, which is nonsense. Likewise for 1−
√
−5.

Hence 2 is not prime in Z[
√
−5]. However 2 is irreducible in Z[

√
−5], though the proof of

this is omitted here because it’s a little involved. C

We can classify some rings in which primes and irreducibles do coincide, however.
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Principal ideal domains

Definition 8.1.12
Let R be a ring. An ideal in R is a subset I ⊆ R such that
• If x, y ∈ I then x− y ∈ I; and

• If x ∈ I and r ∈ R then rx ∈ I.

Example 8.1.13
We have seen To do: reference; PS4 Q3 that if I ⊆ Z is an ideal then

I = dZ = {dn | n ∈ Z}

for some d ∈ Z. C

The proof of Exercise 8.1.13 relies fundamentally on the division theorem. However, we
cannot state the division theorem for an arbitrary ring because it used the order relation
6 on Z, which might not exist in an arbitrary ring.

Example 8.1.14
There is an ideal in Z[x] defined by

(2, x) = {2p(x) + xq(x) | p(x), q(x) ∈ Z[x]} = {2a+ xq(x) | a ∈ Z, q(x) ∈ Z[x]}

C

Ideals in a ring R give rise to a nice kind of an equivalence relation, called a congruence
relation. Define ≡I by r ≡I s if and only if r − s ∈ I. The quotient R/≡I is denoted by
R/I, and the equivalence class [r]≡I is denoted by r + I.

Example 8.1.15
In Z, if I = nZ then, given a, b ∈ Z, we have

a ≡nZ b ⇔ a− b ∈ nZ ⇔ n | a− b ⇔ a ≡ b mod n

Hence a+ nZ = [a]n and Z/nZ is what we previously called Z/nZ. C

Moreover, in any ring R with ideal I, the relation ≡I is compatible with the operations of
R; in other words, if r + s = r′ + s′ in R then

(r + s) + I = (r′ + s′) + I

and likewise for multiplication. Hence we have a form of modular arithmetic that we can
perform in any ring.
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Example 8.1.16
Consider the ring R[x] of polynomials with real coefficients. Define

I = 〈x2 + 1〉 = {(x2 + 1)f(x) | f(x) ∈ R[x]}

Then I is an ideal in R[x], and the quotient ring R[x]/〈x2 + 1〉 is ‘the same’ as the set of
complex numbers; that is, the real numbers extended by allowing

√
−1 to exist. C

Principal ideal domains

Definition 8.1.17
An ideal I is principal if there exists d ∈ R such that

I = {rd | r ∈ R}

In this case we write I = (d). A ring R is called a principal ideal domain if every ideal
in R is principal.

A consequence of 8.1.13 is:

Proposition 8.1.18
Z is a principal ideal domain.

Nonetheless, there are other examples of principal ideal domains, such as Q[x] and Z[
√
−1].

Theorem 8.1.19
Let R be a ring. If R is a principal ideal domain, then every irreducible element p ∈ R is
prime.

Proof. Let p ∈ R and suppose p is irreducible.

First note that if I ⊆ R is an ideal and p ∈ I, then either I = (p) or I = R. Certainly
(p) ⊆ I since p, and hence all multiples of p are elements of I. Since R is a principal ideal
domain, I = (x) for some x ∈ R. Since p ∈ I we must have p = rx for some r ∈ I. Since p
is irreducible, either x is a unit or r is a unit. If x is a unit then I = R. If r is a unit then
qr = 1 for some q ∈ R, so x = qrx = qp ∈ (p), so I ⊆ (p), and hence I = (p). So either
I = (p) or I = R.

Now fix r, s ∈ R and suppose that p | rs. We need to prove that p | r or p | s. To do:
Finish proof
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Section 8.2

Ordinal and cardinal numbers
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Section 8.3

Boolean algebra
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Section 8.4

Complex numbers
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Section 8.5

Limits and asymptotes
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Appendix A

Hints for selected exercises

Hint for Exercise 1.2.9
Suppose n = dr · 10r + · · · + d1 · 10 + d0 and let s = dr + · · · + d1 + d0. Start by proving
that 3 | n− s.

Hint for Exercise 1.2.21
Use the law of excluded middle with the proposition ‘

√
2
√

2
is rational’.

Hint for Exercise 1.2.34
Look carefully at the definition of divisibility (Definition 1.1.12).

Hint for Exercise 1.3.13
Let q(n) be the statement p(n+ b) and prove q(n) for all n > 0 by induction on n.

Hint for Exercise 1.3.42
Prove first that if a ∈ Z and a2 is divisible by 3, then a is divisible by 3.

Hint for Exercise 2.3.28
Look closely at Definition 2.3.23.

Hint for Exercise 3.1.11
Remember that negative integers can be greatest common divisors too.

Hint for Exercise 3.1.13
Start by proving that d and d′ must divide each other.

Hint for Exercise 3.1.24
Exercise 3.1.21 would be a good starting point.

Hint for Exercise 3.1.39
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This is essentially the same as Exercise 3.1.13.

Hint for Exercise 3.1.41
Define m =

ab

gcd(a, b)
and prove that m satisfies the definition of being a least common

multiple of a and b (Definition 3.1.38). Then apply Exercise 3.1.39.

Hint for Exercise 3.2.5
Use the factorial formula for binomial coefficients (Theorem 1.3.31).

Hint for Exercise 3.2.9
Assume p = mn for some m,n ∈ Z. Prove that m or n is a unit.

Hint for Exercise 3.2.22
What are the prime factors of n!− 1?

Hint for Exercise 3.3.23
Consider the list a0, a1, a2, . . . . Since there are only finitely many remainders modulo n,
we must have ai ≡ aj mod n for some 0 6 i < j.

