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Note to readers

Hello, and thank you for taking the time to read this quick introduction to the book! I
would like to begin with an apology and a warning:

This book is still under development!

That is to say, there are some sections that are incomplete (notably Sections 6.2 and
6.3, and all of Chapter 8), as well as other sections which are currently much more terse
than I would like them to be.

An up-to-date version of this book is be available from the following web page:
http://infinitedescent.xyz

As the book is undergoing constant changes, I advise that you do not print the notes in
their entirety—if you must print them at all, then I suggest that you do it a few pages
at a time, as required.

This book was designed with inquiry and communication in mind, as they are central
to a good mathematical education. One of the upshots of this is that there are many
exercises throughout the book, requiring a more active approach to learning, rather
than passive reading. These exercises are a fundamental part of the book, and should be
completed even if not required by the course instructor. Another upshot of these design
principles is that solutions to exercises are not provided—a student seeking feedback on
their solutions should speak to someone to get such feedback, be it another student, a
teaching assistant or a course instructor.

Navigating the book

The material covered in Chapters 1 and 2 can be considered prerequisite for all sub-
sequent material in the book; any introductory course in pure mathematics should cover
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at least these two chapters. The remaining chapters are a preview of other areas of pure
mathematics. The dependencies between the sections in Chapters 3—8; dashed arrows
indicate that a section is a recommended, rather than required, for another.
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What the numbers, colours and symbols mean

Much of the material in this book is broken into enumerated items which, broadly
speaking, fall into one of four categories: results (often followed by proofs), de nitions,
examples (including exercises for the reader), and remarks. These items are colour-
coded as indicated in the previous sentence, and are enumerated according to their
section—for example, Theorem 1.3.10 is in Section 1.3. Particularly important theorems,

definitions and so on, appear in a .

You will also encounter the symbols , C and ?, whose meanings are as follows:

End of proof. It is standard in mathematical documents to identify when a proof
has ended by drawing a small square or by writing ‘Q.E.D.” (The latter stands for
quod erat demonstrandum, which is Latin for what was to be shown.)

C End of item. This is not a standard usage, and is included only to help you to
identify when an item has finished and the main content of the book continues.

? Optional content. Sections, exercises, results and proofs marked with this sym-
bol can be skipped over. Usually this is because the content is very challenging, or
is technical in a way that is mathematically necessary but educationally not very
important.

Licence

This book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 (cC BY-NC-SA 4.0) licence. This means you're welcome to share this book, provided
that you give credit to the author, and that any copies or derivatives of this book are
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released under the same licence, are freely available and are not for commercial use. The
full licence is available at the following link:

http://creativecommons.org/licenses/by-nc-sa/4.0/

Comments and corrections

Any feedback, be it from students, teaching assistants, instructors or any other readers,
would be very much appreciated. Particularly useful are corrections of typographical
errors, suggestions for alternative ways to describe concepts or prove theorems, and
requests for new content (e.g. if you know of a nice example that illustrates a concept,
or if there is a relevant concept you wish were included in the book). Such feedback can
be sent to me by email (cnewstead@northwestern.edu).


http://creativecommons.org/licenses/by-nc-sa/4.0/
cnewstead@northwestern.edu
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14 Chapter 1. Mathematical reasoning

Section 1.1
Getting started

Before we can start proving things, we need to eliminate certain kinds of statements that
we might try to prove. Consider the following statement:

This sentence is false.

Is it true or false? If you think about this for a couple of seconds then you'll get into a
bit of a pickle.

Now consider the following statement:
The happiest donkey in the world.

Is it true or false? Well it's not even a sentence; it doesn't make sense to evessk if it's
true or false!

Clearly we'll be wasting our time trying to write proofs of statements like the two listed
above|we need to narrow our scope to statements that we might actually have a chance
of proving (or perhaps refuting)! This motivates the following (informal) de nition.

De nition 1.1.1

A proposition is a statement to which it is possible to assign aruth value (‘true' or
“false"). If a proposition is true, a proof of the proposition is a logically valid argument
demonstrating that it is true, which is pitched at such a level that a member of the
intended audience can verify its correctness.

Thus the statements given above are not propositions because there is no possible way
of assigning them a truth value. Note that, in De nition 1.1.1, all that matters is that

it makes sensdo say that it is true or false, regardless of whether it actually is true or
false|the truth value of many propositions is unknown, even very simple ones.

Exercise 1.1.2
Think of an example of a true proposition, a false proposition, a proposition whose truth
value you don't know, and a statement that is not a proposition. C

Results in mathematical papers and textbooks may be referred to apropositions, but
they may also be referred to astheorems lemmas or corollaries depending on their
intended usage.
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Section 1.1. Getting started 15

A proposition is an umbrella term which can be used for any result.
A theorem is a key result which is particularly important.

A lemma is a result which is proved for the purposes of being used in the proof
of a theorem.

A corollary is a result which follows from a theorem without much additional
e ort.

These are not precise de nitions, and they are not meant to be|you could call every
result a proposition if you wanted to|but using these words appropriately helps readers
work out how to read a paper. For example, if you just want to skim a paper and nd
its key results, you'd look for results labelled astheorems

It is not much good trying to prove results if we don't have anything to prove results
about. With this in mind, we will now introduce the number setsand prove some results
about them in the context of four topics, namely: division of integers, number bases,
rational and irrational numbers, and polynomials. These topics will provide context for
the rest of the material in Chapters 1 and 2.

We will not go into very much depth in this section. Rather, think of this as a warm-up
exercise|a quick, light introduction, with more proofs to be provided in Chapter 1 and
in future chapters.

Number sets

Later in this section, and then in much more detail in Section 2.2, we will encounter the
notion of a set; a set can be thought of as being a collection of objects. This seemingly
simple notion is fundamental to mathematics, and is so involved that we will not treat
sets formally in the main body of the text|see Section B.2 for a formal viewpoint. For
now, the following de nition will su ce.

De nition 1.1.3  (to be revised in De nition 2.2.1)

A set is a collection of objects. The objects in the set are callecdlements of the set.
If X is a set andx is an object, then we write x 2 X (IATEX code: x nin X) to denote
the assertion that x is an element ofX.

The sets of concern to us rst and foremost are thenumber setgthat is, sets whose
elements are particular types ofnumber. At this introductory level, many details will be
temporarily swept under the rug; we will work at a level of precision which is appropriate
for our current stage, but still allows us to develop a reasonable amount of intuition.

15



16 Chapter 1. Mathematical reasoning

In order to de ne the number sets, we will need three things: an in nite line, a xed
point on this line, and a xed unit of length.

So here we go. Here is an in nite line:

The arrows indicate that it is supposed to extend in both directions without end. The
points on the line will represent numbers (speci cally, real numbers a misleading term
that will be de ned in De nition 1.1.24). Now let's x a point on this line, and label it
0"

This point can be thought of as representing the number zero; it is the point against
which all other numbers will be measured. Finally, let's x a unit of length:

This unit of length will be used, amongst other things, to compare the extent to which
the other numbers di er from zero.

De nition 1.1.4
The above in nite line, together with its xed zero point and xed unit length, constitute
the (real) number line

We will use the number line to construct ve sets of numbers of interest to us:
The set N of natural numbers|De nition 1.1.5;
The set Z of integers|De nition 1.1.11;
The set Q of rational numbers|De nition 1.1.23;
The set R of real numbergDe nition 1.1.24; and
The set C of complex number¢$De nition 1.1.30.

Each of these sets has a di erent character and is used for di erent purposes, as we will
see both later in this section and throughout this book.
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Section 1.1. Getting started 17

Natural numbers ( N)

The natural numbers are the numbers used for counting|they are the answers to ques-
tions of the form "how many'|for example, | have three uncles,one dog and zero cats.

Counting is a skill humans have had for a very long time; we know this because there
is evidence of people using tally marks tens of thousands of years ago. Tally marks
provide one method of counting small numbers: starting with nothing, proceed through
the objects you want to count one by one, and make a mark for every object. When
you are nished, there will be as many marks as there are objects. We are taught from
a young age to count with our ngers; this is another instance of making tally marks,
where now instead of making a mark we raise a nger.

Making a tally mark represents anincrement in quantity|that is, adding one. On our
number line, we can represent an increment in quantity by moving to the right by the
unit length. Then the distance from zero we have moved, which is equal to the number
of times we moved right by the unit length, is therefore equal to the number of objects
being counted.

De nition 1.1.5
The natural numbers are represented by the points on the number line which can be
obtained by starting at 0 and moving right by the unit length any number of times:

0 1 2 3 4 5

- | | | | | | >
T T T T T T

In more familiar terms, they are the non-negative whole numbers We write N for the
set of all natural numbers; thus, the notation 'n 2 N' means that n is a natural number.

The natural numbers have very important and interesting mathematical structure, and
are central to the material in Sections 1.3, 4.1 and 4.2. A more precise characterisation of
the natural numbers will be provided in Section 1.3, and a mathematical construction of
the set of natural numbers can be found in De nition B.2.3. Central to these more precise
characterisations will be the notions of “zero' and of “adding one'|just like making tally
marks.

Aside

Some authors de ne the natural numbers to be thepositive whole numbers (1, 2;3;:::),
excluding zero. We take O to be a natural number since our main use of the natural
numbers will be for counting nite sets, and a set with nothing in it is certainly nite!
That said, as with any mathematical de nition, the choice about whether 0 2 N or 0 62N
is a matter of taste or convenience, and is merely a convention|it is not something that
can be proved or refuted. C
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18 Chapter 1. Mathematical reasoning

Number bases

Writing numbers down is something that may seem easy to you now, but it likely took
you several years as a child to truly understand what was going on. Historically, there
have been many di erent systems for representing numbers symbolically, calledumeral
systems First came the most primitive of all, tally marks, appearing in the Stone Age
and still being used for some purposes today. Thousands of years and hundreds of
numeral systems later, there is one dominant numeral system, understood throughout
the world: the Hindu{Arabic numeral system . This numeral system consists of ten
symbols, calleddigits. It is a positional numeral system, meaning that the position of a
symbol in a string determines its numerical value.

In English, the Arabic numerals are used as the ten digits:

01 2 3 456 7 89

The right-most digit in a string is in the units place, and the value of each digit increases
by a factor of ten moving to the left. For example, when we write "2812', the left-most
“2' represents the number two thousand, whereas the last “2' represents the number two.

The fact that there are ten digits, and that the numeral system is based on powers of
ten, is a biological accident corresponding with the fact that most humans have ten
ngers. For many purposes, this is inconvenient. For example, ten does not have many
positive divisors (only four)|this has implications for the ease of performing arithmetic;

a system based on the number twelve, which has six positive divisors, might be more
convenient. Another example is in computing and digital electronics, where it is more
convenient to work in a binary system, with just two digits, which represent "o ' and
“on' (or “low voltage' and “high voltage'), respectively; arithmetic can then be performed
directly using sequences ofogic gatesin an electrical circuit.

It is therefore worthwhile to have some understanding of positional numeral systems
based on numbers other than ten. The mathematical abstraction we make leads to the
de nition of baseb expansion

18



Section 1.1. Getting started 19

De nition 1.1.6
Let b > 1. The base-b expansion of a natural number n is the® string d;d; 1:::do
such that

n=d B+d 1 0 1+ +dy b

06 d; <b for eachi; and

If n> 0 then d, 6 O|the base- b expansion of zero is 0 in all baseb.
Certain number bases have names; for instance, the base-2, 3, 8, 10 and 16 expansions
are respectively calledbinary, ternary, octal, decimal and hexadecimal

&The use of the word “the' is troublesome here, since it assumes that every natural number has only one
baseb expansion. This fact actually requires proof|see Theorem 3.3.51.

Example 1.1.7
Consider the number 1023. Its decimal (base-10) expansion is 1023, since

1023=1 10°+0 10°+2 10'+3 10°
Its binary (base-2) expansion is 1111111111, since
1023=1 2941 2841 27+1 2841 2541 2%+1 22+1 22+1 2'+1 20

We can express numbers in base-36 by using the ten usual digits 0 through 9 and the
twenty-six letters A through Z; for instance, A represents 10, M represents 22 and Z
represents 35. The base-36 expansion of 1023 is SF, since

1023=28 36t +15 36°=S 36'+F 36"

C

Exercise 1.1.8

Find the binary, ternary, octal, decimal, hexadecimal and base-36 expansions of the
number 21127, using the letters A{F as additional digits for the hexadecimal expansion
and the letters A{Z as additional digits for the base-36 expansion. C

We sometimes wish to specify a natural number in terms of its basé-expansion; we
have some notation for this.

Notation 1.1.9

then we write
dedr 1:iidoy = B+ 1 BT+ +dy B

for the natural number whose baseb expansion isd,d; 1:::dg. If there is no subscript
(b) and a base is not speci ed explicitly, the expansion will be assumed to be in base-10.

19



20 Chapter 1. Mathematical reasoning

Example 1.1.10
Using our new notation, we have

Integers ( Z)

The integers can be used for measuring the di erence between two instances of counting.
For example, suppose | have ve apples and ve bananas. Another person, also holding
apples and bananas, wishes to trade. After our exchange, | have seven apples and only
one banana. Thus | have two more apples and four fewer bananas.

Since an increment in quantity can be represented by moving to the right on the number
line by the unit length, a decrementin quantity can therefore be represented by moving
to the left by the unit length. Doing so gives rise to the integers.

De nition 1.1.11
The integers are represented by the points on the number line which can be obtained
by starting at 0 and moving in either direction by the unit length any number of times:

We write Z for the set of all integers; thus, the notation n 2 Z' means that n is an
integer.

The integers have such a fascinating structure that a whole chapter of this book is
devoted to them|see Chapter 3. This is to do with the fact that, although you can
add, subtract and multiply two integers and obtain another integer, the same is not true
of division. This "bad behaviour' of division is what makes the integers interesting. We
will now see some basic results about division.

Division of integers

The motivation we will soon give for the de nition of the rational numbers (De ni-
tion 1.1.23) is that the result of dividing one integer by another integer is not necessarily
another integer. However, the result issometimesanother integer; for example, | can di-
vide six apples between three people, and each person will receive an integral number of
apples. This makes division interesting: how can we measure the failure of one integer's
divisibility by another? How can we deduce when one integer is divisible by another?

20



Section 1.1. Getting started 21

What is the structure of the set of integers when viewed through the lens of division?
This motivates De nition 1.1.12.

De nition 1.1.12 (to be repeated in De nition 3.1.4)
Let a;b2 Z. We say b divides a, or that bis adivisor (or factor ) of a, if a = gqbfor
some integerq.

Example 1.1.13
The integer 12 is divisible by 1, 2, 3, 4, 6 and 12, since

12=12 1=6 2=4 3=3 4=2 6=1 12

It is also divisible by the negatives of all of those numbers; for example, 12 is divisible

by 3sincel2=( 4) ( 3). C
Exercise 1.1.14
Prove that 1 divides every integer, and that every integer divides 0. C

Using De nition 1.1.12, we can prove some general basic facts about divisibility.

Proposition 1.1.15
Let a;b;c2 Z. If bdivides a and c divides b, then c divides a.

Proof. Suppose thatb divides a and c divides b. By De nition 1.1.12, it follows that
a=qb and b=rc

for some integersq and r. Using the second equation, we may substitutec for b in the
rst equation, to obtain

a= q(rc)

But g(rc) = (gr)c, and gr is an integer, so it follows from De nition 1.1.12 that c divides
a. O

Exercise 1.1.16
Let a;b2 Z. Suppose thatd divides a and d divides b. Prove that d divides au + by,
whereu and v are any integers. C

It is not just interesting to know when one integer doesdivide another; however, proving
that one integer doesn't divide another is much harder. Indeed, to prove that an integer
bdoes not divide an integera, we must prove that a 6 gbfor any integer g at all. We will
look at methods for doing this in Section 1.2; these methods use the following extremely
important result, which will underlie all of Chapter 3.

21



22 Chapter 1. Mathematical reasoning

Theorem 1.1.17 (Division theorem, to be repeated in Theorem 3.1.1)
Let a;b2 Z with b6 0. There is exactly one way to write

a=qb+r

such that g and r are integers, and 06 r<b (if b>0)or06 r< b (if b<0).

The number gin Theorem 1.1.17 is called thequotient of a when divided by b, and the
number r is called the remainder .

Example 1.1.18
The number 12 leaves a remainder of 2 when divided by 5, since 12 =5 + 2. C

Here's a slightly more involved example.

Proposition 1.1.19
Suppose an integera leaves a remainder ofr when divided by an integer b, and that
r> 0. Then aleaves aremainder ob r when divided by b.

Proof. Supposea leaves a remainder of when divided by b. Then
a= gb+r
for some integerg. A bit of algebra yields
a= gb r= qgb r+(b b= (g+1)b+(b r)

Since O<r<b,we have O<b r<b. Hence (g+1)is the quotient of a when
divided by b, and b r is the remainder. O

Exercise 1.1.20
Prove that if an integer a leaves a remainder ofr when divided by an integerb, then a
leaves a remainder of when divided by b. C

We will nish this part on division of integers by connecting it with the material on
number bases|we can use the division theorem (Theorem 1.1.17) to nd the baseb
expansion of a given natural number. It is based on the following observation: the
natural number n whose baseh expansion isd;d; 1  didp is equal to

do+ b(dy+ b(d2+  + b(dy 1+ bd) )

Moreover, 06 d; <b for all i. In particular n leaves a remainder ofdyg when divided by

b. Hence
n dg

b

=d;+ dob+ +d b 1

22



Section 1.1. Getting started 23

The baseb expansion of% is therefore
dr dr 1 dl

In other words, the remainder of n when divided by b is the last baseb digit of n, and
then subtracting this number from n and dividing the result by b truncates the nal
digit. Repeating this process gives usli, and then d,, and so on, until we end up with
0.

This suggests the following algorithm for computing the baseb expansion of a number
n:

Step 1. Let dg be the remainder whenn is divided by b, and let ng = % be the
quotient. Fix i =0.

Step 2. Supposen; and d; have been de ned. Ifn; = 0, then proceed to Step

3. Otherwise, de ne di+1 to be the remainder whenn; is divided by b, and de ne
%. Increment i, and repeat Step 2.

Ni+1 =
Step 3. The baseb expansion ofn, is

didi 1 do

Example 1.1.21
We compute the base-17 expansion of 15213, using the letters A{G to represent the
numbers 10 through 16.

15213 =894 17 + 15, sodp =15=F and ng = 894.

894 =52 17+10,sod; =10=A and n; =52.

52=3 17+1,sody,=1and n, =3.

3=0 17+3,sod3=3 and n3=0.

The base-17 expansion of 15213 is therefore 31AF.
A quick veri cation gives

31AF37) =3 17°+1 177+10 17+15=15213

as desired. C

Exercise 1.1.22
Find the base-17 expansion of 408 735 787 and the base-36 expansion of 1442 151 747.
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24 Chapter 1. Mathematical reasoning

Rational numbers ( Q)

Bored of eating apples and bananas, | buy a pizza which is divided into eight slices. A
friend and | decide to share the pizza. | don't have much of an appetite, so | eat three
slices and my friend eats ve. Unfortunately, we cannot represent the proportion of the
pizza each of us has eaten using natural numbers or integers. However, we're not far o :
we can count the number of equal parts the pizza was split into, and of those parts, we
can count how many we had. On the number line, this could be represented by splitting
the unit line segment from 0 to 1 into eight equal pieces, and proceeding from there.
This kind of procedure gives rise to therational numbers.

De nition 1.1.23
The rational numbers are represented by the points at the number line which can
be obtained by dividing any of the unit line segments between integers into an equal
number of parts.

5 4 3 2 1 o0 1 2 3 4 5

The rational numbers are those of the form%, wherea;b2 Z and b6 0. We write Q
for the set of all rational numbers; thus, the notation ‘g2 Q' means that q is a rational
number.

The rational numbers are a very important example of a type of algebraic structure
known as a eld |they are particularly central to algebraic number theory and algebraic
geometry.

Real numbers ( R)
Quantity and change can be measured in the abstract usingeal numbers

De nition 1.1.24
The real numbers are the points on the number line. We write R for the set of all real
numbers; thus, the notation ‘a2 R' means that a is a real number.

The real numbers are central to real analysis, a branch of mathematics introduced in
Chapter 6. They turn the rationals into a continuum by " lling in the gaps'|speci cally,
they have the property of completenessmeaning that if a quantity can be approximated
with arbitrary precision by real numbers, then that quantity is itself a real number.

We can de ne the basic arithmetic operations (addition, subtraction, multiplication and
division) on the real numbers, and a notion of ordering of the real numbers, in terms of
the in nite number line.
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Ordering. A real number a is less than a real numberb, written a < b, if a lies to
the left of b on the number line. The usual conventions for the symbol$ (IATEX
code: nle), > and > (IATEX code: nge) apply, for instance ‘a 6 b means that
eithera<bora= b

Addition. Suppose we want to add a real numbea to a real numberb. To do this,
we translate a by b units to the right|if b < O then this amounts to translating
a by an equivalent number of units to the left. Concretely, take two copies of the
number line, one above the other, with the same choice of unit length; move the
0 of the lower number line beneath the pointa of the upper number line. Then

a+ bis the point on the upper number line lying above the point b of the lower
number line.

Here is an illustration of the fact that ( 3)+5 = 2:

8 7 6 5 4 3 2 1 o0 1 2 3 4 5

= = = = = * : : : : T = = =

5 4 3 2 1 0 1 2 3 4 5 6 7 8
Multiplication. This one is fun. Suppose we want to multiply a real number

a by a real number b. To do this, we scale the number line, and perhapsre ect
it. Concretely, take two copies of the number line, one above the other; align
the O points on both number lines, and stretch the lower number line evenly until
the point 1 on the lower number line is below the pointa on the upper number
line|note that if a < O then the number line must be re ected in order for this

to happen. Thena bis the point on the upper number line lying aboveb on the
lower number line.

Here is an illustration of the fact that 5 4 = 20.

N

=
+ P
+ N
+ w
+a

6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1 1 el 1 1 1 1

B t----e0
B

o+---+o

and here is an illustration of the fact that ( 5) 4= 20:

T A
T
TN
T,
+ P
+ N
+ w
+a

RPT---®h

ot+---+to
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26 Chapter 1. Mathematical reasoning

Exercise 1.1.25
Interpret the operations of subtraction and division as geometric transformations of the
real number line. C

We will take for granted the arithmetic properties of the real numbers in this section,
waiting until Section 6.1 to sink our teeth into the details. For example, we will take for
granted the basic properties of rational numbers, for instance

c_ ad+ bc and & €=
d  bd b d bd

(@)

ac

+

ol

Rational and irrational numbers

Before we can talk about irrational numbers, we should say what they are.

De nition 1.1.26
An irrational number is a real number that is not rational.

Unlike N; Z; Q; R; C, there is no standard single letter expressing the irrational numbers.
However, by the end of Section 2.2, we will be able to write the set of irrational numbers
asRnQ.

Note in particular that “irrational' does not simply mean “not rational’|that would imply
that all complex numbers which are not real are irrational|rather, the term “irrational’
means ‘real and not rational'.

Proving that a real number is irrational is not particularly easy. We will get our foot
in the door by allowing ourselves to assume the following result, which is proved in
Proposition 1.3.38.

Proposition 1.1.2
The real number 2 is irrational. O

We can use the fact that p? is irrational to prove some facts about the relationship
between rational numbers and irrational numbers.

Proposition 1.1.28
Let a and b be irrational numbers. It is possible that ab be rational.

Proof. Let a = b = p?. Then a and b are irrational, and ab = 2 = £, which is
rational. ]

2
1
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Exercise 1.1.29
Let r be a rational number and let a be an irrational number. Prove that it is possible
that ra be rational, and it is possible that ra be irrational. C

Complex numbers ( C)

We have seen that multiplication by real numbers corresponds with scaling and re ection
of the number line|scaling alone when the multiplicand is positive, and scaling with
re ection when it is negative. We could alternatively interpret this re ection as a rotation
by half a turn, since the e ect on the number line is the same. You might then wonder
what happens if we rotate by arbitrary angles, rather than only half turns.

What we end up with is a plane of humbers, not merely a line|see page 28. Moreover,
it happens that the rules that we expect arithmetic operations to satisfy still hold|
addition corresponds with translation, and multiplication corresponds with scaling and
rotation. This resulting number set is that of the complex humbers

De nition 1.1.30
The complex numbers are those obtained by the non-negative real numbers upon
rotation by any angle about the point O.

There is a particularly important complex number, i, which is the point in the complex
plane exactly one unit above Olthis is illustrated on page 28. Multiplication by i has
the e ect of rotating the plane by a quarter turn anticlockwise. In particular, we have
i2=1i i= 1;the complex numbers have the astonishing property that square roots of
all complex numbers exist (including all the real numbers).

In fact, every complex number can be written in the form a+ bi, where a;b 2 R; this
number corresponds with the point on the complex plane obtained by moving units to
the right and b units up, reversing directions as usual ifa or b is negative. Arithmetic
on the complex numbers works just as with the real numbers; in particular, using the
fact that i2= 1, we obtain

(a+ bi)+(c+di)=(a+ o+ (b+d)i and (a+bi) (c+di)=(ac bd+(ad+ bdi

We will discuss complex numbers further in the portion of this section on polynomials
below, and in Sections B.2 and 8.4.

Polynomials

The integers, rational numbers, real numbers and complex numbers are all examples of
rings, which means that they come equipped with nicely behaving notions of addition,

27
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Figure 1.1: lllustration of the complex plane, with some points labelled.
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Section 1.1. Getting started 29
subtraction and multiplication.

De nition 1.1.31
Let A be oneZ, Q, R or C. (More generally, A could be any ring|see Section 8.1.) A
(univariate ) polynomial over A in the indeterminate x is an expression of the form

ag+ ajx +  + a,x"

wheren 2 N and eachay 2 A. The numbers ay are called the coe cients of the

polynomial. If not all coe cients are zero, the largest value of k for which ax 6 0 is

called the degree of the polynomial. By convention, the degree of the polynomial O is
1

Polynomials of degree 1, 2 and 3 are calletinear, quadratic and cubic polynomials,
respectively.

Example 1.1.32
The following expressions are all polynomials:

3 X 1 (@B+i)x® x

Their degrees are 0, 1 and 2, respectively. The rst two are polynomials oveZ, and the

third is a polynomial over C. C
Exercise 1.1.33
Write down a polynomial of degree 4 overR which is not a polynomial over Q. C

Notation 1.1.34

Instead of writing out the coe cients of a polynomial each time, we may write something
like p(x) or g(x). The "(x)" indicates that x is the indeterminate of the polynomial. If
is a number? and p(x) is a polynomial in indeterminate x, we write p( ) for the result
of substituting for x in the expressionp(x).

Note that, if A is any of the setsZ;Q;R;C and p(x) is a polynomial over A, then
p( )2 Aforall 2A.

Example 1.1.35
Let p(x) = x> 3x2+3x 1. Then p(x) is a polynomial over Z with indeterminate x.
For any integer , the value p( ) will also be an integer. For example

p(0)=0% 3 0°+3 0 1= 1 and p(3)=3% 3 3%+3 3 1=8

C

B'When dealing with polynomials, we will typically reserve the letter x for the indeterminate variable,
and use the Greek letters ; ; (IATEX code: nalpha, nbeta, ngammpgfor numbers to be substituted
into a polynomial.
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30 Chapter 1. Mathematical reasoning

De nition 1.1.36
Let p(x) be a polynomial. A root of p(x) is a complex number such that p( ) = 0.

The quadratic formula (Theorem 1.2.6) tells us that the roots of the polynomial x? +
ax + b, wherea; b2 C, are precisely the complex humbers

a+pa2 4b and a pa2 4b
2 2

Note our avoidance of the symbol " ', which is commonly found in discussions of quad-
ratic polynomials. The symbol * 'is dangerous because it may suppress the word “and'
or the word “or', depending on context|this kind of ambiguity is not something that
we will want to deal with when discussing the logical structure of a proposition in Sec-
tions 1.2 and 2.1.

Example 1.1.37
Let p(x) = x> 2x +5. The quadratic formula tells us that the roots of p are

p
“4—245:“ P—-1+2i and 24—245:1 P—Z-1 2

The numbers 1 +2i and 1 2i are related in that their real parts are equal and their
imaginary parts di er only by a sign. Exercise 1.1.38 generalises this observation. C

Exercise 1.1.38
Let = a+ bi be a complex number, wherea;b 2 R. Prove that is the root of a
guadratic polynomial over R, and nd the other root of this polynomial. C

The following exercise proves the well-known result which classi es the number of real
roots of a polynomial overR in terms of its coe cients.

Exercise 1.1.39

Let a;b2 R and let p(x) = x?+ ax+b. Thevalue = a? 4bis called thediscriminant

of p. Prove that p has two roots if 6 0 and one root if = 0. Moreover, if a;b2 R,

prove that p has no real roots if < 0, one real root if = 0, and two real roots if
> 0. C

Example 1.1.40

Consider the polynomial x? 2x +5. lIts discriminant is equal to ( 2)> 4 5= 16,
which is negative. Exercise 1.1.39 tells us that it has two roots, neither of which are
real. This was veri ed by Example 1.1.37, where we found that the roots ofx?> 2x+5
arel+2iand1 2.

Now consider the polynomialx?> 2x 3. Its discriminantis equalto ( 2)> 4 ( 3) =16,
which is positive. Exercise 1.1.39 tells us that it has two roots, both of which are real;
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and indeed

x?> 2x 3=(x+1)(x

so the roots ofx2 2x 3 are 1 and 3.

31
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32 Chapter 1. Mathematical reasoning

Section 1.2
Elementary proof techniques

There are many facets to mathematical proof, ranging from questions of how much detail
to provide and what assumptions can be made, to questions of how to go about solving
a particular problem and what steps are logically valid. This section provides some tools
for answering the latter issues, but the proof techniques we will look at here are not
exhaustive, by any means.

If this section is successful, then it will feel somewhat like all we are doing is stating the
obvious. However, when it comes to writing your own proofs, this feeling of obviousness
will likely disappearlit is when this happens that the usefulness of the proof techniques
in this section will become apparent.

Assumptions and goals

Every mathematical proof is written in the context of certain assumptionsbeing made,
and certain goalsto be achieved.

Assumptions are the propositions which are known to be true, or which we are

assuming to be true for the purposes of proving something. They include theorems
that have already been proved, prior knowledge which is assumed of the reader,
and assumptions which are explicitly made using words like “suppose' or “assume'.

Goals are the propositions we are trying to prove in order to complete the proof
of a result, or perhaps just a step in the proof.

With every phrase we write, our assumptions and goals change. This is perhaps best
illustrated by example. In Example 1.2.1 below, we will examine the proof of Proposi-
tion 1.1.15 in detail, so that we can see how the words we wrote a ected the assumptions
and goals at each stage in the proof. We will indicate our assumptions and goals at any
given stage using tables|the assumptions listed will only be those assumptions which
are made explicitly; prior knowledge and previously proved theorems will be left implicit.

Example 1.2.1
The statement of Proposition 1.1.15 was as follows:

Let a;b;c2 Z. If bdivides a and c divides b, then c divides a.

The set-up of the proposition instantly gives us our initial assumptions and goals:
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Assumptions | Goals
If bdivides a and c divides b,
then c divides a

a;b;c2 z

We will now proceed through the proof, line by line, to see what e ect the words we
wrote had on the assumptions and goals.

Since our goal was an expression of the form "if...then...", it made sense to start by
assuming the "if' statement, and using that assumption to prove the "then' statement.
As such, the rst thing we wrote in our proof was:

Suppose thatb divides a and c divides b.

Our updated assumptions and goals are re ected in the following table.

Assumptions | Goals
a;b;c2 R c divides a
b divides a
c divides b

Our next step in the proof was to unpack the de nitions of "b divides a' and “c divides
b, giving us more to work with.
Suppose thatb divides a and c divides b. By De nition 1.1.12, it follows that
a=qb and b=rc
for some integersg and r.

This introduces two new variablesq; r and allows us to replace the assumptionsb divides
a' and ‘c divides b with their de nitions.

Assumptions | Goals
a;b;c;q;r2 Z c divides a
a=gb
b=rc

At this point we have pretty much exhausted all of the assumptions we can make, and
SO our attention turns towards the goal|that is, we must prove that c divides a. At this
point, it helps to "work backwards' by unpacking the goal: what does it mean forc to
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34 Chapter 1. Mathematical reasoning

divide a? Well, by De nition 1.1.12, we need to prove that a is equal to some integer
multiplied by c|this will be re ected in the following table of assumptions and goals.

Since we are now trying to express in terms of c, it makes sense to use the equations
we have relatinga with b, and b with ¢, to relate a with c.
Suppose thatb divides a and c divides b. By De nition 1.1.12, it follows that
a=qgb and b=rc

for some integersg and r. Using the second equation, we may substituterc
for bin the rst equation, to obtain

a= q(rc)

We are now very close, as indicated in the following table.

Assumptions | Goals
a;b;c;q;r2 Z a =[some integer] ¢
a=gb
b=rc
a= q(rc)

Our nal step was to achieve the goallnamely, to express a as an integer multiplied by
C

Suppose thatb divides a and c divides b. By De nition 1.1.12, it follows that

a=qgb and b=rc

for some integersg and r. Using the second equation, we may substituterc
for bin the rst equation, to obtain

a= q(rc)

But g(rc) = (gr)c, and gr is an integer,

Assumptions Goals
a;b;c;q;r2 Z a =[some integer] ¢
a=gb
b=rc
a= q(rc)
a=(gncandqr2 Z
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Section 1.2. Elementary proof techniques 35

It is helpful to the reader to declare when the goal has been achieved; this was the
content of the nal sentence.

Suppose thatb divides a and ¢ divides b. By De nition 1.1.12, it follows that
a=qgb and b=rc

for some integersq and r. Using the second equation, we may substituterc
for bin the rst equation, to obtain

a= q(rc)

But g(rc) = (gr)c, and gr is an integer, so it follows from De nition 1.1.12
that c divides a.

C

For the rest of this section, we will examine various proof techniques in the context of
assumptions and goals. This will be made more precise when we study proof from a
symbolic perspective in Section 2.1.

Conditional statements

One of the most common kinds of proposition that you will encounter in mathematics
is that of a conditional statement|that is, one of the form "if...then...". As we saw in
Example 1.2.1, these can be proved by assuming the statement after the word "if', and
deriving a proof of the statement after the word “then'.

Proof tip
To prove a proposition of the form "if P, then Q', assume the propositionP and then
derive a proof of the proposition Q.

Assumptions | Goals Assumptions | Goals
| if P, then Q P | Q

C

Proposition 1.1.15 was an example of a proposition containing a conditional statement.
Proposition 1.2.2 below contains another example.

Proposition 1.2.2
Let x and y be real numbers. Ifx and x + y are rational, then y is rational.
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36 Chapter 1. Mathematical reasoning
Proof of Proposition 1.2.2. Supposex and x + y are rational. Then there exist integers
a; b; c;dwith b;d6 0 such that
X = a and x+y= ¢
" b YT

It then follows that
S (x+y) x= ¢ a_bc ad
y=Ury X= 49 %7 b

Sincebc ad and bd are integers, andbdé6 0, it follows that Yy is rational. O

The key phrase in the above proof was "Supposeand x+ y are rational." This introduced
the assumptionsx 2 Q and x + y 2 Q, and reduced our goal to that of deriving a proof
that y is rational|this was the content of the rest of the proof.

Writing tip

A template for writing proofs of propositions of the form "if P, then Q' is as follows:

Suppose \vrite out P here]. Then [prove Q here].

Words similar in meaning to “suppose’, such as "assume’, may also be used. C

The following exercises, based on the topics we introduced in Section 1.1, are an oppor-
tunity for you to practise writing proofs of conditional statements.

Exercise 1.2.3
Let p(x) be a polynomial over C. Prove that if is a root of p(x), and a2 C, then is
aroot of (x a)p(x). C

Another common kind of proposition is that of a biconditional statement; that is, one
of the form "P if and only if Q' (sometimes abbreviated in writing to "P i Q'). This
abbreviates the longer expression, "iP, then Q, and if Q, then P’', and indicates that P
and Q are in some sensequivalent The statement "if Q, then P" is called the converse
of the statement "if P, then Q'.

Proof tip
To prove a propositions of the form P if and only if Q', provide separate proofs of the
propositions “if P, then Q' and "if Q, then P".

Assumptions | Goals Assumptions | _ Goals
| P if and only if Q if P, then Q
if Q, then P
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In writing, we may sometimes abbreviate "ifP, then Q' by writing " P ) Q' (LATEX code:
P nRightarrow Q),and P ifandonlyif Q'by 'P , Q'(LATEX code: P nLeftrightarrow Q ).
These symbols will reappear from a formal point of view in Section 2.1.

Many examples of biconditional statements come from solving equations; indeed, to say

that the values 1;:::; n are the solutions to a particular equation is precisely to say
that

X is a solution X= 10rXx= oor orx=
Example 1.2.4

We nd all real solutions x to the equation

px 3+px+4:7

Let's rearrange the equation to nd out what the possible solutions may be.

px 3+px+4:7) (x 3)+2p(x 3)(x+4)+( x+4)=49 squaring
) 2’ (x 3)(x+4)=48 2 rearranging
) 4(x 3)(x+4)=(48 2x)? squaring
) 4x2+4x 48=2304 19X +4x? expanding
) 196x = 2352 rearranging
) x=12 dividing by 196

You might be inclined to stop here. UBfortunat%Iﬂwe have proved is that, given a
real numberx, if x solves the equation x 3+ x+4 =7, thenx =12. This narrows
down the set of possible solutions to just one candidate|but we still need to check the
converse, namely thatif x = 12, then x is a solution to the equation.

As such, to nish o the proof, note that

IO12 3+p12+4= p§+pﬂa=3+4=7

and so the valuex =12 is indeed a solution to the equation. C

The last step in Example 1.2.4 may have seemed a little bit silly; but Example 1.2.5
demonstrates that proving the converse when solving equations truly is necessary.

Example 1.2.5
We nd all real solutions x to the equation

x+pY=0

We proceed as before, rearranging the equation to nd all possible solutions.

X + P Xx=0) x= P X rearranging
) x*=x squaring
) xX(x 1)=0 rearranging

) x=0o0rx=1
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38 Chapter 1. Mathematical reasoning

Now certainly 0 is a solution to the equation, since
0+"0=0+0=0
However, 1 isnot a solution, since
1+ 1=1+1=2
Hence it is actually the case that, given a real numberx, we have
x+p§=0 , x=0

Checking the converse here was vital to our success in solving the equation! C

A slightly more involved example of a biconditional statement arising from the solution
to an equation|in fact, a class of equations|is the proof of the quadratic formula.

Theorem 1.2.6 (Quadratic formula)
Let a;b2 C. A complex number is a root of the polynomial x2 + ax + bif and only if

a+|oa2 4b a az 4b
=~ = or e
2 2

Proof. Firstwe prove that if isaroot, then is one of the values given in the statement
of the proposition. So suppose be a root of the polynomial x> + ax + b. Then

2+a +b=0

The algebraic technique of “completing the square' tells us that

2,0 = +23%2 &
2 4
and hence
a2 2@ 4y
+ — —+ b=
2
Rearranging yields
a2 _al a? 4b
+ — = _— b=
2 4 4
Taking square roots gives
a a2 4b a a2 4b
+-= ——— or + = ———
2 2 2 2

and, nally, subtracting § from both sides gives the desired result.

The proof of the converse is Exercise 1.2.7. O
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Exercise 1.2.7
Complete the proof of the quadratic formula. That is, for xed a;b2 C, prove that if

P——r P

_a+ a2 4 o = @ a? 4b
- 2 - 2
then is a root of the polynomial x? + ax + b. C

Writing tip
A template for proving statements of the form P if and only if Q' is as follows.

Suppose \vrite out P here]. Then [prove Q here].

Conversely, supposeVrite out Q here]. Then [prove P here].

Another template, which more clearly separates the two conditional statements, is as
follows.

() ) Suppose rite out P here]. Then [prove Q here].
(( ) Suppose rite out Q here]. Then [prove P here].

C

Example 1.2.8
Let n 2 N. We will prove that n is divisible by 8 if and only if the number formed of
the last three digits of the base-10 expansion oh is divisible by 8.

First, we will do some “scratch work'. Letd,d, 1:::dg be the base-10 expansion off.
Then

n=d 10+d ; 10 '+ +dy

De ne
n°= dyd;dg and n%=n n°=d.d ;:::d,d3000

Nown n®=1000 d,d, 1:::dsd3 and 1000 =8 125, so it follows that 8 dividesn®

Our goal is now to prove that 8 dividesn if and only if 8 divides n°

() ) Suppose 8 dividesn. Since 8 dividesn® it follows from Exercise 1.1.16 that
8 divides an + bn°%for all a;b2 Z. But

n=n (n n%=n n%1 n+( 1) n%®
so indeed 8 dividesn® as required.
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(( ) Suppose 8 dividesn® Since 8 dividesn® it follows from Exercise 1.1.16 that
8 divides an®+ bn%for all a;b2 Z. But

n=n(n n%=n% n%%1 n%1 n®
so indeed 8 dividesn, as required.

C

Exercise 1.2.9
Prove that a natural number n is divisible by 3 if and only if the sum of its base-10
digits is divisible by 3. C

Negation and contradiction

Ergquently we are tasked with proving that a proposition is not true. For example,
2 is not rational, there is not an integer solution x to the equation 3x = 5, and so
on. One way to prove that a proposition is false is to assume that it is true, and use
that assumption to derive nonsense. The nonsense we derive is more properly called a
contradiction.

De nition 1.2.10
A contradiction is a proposition which is known or assumed to be false.

Proof tip
To prove a proposition of the form "not P', assume that P is true and derive a contra-
diction.

Assumptions | Goals Assumptions | Goals
| not P P | [contradiction]

The following proposition has a classic proof by contradiction.

Proposition 1.2.11
Let r be a rational number and let a be an irrational number. Then r + ais irrational.

Proof. By De nition 1.1.26, we need to prove that r + a is real and not rational. It is
certainly real, sincer and a are real, so it remains to prove thatr + a is not rational.

Supposer + a is rational. Sincer is rational, it follows from Proposition 1.2.2 that a is
rational, since
a=(r+a r
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This contradicts the assumption that a is irrational. It follows that r + a is not rational,
and is therefore irrational. O]

Writing tip
A template for proving statements of the form “not P' (or, equivalently, "P is false') is
as follows.

Suppose yrite out P here]. Then [derive a contradiction here]. This contra-
dicts [write out the assumption or known fact that is contradicted. It follows
that [write out the assertion that P is false herd.

Now you can try proving some elementary facts by contradiction.

Exercise 1.2.12
Let x 2 R. Prove by contradiction that if x is irrational then x and % are irrational. C

Exercise 1.2.13
Prove by contradiction that there is no least positive real number. That is, prove that
there is not a real numbera such that a 6 b for all positive real numbers b. C

A proof need not be a “proof by contradiction' in its entirety|indeed, it may be that
only a small portion of the proof uses contradiction. This is exhibited in the proof of
the following proposition.

Proposition 1.2.14
Let a be an integer. Thena is odd® if and only if a=2b+ 1 for some integer b.

Proof. Supposea is odd. By the division theorem (Theorem 1.1.17), eithera = 2b or
a=2b+1, forsomehb?2 Z. If a=2b, then 2 divides a, contradicting the assumption
that a is odd; so it must be the case thata=2b+ 1.

Conversely, supposea = 2b+ 1. Then a leaves a remainder of 1 when divided by 2.
However, by the division theorem, the even numbers are precisely those that leave a
remainder of 0 when divided by 2. It follows that a is not even, so is odd. O

Proofs involving cases

The situation often arises where you know that (at least) one of several facts is true, but
you don't know which of the facts is true. The solution is to do whatever you're trying
to do in all the possible cases|then it doesn't matter which case you fall into!

) For clarity's sake, we take ‘even' to mean ‘divisible by 2' and “odd' to mean ‘not even'.
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Proof tip
To use an assumption of the form P or Q' when proving a proposition R, split into
cases based on whetheP is true or Q is true|in both cases, prove that P is true.

Assumptions | Goals Assumptions | Goals
P orQ R if P, then R
if Q,then R

C

As you might guess, this proof technique generalises to more than two cases. The proof
of Proposition 1.2.15 below splits into three cases.

Proposition 1.2.15
Let n 2 Z. Then n? leaves a remainder of 0 or 1 when divided by 3.

Proof. Let n 2 Z. By the division theorem, one of the following must be true for some
k22Zz:
n=3k or n=3k+1 or n=3k+2

Supposen = 3k. Then
n?=(3k)>=9k?>=3 (3k?
Son? leaves a remainder of 0 when divided by 3.
Supposen =3k + 1. Then
n2=Bk+1)>=9k?>+6k+1=33Bk%+2k)+1
Son? leaves a remainder of 1 when divided by 3.
Supposen = 3k + 2. Then
n2=B8k+2)2=9k*>+12k+4=3(3k?>+4k+1)+1

Son? leaves a remainder of 1 when divided by 3.
In all cases,n? leaves a remainder of 0 or 1 when divided by 3. O
Writing tip

The following is a template for proving a proposition R by using an assumption of the
form P or Q'.