Hint for Exercise 3.3.30
First find the remainder of 244886 when divided by 12.

Hint for Exercise 3.3.33
Consider what it means for an element of [pk] not to be coprime to pk.

Hint for Exercise 3.3.38
You need to use the fact that p is prime at some point in your proof.

Hint for Exercise 3.3.39
Pair as many elements of [p− 1] as you can into multiplicative inverse pairs modulo p.

Hint for Exercise 3.3.49
This generalisation will be tricky! You may need to generalise the definitions and results
about greatest common divisors and least common multiples that we have seen so far,
including Bézout’s lemma. You might want to try proving this first in the case that
ni ⊥ nj for all i 6= j.

Hint for Exercise 3.3.50
Observe that if a, k ∈ Z and k | a, then k | a+ k.

Hint for Exercise 4.1.10
Recall Definition 2.3.29.
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Hint for Exercise 4.1.12
If Z were a subset of Y , then we could easily define an injection i : Z → Y by i(z) = z for
all z ∈ Z. Are there any subsets of Y that are associated with a function with codomain
Y ?

Hint for Exercise 4.1.16
Write the elements of both sets on an m× n grid, and then find a function that sends an
element on one grid to the corresponding element of the other. Quotients and remainders
might be useful! (See Section 3.1.)

Hint for Exercise 4.1.22
When defining a left inverse g : Y → X for f , consider for each y ∈ Y whether or not y is
in the image of f . If it is, what value must g(y) take? If it isn’t, does it matter what value
g(y) takes?

Hint for Exercise 4.1.25
Think about how you prove that a function f is surjective and, given y ∈ Y , identify where
in the proof you define an element of X that you could take to be the value g(y) of a right
inverse g : Y → X.

Hint for Exercise 4.1.28
For part (c), don’t try to write a formula for the inverse of h; instead, use the fundamental
theorem of arithmetic.

Hint for Exercise 4.1.33
Use Exercise 4.1.29.

Hint for Exercise 4.2.29
Any function f : X → Y with finite domain can be specified by listing its values. For each
x ∈ X, how many choices do you have for the value f(x)?

Hint for Exercise 4.2.34
An injection [3]→ [4] must have exactly three values.

Hint for Exercise 4.2.47
How many ways can you select k + 1 animals from a set containing n cats and one dog?

Hint for Exercise 4.2.50
Find two procedures for counting the number of pairs (U, u), such that U ⊆ [n] is a k-
element subset and u ∈ U . Equivalently, count the number of ways of forming a committee
of size k from a population of size n, and then appointing one member of the committee
to be the chair.
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Hint for Exercise 4.2.54
Find an expression for (a+ b+ c)! in terms of a!, b!, c! and

(
a+b+c
a,b,c

)
, following the pattern

of Theorem 4.2.49.

Hint for Exercise 4.2.56
Find a bijection [p]× Cn → Cpn, where Cn is defined as in Theorem 4.2.55.

Hint for Exercise 4.3.4
You need to find a family of subsets of N such that (i) any two of the subsets have infinitely
many elements in common, but (ii) given any natural number, you can find one of the
subsets that it is not an element of.

Hint for Exercise 4.3.8
Use prime factorisation.

Hint for Exercise 4.3.15
Suppose X = N. By Proposition 4.3.10, the set Nk is countable. By Theorem 4.3.11(c), it
suffices to find an injection

(N
k

)
→ Nk.

Hint for Exercise 4.3.19
We have already proved this when X is finite. When X is countably infinite, find a
bijection {0, 1}X → P(X) and apply Theorem 4.3.18. When X is uncountably infinite,
find an injection X → P(X) and find a way to apply Corollary 4.3.12.

Hint for Exercise 5.2.26
Use the characterisation of gcd and lcm in terms of prime factorisation.

Hint for Exercise 5.2.29
Use distributivity, together with the fact that ⊥ ∨ y′ = y′ and > ∧ y′ = y′.

Hint for Exercise 6.1.9
Prove that x is an additive inverse for −x (in the sense of Axioms 6.1.1(F4)) and use
uniqueness of additive inverses. Likewise for x−1.

Hints for exercises in Chapter 5 and thereafter are coming soon.
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Section B.1

Logical theories and models

First-order logic

Throughout, a countably infinite set Var of variables is fixed.

Definition B.1.1
A signature for first-order logic is a quadruple Σ = (C,F ,R, ar), where C, F and R
are pairwise disjoint sets and ar : F ∪R → N is a function. To do: Provide more intuition.
The elements of C are called constant symbols, the elements of F are called function
symbols and the elements of R are called relation symbols. Given a function symbol
or relation symbol s ∈ F ∪R, the value ar(s) is the arity of s.

To do: Examples

Definition B.1.2
Let Σ be a signature for first-order logic. The set Term(Σ) of all Σ-terms, and the
function FV : Term(Σ) → P(Var) assigning to each term its set of free variables, are
defined inductively as follows.
• If x is a variable, then x is a term and FV(x) = {x};

• If c is a constant symbol, then c is a term and FV(c) = ∅;

• If f is a function symbol of arity k and t1, . . . , tk are terms, then f(t1, . . . , tk) is a
term and FV(f(t1, . . . , tk)) = FV(t1) ∪ · · · ∪ FV(tk).

A term with no free variables is called a closed term.

To do: Examples
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Definition B.1.3
Let Σ be a signature for first-order logic. The set Form(Σ) of all logical formulae over
Σ (or Σ-formulae), and the function FV : Form(Σ) → P(Var) assigning to each formula
its set of free variables, are defined inductively as follows.
• ⊥ is a formula and FV(⊥) = ∅;

• If r is a relation symbol of arity k and t1, . . . , tk are terms, then r(t1, . . . , tk) is a
formula and FV(r(t1, . . . , tk)) = FV(t1) ∪ · · · ∪ FV(tk);

• If p is a formula, then ¬p is a formula and FV(¬p) = FV(p).

• If p and q are formulae, then (p ∧ q), (p ∨ q) and (p⇒ q) are formulae and

FV(p ∧ q) = FV(p ∨ q) = FV(p⇒ q) = FV(p) ∪ FV(q)

• If p is a formula and x ∈ FV(p), then ∀x, p and ∃x, p are formulae and

FV(∀x, p) = FV(∃x, p) = FV(p) \ {x}

A logical formula with no free variables is called a sentence.

To do: Examples

Definition B.1.4
Let Σ be a signature for first-order logic. A theory over Σ is a set of Σ-sentences.

To do: Examples

Structures and models

Definition B.1.5
Let Σ be a signature for first-order logic. A Σ-structure A (LATEX code: \mathfrak)
consists of a set A together with:
• For each constant symbol c, an element cA ∈ A;

• For each function symbol f of arity k, a function fA : Ak → A; and

• For each relation symbol r of arity k, a subset rA ⊆ Ak.

To do: Examples
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Definition B.1.6
Let Σ be a structure for first-order logic and let A be a Σ-structure. For each closed Σ-term
t, the interpretation tA of t in A is defined inductively by
• If t = c is a constant symbol, then tA = cA.

• If t = f(t1, . . . , tk), where f is a function symbol of arity k and t1, . . . , tk are closed
terms, then tA = fA(tA1 , . . . , t

A
k ).

Definition B.1.7
Let Σ be a structure for first-order logic. The relation � from the set of all Σ-structures to
the set of all sentences over Σ is defined, for all Σ-structures A, inductively on sentences
as follows:
• A 2 ⊥;

• For all relation symbols r of arity k and all terms t1, . . . , tk

A � r(t1, . . . , tk) if and only if (tA1 , . . . , t
A
k ) ∈ rA

• For all sentences p, q

A � p ∧ q if and only if A � p and A � q

• For all sentences p, q

A � p ∨ q if and only if A � p or A � q

• For all sentences p

A � p⇒ q if and only if A � p implies A � q

• For all sentences p
A � ¬p if and only if A 2 p

• For all formulae p(x) with one free variable

A � ∀x, p(x) if and only if A ` p(a) for all a ∈ A

• For all formulae p(x) with one free variable

A � ∃x, p(x) if and only if A ` p(a) for some a ∈ A
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To do: Examples

Definition B.1.8
Let Σ be a signature for first-order logic and let T be a first-order theory over Σ. A model
of T is a Σ-structure A such that A � p for all p ∈ T .
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Section B.2

Set theoretic foundations

Zermelo–Fraenkel set theory

To do: Motivation

Axioms B.2.1 (Zermelo–Fraenkel axioms)
The following axioms, taken over the signature with a single relation symbol ∈ of arity 2,
are Zermelo–Fraenkel axioms for set theory.

• (Extensionality) If two sets have the same elements, then they are equal.

∀X, ∀Y, [(∀x, (x ∈ X ⇔ x ∈ Y ))⇒ X = Y ]

The axiom of extensionality states that equality of sets can be proved by double-
containment.

• (Foundation) Every set has an element which is ∈-minimal, in the sense of Definition
5.3.8.

∀X, ∃x, [x ∈ X ∧ ∀u ∈ X, u 6∈ x]

The axiom of foundation states that ∈ is a well-founded relation.

• (Empty set) There is a set with no elements.

∃X, ∀x, x 6∈ X

The empty set axiom asserts the existence of ∅.

• (Separation) For any logical formula p(x) with one free variable, and any set X,
there is a set consisting of the elements of X satisfying p(x).

∀X, ∃U, ∀x, [x ∈ U ⇔ (x ∈ X ∧ p(x))]

The axiom of separation asserts the existence of sets of the form {x ∈ X | p(x)}.

• (Pairing) For any two sets x and y, there is a set containing only x and y.

∀x, ∀y, ∃X, ∀u, [u ∈ X ⇔ (u = x ∨ u = y)]

The axiom of pairing asserts the existence of sets of the form {x, y}.
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• (Union) The union of any family of sets exists and is a set.

∀F, ∃U, ∀x, [x ∈ U ⇔ ∃X, (x ∈ X ∧X ∈ F )]

The axiom of union asserts that if F = {Xi | i ∈ I} is a family of sets then the set
U =

⋃
i∈I Xi exists.

• (Replacement) The image of any set under any function is a set. That is, for each
logical formula p(x, y) with two free variables x, y, we have

∀X, [(∀x ∈ X, ∃!y, p(x, y))⇒ ∃Y, ∀y, y ∈ Y ⇔ ∃x ∈ X, p(x, y)]

• (Power set) The set of all subsets of a set is a set.

∀X, ∃P, ∀U, [U ∈ P ⇔ ∀u, (u ∈ U ⇒ u ∈ X)]

The axiom of power set asserts the existence of P(X) for all sets X.

• (Infinity) There is an inhabited set containing successors[a] of all of its elements.

∃X, [(∃u, u ∈ X) ∧ ∀x, (x ∈ X ⇒ x ∪ {x} ∈ X)]

Together with the axioms of empty set and replacement, the axiom of infinity implies
the existence of the set {∅,∅+,∅++,∅+++, . . . }. We will make use of this in Defin-
ition B.2.3. Note also that we used the axiom of union in order to state the axiom
of infinity.