There are two possible cases.
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Suppose \vrite out P here]. Then [prove R here].
Suppose \vrite out Q here]. Then [prove R here].
In both cases,R is true.

A similar template can be used for proofs requiring more than two cases. C

Exercise 1.2.16
Let n be an integer. Prove thatn? leaves a remainder of 0, 1 or 4 when divided by 5. C

Exercise 1.2.17

Let a;b 2 R and supposea? 4b 6 0. Let and be the (distinct) roots of the
polyonomial x2 + ax + b. Prove that there is a real number ¢ such that either =c
or = cCi. C

A patrticularly useful proof principle which allows us to prove propositions by splitting
into cases is thelaw of excluded middle

De nition 1.2.18

The law of excluded middle is the assertion that every proposition is either true or
it is false. Put otherwise, it says that if P is any proposition, then the proposition P or
not P'is true.

We can therefore use the law of excluded middle to prove facts by splitting into two
cases, based on whether a particular proposition is true or false. The law of excluded
middle is an example of anonconstructive proof technique|whilst this matter is not an
issue in mainstream mathematics, it can lead to issues in computer science when not
kept in check. This matter will not concern us in the main body of the text, but will be
discussed in Section B.3.

The proof of Proposition 1.2.19 below makes use of the law of excluded middle.

Proposition 1.2.19
Let a;b2 Z. If abis even, then eithera is even orbis even (or both).

Proof. Supposea;b2 Z with abeven.

Supposea is even|then we're done.

Supposea is odd. Suppose thatbis also odd. Then we can write
a=2k+1 and b=2 +1

for some integersk; . This implies that

ab=(2k+1)(2‘+1)=4k‘+2k+2‘+1=2(%L+{£<Lj)+1
2z
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so that abis odd. This contradicts the assumption that abis even, and sob must
in fact be even.

In both cases, eithera or bis even. O

Exercise 1.2.20

Re ect on the proof of Proposition 1.2.19. Where in the proof did we use the law of
excluded middle? Where in the proof did we use proof by contradiction? What was the
contradiction in this case? Prove Proposition 1.2.19 twice more, once using contradiction
and not using the law of excluded middle, and once using the law of excluded middle

and not using contradiction. C
Exercise 1.2.21
Let a and b be irrational numbers. Prove that it is possible that aP be rational. C

Reducing a goal to another goal

As indicated above, a huge number of mathematical results take the form "ifP, then

Q'. We've already seen a few, and there are dozens more to come! The reason why we
prove results of this form is because they are usefullany time we know P is true, we
also know that Q is true! In particular, if Q is what we're trying to prove, and we know
that P implies Q, then we reduce the problem of provingQ to that of proving P.

Proof tip
To prove a proposition Q using an assumption of the form "ifP, then Q', simply prove
that P is true.

Assumptions | Goals Assumptions | Goals
if P, then Q Q if P, then Q P

The following is a very simple example of using a conditional statement in a proof.

Proposition 1.2.22
The number 191—i is irrational.

Proof. We proved in Exercise %.12 that, for any real numbelrx, if x is irrational, then
x and % are irrational. Since 2 is irrational, it follows that pl—é is irrational. O

Writing tip
The following is a template for proving a proposition Q by using an assumption of the
form "if P, then Q.
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Since rite out P ) Q here], in order to prove [write out Q here], it su ces
to prove [write out P here]. To this end, [prove P here].

C

Example 1.2.23
Section 1.3 is devoted toinduction principles, which are proof techniques used to prove
that a given statement is true of all natural numbers. For example, induction can be
used to prove that
n(n+1)

2
is true for all natural numbers n. Induction principles reduce the problem of proving a
statement is true of all natural numbers to the problem of proving a base caseand an
induction step (to be de ned in Section 1.3).

1+2+ +n=

Thus, from a mathematical perspective, induction principles are nothing more than
statements of the form

if [base casgand [induction step], then [statement is true for all natural numbers]

We will not explore induction any further here, as it is on its way very soon! C

Dealing with variables

We have made heavy use of variables already in this book, and we will not stop any
time soon. The notion of a variable may seem like a simple concept, but it actually
has many technicalities associated with itja whole eld, called nominal theory, has
emerged within mathematical logic and theoretical computer science in order to deal
with variables in a systematic way. We won't need to go into quite that amount of
detail; instead, we will just need to focus on two aspects:

the range of a variable, which tells us what kind of thing it refers to; and

the quanti cation of a variable, which tells us how many things it refers to.

De nition 1.2.24
Let x be a variable. Therange (or domain of discourse ) of x is the set of objects
which x refers to.

In mathematical writing, all variables should have a range, which is either explicitly
mentioned or is clear from context.
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Example 1.2.25
Consider the following statement.

If x2 is rational, then x is rational.

As stated, this statement looks like it is false; for example, letting x = p?, we can
see thatx? = 2, which is rational, but x is irrational. However, this is poorly written,
since the range ofx is not indicated|indeed, if we're told in advance that x refers to
an integer, then the statement is automatically true, since all integers are rational; the
counterexample above doesn't work in this case, since 2 is not an integer.

Here is a better way of writing it.
Let x be a real number. Ifx?2 is rational, then x is rational.

The rst sentence here indicates to the reader what kind of object the variablex refers to.
As we expected in the rst place, this is now afalse statement|but it's a well-written
false statement! C

Exercise 1.2.26
Consider the following statement:

Let x be an integer. Ifx =2k + 1, then x is odd.

Re-word the statement to specify the range ok. With the range of k that you speci ed,
is the statement true or is it false? Would a di erent choice of range change its truth or
falsity? C

Unfortunately simply specifying the range of a variable is not su cient to give statements
mathematical meaning and can lead to ambiguity.

Example 1.2.27
Consider the following statement:

X+yiseven xy2Z

The range of the variablesx andy is speci ed|namely, they refer to integers|but we're

left wondering whether the statement X + y is even' is true. It's certainly sometimes
true, but it can also be false|speci cally, it's true if x andy are both even or both odd,
and false otherwise. C

As Example 1.2.27 demonstrates, simply stating the range of variables is not su cient.
This is where quanti cation comes in. We will focus on two kinds of quanti cation,
namely universal and existential quanti cation.
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Universal quanti cation is a means of saying that the variable can take any value in its
range|typically, we universally quantify a variable by using the words “all' or “every'.
In Section 2.1 we will describe universal quanti cation more precisely.

Proof tip

To prove a proposition of the form “for all x 2 X, P', take an elementx 2 X, and prove
P for that value of x, knowing nothing about x, other than the assumption that x is an
element of X .

Assumptions | Goals Assumptions | Goals
| forall x2 X, P x 2 X | P

Proposition 1.2.28
Every integer greater than one has at least four divisors.

Proof. Let n 2 Z, and supposen > 1. Then the numbers n, 1, 1 andn are all
distinct, and moreover

n=( 1) ( n)=( n) ( 1)=n 1=1 n
so they all divide n. O

Writing tip
A template for proving statements of the form “for all x, P' is as follows.

Let x 2 X. Then [prove P for x here, using no assumptions abouk other
than the fact that x is an element ofX].

Other words can be used instead of ‘let’, such as “take' or ~ x', or even “suppose'. C

Proposition 1.2.29
The base-10 expansion of the square of every natural number ends in one of the digits
0,1,4,5, 6o0r09.

Proof. Fix n 2 N, and let
n=dd 1:::do

be its base-10 expansion. Write
n=10m+ dy

wherem 2 N|that is, m is the natural number obtained by removing the nal digit
from n. Then
n? = 100m? + 20mdo + d3 = 10m(10m + 2do) + d3
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Hence the nal digit of n? is equal to the nal digit of dZ. But the possible values ofd3
are
0 1 4 9 25 36 49 64 81

all of which end in one of the digits 0, 1, 4, 5, 6 or 9. O

Exercise 1.2.30
Prove that every linear polynomial over Q has a rational root. C

Exercise 1.2.31
Prove that, for all real numbers x and y, if x and y are irrational, then x + yand x vy
are not both rational. C

Sometimes we seek to prove results about existence in mathematics|this just requires
us to nd one thing making a statement true. Existential quanti cation is a means of
expressing that there is at least one value a variable can take which makes a statement
true. We typically existentially quantify a variable using words like "there exist' or "there

IS.

Proof tip

To prove a proposition of the form “there existsx 2 X such that P', nd a value of
x 2 X making P true, specify such a value ofx, and then prove that P is true for the
speci ed value of x.

Assumptions Goals Assumptions ‘ Goals
there existsx 2 X X = [ speci ed value] P
such that P

C

Proposition 1.2.32

Let a2 R. The cubic polynomial

x3+(1 a%)x a
has a real root.
Proof. Let p(x)= x3+(1 a?)x a. Dene x = a; then
p(x)= p(a)= a®+(1 ada a=a’+a a a=0
Hencea is a root of p(x). Sincea is real, p(x) has a real root. O

Writing tip
A template for proving statements of the form “there existsx such that P' is as follows.

48



Section 1.2. Elementary proof techniques 49

De ne x by [de ne x here]. Then [prove P for the speci ed value ofx here].

Other words can be used instead of ‘let', such as “take' or ~ x', or even “suppose'. C

Exercise 1.2.33
Prove that there is a real number which is irrational but whose square is rational. C

Exercise 1.2.34
Prove that there is an integer which is divisible by zero. C

Statements may involve many variables, which could be universally or existentially quan-
ti ed, or any combination of the above. In these cases, variables appearing later in a
statement can depend on variables appearing earlier in the statement.

We now revisit Example 1.2.27, this time with quanti ed variables, and look at how the
choice of quanti er a ects its truth values.

Example 1.2.35

Consider the statement X + y is even', wherex and y are variables ranging over the
integers. There are four ways of quantifyingx and y, each yielding a statement with a
di erent meaning:

(a) For all integers x, and all integersy, x + y is even;

(b) For all integers x, there exists an integery such that x + y is even;
(c) There exists an integerx such that, for all integersy, x + y is even;
(d) There exists an integerx and an integery such that x + y is even.

Statement (a) is false. If it were true, then it would imply that O + 1 is even; but that
is nonsense!

Statement (b) is true. To see this, letx 2 Z. We split into cases based on whethex is
even or odd.

If x is even, then by lettingy = 0, we see thatx + y = X is even.

If x is odd, then by letting y = 1, we see thatx + y = x + 1 is even.

In any case, there is an integely such that x + y is even, as required. C
Exercise 1.2.36
Prove that (c) is false and (d) is true in Example 1.2.35. C

Exercise 1.2.37
Prove that, for all real numbers x, there exists a real numbery suchthatx+y 2 Q. C
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Section 1.3
Induction on the natural numbers

We de ned the natural numbers in De nition 1.1.5; to reiterate, they are the non-
negative whole numbers

0;1,2,3;:::
and we denote the set of natural numbers byN. This was an informal de nition: it
assumed that we have an inherent notion in our minds of what a number line is, what
0 is, and so on. And we probablydo have such an inherent notion in our minds; it's
so ingrained that you wouldn't think twice about what | mean when | write 3 + 15 or
7 12, even though | haven't de ned what + or  mean (or even what 3, 15, 7 and 12
mean).

This informal approach gets us into some trouble if we really want to be precise about
what we're doing, and so De nition 1.1.5 won't su ce. However, we can pin down what

it is that the natural numbers “should be' by writing down some basic properties that
they should satisfy|these properties are called axioms. The approach we take is to
characterise the natural numbers in terms of the number 0 and the operation of “adding
1', which we call the successor operation A set with a notion of zero and a notion of
successor can be thought of as a set of natural numbers provided it satis es following
ve axioms, called the Peano axioms

Axioms 1.3.1 (Peano axioms)
(&) N contains azero element , denoted 0O;

(b) If n 2 N then there is an elementn® 2 N, called the successor of n;
(c) Zero is not a successor; that isn* 6 0 for all n 2 N;
(d) Forall m;n 2 N, if m* = n*, then m = n;

(e) If X is a set such that
() 02 X; and
(i) forall n2 N, if n2 X, thenn* 2 X;

then every natural number is an element ofX .

Most of these properties are reasonably self-explanatory. For example, we can interpret
(c) as saying that there isn't a natural number n such that n +1 = 0...if there were,
thenwe'd haven = 1but 1isn'tanatural number. And (d) says thatif m+1= n+1
then m = n; this makes sense because we should be able to “subtract 1' from both sides
of the equation.
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The property that requires some discussion is (e). In slightly more human terms, it says:
if a set X contains 0 and the successors of all its elements, then it contains all the natural
numbers. Why should this be so? Well, we know @ X . SinceX contains successors of
all its elements, it contains 0+ 1, which is 1; and so it contains 1+ 1, which is 2; and so
it contains 2 + 1, which is 3; ... and so on.

From the ve Peano axioms, we can recover everything we know about the natural
numbers. For instance:

Numerals. Denel1l=0%,2=1" (=0"),3=2% (=0%" ), and so on. Thus
the symbols Q 1;2; 3;4;::: (called numerals) are given meaning by saying thatn
is the n'" iterated successor of 0.

Addition.  We can de ne addition by declaring m+0 = m and m + (n*) =
(m+ n)*. Thus, for instance,

m+1l=m+@07)=(m+0)" =m"

and, then
m+2=m+@1")=(m+1)" =m™
and so on.
Multiplication. We can de ne multiplication as iterated addition. Precisely,

denem O0=0andm (n*)=(m n)+ m (IATEX code: ntimes ).

Exponentiation.  We can de ne exponentiation as iterated multiplication. Pre-
cisely, denem®=1and m" =(m") m.

Order. If you think about it, m 6 n (IATEX code: nle) really just means that
there is some non-negative number you can add ten to obtain n. Thus we can
de ne 'm 6 n'to mean

m+ k = n for somek 2 N

and then we candene m<n'tomean m6 nandm 6 n'.

The way we de ned addition and multiplication is called recursion : we de ned how
they act on zero, and how they act on a successar + 1 in terms of how they act on n.

Example 1.3.2
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We prove that 2 2 =4 using the recursive de nitions of addition and multiplication.

2 2=(2 1)+2 by de nition of , since 2=1"
=((2 0)+2)+2 by de nition of , since 1 =0
=0+2)+2 by de nition of
=((0+1)+1)+2 by de nition of +, since 2=1 *
=1+1)+2 since0+1=0 " =1
=2+2 sincel+1=1"=2
=(2+1)+1 by de nition of +, since 2=1 *
=3+1 since2+1=2"=3
=4 since 3+1=3" =4

Note that, in order to shorten the proof, we used the fact proved earlier, thatm+1 = m*
for all m, on the fth, sixth, eighth and ninth lines. C

Exercise 1.3.3
Using the recursive de nitions of addition, multiplication and exponentiation, prove that
22 =4, C

We will not go through the long, arduous process of proving everything we need from
the Peano axioms, as that would take a long time, and would not be very enlightening.
Before moving on, we will make some more recursive de nitions that will be useful to
us as we progress through the book.

De nition 1.3.4
For eachi 2 N let x; be a real number.
The indexed sum Xj is de ned recursively forn 2 N by
i=1
|
X0 X1 X
xi =0 and Xj = Xi + Xn+1
i=1 i=1 i=1

The indexed product Q Xj is de ned recursively for n 2 N by
i=1

Yo 1 Ve
Xxi=1 and Xj = Xi  Xp+1
i=1 i=1 i=1
Example 1.3.5
Let x; = i2 for eachi 2 N. Then
X

Xi=1+4+9+16+25=55
i=1
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and
\5
xi=1 4 9 16 25=14400

i=1
C
Exercise 1.3.6
Let x1;X2 2 R. Working strictly from the de nitions of indexed sum and indexed
product, prove that
X2 Y2
Xji = X1+ X2 and Xi = X1 X2
i=1 i=1
C

The remainder of this section concernsinduction on the natural numbers. This is a
class of proof techniques which are used for proving statements about natural numbers|
De nition 1.3.7 makes this notion slightly more precise, and is a particular instance of
a logical formula, which will be introduced in De nition 2.1.37 (and again formally in
De nition B.1.3).

De nition 1.3.7

A statement about natural numbers is an expression involving a variable, such that
when a natural number is substituted for the variable in the expression, it becomes a
proposition (in the sense of De nition 1.1.1). We will denote statements about natural
numbers asp(n), g(m), and so on; the letter in parentheses denotes the variable.

Example 1.3.8
Let p(n) be the statement
2n + 1 is divisible by 3

This is a statement about natural numbers. The proposition p(1) says
2 1+1isdivisible by 3

which is true, since 2 1+1=3=1 3. The proposition p(2) says
2 2+1is divisible by 3

which is false, since 22+1=5=1 3+ 2, which leaves a remainder of 2 when divided
by 3. For a given natural number n, the proposition p(3n) says

2 (3n)+ 1 is divisible by 3
which will be seen to be false in the following exercise. C

Exercise 1.3.9
Letting p(n) be the statement as in Example 1.3.8. Prove thatp(3n + 1) is true for all
n 2 N, and that p(3n) and p(3n + 2) are both false for all n 2 N. C
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Weak induction

The rst induction principle we encounter says that natural numbers behave like dom-
inoes. Imagine an in nitely long line of dominoes|one for each natural numberjand
suppose we want to prove a statement about natural numbers, sayp(n). Proving p(n)
will correspond to the n™ domino falling; hence provingp(n) for all n 2 N corresponds
to all the dominoes falling.

How do we make all the dominoes fall? Well we knock down domino 0, and from there
everything is taken care of: domino 0 knocks down domino 1; then domino 1 knocks
down domino 2; and so on. Forn 2 N, domino n knocks down dominon + 1.

From a more mathematical perspective, what this means is: we provg(0); then p(1)
will follow from the fact that p(0) is true; and p(2) will follow from the fact that p(1) is
true; and so on. Forn 2 N, p(n + 1) will follow from the fact that p(n) is true. In other
words, provided we can provep(0) is true, and that p(n) ) p(n + 1) for each n, we've
made all the dominos fall over and hence proved the proposition for all natural numbers.

Sometimes a statement might be false for a few natural numbers, but true after a certain
point. For example 3n < 2" is true whenn = 0, false whenn =1;2; 3, and then true for
all n > 4. This isn't a problem|if all we want to do is prove that it is true for n > 4,
we just knock over domino 4 rst instead of domino O!

Now let's be more precise about what we mean, and prove that we're correct.

Theorem 1.3.10 (Weak induction principle)
Let p(n) be a statement about natural numbers, and letb2 N. If
() p(b) is true; and

(i) Forall n> b, if p(n) is true, then p(n + 1) is true;
then p(n) is true for all n > b

Proof. First supposeb= 0. Let X be the set of all natural numbersn for which p(n)
is true. For a natural number n, the proposition n 2 X is equivalent to the proposition
p(n). Thus, respectively, the hypotheses of the theorem state:

() 02 X;and
(i) Forall n2 N,ifn2 X,thenn+1 2 X;

So by Axiom 1.3.1(e), every natural number is an element oX . Hencep(n) is true for
all n 2 N.

The case whenb > 0 is left for the reader in Exercise 1.3.13. O
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Proof tip
To prove a statement p(n) is true for all natural numbers n > b, you can:

(Base case) Prove p(b) is true;

(Induction step ) Fix n > b, and assume thatp(n) is true; from this assumption
alone, derivep(n + 1).

The assumption p(n) is called the induction hypothesis

This whole process is callegproof by (weak) induction (on n). We won't usually use
the word “weak' unless we really need to specify it. Usually we'll also omit “om' unless
there is more than one variable at play, in which case we will specify. C

Example 1.3.11

We will prove that 0+1+2+  +n = 21 for all natural numbers n, by induction. [
Note that since we're proving it for all natural numbers, our base case hab= 0.

Let p(n) be the assertionthat 0+1+ + n= %
- - - _ 0(0+1) :
(_BC) We prove p(0) is true. Now,_ p(0) is the expression 0 = ====. Since the
right-hand side evaluates to 0,p(0) is true.
(IS) Let n 2 N and supposep(n) is true, i.e. assume
0+1+ +n= O I( 1H)
We prove that this implies p(n + 1), which is the formula
0+1+ +n+(n+1)= w
We proceed by calculation:
n(n+1)
O+1+ +n+(n+l)= ———=+(n+1) by (IH)
=(n+1) g +1 by factorisation
n 2 . 2 _
=(n+1) §+§ smceé—l

+1)(n+2 - .
= W combining fractions
Hencep(n) implies p(n + 1). By induction, we're done. C
Writing tip
Proofs by induction all follow the same format, so it is good to get into some good habits.

I'The IATEX code for 2 is nfrac fagf bg.
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These good habits make your proof more readable and better structured, and they help
you to avoid silly mistakes. With reference to Example 1.3.11, here are some tips for
writing proofs by induction of your own:

Labelling the steps.  Clearly labelling the base case and induction step helps the
reader identify what part of the proof is being done. | usedBC and IS to signify
which is which; you are of course welcome to develop your own convention.

Writing down the induction hypothesis. Writing down the induction hypo-
thesis p(n) explicitly|which | labelled by IH |makes it very clear what it is you
are assuming. You can then refer back to it later in your prooflas | did in the
rst line of the calculation|to specify when you have used it.

Writing down the goal of the induction step. When proving the induction
step, it is common to fall down the trap of forgetting what you are actually trying
to prove. Writing down p(n + 1) explicitly, pre xed by something like ‘we need to
prove ...', gives you something to look back on as you complete your proof.

Saying when you're done.  When you have provedp(n + 1) is true, it is a good
idea to conclude the proof by summarising what you did. A quick statement like
“hencep(n) implies p(n + 1), so by induction, we're done' will su ce.

C

Example 1.3.12
We'll prove that n® n is divisible by 3 for all n 2 N. Thus, the statement p(n) to be
proved is n3 n, and the base case is when = 0.

(BC) We need to prove that 0> 0 is divisible by 3. Well 0> 0=0=3 0, so
0% 0 is divisible by 3.

(IS) Let n 2 N and suppose thatn® n is divisible by 3. Speci cally, the induction
hypothesis is:
n® n =3k for somek 2 N I( 1H)
We need to prove that (n+1)3 (n+1) is divisible by 3; in other words, we need
to nd some natural number * such that
(n+1)® (n+1)=3"

Expanding the brackets, we obtain:

(n+1)® (n+1)=(n®+3n?+3n+1) n 1 expand brackets
=n® n+3n?+3n+1 1 rearrange terms
=n® n+3n%+3n sincel 1=0
=3k+3n%+3n by (IH )
=3(k+ n?+ n) factorise
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Thus we have expressedr(+ 1)2 (n + 1) in the form 3" for a natural number °;
specically, * = k + n?+ n. By induction, we're done. C

The following exercise completes the proof of the weak induction principle, where the
base case is allowed to be nonzero.

Exercise 1.3.13
Prove the weak induction principle (Theorem 1.3.10) in the case wherb > 0. C

Example 1.3.14
Let p(n) be the statement 3 < 2". We prove p(n) is true for all n > 4 by induction.

(BC) p(4) is the statement 3 4 < 2* This is true, since 12< 16.

(1S) Supposen > 4 and that p(n) is true, i.e. that 3n < 2" (IH). We want to
prove 3(n +1) < 2" Well

3(h+1)=3n+3 expand brackets
<2"+3 by (IH)
<2"+16  since 3< 16
=2"+2%  since 2=16
6 2"+2"  sincen> 4

=2 2N sincex + X = 2x

=2+ using laws of indices

So we have proved 3¢ + 1) < 2"*1 | as required.
Hencep(n) implies p(n + 1), so by induction, we're done. C

Note that the proof in Example 1.3.14 says nothing about the truth or falsity of p(n)
for n = 0;1;2;3. In order to assert that these cases are false, you need to show them
individually; indeed:

3 0=0and 2°=1, hencep(0) is true;

3 1=3and 2! =2, hencep(l) is false;

3 2=6and 2 = 4, hence p(2) is false;

3 3=9and 2%=9, hencep(3) is false.

So we deduce thatp(n) is true when n =0 or n > 4, and false otherwise.
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Exercise 1.3.15
Use weak induction to prove that

=21 1
k=0

for all n 2 N. C

Sometimes a “proof' by induction might appear to be complete nonsense. The following
is a classic example of a “fail by induction':

Example 1.3.16
The following argument supposedly proves that every horse is the same colour.

(BC) Suppose there is just one horse. This horse is the same colour as itself, so
the base case is immediate.

(IS) Suppose that every collection ofn horses is the same colourld ). Let X be a
set of n + 1 horses. Removing the rst horse from X , we see that the lastn horses
are the same colour by (H ). Removing the last horse fromX , we see that the rst
n horses are the same colour. Hence all the horses ¥ are the same colour.

By induction, we're done. C

Exercise 1.3.17

Write down the statement p(n) that Example 1.3.16 attempted to prove for all n > 1.
Convince yourself that the proof of the base case is correct, then write down|with
guanti ers|exactly the proposition that the induction step is meant to prove. Explain
why the argument in the induction step failed to prove this proposition. C
Writing tip

There are several ways to avoid situations like that of Example 1.3.16 by simply putting
more thought into writing the proof. Some tips are:

State p(n) explicitly. In the statement “all horses are the same colour' it is not
clear exactly what the induction variable is. However, we could have said:

Let p(n) be the statement “every set ofn horses has the same colour'.
Refer to the base case b in the induction step. In Example 1.3.16, our
induction hypothesis simply stated "assume every set oh horses has the same
colour'. Had we instead said:

Let n > 1 and assume every set ofi horses has the same colour.

We may have spotted the error in what was to come.
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What follows are a couple more examples of proofs by weak induction.

Example 1.3.18
Given any n 2 N, |

X X0
k3 = k
k=0 k=0

P
We proved in Example 1.3.11 that k= % for all n 2 N, thus it su ces to prove

k=0
that
k=0 4
forall n 2 N.
We proceed by induction.
(BC) We need to prove that 0° = PO®  This is true since both sides of the
4

equation are equal to 0.

. P 3 n2(n+1) 2
(IS) Fix n 2 N and suppose that k® = ——=—. We need to prove that
k=0

Pl
k3= (D22 This s true since:
k=0
1
K3= Kk3+(n+1)3 by de nition of sum
i=0 i=0
2 2
SRR (”:1) #(n+1)3 by (IH)
2 2 3
- nn+1) ;:4( n+1 (algebra)
+1)2(n2+4(n+1
_ (00 4(n 1) (algebrg
+1)2(n + 2)2
= (n+1)%(n+2) (algebrg
4
By induction, the result follows. C

Example 1.3.19

We will prove the correctness of the following formula for the sum of anarithmetic pro-
gression that is a sequence of nite length such that the di erence between consecutive
terms is constant.
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Specically, let a;d 2 R. We will prove that

X (a+ k)= (M+D@a+nd)

k=0 2

for all n 2 N.

We proceed by induction.

)
(BC) We need to prove that (a+ kd) = w. This is true, since
k_

=0

2a 1 (2a) _ (0O+1)(2a+0d)

kd) = —a= — =
k:O(a+ d=a+0d=a > >

2

P
(IS) Fix n 2 N and suppose thatk_ (a+ kd) = w We need to prove:

=0

1
(a+ kd) = (n +2)(2a;r(n +1)d)
k=0
This is true, since
-1
(a+ kd)
k=0
X
=" (a+ kd)+(a+(n+1)d) by de nition of sum
k=0
_ (n+1)(22a+ nd)+(a+(n+l)d) by (IH )
_ (n+2a+ nd)2+25‘+2(”+1)OI (algebrg)
_(n+1) 2a+(n +1)2 nd+2a+2(n+1)d  ebrg
_2an+1+1)+ (2” +1)(nd +2d) (algebra)
_ 2a(n+2)+( r;+ 1)(n+2)d (algebra)
_ (n+2)2a+(n+1)d) (algebra)

2
By induction, the result follows.
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Strong induction

Sometimes it is clear that a statement canalmost be proved by induction, but a snag
appears; for example, in the following example, the truth ofp(n + 1) seems to depend
not on just p(n), but also on p(n  1):

Example 1.3.20
De ne a sequence of numbersd,)n2on recursively by:

a=0; a;=1; az=3a, 1 2a, 2foralln>2
Thus, continuing the sequence, we have
a=31 20=3; a3=3 3 2 1=7; a=15;

Looking at the sequence (01;3;7;15;:::), you might hypothesise that a, = 2" 1 for
all n 2 N. And you would be correct! So let's try and prove that a, = 2" 1 for all
n 2 N by induction.

The statement is demonstrably true forn =0; 1, since
ag=0=1 1=29 1 and ay=1=2 1=2! 1

Fix n > 1 and supposea, =2" 1. If this implies that a,+1 =2"** 1, we'll be done
by induction: indeed, induction gives that p(n) is true for all n > 1, and we checked the
casen = 0 separately.

So let's see what happens. Since > 1, we haven+1 > 2, so we can apply the recursive
formula for an+1 :

an+1 =3an  2an 1

Here's where we get stuck: our induction hypothesis only tells us thata, = 2" 1, so
that

dn+1 = 3(2“ 1) Zan 1

but it doesn't tell us anything at all about a, ;. We need to express, i in terms of n
in order to get a reasonable formula foran.1 . C

This example illustrates why weak induction is called "weak'. But all is not lost: using
the technique of weak induction, we can prove a principle ofstrong induction. The
induction step in strong induction assumes not just the truth of the proposition for one
prior step, but its truth of all prior steps.

Despite its name, strong induction is no stronger than weak induction; the two principles
are equivalent. In fact, we'll prove the strong induction principle by weak induction
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Corollary 1.3.21 (Strong induction principle)
Let p(x) be a statement about natural numbers and letb2 N. If
() p(b) is true; and

(i) Forall n2 N, if p(k) is true for all b6 k 6 n, then p(n + 1) is true;
then p(n) is true for all n > b.

Proof. We'll prove this using weak induction. For eachn, let gq(n) be the statement
‘p(Kk) is true for all b6 k6 n'

Notice that q(n) implies p(n) for all n > bjto see this, let k = n in the statement of
g(n). Thus if we can prove that gq(n) is true for all n, then we've proved that p(n) is
true for all n.

(BC) q(b) is equivalent to p(b), since the only natural number k with b6 k 6 bis
b itself; henceq(b) is true by (i);

(IS) Let n > b and supposeq(n) is true. By (i), p(n + 1) is true. Since q(n) is
true, p(k) is true for all b6 k 6 n. Combining these facts, p(k) is true for all
b6 k 6 n+ 1, which is precisely the statement that q(n + 1) is true.

By induction, q(n) is true for all n > b. Hencep(n) is true for all n > b. O

Proof tip
To prove a statement p(n) is true for all natural numbers n > b (where bis some xed
natural number):

(Base case) Prove p(b) is true;

(Induction step ) Fix n > b, and assume thatp(k) is true for all b6 k 6 n; from
this assumption alone, derivep(n + 1).

The assumption that p(k) is true for all b6 k 6 n is called theinduction hypothesis

This whole process is calledoroof by (strong ) induction (on n). We won't usually
use the word “strong' unless we really need to specify it. Usually we'll also omit “om’
unless there is more than one variable at play, in which case we will specify. C

Strong induction is very well suited to proving formulae for sequences where subsequent
terms are de ned in terms of more than one previous term, as the next few examples
demonstrate.

Example 1.3.22
Recall from Example 1.3.20 that we de ned the sequence

a=0; a=1; az=3a, 1 2a, pforalln>2
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and we wished to prove thata, = 2" 1 for all n 2 N. We have proved that it's true
when n = 0, and will show that it's true for n > 1 by strong induction on n.

(BC) We have already proved thata; =21 1.
(IS) Let n 2 N, and assume thatay = 2k 1forall16 k6 n. Sinceag =2° 1,
this in fact holds for all k 6 n.

We need to prove that this assumption implies thata,+; = 2"t 1. Well, n > 1,
son+1 > 2 and we can apply the recursive formula toa,+; . Thus

an+1 =3a, 2an 1 by de nition of an+1
=32" 1) 22" ! 1) sincep(k) holds for all k 6 n
=3 2" 3 2 2" 1+2  expand brackets

=3 2" 3 2"+2 laws of indices
=2 2" 1 simplifying
=2mt 1 laws of indices
So we're done by strong induction. C

Example 1.3.23
De ne a sequence recursively byag =4, ay =9 and a, =5a, 1 6a, » forall n> 2.

We will prove that a, =3 2"+3" forall n 2 N.
We proceed by strong induction forn > 1, treating the n = 0 case as a second base case.
(BC) The result holds whenn =0 and when n =1, since

ag=4=3 2°+3° and a,=9=3 2'+3!

(IS) Fix n> 1 and suppose thata, =3 2¢+ 3 for all k 6 n. We need to prove
that a,+1 =3 2" +3™1 Wwell,
an+1 =5a, 6an 1 by de nition of the sequence
=53 2"+3") 63 2" 1+3" Y by the induction hypothesis
=5 32 6232"1+5B 3 6)3" ! (algebry

=12 2" 1+9 31 (algebra)
=3 22 2" 1432 30! (algebra)
=3 201 3l (algebra)

Hence the result we sought to prove is true.

By induction, it follows that a, =3 2" +3" forall n 2 N. C
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Example 1.3.24
De ne a sequence recursively by

X0
bh=1 and by =1+ b forall n 2 N

k=0
We will prove by strong induction that kb, =2" for all n 2 N.
(BC) By de nition of the sequence we havelby =1 =20,

(IS) Fix n 2 N, and suppose thath, = 2% for all k 6 n. We need to show that
bher = 2"*1. This is true, since

X0
bhir =1+ b by the recursive formula for by+1

k=0
X

=1+ 2 by the induction hypothesis
k=0

=1+ " 1) by Exercise 1.3.15

— 2n+1

By induction, it follows that b, =2" for all n 2 N. C

A rst look at binomials and factorials

In Section 4.2, two kinds of natural number will turn out to be extremely useful, namely

factorials and binomial coe cients . These numbers allow us to count the number of
elements of certain kinds of sets, and correspond with the “real-world' processes [odr-

mutation and selection respectively. Everything we do here will be re-de ned and re-
proved combinatorially in Section 3.2. In this section, we will overlook the combinatorial

nature, and instead characterise them recursively. We will prove that the combinatorial
and recursive de nitions of binomial coe cients and factorials are equivalent in Section

4.2.

De nition 1.3.25 (to be rede ned in De nition 4.2.24)
Let n 2 N. The factorial of n, written n!, is de ned recursively by

0l=1 and (n+1)!=(n+1) nlforalln>0

Put another way, we have
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for all n 2 Njrecall 1.3.4 to see why these de nitions are really just two ways of wording
the same thing.

Exercise 1.3.26
Prove that

vy 1
@i +1)(3i +2) = (;”n):

i=0
for all n 2 N. C

De nition 1.3.27 (to be rede ned in De nition 4.2.18)
Let n;k 2 N. The binomial coe cient E (ILATEX code: nbinomf ngfkg) (read 'n
choosek') is de ned recursively for n;k 2 N by

k _ o _ n+l _ n n

=1; =0; = +
0 k+1 k+1 k k+1

This de nition gives rise to an algorithm for computing binomial coe cients: they t
into a diagram known as Pascal's triangle , with each binomial coe cient computed
as the sum of the two lying above it (with zeroes omitted):

0
1 % !
o 1 1 1
2 2 2
0 1 2 - 1 21
3 3 3 3
0 1 2 3 1 3 31
U R 146 41
5 5 5 5 5 5
0 1 > 3 2 : 1 5 10 10 5 1
Exercise 1.3.28
Write down the next two rows of Pascal's triangle. C

We can prove lots of identities concerning binomial coe cients and factorials by induc-
tion.

Example 1.3.29

P
We prove that
i=0

i =2" by induction on n.

(BC) We need to prove 0 =1 and2°=1. These are both true by the de nitions
0

of binomial coe cients and exponents.

(IS) Fix n> 0 and suppose that
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We need to prove

n+1
i=0 :
This is true, since
X n+1
i=0 :
n+1 Xt n+1
0 i1 i
xo
-s Ml
jo 171
n n
=1+ + .
=0 J j+1
xo
=1+ "oy o
o 1 o JFE
P
Now i
j=0
k=] +1yields
j=0 j+1 k=1 K

By the induction hypothesis, we have

X X
k
k=1 k=0

P
and _". =0, so that jfl

n+l i=0
Putting this together, we have
X' n X n
=2 2"
— 2n+1
so the induction step is nished.
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— 2n+1

splitting the sum

letting j =1 1

by De nition 1.3.27

separating the sums

" = 2" py the induction hypothesis. Moreover, reindexing the sum using

X n
- k n+1
n
=2" 1
0

=1+2"+(@2" 1)
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By induction, we're done. C

Exercise 1.3.30
Prove by induction on n > 1 that

X .
(" =0
i=0
C
Theorem 1.3.31
Let n;k 2 N. Then (
n _ ﬁ'k), if k6 n
k 0 if k>n
Proof. We proceed by induction onn.
(BC) When n = 0, we need to prove that 8 = ﬁ for all k 6 O, and that
0 =0forall k>0,
If kK6 0 thenk =0, since k 2 N. Hence we need to prove
0 _ o
0 00!
. ; 0 _ 0 -
But this is true since ¢ =1and 55 = 197 = 1.
If k> 0then ? =0 by De nition 1.3.27.
(IS) Fix n 2 N and suppose that | = k,(nni'k), forall k 6 nand ; =0 for all

k>n.
We need to prove that, for allk 6 n+1, we have
n+1 (n+1)!
k  ki(n+1 k)
and that ";* =0Oforall k>n +1.

So x k 2 N. There are four possible cases: either (ik =0, or (i) 0 <k 6 n, or

(i) k=n+1,o0r(iv) k>n +1. In cases (i), (i) and (iii), we need to prove the

factorial formula for ”El ; in case (iv), we need to prove that ”El =0.

(i) Supposek =0. Then ”51 =1 by De nition 1.3.27, and

(n+1)! _ (n+1)
kiin+1 k) 0(n+1)!

. _ n+tl _ (n+1)!
since 0!'=1. So ",° = oI+ -
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(i) f0 <k 6 nthen k= "+1 for some natural number "<n. Then  +1 6 n,
so we can use the induction hypothesis to apply factorial formula to both "

and .]; . Hence
n+1
k
= (1+1 sincek = " +1
+1
n n "
= .+ ‘1 by De nition 1.3.27
n! n! by induction hvpothesi
= +
G [ C R y induction hypothesis
Now note that
| | * |
\ n.\ - n.\ \+1= \ n! ¢+
I(n )! (n ) “+1 (C+DY(n )
and
n! _ n! n - _ n! n )
C+1)(n =~ ) (C+1(n ~ ' n - (C+1(n )
Piecing this together, we have
n! n!
+
In )Y C+DY(n 1)
n!
= — [C+21)+ h
o o D
_ ni(n+1)
T C+D(n )
_ (n+21)!
T C+DY(n )
sothat .}, = % Now we're done; indeed,
(n+1)! _ (n+1)!
C+1)(n ) ki(n+1 k)
sincek = ~ + 1.
(iii) If k= n+1, then
n+1 n+1 . _
K = h+1 sincek = n+1
n n
= + ition 1.3.27
N n+1 by De nition 1.3
|
= % +0 by induction hypothesis
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and % =1, so again the two quantities are equal.

(iv) If k>n +1, then k= "+1 for some " >n, and so by De nition 1.3.27 and
the induction hypothesis we have

n+1 n+1 n
= + =0+0=0
k T+1 h T+1

1T
=}

O]

On rst reading, this proof is long and confusing, especially in the induction step where
we are required to split into four cases. We will give a much simpler proof in Section
4.2 (see Theorem 1.3.31), where we prove the statemenbmbinatorially by putting the
elements of two sets in one-to-one correspondence.

We can use 1.3.31 to prove useful identities involving binomial coe cients.

Example 1.3.32
Let n;k;” 2 N with ~ 6 k6 n then

n k _ n n
k =~ k
Indeed:
n k
Ko
n! k!
= Th 1.3.31
Kiin_ k! Ik ) by Theorem 1.3.3
_ n'k! bine fracti
T CECE] combine fractions
n!
= [Kk!
I Kk ) cance
_ ni(n ) . (n )
BT CERICED] multiply by ==,
= n (n ) separate fractions
TS h (K O)(n k) P
= n' (n_ ) rearranging
o ) (ko OU(n ) (k!
= n E . by Theorem 1.3.31
C
Exercise 1.3.33
Proofthat | = ", forall njk 2 N with k6 n. C
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A very useful application of binomial coe cients in elementary algebra is to the binomial
theorem.

Theorem 1.3.34 (Binomial theorem)
Letn2 Nandx;y 2 R. Then

X
(X+ y)n = E Xkyn k

k=0

Proof. In the case wheny = 0 we have y" X = 0 for all k < n, and so the equation
reduces to

x" = x"y

which is true, sincey® = 1. So for the rest of the proof, we will assume thaty 6 0.
We will now reduce to the case whery = 1; and extend to arbitrary y 6 0 afterwards.

P
We prove (1 + x)" = " xX by induction on n.

k=0

(BC) 1+ x)°=1and Jx°=1 1=1,so the statement is true whenn = 0.

(IS) Fix n 2 N and suppose that

X0
1+ x)" = E XK I 1H)
k=0

P1
We need to show that (1 +x)"*! = ok, well,
k=0
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(1+ X)n+1
=(1+ x)1+ x)" by laws of indices
X
=1+ x) E xk by (IH )
k=0
X' n X' n
= ‘ XK+ x ‘ xK by expanding (x + 1)
k=0 k=0
X X
= E xK + E xk+1 distributing x
k=0 k=0
= xK + xK k! k 1insecond sum
k k 1
k=0 k=1
= " yoy X noyo x<+ " x* o gplitting the sums
"0 k 1 n PIting
k=1
X +
= "oy N+l kg Moy by De nition 1.3.27
0 k n
k=1
n+1l X n+1 K n+1 ..
= +
0 X K X<+ N+l X see () below
k=1
_ X1 n+1 k
o K
The step labelled () holds because
n n+1 n n+1
0o " 1= 0 and no 1= n+1

P
By induction, we've shown that (1 + x)" = " xX for all n 2 N.
i=0

When y 6 0 is not necessarily equal to 1, we have that

n X ko X
(X+y)n=yn 1+§ =yn n 5 _ nxkynk
y k=0 koy k=0 K

The middle equation follows by what we just proved; the leftmost and rightmost equa-
tions are simple algebraic rearrangements. O
Example 1.3.35
In Example 1.3.29 we saw that

X' n

=2n
k=0 K
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This follows quickly from the binomial theorem, since

n

Po@enn= " ks
K k

k=0 k=0

Likewise, in Exercise 1.3.30 you proved that the alternating sum of binomial coe cients
is zero; that is, for n 2 N, we have

n
()¢ =0
k=0 K

The proof is greatly simpli ed by applying the binomial theorem. Indeed, by the bino-
mial theorem, we have

X X
0=0"=( 1+1"=" | (K" k=T (2K )
k=0 k=0

Both of these identities can be proved much more elegantly, quickly and easily using
enumerative combinatorics This will be the topic covered in Section 4.2. C

Well-ordering principle

In a way that we will make precise in Section 5.2, the underlying reason why we can
perform induction and recursion on the natural numbers is because of the way they are
ordered. Speci cally, the natural numbers satisfy the well-ordering principle: if a set
of natural numbers has at least one element, then it has a least element. This sets the
natural numbers apart from the other number sets; for example,Z has no least element,
sinceifa2 Zthena 12 Zanda 1<a.

De nition 1.3.36
Let X be a set. If X has at least one element, then we say) is inhabited (or
nonempty ); otherwise, we sayX is empty .

Aside

The term nonempty is more common thaninhabited in the mathematical community
for referring to sets which have elements, but there are reasons to prefer latter|in
particular, it avoids a double negative (‘has at least one element' vs. ‘doesn't have no
elements")|so in this book we will typically use the word inhabited. C

Theorem 1.3.37 (Well-ordering principle)
Let X be a set of natural numbers. IfX is inhabited, then X has a least element.
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Strategy. Under the assumption that X is a set of natural numbers, the proposition we
want to prove has the formp) g. Namely

X is inhabited ) X has a least element

Assuming X is inhabited doesn't really give us much to work with, so let's try the
contrapositive:

X has no least element ) X is empty

The assumption that X has no least elementloesgive us something to work with. Under
this assumption we need to deduce thaiX is empty.

We will do this by “forcing X up' by strong induction. Certainly 0 62X, otherwise it

neither cann+1 be, since if it were thenit would be the least element ofX . Let's make
this argument formal.

Proof. Let X be a set of natural numbers containing no least element. We prove by
strong induction that n 62X for all n 2 N.

(BC) 062X since if 02 X then 0 must be the least element ofX , as it is the least
natural number.

(IS) Supposek 62X forall06 k6 n. If n+1 2 X then n+1 is the least element
of X; indeed, if ' <n +1then 06 ~ 6 n, so” 62X by the induction hypothesis.
This contradicts the assumption that X has no least element, s; + 1 62X ..

By strong induction, n 62X for eachn 2 N. SinceX is a set of natural numbers, and it
contains no natural numbers, it follows that X is empty. O

Aside

In Section 5.2 we will encounter more general sets with a notion of “less than', for which
any inhabited subset has a “least' element. Any such set has an induction principle,
the proof of which is more or less identical to the proof of Corollary 1.3.21. This has
powerful applications in computer science, where it can be used to formally verify that
a computer program containing various loops will terminate: termination of a program
corresponds to a particular set having a “least' element. C

The following proof that pi is irrational is a classic application of the well-ordering
principle.