The logical theory consisting of the Zermelo–Fraenkel axioms is called Zermelo–Fraenkel
set theory, or simply ‘ZF’.

To do: V , apparent circularity.

Axiom B.2.2 (Axiom of choice)
Every family of inhabited sets admits a choice function. That is, for every set I and every
family {Xi | i ∈ I} of inhabited sets indexed by I, there is a function f : I →

⋃
i∈I Xi such

that f(i) ∈ Xi for each i ∈ I. Formally,

∀F, [∅ 6∈ F ⇒ ∃f : F → U, ∀X ∈ F, X ∈ f(X)]

where U =
⋃
F =

⋃
X∈F X is the union of all the sets in the family F .

The logical theory consisting of the ZF axioms (Axioms B.2.1) together with the axiom of
choice (Axiom B.2.2) is known as Zermelo–Frankel set theory with choice, or simply
‘ZFC’.

[a]Here, the successor of a set x is defined to be x ∪ {x}.
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Constructions of common mathematical objects

To do: Set operations

To do: Ordered n-tuples

To do: Functions

To do: Relations

Constructions of the number sets

As we saw in Section 1.3, the Peano axioms 1.3.1 are very powerful, in that from a very
basic set of rules we can write down everything we know about the natural numbers; and,
moreover, any set N with an element 0 and a successor operation (−)+ could be treated
as a set of natural numbers. But how do we know that such a set, element and operation
actually exist? In this section, we construct the von Neumann natural numbers—this is
an encoding of natural numbers as sets, and with the successor operation defined as in
Definition B.2.3.

Definition B.2.3
Given a set X, the successor set of X is the set X+ defined by

X+ = X ∪ {X}

A von Neumann natural number is any set obtainable from ∅ by repeatedly taking
successor sets. Write 0vN = ∅ and (n+ 1)vN = (nvN)+; that is

0vN = ∅, 1vN = ∅+, 2vN = ∅++, 3vN = ∅+++, 4vN = ∅++++, . . .

Example B.2.4
The first three von Neumann natural numbers are:

• 0vN = ∅;

• 1vN = ∅+ = ∅ ∪ {∅} = {∅};

• 2vN = ∅++ = {∅}+ = {∅} ∪ {{∅}} = {∅, {∅}}.

C

Exercise B.2.5
Write out the elements of 3vN (= ∅+++) and of 4vN. C

374



Section B.2. Set theoretic foundations 375

Exercise B.2.6
Recall the definition of von Neumann natural numbers from Definition B.2.3. Prove that
|nvN| = n for all n ∈ N. C

Theorem B.2.7
Axioms 1.3.1 are satisfied by letting N be the set of von Neumann natural numbers, letting
the zero element be the empty set, and the successor operation (−)+ be as defined in
Definition B.2.3.

Proof. To do:

Example B.2.8
We verify Axiom 1.3.1(c); that is, n+

vN 6= 0vN for all von Neumann natural numbers nvN.
This is easy to check—indeed, nvN ∈ n+

vN since n+
vN = nvN ∪ {nvN} and nvN ∈ {nvN}; but

nvN 6∈ 0vN since 0vN = ∅ and ∅ has no elements. C

Since we know by Theorem B.2.7 that the von Neumann natural numbers satisfy the Peano
axioms (Axioms 1.3.1), we may declare ‘the natural numbers’ to be the von Neumann
natural numbers, and have done with it. As such, you can—if you want—think of all
natural numbers in these notes as being their corresponding von Neumann natural number.
From now on, we will only use a subscript ‘vN’ when it is imperative that a natural number
be treated as a von Neumann natural number.

To do: Arithmetic operations, order

To do: Define relation for the integers, prove it’s well-defined, provide intuition.

Definition B.2.9
The set of integers is the set Z defined by

Z = (N× N)/∼

where ∼ is the relation on N× N defined by

(a, b) ∼ (c, d) if and only if a+ d = b+ c

for all (a, b), (c, d) ∈ N× N.

To do: Arithmetic operations, order

To do: Define relation for the rationals, prove it’s well-defined, provide intuition.
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Definition B.2.10
The set of rational numbers is the set Q defined by

Q = (Z× (Z \ {0}))/∼

where ∼ is the relation on Z× (Z \ {0}) defined by

(a, b) ∼ (c, d) if and only if ad = bc

for all (a, b), (c, d) ∈ Z× (Z \ {0}).

To do: Arithmetic operations, order

To do: Motivate Dedekind cuts

Definition B.2.11 (Dedekind’s construction of the real numbers)
The set of (Dedekind) real numbers is the set R defined by

R = {D ⊆ Q | D is bounded above and downwards-closed}

To do: Arithmetic operations, order

To do: Motivate Cauchy reals

Definition B.2.12 (Cauchy’s construction of the real numbers)
The set of (Cauchy) real numbers is the set R defined by

R = {(xn) ∈ QN | (xn) is Cauchy}/∼

where ∼ is the relation defined by

(xn) ∼ (yn) if and only if (xn − yn)→ 0

for all Cauchy sequences (xn), (yn) of rational numbers.

To do: Arithmetic operations, order

To do: Motivate definition of complex numbers

Definition B.2.13
The set of complex numbers is the set C = R× R.
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To do: Arithmetic operations

377



378 Chapter B. Foundations

Section B.3

Other foundational matters
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Appendix C

Typesetting mathematics in LATEX

Being able to type up your mathematical writing is a beneficial skill to have; unfortunately,
most Office-style WYSIWYG (‘what you see is what you get’) text editors are not designed
for this task—they just can’t cope with all the notation.

LATEX[a] is a markup language that allows you to input both text and mathematical nota-
tion, the latter in the form of code, which is then beautifully typeset. What follows is a
brisk intro to LATEX, that should suffice for the purposes of this course.

Finding the software

There are several good LATEX editors that you can install on your computer—I recommend
Texmaker (http://www.xm1math.net/texmaker/) if you’re new to it, because it’s cross-
platform and fairly intuitive.

There are also online editors that you can use if you want to avoid installing new software;
I highly recommend ShareLaTeX (http://www.sharelatex.com), which is free to use and
stores your .tex files on the cloud.

There is some faffing around to be done with document headers and so on. So that you
can avoid this, I’ve uploaded template .tex files to Blackboard that you can use in your
homework write-ups.

[a]The word LATEX is pronounced like ‘lay-tek’ or ‘lah-tek’; some people pronounce the ‘k’ like the German
‘ch’ sound, meant to resemble the Greek letter chi (χ). It doesn’t really matter, but if you pronounce it
like ‘lay-teks’ then people will think you’re talking about something somewhat different.
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Text mode and math mode

Before we get into the nitty-gritty, I should mention the difference between ‘text mode’
and ‘math mode’.

• Text mode is the default mode: the stuff you type will appear as text, and this is
the mode you should use when writing anything that isn’t mathematical notation.

• You should use math mode when you’re typing anything which is mathemat-
ical notation, including variables, numbers, fractions, square roots, powers, sums,
products, binomial coefficients, and so on.

To enter math mode, enclose whatever mathematical notation you are writing with dollar
signs ($). For example, if I type $E=mc^2$ then LATEX shows E = mc2. Sometimes it
is convenient to put longer expressions on their own line, in which case you can enclose
it with double-dollar signs ($$); for example, if I type $$a^2+b^2+c^2=ab+bc+ca$$ then
LATEX displays

a2 + b2 + c2 = ab+ bc+ ca

on a line all of its own.

If you need to type text inside math mode (enclosed by $ signs), you can do that using
\text{...}, for example the code

$$\sum {i=1}^n i = \frac{n(n+1)}{2} \text{ for all } n \in \mathbb{N}$$

gives
n∑

i=1

i =
n(n+ 1)

2
for all n ∈ N

Note the spaces before and after ‘for all’; had I left those out of the code, they would not
appear because LATEX ignores spacing in math mode. You can force a space by putting a
backslash before a space, for example $a b$ gives ab but $a\ b$ gives a b.

All mathematical notation should be in math mode, including single variables. Notice the
difference between the following two lines:

If a and b are both even then so is a+b.

If a and b are both even then so is a+ b.

While the first is written entirely in text mode, the second is written using math mode for
the variables and + sign.
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Mathematical symbols

The following table lists—I hope—all of the mathematical symbols you will need in this
course. If you come across other symbols, please let me know.
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Logic

conjunction, disjunction ∧, ∨ \wedge, \vee
negation ¬ \neg

implication, biconditional ⇒, ⇔ \Rightarrow, \Leftrightarrow
exclusive disjunction ⊕ \oplus

true, false (in truth table) X, × \checkmark, \times
quantifiers (universal, existential) ∀, ∃ \forall, \exists

Set theory

element, subset ∈, ⊆ \in, \subseteq
not equal, proper subset 6=, $ \ne, \subsetneqq
intersection, (indexed) ∩,

⋂n
i=1 \cap, \bigcap {i=1}^{n}

union, (indexed) ∪,
⋃n

i=1 \cup, \bigcup {i=1}^{n}
relative complement, complement X \ Y , Xc \setminus, X^c

product, (indexed) ×,
n∏

i=1
\times, \prod {i=1}^{n}

implied lists {1, . . . , n} \{ 1, \dots, n \}
indexed sets {xi | i ∈ I} \{ x i \mid i \in I \}

set-builder notation {x | p(x)} \{ x \mid p(x) \}
empty, universal set ∅, U \varnothing, \mathcal{U}

number sets N,Z,Q,R \mathbb{N}, \mathbb{Z}, etc.

Numbers and combinatorics

multiplication m× n, m · n \times, \cdot
fractions, exponents m

n , mn \frac{m}{n}, m^{n}
order relations 6, > \le, \ge

divisibility, (non-) m | n, m - n \mid, \nmid
binomial coefficient

(
n
k

)
\binom{n}{k}

indexed sum, product
n∑

i=1
ai,

n∏
i=1

ai \sum {i=1}^{n} a i, \prod

modular arithmetic a ≡ b mod n a \equiv b \bmod{n}
Functions and relations

functions f : X → Y f : X \to Y

composition g ◦ f \circ
isomorphism ∼= \cong

equivalence relations ∼, ≈ \sim, \approx
Structured sets

order relation 4, ≺ \preceq, \prec
group operations ·, ?, ◦ \cdot, \star, \circ
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Organisation and formatting

When typing up solutions to problem, organisation can be the difference between a mas-
terpiece and an unreadable heap of notation. Here are some tips to help you organise your
work:

Sections and paragraphs

You can split your work up into sections, subsections, subsubsections, and even subsub-
subsections. To do this, use \section{Section title} or \section*{Section title};
the former includes a section number, and the latter omits it. To start a new paragraph,
simply make two new lines in the code.

Bulleted and enumerated lists

Sometimes it is useful to use bullet points or give an enumerated list. For example, in
these notes, I separate the base case from the induction step in proofs by induction by
using bullet points.

For a bulleted list you can use the itemize environment:

\begin{itemize}
\item Something here\dots
\item You can do lists within lists:

\begin{itemize}
\item Like this.

\item Isn’t it crazy!

\end{itemize}
\item Well, not that crazy.