Proposition 1,3.38
The number 2 is irrational.
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To prove Proposition 1.3.38 we will use the following two lemmas. The rst lemma we
prove uses the well-ordering principle to prove that fractions can be “cancelled to lowest
terms'.

Lemma 1.3.39
Let g be a positive rational number. There is a pair of nonzero natural numbersa; b
such that g = ¢ and such that the only natural number which divides both a and bis 1.

Proof. First note that we can expressq as the ratio of two nonzero natural numbers,
since g is a positive rational number. By the well-ordering principle, there is a least
natural number a such that q= & for some positiveb2 N.

Suppose that some natural numberd other than 1 divides both a and b. Note that d 6 0,
since ifd = 0 then that would imply a=0. Sinced 6 1, it follows that d> 2.

Sinced divides a and b, there exist natural numbers a b° such that a= a4 and b= bX.
Moreover, a® °> 0 sincea; b;d > 0. It follows that

a_ad_a°

But d > 2, and hence

contradicting minimality of a. Hence our assumption that some natural numberd other
than 1 divides both a and b was falsel|it follows that the only natural number dividing
both a and bis 1. O

The next | ma is a technical result that will allow us to derive a contradiction in our
proof that = 2 is irrational.

Lemma 1.3.40
Let a2 Z. If a2 is even thena is even.

Proof. We prove the contrapositive; that is, we prove that if a is odd then a? is odd.

Odd numbers are precisely those of the form R+ 1, where k 2 Z. So supposea=2k+1
for somek 2 Z. Then

a®=(2k+1)2=4k?>+4k+1=22k?>+2k)+1
Letting ~ = 2k? + 2k we see thata? =2" + 1, and since " 2 Z, it follows that a? is odd.

By contraposition, if a? is even thena is even. O

P-. .
We are now ready to prove that 2 is irrational.
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Proof of Proposition 1.3.38. SupposeIO 2 is rational. Sincep 2> 0, this means that we
can write

p 5 @

b

where a and b are both positive natural numbers. By Lemma 1.3.39, we may assume
that the only natural number dividing a and bis 1.

Multiplying the equation P 2 = 2 and squaring yields
a? =21

Hencea? is even. By Lemma 1.3.404a is even, so we can writea = 2¢ for somec > 0.
Then a2 = (2¢)? = 4¢?, and hence
4% =217

Dividing by 2 yields
2¢% = 1

and hencel? is even. By Lemma 1.3.40 againb is even.

But if a and bare both even, the natural number 2 divides botha and b. This contradicts
the fact that the only natural numberdividing both a and bis 1. Hence our assumption
that = 2 is rational is incorrect, and 2 is irrational. O

Writing tip

In the proof of Proposition 1.3.38 we could have separately proven that? being even
implies a is even, and that b> being even impliesb is even. This would have required
us to repeat the same proof twice, which is somewhat tedious! Proving auxiliary results
(lemmas) separately and then applying them in theorems can improve the readability of
the main proof, particularly when the auxiliary results are particularly technical. Doing
so also helps emphasise the important steps. C

Exercise 1.3.41 p_
What goes wrong in the proof of Proposition 1.3.38 if we try instead to prove that 4

is irrational? C
Exercise 1. .i12
Prove that 3 is irrational. C
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78 Chapter 2. Logic, sets and functions

Section 2.1
Symbolic logic

Symbolic logic arises from the observation that propositions|that is, results about math-
ematical objects|can themselves be treated as mathematical objects. So that we can
study propositions in an abstract setting, we will represent propositions by symbols,
typically the letters p, g, r and s. (It is rare that we will speak about more than four
propositions at the same time; if we need to, we'll just use more letters!) We call these
propositional variables : they are “propositional' because they represent propositions,
and they are “variables' because we will make no assumptions about their truth value
(unless explicitly stated).

This symbolic approach will allow us to decompose complex propositions into simpler
ones and investigate their logical structure, which in turn will help us work out how to
structure our proofs.

For example, consider the following:
Let n be an integer. Ifn is prime and n > 2 then n is odd.

The three statements h is prime’, 'n > 2' and 'n is odd' are all propositions in their

own right, despite the fact that they all appear in a more complex proposition. We

can really examine the logical structure of the proposition by replacing these simpler
propositions with symbols. Referring to n is prime' asp, n> 2'asq, and n is odd' as

r, the structure of the second propaosition is:

If pandq, thenr.

Thus the propositions p; g;r are tied together by language, namely the word “and' and
the construction “if{then’. Soon we will give precise de nitions of what these words
mean; in the abstract setting they are calledlogical operators

Looking at the logical structure of complex propositions allows us to make an educated
guess about how to proceed with a proof of the statement if it is true. Indeed, it is a safe
bet that in order to prove “if p and g, then r', you should derive r from the assumption
that p and g are both true.

The value of reducing statements to symbolic expressions is that it forces us to remove
ambiguity and gives a clear-cut and precise way of knowing when we've done what we
set out to do.
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Section 2.1. Symbolic logic 79

Logical operators

A logical operator, intuitively speaking, is a rule that constructs a new proposition out
of other propositions. For example, as we saw in Section 1.2, from propositions; g we
can construct several new propositions o the bat:

‘pandq ‘pordg 'if p, then g “p is false'

These constructions correspond with the logical operators otonjunction, disjunction,
implication and negation, respectively|and there are many more where they came from!

Relying on our understanding of the English language to interpret what these logical
operators mean will cause us some trouble; the next few pages introduce the most
commonly used logical operators, together with their precise de nitions. To get us
started, we will need the de nition of a propositional formula; these are the symbolic
expressions which represent propositions built from smaller propositions using logical
operators.

De nition 2.1.1
A propositional formula is an expression built from propositional variables
p;q;r;s;::: and logical operators (to be de ned individually below).

Intuitively, propositional variables will refer to basic propositions, such as "3 is odd', and
propositional formulae will refer to more complex propositions, such as "3 is odd and 6
is not a perfect square'.

Conjunction (Cand', ")

Conjunction is the logical operator which makes precise what we mean when we say
“and'.

De nition 2.1.2

Let p and g be propositions. The conjunction of p and g, denotedp” q (read: p and
q) (LATEX code: nwedgg is a proposition which is true if both p and g are true, and
false otherwise.

Aside

Strictly speaking, the de nitions of logical operators should be given in terms ofpro-
positional variables rather than propositions themselves; these truth values then extend
inductively to general propositional formulae, in a sense to be made precise in Section
5.3. These propositional formulae onlyrepresent propositionsjthe latter cannot be
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80 Chapter 2. Logic, sets and functions

treated formally because they are statements in natural language, not mathematical
objects. This perspective is confusing on rst exposure, so we will simplify matters
by blurring the distinction between propositional variables, propositional formulae and
propositions. C

It is not always obvious when conjunction is being used; sometimes it sneaks in without
the word “and' ever being mentioned! Be on the look-out for occasions like this, such as
in the following exercise.

Example 2.1.3

We can express the proposition "7 is an integer greater than 5' in the fornrp” g, by

letting p represent the proposition "7 is an integer' and letq represent the proposition *7
is greater than 5'. In order to prove that 7 is an integer greater than 5, we would need
to give a proof that 7 is an integer, and a proof that 7 is greater than 5. C

Exercise 2.1.4
Express the proposition "Clive is a mathematician who lives in Pittsburgh’ in the form
p” q, for propositions p and g. C

The truth value of a propositional formula is determined by the truth values of the
propositional variables it contains. As such, the truth value of p” g is de ned in terms of
the truth values of p and of g. An easy way to specify this information isusing atruth
table , which tells us the truth value of p” g for all possible assignments of truth values
to p and q:

p” qis false whenp is false andq is false

plalprq

X | X X p” qis true when pis true and q is true

X p”~ qis false whenp is true and q is false
X p” qis false whenp is false andq is true

Here X (IATEX code: ncheckmark) denotes ‘true’ and (IATEX code: ntimes) denotes
“false'® There is a row for each possible assignment of “true'X) or ‘false' ( ) to
the propositional variables, and a column for each variable and the proposition we're
interested in.

Disjunction (or', )

Disjunction is the logical operator that makes precise what we mean by “or".

The word “or' is especially context-dependent in English: if you say to me, “you can have

@ |nstead of X, , some authors use> ; ? (IATEX code: ntop, nbot) or T;F or 1;0.
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Section 2.1. Symbolic logic 81

a slice of cake or you can have a chocolate bar,’ does that mean | can have both, or
not? We remove this ambiguity with the following de nition; and to clarify, with this
de nition of "or’, | can have both the cake and the chocolate bar. Yummy.

De nition 2.1.5

Let p and g represent propositions. Thedisjunction of p and g, denotedp _ g (read:
‘p or ) (LATEX code: nvee) is the proposition which is true if at least one of p or q is
true, and false otherwise.

Exercise 2.1.6
Using De nition 2.1.5, write down a truth table for p_ g (see page 80 for how it was

done forp” q). C

The real power of truth tables comes when investigating how logical operators interact
with each other.

Example 2.1.7

Given propositions p; g; r, when is (o~ g) _ (p” r) true? It's not immediately obvious, but
we can work it out by breaking it down into its component parts, hamely the propositions
p” gand p” r; we'll call these auxiliary propositions . We can then make a column
for each variable, each auxiliary proposition, and the main proposition, to nd its truth
values.

plalr|pralprr| (era_("r)
X | X | X X X X
X | X X X
X X X X
X

X | X

X

X
| —z—} | —{z—} | {z }
variables auxiliary prop "s main proposition

We can then read o the table precisely when ©” q) _ (p” r) is true, by comparing the
entries in its column with the corresponding truth values of p; q;r. C

Aside
If you haven't already mixed up ~ and _, you probably will soon, so here's a way of
remembering which is which:

mac n cheese
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82 Chapter 2. Logic, sets and functions

If you forget whether it's A or _ that means "and', just write it in place of the 'n' in
‘mac n cheese"

mac ”* cheese mac_ cheese

Clearly the rst looks more correct, so » means "and'. (For any Brits among you, the
mnemonic ~ sh n chips' works just as well.) C

Exercise 2.1.8
Write a truth table for the proposition p” (g_ r). Compare it with the truth table for
(p” g _ (p” r). What do you notice? C

Hopefully, if you did the previous exercise correctly, you'll have noticed that the column
for p” (gq_r) is identical to the column for (p” g) _ (p” r). So in some sense, these two
propositions are “the same'.

De nition 2.1.9

Two propositional formulae depending on the same propositional variables aréogic-
ally equivalent if they have the same truth value as each other, no matter what the
assignment of truth values to their propositional variables.

Proof tip

To prove that two propositions are logically equivalent, you can draw a truth table
containing both propositions; if their columns are identical, then they are logically equi-
valent. C

Example 2.1.10

The propositional formulae p™ (q” r) and (p” g) N r are equivalent. To prove this,
we'll combine the truth tables for both propositions, with auxiliary columns for the
propositions g” r and p” g.

plalr|arr|pr@ )| pral(prarr
X | X | X X X X X
X | X X
X X
X

X | X X

X

X

Evidently the two propositional formulae are equivalent since their columns are identical.
Indeed, p™ (g™ r) and (p” g) * r are both true if all three of p, g and r are true, and
they're both false if one or more ofp, q or r is false. C
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Section 2.1. Symbolic logic 83

Negation (‘not', :)

So far we only o cially know how to prove that true propositions are true. The negation
operator makes precise what we mean by “not', which allows us to prove that false
propositions are false.

De nition 2.1.11
Let p be a proposition. The negation of p, denoted: p (read: "not p') (LATEX code:
nneg) is the proposition which is true if p is false, and false ifp is true.

The truth table for the negation operator is very simple, since it is de ned in terms of
only one propositional variable:

Example 2.1.12
What follows is the truth table for p” (: g) (read 'p and not q); we include a column
for : g because it appears inside the proposition.

plal:q|pr(a
X | X
X X X
X
X

C

Theoretically we could stop here: the three operators we've seerfy, _ and : , can be
used to give any combination of truth values to a compound proposition, inany number
of variables!® For example, try the following exercise:

Exercise 2.1.13
Using only two variables p; g and the operators”; _;: , write down a propositional for-
mula whose truth table column is:

| 2?7

[ proving this claim and investigating other “complete sets' of operators would make a nice nal project!

X X|o

| g
X
X

X
X
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84 Chapter 2. Logic, sets and functions

Did you use all three of the permitted logical operators? If so, nd another equivalent
propositional formula de ned using only two of the operators. We will encounter this
later as the exclusive disjunction operator, see De nition 2.1.21. C

The following theorem is our rst big result of the course. It is a pair of dual results
which relate conjunction, disjunction and negation. Informally the result says:

Saying "neitherp nor q is true' is the same as saying "bothp and q are false’;

Saying p and g are not both true' is the same as saying "at least one gb and q is
false'.

Let's make this precise:

Theorem 2.1.14 (De Morgan's laws for logical operators)
Let p and q be propositions. Then

(@) : (p_ q)is logically equivalent to (: p) ~ (: q);
(b) : (p™ q) is logically equivalent to (: p) _ (: Q).
Proof. (a) The following truth table demonstrates that : (p_q) and (: p)” (: g) have the

same truth value for any assignment of truth values top and g; hence they are logically
equivalent.

plalfp_al:(_a|:pl:a|CtPM (A
X | X X
X X X
X X X
X X | X X
The proof of (b) mimics the proof of (a) and is left as an exercise. O

Corollary 2.1.15

(&) The operator  can be expressed in terms of and : ;

(b) The operator _ can be expressed in terms of and : .

Proof. (a) First note that, if p is any proposition, then p is equivalent to : (: p), which
we'll write simply :: p. This is demonstrated by the following truth table
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Section 2.1. Symbolic logic 85

Therefore, given any propositionsp and g,
p” qis equivalentto (:: p)™ (:: Q);

...which is equivalent to : ((: p) _ (: g)) by De Morgan's laws applied to the pro-
positions : p and : q.

Sincep” qis equivalent to : ((: p) _ (: g)), which contains only the operators: and _,
the result has been shown.

The proof of (b) mimics the proof of (a) and is left as an exercise. O

This means that just two operators, say® and: , su ce for expressing all other possible
operators! However, there is no real virtue in being stingy with our operators; after all,
the whole point of everything we're doing is to communicate mathematical ideas. The
propositional formula

(G p) G
is a lot harder to read and much harder to understand than the expression
p™q

So we'll keep” for now, and we'll go one step further: there is one especially crucial
operator that we have not yet de ned, namely implication .

Implication (if...then...", ) )

The implication operator makes precise what we mean when we say f, then g or 'p
implies g. The de nition of the implication operator might seem unnatural at rst, but
this will be discussed as an aside after the de nition has been given.

De nition 2.1.16
Let p and g be propositions. The propositionp) q (read: 'if p then g, or “p implies q')
(LATEX code: nRightarrow ) is false if p is true and q is false, and true otherwise.

The truth table for the implication operator is as follows:
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86 Chapter 2. Logic, sets and functions

plallp) g
X | X X
X
X X
X
Exercise 2.1.17
Use a truth table to show that p) qis equivalent to (: p) _ g. c

Exercise 2.1.18

Let p and g be propositional variables. Find a propositional formula which is equivalent
to: (p) 0Q), using only the operators®, and: . How could you use this equivalence
to prove that an implication p) qis false? C

Aside
The biggest source of confusion for most people about the implication operator is why
p) qis true wheneverp is false, even ifq is also false.

The reason behind this confusion is that people tend to think of implication in terms of
causation, i.e. that p) qis a statement asserting q is true because ofp’. This is not
what “implies' means here! The statementp) q says nothing about the truth value of
g unlesswe know that p is true.

Think of it this way: p) g means that | can give you a proof ofg so long as you can
give me a proof ofp. If p has no proofs, my job is done before | even started! The only
way | can fail is if you have a proof ofp but | have no proof of g. C

Other operators ( , , ...)

There are many other operators we can de ne, but we will focus on just two more.

De nition 2.1.19

Let p and g be propositions. The propositionp, g (read p if and only if ) (LATEX
code: nLeftrightarrow ) is true when p and g have the same truth value, and false
otherwise. The operator, is called the biconditional operator

Exercise 2.1.20
Show that p, qis logically equivalentto (p) g~ (q) p). C

De nition 2.1.21

Let p and q be propositions. The propositionp q (read p or q but not both") (LATEX
code: noplus) is true when p and g have di erent truth values, and false otherwise. The
operator is called the exclusive disjunction operator
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Section 2.1. Symbolic logic 87

Computer scientists and logicians often refer to as “xor' or “exclusive or'.

Proof principles

In Section 1.2, we saw how to prove statements using the techniques pfoof by contra-
diction and the law of excluded middle We are now in a position to make these proof
techniques precise from a symbolic perspective. For good measure, we will now also
introduce another useful technique, calledproof by contraposition.

De nition 2.1.22
The law of excluded middle s the assertion thatp _ (: p) is true for all propositions

p.

In Section 1.2, we attributed the usefulness of the law of excluded middle to the fact
that we can prove a proposition is true by splitting into cases based on whether another
proposition is true.

Exercise 2.1.23
Let p; q;r be propositions. Prove that (p_q) ) r islogically equivalentto (p) r)”*(q)
r). ©

The following corollary is the technical result underpinning the reason why the law of
excluded middle is so useful in proofs.

Corollary 2.1.24
Let p and q be propositions. Ifp) qand: p) qare true, then qis true.

Proof. By Exercise 2.1.23, it su ces to show thatif (p_: p)) qis true, then qis true.
By the law of the excluded middle,p_: pis true, and hence ¢ _: p)) qis true if and
only if g is true. But this is precisely what we wanted to prove. O

Proof by contradiction can also be proved to be a valid proof technique by considering
truth tables.

Theorem 2.1.25 (Principle of contradiction)
Let p and g be propositions, and suppose thafg is false. Ifp) qis true, then p is false.

Proof. Consider the truth table of the proposition p) a:
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88 Chapter 2. Logic, sets and functions

| p) g
X

X X|o

K
X
X X

X

The only row in which g is false andp ) q is true is the fourth row, in which p is
false. O

We won't dwell on these proof techniques, since we already saw them in Section 1.1.
However, there is a very useful proof technique that we haven't seen yet, callegroof by
contraposition. This is particularly useful for when you're trying to prove an implication
and can't quite get it to work.

De nition 2.1.26
Let p and g be propositions. The contrapositive  of the proposition p ) q is the

proposition (: @) ) (: p).

Theorem 2.1.27 (Principle of contraposition)
Let p and q be propositions. Thenp) qis logically equivalentto (: @) ) (: p).

Proof. Consider the following truth table:

plalp) al:al:p[Cd) ¢p
X [ X [ X X
X X
X | x X X
X X X X

Since the third and sixth columns are identical, the two propositions are logically equi-
valent. O]

Proof tip

To prove an implication p) g, you can instead prove the implication: q) : p; that
is, assuming that g is false, show thatp must be false. We then sayp) q s true “by
contraposition'. C

Example 2.1.28

Fix two natural numbers m and n. We will prove that if mn > 64, then eitherm > 8 or
n > 8. Letting p be the proposition mn > 64', q be the proposition m > 8" and r be
the proposition 'n > 8', the statement "if mn > 64, then eitherm > 8 orn > 8' becomes

p) (_r)

88



Section 2.1. Symbolic logic 89

By contraposition, this is equivalent to
c(Q_n)): p
By de Morgan's laws, this is equivalent to
™)) p
Let's spell this out. The proposition : p meansmn 6 64, and the proposition ( @) (: r)
means thatm 6 8 andn 6 8. So what we need to prove is:

If M6 8 andn 6 8 then mn 6 64.

Well this is certainly true! If you multiply two natural numbers which are less than or
equal to 8, then their product must be less than or equal to 8, which is equal to 64. C

Corollary 2.1.29
Let p and q be propositions. Thenp, ¢ is equivalent to

P) 9~ (¢p) Ca)

Proof. Left as an exercise. You can prove it directly, or apply reasoning you've already
acquired to the result of Theorem 2.1.27. O

The logical equivalence set up by Corollary 2.1.29 is useful in proofs of some biconditional
statements.

Whilst the contrapositive of an implication p) qis equivalenttop) g, its converseis
not.

De nition 2.1.30
Let p and g be propositions. The converse of the proposition p) g is the proposition

a) p.

Exercise 2.1.31

Demonstrate by truth table that, for propositional variables p and g, the propositions
p) gandq) parenot logically equivalent. Provide an example of an implication and
its converse that demonstrate this. C

? Tautologies

There are many instances when a proposition expressed in terms of propositional vari-
ables is true no matter what truth values are assigned to the variables.

89



90 Chapter 2. Logic, sets and functions

Example 2.1.32
Let p be a proposition. The following propositions are all true, regardless of whethep
is true or false:

p) P P, (PP P, (P_P

De nition 2.1.33
A tautology is a propositional formula which is true regardless of the truth values
assigned to its variables.

Example 2.1.34
Let p and g be propositions. We'll prove that

p) (@) p)
is a tautology by looking at its truth table:

|9) p|p) (a) p)

q
X
X

X X X X

X
X
X
The column for p) (gq) p) has Xin every row, so is a tautology.

An alternative proof is as follows. The only way that p) (gq) p) can be false is if
pistrue and q) pis false. Butif p is true then q) p is necessarily true, so this is
impossible. C

Exercise 2.1.35

How might fact proved in Exercise 2.1.34, thatp) (q) p) is a tautology, be useful in
a proof of a conditional statement? Where did we use this in the proof of Proposition
1.2.19? C

Exercise 2.1.36
Let p;q;r be propositions. Prove that

P) (@) nNI) [p) @) (p) 1)

is a tautology. C

Free and bound variables

If all we have to work with is propositions then our ability to do mathematical reasoning
will be halted pretty quickly. For example, consider the following statement:
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Section 2.1. Symbolic logic 91

X is divisible by 7

This statement seems like the kind of thing we should probably be able to work with if
we're doing mathematics. It makes sense ik is a whole number, such as 28 or 41; but
it doesn't make sense at all ifx is a parrot called Alex.[! In any case, even when it does
make sense, its truth depends on the value oxk; indeed, 28 is divisible by 7' is a true
proposition, but “41 is divisible by 7' is a false proposition.

This means that the statement X is divisible by 7' isn't a proposition| quel horreur!
But it almost is a proposition: if we know that x refers somehow to a whole number,
then it becomes a proposition as soon as a particular numerical value of is speci ed.
Such a symbolx is called afree variable or parameter . To indicate that a statement
p contains x as a free variable, we will writep(x). When we replacex by a speci ¢ value,
say 28, we writep(28); this is called substitution of a value for a variable.

Some statements might have several free variables. For example, the statemegt= x+3'
is a true proposition whenx =3 and y = 6, but it's a false proposition when x =1 and
y = 2. What really matters is that we have a notion of what it is appropriate to use
as values ofx and y|namely, they should be numbers|jand that whenever we use such

values, what comes out is a proposition. To indicate that a statementp contains x and
y as free variables, we will writep(x;y).

De nition 2.1.37

A logical formula is a statement containing some number ofree variables , each with
a speci ed range, such that the statement becomes a proposition when values for all
the variables are substituted from their respective ranges.

Example 2.1.38

As mentioned before, the statementp(x) de ned by " x is divisible by 7' is a logical formula
with one free variable x, whose range is the sefZ of integers. Then, for example,p(28)
is a true proposition and p(41) is a false proposition. C

Exercise 2.1.39
Write down a logical formula p(x;y) with two free variables x;y with range Z. Is the
proposition p(3; 7) true or false? For what values ofy 2 Z is p(0;y) true? C

We can obtain propositions from logical formulae in ways other than simply substituting
for a variable. For example, the assertion thatevery substitution for a variable makes
the formula true, is in itself a proposition. This can be done usingquanti ers.

[l Alex the parrot is the only non-human animal to have ever been observed to ask an existential question;
he died in September 2007. It is unlikely that Alex was divisible by 7, even when he was alive.
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92 Chapter 2. Logic, sets and functions

Universal quantier ( 8)

The universal quanti er makes precise what we mean when we say “for all', omp(x) is
always true no matter what value x takes'.

De nition 2.1.40

Let p(x) be a logical formula with free variable x, whose range is a seX . The proposition
Bx 2 X; p(x)' (read “for all x in X, p(x)") (LATEX code: nforall ) is true if p(x) is true
no matter what value of x is substituted from X, and false otherwise. The symboB is
called the universal quanti er

Note that the fact that the variable x ranges over the setX is built into the notation
8x 2 X',

Exercise 2.1.41
Let p(x) be the formula *x is divisible by 7', where x ranges over the integers. Write out
the propositions 8x 2 Z; p(x) and 8x 2 Z; : p(x) in English. C

Example 2.1.42
Consider the proposition

For all integers n, if n is even thenn + 1 is odd.

This proposition takes the form

8n 2 Z; (p(n)) q(n))

where p(n) is the statement ' is even' andg(n) is the statement 'n + 1 is odd'.
A proof would proceed as follows:

() Let n be an (arbitrary) integer.
(i) Assume that n is even.
(iii) From the above two assumptions, derive the fact that n + 1 is odd.

Step (i) is introduction of the variable n. For the rest of the proof we may treat n as if
it's any old integer, but whatever we say aboutn must be true no matter what value n
takes. Having introduced n, we now need to provep(n) ) q(n).

Step (ii) uses our proof strategy for proving implications: prove the propaosition to the
right of the ) symbol from the assumption that what is to the left of the ) symbol is
true. This means that for the remainder of the proof, we may assume thain is even.

Step (iii) nishes o the proof. C
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Section 2.1. Symbolic logic 93

Common error
Consider the following (non-)proof of the proposition 8n 2 Z; n? > 0.

Let n be an arbitrary integer, say n = 17. Then 17% = 289 > 0, so the
statement is true.

The error made here is that thewriter has picked an arbitrary value ofn, not the reader.
(In fact, the above argument actually proves9n 2 Z; n2 > 0; see below.)

Your proof should make no assumptions about the value oh other than its range. Here
is a correct proof:

Let n be an arbitrary integer. Either n> 0 orn< 0. If n > 0 then n?> 0,
since the product of two nonnegative numbers is nonnegative; ih < 0 then
n? > 0, since the product of two negative numbers is positive.

Existential quanti er ( 9)

The existential quanti er makes precise what we mean when we say there exists', or
p(x) is true for some value ofx in its range'.

De nition 2.1.43

Let p(x) be a logical formula with free variable x, ranging over a setX . The proposition
Ox 2 X; p(x)' (read “there existsx in X such that p(x)") (LATEX code: nexists ) is true
if p(x) is true for at least one substitution of the variable x from X . The symbol 9 is
called the existential quanti er

Exercise 2.1.44

Let p(x) be the formula *x is divisible by 7', where x ranges over the integers. Write
out the propositions 9x; p(x) and 9x; : p(x) in English. For each, either prove that it is
true, or prove that it is false. C

Example 2.1.45
Consider the proposition

There exists a natural number which is odd and greater than 3.

This proposition takes the form 9n 2 N; (p(n) ~ q(n)), where p(n) is the statement n is
odd' and g(n) is the statement 'n is greater than 3.
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A proof would proceed by nding a particular value of n such that p(n) and g(n) are
both true. Well, we know that 5 is odd, and 5 is certainly greater than 3! This means
that p(5) » q(5) is true. Since we've proved the proposition for a value ofn, we now
know that 9n 2 N;(p(n) ~ q(n)) is true. C

From now on, if a variable's range is irrelevant or is clear from context, we will simply
omit reference to its range. For example, if it is clear that the variable n refers to an
integer, we will write 8n; p(n) and 9n; p(n) instead of 8n 2 Z; p(n) and 9n 2 Z; p(n),
respectively.

Quanti ers behave in an interesting way with the negation operator. Intuitively this
makes sense: for example, to showk is even' isn't true for all x, it suces to nd a
single x for which "X is even' is false. Thus, we can disprovéx; (x is even) by proving
9x; (x is not even). This will be useful when cooking up proof strategies.

Theorem 2.1.46 (De Morgan's laws for quanti ers)
Let p(x) be a logical formula. Then
(@) : (9x; p(x)) is logically equivalent to 8x; (: p(x));

(b) : (8x; p(x)) is logically equivalent to 9x; (: p(x)).

Proof. (a) We need to show that 8x; (: p(x)) is true when : (9x; p(x)) is true, and false
when it is false.

Suppose: (9x; p(x)) is true. Then 9x; p(x) is false, which means it is not the case that
at least one value ofx makesp(x) true. Since no values ofx make p(x) true, this must
mean that all values ofx make : p(x) true. So from the assumption that x takes any
value whatsoever, we know that: p(x) is true. Hence 8x; (: p(x)) is true.

Conversely, suppose (9x; p(x)) is false. Then 9x; p(x) is true, so there is some xed
value of x making p(x) true. Therefore it is not the case that : p(x) is true for all values
of x: if x takes this special value thenp(x) is true, so: p(x) is false! Hence8x; (: p(x))
is false.

The proof of (b) mimics the proof of (a) and is left to the reader. O

Bound variables

When a variable is quanti ed, we say it is bound . Bound variables behave di erently
from free variables in a number of ways, for example

Propositions cannot have free variables, but they can have bound variables.
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It is possible to substitute a value for a free variable, but not for a bound variable.

Example 2.1.47
Consider the following formula, in which the variables x;y; z all have rangeZ:

8x2Z;9y2Z; x>+y?+2z2=1

In this formula, the variables x and y are bound, but the variable z is free. To see this,
note that we can substitute for z; substituting 2 for z yields:

8x; 9y; x>+ y?+22=1

which is a false proposition. However we cannot substitute fox or y; trying to substitute
2 for x yields:
82, 9y; 22+ y?+ 22 =1

which must be nonsense: the phrase “for all 2, ..."' doesn't even make sense! C

Exercise 2.1.48

For each of the following formulae, where all variables range over the integers, write
down the formula using quanti ers and specify which variables are free and which are
bound:

(@) If nis prime and n > 2 then n is odd.
(b) There exist x and y such that ax + by = 1.

(c) No integer value of x satis es Ox = 1.

Quanti er alternation

Compare the following two statements:
(i) For every door, there is a key that can unlock it.
(i) There is a key that can unlock every door.

Letting the variables x and y refer to doors and keys, respectively, and lettingp(x;y) be
the statement "doorx can be unlocked by keyy', we can formulate these statements as:

(i) 8x; 9y; p(x;y)
(i) 9y; 8x; p(x;y)

This is a typical “real-world' example of what is known asquanti er alternation [the
two statements di er only by the order of the front-loaded quanti ers, and yet they say
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very di erent things. Statement (i) requires every door to be unlockable, but the keys
might be di erent for di erent doors; statement (ii), however, implies the existence of
some kind of ‘master key' that can unlock all the doors.

Here's another example with a more mathematical nature:

Exercise 2.1.49
Let p(x;y) be the statement X + y is even'.

Prove that 8x 2 Z; 9y 2 Z; p(x;y) is true.
Prove that 9y 2 Z; 8x 2 Z; p(x;y) is false.

C

In both of the foregoing examples, you might have noticed that the 89' statement says
something weaker than the "98' statement|in some sense, it is easier to make a 89
statement true than it is to make an 98 statement true.

This idea is formalised in Theorem 2.1.50 below, which despite its abstract nature, has
an extremely simple proof.

Theorem 2.1.50
Let p(x;y) be a logical formula. Then

9y; 8x; p(x;y) ) 8 x; 9y; p(X;y)

Proof. Suppose9y; 8x; p(x;y) is true. We need to prove that 8x; 9y; p(x;y) is true.
Using our assumption9y; 8x; p(x;y), we may choosey such that 8x; p(x;y ) is true.

Now to prove 8x; 9y; p(X;y), X X. We need to nd y such that p(x;y) is true. But
p(x;y ) is true by our above assumption! So we're done. O

Statements of the form 9y; 8x; p(x;y) imply some kind of uniformity : a value of y
making 8x; p(x;y) true can be thought of as a “one size ts all' solution to the problem
of proving p(x;y) for a given x. Later in your studies, it is likely that you will encounter
the word “uniform' many times|it is precisely this notion of quanti er alternation that
the word “uniform' refers to.
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Section 2.2
Sets and set operations

With a system of logical notation under our belt, we're now ready to introduce the
notion of a set with a notch more precision than in Section 1.1. At their core, sets seem
extremely simple|a set is just collections of objects|except this characterisation of a
set leads to logical inconsistencies! We overcome these inconsistencies by restricting
ourselves to working inside auniverse U, which we consider to be a set which is so
big that it contains all of the mathematical objects that we want to talk about. This
de nition seems circular|Section B.2 aims to clear up this confusion.

De nition 2.2.1

A set is a collection ofelements from a speci ed universe of discourse . The collection
of everything in the universe of discourse is called theiniversal set (or just universe ),
denoted U (IATEX code: nmathcal f Ug).

The formula x 2 X (IATEX code: nin ) denotes the statement that x is an element ofX,
where the range ofx is the universe of discourse. We writex 62X (IATEX code: nnotnin )
to mean: (x 2 X), i.e. that x is not an element ofX .

This de nition seems a bit weird|and it is|so if you're confused, then don't worry,
as we will avoid reference to it as much as possible. The only property df} that we'll
need is that if we speak aboutany mathematical object at all, except for U itself, then
this mathematical object is an element ofU (rather than just oating around in space
without being an element of anything).

Example 2.2.2

In Section 1.1, we introduced ve sets: the empty set?, the set N of natural numbers,
the set Z of integers, the setQ of rational humbers, the setR of real numbers and the
set C of complex numbers. C

Exercise 2.2.3
Which of the following propositions are true, and which are false?
1 1

1
52Z  $2Q z2Q z2U 32U

Another fundamental example of a set is theempty set

De nition 2.2.4
The empty set , denoted? (IATEX code: nvarnothing ), is the set with no elements.

[ Read about Russell's paradox for more information.
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The empty set may seem trivialland it is|but owing to its canonicity, it arises all over
the place, and will be especially important when we come to talk about functions and
cardinality in Section 4.3.

Exercise 2.2.5
Let p(x) be any formula. Show that the proposition 8x; (x 2 ? ) p(x)) is true. What
does the proposition8x; (x 2 ? ) x 6 x) mean in English? Is it true? C

Specifying a set

One way of de ning a set is simply to describe it in words, like we have done up to now.
There are other, more concise ways, of specifying sets, which also remove such ambiguity
from the process.

Lists. One way is simply to provide alist the elements of the set. To specify that
the list denotes a set, we enclose the list with curly bracketd ; g (LATEX code: nf, ng).
For example, the following is a speci cation of a setX, whose elements are the natural
numbers between 0 and 5 (inclusive):

X =10;1;2; 3; 4,59

Implied lists. Sometimes a list might be too long to write outjmaybe even in nite|

or the length of the list might depend on a variable. In these cases it will be convenient
to use animplied list , in which some elements of the list are written, and the rest are
left implicit by writing an ellipsis ™ :::' (LATEX code: ndots ). For example, the statement

means that X is the set whose elements are all the square numbers from 1 t?, where
n is some number. Implied lists can be ambiguous, since they rely on the reader's ability
to infer the pattern being followed, so use with caution!

Set-builder notation. In general, implied lists can be ambiguous, so in practice they
are avoided unless the implied list is very simple, such as a set of consecutive numbers

To get around this, we can useset-builder notation, which is a means of specifying a set
in terms of the properties its elements satisfy. Given a seiX, the set of elements ofX
satisfying some propertyp(x) is denoted

fx2 X jpx)g

The bar j' (IATEX code: nmid) separates the variable name from the formula that they
make true. Some authors use a colonfx 2 X : p(x)g' or semicolon Tx 2 X;p(x)d
instead[®!

'When X = U, we abbreviate this by simply writing fx j p(x)g instead of fx 2 U j p(x)g.
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Example 2.2.6
The set of all even integers can be written as

fn2Zjniseverg="f.::; 4, 2,0,2,4,6;:::9g
For comparison, the set of all even natural numbers can be written as
fn2Njniseverg=f0;2,4,6;:::9
C

Proof tip

When a setX is expressed in set-builder notation, sayX = fx j p(x)g, then the statement
X 2 X is true precisely whenp(x) is true. In other words, to prove x 2 X, you can prove
p(x). Likewise, to prove x 62X, you can prove: p(x). C

Exercise 2.2.7
Express the set of all integers which are perfect squares in set-builder notation and as
an implied list. C

You're probably tired of worrying about ranges and universes|and so am |. We can
use the language of set theory to avoid them completely by specifying the ranges of the
variables we use as soon as they appear. For example, given a 3ét

The proposition 8x 2 X; p(x) means that x has rangeX and 8x; p(x). It is
equivalent to 8x; x 2 X ) p(x), so long as the range ok contains all the elements
of X.

The proposition 9x 2 X; p(x) means that x has rangeX and 9x; p(x). It is
equivalent to 9x; x 2 X " p(x), so long as the range ok contains all the elements
of X.

The setfx 2 X | p(x)g denotes the setf x j p(x)g, where the range ofx is X .

From now on, this is the style that we will use, and the universeU will be assumed to
include all the mathematical objects that we de ne or need.

We can also use set-builder notation to specify the form of the elements of a set. For
example, the set
Z = f3x+2jxis an integemg

denotes the set of things of the form & + 2 where x is an integer. Thus

Z=f.::; 7, 4, 1,2,58/11;:::¢g

From now on our universe of discourse will, unless otherwise speci ed, include all math-
ematical objects that we de ne. With this in mind, there are some very important sets
to be de ned.
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Subsets and set equality

Much of the discussion above concerned when an element of one set is or is not an
element of another. For example, every integer is a rational number; that is

8n; (n22Z) n2Q)

We can say this more concisely by saying tha is a subsetof Q.

De nition 2.2.8
Let X and Y be sets. We sayX is asubsetof Y if 8x 2 X; x 2 Y, or equivalently, if

8x; (x2X) x2Y)

We abbreviate this proposition by writing X Y (IATEX code: nsubseteq), and we
write X * Y (IATEX code: nnsubseteq) for its negation.

Note that we could also

Proof tip
A proof that X is a subset ofY typically proceeds as follows. Letx 2 X be arbitrary;
then knowing nothing about x other than the fact that x 2 X, prove that x 2 Y. C

Exercise 2.2.9
Let X be a set. Prove that? X and that X X. C

Example 2.2.10
We know from Section 1.1 that there is a chain of subsets given by:

2 N Z Q R

C

The following proposition proves a property of subsethood known agransitivity |[we'll
revisit this property in Sections 5.1 and 5.2.

Proposition 2.2.11
Let X;Y;Z besets. IfX YandY Z,thenX Z.

Strategy. The result we want to prove is an implication. Thus we assumeX Y and
Y Z,and ourgoalis to derive that X  Z. Spelling this out slightly more, the goal is
to derive 8x; x 2 X ) x 2 Z; so we can introduce a variablex and assume thatx 2 X.
Then our goal is to use our assumptions to prove thatx 2 Z. Well, X Y means
8x;x 2 X ) x2Y. Since we're assumingk 2 X, substituting it into this assumption
yields that x 2 Y. Likewise, the assumption thatY Z vyields that x 2 Z.
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Proof. Suppose thatX Y andY Z. We need to prove that every element ofX is
an element ofZ. So letx 2 X. SinceX Y, it follows that x 2 Y; and sinceY Z, it
follows that x 2 Z. HenceX Z. O

Aside

Notice how in the proof of Proposition 2.2.11 we omitted many of the details of the
thought process that went into coming up with the proof: decomposing the logical
structure of the proposition to be proved, spelling out what our goal is at every step,
and so on. We left enough of an argument to convince a mathematically literate reader
that we're correct, but kept it concise enough that attention is drawn to the important
steps. C

De nition 2.2.12
Let X be a set. Thepower set of X, denotedP (X) (LATEX code: nmathcal f Pg), is the
set of all subsets ofX .

Example 2.2.13
There are four subsets off 1; 2g, namely

?;, filg, f2g; f1;29

soP(X)= f?;flg;f2g;f1; 290 C
Exercise 2.2.14
Write out the elements of P (f 1; 2; 3g). C
Exercise 2.2.15
Let X be a set. Show that? 2P (X) and X 2 P (X). C
Exercise 2.2.16
Write out the elements of P(?), P(P(?)) and P(P(P(?))). C

Power sets are often a point of confusion because they bring the property of being a
subsetof one set to that of being anelement of another, in the sense that for all setsU
and X we have

u X U2P(X)

This distinction looks easy to grasp, but when the setsU and X look alike, it's easy to
fall into various traps. Here's a simple example.

Example 2.2.17
Itis true that ? ?, but false that ? 2 ?. Indeed,

? ? means8x 2 ?; x 2 ?; but propositions of the form 8x 2 ?; p(x) are always
true, as discussed in Exercise 2.2.5.

The empty set has no elements; if? 2 ? were true, it would mean that ? had an
element (that element being?). So it must be the case that? 62?.
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C

The following exercise is intended to help you overcome similar potential kinds of con-
fusion by means of practice. Try to think precisely about what the de nitions involved
are.

Exercise 2.2.18
Write out the elements of P(?) and of P(P(?)). Determine, with proof, whether or not
each of the following statements is true:

P(?)2P(P(?)); P(?) P (P(?)); ?2ff2gg 2 ff 2gg f2g2ff ?2gg

C

Set equality

Discussion 2.2.19
Let X and Y be sets. What should it mean to say thatX and Y are equal? Try to
provide a precise de nition of equality of sets before reading on. C

There are di erent possible notions of “'sameness' for sets: mayb®¥ = Y when X
and Y have the same elements (this is calleégxtensional equality), or maybe X =Y
when they're described by the same criteria (this is calledintensional equality). In
mathematics, it is more useful to know when two sets have the same elements, regardless
of how they are described; so we take extensional equality as our notion of sameness for
sets. This doesn't mean intensional equality should be ignored|if you want to implement
mathematics in a computer, the sets'descriptions have a much more important role to

play.

De nition 2.2.20

Let X and Y be sets. We sayX isequalto Y if X Y andY X, and we write
X =Y.IfX YandX 6 Y thenwe sayX is aproper subset ofY and write X $ Y
(LATEX code: nsubsetneqq).

Example 2.2.21
Let E=fn2 Zjniseverg. Then:

E $Z. Indeed,E Z since every element ofE is an element ofZ by de nition;
but E 6 Z since, for instance, 12 Z but 1 62E.

N * E since, for instance, 12 N but 1 62E.

E *N since, for instance, 22 E but 262\.
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Exercise 2.2.22
De ne a set X such that;

N$ X ~ X$Q ~ X*z n z* X
C

Proof tip
To prove X = Y, youcan prove that X Y andY X. This proof strategy is called
double-containment More speci cally, such a proof is split into two parts:

() Let x 2 X; from this assumption alone, prove thatx 2 Y.

(i) Let x 2 Y; from this assumption alone, prove thatx 2 X.

Set operations

In Example 2.2.21 we de nedE to be the set of all even integers. What if we wanted
to talk about the set of all even natural numbers instead? It would be nice if there was
some expression in terms oE and N to denote this set. This is whereset operations
come in.

Intersection ( \)

The intersection of two sets is the set of things which are elements of both sets.

De nition 2.2.23
Let X and Y be sets. The pairwise ) intersection of X andY, denotedX \ Y (IATEX
code: ncap), is de ned by

X\VY=fxjx2X~"*"x2Yg

Example 2.2.24

Let E be the set of all even integers. TherE \ N refers to the set of things which are
both even integers and natural numbers...in other words, it is the set of even natural
numbers. C

Exercise 2.2.25
Write down the elements of the set

f0;1;4,7g\f 1;2;3;4;5¢
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C
Proof tip
To prove x 2 X \ 'Y you can give two proofs: one thatx 2 X and one thatx 2 Y. For
example, if X = fxjp(x)gandY = fxjq(x)g, then X \ Y = fxjp(x) " q(x)g. C
Example 2.2.26
Let X =fx2Zjx>5gandyY =fx2 Njx6 10g. Then

X\Y=1fx22Zj56 x6 10g= f5;6;7;8;9;10g

C
Exercise 2.2.27
Let X and Y be sets. Prove thatX Y ifandonlyif X\ Y = X. C

Union ( [)

The union of two sets is the set of things which are elements of at least one of the sets.

De nition 2.2.28
Let X and Y be sets. The pairwise ) union of X and Y, denotedX [ Y (IATEX code:
ncup), is de ned by

X[Y=fxjx2X_x2Yg

Example 2.2.29

Let E be the set of even integers and be the set of odd integers. Since every integer
is either even or odd,E[ O = Z. Note that E\ O = ?, thus fE; Ogis an example of a
partition of Z; see De nition 4.2.36. C

Exercise 2.2.30
Write down the elements of the set

fO;1;4;7g([f 1,2;3;4;59
C

The union operation allows us to de ne the following class of sets that will be particularly
useful for us when studying counting principles in Section 4.2.

De nition 2.2.31
De ne [n] recursively forn 2 N by

[0]=? and [n+1]=[n][f n+1gforalln2 N
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Exercise 2.2.32
Prove that if n > 0 then the elements of f] are the natural numbers from 1 up ton
(inclusive). In implied list notation, this is to say that

[nN]=1f12:::;ng

whenevern > 1. C
Exercise 2.2.33
Let X and Y be sets. Prove thatX Y ifandonlyif X[ Y =Y. C

Example 2.2.34
Let X;Y;Z be sets. We prove thatX \ (Y[ Z)=(X\ Y)[ (X \ Z).