\end{itemize}

• Something here. . .

• You can do lists within lists:

� Like this.

� Isn’t it crazy!

• Well, not that crazy.

For an enumerated list, you can use the enumerate environment. You can play around with
different methods of enumeration, which you specify in square brackets [...]; personally
I like (1), (i) and (a) the best:
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\begin{enumerate}[(a)]
\item Here’s the first thing;

\item Here’s the second thing;

\item And here’s the third thing.

\end{enumerate}

(a) Here’s the first thing;

(b) Here’s the second thing;

(c) And here’s the third thing.

Definitions, results and proofs

If you use the provided templates, you can make definitions, and state and prove results,
using the following environments:

definition, example, proposition, theorem, lemma, corollary, proof

They are given a number m.n, where m is the section number and n is the position within
the section.

Here’s an example of a theorem appearing in the third section of a document, in which five
definitions, results or examples come before it:

\begin{theorem}
If $n \in \mathbb{N}$ then $n \ge 0$.

\end{theorem}

\begin{proof}
This is really obvious.

\end{proof}

Theorem 3.6. If n ∈ N then n > 0.
Proof. This is really obvious.

Note that the box (�) designating the end of the proof is inserted automatically when you
close the proof environment.

Labels

As you change the contents of a document, the numbering of the definitions, examples and
results might change. To refer to a specific result, instead of typing the number and having
to change it each time the number changes, you can use the \label and \ref commands.

An example of this in action is as follows:
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\begin{definition}
\label{defDivides}
Say $a$ \textbf{divides} $b$ if there

exists $k \in \mathbb{Z}$ such that

$ka=b$.

\end{definition}

We will use Definition

\ref{defDivides} for absolutely

nothing.

Definition 2.11. Say a divides b if
there exists k ∈ Z such that ka = b.

We will use Definition 2.11 for abso-
lutely nothing.

Formatting

In text mode. To put the icing on the cake, you might want to make some words bold or
italicised. This is simple: for bold text type \textbf{text here} and for italic text type
\textit{text here}. In Texmaker and ShareLaTeX you can press Ctrl+B and Ctrl+I

to avoid having to type all this out. Other useful fonts include monospace (\texttt{text
here}), sans-serif (\textsf{text here}) and underlined (\underline{text here}).

In math mode. There are also various fonts or font styles that you can use inside math
mode, including:

• Roman (i.e. not italic): AaBbCc, \mathrm{AaBbCc};

• Bold: AaBbCc, \mathbf{AaBbCc};

• Sans-serif: AaBbCc, \mathsf{AaBbCc};

• Blackboard bold: ABCDE, \mathbb{ABCDE} — only capital letters;

• Fraktur: AaBbCc, \mathfrak{AaBbCc};

• Calligraphic: ABCDE , \mathcal{ABCDE} — only capital letters;

Tables

Tables can be created using the tabular environment. You can specify how columns are
aligned and separated as an argument to the command \begin{tabular}: write l, c or r
to specify that a column should be aligned left, centre or right, respectively. If you want
columns to be separated by a single or double line, enter a single or double bar (| or ||),
respectively.
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Columns are then separated by ampersands (&) and you can move to a new row by entering
a double-backslash (\\). To insert a horizontal line between two rows, simply enter \hline.

Here’s an example:

\begin{tabular}{c||ccc}
$\times$ & 1 & 2 & 3 \\ \hline \hline
1 & 1 & 2 & 3 \\
2 & 2 & 4 & 6 \\
3 & 3 & 6 & 9 \\
\end{tabular}

× 1 2 3

1 1 2 3
2 2 4 6
3 3 6 9

Aligned equations

Occasionally a proof may require you to demonstrate that two terms are equal by proving
a sequence of intermediate equations. This can be done using the align* environment,
which behaves much like the tabular environment.

New lines are introduced by inserting a double-backslash (\\), and the two columns are
separated by an ampersand (&). The left column is aligned right, and the right column is
aligned left. Here’s an example:

\begin{align*}
(n+1)! - n! & = (n+1)n! - n! \\
& = n \cdot n! + n! - n! \\
& = n \cdot n!

\end{align*}

(n+ 1)!− n! = (n+ 1)n!− n!

= n · n! + n!− n!

= n · n!

Note that the align* environment automatically enters into math mode, so to enter text
you should use the \text command.

Entering more ampersands will create more columns, whose alignment alternates (right,
left, right, left, and so on). For example, to add annotations to each line, you can enter a
double-ampersand (&&). For example, the following code. . .

\begin{align*}
(n+1)! - n! & = (n+1)n! - n! && \text{by recursive def of factorials}
\\
& = n \cdot n! + n! - n! && \text{by distributivity} \\
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& = n \cdot n! && \text{by cancellation}
\end{align*}

. . . yields the following output:

(n+ 1)!− n! = (n+ 1)n!− n! by recursive def of factorials

= n · n! + n!− n! by distributivity

= n · n! by cancellation

Note again that, because the align* environment automatically enters math mode, any
annotations must be made within the \text command.

Graphics

To insert graphics into your documents, you need to make sure that the code \usepackage{graphicx}
is somewhere in the document header, i.e. above the line that says \begin{document}.

Images can then be inserted using the \includegraphics command. The format is

\includegraphics[parameters]{filename}

where, in the above, parameters denotes information telling LATEX how large you want
the image to be, and filename is the name of the image file, which. . .

• . . . excludes the extension, for example ‘donkey’ instead of ‘donkey.png’;

• . . . includes the path relative to the main .tex file, for example if donkey.png is stored
in a directory called images, you would enter ‘images/donkey’ instead of ‘donkey’.

The simplest way to control the size of the image is to enter [width=k\textwidth], where
k is a scaling factor between 0 and 1.

For example, the following code:

\begin{center}
\includegraphics[width=0.3\textwidth]{donkey}
\end{center}

yields the following output:
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More advanced techniques

I should take a moment to emphasise that what really matters is your ability to commu-
nicate mathematical arguments clearly and correctly. The LATEX tools discussed so far in
this section are more than sufficient for our purposes.

However, if you are interested in pushing your LATEX skills further or there is a feature
you’re unsure about how to implement, then I recommend browsing or searching one of
the following websites:

• http://tex.stackexchange.com — Q&A website about LATEX

• https://en.wikibooks.org/wiki/LaTeX — online LATEX manual
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Practice page

Use the provided LATEX template template.tex to re-create the following page:
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Squarefree integers
Carl Friedrich Gauss, Wednesday 14th September 1831

Introduction

When you’ve written this page, you will be unstoppable, at least as far as typesetting mathematics
is concerned. You will need to implement:

• Text mode stuff: sections, paragraphs, text formatting, labels and references, lists;

• Math mode stuff: definitions and results, aligned equations, etc.

So let’s get on with it!

1 Squarefree integers

1.1 Definition and an elementary result

Definition 1.1. An integer a is squarefree if it is divisible by no perfect square other than 1.
That is, if n2 divides a then n2 = 1.

Proposition 1.2. A non-zero non-unit a is squarefree if and only if

a = p1 × p2 × · · · × pn

for distinct primes p1, p2, . . . , pn.

Proof. We leave the proof as an exercise to the reader.

1.2 Some examples

Example 1.3. Some concrete examples include:

(i) 5610 is squarefree by Proposition 1.2, since

5610 = 10× 561

= (2× 5)× (11× 17)

(ii) 12 is not squarefree since 4 | 12 and 4 = 22.

1
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addition principle, 209
AM–GM inequality, 287
antisymmetric relation, 240
arity, 259, 368
axiom of choice, 373

base-b expansion, 19, 173
basic element, 259
Bayes’s theorem, 329
Bernoulli distribution, 341
biconditional, 89
bijection, 182
binary expansion, 173
binomial coefficient, 67, 201
binomial distribution, 341
Boolean algebra, 255
bound variable, 97

canonical prime factorisation, 150
Cantor’s diagonal argument, 231
Cauchy–Schwarz inequality, 282
codomain

of a function, 116
of a relation, 234

complement, 109
complete ordered field, 276
completeness axiom, 276
component, 277
conditional probability, 326
congruence, 153
congruence class, 245
conjunction, 81
constructor, 259

contrapositive, 90

convergence

of a sequence, 299

converse, 36, 92

coprime, 138

countable additivity, 315

countable set, 227

counting in two ways, 212

counting principle

addition principle, 209

multiplication principle, 202, 206

De Morgan’s laws

for sets (general), 225

de Morgan’s laws

for logical operators, 86

for quantifiers, 97

for sets (finite), 199

for sets (pairwise), 110

decimal expansion, 173

decreasing sequence, 308

diagonal subset, 236

Diophantine equation

linear, 137, 140

discriminant, 31

disjoint, 209

disjoint union, 195

disjunction, 83

exclusive, 89

distance, 278

divergence, 299

division, 21, 132
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division theorem, 22, 130
divisor, 21, 132
domain

of a function, 116
of a relation, 234

dot product, 281
double counting, 212

element, 100
empty function, 122
empty relation, 235
empty set, 75, 101
equivalence class, 244
equivalence relation, 242
Euclidean algorithm, 135

reverse, 140
Euler’s theorem, 164
event, 315

that p(X), 334
that X = e, 334

expectation, 346
expected value, 346
extended real number line, 293

factor, 21, 132
factorial, 66, 202
Fermat’s little theorem, 162
field, 271
finite set, 190
free variable, 94

in a term, 368
function, 116

bijective, 182
empty, 122
identity, 122
injective (one-to-one), 179
surjective, 181