()Letx2 X\ (Y[ Z). Thenx 2 X, and eitherx 2 Y orx 2 Z. If x 2 Y
then x 2 X\ Y,and if x 2 Z then x 2 X \ Z. In either case, we havex 2
X\A\Y)[ (X\ 2).

()YLetx2 (X\VY)[ (X\ Z). Theneitherx2 X\ Y orx2 X\ Z. In both
cases we havex 2 X by de nition of intersection. In the rst case we have x 2 Y,
and in the second case we have 2 Z; in either case, we havex 2 Y [ Z, so that
X2 X\ (Y] 2).

Exercise 2.2.35
Let X;Y;Z be sets. Prove thatX [ (Y\ Z)=(X [ Y)\ (X[ 2). C

Relative complement ( n) and complement ( ©)

De nition 2.2.36
Let X and Y be sets. Therelative complement of Y in X, denoted X nY (IATEX
code: nsetminus), is de ned by

XnY=fx2Xjx62Yg

If X is a set then thecomplement of X, denoted X ¢ (IATEX code: X¢), is simply the
relative complement of X in the universal set: X¢= U nX.

Example 2.2.37

Let E be the set of all even integers. Them 2 Z nE if and only if n is an integer and
n is not an even integer; that is, if and only if n is odd. Thus Z nE is the set of all odd
integers.

Moreover,n 2 NnE if and only if n is a natural number and n is not an even integer.
Since the even integers which are natural numbers are precisely the even natural numbers,
N nE is precisely the set of all odd natural numbers. C
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Exercise 2.2.38
Write down the elements of the set

f0;1;4;,7gnf1;2;3; 4,59

Exercise 2.2.39
Let X and Y be sets. Prove thatX Y ifandonlyif Y n(Y nX)= X. C

Comparison with logical operators and quanti ers

The astute reader will have noticed some similarities between set operations and the
logical operators and quanti ers that we saw in Section 2.1. Indeed, this can be summar-
ised in the following table. In each row, the expressions in both columns are equivalent,
where p denotes X 2 X', gdenotes X 2 Y', and r(i) denotes X 2 X;"

sets | logic
Xx2X\Y prq
X2X[Y p_qg
X2 X¢ p
x2XnY |[p”(0

This translation between logic and set theory does not stop there; in fact, as the following
theorem shows, De Morgan's laws for the logical operatoré and _ also carry over to
the set operations\ and | .

Theorem 2.2.40 (De Morgan's laws for sets—pairwise version)
Let X;Y;Z be sets. Then
@ Zn(X[Y)=(ZnX)\ (ZnY),

) Zn(X\Y)=(ZnX)[ (ZnY).
Proof of (a). Letx2 Zn(X [ Y). Thenx 2 Z andx 62X [ Y. The formula x 62X [ Y

says precisely
(x2X _x2Y)

By de Morgan's laws for logical operators (Theorem 2.1.14), this is equivalent to
X 62X N x 62Y

Sincex 2 Z and x 62X, we havex 2 ZnX. Sincex 2 Z and X 62Y, we havex 2 Z nY.
Hence, by de nition of intersection, it follows that x 2 (Z nX)\ (Z nY).
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HenceZn(X [ Y) (ZnX)\ (ZnY).
The proof of (Z nX)\ (ZnY) Zn(X [ Y)issimilar, and is left as an exercise, as is
the proof of (b). O

The following exercise derives perhaps a more familiar statement of de Morgan's laws
for sets.

Exercise 2.2.41
Let X and Y be sets. Prove that

(X[ Y)=X\YS and (X\ Y)=XC[ Y®

Product ()

De nition 2.2.42
Let X and Y be sets. The Cartesian ) product of X and Y, denoted X Y (IATEX
code: ntimes ), is the set of all ordered pairs (x;y), wherex 2 X andy 2 Y. That is,

X Y=f(xy)jx2X"*y2Yg

Example 2.2.43
If you have ever taken calculus, you will probably be familiar with the setR  R.

R R=f(xy)jxy2Rg

Formally, this is the set of ordered pairs of real numbers. Geometrically, if we interpret
R as an in nite line, the set R R is the (real) plane: an element &;y) 2 R R describes
the point in the plane with coordinates (Xx;y).

We can investigate this further. For example, the following set:
R f 0g=f(x;0)jx 2 Rg

is precisely thex-axis. We can describe graphs as subsets & R. Indeed, the graph
of y = x?2 is given by

G=f(xy)2R Rjy=x%g=f(x;x?)jx2Rg R R

Exercise 2.2.44
Write down the elements of the setf1;2g f 1;3;4g. C
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Exercise 2.2.45
Let X be a set. Prove thatX 2?2 = 7. C

Exercise 2.2.46
Let X,Y and Z be sets. Isittruethat X Y =Y X? Isittruethat(X Y) Z=
X (Y 2Z)? C

Aside

Aaand breathe! All this new notation can be overwhelming at rst, but it will be worth

it in the end. This chapter was all about teaching you a new language|new symbols,
new terminology|because without it, our future pursuits will be impossible. If you're
stuck now, then don't worry: you'll soon get the hang of it, especially when we start
using this new language in context. You can, of course, refer back to the results in this
chapter for reference at any point in the future. C
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Section 2.3
Functions

One way of studying interactions between sets is by studyingunctions between them,
which we will de ne informally in De nition 2.3.9. Functions are mathematical objects
which assign, to each element of one set, exactly one element of another. Almost every
branch of mathematics studies functions, be it directly or indirectly, and almost every ap-
plication of mathematics arises from a translation of the abstract notion of a function to
the real world. Just one example of this is the theory of computation|functions provide
precisely the language necessary to describe the deterministic input-output behaviour of
algorithms.

Existence and uniqueness

When discussing functions, it is useful to isolate the logical principles at work. To do
so, it will help us to introduce a new quanti er ~9!".

De nition 2.3.1

Let p(x) be a logical formula. The proposition 9!x; p(x)' (read "there exists a uniquex
such that p(x)") (LATEX code: nexists! ) is true if p(x) is true for exactly one value of
X. The symbol 9! is called the unique existential quanti er

Example 2.3.2
There is only one set with no elements, namely the empty set. Symboaolically, we could
write

91X 2U; (X isaset"8x2U; x 62X)

C

Example 2.3.3
Every positive real number has a unique positive square root. We can write this sym-
bolically as

8a2R;(a>0)9 b2 R;(b>0" = a))
Reading this from left to right, this says: for every real number a, if a is positive, then
there exists a unique real numberb, which is positive and whose square is. C

Exercise 2.3.4

The following propositions are all true. For each of the propositions, write it out using
the 9! quanti er, and consider how you might prove it. Do you notice any patterns in
your proof techniques?

(a) For each real numbera, the equation x2+2 ax+ a® = 0 has exactly one real solution
X.
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(b) There is a unique real numbera for which the equation x? + a? = 0 has a real
solution x.

(c) There is a unique natural number with exactly one positive divisor.

C

The following exercise shows that the9! quanti er is really just shorthand for a more
complicated expression.

Exercise 2.3.5
Let p(x) be a logical formula. Prove that the following are equivalent:

@) 9'x; p(x)
(b) [9x; p(x)]1 " [8y; 8z; (p(y) * p(z) ) Y= 2)]
(c) 9x; (p(x) *8y; (p(y)) Y= X))
C

The expressions (b) and (c) in Exercise 2.3.5 is particularly informative, as they breaks
down a proof of existence and uniqueness into two chunks.

Proof tip
A proof of a statement of the form 9!x; p(x) can be split into two proofs:

Existence. Prove 9x; p(x). That is, nd a value of x making p(x) true.

Uniqueness. Either...

...prove 8y; 8z; (p(y)* p(z) ) y= 2z). Thatis, x y;z and assume thatp(y)
and p(z) are true. Derive that it must be the case that y = z.

..or...

...prove 8y; (p(y) ) y = X). Thatis, x y and assume thatp(y) is true.
Derive that it must be the case that y = x, where x is as in your proof of
existence.

From these two parts, you can conclude that9!x; p(x) is true.
Note that you only need to useone of the above techniques for proving uniqueness; the

rst corresponds to (b) in Exercise 2.3.5, and the second corresponds to (c). C

Example 2.3.6

An example of this proof structure in action is in a proof of the statement in part (a)
of Exercise 2.3.4, that is, for each real numbera there exists a uniquex such that
x?+2ax+ a?=0.
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Fix a2 R. We prove existence and uniqueness of an elemert2 R for which x?+2ax +
a® = 0 separately.

(Existence ) Let x = a. Then
x?+2ax+ a’=( a)’+2a( a)+a’=a’ 2a’+a’=0
SO a solution exists.

(Uniqueness ) Fix y 2 R and suppose thaty?+2ay+ a? = 0. We will prove that is
must be the case thaty = a. Well, factorising the expression yields ¢ + a)? = 0.
If y+ a were nonzero then its square would also be nonzero, henget+ a = 0.
Therefore,y = a, as required.

Hencex = ais the unique solution to the equationx? +2ax + a2 = 0. C

This followed pattern (c) from Exercise 2.3.5. The following follows pattern (b).

Example 2.3.7
We prove Exercise 2.3.3, namely that for each reah > 0 there is a uniqueb > 0 such
that b» = a. So rst x a> 0.

(Existence ) The real number P ais positive and satis es (Ioél)2 = a by de nition.
Its existence will be deferred to a later time, but an informal argument for its
existence could be provided using ‘number line' arguments as in Section 1.1.

(Uniqueness ) Let y;z > 0 be real numbers such thaty? = a and z2 = a. Then
y? = z2. Rearranging and factorising yields

(y 2)(y+2)=0

so eithery z=0ory+2z=0.1f y+z=0then z= vy, and sincey > 0, this
means that z < 0. But this contradicts the assumption that z > 0. As such, it
must be the case thaty z =0, and hencey = z, as required.

C

Exercise 2.3.8
Prove the statements in parts (b) and (c) of Exercise 2.3.4. C

The unique existence quanti er clari es the process of solving equations: when solving
equations, there are typically two steps:

Step 1. Start with the equation, and derive some set of potential solutions.

Step 2. For each of the potential solutions, check whether each solves the equation|
the set of those that do is precisely the set of all solutions to the equation.
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112 Chapter 2. Logic, sets and functions

In the case when an equation has a unique solution, and this solution is the only one
which is derived algebraically from the equation, we recognise “Step 1' as being a proof
of uniquenessof a solution, and "Step 2' as a proof oexistence of a solution.

To wit, let's revisit the equation
x2+2ax+ a’=0

from Example 2.3.6, wherea and x refer to real numbers. We established that, for a
given real numbera, there is a unique real solutionx. Instead of proving existence and
uniqueness seprately, we could have instead solved this equation using a sequence of
reversible steps:

x?+2ax+a’=0, (x+a)?=0 by factorising
, X+a=0 since 0 is the only square root of 0
, X= a rearranging

Working from top to bottom, this says if there is a solution x, then it is equal to a.
Working from bottom to top, this says that a is a solution. Thus the “bottom to top'
direction proves existence, and the "top to bottom' direction proves uniqueness.

Functions

You might have come across the notion of dgunction before now. In schools, functions
are often introduced as being likemachineqthey have inputs and outputs, and on a
given input they always return the same output. For instance, there is a function which
takes integers as inputs and gives integers as outputs, which on the input returns the
integer x + 3.

This, however, is clearly not a precise de nition. A next approximation to a precise
de nition of a function might look something like this:

De nition 2.3.9

Let X and Y be sets. Afunction f from X to Y is a mathematical object which

assigns to each element oK exactly one element ofY. Given x 2 X, the element of Y

associated withx by f is denotedf (x), and is called thevalue of f at x. We write
f:X!1'Y (ATeXcode:f: X nto Y)

to denote that f is a function from X to Y. We say X is the domain (or source) of f

and Y is the codomain (or target ) of f.

This is better|for instance, we're now talking about sets (and not mysterious ‘ma-
chines’), which we have explored with in Section 2.2. Moreover, this de nition estab-
lishes the relationship between functions and the9! quanti er: indeed, to say that f
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assigns to each element oK a unique element ofY is to say precisely that

8x 2 X;9y2Y;y="f(x)

Functions arise whenever there is a true proposition of the forn8x 2 X; 9ly 2 Y; p(x;y)|
this de nes a function f : X I Y which assigns to eachx 2 X the uniquey 2 Y such
that p(x;y) is true. In other words, 8x 2 X; p(x;f (x)) is true! We can use this to
generate some examples.

Example 2.3.10
Example 2.3.3 said that every positive real number has a unique positive square root;
we proved this in Example 2.3.7. What this means is that there is a function

r:R7%1 R*®  whereR*°=fx 2 Rjx> 0Og

de ned by letting r(x) be the (unique) posBive square root ofx, for eachx 2 R”C. That
is, we have a functionr dened by r(x) = " x C

Exercise 2.3.11

Recall Exercise 2.3.4. Which of the statements (a), (b) or (c) is of the form8x 2 X; 9ly 2
Y; p(x;y)? For each statement of this form, determine the domain and codomain of the
corresponding function, and write an expression de ning this function. C

There are many ways to specify a functionf : X | Y. Before we move too far in this
direction, it is worth noting a very important point regarding what should be written in
the speci cation of a function.

Writing tip
When specifying a function, make sure that you specify itsdomain and its codomain
and, if you use any variables, make sure they're alfuantied ! C

With this in mind, let's look at a few ways of specifying a function.

Lists. If X is nite, then we can specify a functionf : X I 'Y by simply listing
the values of f at all possible elementsx 2 X. For example, we can de ne a
function

f.f1,2,3g!f red yellow greenblue purpley
by declaring
f()=red f(2)= purple f(3)= green

Note that the function is at this point completely speci ed: we know its values at
all elements of the domainf 1; 2; 3g. It doesn't matter that some of the elements of
the codomain (yellowand blue) are unaccounted for|all that matters is that each
element of the domain is associated with exactly one element of the codomain.
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Unfortunately, most of the sets that we work with will be in nite, or of an un-
speci ed nite size; in these cases, simply writing a list of values isn't su cient.
Fortunately for us, there are other ways of specifying functions.

Formulae. In many cases, particularly when the domainX and codomainyY are
number sets, we can de ne a function by giving a formula for the value off (x) for
eachx 2 X. For example, we can de ne a functionf : R! R by letting

f(x)= x>+3forall x2R

By cases. It will at times be convenient to de ne a function using di erent
speci cations for di erent elements of the domain. A very simple example is the
absolute value functionjj :R! R, denedfor x 2 R
(
. X if x>0
IX) = ,
x ifx60

Here we have split into two cases based on the conditions > 0 and x 6 0.

When specifying a functionf : X ! Y by cases, it is important that the conditions
be:

exhaustive : given x 2 X, at least one of the conditions onX must hold;
and

compatible : if any x 2 X satis es more than one condition, the speci ed
value must be the same no matter which condition is picked.

For the absolute value function de ned above, these conditions are satis ed. In-
deed, forx 2 R, it is certainly the case that x > 0 or x 6 0, so the conditions are
exhaustive. Moreover, givenx 2 R, if both x > 0 and x 6 0, then x = 0O|so we
need to check that the speci cation yields the same value wherx = 0 regardless
of which condition we pick. The x > 0 condition yields the value 0, and thex 6 0
condition yields the value 0, which is equal to O|so the conditions are compat-
ible. We could have usedx < 0 instead ofx 6 O; in this case the conditions are
mutually exclusive so certainly compatible because they do not overlap.

Algorithms.  You might, on rst exposure to functions, have been taught to think
of a function as amachine which, when given aninput, produces anoutput. This
‘machine’ is de ned by saying what the possible inputs and outputs are, and then
providing a list of instructions (an algorithm) for the machine to follow, which on
any input produces an output|and, moreover, if fed the same input, the machine
always produces the same output.

For example, we might instruct a machine to take rational numbers as inputs and
give rational numbers as outputs, and to follow the following sequence of steps on
a given input

multiply by 2 ! add 5! square the result! divide by 6
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This "'machine' de nes a function M : Q! Q which, in equation form, is speci ed

by
4+ )2
M (x) = %forall Xx2Q
In our more formal set-up, therefore, we can de ne a functionM : 1 ! O by
specifying:

a setl of all inputs ;
a set O of potential outputs ; and

a deterministicl”! algorithm which describes how an inputx 2 | is transformed
into an output M (x) 2 O.

That is, the domain is the set | of all possible “inputs’, the codomain is a setO
containing all the possible “outputs’, and the function M is a rule specifying how
an input is associated with the corresponding output.

For now, we will use algorithmic speci cations of functions only sparingly|this is
because it is much harder to make formal what is meant by an “algorithm’, and it
is important to check that a given algorithm is deterministic.

Graphs. Given setsX and Y, each function X ! Y is uniquely determined by
its graph (see De nition 2.3.12), which is a particular subset of X Y, thought of
as the set of all “input-output' pairs of the function|this equivalence will be the
content of Theorem 2.3.15. The elements of the grapl of a function f are pairs
(x;y), with x 2 X andy 2 Y, and the assertion that (x;y) 2 G will be equivalent
to the assertion that f (x) = y.

De nition 2.3.12
Letf : X ! Y beafunction. Thegraph off isthe subsetGrf) X Y (IATEX
code: nmathrnf Grg) de ned by

Gr(f) = f(xf(x)) ix2Xg="f(xy)2X Yjy=1f(x)g

Example 2.3.13

Given a (su ciently well-behaved) function f : R! R, we can represent Gr{)

R R by plotting it on a pair of axes using Cartesian coordinates in the usual way.
For example, if f is de ned by f (x) = % for all x 2 R, then its graph

Gr(f) = X; X2 R

N X

can be represented by graph plot in Figure 2.1.
C

M The word “deterministic’ just means that the algorithm always produces the same output on a single
input.
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~

Figure 2.1: Graph (in blue) of the function f : R! Rdenedby f(x)= 3 forall x 2 R

Exercise 2.3.14
Find a function f : Z! Z whose graph is equal to the set

frin( 2 5)5( 1 2)(0,1);(1;4),(2,7);(3;10),:::9

Well-de nedness

We must be careful when specifying functions that what we write reallydoes de ne a
function! This correctness of speci cation is known aswell-de nedness

There are three things to check when it comes to well-de nedness of a functiof : X !
Y, namely totality , existenceand uniqueness

Totality. A value f (x) should be speci ed for eachx 2 X.

Existence. For eachx 2 X, the specied value f (x) should actually exist, and
should be an element ofy .

Uniqueness. For eachx 2 X, the speci ed value f (x) should refer to only one
element of Y. That is, if x = x°2 X then we should havef (x) = f (x9. This issue
usually arises when elements oK can be described in di erent ways.

When specifying a function, you should justify each of these components of well-de nedness
unless they are extremely obvious. You will probably nd that, in most cases, the only
component in need of justi cation is uniqueness, but keep all three in mind.
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Theorem 2.3.15 below provides a way of verifying that a function is well-de ned by
characterising their graphs.

Theorem 2.3.15
Let X and Y be sets. A subsetG X Y is the graph of a function if and only if

8x2X;9y2Y;(xy)2G

Proof. () ). SupposeG X Y is the graph of a function, sayG = Gr( f) for some
f : X ! Y. Then for eachx 2 X, it follows from well-de nedness off that f (x) is the
unique elementy 2 Y for which (x;y) 2 G. That is, (x;f (x)) 2 G, and if y 2 Y with
(x;y) 2 G, theny = f (x).

(( ). SupposeG X Y issatises8x 2 X; 9y 2 Y;(x;y) 2 G. De ne a function
f : X 1 Y by, for eachx 2 X, de ning the value f (x) to be the unique elementy 2 Y
for which (x;y) 2 G. Well-de nedness of f is then immediate from our assumption of
the existence and uniqueness of such a value gffor eachx 2 X. O

Example 2.3.16
The set G de ned by
G = f(1;red); (2;red); (3; greeng

is the graph of a functionf :f1;2;3g!f red greenbluey. The function f is de ned by
f(l)=red f(2)=red f(3)= green

However, G is not the graph of a function f1;2;3;4g ! f red greenbluey, sinceG con-
tains no elements of the form (4y) for y 2 f red greenblueg. Moreover, the set G°
de ned by

G%= f(1;red); (2;red); (2; blue); (3; greeng

does not de ne the graph of a functionf1;2;3g ! f red greenblueg, since there is not a
unique element of the form (2y) in GYrather, there are two of them! C

Exercise 2.3.17
For each of the following speci cations of setsX, Y, G, determine whether or not G is
the graph of a function from X to Y.

(@ X =R, Y=R,G=f(a;a®) ja2 Rg;

(b) X =R, Y=R,G=f(a%a)ja2Rg;
(c) X =R>%9,Y=R>%, G=f(a%;a)ja2 Rg, whereR> %= fx 2 Rjx > 0Og;
d X=QY=QG=f(xy)2Q Qjxy=1g.

() X=Q,Y=Q,G=f(aja)jaz2 Zg;
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C

Aside

In light of Theorem 2.3.15, some people choose to de ne functionX ! Y as particular
subsets ofX Y [that is, they identify functions with their graphs. This is particularly
useful when studying the logical foundations of mathematics. We avoid this practice
here, because it is not conceptually necessary, and it would preclude other possible ways
of encoding functions. C

We will now look at some more examples (and non-examples) of functions.

Example 2.3.18

Example 2.3.3 gives a prime example of a function: it says that for every positive real
number a there is a unique positive_real numberb such that b = a. This unique b
is precisely the positive square root a of a. Writing R>? for the set of positive real
numbers, we have thus established that taking the positive square root de nes a function
R>01 RO C

There is a class of functions calleddentity functions that, despite being very simple, are
so important that we will give them a numbered de nition!

De nition 2.3.19
Let X be a set. Theidentity function  on X is the functionidy : X ! X (IATEX code:
nmathrnfid g_X) de ned by id x (x) = x for all x 2 X.

You should convince yourself that the speci cation of idx given in De nition 2.3.19 is
well-de ned.

Another interesting example of a function is theempty function, which is useful in coming
up with counterexamples and proving combinatorial identities (see Section 4.2).

De nition 2.3.20
Let X be a set. Theempty function with codomain X is the (unique!) function
? 1 X. It has no values, since there are no elements of its domain.

Again, you should convince yourself that this speci cation is well-de ned. Conceptually,
convincing yourself of this is not easy; but writing down the proof of well-de nedness is
extremely easy|you will nd that there is simply nothing to prove!

Example 2.3.21

Dene f : R! R by the equation f (x)2 = x for all x 2 R. This is not well-de ned
for a few reasons. First, ifx < 0 then there is no real numbery such that y2 = x, so
for x < 0 there are no possible values of (x) in the codomain of f, so existencefails.
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Second, ifx> 0 therbthere are in facttwo real numbersF}/ such that y? = x, namely the

positive square root” X and the negative square root =~ x. The speci cation of f does
not indicate which of these values to take, sauniquenessfails.

Notice that the function r : R>% ! R>0 from Example 2.3.10is (well-)de ned by the
equation r(x)? = x for all x 2 R>°. This illustrates why it is very important to specify
the domain and codomain when de ning a function. C

Exercise 2.3.22
Which of the following speci cations of functions are well-de ned?

(@) g:Q! Q dened by the equation (x +1)g(x) =1 for all x 2 Q;
(b) h:N! Qdenedby (x+1)h(x)=1forall x2 N;
(c) k:N! Ndenedby (x+1)k(x)=1forall x2 N;
(d) ":N! Ndenedby (x)= "(x)forall x2 N.
Under what conditions on setsX and Y is a functioni : X [ Y !'f 0;1g de ned by

«
i(2) = 0 !fZZX
1 fz2Y

well-de ned? C

Composition of functions

In our section on sets, we talked about various operations that can be performed on
sets|union, intersection, and so on. There are also operations on functions, by far the
most important of which is composition. To understand how composition works, let's
revisit the algorithmically de ned function M : Q! Q from page 114:

multiply by 2 ! add 5! square the result! divide by 6

The function M is, in some sense, &equenceof functions, performed one-by-one until
the desired result is reached. This is preciselgomposition of functions.

De nition 2.3.23

Given functionsf : X I Y andg:Y ! Z, their composite g f (IATEX code: g
ncirc f ) (read g composed withf' or "g after f' or even just 'g f') is the function
g f: X! Z denedhy

(g f)(x)= g(f (x)) forall x2 X
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Intuitively, g f is the function resulting from rst applying f, and then applying g, to
the given input.

Common error

Function composition is in some sense written "backwards': in the expressiog f,
the function which is applied rst is written last|there is a good reason for this: the
argument to the function is written after the function! However, this mis-match often
trips students up on their rst exposure to function composition, so be careful! C

Example 2.3.24
The function M from page 114 can be de ned as the composite

M=(k h) g f

where

f:Q! Qisdenedbyf(x)=2xforall x2 Q;
g:Q! Qisdenedby g(x)= x+5forall x2 Q;
h:Q! Qisdenedby h(x)= x2forall x2 Q;

k:Q! Qisdened by k(x)= % forall x 2 Q.
C

Exercise 2.3.25
Let f;g;h;k : Q! Q be asin Exercise 2.3.24. Compute equations de ning the following

composites:
@ f g
(b) g f;
(© (f 9 h) k;
@ f (g (h k)

(e (g 9 (9 9.

Example 2.3.26
Letf : X ! Y be any function. Then
idy f=f=1f idyx
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To see this, letx 2 X. Then

(idy f)(x)=id vy (f (x)) by de nition of composition
= f(x) by de nition of id v
= f (idx (x)) by de nition of id x
=(f idx)(x) by de nition of composition
Equality of the three functions in question follows. C

Exercise 2.3.27
Prove that composition of functions is associative that is, if f : X ! Y,g:Y ! Z and
h:Z! W are functions, then

h (g f)=(h g f:X! W

As a consequence of associativity, when we want to compose more than two functions,
it doesn't matter what order we compose the functions in. As such, we can just write
h g f. C

Exercise 2.3.28

Letf : X I Yandg:Z ! W be functions, and suppose thatY $ Z. Note that
there is a functionh : X ! W dened by h(x) = g(f (x)) for all x 2 X. Write h as a
composite of functions involvingf and g. C

Images and preimages

De nition 2.3.29
Letf : X ! Y beafunctionandletU X. The image of U under f is the subset
f[U] Y (also written f (U) (LATEX code: f *) or even just f (U)) is de ned by

flU=ff(x)jx2Ug=fy2Yjo9x2U;y=f(x)g

That is, f [U] is the set of values that the functionf takes when given inputs fromU.
The image of f is the image of the entire domain, i.e. the seff [X].

Example 2.3.30
Letf : R! R bedenedbyf(x)= x2 The image off is the setR>? of all nonnegative
real numbers. Let's prove this:

(f[R] R>9). Lety2 f[R]. Theny = x? for somex 2 R. But x> > 0, so we must
havey 2 R>?, as required.

(RO f[R]). Lety 2 R°O. ThenPy2 R, andy = (Py)2 = £(Py). Hence
y 2 f [R], as required.
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We have shown by double containment thatf [R] = R>©. C

Exercise 2.3.31
For each of the following functionsf and subsetsU of their domain, describe the image
f [U].

(@ f:2! Zdenedby f(n)=3n, with U= N;
(b) f: X! X X (whereX is any set) de ned by f (x) = ( x;x) with U = X;

(c) f :fabjg!f 1,2;3gdened by f(a) =1, f(b) =3 and f(c) =1, with U
fa;b; .

Exercise 2.3.32
Prove that f[?] = ? for all functions f . C

Example 2.3.33

Letf : X ! Y beafunctionandletU;V X. Thenf[U\ V] f[U]\ f[V]. To see
this, let y 2 f[U\ V]. Theny = f (x) for somex 2 U\ V. By de nition of intersection,
x2 Uandx 2 V. Sincex 2 U andy = f (x), we havey 2 f [U]; likewise, sincex 2 V,
we havey 2 f [V]. But then by de nition of intersection, we have y 2 f [U]\ f[V]. C

Exercise 2.3.34

Let f : X ! Y be a function and let U;V X. We saw in Example 2.3.33 that
flU\ V] f[U]\ f[V]. Determine which of the following is true, and for each, provide
a proof of its truth or falsity:

@ f[U]\ f[V] f[U\ V]
(o) fIU[ V] f[U][ FIV]
() flUll fIv] f[U[ V]

De nition 2.3.35
Let f : X ! Y be a function and letVV Y. The preimage of V under f is the
subsetf 1[V] (IATEX code: fA f-19) (also written f (V) (IATEX code: f* )) is de ned

by
f V]=fx2 X jf(x)2Vg=fx2Xj9y2V;f(x)= yg

Thatis, f 1[V]is the set of all the elements of its domainX that the function f sends
to elements ofV.

Example 2.3.36
Let f :Z! Z be the function de ned by f (x) = x2 for all x 2 X. Then
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f f1,499="f 3 2 1,1;23g;

f 1f1;2;3;4,5,6;7;8,9g] = f 3; 2; 1;1;2;3g too, since the other elements of
[9] are not perfect squares, and hence not of the forrh(x) for x 2 Z;

f 1[N]= Z, since for anyx 2 Z we havef (x) > 0, so that f (x) 2 N.

C

Example 2.3.37
Letf : X ! Y beafunction,letU X andletV Y. Thenf[U] V ifand only if
U f 1[V]. The proof is as follows.

() ). Supposef[U] V; welll prove U f [V]. So x x 2 U. Then f(x) 2 f[U]
by de nition of image. But then f(x) 2 V by our assumption that f[U] V, and so
x 2 f 1[V] by de nition of preimage. Since x was arbitrarily chosen from U, it follows
that U f [V].

(( ). SupposeU f 1[V]; we'll prove f[U] V. So xy2 f[U]l. Theny = f(x)
for somex 2 U by de nition of image. But then x 2 f 1[V] by our assumption that
U f V], and sof (x) 2 V by de nition of preimage. But y = f(x), soy 2 V, and
sincey was arbitrarily chosen, it follows that f [U] V. C

The following exercise demonstrates that preimages interact very nicely with the basic
set operations (intersection, union and relative complement):

Exercise 2.3.38
Letf : X ! Y be afunctionandletU;V Y. Prove that

f HqU\V]=f YUNE Yv] and f YU[V]=f HUI[f Y[V] and f i[Yynu]l= Xnf U]
C

Exercise 2.3.39
Let f : X | Y be afunction. Prove that f 1[?]=? andf 1[Y]= X. C

Exercise 2.3.40
Let f : X ! Y be a function. Provide a proof of the truth or falsity of each of the
following statements:

U f Yf[Uljforall U X;
f f[U]] Uforallu X;
VvV f[f YVv]forallVv Y;
flf V] VforallV Y.
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Section 3.1
Division

This section introduces the notion ofdivisibility . As we have already mentioned, it is not
always the case that one integer can divide another. As you read through this section,
note that we never use fractions; everything we do isnternal to Z, and does not require
that we “spill over' to Q at any point. This will help you when you study ring theory in
the future, and is a good practice to mimic in your own work.

The following theorem, called the division theorem, is the crux of everything that is to
follow.

Theorem 3.1.1 (Division theorem)
Let a;b2 Z with b6 0. There exist unique g;r 2 Z such that

a=gb+r and 06 r< jh

Strategy. Let's look at the simple case whena> 0 andb > 0. We can always nd q;r
such that a = gb+ r, for exampleq= 0 and r = a. Moreover, by increasingg we can
reducer, since

gb+ r=(q+1)b+(r b

We will keep doing this until the ‘remainder' is as small as it can be without being
negative. As an example, consider the case whea = 14 and b = 5. This procedure
gives

14=0 5+14
=1 5+9
=2 b5+4 least nonnegative remainder
=3 5+( 1)

This procedure shows that in this case we should takg =2 and r =4, since 14 =2 5+4
and 06 4< j5j.

We can show that such a descending sequence of remainders terminates using the well-
ordering principle, and then we must argue that the quotient and remainder that we
obtain are unique.

? Proof. We may assume thatb > 0: if not, replacebby bandgby g We may also
assume thata > 0. Otherwise, replaceaby a, qby (q+1)andr byb r.

Thus, what follows assumes thata > 0 and b > 0.
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Existence. We prove that such integersq;r exist by the well-ordering principle.
Namely, we de ne a sequencer()n2n suchthata= nb+r,andrg>r1>r, > ,
and use this sequence to nd the values ofj;r.

Let ro= a. Then a=0b+ rg, as required.

Supposer, has been de ned, and letrp+1 = rp, b, Then

(n+1)b+rpe =(n+1)b+r, b
nb+ b+r, b

nb+r=a

Sinceb > 0, we must havery+1 <rn for all n.

Let R = N\f r, jn 2 Ng. That is, R is the set of terms of the sequence which are
non-negative. Sincerg = a > 0, we have thatrg 2 R and henceR is inhabited.
By the well-ordering principle, R has a least elementy for somek 2 N.

Dene q= k and r = rig. By construction we havea = gb+ r andr > 0, so it
remains to show thatr <b. Well, if r > bthenr b> 0, butr b= ris+1, so this
would imply rg+1 2 R, contradicting minimality of r. Hencer <b, soq;r are as
required.

Uniqueness. Supposed® r@also satisfya = gb+ r®and 06 r%< b. If we can

show that r®= r then this proves that q= ¢ indeed, if gb+ r = gb+ r then we
can subtract r and then divide by b, sinceb > 0.

First note that ¢®> 0. If @< O then ®°6 1, so
a=gb+r° b+ r°

and hencer®> a+ b> bsincea> 0. This contradicts the assumption that r <b.
Soq’> 0.

Sinceg®> 0, we also know thata = gb+ rq, and hencer®= rp 2 R. By minimality
of r we haver 6 r% It remains to show that r = r% If not then r <r © Thus

gb+r=qgb+r’>qb+r ) qgb>db ) g>q°
and henceq= ¢°+ t for somet > 1. But then
gb+ r%=a= gb+r =(+ t)b+r = gb+(th+r)
sor®= tb+ r > b, contradicting r%<b. Sor = r®as desired, and hencej = o
At long last, we are done. O
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De nition 3.1.2
Let a;b2 Z with b6 0, and let g;r be the unique integers such that
a=gb+r and 06 r< jh

We say q is the quotient and r is the remainder of a divided by b.

Example 3.1.3
Some examples of division include:
14=2 5+4; 14= 3 5+1; 15=3 5+0
C
De nition 3.1.4

Let a;b2 Z. We sayb divides a, or that bis adivisor (or factor ) of a, if there exists
g2 Z such that a= gh To denote the fact that b divides a we write bj a (IATEX code:
nmid). For the negation : (bj a) write b-a (IATEX code: nnmid).

Thus, when b 6 0, saying bj a is equivalent to saying that the remainder of a divided
by bis 0.

Example 3.1.5

5 divides 15 since 15 = 3 5. However, 5 does not divide 14: we know that the
remainder of 14 divided by 5 is 4, not OJand it can't be both since we proved in the
division theorem that remainders are unique! C

Exercise 3.1.6
Show thatif a2 Zthen1lja, 1jaandajO0. Forwhich integersa doesaj 1? For
which integers a does 0j a? C

We now introduce the very basic notion of aunit. This notion is introduced to rule out
trivialities. Units become interesting when talking about general rings, but in Z, the
units are very familiar.

De nition 3.1.7
Letu2 Z. We sayu is aunit if uj1; thatis, uis a unit if there exists v 2 Z such that
uv = 1.

Proposition 3.1.8
The only units in Z are 1 and 1.

Proof. First note that 1 and 1 are units, since 1 1 =1and ( 1) ( 1) =1. Now
suppose thatu 2 Z is a unit, and let v 2 Z be such thatuv = 1. Certainly u 6 0, since
Ov=0611If u>loru< 1thenv= 162 Sowe musthaveu2f 1;1g. O
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Exercise 3.1.6 shows that 1, 0 and 1 are, from the point of view of divisibility, fairly
trivial. For this reason, most of the results we discuss regarding divisibility will concern
non-zero non-units , i.e. all integers except 1, 0 or 1.

Greatest common divisors

De nition 3.1.9
Let a;b2 Z. An integer d is a greatest common divisor  of a and bif:
(@ djaanddjb;

(b) If gis another integer such thatgj a and qj b, then qj d.

Example 3.1.10
2 is a greatest common divisor of 4 and 6; indeed:

(@ 4=2 2,and6=3 2,s02j4and?2]6;

(b) Supposeqj 4 andqj 6. The divisors of 4 are 1, 2; 4 and the divisors of 6 are
1, 2, 3, 6. Sinceqdivides both, it must be the case thatq2f 2, 1;1,2g;
in any case,qj 2.

Likewise, 2 is a greatest common divisor of 4 and 6. C
Exercise 3.1.11
There are two greatest common divisors of 6 and 15; nd both. C

We will now prove that greatest common divisors exist|that is, any two integers have
a greatest common divisor|and that they are unique up to sign

Theorem 3.1.12
Every pair of integers a; b has a greatest common divisor.

Proof. First note that if a = b= 0, then 0 is a greatest common divisor fora and b.
Moreover, we may takea;b to be non-negative, since divisibility is insensitive to sign.
So suppose thata; b> 0 and that a; b are not both zero.

DeneasetX Zhy
X =fau+ bvju;v2 Z; au+ bv > 0g

That is, X is the set of positive integers of the formau + bv.

X is inhabited. To see this, note thata® > 0 or b*> > 0 sincea 6 0 or b6 0, so letting
u= aandv = bin the expressionau + bv, we see that

au+tbv=a’+p>0 ) a’+p2Xx
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By the well-ordering principle, X has a least elementd, and by de nition of X there
exist u;v 2 Z such that d = au+ bwv.

We will prove that d is a greatest common divisor fora and b.

dja. If a=0, then this is immediate, so suppose thata > 0. Let q;r 2 Z be such
that
a=qd+r and 06 r<d

Nowa=a 1+b 0,soa2 X, and henced 6 a.
r=a qd=a qau+bvyy=all qu+ bl qv)

If r > 0 then this implies that r 2 X ; but this would contradict minimality of d,
sincer <d. So we must haver = 0 after all.

dj b. The proof of this is identical to the proof that dj a.

Supposeq is an integer dividing both a and b. Then qj au+ bv by Exercise 1.1.16.
Sinceau + bv= d, we haveqj d.

Sod is a greatest common divisor ofa and b after all. O

Exercise 3.1.13
Let a;b2 Z. If d and d®are two greatest common divisors ofa and b, then either d = d°
ord= d° C

Aside
A consequence of Theorem 3.1.12 and Exercise 3.1.13 is that every pair of integers has
a unique non-negative greatest common divisor! Written symbolically, we can say

d> 0 andd is a greatest

. . I .
8(abh2z z9d2Z common divisor fora and b

As discussed in Section 2.3, since this is a formula of the form “for all ... there exists a
unique ...', thisdenes afunctiongcd:Z Z! Z. We won't explicitly refer to the fact
that gcd is a function; rather, we'll just concern ourselves with its values, as in Notation
3.1.14. C

Exercise 3.1.13 justi es our use of the following notation to refer to greatest common
divisors.

Notation 3.1.14
Let a;b 2 Z. Denote by gcd@; b (IATEX code: nmathrnf gcdg) the (unique!) non-
negative greatest common divisor ofa and b.

Example 3.1.15
In Example 3.1.10, we saw that both 2 and 2 are greatest common divisors of 4 and
6. Using Notation 3.1.14, we can now write gcd(46) = 2. C
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Exercise 3.1.16
Foreachn 2 Z, let D Z be the set of divisors ofn. Prove that Da\ Dp = Dgeq(an)
forall a;b2 Z. C

Our goal for the rest of this subsection is to investigate the behaviour of greatest common
divisors, nd out how to compute them, and look into the implications they have for
solutions to certain kinds of equations.

Theorem 3.1.17
Let a;b;qg;r2 Z, and suppose thata= gb+ r. Then

gcd(a; b) = ged(b;r)
Proof. Let d = gcd(a;b). We check that d satis es the conditions required to be a
greatest common divisor ofband r.
Note that djaanddj b, so lets;t 2 Z be such thata= sd and b= td.
dj b by de nition, and djr since

r=a gb=sd qtd=(s qt)d

Supposed®j b and d°j r; say b= ud®and r = vd®with u;v 2 Z. Then d°j a, since
a= gb+ r = qud’+ vd’= (qu+ v)d®
sod?j d sinced = gcd(a; b).
Sod is a greatest common divisor ofo and r. Sinced > 0, the result is shown. O
Combined with the division theorem (Theorem 3.1.1), Theorem 3.1.17 gives a relatively

fast algorithm for computing the greatest common divisor of two integers, known as the
Euclidean algorithm

Proof tip
Euclidean algorithm. Let a;b2 Z. To nd gcd( a; b), proceed as follows.

Setro = jaj andry = jb.
Givenry 2 andr, 1, de ne r, to be the remainder ofr, » divided by r, 1.

Stop whenr, =0; then r, 1 =gcd(a;b).
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Example 3.1.18
We will nd the greatest common divisor of 148 and 28.

148=5 28+8
28=3 8+4
8=2 +0 Stop!
Hence gcd(14828) = 4. Here the sequence of remainders is given by:
ro=148; r1=28; r2=8; r3=4; r4=0
C

Example 3.1.19
The Euclidean algorithm works surprisingly quickly, even for relatively large numbers.
Consider the problem of computing gcd(13115757) for example:

5757 =4 1311 +513

1311=2 513+285
513=1 285+228
285=1 228+57

228=4 [57|+0 Stop!

Hence gcd(13115757) = 57. Here the sequence of remainders is given by:
ro=5757, rp=1311; r,=513; r3=285;, ry=228; r5=57; rg=0
C

Example 3.1.20
Here's an example where one of the numbers is negative: we compute the value of
gcd( 420, 76):

420=( 6) 76+36
76=2 36+4
36=9 [4]+0 Stop!
Hence gcd( 420, 76) = 4. C

Exercise 3.1.21
Use the Euclidean algorithm to compute the greatest common divisors of the following
pairs of integers

(12;9); (100;35); (71251300} (1010,101010) ( 4;14)
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The following theorem will be useful when we study modular arithmetic in Section 3.3;
it is called a “lemma’' for historical reasons, and is really an important result in its own
right.

Theorem 3.1.22 (Bezout's lemma)
Let a;b;c2 Z, and let d = gcd(a;b). The equation

ax+ by=c

has a solution k;y) 2 Z Zifandonlyif djc.

Proof. () ) Write a = ald and b= b, for a4’ 2 Z. If there exist x;y 2 Z such that
ax + by = c, then
c= ax + by= atix + by = (a% + BY)d

and sodj c.
(( ) Supposedj c, and let c = kd for somek 2 Z.

If ¢ =0, then a solutionis x = y = 0. If ¢ < 0, then ax + by = c if and only if
a( x)+ bl y)= ¢ sowe may assume that > 0.

We proved in Theorem 3.1.12 that a greatest common divisor o& and bis a least element
of the set

X =fau+ bvju;v2 Z; au+ bv > 0g
So letu;v 2 Z be such thatau+ bv= d. Then
a(ku) + bkv) = k(au+ bv) = kd= ¢

and so letting x = ku and y = kv, we see that the equationax + by = ¢ has a solution
x;y)22z2 Z. O

Bezout's lemma completely characterises when the equatiorax + by = c has a solution.
An easy generalisation of Bezout's lemma provides a complete characterisation of when
solutions to linear Diophantine equations exist, that is equations of the form

ax+ by=c

wherea;b;c2 Z. We will soon develop an algorithm for computingall solutions to these
eqguations.

Example 3.1.23
Here are some examples of applications of Bezout's lemma.
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Consider the equation 131k + 5757y = 12963. We computed in Example 3.1.19
that gcd(1311; 5757) = 57. But 57 - 12963 since 12963 = 227 57+24. By Bezout's
lemma, the equation 131k + 5757y = 12963 has no integer solutions.

For xed z, the equation 4u + 6v = z has solutions exactly whenz is even, since
gcd(4;6) = 2.

For xed a;b, the equation au + bv= 0 always has solution. Indeed, settingu = b
andv = agives a solution; but we knew one had to exist since by Exercise 3.1.6
we know that djO foralld2 Z.

Exercise 3.1.24
Which of the following equations have solutions?

(@ 12u+9v= 18

(b) 12u+9v=1

(c) 100u +35v =125

(d) 7125u+1300v =0

(e) 101u +101010v = 1010101010101010
(f) 14u 4v=12

Coprimality

De nition 3.1.25
Let a;b2 Z. We say a and b are coprime (or relatively prime ), and write a ? b
(LATEX code: nperp) (read "a is coprime to b), if gcd(a; b) = 1.

Example 3.1.26
4? 9. To see this, note thatifdj 4thend2f 4; 2, 1;1;2;4g, and if d j 9 then
d2f 9, 3; 1;1,3,99. Hence ifdj4 anddj9,thend=10or d= 1. It follows that

gcd(4;,9) = 1. C
Exercise 3.1.27
Which integers in the set [15] are coprime to 157 C

Proposition 3.1.28
Let a;b2 Z. The following are equivalent:

(1) a and b are coprime;
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(2) If d2 Z with djaanddj b, then d is a unit.

Proof. We prove that condition (1) implies condition (2), and vice versa.

(1)) (2). Supposea and b are coprime, and x d2 Z with djaanddj b Then
djgcd(@;b =1, sodis a unit.

(2)) (1). Suppose condition (2) above holds. We prove that 1 satis es the condi-
tions required to be a greatest common divisor ofa and b. The fact that 1 j a and

1j bis automatic; and the fact that if dj a and dj bimplies dj 1 is precisely the
condition (2) that we are assuming.

Hence the two conditions are equivalent. O

Proposition 3.1.29
Let a and b be integers, not both zero, and letd = gcd(a; b). The integers § and g are
coprime.

Exercise 3.1.30
Prove Proposition 3.1.29. C

The following corollary is a specialisation of Bezout's lemma to the case whera and b
are coprime.

Corollary 3.1.31

Let a;b2 Z. The equationau+ bv= 1 has a solution if and only if a and b are coprime.
Moreover, if a and b are coprime, then the equationau + bv = z has a solution for all
z2 Z.

Proof. By Bezout's lemma (Theorem 3.1.22), the equationau + bv = 1 has a solution
if and only if gcd(a;b) j 1. But the only positive divisor of 1 is 1, so a solution exists if
and only if gcd(a; b = 1, which is precisely the assertion that a and b are coprime.

If a and b are coprime, then 1 =gcd@; b j z for all z2 Z. So by Bezout's lemma again,
the equation au + bv= z has a solution for allz 2 Z. O

A useful consequence of Bezout's lemma is the following result:

Proposition 3.1.32
Let a;b;c2 Z. If a and b are coprime andaj bg then aj c.

Proof. By Bezout's lemma (Theorem 3.1.22) there exist integersu and v such that
au+ bv=1. Multiplying by c givesacu+ bcv= c. Sinceaj bg we can write bc= ka for
somek 2 Z, and soacu+ kav = c¢. But then

(cu+ kv)a=c
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which proves that aj c. O]

Linear Diophantine equations

We have now seen two important results:

The Euclidean algorithm , which was a procedure for computing the greatest
common divisor of two integers.

Bzout's lemma , which provides a necessary and su cient condition for equa-
tions of the form ax + by = ¢ to have an integer solution.

We will now develop the reverse Euclidean algorithm |, which provides a method for
computing a solutions to (bivariate) linear Diophantine equations, when such a solution
exists. Then we will prove a theorem that characterisesall integer solutions in terms of

a given solution.

Example 3.1.33
Suppose we want to nd integersx and y such that 327 + 114y = 18. Running the

Euclidean algorithm yields that gcd(327;114) = 3 | see below. For reasons soon to
become apparent, we rearrange each equation to express the remainder on its own.

327=2 114+99 ) 99=327 2 114 1)
114=1 99+15 ) 15=114 1 99 (2)
9=6 15+9 ) 9=99 6 15 3
15=1 9+6 ) 6=15 1 9 4
9=1 6+3 ) 3=9 1 6 (5)
6=2 3+0

We can then express 3 in the form 32l +114v by successively substituting the equations
into each other:

Equation (5) expresses 3 as a linear combination of 6 and 9. Substituting equation
(4) yields:
3=9 1 (15 1 9 ) 3=2 9 1 15

This now expresses 3 as a linear combination of 9 and 15. Substituting equation
(3) yields:

3=2 (99 6 15 1 15 ) 3=( 13) 15+2 99

This now expresses 3 as a linear combination of 15 and 99. Substituting equation
(2) yields:

3=( 13) (114 1 99)+2 99 ) 3=15 99 13 114
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This now expresses 3 as a linear combination of 99 and 114. Substituting equation
(1) yields:

3=15 (327 2 114) 13 114 ) 3=( 43) 114+15 327

Now that we've expressed 3 as a linear combination of 114 and 327, we're nearly done:
we know that 18 =6 3, so multiplying through by 6 gives

18 =( 258) 114+90 327

Hence &;y) = (90; 258) is a solution to the equation 32% + 114y = 18. C

Proof tip
Let a;b2 Z and let d = gcd(a;b). To nd integers X;y such that ax + by = d:

() Run the Euclidean algorithm on the pair ( a;b), keeping track of all quotients and
remainders.

(i) Rearrange each equation of the formr,, 2= g,rn 1+ r, to isolate rp.

(iii) Substitute for the remainders ry in reverse order until gcd(@; b) is expressed in the
form ax + by for somex;y 2 Z.

This process is called thereverse Euclidean algorithm . C
Exercise 3.1.34
Find a solution (x;y) 2 Z Z to the equation 630« + 385y = 4340. C

Now that we have a procedure for computingone solution to the equation ax + by = c,
we need to come up with a procedure for computingall solutions. This can be done by
proving the following theorem.

Theorem 3.1.35

Let a; b;c2 Z, wherea and bare not both zero. Suppose thatxg and yg are integers such
that axg+ byg = c. Then, (x;y) 2 Z Z is another solution to the equationax + by = ¢
if and only if

b a

X=Xp+ Kk 7gcd(a;b) and y=VYo Kk 7gcd(a;b)

for somek 2 Z.

Thus, as soon as we've found one solutionx(y) = ( Xo; Yo) to the equation ax + by = c,
this theorem tells us what all other solutions must look like.

Proof of Theorem 3.1.35. We prove the two directions separately.
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() ). First suppose that (Xg; Yo) is an integer solution to the equationax + by = c. Let
k2 Z and let

X=Xp+ Kk b and = k a
-0 gcd(@; b y=Yo gcd(@; b
Then
ax + by
—ax+kL b kL by de nition of x and
B 0 gcd(@; b yo gcd(a; b) y y
b a :
=(axgp+ by) + ak gcd@ B kb gcd@ D rearranging
kab kab - .
=(axg+ by) + 9cd@ b combining the fractions
= axp + by sincekab kab=0
=cC since o; Yo) is a solution

so (x;y) is indeed a solution to the equation.

(( ). First suppose that a ? b. Fix a solution (Xo; Yo) to the equation ax + by = ¢, and
let (x;y) be another solution. Then
a(x  Xo)+ by Yyo)=(axo+ by) (ax+by)=c c=0
so that
a(x  xo) = blyo )

Now a and b are coprime, so by Proposition 3.1.32, we havajy, yandbjx Xp.
Let k;” 2 Z be suchthatx Xxo= kbandyy y = "a. Then substituting into the above
equation yields

a kb=b "a

and hence k “)ab=0. Since ab6 0, we have k = °, so that
Xx=Xo+ kb and y=vyy Kka

Now we drop the assumption thata ? b. Let gcd(a;b) = d> 1. We know that dj c, by
Bezout's lemma (Theorem 3.1.22), and so

a ,b,_¢
T LA

is another linear Diophantine equations, and moreover§ ? g by Proposition 3.1.29. By
what we proved above, we have

b a

= + — = —

X=Xo+ k g and y=vyo Kk g

for somek 2 Z. But this is exactly what we sought to prove! O
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Example 3.1.36
We know that (x;y) =(90; 258) is a solution to the equation 32% + 114y =18, and

327 327 _ 114 114

- = _ =1 - = __ =
god@2z11a) . 3 109 ad  i@eziia) 3 oo

so this theorem tells us that (X;y) 2 Z Z is a solution to the equation 32% +114y = 18
if and only if
X =90+ 38k and y= 258 10%

for somek 2 Z. C

Exercise 3.1.37
Find all integers x;y such that

630 + 385y = 4340

Least common multiples

You would be forgiven for wondering why so much of the foregoing section was devoted
to greatest common divisors, with no mention of least common multiples. We will now
give the latter some attention.

De nition 3.1.38
Let a;b2 Z. An integer m is aleast common multiple  of a and bif:
(@ ajmandbjm;

(b) If nis another integer such thatajn and bjn, then mjn.

In a sense that can be made precise, the de nition of least common multiple islual to
that of greatest common divisor (De nition 3.1.9). @ This means that many properties
of greatest common divisors have corresponding “dual’ properties, which hold of least
common multiples. As such, we will not say much here about least common multiples,
and that which we do say is in the form of exercises.

Exercise 3.1.39

Let a;b2 Z. Prove that a and b have a least common multiple. Furthermore, prove that
least common multiples are unique up to sign, in the sense that im; m° are two least
common multiples ofa and b, then m = m®orm=m° C

[ Speci cally, we refer here to the dual of a preorder, i.e. a re exive, transitive relation|see Chapter 5
for more on this!
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As with greatest common divisors, Exercise 3.1.39 justi es the following de nition.

De nition 3.1.40
Given a;b2 Z, denote by Icm(a; b) (LATEX code: nmathrnflcmg) the non-negative least
common multiple of a and b.

Exercise 3.1.41
Let a;b2 Z. Prove that gcd(a; b Icm(a;b) = jab. C
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Section 3.2
Prime numbers

Thinking of divisibility as a way of breaking downan integer, for example 12 =2 2 3,
our goal now is to show that:

There are numbers which areatomic, in the sense that they can't be broken down
any further by division;

...and every non-zero non-unit can be written as a product of these atomic num-
bers;

...and this product is essentially unique.

There are a couple of fairly vague terms used here: “atomic' and “essentially unique'.
We will soon make these precise; the atomic nhumbers will be th@reducible and prime
numbers (two notions which coincide for the integers), and “essentially unique' will mean
unique up to reordering and multiplication by units.

Primes and irreducibles

De nition 3.2.1
Let p be a non-zero non-unit. We sayp is prime if forall a;b2 Z, if pjabthenpjaor

pjb.

Example 3.2.2
Here are some examples of prime and non-prime numbers:

2 is prime. Suppose not; then there exista;b2 Z such that 2 j ab but 2 divides
neither a nor b. Thus a and b are both odd, meaning that ab is odd... but this
contradicts the assumption that 2 j ah.

6 is not prime. Indeed, 6] 2 3 but 6 divides neither 2 nor 3.

Exercise 3.2.3
Using De nition 3.2.1, prove that 3 and 5 are prime and that 4 is not prime. C

Recall the de nition of binomial coe cients (De nition 1.3.27).

Example 3.2.4

Let k 2 Z with 0 <k < 5. We'll show that 5 , .
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Well, by Theorem 1.3.31 we know that

5
| = | |
5= KI5 k!

By Theorem 1.3.31, we have

o R W SN

=5 k)

Since 5 is prime, it must divide one of the factors on the right-hand side of this equation.
Thus, either 5 divides E , or it divides *~ forsome 16 "6 korl16 6 5 k. But
k< 5and 5 k < 5, so it cannot divide any of these values of |if it did, it would

imply56 "6 kor56 ~6 5 Kk, which is nonsense. Hence 5 must divideE . C
Exercise 3.2.5

Let p2 Z be a positive prime and let 0<k <p . Show that pj E . C
Aside

Most people are introduced to primes with a de nition along the lines of p is prime
if p has exactly two positive divisors'. We have avoided this to elucidate the fact that
the integers together with their arithmetic structure are the canonical example of a
mathematical object called aring. The notion of a prime element can be de ned in any
ring as in De nition 3.2.1. Secondly, these two de nitions are equivalent in Z, but not
in all rings. C

De nition 3.2.6
Let a be a non-zero non-unit. We saya is reducible if a= mn for some non-unitsm;n;
otherwise it is irreducible

Proposition 3.2.7
A non-zero non-unit p is irreducible if and only if the only divisors of parep, p, 1 and
1.

Proof. Supposep is irreducible and that aj p. Then p= abfor someb?2 Z. Sincep is
irreducible, either a or bis a unit. If ais a unitthen b= p, and if b is a unit then
a= p. So the only divisors ofpare 1and p.

Conversely, suppose that the only divisors ofp are 1 and p, and let a;b 2 Z with
p = ab. We want to prove that a or bis a unit. Sinceajp, we havea2fl;, 1,p; pg.

If a= 1,thenaisaunitif a= p,thenb= 1, so thatbis a unit. In any case,
either a or bis a unit, and hencep is irreducible. O
Example 3.2.8

A couple of examples of reducible and irreducible numbers are:
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2 is irreducible: if 2 = mn then either m or n is even, otherwise we'd be expressing
an even number as the product of two odd numbers. We may assume is even,
say m = 2Kk; then 2 = 2kn, sokn = 1 and hencen is a unit.

6 is reducible since 6 =2 3 and both 2 and 3 are non-zero non-units.

C
Exercise 3.2.9
Prove that if p2 Z is prime then p is irreducible. C
Lemma 3.2.10
Let a 2 Z be a non-zero non-unit. Then there are irreduciblesps;:::;pn such that
a=pm Pn.

Proof. We may assumea > 0, since ifa < 0 we can just multiply by 1.

We proceed by strong induction ona > 2. The base case hasa = 2 since we consider
only non-units.

(BC) We have shown that 2 is irreducible, so settingp; = 2 yields a product of
primes.

(IS) Let a> 2 and suppose that each integek with 2 6 k 6 a has an expression as
a product of irreducibles. If a+ 1 is irreducible then we're done; otherwise we can
write a+ 1 = st, wheres;t 2 Z are non-zero non-units. We may assume further
that s and t are positive. Moreover,s<a +1 and t<a +1 since s;t> 2.

By the induction hypothesis, s and t have expressions as products of irreducibles.
Write

S=P Pm; t=a On

This gives rise to an expression o as a product of irreducibles:

TSP Py

By induction, we're done. O

Theorem 3.2.11
Let p2 Z. Then pis prime if and only if p is irreducible.

Proof. We prove the two directions separately.

Prime ) irreducible. This was Exercise 3.2.9.
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Irreducible ) prime. Supposep is irreducible. Let a;b2 Z and supposep j ab.
We need to show thatpjaor pjb. It suces to show thatif p-athenpjh

So suppose - a. Let d =gcd(p;a). Sinced | p and p is irreducible, we must have
d=1 or d= p by Proposition 3.2.7. Sincep -a and d j a, we must therefore have
d=1.

By Bezout's lemma (Theorem 3.1.22), there existu;v 2 Z such that au+ pv = 1.
Multiplying by b givesabu+ pbv= b. Sincep j ab, there existsk 2 Z such that
pk = ab. Then

b= abu+ pbv= pku+ pbv= p(ku + bv)

sopj b, as required.

So we're done. O

Since primes and irreducibles are the same thing iiZ, we will refer to them as “primes’,
unless we need to emphasise a particular aspect of them.

Prime factorisation

Having described prime numbers in two ways, each of which emphasises their nature of
being “unbreakable' by multiplication, we will extend Lemma 3.2.10 to prove that every
integer can be expressed as a product of primes in an essentially unique way.

Theorem 3.2.12 (Fundamental theorem of arithmetic)

Let a2 Z be a non-zero non-unit. There exist primesps;:::;pk 2 Z such that

a=p1 Px
Moreover, this expression is essentially unique: &= g1 g is another expression
of a as a product of primes, thenk = ~ and, re-ordering the g if necessary, for eachi

there is a unit u; such that g = u;p;.

Proof. We showed that such a factorisation exists in Lemma 3.2.10, with the word “prime'
replaced by the word “irreducible’. It remains to prove (essential) uniqueness.

Let k be least such that there is an expression o& as a product of k primes, namely
a=pm pk. Leta=q g be any other such expression. We prove by
induction on k that ~ = k and, after re-ordering if necessary, for each there is a unit u;
such that g = ujp;.

(BC) If k =1then a= p; is itself prime. Then we havep; = g g . Since
p1 is prime, p1 j g for somej; by swapping qu and g we may takej = 1, so that
p1 j th. By irreducibility of o we haveq, = uip; for some unit us.
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(IS) Let k > 1 and suppose that any integer which can be expressed as a product
of k primes is (essentially) uniquely expressible in such a way. Supposehas an
expression as a product ok + 1 primes, and that k + 1 is the least such number.
Suppose also that

a=m Pk Pk+1 = b )

Note that ~ > k + 1. Since py+1 is prime we must havepg+1 j ¢ for somej; by
swapping g and ¢ if necessary, we may takg = °, so that px+1 j 0. As before,
g = Uk+1 Pk+1 for some unit ug.; . Dividing through by py+1 gives

P1 Pk = th G 1 Uk+1

Replacingg 1 by ¢ 1Uk+1, Which is still prime, we can apply the induction hypo-
thesis to obtaink = © 1, sok+1 = ", and, after reordering if necessaryg = u;p;
for all i 6 k. Since this also holds fori = k + 1, we're done.

By induction, we're done. O

Example 3.2.13
Here are some examples of numbers written as products of primes:

12=2 2 3. We could also writethisas2 3 2or( 2) ( 3) 2,andsoon.
53 = 53 is an expression of 53 as a product of primes.

1000=2 5 ( 2) 5 2 5.

Exercise 3.2.14
Express the following numbers as products of primes:

16 240 5050 111111 123456789

C

To make things slightly more concise, we introduce a standard way of expressing a
number as a product of primes:
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De nition 3.2.15
The canonical prime factorisation of a non-zero non-unita 2 Z is the expression in

the form _ _
a=up' p-

where:
u=1lif a>0,andu= 1lifa<0;

The numbers p; are all positive primes;
Pr<pz2< <Ppr;

ji > 1foralli.
We call j; the multiplicity  of p; in the factorisation of a, and we callu the sign of a.

Typically we omit u if u=1, and just write a minus sign ( ) if u= 1.

Example 3.2.16
The canonical prime factorisations of the integers given in Example 3.2.13 are:

12=22 3.
53 = 53.
1000 = 23 58

C

Exercise 3.2.17
Write out the canonical prime factorisations of the numbers from Exercise 3.2.14, which
were:

16 240 5050 111111 123456789
C

The following exercise provides another tool for computing reastgreatest common di-
visors of pairs of integers by looking at their prime factorisations.

Exercise 3.2.18

m=pf P p’ and n=p! pf P
Prove that
ged(m;n) = p*  py? P
whereuj = minfk;; jgforall 16 i 6 r. C
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Example 3.2.19
We use Exercise 3.2.18 to compute the greatest common divisor of 17640 and 6468.

First we compute the prime factorisations of 17640 and 6468:
17640=2° 3> 5 72 and 6468=2 3 72 11
It now follows from Exercise 3.2.18 that

gcd(176406468) =22 3t 50 72 11°
=4 31491
=588

Distribution of primes

So far we have seen several examples of prime numbers; to name a few, we've seen 2, 3,
5 and 53. It might seem like the prime numbers go on forever, but proving this is less
than obvious.

Exercise 3.2.20
Let P be an inhabited nite set of positive prime numbers and let m be the product of
all the elements of P. That is, for somen > 1 let

P=fpy::i;phg and m= pg Pn

where eachpy 2 P is a positive prime. Using the fundamental theorem of arithmetic,
show that m + 1 has a positive prime divisor which is not an element ofP. C

Theorem 3.2.21
There are in nitely many primes.

Proof. We prove that there are in nitely many positive prime numbers|the result then
follows immediately. Let P be the set of all positive prime numbers. ThenP is inhabited,
since 22 P, for example. If P were nite, then by Exercise 3.2.20, there would be a
positive prime which is not an element ofP |but P contains all positive primes, so that
is impossible. Hence there are in nitely many positive primes. O

This is one proof of many, which is due to Euclid around 2300 years ago. We might
hope that a proof of the in nitude of primes gives some insight into how the primes are
distributed. That is, we might ask questions like: how frequently do primes occur? How
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fast does the sequence of primes grow? How likely is there to be a prime number in a
given set of integers?

As a starting point, Euclid's proof gives an algorithm for writing an in nite list of primes:
Let p1 = 2; we know that 2 is prime;
Given py;:::;pn, let ph+1 be the smallest positive prime factor ofp; pn +1.
The rst few terms produced would be:
p1 = 2 by de nition;
2+ 1 =3, which is prime, so p2 = 3;
2 3+1=7,which is prime, so p3 =7,
2 3 7+1=43, which is prime, so ps = 43;
2 3 7 43+1=1807=13 139, sops =13;
2 3 7 43 13+1=23479=53 443, sops = 53;
...and so on.
The sequence obtained, called théuclid{Mullin sequence, is a bit bizarre:
2;3;7,43,13,53,5;62216713870918381057%1139 2801, 11; 17,5471, . ::

Big primes like 38709183810571 often appear before small primes like 11. It remains
unknown whether or not every positive prime number appears in this list!

The chaotic nature of this sequence makes it di cult to extract information about how
the primes are distributed: the numbers p; pn + 1 grow very quickly|indeed,

it must be the case that p1 pn +1 > 2" for all n|so the upper bounds for the
sequence grow at least exponentially.

Another proof of the in nitude of primes that gives a (slightly) tighter bound can be
obtained using the following exercise.

Exercise 3.2.22

Let n 2 Z with n > 2. Prove that the setfk 2 Z j n < k < n !g contains a prime
number. C
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Section 3.3
Modular arithmetic

It turns out that much arithmetic can be done by considering only the remainders of
integers when divided by a xed integer. Here is a simple example:

Example 3.3.1
Supposea; has remainderr, and a; has remainderr, when divided by 7. That is, there
exist op; p 2 Z such that

a;=7q+rq and a=Tkp+r;

Then a; + a, has the same remainder as1 + r, when divided by 7. Indeed, suppose
ai+ta=7q+ r,where 06 r< 7. Then

rn+r=(a 7m)+(a2 7¢)
=(aata)+7( o )
=(7q+n)+7( o @)
=7(q9 @ @)+r

An example of this in action: 41 =5 7+6 and 240=34 7+ 2, so the remainders of
41 and 240 when divided by 7 are 6 and 2, respectively. Now

41+240=281=40 7+1 and 6+2=8=1 7+1

which demonstrates that 41 + 240 and 6 + 2 have the same remainder when divided by
7. C

In this section we will study the extent to which we can do arithmetic with integers
knowing only their remainders upon division by a given integer.

De nition 3.3.2
Fix n 2 Z. Given integersa; b2 Z, we saya is congruent to b modulo n, and write

a bmodn (IATEX code: a nequiv b nbmodng)
if nja b If ais not congruent to b modulo n, write
a6 bmodn (IATEX code: nnot nequiv )

The number n is called the modulus of the congruence.

Convention 3.3.3
When talking about modular arithmetic, we will restrict our attention to positive in-
tegers. This is because for any integers; b; n we have

a bmodn , a bmod( n)
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anda bmod O if and only if a= b. Thus, whenever we write “moch’ or specify that a
variable n is a ‘'modulus', it is implicit that n is an integer andn > 0. This will shorten
some of our proofs. C

Example 3.3.4
Some examples of congruence modulwo are as follows:

16 30 mod 2 since 30 16 = 14, which is a multiple of 2.
44 20 mod 6 since 20 44 = 24, which is a multiple of 6.

C

Exercise 3.3.5

Show that if a;b 2 Z with a;b > 0 thena bmod 10 if and only if the decimal
expressions ofa and b end in the same digit. What happens whena and b are allowed
to be negative? C

It is important from the outset to point out that, although congruence is written with

a symbol that looks like that of equality ' vs. "="), we can only treat congruence like
equality inasmuch as we have proved we can. Speci cally, the ways in which congruence
can be treated like equality will be proved in two theorems:

Theorem 3.3.6 tells us that congruence satis es three extremely basic properties
of equality.’! One useful consequence of this is that it is valid to use strings of
congruences, for example

5 18 41 64mod23 ) 5 64 mod 23

Theorem 3.3.9 tells us that we can treat congruence like equality for the purposes
of addition, multiplication and subtraction. Thus it will be valid to write things
like
X 7mod1l2 ) 2x+5 19 mod 12
and we'll be able to replace values by congruent values in congruences, provided

they're only being added, subtracted or multiplied. For example, from the know-
ledge that 22° 1 mod 61 and 60! 1 mod 61, we will be able to deduce

20 3 60! xmod61 ) 3  xmod6l

Don't let these properties shared by congruence and equality lull you into a false sense
of security! We will soon see that for other purposes, such as division and various other
algebraic operations, congruence doeasot behave like equality.

bl Using the language of De nition 5.1.31, Theorem 3.3.6 says precisely that congruence is anequivalence
relation .
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Theorem 3.3.6
Let a;b;c2 Z and let n be a modulus. Then
(@) a amodn;

(b) If a bmodn,thenb amodn;

(c)Ifa bmodnandb cmodn,thena cmodn.

Proof.

(@) Notethat a a =0, which is divisible by n since0 =0 n, and hencea amodn.

(b) Supposea bmodn. Thennja b, sothata b= kn for somek 2 Z. Hence
b a= kn,andsonjb a sothatb amodn as required.

(c) Supposea bmodnandb cmodn. Thennja bandnjb ¢ sothere exist
k:™ 2 Z such that

a b=kn and b c¢c="Tn

Hencea c=(a b+(b c¢)=(k+ )n,sothatnja c Hencea c¢modn,
as required.

O]

There is a slightly simpler characterisation of congruence modulam, as seen in Proposi-
tion 3.3.7 below.

Proposition 3.3.7
Fix a modulus n and let a;b2 Z. The following are equivalent:

(i) a and bleave the same remainder when divided by;
(i) a= b+ kn for somek 2 Z;

(i) a bmodn.

Proof. We prove (i) , (iii) and (i) , (iii).

() ) (iii). Suppose a and b leave the same remainder when divided by, and let
Qi; Cp;r 2 Z be such that

a=gqn+r, b=gn+r and 06 r<n
Thena b=(q @)n, which provesthatnja b and soa bmodn.
(@iiiy ) (i). Suppose thata bmodn, sothatb a= gnfor someq2 Z. Write

a=qn+ry; b=@gn+r, and 06 rqro<n
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We may further assume thatri 6 r,. (If not, swap the roles of a and bjthis is
ne,sincenjb aifandonlyif nja b) Now we have

b a=qn) (gn+rz) (wn+r1)=an
) (@ a gn+(rz r1)=0 rearranging

since 06 r1 6 r,<n we have 06 r» rq1<n, sothatro rqisthe remainder
of 0 when divided byn. Thatis, r, r;=0,sor; = ry. Hencea and b have the
same remainder when divided byn.

(i) , (iii). We unpack the de nitions of (ii) and (iii) to see that they are equivalent.
Indeed

(i) , a= b+ kn for somek 2 Z

, a b= kn for somek 2 Z rearranging
, nja b by de nition of divisibility
, a bmodn by de nition of congruence

(i)

O

Discussion 3.3.8
Where in the proof of Proposition 3.3.7 did we rely on the convention that the modulus
n is positive? Is the result still true if n is negative? C

The following theorem tells us that, in a very limited sense, the symbol can be treated
as a = symbol for the purposes of doing addition, subtraction and multiplication. Em-
phatically, it does not say that we can treat ™ ' like "=' for the purposes of doing division.

Theorem 3.3.9 (Modular arithmetic)
Fix a modulus n, and let a;;as; bi; b, 2 Z be such that

ap bymodn and a; bpmodn

Then the following congruences hold:
(@ ai+ay by+ bpmodn;

(b) agaz byb, modn;
(c)ag a2 by bpmodn.

Proof. By De nition 3.3.2that nja; by andnja, Iy, sothere existqy; @ 2 Z such

that

a; b= aan and a b=wpn
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This implies that

(aa+a) (+b)=(ar b)+(az b)=aqn+ en=(q+ gn
sonj(a;+ az) (b + by). This proves (a).
The algebra for (b) is slightly more involved:

ajay by =(qun+ by)(pen+ bp) by

N + biGpn + byoun + b, biby
(hpn® + bycpn + bygpn

= (N + b + bpgu)n

This shows thatn jaja, by, thus proving (b).

Now (a) and (b) together imply (c). Indeed, we know that 1 1 modn and by
b mod n, so by (b) we have Iy b, mod n. We also know thata; a, modn, and
henceay b a, by modn by (a). O

Theorem 3.3.9 allows us to perform algebraic manipulations with congruences as if they
were equations, provided all we're doing is adding, multiplying and subtracting.

Example 3.3.10
We will solve the congruence 8 5 2x +3 mod 7 for x:

33X 5 2x+3mod7

, X 5 3mod7 (0 ) subtract 2x (( ) add 2x
, X 8mod7 (0 )add 5 (( ) subtract 5
, X 1mod?7 since 8 1mod7

So the integersx for which 3x 5 and 2x + 3 leave the same remainder when divided
by 7, are precisely the integersx which leave a remainder of 1 when divided by 7:

3X 5 2x+3mod7 , x=7q+1 forsomeq2 Z

C

Exercise 3.3.11
For which integers x does the congruence®+1 x+8 mod 3 hold? Characterise such
integers x in terms of their remainder when divided by 3. C

So far this all feels like we haven't done very much: we've just introduced a new symbol

which behaves just like equality. . . but does it really? The following exercises should
expose some more ways in which congruenagoes behave like equality, and some in
which it doesn't
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Exercise 3.3.12
Fix a modulus n. Is it true that

a bmodn ) a b‘modn
forall a;b2 Z and k 2 N? If so, prove it; if not, provide a counterexample. C

Exercise 3.3.13
Fix a modulus n. Is it true that

K a modn

k “modn ) a
forall k;” 2 Nand a2 Z? If so, prove it; if not, provide a counterexample. C

Exercise 3.3.14
Fix a modulus n. Is it true that

ga gbmodn ) a bmodn
for all a;b; g2 Z with g6 0 modn? If so, prove it; if not, provide a counterexample. C

Common error

The false sense of security that Theorem 3.3.9 induces often leads students new to all
this to the belief that and = are interchangeable concepts. This is emphaticallynot
the case. In particular:

Fractions don't make sense in modular arithmetic; for instance, it is invalid to say
2x 1mod5 impliesx 3 mod 5.

Square roots don't make sensed'rl modular arithmetic; for instance, it is invalid to
sayx? 3 mod 4 impliesx 3 mod 4.

Numbers in exponents cannot be replaced by congruent numbers; for instance, it
is invalid to say x> 23 mod 4 impliesx 2 mod 4.

C

Multiplicative inverses
We made a big deal about the fact that fractions don't make sense in modular arithmetic.
That is, it is invalid to say
1
2X 1mod5 ) X émod5

Despite this, we can still make sense of “division', provided we change what we mean
when we say “division'. Indeed, the congruencex2 1 mod 5 has a solution:

2X 1mod5
, ©6x 3mod5 (0 ) multiply by 3 ( () subtract 3
, X 3modb5 since 6 1mod5
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Here we didn't divide by 2, but we still managed to cancel the 2 by instead multiplying
through by 3. For the purposes of solving the equation this had the same e ect as
division by 2 would have had if we were allowed to divide. The key here was that
2 3 1mod5.

De nition 3.3.15
Fix a modulus n. Given a 2 Z, a multiplicative inverse  for a modulo n is an integer
u such thatau 1 modn.

Example 3.3.16
Some examples of multiplicative inverses are as follows:

2 is a multiplicative inverse of itself modulo 3, since2 2 4 1 mod 3.
2 is a multiplicative inverse of 3 modulo 5, since 2 3 6 1modb5.
7 is also a multiplicative inverse of 3 modulo 5, since3 7 21 1 modb5.

3 has no multiplicative inverse modulo 6. Indeed, supposas 2 Z with 3u
1 mod6. Then6j3u 1,so031 1=6qforsomeq2 Z. But then

1=3u 6g=3(u 29
which implies that 3 j 1, which is nonsense.

C

Knowing when multiplicative inverses exist is very important for solving congruences:
if uis a multiplicative inverse for a modulo n, then we can solve equations of the form
ax bmod n extremely easily:

ax bmodn ) X ubmodn

Exercise 3.3.17
For n = 7;8;9;10;11;12, either nd a multiplicative inverse for 6 modulo n, or show
that no multiplicative inverse exists. Can you spot a pattern? C

Some authors writea ! to denote multiplicative inverses. We refrain from this, since
it suggests that multiplicative inverses are unique|but they're not, as you'll see in the
following exercise.

Exercise 3.3.18

Let n be a modulus and leta 2 Z. Suppose thatu is a multiplicative inverse for a
modulo n. Prove that, for all k 2 Z, u+ kn is a multiplicative inverse for a modulo
n. C
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Proposition 3.3.19
Let a2 Z and let n be a modulus. Thena has a multiplicative inverse modulon if and
only if a? n.

Proof. Note that a has a multiplicative inverse u modulo n if and only if there is a
solution (u;v) to the equation au+ nv = 1. Indeed, au 1 modn if and only if
njau 1, which occurs if and only if there is somey 2 Z such thatau 1 = ng. Setting
g= Vv and rearranging Yyields the desired equivalence.

By Bezout's lemma (Theorem 3.1.22), such a solution (1; v) exists if and only if gcd(a; n) j
1. This occurs if and only if gcd@;n) = 1, i.e. if and only if a? n. O

Proof tip

To solve a congruence of the formex bmodn whena? n, rst nd a multiplicative
inverse u for a modulo n, and then simply multiply through by u to obtain x  ubmod
n. C

Corollary 3.3.20
Let a;p 2 Z, where p is a positive prime. If p - a then a has a multiplicative inverse
modulo p.

Proof. Supposep - a, and let d = gcd(a; p). Sinced | p and p is prime we haved =1 or
d= p. Sincedjaandp-awe can't haved = p; therefore d = 1. By Proposition 3.3.19,
a has a multiplicative inverse modulo p. O

Example 3.3.21
11 is prime, so each of the integerawith 1 6 a 6 10 should have a multiplicative inverse
modulo 11. And indeed, the following are all congruent to 1 modulo 11:

1 1=1 2 6=12 3 4=12 4 3=12 5 9=45
6 2=12 7 8=5 8 7=56 9 5=45 10 10=100

Exercise 3.3.22
Find all integers x such that 25x 4  4x + 3 mod 13. C

Orders and totients

For any modulus n, there are only nitely many possible remainders modulon. A nice
consequence of this niteness is that, whera ? n, we can choose some power @fto be
its multiplicative inverse, as proved in the following exercise.

Exercise 3.3.23
Let n be a modulus and leta 2 Z with a? n. Prove that there exists k > 1 such that
ak 1 modn. C
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Exercise 3.3.23, together with the well-ordering principle, justify the following de nition.

De nition 3.3.24
Let n be a modulus and leta 2 Z with a? n. The order of a modulo n is the least
k > 1 such thatak 1 modn.

Note that this de nition makes sense by Exercise 3.3.23 and the well-ordering principle.

Example 3.3.25
The powers of 7 modulo 100 are:

71=7,s0 7" 7 mod 100;
72=49,s0 72 49 mod 100;
7°=343,s0 7 43 mod 100;
74=2401,s0 7 1 mod 100.

Hence the order of 7 modulo 100 is 4, and®and 43 are multiplicative inverses of 7
modulo 100. C

Our focus turns to computing speci ¢ values ofk such that aK 1 modn, whenever
a2 Zanda? n. We rst focus on the case whenn is prime; then we develop the
machinery of totients to study the case whenn is not prime.

Lemma 3.3.26
Let a;b2 Z and let p2 Z be a positive prime. Then @+ P aP + b’ mod p.

Proof. By the binomial theorem (Theorem 1.3.34), we have

xXP
(a+ bP = E apP
k=0

By Exercise 3.2.5,pj P forall 0 <k < p, and hence ? a“t® ¥ 0 modp for all
O<k<p. Thus

(a+ bP 8 a’t? 0+ S a’t’ P &P+ b’ modp

as desired. O

Theorem 3.3.27 (Fermat's little theorem)
Let a;p2 Z with p a positive prime. ThenaP amod p.
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Proof. We may assume thata > 0, otherwise replacea by its remainder modulo p.
We will prove that a® a mod p by induction on a.

(BC) Sincep > 0 we have @ =0, hence @ 0 modp.

(IS) Fix a > 0 and supposea® amodp. Then (a+1)P aP+ 1P modp by
Lemma 3.3.26. NowaP a mod p by the induction hypothesis, and I’ = 1, so we
have @+1)P a+1mod p.

By induction, we're done. O

Corollary 3.3.28
Let a;p2 Z with p a positive prime andp-a. thena® 1 1 modp.

Proof. Sincep - a, it follows that a? p. Fermat's little theorem (Theorem 3.3.27) tells
us that @” amodp. By Proposition 3.3.19, a has a multiplicative inverse b modulo
p. Hence

a’b  abmodp
But a’b aP labmodp, andab 1 modp, so we get

1

aP 1 modp

as required. O

This can be useful for computing remainders of humongous numbers when divided by
smaller primes.

Example 3.3.29

We compute the remainder of 20°0 when divided by 7. By Fermat's little theorem
(Theorem 3.3.27), we know that 2 2 mod 7. Since 7- 2, it follows that 2 has a
multiplicative inverse modulo 7, so we can cancel it from both sides to obtain )

1 mod 7. Now 1000 = 166 6 +4, so

21000 2166 6+4 (26)166 24 24 16 2 mod 7

so the remainder of 2990 when divided by 7 is 2. C
Exercise 3.3.30
Find the remainder of 3244886 when divided by 13. C

Unfortunately, the hypothesis that p is prime in Fermat's little theorem is necessary. For
example, 6 is not prime, and § 1=55=3125=520 6+5,s05 5 mod 6.
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De nition 3.3.31
Let n 2 Z. The totient of n is the natural number ' (n) (LATEX code: nvarphi(n) ),
which is the number of integers from 1 up tojnj which are coprime ton.?

&More succinctly, we have ' (n) = jfk 2 [jnj]j k ? ngj, where the notation jXj is de ned in De nition
4.1.39.

Example 3.3.32
Here are some examples of totients:

The elements of [6] which are coprime to 6 are 1 and 5, so(6) = 2.

If pis a positive prime, then every element of jf] is coprime to p except for p itself.
Hence ifp is a positive prime then' (p) = p 1. More generally, if p is prime then

“(M)=ip 1
C
Exercise 3.3.33
Prove that if pis a positive prime andk > 1 then
S = p¢opkt
C

Theorem 3.3.34 (Euler's theorem)
Let n be a modulus and leta 2 Z with a? n. Then

a ™ 1modn

Proof. By de nition of totient, the set X de ned by
X =fk2[n]ljk? ng

has' (n) elements. List the elements as

Note that ax; ? n for all i, so lety; be the (unique) element of X such that ax;
yi mod n.

Note that if i 6 | theny; 6 y;. We prove this by contraposition; indeed, sincea ? n,
by Proposition 3.3.19, a has a multiplicative inverse, sayb. Then

yi yjmodn ) ax; ax;modn ) bax bax modn ) Xx; Xj modn

andx; Xxj modn ifand only if i = j. Thus
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This means that the product of the 'X;'s is equal to the product of the V;'s, and hence

X1 X
Y1 il Y (ny modn sincefxq;:::g=fyi;:::0
(axy) i1 (@x: (ny) mod n sincey; ax; modn
a ™ xi 11 X modn rearranging

Since eachx; is coprime to n, we can cancel thex; terms (by multiplying by their
multiplicative inverses) to obtain

a ™ 1modn

as required. O

Example 3.3.35
Some examples of Euler's theorem in action are as follows:

We have seen that' (6) = 2, and we know that 5 ? 6. And, indeed,
50 =52=25=4 6+1
so5® 1modé6.
By Exercise 3.3.33, we have
'(121)=' (11%) =112 11'=121 11=110

Moreover, givena 2 Z, a ? 121 if and only if 11 - a. Hencea®® 1 mod 121
whenever 11- a.

Wilson's theorem

We conclude this chapter on number theory with Wilson's theorem, which is a nice result
that completely characterises prime numbers in the sense that we can tell when a number
is prime by computing the remainder of (n  1)! when divided by n.

Let's test a few numbers rst:
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n|(n 1) | remainder n (n 1) remainder
2 1 1 9 40320 0

3 2 2 10 362880 0

4 6 2 11 3628800 10

5 24 4 12 | 39916800 0

6 120 0 13 | 479001600 12

7 720 6 14 | 6227020800 0

8 | 5040 0 15 | 87178291200 0

It's tempting to say that an integer n > 1 is prime if and only if n - (n  1)!, but this
isn't true since it fails when n = 4. But it's extremely close to being true.

Theorem 3.3.36 (Wilson's theorem)
Let n> 1 be a modulus. Thenn is prime if and only if (n  1)! 1 modn.

The following sequence of exercises will piece together into a proof of Wilson's theorem.

Exercise 3.3.37
Let n 2 Z be composite. Prove that ifn > 4, thennj(n 1)\ C

Exercise 3.3.38
Let p be a positive prime and leta2 Z. Prove that, if a2 1modp, thena 1 modp
ora 1 modp. C

Exercise 3.3.38 implies that the only elements off 1] that are their own multiplicative
inverses are 1 andp 1; this morsel of information allows us to deduce result in the
following exercise.

Exercise 3.3.39
Let p be a positive prime. Prove that (p  1)! 1 modp. C

Proof of Wilson's theorem (Theorem 3.3.36). Let n> 1 be a modulus.
If nis prime, then (n 1)! 1 modn by Exercise 3.3.39.

If n is composite, then eithern =4 or n> 4. If n =4 then
(n 1)!'=3'=6 2mod4
andso( 1)!6 1modn. If n> 4, then
(n 1)) Omodn

by Exercise 3.3.37.
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Hence o 1)! 1 modn if and only if n is prime, as desired. O

Since Wilson's theorem completely characterises the positive prime numbers, we could
have de ned n is prime’, for n > 1, to mean that (n  1)! 1 modn. We don't do this
because, although this is an interesting result, it is not particularly useful in applications.
We might even hope that Wilson's theorem gives us an easy way to test whether a number
is prime, but unfortunately even this is a bust: computing the remainder (n  1)! on
division by n is not particularly e cient.

However, there are some nice applications of Wilson's theorem, which we will explore
now.

Example 3.3.40
We'll compute the remainder of 3* 44! when divided by 47. Note that 3*° 44! is
equal to a monstrous number with 76 digits; | don't recommend doing the long division!

Anyway. . .

47 is prime, so we can apply both Fermat's little theorem (Theorem 3.3.27) and
Wilson's theorem (Theorem 3.3.36).

By Fermat's little theorem, we know that 346 1 mod 47. Since 3 16 = 48
1 mod 47, we have

3% 3% (3 16) 3% 16 16 mod 47
By Wilson's theorem, we have 46! 1 mod 47. Now
46 1 mod 47, so 46 is its own multiplicative inverse modulo 47.

The extended Euclidean algorithm yields 45 23 1 mod 47.
So we have

441=44) (45 23) (46 46) 46! 23 46 ( 1) 23 ( 1) 23 mod 47

Putting this information together yields
3% 441 16 23=368 39 mod 47

So the remainder left when 3° 44! is divided by 47 is 39. C
Exercise 3.3.41
Let p be an odd positive prime. Prove that

2
—pzl ! ( 1)%modp
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Chinese remainder theorem

We introduce the Chinese remainder theorem with an example.

Example 3.3.42
We nd all integer solutions x to the system of congruences

X 2mod5 and x 4 modS8

Note that x 4 mod 8 if and only if x =4 + 8 k for somek 2 Z. Now, for all k 2 Z we
have

X 2mod5

, 4+8k 2mod5 sincex =4+8k

, 8k 2 mod>5 subtracting 4

, 3k 3mod5 since 8 2 3mod>5

, k 1mod5 multiplying by a multiplicative inverse for 3 modulo 5

So04+8 2mod5ifandonlyifk=1+5" for some" 2 Z.

Combining this, we see thatx satis es both congruences if and only if
X=4+8(1+5 )=12+40"

for some” 2 Z.

Hence the integersx for which both congruences are satis ed are precisely those integers
x such that x 12 mod 40. C

Exercise 3.3.43
Find all integer solutions x to the system of congruences:

8

2 X 1 mod4
S X 1 mod9
"X 5mod11

Express your solution in the formx amodn for suitable n> 0 and 06 a<n. C

Exercise 3.3.44
Let m;n be coprime moduli and leta;b2 Z. Let u;v 2 Z be such that

mu 1modn and nv 1modm
In terms of a; b; m;n;u;v, nd an integer x such that

X amodm and x bmodn

163



164 Chapter 3. Number theory

Exercise 3.3.45
Let m;n be coprime moduli and letx;y 2 Z. Prove that if x ymodm and x
y modn, then x y mod mn. C

Theorem 3.3.46 (Chinese remainder theorem)
Let m;n be moduliand leta;b2 Z. If m and n are coprime, then there exists an integer
solution x to the simultaneous congruences

X amodm and x bmodn

Moreover, if x;y 2 Z are two such solutions, thenx y mod mn.

Proof. Existence of a solutionx is precisely the content of Exercise 3.3.44.

Now let x;y 2 Z be two solutions to the two congruences. Then

X amodm
y amodm ) X ymodm

X bmodn
y bmodn ) X ymodn

so by Exercise 3.3.45, we have y mod mn, as required. O

We now generalise the Chinese remainder theorem to the case when the moduli; n
are not assumed to be coprime. There are two ways we could make this generalisation:
either we could reduce the more general version of the theorem to the version we proved
in Theorem 3.3.46, or we could prove the more general version from scratch. We opt for
the latter approach, but you might want to consider what a “reductive' proof would look
like.

Theorem 3.3.47
Let m;n be moduli and let a;b2 Z. There exists an integer solutionx to the system of
congruences

x amodm and x bmodn

if and only if a bmod gcd(m; n).
Moreover, if X;y 2 Z are two such solutions, thenx y mod lcm(m;n)

Proof. Let d = gcd(m;n), and write m = m% and n = nd for somem®n®2 z.