Fundamental theorem of arithmetic, 148

geometric distribution
on N, 343
on N+, 344

GM–HM inequality, 291

graph

of a function, 119

of a relation, 235

greatest common divisor, 133

greatest element of a poset, 250

identity function, 122

ill-founded relation, 262

implication, 88

inclusion–exclusion principle, 220

increasing sequence, 308

independent

events, 322

random variables, 338

indexed product, 53

indexed sum, 53

indicator function, 321

induction, 51, 258

on N (strong), 63

on N (weak), 55

on a well-founded relation, 264

on an inductively defined set, 260

inductively defined set, 259

inequality

Cauchy–Schwarz, 282

of arithmetic and harmonic means, 287

of generalised means, 295

of geometric and harmonic means, 291

of quadratic and arithmetic means, 292

triangle, 284

triangle (one-dimensional), 279

infimum, 251

infinite set, 190

inhabited set, 75, 101

injection, 179

interpretation, 370

intersection

indexed, 224

indexed (finite), 197

pairwise, 107
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inverse

left inverse, 184

right inverse, 184

two-sided, 185

irrational number, 26

irreducible number, 146

lattice

complemented, 255

distributive, 254

least common multiple, 144

least element of a poset, 250

left inverse, 184

limit

of a sequence, 299

Lindenbaum–Tarski algebra, 256

linear Deiophantine equation, 140

linear Diophantine equation, 137

logical equivalence, 84

logical formula, 94, 369

logical operator, 81

magnitude, 278

mean

arithmetic, 287

generalised, 294

geometric, 287

harmonic, 290

quadratic, 292

model

probablistic, 314

model of a theory, 371

modular arithmetic, 157

modulo, 153

monotone convergence theorem, 309

monotone sequence, 308

multiplication principle, 202, 206

multiplicity

of a prime, 150

mutually independent

random variables, 338

natural number, 374

von Neumann, 374

negation, 85

non-zero non-unit, 133

number

natural, 374

von Neumann natural, 374

number base, 19

numeral system, 18

Hindu–Arabic, 18

ordered I-tuple, 224

ordered n-tuple, 197

ordered pair, 110

origin, 277

outcome, 315

parameter, see free variable

partial order, 247

partition (finite version), 209

Pascal’s triangle, 67

Peano axioms, 51

permutation, 201

polynomial, 29

poset, 247

power set, 104

prime

canonical prime factorisation, 150

prime number, 145

probability, 315

conditional, 326

probability distribtion

Bernoulli, 341

probability distribution, 339

binomial, 341

geometric (on N), 343

geometric (on N+), 344

uniform, 339

probability mass function, 335

probability measure, 315

pushforward, 337
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probability space

discrete, 315

product

indexed, 53, 224

indexed (finite), 197

product of sets

pairwise, 110

proof, 14

by contradiction, 90

by contraposition, 90

proposition, 14

propositional formula, 81

pushforward measure, 337

pushforward probability measure, 337

QM–AM inequality, 292

quantifier, 47

existential, 96

universal, 94

quantifier alternation, 98

quotient, 22

of a set by an equivalence relation, 244

of numbers, 132

R-induction, 264

random variable, 334

range of a variable, 94

rank, 267

recursion, 52

reducible number, 146

reflexive relation, 238

relation, 234

antisymmetric, 240

equivalence relation, 242

ill-founded, 262

on a set, 237

partial order, 247

reflexive, 238

symmetric, 239

transitive, 240

well-founded, 262

relatively prime, 138

remainder, 22, 132

reverse Euclidean algorithm, 140

right inverse, 184

ring, 352

root, 30

root-mean-square, 292

RSA encryption, 175

rule of product, 202, 206

rule of sum, 209

sample space, 315

satisfaction, 370

scalar product, 281

sentence, 369

sequence, 296

constant, 296

decreasing, 308

increasing, 308

monotone, 308

set, 100

inductively defined, 259

universal, 100

Zermelo–Fraenkel axioms, 372

set equality, 106

set-builder notation, 101

sign, 150

signature for first-order logic, 368

size

of a finite set, 190

strong induction principle, 63

structure for a signature, 369

subset, 103

k-element subset, 200

diagonal, 236

substitution, 94

sum

indexed, 53

supremum, 251

surjection, 181

symmetric relation, 239
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tautology, 92
term, 368

of a sequence, 296
theory, 369
totient, 163
transitive relation, 240
triangle inequality, 284

in one dimension, 279
trinomial coefficient, 217
truth table, 82
two-sided inverse, 185

uniform distribution, 339
union

indexed, 224
indexed (finite), 197
pairwise, 107

unique existential, 112
unit, 132
universe, 100
universe of discourse, 100

variable
free and bound, 93

von Neumann natural number, 374

weak induction principle, 55
well-definedness, 120
well-founded induction, 264
well-founded relation, 262
well-ordering principle, 75

xor, 89

Zermelo–Fraenkel set theory, 372
with choice, 373

,

Index of notation ,

{· · · } — set notation, 101

A — structure, model, 369, 371

∀ — universal quantifier, 94

[a]n — congruence class, 245

× — Cartesian product, 110

Π — indexed Cartesian product, 197, 224

Xc — complement, 109

◦ — composition, 123

∧ — conjunction, 81

(xn)→ a — convergence of a sequence, 299

⊥ — coprime, 138

∨ — disjunction, 83

a | b — division, 132

∆X — diagonal subset, 236, 239

ε — epsilon, 298

4, v — partial order, 247

∼, ≡, ≈ — equivalence relation, 242

[x]∼ — equivalence class, 244

E[X] — expectation, 346

⊕ — exclusive disjunction, 89

∃ — existential quantifier, 96

∃! — unique existential quantifier, 112

× — false, 82

f : X → Y — function, 116

f [U ] — image, 125

f−1 — inverse function, 187

f−1[V ] — preimage, 126

gcd — greatest common divisor, 135

Gr(f) — graph of a function, 119

Gr(R) — graph of a relation, 235

iA — indicator function, 321

idX — identity function, 122

⇔ — biconditional, 89

⇒ — implication, 88

∈ — element, 100

∩ — intersection, 107, 197, 224

lcm — least common multiple, 144

\ — set difference, 109
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a ≡ b mod n — congruence, 153
mod — congruence, 153
[n] — standard n-element set, 108(
n
k

)
— binomial coefficient, 67, 201(

n
a,b,c

)
— trinomial coefficient, 217

n! — factorial, 66, 202
¬ — negation, 85
nvN — von Neumann natural number, 374
∅ — empty set, 101
(Ω,P) — probability space, 315
∅X,Y — empty relation, 235
P — probability, 315
P(A | B) — conditional probability, 326
Π — indexed product, 53
P(X) — power set, 104
X/∼ — quotient, 244
RX — relation assoc. w. an ind. def. set, 266
⊆ — subset, 103
Σ — indexed sum, 53
SX — permutations, 201
ϕ(n) — totient, 163
U — universal set, 100
∪ — union, 107, 197, 224
t — disjoint union, 195(
X
k

)
— k-element subsets, 200

~x · ~y — scalar product, 281
‖~x‖ — magnitude, 278
(xn)n>0 — sequence, 296
~x — vector, 277
{X = e} — event that X = e, 334
Z/nZ — congruence classes modulo n, 245
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