We prove that an integer solution x to the system of congruences exists if and only if
a bmodd.
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() ) Suppose an integer solutiorx to the system of congruences exists. Then there
exist integersk; ™ such that

X=a+mk=b+n

But m = m% and n = n%, so we havea+ m%k = b+ n4", and so
a b=(n® m%d

sothata bmodd, as required.

(( ) Supposea bmodd, and lett 2 Z be such thata b= td. Letu;v 2 Z
be solutions to the congruencemu + nv = d, which exists by Bezout's lemma
(Theorem 3.1.22). Note also that, sincem = m% and n = n4, dividing through
by d yields m& + n% = 1.

De ne
x = an% + bml
Now we have
x = and + bm& by de nition of x
=an¥ +(a td)mL sincea b= td
= amU+ n%) tdm%Q rearranging
=a tdm% sincemU+ n& =1
=a tum sincem = m%
sox amodm. Likewise
x = an + bm& by de nition of x
= (b+ td)n% + bml sincea b= td
= b(m%U + n%) + tdn% rearranging
= b+ tdn& sincemU+ n& =1
= b+ tvn sincen = nd

sox bmodn.
Hencex = an% + bmQ is a solution to the system of congruences.

We now prove that if x;y are two integer solutions to the system of congruences, then
they are congruent modulo lcm@; b). First note that we must have

X ymodm and x ymodn
so that x = y+ km and x = y + 'n for somek;" 2 Z. But then

X y=km="n

165



166 Chapter 3. Number theory

Writing m = m% and n = nY, we see thatkm® = “n%, so that km®= "n® But
m® n®are coprime by Proposition 3.1.29, and hencen®j * by Proposition 3.1.32. Write
> = "IO%for some'°2 Z. Then we have

x y="n="th
and hencex y mod m%. But m%h =lecm(m;n) by Exercise 3.1.41. O

This theorem is in fact constructive, in that it provides an algorithm for nding all
integer solutions x to a system of congruences

X amodm and x bmodn

as follows:

Use the Euclidean algorithm to computed = gcd(m; n).

If d-a bthen there are no solutions, so stop. Ifdja b, then proceed to the
next step.

Use the extended Euclidean algorithm to computeu;v 2 Z such that mu+ nv = d.

The integer solutionsx to the system of congruences are precisely those of the form

+ +
X = anv brzu kmn for somek 2 Z

Exercise 3.3.48
Verify that the algorithm outlined above is correct. Use it to compute the solutions to
the system of congruences

X 3modl1l2 and x 15 mod 20
C

? Exercise 3.3.49
Generalise the Chinese remainder theorem to systems of arbitrarily ( nitely) many con-

X amodng; X axmodny; Xr & modn;

Find an explicit formula for such a value of x, and nd a suitable modulus n in terms

modulo n. C

Exercise 3.3.50
Prove that gaps between consecutive primes can be made arbitrarily large. That is,
prove that for all n 2 N, there exists an integera such that the numbers

a,a+l; a+2;:::;a+n

are all composite. C
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Application: tests for divisibility

The language of modular arithmetic provides a practical setting for proving tests for
divisibility using number bases. Number bases were introduced in Section 1.1, and we
gave a preliminary de nition in De nition 1.1.6 of what a number base is. Our rst
job will be to justify why this de nition makes sense at all|that is, we need to prove
that every natural number has a baseb expansion, and moreover, that it only has one
of them. Theorem 3.3.51 says exactly this.

Theorem 3.3.51

f0;1;:::;b 1g such that
X .
n= diU
i=0
and such that d; 6 0, except n =0, in which caser =0 and dg = 0.

Proof. We proceed by strong induction onn.

(BC) We imposed the requirement that if n = 0 then r =0 and dp = 0; and this

: : . P
evidently satis es the requirement that n = db.
i=0

(IS) Fix n> 0 and suppose that the requirements of the theorem are satis ed for
all the natural numbers up to and including n.

By the division theorem (Theorem 3.1.1), there exist uniqueu;v 2 N such that
n+1l=ub+v and v2f0;1:::;b 1g

Sinceb > 2, we haveu < n +1, and sou 6 n. It follows from the induction

that
X .
u= di+1 H
i=0
and d; 6 0. Writing dg = Vv yields

X _ X _
n=ub+v= digb™t +dy= dib
i=0 i=0
Sinced; 6 0, this proves existence.
For unigueness, suppose that there exists 2 N and ep;:::;es2f0;1;:::;b 19
such that
n+l=  gb

i=0
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and es 6 0. Then 0 1

xs .
n+l= @ gb Ab+ e
j=1
so by the division theorem we haveey = dg = v. Hence

x : X .
U= n+1 v _ &b 1_ gy 2

b j=1 i=1
so by the induction hypothesis, it follows thatr = sand d; = ¢ forall 16 i 6 r.
This proves uniqueness.

By induction, we're done. O

We now re-state the de nition of base-b expansion, con dent in the knowledge that this
de nition makes sense.

De nition 3.3.52

Let n 2 N. The base-b expansion of n is the unique string d;d; 1:::dp such that the
conditions in Theorem 3.3.51 are satis ed. The base-2 expansion is also known as the
binary expansion , and the base-10 expansion is called thdecimal expansion

Example 3.3.53

Let n 2 N. Then n is divisible by 3 if and only if the sum of the digits in the decimal
expansion ofn is divisible by 3. Likewise, n is divisible by 9 if and only if the sum of
the digits in the decimal expansionn is divisible by 9.

We prove this for divisibility by 3. Let

FD
be the decimal expansion oh, and let s = di be the sum of the digits ofn.
i=0

Then we have

X ) X )
n di10 mod 3 sincen = di10

i=0 i

di1 mod 3 since 10 1 mod 3
i=0

di since 1 =1 for all i
i=0
s by de nition of s

Sincen s mod 3, it follows that n is divisible by 3 if and only if s is divisible by 3. C
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Exercise 3.3.54
Let n 2 N. Prove that n is divisible by 5 if and only if the nal digit in the decimal
expansion ofn is 5 or 0.

More generally, x k> 1 and let m be the number whose decimal expansion is given by
the last k digits of that of n. Prove that n is divisible by 5% if and only if m is divisible
by 5. For example, we have

125j 9 550 828 230 495 875 , 125j 875

C

Exercise 3.3.55
Let n 2 N. Prove that n is divisible by 11 if and only if the alternating sum of the digits
of n is divisible by 11. That is, prove that if the decimal expansion ofn isd.d. > do,
then

11j n , llj do di+dy +( 1)rdr

C

Exercise 3.3.56
Let n 2 N. Find a method for testing if n is divisible by 7 based on the decimal expansion
of n. C

Application: public-key cryptography
Public-key cryptography is a method of encryption and decryption that works according
to the following principles:

Encryption is done using apublic key that is available to anyone.

Decryption is done using aprivate key that is only known to the recipient.

Knowledge of the private key should be extremely di cult to derive from knowledge
of the public key.

Speci cally, suppose that Alice wants to securely send Bob a message. As the recipient
of the message, Bob has a public key and a private key. So:

Bob sends thepublic key to Alice.
Alice uses the public key to encrypt the message.

Alice sends the encrypted message, which is visible (but encrypted) to anyone who
intercepts it.

Bob keeps the private key secret, and uses it upon receipt of the message to decrypt
the message.
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Notice that, since the public key can only be used toencrypt messages, a hacker has no
useful information upon intercepting the message or the public key.

RSA encryption is an algorithm which provides one means of doing public-key cryp-
tography using the theory of modular arithmetic. It works as follows.

Step 1. Let p and g be distinct positive prime numbers, and letn = pg Then ' (n) =

(P 1 1)
Step 2. Choosee2 Z with1l <e<' (n)ande? ' (n). The pair (n;e) is called the public
key .

Step 3. Choosed 2 Z with de 1 mod' (n). The pair (n;d) is called the private key .

Step 4. To encrypt a messageM (which is encoded as an integer), computé&k 2 [n] such
that K M€ modn. Then K is the encrypted message.

Step 5. The original messagéV can be recovered sinc K 9 mod n.

Computing the private key (n;d) from the knowledge of (n; e) would allow a hacker to
decrypt an encrypted message. However, doing so is typically very di cult when the
prime factors of n are large. So if we choos@ and q to be very large primes|which
we can do without much hassle at all|then it becomes computationally infeasible for a
hacker to compute the private key.

Example. Suppose | want to encrypt the messageM , which | have encoded as the
integer 32. Letp=13 and q=17. Then n =221 and "' (n) = 192. Let e= 7, and note
that 7 ? 192. Now 7 55 1 mod 192, so we can de nal = 55.

The public key is (221; 7), which Bob sends to Alice. Now Alice can encrypt the

message:
32" 59 mod 221

Alice then sends Bob the encrypted message 59.

The private key is (221;55), so Bob can decrypt the message:
59°° 32 mod 221
so Bob has received Alice's message 32.

Exercise 3.3.57
Prove that the RSA algorithm is correct. Speci cally, prove:

(@) If n = pg, for distinct positive primes pand g, then' (n)=(p 1)(q 1)
(b) Given 1 <e<' (n)with e? ' (n), there existsd 2 Z with de 1 mod" (n).
(c) Given M;K 2 Z with K M®€modn, itis indeed the case thatk ¢ M modn.

C
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Finite and In nite sets
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Section 4.1
Functions revisited

To motivate some of the de nitions to come, look at the dots ( ) and stars (?) below.
Are there more dots or more stars?

Pause for a second and think about how you knew the answer to this question.

Indeed, there are more dots than stars. There are a couple of ways to arrive at this
conclusion:

() You could count the number of dots, count the number of stars, and then compare
the two numbers; or

(i) You could notice that the dots and the stars are evenly spaced, but that the line
of dots is longer than the line of stars.

It is likely that you chose method (ii). In fact, it is likely that you haven't even counted
the number of dots or the number of stars yet|and you don't need to! We can conclude
that there are more dots than stars by simply pairing up dots with stars|we eventually
run out of stars, and there are still dots left over, so there must have been more dots
than stars.

Injectivity

One way of formalising this act of pairing up stars with dots mathematically is to de ne

afunctionf :S! D from the set S of stars to the setD of dots, where the value off

at each star is the dot that it is paired with. We of course must do this in such a way
that each dot is paired with at most one star:

EEENENRRRERENN

2 0?2 2?2 2?2 2?2 2?2 2?2 2?2 2?2 2?2 2?2 2?2 7?7 7?
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It is a property of this function|called injectivity [that allows us to deduce that there
are more dots than stars.

Intuitively, a function f : X ! Y is injective if it puts the elements of X in one-to-one
correspondencé&! with the elements of a subset ofY |just like how the stars are in
one-to-one correspondence with a subset of the dots in the example above.

De nition 4.1.1
A function f : X ! Y isinjective (or one-to-one ) if

f(x)= f(x9 ) x=x° forall x;x%2 X

An injective function is said to be an injection .

Proof tip
The de nition of injectivity makes it easy to see how to prove that a function f : X I 'Y
is injective: let x;x°2 X, assume thatf (x) = f (x9, then derive x = x° C

By contraposition, f : X ! Y being injective is equivalent to saying that if x;x%2 X
and x 6 x° then f (x) 6 f (x9.

The following is a very simple example from elementary arithmetic:

Example 4.1.2

Denef :Z! Zbyletting f(x)=2x+1forall x2 Z. We'll prove that f is injective.
Fix x;x%2 Z, and assume thatf (x) = f (x9. By de nition of f, we have X+1 =2 x%1.
Subtracting 1 yields 2x = 2x% and dividing by 2 yields x = x° Hencef is injective. C

The following example is slightly more sophisticated.

Proposition 4.1.3
Letf : X! Yandg:Y ! Z be functions. If f and g are injective, theng f is
injective.

Proof. Let x;x%2 X . We need to prove that

(g H))=(g HKxY ) x=x°

Soassumeq f)(x)=(g f)(x9. By de nition of function composition, this implies
that g(f (x)) = o(f (x9). By injectivity of g, we havef (x) = f (x9; and by injectivity of
f, we havex = x° O

Exercise 4.1.4
Letf : X! Yandg:Y ! Z be functions. Prove that if g f is injective, then f is
injective. C

[@1n fact, some authors use the term “one-to-one' to mean ‘injective’.
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Exercise 4.1.5

Write out what it means to say a function f : X ! Y is not injective, and say how you
would prove that a given function is not injective. Give an example of a function which
is not injective, and use your proof technique to write a proof that it is not injective. C

Exercise 4.1.6
For each of the following functions, determine whether it is injective or not injective.

f:N! Z denedby f(n)= n?forall n2N.
g:Z! N, denedby g(n)= n?foralln2 Z.
h:N N N! N,denedby h(x;y;z)=2* 3 5* forall x;y;z 2 N.

Surjectivity

Let's revisit the rows of dots and stars that we saw earlier. Beforehand, we made our
idea that there are more dots than stars formal by proving the existence of an injection
f :S! D from the set S of stars to the setD of dots.

However, we could have drawn the same conclusion instead from de ning a function
D ! S, which in some sense&overs the stars with dots|that is, every star is paired up
with at least one dot.

This property is called surjectivity |a function f : X ! Y is surjective if every element
of Y is a value off . This is made precise in De nition 4.1.7.

De nition 4.1.7
A function f : X ! Y is surjective (or onto) if

8y2Y;x2X;, f(X)=y
A surjective function is said to be asurjection .

Proof tip
To prove that a function f : X ! Y is surjective, prove that each elementy 2 Y is a
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value of f. Thatis, x y 2 Y, and demonstrate that there exist somex 2 X such that
f(x)=vy. C

Example 4.1.8

Fix n 2 N with n> 0, and de ne a function function r : Z!f 0;1;:::;n 1g by letting

r(a) be the remainder ofa when divided by n. This function is surjective, since for each
k2f0;1;:::;n 1g we haver(k) = k. C

Exercise 4.1.9
For each of the following pairs of sets X; Y ), determine whether the functionf : X ! Y
de ned by f (x) =2x + 1 is surjective.

(@ X =2ZandY =fx2 Zjx is oddg;
(b) X =ZandY = Z;
(c) X=QandyY = Q;
(d X =RandY = R.

C

Exercise 4.1.10
Letf : X ! Y be afunction. Find a subsetV Y and a surjectiong: X ! V agreeing
with f (that is, such that g(x) = f (x) for all x 2 X). C

Exercise 4.1.11
Letf : X ! Y be a function. Prove that f is surjective if and only if Y = f [X] C

Exercise 4.1.12
Let f : X I Y be a function. Prove that there is a setZ and functions

p:X! Z and i:Z2! Y

such that p is surjective, i is injective, andf =i p. C

Bijectivity

Bijective functions formalise the idea of putting sets into one-to-one correspondence|
each element of one set is paired with exactly one element of another.

De nition 4.1.13
A function f : X ! Y is bijective if it is injective and surjective. A bijective function
is said to be abijection .

Proof tip
To prove that a function f is bijective, prove that it is injective and surjective. C
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Example 4.1.14
Let D Q be the set ofdyadic rational numbers that is

D= x20Q x:;nforsomeaZZananN

Let k2 N,anddenef :D! Dbyf(x)= zik We will prove that f is a bijection.

(Injectivity ) Fix x;y 2 D and suppose thatf (x) = f (y). Then 2"—,( = zlk so that
X =y, as required.

(Surjectivity ) Fix y 2 D. We need to nd x 2 D such that f (x)
certainly if 2Ky 2 D then we have

y. Well

2y

Kyy —
f@y)= 5

=y
so it su ces to prove that 2 Xy 2 D. Sincey 2 D, we must havey = 4 for some
n2 N.
If k6 nthenn k2 NandsoZXy= -2 2D.
If k>n thenk n> 0and Xy=2K "a2 Z;but Z D sinceifa2 Z then
a= &. So again we have % 2 D.
In any case we have ®y 2 D and f (2Xy) = y, so that f is surjective.

Sincef is both injective and surjective, it is bijective. C
Exercise 4.1.15
Let X be a set. Prove that the identity function idx : X ! X is a bijection. C
Exercise 4.1.16
Let m;n 2 N. Find a bijection [m] [n]! [mn]. C
Exercise 4.1.17
Letf : X! Yandg:Y ! Z be bijections. Prove thatg f is a bijection. C

We will soon see a way to characterise injections, surjections and bijections in terms of
other functions, called inverses Before we do that, though, we will make precise our
intuition that an injection X ! Y tells us that X has at most as many elements a¥,
that a surjection X ! Y tells us that X has at least as many elements a¥, and that

a bijection X ! Y tells us that X has exactly as many elements a¥ .

Inverses

Recall De nition 4.1.1, which says that a function f : X ! Y is injective if, for all
x;x%2 X, if f(x) = f(x9 then x = x°
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Exercise 4.1.18
Letf : X ! Y be a function. Prove that f is injective if and only if

8y 2 f[X];9x 2 X;y =f(x)
C

Thinking back to Section 2.3, you might notice that this means that the logical formula
'y = f(x)' denes a function f[X]! X|specically, if f is injective then there is a
function g: f[X]! X which is (well-)de ned by the equation x = g(f (x)). Thinking of

f as anencoding function, we then have that g is the correspondingdecoding function|
decoding is possible by injectivity off . (If f were not injective then distinct elements of
X might have the same encoding, in which case we're stuck if we try to decode them!)

Exercise 4.1.19

Dene afunction e:N N! Nbyem;n)=2m 3" Prove that e is injective. We can
think of e as encodingpairs of natural numbers as single natural numbers|for example,
the pair (4;1) is encoded as 2 3! = 48. For each of the following natural numbersk,
nd the pairs of natural numbers encoded by e ask:

1 24 7776 59049 396718580736
C

In Exercise 4.1.19, we were able to decode any natural number of the form™ 3" for
m;n 2 N. This process of decoding yields a function

d:fk2Njk=2™ 3" forsomem;n2Ng! N N

What would happen if we tried to decode a natural number not of the form 2" 3" for
m;n 2 N, say 5 or 100? Well... it doesn't really matter! All we need to be true is that
d(e(m;n)) = ( m;n) for all (m;n) 2 N N; the value of d on other natural numbers is
irrelevant.

De nition 4.1.20
Let f : X I Y be a function. A left inverse (or post-inverse ) for f is a function
g:Y! X suchthatg f =idy.

Example 4.1.21
Lete:N N! N be asin Exercise 4.1.19. De ne a functiord:N! N N by

(m;n) if k=2M 3" for somem;n 2 N
(0;0) otherwise

d(k) =

Note that d is well-de ned by the fundamental theorem of arithmetic (Theorem 3.2.12).
Moreover, givenm;n 2 N, we have

d(e(m;n)) = d(2™ 3") =(m;n)
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and sod is a left inverse fore. C

Exercise 4.1.22
Letf : X ! Y be a function with X 6 ?. Prove that f is injective if and only if f has
a left inverse. C

What about surjections? De nition 4.1.7 said that a function f : X | Y is surjective if
8y2VY;x2X;f(x)=y

This isn't quite of the form 8y 2 Y; 9!x 2 X; p(y;x)|we assume a value of x making
T(x) = y' true exists but we don't assume that it is unique. However, we can be
cunning® |just make an arbitrary (but xed) choice amongst the 'y values that work!

De nition 4.1.23
Let f : X | Y be a function. A right inverse (or pre-inverse ) for f is a function
g:Y! X suchthatf g=idy.

Example 4.1.24
Dene f :R! R>%pyf(x)= x2. Note that f is surjective, since for eachy 2 R* % we
have P y2 Randf (" y)=y. Howeverf is not injective; for instance

f( 1)=1= (@)
Here are three right inverses forf :

The positive square root functiong : R®% ! R dened by g(y) = P

y 2 R”9. Indeed, for eachy 2 R ° we have

tay=1Cn=("y?=y

y for all

The negative square root functionh : R>% ! R dened by h(y) = py for all
y 2 R0, Indeed, for eachy 2 R”° we have

tthy)=f( Py=( Py2=y

The function k : R>%! R de ned by

(p

y if2n 6 y< 2n+1 forsomen 2 N
kK= P Y

y otherwise

Note that k is well-de ned, and again f (k()Q) = y for all y 2 R> 9 since no matter
what value k(y) takes, it is equal to either " y or y.

Iwe can only be cunning if we accept the axiom of choice|see Appendix B.2 for more details!
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There are many more right inverses forf |in fact, there are in nitely many more! C

Exercise 4.1.25
Prove that a function f : X | Y is surjective if and only if it has a right inverse. C

Exercises 4.1.22 and 4.1.25 establish that a functiofi : X ! Y is...

injective if and only if it has a left inverse (provided X is inhabited);

surjective if and only if it has a right inverse.

It seems logical that we might be able to classify bijections as being those functions
which have a left inverse and a right inverse. We can actually say something stronger|
the left and right inverse can be taken to be the same function! (In fact, Proposition
4.1.30 establishes that they are necessarily the same function.)

De nition 4.1.26
Let f : X ! Y be a function. A (two-sided ) inverse for f is a functong:Y ! X
which is both a left inverse and a right inverse forf .

It is customary to simply say “inverse' rather than “two-sided inverse'.

Example 4.1.27

Let D be the set of dyadic rational numbers, as de ned in Example 4.1.14. There, we
de ned a function f : D! D dened by f(x) = 5 forall x 2 D, wherek is some xed
natural number. We nd an inverse for f.

Dene g:D! D by g(x)=2Kx. Then
g is a left inverse forf . To see this, note that for all x 2 D we have

o(f () = 9(50) =25 o = X

g is a right inverse for f . To see this, note that for ally 2 D we have

k
flaw)= @y = 2 =y

Sinceg is a left inverse forf and a right inverse forf , it is a two-sided inverse forf. C

Exercise 4.1.28
The following functions have two-sided inverses. For each, nd its inverse and prove that
it is indeed an inverse.

(@ f :R! Rdenedby f(x)= 2.
(b) g:P(N)!P (N)denedby g(X)= NnX.
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(c) h:N N! Ndenedby h(m;n)=2"2n+1) 1forall m;n2N.

Exercises 4.1.22 and 4.1.25 can be pieced together to prove the following result.

Exercise 4.1.29
Letf : X ! Y beafunction. Prove that f is bijective if and only if f has aninverse. C

Common error

When proving a function f : X ! Y is bijective by nding an inverse g:Y ! X, it
is important to check that g is both a left inverse and a right inverse for f . If you only
prove that g is a left inverse for f, for example, then you have only proved thatf is
injective! C

As indicated above, if a function has both a left and a right inverse, then they must be
equal.

Proposition 4.1.30
Letf : X ! Y beafunctionand suppose : Y ! X isaleftinverse forf andr :Y ! X
is a right inverse forf. Then ™~ =r.

Proof. The proof is deceptively simple:

=7 idy by de nition of identity functions
=" (f r) sincer is a right inverse for f
=( f) r by Exercise 2.3.27
=idx r since” is a left inverse forf
=r by de nition of identity functions

O

It follows from Proposition 4.1.30 that, for any function f : X ! Y, any two inverses
for f are equaljthat is, every bijective function has a unique inverse!

Notation 4.1.31
Let f : X ! Y be a function. Write f 1:Y ! X to denote the (unique) inverse forf ,
if it exists.

Proposition 4.1.32
Letf : X | Y be a bijection. A function g:Y ! X is a left inverse forf if and only if
it is a right inverse for f .

Proof. We will prove the two directions separately.
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() ) Supposeg:Y ! X is aleft inverse forf |thatis, g(f (x))= x forall x 2 X.
We prove that f (g(y)) = y for all y 2 Y, thus establishing that g is a right inverse
for f. Solety 2 Y. Sincef is a bijection, it is in particular a surjection, so there
exists x 2 X such that y = f (x). But then

fa(y)) = f(a(f (x))) since y = f (x)
= f(x) since g(f (x)) = x
=y sincey = f (X)

So indeedg is a right inverse for f .

(( ) Supposeg: Y ! X isarightinverse forf |thatis, f(g(y))= yforally2Y.
We prove that g(f (x)) = x for all x 2 X, thus establishing that g is a left inverse
forf. Soletx 2 X. Letting y = f (x), we havef (g(y)) = y sinceg is a right inverse
for f. This says precisely thatf (g(f (x)) = f (x), sincey = f (x). By injectivity of
f, we haveg(f (x)) = X, as required.

d

Exercise 4.1.33
Let f : X ! Y be a bijection. Prove thatf 1:Y ! X is a bijection. C

Exercise 4.1.34
Letf : X! Yandg:Y ! Z be bijections. Prove thatg f : X ! Z is a bijection,
and write an expression for its inverse in terms of ! andg 1. C

First look at counting

We'll very soon (Section 4.2) make heavy use of functions to count the number of elements
of a nite set. Before we do that, let's look at how injections, surjections and bijections
can be used to compare sizes of particular nite sets|namely, those of the form |n] for

n 2 N, as de ned in De nition 2.2.31.

When we used dots and stars to motivate the de nitions of injective and surjective
functions, we suggested the following intuition:

If there is an injection f : X I Y, then X has "at most as many elements a¥’;
and

If there is a surjectiong: X ! Y, then X has "at least as many elements a¥ .

Let's make this intuition formal in the case when X and Y are sets of the form p] for
n2 N.
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Theorem 4.1.35
Let m;n 2 N.
(a) If there exists an injection f :[m]! [n], then m 6 n.

(b) If there exists a surjection g:[m]! [n], then m > n.

(c) If there exists a bijection h: [m]! [n], then m = n.

Let's think about how we might prove part (a); part (b) is left as an exercise, and part
(c) follows immediately from (a), (b) and the de nition of a bijection. The intuition
behind (a) is clear: if we can pair up the natural numbers from 1 up tom with a subset
of the numbers from 1 up ton, then n should be at least as large asn.

Our hypothesis is that an injection f : [m] ! [n] exists|but, unfortunately for us, we
have no control over what values this function takes. If it were as simple a$ (k) = k for
all k 2 [m], then this would be an incredibly easy result to prove. But it might be the
case that, say,f (1) =3, and f(2)=5, and f(3)=2, and f (4) =1, and so on.

Since we're working with natural numbers (m and n), let's use the canonical technique
for proving results about natural numbersjinduction! We'll proceed by induction on n,
but you could think about how you might prove the claim by induction on m.

Proof of Theorem 4.1.35(a). We'll prove the following statement by induction on n 2 N:

For all m 2 N, if there exists an injectionf : [m]! [n], then m 6 n.

(Base case) Fix m 2 N and suppose there exists an injectiorf : [m]! [0]. We
need to prove thatm 6 O, or equivalently that m = 0, since m can't be negative.

Well, if m > 1, then 12 [m], and sof (1) 2 [0]. But [0] = ?, so this would imply
that the empty set has an element, which is nonsense. So < 1, and hencem = 0.

(Induction step ) Fix n 2 N and suppose that, for allm 2 N, if there exists an
injection f : [m]! [n], then m 6 n. This assumption is our induction hypothesis.

Now x m 2 N and suppose there is an injectionf : [m]! [n+1]. We need to
prove that m 6 n + 1.

We can use our induction hypothesis to prove that things are6 n, so we need to
prove m 16 n. But the number to the left-hand side of the 6 symbol must
be a natural number|so let's consider the case when m = 0 separately. Well, if

m =0 then 0 6 n+1. (That was easy!) So let's now assume thatm > 1, so that

m 12N.

In order to use the induction hypothesis to provem 16 n, we need to nd an
injection [m 1]! [n]. We're given an injectionf :[m]! [n+1], so let's use this
to construct an injection g:[m 1]! [n]. There are two cases to consider:
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Supposef (k) 8 n+1forall k2 [m 1]. Thenwe candeneg:[m 1]! [n]
by g(k) = f (k) for all k 2 [m 1]. Injectivity of g then follows immediately
from injectivity of f: indeed, givenk;” 2 [m 1], we have

gk)=90C) ) fHR=1(C) ) k="
where the second implication follows from injectivity of f .

Supposef (r) = n+1 forsomer 2 [m 1]. Sincef is injective, we have
f(k) 8 n+1 for all k & r; in particular, f(m) 6 n+ 1. We'l dene

g:[m 1]! [n]to be the same asf, except it exchanges the values ar
and at m. This ensures thatg(k) 2 [n] for all k 2 [m  1]. Speci cally, for

k2[m 1], dene (

f(k) ifkér

g(k) = L

f(m) ifk=r
We just noted that g de nes a function [m 1]! [n]. Now let's prove that
g is injective.
Fix k;” 2 [m 1] and supposeg(k) = g(*). We'll split into some cases and
prove that k =  in each case:

Supposek 6 r and = 6 r. Then g(k) = f(k) and g(’) = f(°), so
f(k)= f () and k = * by injectivity of f.
Supposek = r or ° = r. (We may in fact assumek = r, otherwise
swap the roles ofk and ° in what follows.) Then g(k) = g(r) = f(m)
by de nition of g. Moreover, we know that g(*) = f (t) for somet 2 [m]
and, by de nition of g, we must havet = ~ (if t 6 r) or t = m. But then
f(t)= f(m), sot = m by injectivity of f,so” =r = k.
Either way, we havek = . Sogis injective. Now that we've proved that there ex-
ists an injective function g:[m 1]! [n], it follows from the induction hypothesis
that m 16 n,and som 6 n+1 as required.

This completes the inductive step, so the theorem is proved. O

Exercise 4.1.36
Prove part (b) of Theorem 4.1.35. C

Exercise 4.1.37
Let m;n 2 N with m 6 n. Does there exist an injection pn]! [n]? Does there exist a
surjection [n]! [m]? Prove your answers. C

Proposition 4.1.35 showed us that we can compare natural numbens and n by determ-
ining if there is an injection, surjection or bijection [m] ! [n]. We can use this result,
together with our intuition, to motivate the de nition of what it is for a set to be  nite .
Intuitively, a set is nite if we can label its elements using the elements of h] for some

n 2 N. This labelling process can be formalised using bijections. Exercise 4.1.38 shows
that this n is unique.

183



184 Chapter 4. Finite and in nite sets

Exercise 4.1.38
Let X be a set and letm;n 2 N. Prove that, if there exist bijections f : [m]! X and
g:[n]! X,thenm=n. C

De nition 4.1.39
A set X is nite if there is a bijection [n]! X for somen 2 N, called the size of X.
Write jX | for the size of X. If X is not nite we say it is in nite

In more intuitive terms: a set X is nite if the number of elements of X is a natural
number; the sizeX is simply the number of elements ofX .

Example 4.1.40
Let X = fcat;dog; rabbit; horse shee. Then jXj=5. To see this, denef :[5]! X
by

f(l)=cat; f(2)=dog; f(3)=rabbit; f(4)=horse; f(5)=sheep
Then f is a bijection, as can easily be checked by noting that the functiong: X ! 5
de ned by

gcat)=1; g(dog)=2; g(rabbit)y=3; g(horse)=4; g(sheep)=5

is an inverse forf . C

Example 4.1.41
For eachn 2 N the set [n] is nite, and j[n]j = n. This is because the identity function
idjpy - [n] ! [n] is a bijection. C

Exercise 4.1.42
Let X be a nite set with [ Xj=n> 1. Let x 2 X and lety 62X . Prove that

Xnfxgi=n 1 and jX[fygi=n+1

Demonstrate that the hypotheses thatx 2 X and y 62X are necessary|in other words,
nd a set X with jXj = n > 1 and elementsx;y such that jX nfxgj 6 n 1 and
X [f ygj6 n+1. C

The following exercise is straightforward to prove, but is extremely powerful. We will
make heavy use of it in Section 4.2, where it can be used to prove combinatorial identities.

Exercise 4.1.43

Let X and Y be nite sets. Prove that if there exists a bijection h : X | Y, then
iXji=jYj. C
We conclude this section by proving that not all sets are nite|speci cally, we'll prove
that N is in nite. Intuitively this seems extremely easy: ofourse N is in nite! But in

mathematical practice, this isn't good enough: we need to use our de nition of “in nite'
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to prove that N is in nite. Namely, we need to prove that there is no bijection [n]! N
for any n 2 N. We will use Lemma 4.1.44 below in our proof.

Lemma 4.1.44
Every inhabited nite set of natural numbers has a greatest element.

Proof. We'll prove by induction on n > 1 that, for all sets X with jXj = n, X has a
greatest element.

(BC) Fix a set X with jXj =1. then X = fxg for somex 2 N. Sincex is the
only element of X, it is certainly the greatest element!

(IS) Let n 2 N and suppose that every set of natural humbers of sizen has a
greatest element (H ).

X has a greatest element.

To do this, let Y = X nfx,+1 0. ThenjYj = n, so by (IH) it has a greatest element,
say Xj. If Xj > X pn+1 then X; is the greatest element ofX ; otherwise, Xp+1 is the
greatest element ofX . In either case, X has a greatest element.

By induction, we're done. O

Theorem 4.1.45
The set N is in nite.

Proof. We proceed by contradiction. SupposeN is nite. Then jNj = n for somen 2 N,
and henceN is either empty (nonsense) or, by Lemma 4.1.44, it has a greatest element
g. But g+1 2 N since every natural number has a successor, contradicting maximality
of g. HenceN is in nite. O
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Section 4.2
Counting principles

Recall from De nition 4.1.39 that a set X is nite if there is a bijection [n] ! X for
somen 2 N; moreover, this n is unique, and is called thesize of X, which we denote by
iX].

The main portion of this section focuses on the problem of computingjXj given a

description of X. The eld of mathematics that concerns itself with this problem is
called enumerative combinatorics

The next few results allow us to deduce that subsets, binary intersections, binary unions
and binary products of nite sets are nite.

Proposition 4.2.1
Leti:U! X be aninjection. If X is nite, then U is nite, and moreover jUj 6 jX].

Proof. We prove by induction on n that, for all nite sets X of sizen, and all injections
i:U! X,thesetU is nite and jUj6 n.

(BC) SupposejXj = 0. Then X = ?. The only function whose codomain is
the empty set is the empty function ? ! ?; in other words, ifi : U! ? is an
injection, then U = ?. HenceU is nite and jUj =0 6 0 as required.

(IS) Fix n > 0 and suppose that, for any setY with jYj = n, and any injection
j V! Y,we haveV nite and jVj6 n.
Let X beasetwithjXj=n+1,andletf :[n+1] ! X be a bijection.

Fix an injection i : U! X . For simplicity of notation, write X °%= X nff (n+1)g.

Note that jX 9 = n by Exercise 4.1.42.

We split into cases based on whether or nof (n +1) 2 i[U].
If f (n+1) 62[U], then there is a functioni®: U ! X%de ned by iq{x) = i(x)
for all x 2 U. Moreover, this function is injective, since if x;y 2 U and
iqx) = iYy), then i(x) = i(y) by de nition of i% and sox = y by injectivity
of i. Moreover jX § = n, so the induction hypothesis applies to the injection
i%:U! XO It follows that U is nite and

jUj6 jX4=n<n +1= jXj

as required.

If f(n+1) 2 i[U], then there is someu, 2 U such that i(u;) = f(n +1).
Write U%= U nfu-»g, and dene i®%: U%! XOby iqx) = i(x) for all x 2 U°
Again i%is injective, and jX 9 = n, so the induction hypothesis yields thatU°
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is nite and jUY 6 n; sayjuY = k 2 N. But then jUj = k + 1 by Exercise
4.1.42, andk+1 6 n+1sincek 6 n.

In either case, we've proved thatU is nite and jUj 6 jX ], so the induction step
is complete.

By induction, it follows that any injection with nite codomain has a nite domain. O

Exercise 4.2.2

Let X be a nite set. Prove that every subsetU X is nite. C
Exercise 4.2.3
Let X and Y be nite sets. Prove that X \ Y is nite. C

Exercise 4.2.4

Let X be a nitesetandlet U X. Prove that X nU is nite, and moreover jX nUj =
iXj j Uj. C
Proposition 4.2.5

Let X and Y be nite sets. Then X [ Y is nite, and moreover

XY= Xj+jY] j X\ Y]

Proof. We will prove this in the case whenX and Y are disjoint. The general case, when
X and Y are not assumed to be disjoint, will be Exercise 4.2.6.

f X =2?thenX[Y=YandX\ Y =7, so that

IXTYj=jYj and jXj+jYjj X\Yj=0+jYj 0=jYj
so the result is proved. The proof is similar whenY = ?. So for the remainder of the
proof, we assume that bothX and Y are inhabited.

Letm=jXj>0andn=jYj> 0,andletf :[m]! X andg:[n]! Y be bijections.

SinceX and Y are disjoint, we haveX \ Y = ?. Dene h:[m+n]! X[ Y as follows;
givenk 2 [m + n], let (
f (k) if k6 m

="k m) fksm

Note that h is well-de ned: the casesk 6 m and k > m are mutually exclusive, they
cover all possible cases,and m 2 [n]forall m+1 6 k6 nsothatg(k m)is de ned.
It is then straightforward to check that h has aninverseh *:X [ Y ! [m+ n]de ned
by (

f 1(z2) if z2 X

h X2)=
(@) giz2)+m ifz2Y

Well-de nedness ofh ! relies fundamentally on the assumption thatX \ Y = ?, as this
is what ensures that the casex 2 X and x 2 Y are mutually exclusive.
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HencejX [ Yj= m+ n = jXj+ jY]j, which is as required sincgX \ Yj=0. O

Exercise 4.2.6
The following steps complete the proof of Proposition 4.2.5:

(a) Given setsA and B, prove that the setsA f OgandB f 1g are disjoint, and nd
bijectons A! A f OgandB! B f 1g. Write At B (IATEX code: nsqcup) to
denotetheset @ f Og)[ (B f 1g). The set At B is called the disjoint union
of A and B.

(b) Prove that, if A and B are nite then At B is nite and
jAt Bj = jAj+ B]
(c) Let X and Y be sets. Find a bijection
XYt (X\Y)! XtY
(d) Complete the proof of Proposition 4.2.5|that is, prove thatif X andY are nite
sets, not necessarily disjoint, thenX [ Y is nite and
XL Y= jXj+jY] ] X\ Y]

Proposition 4.2.7
Let X and Y be nite sets. Then X Y is nite, and moreover

X Yi= X Y]

Proof. If X = ? orY = ?,then X Y = ?,sothatjXj=jYj=jX Yj=0andthe
result is immediate. As such, we assume for the rest of the proof thakK and Y are both
inhabited.

Let X and Y be sets withjXj=m> 0OandjYj=n> 0,andletf :[m]! X and
g:[n]! Y be bijections. De ne a function h:[m] [n]! X Y by

h(k; ") = (f(k);9())
for eachk 2 [m] and " 2 [n]. Itis easy to see that this is a bijection, with inverse de ned
by
h *cy)=(f *(x);g ()
forall x 2 X andy 2 Y. By Exercise 4.1.16 there is a bijectionp : [mn] ! [m] [n],

and by Exercise 4.1.17 the composith p : [mn] ! X Y is a bijection. Hence
X Yj=mn. O

In summary, we have shown that if X and Y are nite sets, thensoareX [ Y, X \Y,
X Y, any subsetU X, and more generally any setU for which there exists an
injection U! X.
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Indexed unions, intersections and products | nite version

Since we will be dealing with arbitrary nite collections of sets, it will help us to introduce
some new notation to make notation more concise. For example, writing

xl[XZ[ [ Xn

again and again will be cumbersome.

De nition 4.2.8
Let n 2 N and, for eachi 2 [n], let X; be a set. We de gpe...

...the indexed union of fX; ji 2 [n]gis the set [_; X; de ned by

n

Xi = fxjx 2 X; for somei 2 [n]g
=i

T
...the indexed intersection  of fX; ji 2 [n]gis the set ™, X; de ned by

\n
Xi=fxjx2 X;foralli2[n]g
i=1

...the indexed product of fX;ji 2 [n]gis the set Q Xi de ned by
i=1

Y’l
Xi=f(Xy;X2:::;%n) | Xi 2 X for eachi 2 [n]g
i=1

The notation (xl;xS:::;xn) refers to an ordered n-tuple ; formally, this is a
function x : [n] ! L, Xi such that x(i) 2 X; for all i 2 [n]|then X; is just

simply being an ordered list ofn elements, with the i component of the list being
an element of X;.

Q

We write X" = X . For example, N* is the set of ordered sequences of natural

i=1
numbers of length 4, such as (15;7;3) or (2; 2; 2; 2).

In Section 4.3 we will generalise De nition 4.2.8 even further to de ne indexed unions,
intersections and products of arbitrary families of sets, not just nite ones. Everything

we do now generalises to that scenario, but it is instructive to work in the nite case
rst.
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Example 4.2.9
If X1 and X, are sqts, thenf X 1;X»g is a family of sets indexed by the index set
I =f1,29. Thenx 2 5, Xj ifand only if x 2 X1 and x 2 X2. This proves that

\2
Xi = X]_\ X2
i=1

In otger words, pairwise intersection is a special case of indexed intersection. The proof
that ~ 2, X; = X1[ X is similar. C

Example 4.2.10
Let X; be a set for alli 2 N. Notice that according to our de nition we have

S
since, for givenx, we havex 2 iozl Xi if and only if x 2 X; f(g somei 2 [0]; since

[0] = ?, there are no such values of, and so the expressiorx 2 i°:1 X; can never be
true.

Moreover, givenn 2 N we have

This is because, for giverx, we have

T
X 2 Xi, x2 X; for somei 2 [n+1]

i=1
, X2 X; for somei 2 [n], or x 2 Xp+1
n
, X2 Xiorx2 Xn+
i=1 |
a !
’ X2 XI [ xn+1
i=1

This yields an inductive proof that, when n > 1, we have

n
Xi=X¢[ X2 [ Xn
i=1
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Exercise 4.2.11
Let X; be a set for each 2 N. Prove that

\0 N+l \n
Xi=U and Xi = Xi \ Xp4p foralln2 N
i=1 i=1 i=1

where U is the universe. Deduce that ifn > 1 then

\n
Xi= X1\ X2\ \ X,
i=1

C

To tie up this portion on nite indexed families of sets, we note a new version of de
Morgan's laws for sets which generalises the version you saw in Theorem 2.2.40. This
theorem will be generalised even further in Theorem 4.3.5.

Theorem 4.2.12 (de Morgan's laws for sets ( nite version))
Let n 2 N.§:or eachi % [n] let X; be a set, and letZ be a set. Then
@ Zn( Ly Xi)= L (ZnXp);

Tn Sn
() Zn( = Xi)= 1 (Z nXj).

Exercise 4.2.13
Prove Theorem 4.2.12 by induction onn, using Theorem 2.2.40 for the induction step.
C

Exercise 4.2.14

Let n 2 N and let X; be a set for eachi 2 [n + 1]. Note that the elements of < Xi
i=1

are ordered f + 1)-tuples, and that the elements of _@ Xi Xn+1 are ordered pairs,

i=1
the rst component of which is an ordered n-tuple. Prove that these are essentially the
same thing, by showing that the function

i Y
f Xil Xi Xn+1
i=1 i=1
de ned by
f(X1;X2; 000 X0  Xne1 ) = (( X215 X25 1115 Xn); Xn+a )
forall x; 2 Xj andi 2 [n +1], is a bijection. C
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Binomials and factorials revisited

We de ned binomial coe cients | and factorials n! recursively in Section 1.3, and

proved elementary facts about them by induction. We will now re-de ne them com-
binatorially |that is, we give them meaning in terms of sizes of particular nite sets.
We will prove that the combinatorial and recursive de nitions are equivalent, and prove
facts about them using combinatorial arguments.

The reasons for doing so are manifold. The combinatorial de nitions allow us to reason
about binomials and factorials with direct reference to descriptions of nite sets, which
will be particularly useful when we prove identities about them using counting in two
ways Moreover, the combinatorial de nitions remove the seeming arbitrary nature of
the recursive de nitions|for example, they provide a reason why it makes sense to de ne

O'=land g =1.

De nition 4.2.15

Let X be a set and letk 2 N. A k-element subset of X is a subsetU X such
that jUj = k. The set of all k-element subsets oX is denoted ﬁ (read: X choosek’)
(LATEX code: nbinomf Xgf kg).

Intuitively, >|§ is the set of ways of pickingk elements from X, without repetitions,

in such a way that order doesn't matter. (If order mattered, the elements would be
sequencesnstead of subsets)

Example 4.2.16
We nd U forall k2 N.

' = £2 g since the only set with 0 elements is? ;
W = ff 1g;f29;f 3g; f 4gg

9 = ff 1,29,F1;39;f 1, 4g; 12, 39; f 2, 49, 3, 4gg;
9 = ff 1,2,39;1;2,4g;1; 3, 4g; £ 2, 3,499,

W =1 1,23, 499

If k> 5 then [‘k‘] = ?, since by Exercise 4.2.2, no subset of [4] can have more
than 4 elements.

C

Proposition 4.2.17 S
If X is a nite set, then P(X)= " 5ix; X -
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Proof. Let U X . By Exercise 4.2.2,U is nite and jUj 6 jXj. Thus U 2 jﬁj , and
henceU 2 4 ix; >|§ . This proves that P(X) K6 jX | >|§ :

S . . ,
The fact that g Y P (X) is immediate, since elements of } are de ned to be
subsets ofX, and hence elements oP (X). O

De nition 4.2.18
Let n;k 2 N. Denote by E (read: 'n choosek’) (LATEX code: nbinomf ngfkg) the

number of k-element subsets of a set of siza. Thatis, we dene | = [E] . The

numbers E are calledbinomial coe cients &

#Some authors use the notation , Cx or "Cy instead of | . We avoid this, as it is unnecessarily clunky.

Intuitively, E is the number of ways of selectingk things from n, without repetitions,

in such a way that order doesn't matter.

The value behind this notation is that it allows us to express huge numbers in a concise
and meaningful way. For example,

4000
11

=103 640 000 280 154 258 645 590 429 564 000

Although these two numbers are equal, theirexpressionsare very di erent; the expression
on the left is meaningful, but the expression on the right is completely meaningless out
of context.

Writing tip

When expressing the sizes of nite sets described combinatorially, it is best taavoid
evaluating the expression; that is, leave in the powers, products, sums, binomial coe -
cients and factorials! The reason for this is that performing the calculations takes the
meaning away from the expressions. C

Example 4.2.19
In Example 4.2.16 we proved that:

4 4 4 4 4
=1 =4 =6 =4 =1
0 1 T2 "3 4
and that ;| =0 forall k> 5. C
Exercise 4.2.20
Fix n2 N. Provethat § =1, | =nand ; =1 C
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De nition 4.2.21
Let X be a set. Apermutation of X is a bijection X ! X. Denote the set of all
permutations of X by Sy (IATEX code: SX),* and write Sjy; = Sy for n 2 N.

2The "S' comes from ‘symmetry'. The set Sx comes with the natural structure of a group.

Example 4.2.22
There are six permutations of the set [3]. Representing eact 2 Sy by the ordered
triple (f (1);f (2);f (3)), these permutations are thus given by

(1;2,3); (1;3,2); (2,13); (2;3;,1); (3:1,2); (3;21)

For example, (2 3;1) represents the permutationf : [3] ! [3] dened by f (1) = 2,
f(2)=3 and f(3) =1. C
Exercise 4.2.23

List all the permutations of the set [4]. C

De nition 4.2.24
Let n 2 N. Denote by n! (read: 'n factorial’) the number of permutations of a set of size
n. Thatis, n! = jS,j. The numbersn! are calledfactorials .

Example 4.2.25
Example 4.2.22 shows that 3! = 6. C

Counting products and partitions

We saw in Proposition 4.2.7 and Proposition 4.2.5 that, given two nite setsX and Y,
the product X Y and the union X [ Y are nite. We also found formulae for their
size. The multiplication principle (Theorem 4.2.26) and addition principle (Theorem
4.2.37) generalise these formulae, extending to products and (disjoint) unions of any
nite number of nite sets.

Theorem 4.2.26 (Multiplication principle (independent version)

o=

Let fX4;:::;Xng be a family of nite sets, with n > 1. Then = X; is nite, and
i=1

Y] - - - - - -
Xi = |Xq] X2 1 Xn)
i=1

Proof. We proceed by induction onn.
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(BC) When n = 1, an element of Q Xi is "o cially' 1-ary sequence (x1) with
i=1

X1 2 Xi1. This is the same as an element ofX 1. it is easy to check that the

assignments k1) 7! x1 and x1 7! (x1) de ne mutually inverse (hence bijective)

functions between Q Xi and X1, and so
i=1

w‘ - -
Xi = ]X4j
i=1

(IS) Fix n 2 N, and suppose that

Y] - - - - - -
Xi = jX1j X2 1 Xnj
i=1

for all sets X; for i 2 [n]. This is our induction hypothesis.

Now let X 1;:::; Xn; Xn+1 be sets. We de ne a function
!
1 Y
F X| | X| Xn+1
i=1 i=1
by letting F((X1;:::;Xn;Xn+1)) = (( X1;:::;Xn); Xn+1). It is again easy to check

Xi = Xi jXn+1]

by Proposition 4.2.7. Applying the induction hypothesis, we obtain the desired
result, namely
1
Xi = jXaj jX2 JXn) JXn+1]
i=1

By induction, we're done. O

The multiplication principle is also known as the rule of product.

Problem-solving tip

The multiplication principle allows us to count the number of elements of a nite set X
by devising a procedure for counting all of its elements exactly once. If this procedure
hasn steps, wheren 2 N, then the procedure establishes a bijection

X! Si
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where S; is the set of possible outcomes of thé" step in the procedure. If there aren;
possible outcomes of thé™ step in the procedure, this therefore implies that

. - Y]
Xj= nj
i=1

Example 4.2.27
You go to an ice cream stand selling the following avours:

vanilla, strawberry, chocolate, rum and raisin, mint choc chip, to ee crunch
You can have your ice cream in a tub, a regular cone or ahoco-cone You can have one,
two or three scoops. We will compute how many options you have.
To select an ice cream, you follow the following procedure:

Step 1. Choose a avour. There are 6 ways to do this.

Step 2. Choose whether you'd like it in a tub, regular cone or choco-cone. There
are 3 ways to do this.

Step 3. Choose how many scoops you'd like. There are 3 ways to do this.

Hence there are 6 3 3 =54 options in total. C

This may feel informal, but really what we are doing is establishing a bijection. Letting
X be the set of options, the above procedure de nes a bijection

X! F C S

whereF is the set of avours, C = ftub;regular cone choco-cong and S = [3] is the set
of possible numbers of scoops.

Example 4.2.28 N
We will prove that jP (X)j = 2/XI for all nite sets X .[

Let X be a nite set and let n = jX|j. Write

Intuitively, specifying an element of P(X)|that is, a subset U  X|is equivalent to
deciding, for eachk 2 [n], whether xx 2 U or xx 62U (Cin or out'), which in turn is
equivalent to specifying an element off in; outg".

[l Some authors write 2* to refer to the power set of a set X . This is justi ed by Exercise 4.2.28.
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For example, taking X = [7], the subset U = f1;2; 6g corresponds with the choices
1in; 2in; 3 out; 4 out; 5 out; 6in; 7 out
and hence the element (inin; out; out; out; in; out) 2 f in; outg’.

This de nes a function i : P(X) ! f in;outg". This function is injective, since di erent
subsets determine di erent sequences; and it is surjective, since each sequence determines
a subset.

The above argument is su cient for most purposes, but since this is the rst bijective
proof we have come across, we now give a more formal presentation of the details.

De ne a function
i :P(X)!f in;outg"

by letting the k™™ component ofi(U) be in' if x, 2 U or “out' if x, 62U, for eachk 2 [n].
We prove that i is a bijection.

i is injective. To see this, takeU;V X and supposei(U) = i(V). We prove
that U= V. So x x2 X and let k 2 [n] be such thatx = xx. Then

x2 U, the k" component ofi(U) is “in’ by de nition of i
, the k' component ofi(V) is ‘in’ sincei(U) = i(V)
, X2V by de nition of i

so indeed we havdJ = V, as required.
i is surjective. To see this, letv 2 f in; outg", and let
U = fx j the k™ component ofv is ‘in'g

Then i(U) = v, since for eachk 2 [n] we havex, 2 U if and only if the k"
component ofv is “in', which is precisely the de nition of i(U).

Hence
jP(X)j = jfin;outgj" =2"
as required. C

Exercise 4.2.29
Let X and Y be nite sets, _and recall that Y*X denotes the set of functions fromX to
Y. Prove that jYXj = jYji*. C

Example 4.2.30
We count the number of ways we can shu e a standard deck of cards in such a way that
the colour of the cards alternate between red and black.

A procedure for choosing the order of the cards is as follows:
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(i) Choose the colour of the rst card. There are 2 such choices. This then determines
the colours of the remaining cards, since they have to alternate.

(i) Choose the order of the red cards. There are 26! such choices.
(iii) Choose the order of the black cards. There are 26! such choices.

By the multiplication principle, there are 2 (26!)? such rearrangements. This number
is huge, and in general there is no reason to write it out. Just for fun, though:

2 (26!)2 = 325 288 005 235 264 929 014 077 766 819 257 214 042 112 000 000 000 000

C

Exercise 4.2.31

Since September 2001, car number plates on the island of Great Britain have taken the
form XX NN XXMhere eachX can be any letter of the alphabet except for °I', Q' or “Z/,
and NNis the last two digits of the year.[Y How many possible number plates are there?
Number plates of vehicles registered in the region of Yorkshire begin with the letter Y.
How many Yorkshire number plates can be issued in a given year? C

A sight modi cation to the multiplication principle allows sets later in the product to
depend somehow on those appearing earlier. Thinking of the elements of a product as
steps in a counting procedure, this means that later steps can depend on the outcome
of earlier steps, which will turn out to be extremely useful!

Corollary 4.2.32 (Multiplication principle (dependent version))
i 2 [n] inductively as follows:

Let X1 be a nite set of sizeky;

is nite, and moreover
. . Y]
Xj= ki
i=1

Proof. We proceed by induction onn > 1.

[ This is a slight simpli cation of what is really the case, but let's not concern ourselves with  too many
details!
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(BC) When n = 1, this result says precisely that if X1 is a nite set of size ki,
then X1 is a nite set of size kq. This is true.

(IS) Fix n> 1 and suppose that the theorem is true fom.

Fori 6 n+1, let sets X;(X1;:::;X; 1) be dened as in the statement of the
theorem, and let
X = f(Xe X250 Xns Xne1 ) | X0 2 Xi(Xg;Xg;:i05x; g) forall i 2 [n+1]g
L . &t
We prove that X is nite and jX|j = k.
i=1

induction hypothesis, we know that jX § = ki. Now there is an evident bijection
i=1

(X25X2; 1115 X0 Xn+1) - @nd (X125 X2;1175Xn); Xn+1)
foralli 2 [n+1]and x; 2 X;(X1;:::;X; 1). Moreover the setsf (X1;X2;:::;Xn)g
Xn+1 (X1;::0;Xp) are pairwise disjoint. Hence by the addition principle (to be
proved soon|see Theorem 4.2.37), we have
Xj= JF(X1iX2;000Xn)g Xnsa (X150005 X))
(X1;:5Xn)2X0
But for all ( x1;:::;Xn) 2 X 2 we have
JF(X15X2;:105Xn)g Xnea (X2507075 Xn))]
= (X5 X2, 00 Xn)gi JXner (X150 X)) by Proposition 4.2.7
=1 Kn+1 by de nition of Xp+1( )
= kn+1
and hence
X .
JF(X1iX2;000Xn)g Xnsa (X150005Xn)j
(xl;:::;xng<2X0
= Kn+1 as we just saw
(X1;:5Xn)2X0
= jx 9§ k,?+1 since terms in sum are constant
Y
= Ki Kn+1 by the induction hypothesis
i=1
1
= ki
i=1
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as required.
By induction, we're done. O]

Example 4.2.33
We prove that there are six bijections [3]! [3]. We can specify a bijectionf : [3]! [3]
according to the following procedure.

Step 1. Choose the value off (1). There are 3 choices.

Step 2. Choose the value off (2). The valuesf (2) can take depend on the chosen
value of f (1).

If f(1) =1, then f (2) can be equal to 2 or 3.

If f(1) =2, then f(2) can be equal to 1 or 3.

If f(1) =3, then f(2) can be equal to 1 or 2.
In each case, there are 2 choices for the value 6{2).

Step 3. Choose the value off (3). The valuesf (3) can take depend on the values
of f (1) and f (2). We could split into the (six!) cases based on the values of (1)
and f (2) chosen in Steps 1 and 2; but we won't. Instead, note thatff (1);f (2)g
has two elements, and by injectivity f (3) must have a distinct value, so that
[B]nff (1);f (2)g has one element. This element must be the value df(3). Hence
there is only possible choice of (3).

By the multiplication principle, there are 3 2 1 =6 bijections [3] ! [3]. C
Exercise 4.2.34
Count the number of injections [3]! [4]. C

The addition principle says that if we can partition a set into smaller chunks, then the
size of the set is the sum of the sizes of the chunks. We will rst make this notion of
“partition’ precise.

De nition 4.2.35
SetsX and Y aredisjoint if X \ Y = ?. More generally, givenn 2 N, a collection of
setsX1; Xo;:::1; Xy is pairwise disjoint  if X;\ X; = ? forall i;j 2 [n] with i 6 j.

De nition 4.2.36
A ( nite ) partition of a setX is, for somen 2 N, a collectionfU; j i 2 [n]g of subsets
of X such that:

(i) Each U; is inhabited;

LSy
(i) oy U=X
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Theorem 4.2.37 (Addition principle)

setU; is nite. Then X is nite, and
JXj=jUsj+ jUgj+  + jUpj

Exercise 4.2.38

Prove Theorem 4.2.37. The proof follows the same pattern as that of the multiplication
principle (Theorem 4.2.26). Be careful to make sure you identify where you use the
hypothesis that the setsU; are pairwise disjoint! C

Problem-solving tip
The addition principle allows us to count the number of elements of a nite set by nding

that
X0

Xj=n
i=1
C
Example 4.2.39
We will count the number of inhabited subsets of [7] which either contain only even
numbers, or contain only odd numbers.

Let O denote the set of inhabited subsets of [7] containing only odd numbers, and let
E denote the set of inhabited subsets of [7] containing only even numbers. Note that
f O; Eg forms a partition of the set we are counting, and so our set hagOj+ jE|j elements.

An element of O must be a subset off 1;3;5;79. By Example 4.2.28 there are
2* = 16 such subsets. Thus the number ofnhabited subsets of [7] containing only
odd numbers is 15, since we must exclude the empty set. That igOj = 15.

A subset containing only even numbers must be a subset df2; 4;69. Again by
Example 4.2.28 there are 2 = 8 such subsets. Hence there are 7 inhabited subsets
of [7] containing only even numbers. That is,jEj = 7.

Hence there are 15 + 7 = 22 inhabited subsets of [7] containing only even or only odd
numbers. And here they are:

flg f3g f5g f79 f1;3g f2g f4g f6g
f1;59 f1;79 f3; 59 f3;79 f5; 79 2,49 2,69 f4;69
f1,3;59 f1;3;7g fl1;5;7g 3,579 f1,;3;5;79 f2;4; 69
C
Exercise 4.2.40
Pick your favourite integer n > 1000. For this value ofn, how many inhabited subsets of

[n] contain either only even or only odd numbers? (You need not evaluate exponents.)
C
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We now consider some examples of nite sets which use both the multiplication principle
and the addition principle.

Example 4.2.41

A city has 6n inhabitants. The favourite colour of n of the inhabitants is orange, the
favourite colour of 2n of the inhabitants is pink, and the favourite colour of 3n of the
inhabitants is turquoise. The city government wishes to form a committee with equal
representation from the three colour preference groups to decide how the new city hall
should be painted. We count the number of ways this can be done.

Let X be the set of possible committees. First note that
[n
X = Xk
k=0

where X is the set of committees with exactly k people from each colour preference
group. Indeed, we must havek 6 n, since it is impossible to have a committee with
more than n people from the orange preference group.

Moreover, if k 6 ~ then X\ X- = ?, since ifk 6 ~ then a committee cannot simultan-
eously have exactlyk people and exactly” people from each preference group.

By the addition principle, we have

. . X] . .
1X]= 1Xk]
k=0
We count X for xed k using the following procedure:

Step 1. Choosek people from the orange preference group to be on the committee.

There are | choices.

Step 2. Choosek people from the pink preference group to be on the committee.

There are 3" choices.

Step 3. Choosek people from the turquoise preference group to be on the com-

mittee. There are 3" choices.

By the multiplication principle, it follows that jXyj= ; 3" 3" . Hence

X' n 2n 3n

X]= K k k

k=0
C

Exercise 4.2.42
In Example 4.2.41, how many ways could a committee be formed with aepresentative
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number of people from each colour preference group? That is, the proportion of people on
the committee which prefer any of the three colours should be equal to the corresponding
proportion of the population of the city. C

Counting in two ways

Counting in two ways (also known asdouble counting is a proof technique that allows
us to prove that two natural numbers are equal by establishing they are two expressions
for the size of the same set. (More generally, by Exercise 4.1.43, we can relate them to
the sizes of two sets which are in bijection.)

The proof of Proposition 4.2.43 illustrates this proof very nicely. We proved it already
by induction in Exercise 1.3.29; the combinatorial proof we now provide is much shorter
and cleaner.

Proposition 4.2.43

Let n2 N. Then 2" =
k=0

S
Proof. We know that jP([n])j = 2" by Example 4.2.28 and that P([n]) = ~ o, [

by Proposition 4.2.17. Moreover, the sets [E] are pairwise disjoint, so by the addition
principle it follows that

" [ _X @n _X n

k=0 K k=0 K k=0 K

2" = jP(nDj =

Proof tip

To prove that two natural numbers m and n are equal, we can nd setsX andY such that
jiXj=m,jYj= nandeither X = Y or there is a bijection X ! Y. This proof technique
is called counting in two ways , and is very useful for proving identities regarding
numbers that have a combinatorial interpretation (especially binomial coe cients and
factorials, which will be introduced later). C

The next example counts elements ofli erent sets and puts them in bijection to establish
an identity.

Proposition 4.2.44
Let n;k 2 N with n > k. Then
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Proof. Firstnotethat | = [ and ", = "l soitsucesto nd a bijection
f. I I intitively, this bijection arises because choosingk elements from p]

to put into a subset is equivalent to choosingh  k elements from h] to leave out of the
subset. Speci cally, we de ne

[n]

f(U)=[n]nU forall U 2 K

Note rst that f is well-de ned, since if U  [n] with jUj = k, then [n]nU  [n] and
jInlnUj = j[n]j ] Uj=n k by Exercise 4.2.4. We now prove is a bijection:

f is injective. Let U;V [n] and supposef]nU =[n]nV. Then for all k 2 [n],

we have
k2U, k6ZnlnU by de nition of set di erence
, ke6eZgn]nvVv since plnU =[n]nV
, k2V by de nition of set di erence

soU = V, as required.

f is surjective. LetV 2 M . ThenjinlnVj=n (n k)= k by Exercise
4.2.4, so that h]nV 2 1. But then

f(n]nV)=[n]n(n]nV)=V
by Exercise 2.2.39.

Sincef is a bijection, we have

n (] _  [n] n

k k n k n k

as required. 0

We put a lot of detail into this proof. A slightly less formal proof might simply say
that E = n”k since choosingk elements from p] to put into a subset is equivalent to
choosingn  k elements from p] to leave out of the subset. This would be ne as long
as the members of the intended audience of your proof could reasonably by expected to

construct the bijection by themselves.

The proof of Proposition 4.2.45 follows this more informal format.

Proposition 4.2.45
Let n;k;” 2 Nwith n> k> ~. Then
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Proof. Let's home in on the left-hand side of the equation. By the multiplication prin-
ciple, E K is the number of ways of selecting &-element subset of fi] and an "-element
subset of k]. Equivalently, it's the number of ways of selecting ak-element subset of ij]
and then an "-element subsetof the k-element subset that we just selectedlo make this

slightly more concrete, let's put it this way:

v K is the number of ways of painting k balls red from a bag ofn balls,
and painting ~ of the red balls blue. This leaves us with" blue balls andk
red balls.

Now we need to nd an equivalent interpretation of " E <. Well, suppose we pick the
" elements to be coloured blue rst. To make up the rest of thek-element subset, we
now have to selectk ° elements, and there are nown ~ to choose from. Thus

" E . is the number of ways of painting " balls from a bag ofn balls blue,
and painting k ~ of the remaining balls red.

Thus, both numbers represent the number of ways of painting balls blue andk ~ balls
red from a bag ofn balls. Hence they are equal. O

Exercise 4.2.46
Make the proof of Proposition 4.2.45 more formal by de ning a bijection between sets
of the appropriate sizes. C

Exercise 4.2.47
Provide a combinatorial proof that if n;k 2 N with n > k, then

n+1_n+n
k+1  k k+1

Deduce that the combinatorial de nition of binomial coe cients (De nition 4.2.18) is
equivalent to the recursive de nition (De nition 1.3.27). C

The following proposition demonstrates that the combinatorial de nition of factorials
(De nition 4.2.24) is equivalent to the recursive de nition (De nition 1.3.25).

Proposition 4.2.48
Ol=landifn2 Nthen(n+1)!=(n+1) nl

Proof. The only permutation of ? is the empty function e: ? ! ?. HenceSp = feg
and 0! = jSgj = 1.

Let n 2 N. A permutation of [n + 1] is a bijection f :[n+1] ! [n+1]. Specifying such
a bijection is equivalent to carrying out the following procedure:
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Choose the (unique!) elementk 2 [n + 1] such that f (k)= n+1. Therearen+1
choices fork.

Choose the values of at each™ 2 [n+1] with = 6 k. This is equivalent to nding
a bijection [n+1] nfkg! [n]. Sincej[n + 1] nfkgj = j[n]j = n, there are n! such
choices.

By the multiplication principle, we have
(n+1)!'= jSps1j=(n+1) n!

so we're done. O

We now revisit Theorem 1.3.31; this time, our proof will be combinatorial, rather than
inductive.

Theorem 4.2.49

Let n;k 2 N. Then 8
< n! .

= K g ke
"0 if k>n

Proof. Supposek >n. By Exercise 4.2.2, ifU [n] then jUj 6 n. Hence ifk > n, then

[E] = ?,andso | =0, as required.

Now supposek 6 n. We will prove that n! = E k! (n k)!; the result then follows
by dividing through by k!(n k)!. We prove this equation by counting the number of
elements ofS,.

A procedure for de ning an element of Sy, is as follows:

(i) Choose which elements will appear in the rst k positions of the list. There are

¢ such choices.

(i) Choose the order of thesek elements. There arek! such choices.

(iii) Choose the order of the remainingn k elements. There are (i  k)! such choices.
By the multiplication principle, n!= E kI (n k). O
Note that the proof of Theorem 4.2.49 relied only on the combinatorial de nitions of
binomial coe cients and factorials; we didn't need to know how to compute them at

all' The proof was much shorter, cleaner and, in some sense, more meaningful, than the
inductive proof we gave in Section 1.3|see Theorem 1.3.31.
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We conclude this section with some more examples and exercises in which counting in
two ways can be used.

Exercise 4.2.50
Let n;k 2 N with k 6 n+ 1. Prove that

n n
= +
k K (n k+1) K1
C
Example 4.2.51
Let m;n;k 2 N. We prove that
X m n _ m+n
ok k

N

by nding a procedure for counting the number of k-element subsets of an appropriate

(m + n)-element set. Speci cally, let X be a set containingm cats and n dogs. Then
m;” is the number of k-element subsetsU X. We can specify such a subset

according to the following procedure.

Step 1. Split into cases based on the number of cats in U. Note that we must
have 06 ~ 6 k, since the number of cats must be a natural number and cannot
exceedk asjUj = k. Moreover, these cases are mutually exclusive. Hence by the
addition principle we have

m+n X

K a

‘=0
where a- is the number of subsets ofX containing * cats andk ° dogs.

Step 2. Choose’ cats from the m cats in X to be elements ofU. There are [™
such choices.

Step 3. Choosek ° dogs from then dogs in X to be elements ofU. There are
ML such choices.

The multiplication principle shows that a = ™ ,". . Hence
m+n X m n
k . ) k
=0
as required. C

Exercise 4.2.52
Let n 2 N. Prove that
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Exercise 4.2.53
Let n;m 2 N with m 6 n. Prove that

Exercise 4.2.54
Given natural numbers n;a;b;cwith a+ b+ ¢ = n, de ne the trinomial coe cient

a'rt]J' c to be the number of ways of partitioning [n] into three sets of sizesa, b and c,
respectively. That is, a'rt])'c is the size of the set

8 9

< A [n; B [n; C [n];=

. (A;B;C) jAj=1a; jBj=b; Cj=c; .
' and A[ B[ C=[n] ’

By considering trinomial coe cients, prove that if a;b;c2 N, then (a+ b+ c)! is divisible
by al b cl. C

Here is one nice application of counting in two ways and the multiplication principle to
number theory. We will make use of this in the proof of Theorem 5.3.7, which provides
a general formula for the totient of an integer.

Theorem 4.2.55 (Multiplicativity of Euler's totient function)
Letm;n2 Zandlet' :Z! N be Euler's totient function (see De nition 3.3.31). If m
and n are coprime, then' (mn) =" (m)" (n).

Proof. Since' ( k) = ' (k) for all k 2 Z, we may assume thatm > 0 and n > 0.
Moreover, if m = 0 or n = 0, then ' (m)' (n) = 0 and ' (mn) = 0, so the result is
immediate. Hence we may assume thatn > 0 and n > 0.

Given k 2 Z, de ne
Ck=fa2[k]ja? kg

By de nition of Euler's totient function, we thus have jCyj ="' (k) for all k 2 Z. We will
de ne a bijection
f:Cn Cn! Cmn

using the Chinese remainder theorem (Theorem 3.3.46).
Givena2 C and b2 C,, let f (a;b be the elementx 2 [mn] such that

X amodm
X bmodn
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f is well-de ned. We check the properties of totality, existence and uniqueness.

Totality. We have accounted for all the elements oC,, C, in our speci c-
ation of f .

Existence. By the Chinese remainder theorem, there existx 2 Z such that
X amodm and x bmodn. By adding an appropriate integer multiple
of mn to x, we may additionally require x 2 [mn]. It remains to check that
X ? mn.

So letd = ged(x;mn). If d > 1, then there is a positive prime p such that
pjx andpjmn. Butthen pjm or pjn, meaning that either pj gcd(x; m)
or pjgcd(x;n). But x amodm, so gcdfk; m) = gcd(a;m); and likewise
ged(x;n) = gcd(b;n). So this contradicts the assumption that a ? m and
b? n. Hencex ? mn after all.

Unigqueness. Supposex;y 2 Cmn both satisfy the two congruences in ques-
tion. By the Chinese remainder theorem, we havex y mod mn, and hence
X = y+ kmn for somek 2 Z. Sincex;y 2 [mn], we have

jkimn = jkmnj=jx yj6 mn 1l<mn

This implies jkj < 1, sothatk =0 and x = y.

sof is well-de ned.

f is injective. Let a;a’2 Cy, and b; 2 C,,, and suppose thatf (a;b) = f (a® ).
Then there is an elementx 2 Cyn such that

8

%X amodm
x amodm

%x bmodn

“x  BPmodn

Hencea a’modm andb ©’modn. Sincea;a’2 [m] and b;#2 [n], we must
havea= a’and b= K’

f is surjective. Let x 2 Cyn. Let a2 [m] and b2 [n] be the (unique) elements
such that x amodm and x  bmodn, respectively. Ifa2 Cy and b2 C,,
then we'll have f (a;b) = x by construction, so it remains to check thata ? m and
b? n.

Supposed 2 Z with djaand dj m. We prove that d = 1. Sincex amodm,
we haved j x by Theorem 3.1.17. Sincan j mn, we haved j mn. By de nition of
greatest common divisors, it follows thatd j gcd(x; mn). But gcd(x;mn) =1, so
that dis a unit, and soa ? m as required.

The proof that b? n is similar.
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It was a lot of work to check that it worked, but we have de ned a bijection f : C, Cp !
Cmn . By the multiplication principle, we have

"(m)" (N)=JCmj JCnj=jCm Cnj=jCmnj="(mn)
as required. O

Exercise 4.2.56
Let n 2 Z and let p > 0 be prime. Prove that if pj n, then' (pn) = p ' (n). Deduce
that ' (pX)= p* pk 1 forall prime p> 0 and all k > 1. C

Theorem 4.2.57 (Formula for Euler's totient function)
Let n be a nonzero integer. Then
Y 1
" (n)=jnj 1 5
pin

where the product is indexed over positive primesp dividing n

Proof. Since' (n)="( n)forall n 2 Z, we may assume thatn > 0. Moreover

Y 1
")=1=1 1 =
(1) o

pil
Note that the product here is empty, and hence equal to 1, since there are no positive
primes p which divide 1. So now suppose > 1.

Using the fundamental theorem of arithmetic (Theorem 3.2.12), we can write
n=pips? P
for primes O0<p1<p2< < pr and natural numbers kq; ko;::: ke > 1.

By repeated application of Theorem 4.2.55, we have

Y .
M=)

i=1
By Exercise 4.2.56, we have

) . ) ) 1
CE)y=pliopet=pio1 =

pi
Combining these two results, it follows that
I I
Y 1 Y ¥ 1 Y 1
‘(= pi1 S = pli 1 = =n 1 =
i=1 Pi i=1 i=1 Pi i=1 Pi
which is as required. O
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Inclusion{exclusion principle

The addition principle is useful only for counting unions of pairwise disjoint sets, i.e.
sets that do not overlap. We saw in Proposition 4.2.5 how to compute the size of a union
of two sets which do overlap:

X[ Yj=jXj+jYj j X\ Y]
So far so good. But what if we have three or four sets instead of just two?

Exercise 4.2.58
Let X;Y;Z be sets. Show that

IXTY[ Zj=jXj+jYj+jZj ] XV Y] X\NZjjY\NZj+iX\Y\ Zj
Let W be another set. Derive a similar formula forfW [ X [ Y [ Zj. C

The inclusion{exclusion principle generalises Exercise 4.2.58 to arbitary nite collections
of nite sets.

Theorem 4.2.59 (Inclusion—exclusion principle)

X o\
Xi = ( DI X
i=1 3 ] j23

T
where for the purposes of the formula we take ;,, Xj = ?.

Proof. We proceed by induction.

(BC) The proof for the casen = 2 was Proposition 4.2.5.

[" X jJj+1 \
Xi = ( Xj I( 1H)
i=1 J [n] j2J
We need to prove that, for any setsX; X2;:::; Xn; Xn+1, that
T+t X oA
Xi = ( PIX;
i=1 J [n+1] j2J

S
Write U = L, X;. We know that
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JUT Xnaaj = jUj+ jXne ] U\ X IC ?)
Now by (IH ) we know jUj straight away:

X o\
jui= (it X
J [n] j2Jd

This covers the sizes o_}‘_ all thel [n+ 1] for which n+1 62].
Note that U\ Xp+1 = Ly Xi\ Xne1. Applying (IH ) again we get

j U\ Xn+1j 0 1
. \
= ( l)JJJ+l @ XjA \ Xn+1 by (IH )
J [ j23
. _ \
= ( pPIF n+lg X re-indexing the sum
J [n] j2J[f n+lg
. . \
= ( 1) n+lgi+l X distributing the  sign
3 [n] j23[f n+lg

This covers the sizes of all theJ  [n + 1] for which n+1 2 J and which contain
some element of fi].

The only subset of p + 1] not covered by the above two sums isfn +1g, and
( fn+laitl = 1)2=1, so that

( l)jfn+lgj+1jx n+1j = jX n+1j
Together with (?), this yields the equation we wanted to prove was true.
By induction, we're done. O

Proof tip S
To nd the size of a union of L, Xj:

Add the sizes of the individual setsX;;

Subtract the sizes of the double-intersectionsX; \ Xj;

Add the sizes of the triple-intersections X \ X; \ Xy;

Subtract the sizes of the quadruple-intersectionsX; \ X; \ X\ X-;
...andsoon...

Keep alternating until the intersection of all the sets is covered. C
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Example 4.2.60
We count how many subsets of [12] contain a multiple of 3. Precisely, we count the
number of elements of the set

X3[ Xe[ Xo[ X12
where Xy = fS [12]j k 2 Sg. We will apply the inclusion{exclusion principle:

(i) An element S 2 X3 is precisely a set of the formf3g[ S° whereS® [12]n f3g.
Since [12]n f3g has 11 elements, there are2? such subsets. SgXsj = 211, and
Iikewiser Gj = jX gj = jX 12j = 211.

(i) An element S 2 X3\ Xg is a set of the formf3;6g[ S° whereS® [12]n f3; 6g.
Thus there are 20 such subsets, s§X3\ Xgj =210, And likewise

X3\ Xoj = X3\ X12j = jXg\ Xoj = jXg\ Xi12j = jXo\ X1gj =2%°

(iii) Reasoning as in the last two cases, we see that

X3\ Xg\ Xoj = jX3\ Xg\ X1z = X3\ Xo\ Xi12j = jXg\ Xo\ Xypj =2°

(IV) ...and jX3\ Xs\ Xg\ X12j228.

Thus the number of subsets of [12] which contain a multiple of 3 is

2y A Yty B

by (i) by (ii) by (iii) by (iv)
which is equal to 3840. C
Exercise 4.2.61
How many natural numbers less than 1000 are multiples of 2, 3, 5 or 7? C

Exercise 4.2.62

Recall the de nition of the totient of an integern (De nition 3.3.31). Use the inclusion{
exclusion principle to show that' (100) = 40. Use this fact to prove that the last two
digits of 37° are 67" C
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Section 4.3
In nite sets

Indexed families of sets

We begin this section by generalising the indexed union, intersection and product nota-
tion that we saw in De nition 4.2.8.

De nition 4.3.1
Let | be a set. Afamily of sets indexed by | is a choice, for eachi 2 | of a setX;.
We write fX; ji 2 |g for the set of such choices.

De nition 4.3.2
Let fX;ji 2 1gbe a family of sets indexed by some set. We de ne...
...the indexed union of fX;ji 2 1gisthe set ;,, X; dened by

Xi=fxjx 2 X; for somei 2 I g
i2l

T
...the indexed intersection of fX;ji 2 Igisthe set ;,, X; de ned by
\
Xi=fxjx2Xjforalli2lg
i21

...the indexed product of fX;ji 2 Igis the set Q X; de ned by
i21

Xi=fXiiz2 jxi2 Xjforalli2lg
i2l

The elements ;);2 of Q X areordered | -tuples . Formally, an ordered | -tuple
[

R
is a function f : 1 ! io; Xi such that f (i) 2 X; for all i 2 ||then X; is just
shorthand for f (i).

Note that when all the sets X; are equal to some seKX , the product Q X is exactly
i21

the set X! of functions| ! X.
Example 4.3.3
Let X be a set, and for eacln 2 N, let SF be the set of subsets oKX of sizen. Then
Sh
n2N
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is the setF of all nite subsets of X . Indeed:

S
() LetU2 | ,ySh. ThenU 2 S, for somen 2 N, sothat U X and U is
nite (and jUj = n). HenceU 2 F.

S
() LetU2F. ThenU X is nite, sothat U2 S, and henceU 2 |, Sn.

C
Exercise 4.3.4
Find a family fU, j n 2 Ng of subsets ofN such that
Un \ U, isinnite for all m;n 2 N; but
n2n Un is empty.
C

We can use this new indexed union and intersection notation to prove a general version
of de Morgan's laws for sets.

Theorem 4.3.5 (De Morgan's laws for sets)
Let Z be§ set and lfatfxi ji 2 1gbe an indexed family of sets. Then

T S
() Zn i, Xi= 5, (ZnX)).

Proof 1 of (a). In this proof, we prove (a) directly by unpacking the de nitions of relative
complement, indexed union and indexed intersection.

S
Fix z. Notethat z2 Z n ,,, X; if and only if
[
22727 22 Xi
i21
by de nition of relative complement. This holds if and only if
z2Z":. (9 21;z 2Xj)
by de nition of indexed union. This holds if and only if
z2Z"8i2l;z 62;

by De Morgan's laws for quanti ers (Theorem 2.1.46). Since the propositionz 2 Z
doesn't depend oni, this holds if and only if

8i21l; (z2Z"z62Xj)

T
which is precisely the statement thatz2 ,, (Z nXj). O
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Proof 2 of (a). In this proof, we prove (a) by a double-containment argument.

S T
Letz2Zn ;5 Xi. Weknowthat z2 Z andz 62 ;,, X;. We need to prove that
z2 5, (ZnXj), that is, we need to prove that, for all i 2 I, we havez 2 Z nXj;

thatis, z2 Z and z 62X;. We havez 2 Z for free, so all we have to prove is that,
foralli2l,z62X;.

S S
Soleti21.1fz2X;thenz2 , Xj, contradicting the fact that z 62 ,,, Xj.
Therefore it must be the case thatz 62X;. This nishes this half of the proof.

S T
Zn 5 Xj iz (Z nXj).
Let z 2 ,,(Z nXj). We know that, for all é 21,z 2 ZnX;. Hence it's
certainly true that z2 Z. To prove that z2 Z n ;,, X, it remains to prove that
Z 62 i21 Xi.
Supposez 2 ,,, Xi. Then z 2 X; for somei 2 |I. Since we already know that

z 2 Z, it follows that z 62Z n X;, contradicting the fact that z 2 Z nX; for all
i 2 1. This nishes the second half of the proof.

We have shown containment in both directions, hence equality. O

Sizes of nite sets revisited

We have seen how to use injections, surjections and bijections to study the relative size
of sets:

If f : X ! Y isinjective, then jXj6 jYj;
If f : X ! Y is surjective, then jXj> jY]j;
If f : X ! Y is bijective, then jXj = jY]j.

Recall De nition 4.1.39, where we said a setX is nite if there is a bijection [n]! X
for somen 2 N. The next de nition takes this one step further.

De nition 4.3.6
A set X is countably in nite if there exists a bijectionN! X . We sayX is countable
if it is nite or countably in nite.

Thus a set X is countably in nite if its elements can be listed, with one entry in the list
for each natural number.

Example 4.3.7
We have already seen many examples of countably in nite sets.
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The setN is countably in nite, since by Exercise 4.1.15, idy : N! N is a bijection.

The function f : Z! N dened for x 2 Z by

( .
f(x) = 2X if x>0

(2x+1) if x< O
is a bijection. Indeed, it has an inverse is given by

% if X is even
0= 2, o
- if x is odd
Hence the set of integer<Z is countably in nite. The corresponding list of integers
is given by
0 1,1, 22 3 3 4 4 :::

The fact that f ! is a bijection means that each integer appears on this list exactly
once.

C

Exercise 4.3.8
Prove that the function p: N N! Ndenedby p(x;y)=2*2y+1) 1is a bijection.
Deduce that if X and Y are countably in nite sets, then X Y is countably in nite. C

Exercise 4.3.8 allows us to prove that the product of nitely many countably in nite sets
are countably in nite.

Exercise 4.3.9
Let f : X ! Y be a bijection. Prove that X is countably in nite if and only if Y is
countably in nite. C

Proposition 4.3.10
Y
Let n > 1 and let Xq;:::; X, be countably in nite sets. Then the product Xi is

i=1
countably in nite.

Proof. We proceed by induction onn.

(BC) When n = 1 the assertion is trivial: if Xj is countably in nite then X is
countably in nite.

(IS) Fix n > 1 and suppose that for any setsXi;:::; X, the product Q X is
i=1
countably in nite. Fix sets X1;:::;Xp+1. Then _Q X is countably in nite by the
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induction hypothesis, and X 41 is countably in nite by assumption, so by Exercise
4.3.8, the set I
w
Xi Xn+1
i=1
is countably in nite. But by Exercise 4.2.14 there is a bijection

X! Xi Xn+1

and so by Exercise 4.3.9 we have thar%@1 X is countably in nite, as required.
i=1

By induction, we're done. O

Finding a bijection N! X, or equivalently X ! N, can be a bit of a hassle. However,
in order to prove that a set X is countable, it su ces to nd either a surjection N! X
or an injection X ! N.

Theorem 4.3.11
Let X be an inhabited set. The following are equivalent:
(i) X is countable;

(ii) There exists a surjectionf : N! X;

(iii) There exists an injection f : X ! N.

Proof. We'll prove (i), (ii) and (i) , (iii).

(i)) (). Suppose X is countable. If X is countably in nite, then there exists
a bijection f : N ! X, which is a surjection. If X is nite then there exists a
bijection g:[m]! X,wherem = jXj> 1. Denef :N! X by

gn) if16n6 m

f(n)= :
g1) ifn=0o0orn>m

Then f is surjective: if x 2 X then there existsn 2 [m] such that g(n) = x, and
then f (n) = g(n) = x.

(ii)) (i). Suppose there exists a surjectionf : N ! X. To prove that X is
countable, it su ces to prove that if X is in nite then it is countably in nite. So
supposeX is in nite, and de ne a sequence recursively by

ap = 0;
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Dene g:N! X byg(n)= f(a,) forall n 2 N. Then

g is injective, since if m 6 n then f (an) 6 f(a,) by construction of the
sequence &,)n2n-

g is surjective. Indeed, givenx 2 X, by surjectivity there exists m 2 N which
is least such thatf (m) = x, and we must havea, = m for somen 6 m by
construction of the sequenced,)n2n. SOX = g(an), and henceg is surjective.

Sog is a bijection, and X is countable.

(i)) (iii). Suppose X is countable. If X is countably in nite, then there exists
a bijection f : N1 X, sof 1:X ! N is bijective and hence injective. If X
is nite then there exists a bijection g : [m]! X, wherem = jXj > 1. Then
g 1:X ! [m]isinjective. Leti:[m]! N be dened by i(k)= k for all k 2 [m].
Theni g ?is injective; indeed, forx;x%2 X we have

i(g o) =i(g *xY) g9 'x)=9'(x)) x=x°

The rst implication is by de nition of i, and the second is by injectivity of g 1.
So there exists an injectionX ! N.

(iii) ) (i). Suppose there exists an injectionf : X ! N. To prove that X is
countable, it suces to prove that if X is in nite then it is countably in nite.
De ne a sequence &n)n2n recursively as follows:

Let ap be the least element off [X];

Fix n 2 N and supposeap;:::;a, have been de ned. Leta,+1 be the least
element of f [X] nfag;:::;ang. This exists sincef is injective, so f [X] is
in nite.

Dene g: N! X by, for eachn 2 N, letting g(n) be the unique value ofx for
which f (x) = a,. Then

g is injective. By construction a,, 6 a, wheneverm 6 n. Let x;y 2 X be
such that f (x) = am, and f (y) = a,. Sincef is injective, we must havex 6 vy,
and sog(m) = x 6 y = g(n).

g is surjective. Fix x 2 X. Then f (x) 2 f[X], so there existsm 2 N such
that f (x) = am. Henceg(m) = x.

Sog is a bijection, and X is countably in nite.

Hence the equivalences have been proved. O

In fact, we needn't even useN as the domain of the surjection or the codomain of the
injection; we can in fact use any countable setC.
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Corollary 4.3.12
Let X be an inhabited set. The following are equivalent:

(&) X is countable;
(b) There exists a surjectionf : C! X for some countable setC;

(c) There exists an injectionf : X ! C for some countable setC.

Exercise 4.3.13
Prove Corollary 4.3.12. C

Corollary 4.3.12 is useful for proving the countability of many other sets: as we build up
our repertoire of countable sets, all we need to do in order to prove a se is countable
is nd a surjection from a set we already know is countable toX, or an injection from

X into a set we already know is countable.

Example 4.3.14
Q is countable. Indeed, by Exercises 4.3.7 and 4.3.8, the s& (Z nf0g) is countable.
Moreover, there exists a surjectiong:Z (Znf0g)! Q de ned by

a
ab= -
q(a; b 5
By Corollary 4.3.12, Q is countable. C
Exercise 4.3.15
Let X be a countable set. Prove that >|i is countable for eachk 2 N. C

Theorem 4.3.16
A countable union of countable sets is countable. More precisely, let X, j n 2 Ng be a
family of countable sets. Then the setX de ned by

[
X = X

n2N

is countable.

Proof. We may assume that the setsX,, are all inhabited, since the empty set does not
contribute to the union.

For eachn 2 N there is a surjectionf, : N! X,. Dene f :N N! X by f(m;n)=
fm(n) for all m;n 2 N. Then f is surjective: if x 2 X then x 2 X, for somem 2 N.
Sincef , is surjective, it follows that x = f(n) for somen 2 N. But then x = f (m;n).
SinceN N is countable, it follows from Corollary 4.3.12 that X is countable. O

Example 4.3.17
Let X be a countable set. The set of all nite subsets ofX is countable. Indeed, the
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: : X L :
set of all nite subsets of X is equal to K which is a union of countably many

k2N
countable sets by Exercise 4.3.15, so is countable by Theorem 4.3.16. C

We can also use some clever trickery to prove that certain sets arancountable The
proof of the following theorem is known asCantor's diagonal argument

Theorem 4.3.18
The setf0;1gN is uncountable.

Proof. Let f : N ! f 0;1gN be a function. We will prove that f is not surjective by
constructing a sequence which is not contained in the image dfl under f .

De ne an elementb 2 f 0;1gN, i.e. a function b: N!f 0;1g, by
bin)=1 f(n)(n)

Then b(n) 6 f(n)(n) for all n 2 N. If b= f(m) for some m, then by de nition of
function equality we must have b(m) = f (m)(m); but we just saw that this is necessarily
false. Henceb 62 [N], sof is not surjective.

Hence there does not exist a surjective functiorN ! f 0;1gN. By Theorem 4.3.11, the
setf0; 1gV is uncountable. 0O

This result can be used to show that the sefR of all real numbers is uncountable, though
this relies on features of the real numbers that we have not developed so far in this course.

Exercise 4.3.19
Let X be a set. Prove thatP (X) is either nite or uncountable. C
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Section 5.1
Relations

When sets were rst introduced in Section 2.2, after slewing through several de nitions
of set operations and set algebra, you probably wondered why you'd ever decided to
embark on your journey into pure mathematics. It may have seemed at rst like sets
were introduced solely to shorten notation|for instance, instead of saying 'n is an integer
but not a natural number', we could simply write "'n2 ZnN".

But we soon saw that sets are powerful tools, which can be used to prove interesting
results and solve di cult problems, largely with the help of functions. When we stopped
studying sets in isolation, and started seeing how they interact with each other using
functions in Section 2.3, their true power became apparent.

This section introduces the notion of arelation, which generalises that of a function.

De nition 5.1.1

Let X and Y be sets. A (pinary ) relation from X to Y is a logical formula R(X;y)
with two free variables x;y, where x has rangeX and y has rangeY. We call X the
domain of R and Y the codomain of R.

Givenx 2 X andy 2 Y, if R(x;y) is true then we say X is related to y by R', and
write X Ry (IATEX code: xn; Rn; y).2

&The IATEX code n; inserts a small space: we use it becausex R y' looks better and clearer than “xRy".

In more human terms, a relation from X to Y is a statement about a generic element
x 2 X and a generic elementy 2 Y, which is either true or false depending on the values
of x andy.

Example 5.1.2
We have seen many examples of relations so far. For example:

Every function f : X I 'Y de nes a relation R from X to Y by letting
xRey  f(x)=y

Given a set X, equality between elements ofX ('x = y') is a relation from X to
X.

Divisibility " x j y') is a relation from Z to Z.
For xed n 2 Z, congruence modulon ('x y modn') is a relation from Z to Z.

Order ("x 6 y") is a relation from N to N, or from Z to Z, or from Q to Q, and so
on.
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Given sets X and Y, there is an empty relation ?x.y from X to Y, which is
de ned simply by declaring ? x.vy (x;y) to be false forallx 2 X andy 2 Y.

C

Exercise 5.1.3
De ne a relation R from Z to Z which is not on the list given in Example 5.1.2. C

It is possible, and extremely useful, to represent relations as sets. We do this by de ning
the graph of a relation, which is the set of all pairs of elements which are related by the
relation. You might recognise this as being similar to the graph of afunction (De nition
2.3.12).

De nition 5.1.4
Let X and Y be sets, and letR be a relation from X to Y. The graph of R is the set
Gr(R) (IATEX code: nmathrnf Grgf Ry) of pairs (x;y) 2 X Y for which x Ry. That is

Gr(R)=f(x;y)2X Y jxRyg X Y

Example 5.1.5

Consider the relation of divisibility from Z to Z, that is R(x;y) is the statement x j y.
The graph Gr(R) of R is the set whose elements are all pairsnf; n) wherem;n 2 Z and
m j n. For example, (2 6) 2 Gr(R) since 2j 6, but (2;7) 62Gr(R) since 2-7.

Sincem j n if and only if n = gm for someq 2 Z, we thus have
Gr(R)= f(m;gm)jm;g229 Z Z
C

Exercise 5.1.6
Let X and Y be sets. What is the graph of the empty relation fromX to Y? C

Exercise 5.1.7

Let f : X I Y be a function, and de ne the relation R; from X to Y as in Example
5.1.2. Prove that Gr(R;) = Gr( f)|that is, the graph of the relation R; is equal to the
graph of the function f. C

As with functions, the graph of a relation R from a set X to a set Y can often be
represented graphically: draw a pair of axes, with the horizontal axis representing the
elements ofX and the vertical axis representing the elements ofY, and plot the point
(x;y) if and only if R(x;y) is true.

Example 5.1.8
Consider the relation S from Rto Rdened by xSy, x?+ y2=1. Then

Gr(S)= f(x;y)2R Rjx?+y’=1g
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Plotting Gr( S) on a standard pair of axes yields a circle with radius 1 centred at the
point (0;0). Note that Gr( S) is not the graph of a function s: [0;1]! R. Indeed, since
for example both 0S 1 and 0S 1, the value s(0) would not be uniquely dened. C

Example 5.1.9
Let X be a set. The graph of the equality relation fromX to X is very simple:

Gr(=)= f(x;y)2X Xjx=yg=f(x;x)jx2Xg X X

This set is often denoted x (IATEX code: nDelta _f Xg), and called the diagonal subset
of X X. The reason for the word “diagonal' is because|provided the horizontal
and vertical axes have the same ordering of the elements of |the points plotted are
precisely those on the diagonal line. C

Since we de ned relations as particular logical formulae, and we have not de ned a notion
of equality between logical formulae, if we want to say that two relations are equal then
rst we need to de ne what we mean by equal As with sets, this raises some subtleties:
should two relations be equal when they're described by the same formula? Or should
two relations be equal when they relate the same elements, even if their underlying
descriptions are somewhat di erent? As with equality between sets (De nition 2.2.20),
our notion of equality between relations will be extensional: for the purposes of deciding
whether two relations are equal, we forget their descriptions and look only at whether
or not they relate the same pairs elements.

De nition 5.1.10
Let X and Y be sets, and letR and S be relations from X to Y. We sayR and S are
equal, and write R = S, if

8x2X;,82Y;(xRy, xSy)

That is, R = S if they relate exactly the same pairs of elements.

Note that two relations R and S from a set X to a setY are equal as relations if and
only if their graphs Gr(R) and Gr(S) are equal as sets. This fact, together with the
correspondence between relations fronX to Y and subsets ofX Y (Theorem 5.1.11
below) is incredibly convenient, because it makes the notion of a relation more concrete.

Theorem 5.1.11
Let X and Y be sets. Any subsetG X Y is the graph of exactly one relationR
from X to Y.

Proof. Fix G X Y. De ne a relation R by
8x2X;82Y; xRy, (xy)2G
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Then certainly G = Gr( R).

Moreover, if S is a relation from X to Y such that G = Gr( S), then, for all x 2 X and
y2yY
XSy, (Xy)26Gr(S), (xy)26Gr(R), xRy

s0 S = R. Hence there is exactly one relation fromX to Y whose graph isG. O

Theorem 5.1.11 allows us to use the counting principles from Section 4.2 to nd the
number of relations from one nite set to another.

Exercise 5.1.12
Let X andY be nite sets with jXj = m andjYj= n. Prove that there are 2™ relations
from X to Y. C

Aside

It is very common to identify a relation with its graph, saying that a relation from a set
X to asetY 'is'a subset ofX Y. This practice is justi ed by Theorem 5.1.11, which
says precisely that there is a correspondence between relations frok to Y and subsets
of X Y. C

Relations on a set

In most of the examples of relations we've seen so far, the domain of the relation is
equal to its codomain. The remainder of this section|in fact, the remainder of this
chapter|is dedicated to such relations. So let's simplify the terminology slightly.

De nition 5.1.13
Let X be a set. Arelation on X is a relation from X to X.

We have seen many such relations so far, such as: equality on any set, congruence modulo
n on Z, divisibility, on Z inclusion of subsets () on P(X), and comparison of size 6)
onN, Z, Q or R. Remarkably, each of these relations can be characterised in one of two
ways: either as anequivalence relationor as apartial order.

Equivalence relations are those that behave in some sense like equality, and partial orders
are those that behave in some way like .
Equality. If X is any set, then equality on X satis es:
Given x 2 X, we havex = X;
Given x;y 2 X, if x = y, theny = x;
Givenx;y;z2 X,ifx=yandy= z, thenx = z.
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Note that these are all true if we replaceX by Z and = by mod n for some
xed n> 0.
Order. If X = N (or Z or Q or R), then the order relation 6 on X satis es:
Given x 2 X, we havex 6 x;
Givenx;y 2 X,if x6 yandy 6 x, then x = v;
Given x;y;z2 X,if x6 yandy 6 z, then x 6 z.
Note that these are all true if we replace ¥; 6) by (P(X); )or (N; j).

For both equality and order, the rst condition states that every element is related to
itself, and the third condition states that in some sense we can cut out intermediate
steps. These conditions are known age exivity and transitivity . The second condition
for equality states that the direction of the relation doesn't matter; this condition is
called symmetry. The second condition for the order relation states that the only way
two objects can be related to each other in both directions is if they are equal; this
condition is called antisymmetry.

The remainder of this section will develop the language needed to talk about equivalence
relations and partial orders. We will nish the section with a discussion of equivalence
relations, and then study partial orders in depth in Section 5.2.

Re exive relations are those that relate everything to itself.

De nition 5.1.14
Let X be aset. ArelationR on X isreexive if xXRx forall x2 X.

Example 5.1.15
Given a set X, the equality relation on X is re exive sincex = x for all x 2 X. C

Example 5.1.16
The divisibility relation on N, or on Z, is re exive. Given n 2 Z we haven=1 n, and
sonjn. C

The following exercise demonstrates the importance of specifying the (co)domain of a
relation: it shows that a logical formula may de ne a re exive relation on one set, but
not on another.

Exercise 5.1.17
Prove that coprimality (" x ? y') is not a re exive relation on Z, but that it is a re exive
relation on the setf 1;1g.

As such, it doesn't make sense to say coprimality is a re exive relation' or “coprimality is
not a re exive relation’: we must specify on which set we are considering the coprimality
relation. C

228



Section 5.1. Relations 229

The result of the next exercise characterises re exive relations in terms of their graph.

Exercise 5.1.18

Let X be a set and letR be a relation on X. Prove that R is re exive if and only if
x  Gr(R), where x is the diagonal subset ofX X (see Example 5.1.9). Deduce

that if X is nite and jXj = n, then there are 2(" 1 re exive relations on X . C

Symmetric relations are those for which thedirection of the relation doesn't matter.

De nition 5.1.19
Let X be a set. A relation R on X is symmetric if, for all x;y 2 X, x Ry implies
y R x.

Example 5.1.20
Some examples of symmetric relations include:

Equality is a symmetric relation on any set X . Indeed, ifx;y 2 X and x =y, then
y = X.

Coprimality is a symmetric relation on Z, since ifa;b2 Z then a? bif and only
if b? a.

Divisibility is not a symmetric relation on Z, since for instance 1j 2 but 2 - 1.
However, divisibility is a symmetric relation onf 1;1g, since 1j 1and 1j1.

C

Exercise 5.1.21 )
Let X be a nite set with jXj = n. Prove that there are Az) on symmetric relations
on X. C

A related condition a relation may possess isantisymmetry.

De nition 5.1.22
Let X be a set. ArelationR on X is antisymmetric if, for all x;y 2 X, if xRy and
y R X, thenx =y.

A word of warning here is that "antisymmetric' does not mean the same thing as "not
symmetric'lindeed, we we will see, equality is both symmetric and antisymmetric, and
many relations are neither symmetric nor antisymmetric 2!

Example 5.1.23
Some examples of antisymmetric relations include are as follows.

[ Even more confusingly, there is a notion of asymmetric relation , which also does not mean “not sym-
metric'.
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Let X be a set. The equality relation onX is antisymmetric: it is immediate that
if x;y2X andx=yandy= x,thenx=y.

The relation 6 on the setN (or Z or Q or R) is antisymmetric: if m;n 2 N and
m6 nandn 6 m, thenm = n.

The divisibility relation on N is antisymmetric. Indeed, let m;n 2 N and suppose
mjnandnjm. Thenn = km for somek 2 Z and m = 'n for some™ 2 Z. It
follows that n = k'n. If n =0 then m = n trivially; otherwise, we have k™ = 1.
Hencek is a unit; moreover, sincem;n > 0 and n = km, we must havek = 1.
Hencem = n.

C

Exercise 5.1.24
Show that the divisibility relation on Z is not antisymmetric. C

Exercise 5.1.25
Let X be a set and letR be a relation on X. Prove that R is both symmetric and

antisymmetric if and only if Gr( R) x , Wwhere x isthe diagonal subset ofX X (see
Exercise 5.1.9). Deduce that the only re exive, symmetric and antisymmetric relation
on a setX is the equality relation on X. C

Exercise 5.1.26 )
Let X be a nite set with jXj = n. Prove that there are 3z) on antisymmetric relations
on X. C

Transitivity is the property of 6 that allows us to deduce, for example, that 06 4, from
the information that0 6 16 26 36 4.

De nition 5.1.27
Let X be a set. A relation R on X is transitive if, for all x;y;z 2 X, if x Ry and
y Rz, then xR z.

Example 5.1.28
Some examples of transitive relations include:

Equality is a transitive relation on any set X, since it is immediate that if x;y;z 2
X with x = yandy = z, then x = z.

Divisibility is a transitive relation on N, or on Z. Indeed, if a;b;c2 N with aj b
and bj c, then there existk; ™ 2 Z such that b= ka and c= "b. Then c= (k’)a,
soajc.

Inclusion is a transitive relation on P(X), for any set X. Indeed, Proposition
2.2.11 implies that if U;V;W X with U V andV W,thenU W.
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C

A fundamental property of transitive relations is that we can prove two elementsa and
b are related by nding a chain of related elements starting ata and nishing at b. This
is the content of the following proposition.

Proposition 5.1.29
Let R be arelation on a setX . Then R is transitive if and only if, for any nite sequence

Xo R Xn.
We prove the two directions of the proposition separately.

() ) SupposeR is transitive. For n > 1. We prove p(n) is true for all n > 1 by
induction.

(BC) When n =1 this is immediate, since we assume thatxg R X3.

such that x; 1 R x; for all i 2 [n+1]. We need to prove that Xg R Xp+1 .

By the induction hypothesis we know that xo R x,. By de nition of the
sequence we have, R xn+1 . By transitivity, we have Xg R Xp+1 .

So by induction, we have proved the) direction.

(( ) Supposep(n) is true for all n > 1. Then in particular p(2) is true, which is
precisely the assertion thatR is transitive.

So we're done. O
Thatis, Proposition 5.1.29 states that for a transitive relation R on a setX , if Xg; X1;:::;Xn 2
X, then

xo Rx1 R Rxn ) Xo R Xn

where Xg R x1 R R x,' abbreviates the assertion thatx; R xj+1 for eachi<n .

Exercise 5.1.30
For each of the eight subsets

P f re exive;symmetric; transitiveg
nd a relation satisfying (only) the properties in P. C
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Equivalence relations

We will now study what it is for a relation to be equality-like.

De nition 5.1.31
A relation R on a setX is an equivalence relation if R is re exive, symmetric and
transitive.

When we talk about arbitrary equivalence relations, we usually use a symbol like °
(LATEX code: nsim) or = ' (LATEX code: nequiv) or = ' (LATEX code: napprox) instead
of 'R".

Example 5.1.32

Recall Theorem 3.3.6. With our new language of relations, we could succinctly re-state
it as follows:

Let n be a modulus. Congruence modulam is an equivalence relation onZ.

Indeed, part (a) of Theorem 3.3.6 proved re exivity, part (b) proved symmetry, and part
(c) proved transitivity. C

Exercise 5.1.33
Use the de nition of equality of sets (De nition 2.2.20) to prove that equality of sets is
an equivalence relation on the universe of discoursd. C

Exercise 5.1.34
De ne a relation  on Z by declaring, form;n 2 Z,

m n , “(m="(n)

Prove that is an equivalence relation. C

In the following exercise, we construct a particular equivalence relation r out of an
arbitrary relation R and prove that g is, in a suitable sense, the "smallest’ equivalence
relation extending R.

? Exercise 5.1.35

Let R be any relation on a setX. De ne a new relation g on X as follows. Given
X;y 2 X, sayx g Yy ifand only if for some k 2 N there is a sequencedp; as;:::;ax)
of elements ofX such that ag = x, ax = y and, for all 0 6 i <k, either a Raj+; or
ai+1 Raj.

First we'll work out a couple of examples.
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(&) Fix a modulus n and let R be the relation on Z de ned by xRy if and only if
y = x + n. Prove that R is the relation of congruence modulon.

(b) Let X be a set and letR be the subset relation onP (X ). Prove that g is the
set equality relation on P(X).

(c) Let X be a set, x two distinct elements a;b2 X, and de ne a relation R on X by
declaring aR b only|that is, for all x;y 2 X, we havexRy if and only if x = a
and y = b. Prove that the relation g is dened by x gr Yy if and only if either
x = yorfx;yg= fa;bg. (Intuitively, r "glues' the elementsa and b together.)

Next we prove the fundamental facts about g that we mentioned before the statement
of this exercise.

(d) Prove that R is an equivalence relation onX
(e) Prove that xRy ) x gryforall x;y 2 X.

(f) Prove that, furthermore, if  is any equivalence relation onX and xRy ) x vy
forall x;y 2 X,thenx Rry) x yforal x;y 2 X.

(g) Use parts (e) and (f) to prove that if R is already an equivalence relation, then the
relation g is equal toR.

We say that the relation g is the equivalence relation onX generated by R. C

Equivalence relations are useful because they allow us to ignore irrelevant information
about elements of a set. As an example, suppose we want to prove that, fa 2 Z, if
3 -athen a? leaves a remainder of 1 when divided by 3. Before we learnt about modular
arithmetic in Section 3.3, in order to prove this, we would have written a = 3k 1
for somek 2 Z and done some tedious algebra to deduce thaa® = 3(3k? 2k) + 1.
This required us to use more information than we need: the value ok doesn't make
any di erence to the truth of the result, the expression 3(3k? 2k) + 1 is ugly and,
more importantly, keeping track of k made the proof longer and more di cult than it
has to be. When we learnt modular arithmetic, everything was simpli ed: if 3 - a then
a 1mod3, sothata? ( 1)2 1mod3. This proof was shorter and simpler
because we didn't need to keep track of exactly which integea was|all we cared about
was its value modulo 3. We could just as well have replace@ with any other integer
which leaves the same remainder modulo 3.

This motivates the following de nition, which provides a means of identifying two ele-
ments of a set that are related by an equivalence relation.
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De nition 5.1.36
Let X be a set and let be an equivalence relation onX. The -equivalence class
of x 2 X is the set x] (IATEX code: [X] _fnsimg) de ned by

xX] =fy2Xjx vyg

The quotient of X by s the setX= (IATEX code: X/fnsimg) of all -equivalence
classes of elements of ; that is

X= =f[x] jx2Xg

Formatting tip
Putting braces (f and g) around a symbol like tells IATEX to consider the symbol on
its own, rather than in the context of its surrounding variables. Compare:
IATEX code: output:
Without braces:  X/nsim =Y X= =Y
With braces: Xlfnsimg = Y X= =Y
This is because, without braces,ATEX thinks you're saying "X= is related to is equal to

Y', which clearly makes no sense; putt braces aroundsim signi es to LATEX that the
symbol is being considered as an object in its own right. C

Example 5.1.37
Let be the relation of congruence modulo 5 on the set of integers. Then

[0] =fa2Zja 0Og
Now,a O ifandonlyif5ja, sowe can also write
[0] =f:::; 10, 5;0;5;10;:::g=f5kjk 2 Zg

Soin fact [0] =[5k] forany k 2 Z. And likewise

[l =[r+5k]
forall r;k 2 Z. It follows that Z= = f[0] ;[1] ;[2] ;[3] ;[4] o©. C
De nition 5.1.38
Consider the relation of congruence modulon on the set Z of integers. We call the
equivalence class oh 2 Z the congruence class of a modulo n, denoted [a],, and we

write Z=nZ to denote the quotient of Z by the relation of congruence modulon.

234



Section 5.1. Relations 235

Example 5.1.39
The set Z=5Z has ve elements:

Z=5Z = {[0s5; [1]5; [2]5; [3]s; [4]s9

Example 5.1.37 demonstrates that for alln 2 Z and all 06 r < 5, we have p]s =[r]s if
and only if n leaves a remainder of when divided by 5. For example, [73 =[2]5. C

Exercise 5.1.40
Let n be a modulus. Prove thatZ=nZ is nite and jZ=nZj = n. C

Exercise 5.1.40 doesn't tell us much more than we already know: namely, that there are
only nitely many possible remainders modulo n. But it makes our lives signi cantly
easier for doing modular arithmetic, because now there are only nitely many objects
to work with.

One last word on equivalence relations is that they are essentially the same thing as
partitions (see De nition 4.2.36).

Exercise 5.1.41
If be an equivalence relation onX, then X= is a partition X. Deduce that, for
X;y 2 X, we havex yifandonlyif [x] =[y] . C

In fact, the converse of 5.1.41 is also true, as we prove next.

Proposition 5.1.42
Let X be a set and letU be a partition of X. Then U = X= for exactly one equivalence
relation on X.

Proof. De ne a relation by
X y , 9U2U;x2Uandy2U

forall x;y 2 X. Thatis, x yifand only if x andy are elements of the same set of the
partition. We check that  is an equivalence relation.

S
Re exivity. Let x 2 X. Then x 2 U for someU 2 U since ,,, U= X. Hence
X X

Symmetry. Let x;y 2 X and supposex Y. Then there is someU 2 U with
x 2 U andy 2 U. But then it is immediate that y  Xx.

Transitivity. Let x;y;z 2 X and suppose thatx yandy z. Then there exist
U;V2U with x;y 2 U andy;z2 V. Thusy 2 U\ V. SinceU is a partition of X,
its elements are pairwise disjoint; thus ifU 6 V then U\ V = ?. HenceU = V.
Thusx2 Uandz?2 U, sox z.
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The de nition of

To prove that
X for which X=

x y, X =yl
,9 U2U;x2Ury2 U
9 z22X;x2][z] My2|[z]
9 z22X;x znhy z

makes it immediate that X=

is the only such relation, suppose
= U. Then, given x;y 2 X, we have:
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= U.

is another equivalence relation on

by Exercise 5.1.41

by de nition of

sinceU = X=

by de nition of [ z]

by symmetry and transitivity
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Section 5.2
Orders and lattices

We saw in Section 5.1 how equivalence relations behave like "=, in the sense that they
are re exive, symmetric and transitive.

This section explores a new kind of relation which behaves likes". This kind of relation
proves to be extremely useful for making sense of mathematical structures, and has
powerful applications throughout mathematics, computer science and even linguistics.

De nition 5.2.1
Arelation R on a setX is apartial order if R is re exive, antisymmetric and transitive.
That is, if:

(Re exivity) xR x forall x 2 X;

(Antisymmetry) For all x;y 2 X,if xRy andy R x, then x = vy;

(Transitivity) For all x;y;z2 X,if xRy andy R z, then xR z.
A set X together with a partial order R on X is called apartially ordered set , or
poset for short, and is denoted (X;R).

When we talk about partial orders, we usually use a suggestive symbol liked™ (LATEX
code: npreceq) or ‘v ' (LATEX code: nsgsubseteq).

Example 5.2.2
We have seen many examples of posets so far:

Any of the sets N, Z, Q or R, with the usual order relation 6.

Given a setX, its power setP (X)) is partially ordered by . Indeed:
Re exivity. IfU2P(X)thenU U.

Antisymmetry. If U;3vV2P(X)with U VandV U, thenU =V by
de nition of set equality.

Transitivity. If U;)V;W2P(X)with U VandV W,thenU W by
Proposition 2.2.11.

The set N of natural numbers is partially ordered by divisibility (see Examples
5.1.16, 5.1.23 and 5.1.28). However, by Exercise 5.1.24, the sétof integers is not
partially ordered by divisibility, since divisibility is not antisymmetric on Z.

Any set X is partially ordered by its equality relation. This is called the discrete
order on X.
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C

Much like the di erence between the relations6 and < on N, or between and $ on
P (X), every partial order can be strictied , in a precise sense outlined in the following
de nition and proposition.

De nition 5.2.3
A relation R on a setX is a strict partial order if it is irre exive, asymmetric and
transitive. That is, if:

(Irre exivity) : (x Rx) forall x 2 X;

(Asymmetry) For all x;y 2 X, if xRy, then: (y R X);
(Transitivity) For all x;y;z2 X,if xRy andy R z, then xR z.

Proposition 5.2.4
Let X be a set. Partial orders4 on X are in natural correspondence with strict partial
orders on X, according to the rule:

x4y, (X y_x=y) and x y, (xX4y~rx6y)

Proof. Let P be the set of all partial orders onX and let S be the set of all strict partial
orders on X . De ne functions

f:P!' S and g:S! P
as in the statement of the proposition, namely:

Given a partial order 4, let f (4) be the relation de ned for x;y 2 X by letting
X ybetrueifandonlyif x4 yand x 6 v;

Given a strict partial order , let g( ) be the relation 4 de ned for x;y 2 X by
letting x 4 y be trueifand only if x yorx=y.

We'll prove that f and g are mutually inverse functions. Indeed:

f is well-de ned. To see this, x 4 and = f(4) and note that:
is irre exive, since for x 2 X if x x then x 6 x, which is a contradiction.

is asymmetric. To see this, letx;y 2 X and supposex y. Thenx 4 y and
x 6 y. Ifalsoy x,then we'd havey 4 x, so that x = y by antisymmetry
of 4. But x 6 y, so this is a contradiction.

is transitive. To see this, let x;y;z 2 X and supposex yandy z.
Then x4 yandy 4 z, so that x 4 z. Moreover, if x = z then we'd also have
Z 4 x by reexivity of 4, soz 4 y by transitivity of 4, and hencey = z hy
antisymmetry of 4. But this contradicts y  z.
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So s a strict partial order on X.

g is well-de ned. To see this, x and4 = g( ) and note that:
4 is re exive. This is built into the de nition of 4.
4 is symmetric. To see this, x x;y 2 X and supposex 4 y andy 4 x. Now
if x 8 ythenx yandy X, but this contradicts asymmetry of . Hence
X =Y.
4 is transitive. To see this, X X;y;z 2 X and supposex 4 y andy 4 z.
Then one of the following four cases must be true:
X =y = z. In this case,x = z, sox 4 z.
X =Yy z.Inthis case,x z,sox4 z.
X y= z. Inthis case,x z,sox4 z.
X 'y z. Inthis case,x z by transitivity of ,sox 4 z.
In any case, we have thatx 4 z.

So4 is a partial order on X .

g f =idp. To see this, let = f(4)andv = g( ). For x;y 2 X, we have
xv yifandonly if x y orx =y, which in turn occurs if and only if x = y or
both x 4 y and x 6 y. This is equivalent to x 4 y, since ifx = y then x 4 y by
re exivity. Hence v and 4 are equal relations, sog f =idp.

f g=ids. To seethis, let4 = g( )and @= f (4). For x;y 2 X, we havex @y
if and only if x 4 y and x 6 y, which in turn occurs if and only if x 6 y and either
X yorx=y.Sincex 6 y precludesx = vy, this is equivalent to x y. Hence
and @are equal relations, sof g=ids.

Sof and g are mutually inverse functions, and we have established the required bijection.
O

In light of Proposition 5.2.4, we will freely translate between partial orders and strict
partial orders wherever necessary. When we do so, we will use (LATEX code: nprec) to
denote the “strict' version, and 4 to denote the "weak' version. (Likewise for@ (LATEX
code: nsqsubet).)

De nition 5.2.5

Let (X; 4) be a poset. A4-least element of X (or a least element of X with

respect to 4)is an element? 2 X (IATEX code: nbot) such that ? 4 x for all x 2 X.
A 4 -greatest element of X (or a greatest element of X with respectto 4)is an
element>2 X (IATEX code: ntop) such that x 4 > for all x 2 X.

Example 5.2.6
Some examples of least and greatest elements that we have already seen are:
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In (N;6), 0 is a least element; there is no greatest element.

Let n 2 N with n> 0. Then 1 is a least element of (];6), and n is a greatest
element.

(Z;6) has no greatest or least elements.

C

Proposition 5.2.7 says that least and greatest elements of posets are unique, if they exist.
This allows us to talk about “the' least or "the' greatest element of a poset.

Proposition 5.2.7
Let (X; 4) be a poset. IfX has a least element, then it is unique; and iiX has a greatest
element, then it is unique.

Proof. SupposeX has a least element. We prove that if “Ois another least element,
then "0="

So take another least element® Since" is a least element, we have 4 *2 Since %is a
least element, we have °4 *. By antisymmetry of 4, it follows that ~ = ©

Hence least elements are unique. The proof for greatest elements is similar, and is left
as an exercise. O

Exercise 5.2.8
Let X be a set. The poset P(X); ) has a least element and a greatest element; nd
both. C

Exercise 5.2.9
Prove that the least element of N with respect to divisibility is 1, and the greatest
element is 0. C

De nition 5.2.10
Let (X; 4) be a poset and letA X . A 4-supremum of A is an elements 2 X such
that

a4 sforeacha?2 A; and

If 92 X with a4 sCfor all a2 A, thens4 s0
A 4-inmum of A is an elementi 2 X such that
i 4 aforeacha?2 A; and

If i92 X with i°4 aforall a2 A, theni®4 i.

Example 5.2.11
The well-ordering principle states that if U N is inhabited then U has a6 -in mum,
and moreover the in num of U is an element ofU. C
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Exercise 5.2.12

Let X be a set, and letU;V 2 P (X). Prove that the -supremum offU;VgisU][ V,
and the -inmum of fU;VgisU\ V. C

Exercise 5.2.13

Let a;b2 N. Show that gcd(a; b) is an in mum of fa; bgand that Icm(a;b) is a supremum
of fa; by with respect to divishility. C

Example 5.2.14
Dene U=[0;1)=fx2 Rj06 x< 1g. We prove that U has both an in mum and a

supremum in the poset R;6).
Inmum. 0is an in mum for U. Indeed:
() Let x 2 U. Then 06 x by de nition of U.
(i) Let y 2 R and suppose thaty 6 x for all x 2 U. Theny 6 0, since 02 U.
so 0 is as required.

Supremum. 1 is a supremum forU. Indeed:
() Let x 2 U. Then x < 1 by de nition of U, so certainly x 6 1.

(i) Let y 2 R and suppose thatx 6 y for all x 2 U. We prove that 1 6 y by
contradiction. So suppose it is not the case that 16 y. Theny < 1. Since
x 6 y for all x 2 U, we have 06 y. But then

opy=YrY y*rt 1+l

1
2 2 2

But then Y3~ 2 U andy < ¥3L. This contradicts the assumption that x 6 y
for all x 2 U. So it must in fact have been the case that 16 vy.

so 1 is as required.

C

The following proposition proves that suprema and in ma are unique, provided they
exist.

Proposition 5.2.15
Let (X; 4) is a poset, and letA  X.

(i) If s;8°2 X are suprema ofA, then s = s®

(i) If i;i%2 X are inma of A, theni = i°

Proof. Supposes;s?are suprema ofA. Then:

a4 sforall a2 A, sos®4 s sinces is a supremum ofA;
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a4 sforall a2 A, sos4 s’sinces®is a supremum ofA.
Since4 is antisymmetric, it follows that s = s® This proves (i).
The proof of (ii) is almost identical and is left as an exercise to the reader. O

Notation 5.2.16 v
Let (X; 4) be a poset and letU X . Denote the 4 -in mum of U, if it exiW, by U
(LATEX code: nbigwedge); and denote the 4 -supremum ofU, if it exists, by U (IATEX
code: nbigvee ). Moreover, for x;y 2 X, write

N

fx;yg= x”"y (IATEX code: nwedgg; ~ fx;yg= x _y (IATEX code: nvee)

Example 5.2.17
Some examples of Notation 5.2.16 are as follows.

Let X beaset. In P(X); )wehaveUNV =U\ VandU _V =U]J V forall
U;V 2 P(X).

We have seen that, in (\;]), we havea” b=gcd(a;b) and a_ b=Icm( a; b) for all
a;b2 N.

In (R;6), we havea”™ b=minfa;by and a_ b= maxfa; bg.

De nition 5.2.18
A lattice is a poset (X; 4) such that every pair of elements of X has a4 -supremum
and a4 -in mum.

Example 5.2.19
We have seen that P(X); ), (R;6) and (N;]j) are lattices. C

Proposition 5.2.20 (Associativity laws for lattices)
Let (X; 4) be a lattice, and let x;y;z 2 X. Then

xM(yrz)=(xry)rz  and  x_(y_2z)=(x_y)_z
Proof. We prove x  (y ™ z) = (x ™ y) © z; the other equation is dual and is left as an

exercise. We prove that the setsfx;y » zg and fx * y; zg have the same sets of lower
bounds, and hence the same in ma. So let

Ly=fi2Xjidxandidynrzg and Lo=fi2X ji4 x"yandi4 zg
We prove L1 = L = L, where
L=fi2Xjidx;idyandi4d zg

First we prove L; = L. Indeed:
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L; L. To see this, supposeé 2 Lji. Then i 4 x by denition of L;. Since
i4yrz,andyrz4 yandy”™ z4 z, we havei 4 y andi 4 z by transitivity of
4.

L Li. To see this, supposd 2 L. Theni 4 x by de nition of L. Moreover,
i 4 yandi 4 z by denition of L, sothati 4 y” z by de nition of ~. Hence
i2L.

The proof that L, = L is similar. HenceL; = L,. But x* (y” z) is, by de nition of *,
the 4 -greatest element ofL 1, which exists since ; 4) is a lattice. Likewise, (x " y)" z
is the 4 -greatest element ofL ».

Sincel; = Ly, it follows that x~ (y”™ z) =(x” y)” z, as required. O

Exercise 5.2.21 (Commutativity laws for lattices)
Let (X; 4) be a lattice. Prove that, for all x;y 2 X, we have

XAy=yAx and X_y=y_ X

C
Exercise 5.2.22 (Absorption laws for lattices)
Let (X; 4) be a lattice. Prove that, for all x;y 2 X, we have
X_(x"y)=x and XM (X_y)=X
C
Example 5.2.23
It follows from what we've proved that if a;b;c2 Z then
gcd(a; gcd(b; 9) = ged(ged(a; b); c)
For example, takea = 882, b= 588 and ¢ =252. Then
gcd(b; 9 = 84, so gcd(a; gcd(b; 9) = gcd(882;84) = 42;
gcd(a; b) = 294, so ged(ged@; b); ©) = gcd(294; 252) = 42.
These are indeed equal. C

Distributive lattices and Boolean algebras

One particularly important class of lattice is that of a distributive lattice, in which
suprema and in ma interact in a particularly convenient way. This makes algebraic
manipulations of expressions involving suprema and in ma particularly simple.
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De nition 5.2.24
A lattice ( X; 4) is distributive if
xM(y_z)=(x"y)_(x*z) and x_(y"2z)=(x_y)" (x_2)
forall x;y;z 2 X.

Example 5.2.25
For any set X, the power set lattice (P(X); ) is distributive. That is to say that for
all U;V;W X we have

U\ (VI W)=(U\ V)[ (U\ W) and U[ (V\ W)=(U[ V)\ (U[ W)

This was the content of Example 2.2.34 and Exercise 2.2.35. C
Exercise 5.2.26
Prove that (N;j) is a distributive lattice. C

De nition 5.2.27
Let (X; 4) be a lattice with a greatest element> and a least element?, and let x 2 X ..
A complement for x is an elementy such that

XAfy=7? and x_y=>

Example 5.2.28
Let X be a set. We show that every elementJ 2 P (X) has a complement. C

Exercise 5.2.29

Let (X; 4) be a distributive lattice with a greatest element and a least element, and let
x 2 X . Prove that, if a complement for x exists, then it is unique; that is, prove that if
y;y°2 X are complements forX , then y = y° C

Exercise 5.2.29 justi es the following notation.

Notation 5.2.30
Let (X; 4) be a distributive lattice with greatest and least elements. If x 2 X has a
complement, denote it by : x.

De nition 5.2.31

A lattice (X; 4) is complemented if every elementx 2 X has a complement. A
Boolean algebra is a complemented distributive lattice with a greatest element and a
least element.

The many preceding examples and exercises concerning (X); ) piece together to
provide a proof of the following theorem.
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Theorem 5.2.32
Let X be a set. Then P(X); ) is a Boolean algebra.

Another extremely important example of a Boolean algebra is known as thé.indenbaum{
Tarski algebra, which we de ne in De nition 5.2.35. In order to de ne it, we need to
prove that the de nition will make sense. First of all, we x some notation.

De nition 5.2.33

Let P be a set, thought of as a set of propositional variables. WritelL (P) to denote the
set of propositional formulae with propositional variables in P [that is, the elements of
L (P) are strings built from the elements of P, using the operations of conjunction *),
disjunction (_) and negation (: ).

Lemma 5.2.34

Logical equivalence is an equivalence relation onL (P).

Proof. This is immediate from de nition of equivalence relation, since fors;t 2 L(P),
S tis dened to mean that s and t have the same truth values for all assignments of
truth values to their propositional variables. O

In what follows, the set P of propositional variables is xed; we may moreover take it
to be countably in nite, since all strings in L(P) are nite.

De nition 5.2.35

The Lindenbaum{Tarski algebra (for propositional logic ) over P is the pair (A; "),
where A = L(P)= and’ isthe relationon A dened by [s] " [t] ifandonlyifs) t
is a tautology.

In what follows, we will simply write [ Jfor[ ] .

Theorem 5.2.36
The Lindenbaum{Tarski algebra is a Boolean algebra.

Sketch proof. There is lots to prove here! Indeed, we must prove:

is a well-de ned relation on A: thatis, if s sPandt t%then we must have
[s] [t]if and only if [s9 " [t9.

is a partial order on A; that is, it is re exive, antisymmetric and transitive.

The poset (A; ) is a lattice; that is, it has suprema and in ma.
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The lattice (A; ") is distributive, has a greatest element and a least element, and
is complemented.

We will omit most of the details, which are left as an exercise; instead, we outline what
the components involved are.

The fact that ~ is a partial order can be proved as follows.

Re exivity of * follows from the fact that s) sis a tautology for all propositional
formulae s.

Symmetry of = follows from the fact that, for all propositional formulae s;t, if
s, tis atautology then s andt are logically equivalent.

Transitivity of ~ follows immediately from transitivity of ) .
The fact that (A; ") is a lattice can be proved by verifying that:

Given [s];[t] 2 A, the in mum [ s]” [t] is given by conjunction, namely [g] » [t] =
[s™ t].

Given [s];[t] 2 A, the supremum [g] _ [t] is given by disjunction, namely [s] _ [t] =
[s_t].

Finally, distributivity of suprema and inma in ( A; ") follows from the corresponding
properties of conjunction and disjunction; (A; ) has greatest elementfp) p] and least
element [ (p) p)], where p is some xed propositional variable; and the complement
of [s] 2 A is given by [: s]. O

We nish this section on orders and lattices with a general version of de Morgan's laws for
Boolean algebras, which by Theorems 5.2.32 and 5.2.36 implies the versions we proved
for logical formulae (Theorem 2.1.14) and for sets (Theorem 2.2.40).

Theorem 5.2.37 (De Morgan's laws)
Let (X; 4) be a Boolean algebra, and letx;y 2 X . Then

(M) =CGx)_Cy) and S (x_y)=(:x)"(CY)

Proof. We prove: (x*y)=(:x)_ (1Y) O
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Section 5.3
Well-foundedness and structural induction

Warning!

This section is not yet nished|do not rely on its correctness or completeness.

Section 1.3 introduced induction as a technique for proving statements which are true
of all natural numbers. We saw induction in three avours: weak induction, strong
induction and the well-ordering principle.

The principle of weak induction exploited the inductively de ned structure

of N. Every natural number can be obtained from 0 by repeatedly applying the
successor ("plus one') operation, so if a statemeri(n) is true of 0, and its truth is

preserved by the successor operation (i.e. fi(n) ) p(n +1) is true for all n 2 N),

then it must be true of all natural numbers

The well-ordering principle exploited the well-founded nature of the order rela-
tion < on N. It says that every inhabited subset ofN, so that any proposition p(n)
which is not true of all natural numbers n must have a least counterexample|this
led to the technique of proof by in nite descent.

In this section, we will generalise these techniques to other sets with arfnductively
de ned or a well-founded structure.

An inductively de ned set will, intuitively, be a set X built from some set of basic
elements (like zero) using a set ofconstructors (like the successor operation). We
will be able to perform induction on these sets to prove that a statementp(x) is

true for all x 2 X by proving that it is true for the basic elements, and then proving

that its truth is preserved by the constructors. This proof technique generalises
weak induction and is calledstructural induction .

A set X with a well-founded relation R will allow us to generalise proof by in nite

descent: if there is a counterexample to a logical formula(x), then there must be
one which is “minimal' with respect to R. This leads to a proof technique called
well-founded induction which has similarities with strong induction.

Structural induction is conceptually easier to comprehend than well-founded induction,
so we will introduce it rst. However, we will not be able to prove that it is a valid proof
technique until after we have introduced well-founded induction.

247



248 Chapter 5. Relations

Inductively de ned sets

In Section 1.3, we formalised the idea that the set of natural numbers should be what
is obtained by starting with zero and repeating the successor ('plus one') operation. In
a sense, zero was hasic elemeniwe posited its existence from the outset|and the
successor operatiorconstructed the remaining elements.

Although hidden beneath the surface, this method of de ning a set was implicitly used
in Section 2.1 when de ning propositional formulae. Here, ourbasic elementswere

propositional variables p; q;r;s;:::, and the remaining propositional formulae could be
constructed by repeatedly applying the logical connectives®, _,: and) .

De nition 5.3.1

An inductively de ned set is a set X equipped with a subsetB X of basic

elements and a setC of constructors , with the following properties:
(i) Each constructor f 2 C is a function f : X" ! X for somen 2 N. The natural
number n is called thearity of f .

(i) For all constructors f;g 2 C if m;n are the arities of f;g, respectively, and

thenm=n,f = gandx; = vy; forall i 2 [m].

(iif) For all constructors f 2 C, the image off is a subset ofX nB. That is, no

basic element is of the formf (x1;X2;:::;Xpn) for any constructor f and elements
X1;X2;::0Xp 2 X

(iv) Forall x 2 X nB, then x = f (x1;X2;:::;X,) for some constructorf 2 C of arity
n.

Example 5.3.2

The set N of natural number is inductively de ned by taking B = fOg and C = fsg,
wheres:N! Nis denedby s(n)= n+1forall n2 N. Indeed:

() s:N! Nis a constructor of arity 1.

(i) Let ;g 2 C. Thenf = g=s; and if x;y 2 N with s(x) = s(y), then x+1 = y+1,
SoOX =Y.

(iii) s[IN] NnfOg since 06 x +1 for any x 2 N.

(iv) For all x 2 NnfOgwe havex = x°+ 1 for some x°2 Njnamely, x°= x 1Jand
sox = s(x9.
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Exercise 5.3.3
Prove that the set E = f1;2;4;8;16:::g of powers of 2 is inductively de ned by taking
B =flgand C = fdg, whered:E! E isdenedby d(n)=2n forall n2 N. C

Exercise 5.3.4
Prove that N is inductively de ned by taking B =0 and C = ffg, wheref :N! N s
de ned by

8
21 ifn=0
f(n)=_2(n 1) if n=2%+1 for somek 2 N
“n 1 otherwise
for all n 2 N. C

To do: Example: propositional formulae

Theorem 5.3.5 (Principle of structural induction)
Let X be an inductively de ned set, and let p(x) be a logical formula concerning elements
of X. Suppose that

p(b) is true for all basic elementsb2 X ; and

Then p(x) is true for all x 2 X.

We will prove Theorem 5.3.5 on page 256.

Example 5.3.6
To do: Structural induction on N is weak induction. C

To do: Disjunctive normal form

To do: Generalise to quotients of inductive structures  induction on Z using 0 and
+; andonz>%using 1andp ( ).

We saw in Proposition 5.3.13 that the relation R on the set Z>° of positive integers
de ned for m;n 2 29 by

mRn n = pm for some primep > 0

is well-founded. We can use well-founded induction to prove a general formula for the
totient of an integer n.
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Theorem 5.3.7 (Formula for Euler's totient function)
Let n 2 Z be nonzero, and let' : Z ! N be Euler's totient function (see De nition

3.3.31). Then
Y 1
" (n) = jnj 1 -
pjn prime P

where the product is indexed over the distinct positive prime factorsp of n.

Proof. f n< Othen' (n)="( n),jnj= nandpjnifandonlyif pj n, sothe
theorem holds for negative integers if and only if it holds for positive integers.

We prove the formula for n > 0 by well-founded induction on Z>° with respect to the
relation R de ned in Proposition 5.3.13.

(BC) ' (1) = 1 and, since no prime p divides 1, we have Q 1

1 =1
pjl prime P
Hence
Y
1 1 - =1 1=1
pjl prime
as erquired.
(IS) Fix n> 1 and suppose that
Y
"(nN)=n 1 1
pjn prime P
Let g > O be prime. We prove that
Y 1
' (qn) = gn 1 -
pign prime P
Supposeqj n. Then by we have
"(gn)=q' (n) by Exercise 4.2.56
Y 1
= gn 1 - by induction hypothesis
pjn prime P
Y 1
=gn 1 -
pign prime P

The last equation holds because the fact thatgj n implies that, for all positive
primes p, we havepjn if and only if pjgn.
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Supposeq-n. Then g? n, so we have

"(gn) =" ()" (n) by Theorem 4.2.55
Y 1
="'(g n 1 = by induction hypothesis
pjn prime P
Y 1
=(q 1) n 1 = by Example 3.3.32
pjn prime 4
Y
=q 1 1 n 1 1 rearranging
0 pjn prime 1 P
Y
=qn @ 1 1a 1 1 rearranging
pjn prime P q
Y 1
= gn 1 = reindexing the product
pign

In both cases, we have shown that the formula holds.

By induction, we're done. O

Well-founded relations
First, we introduce the notion of a well-founded relation

De nition 5.3.8

Let X be a set. A relationR on X is well-founded if every inhabited subset of X has
an R-minimal element, in the following sense: for each inhabitedd X, there exists
m 2 U such that : (x R m) for all x 2 U. A relation that is not well-founded is called
ill-founded .

Example 5.3.9

The relation < on N is well-founded|this is just a fancy way of stating the well-ordering
principle (Theorem 1.3.37). Indeed, letU N be an inhabited subset. By the well-
ordering principle, there exists an elementm 2 U such that m 6 x for all x 2 U. But
this says precisely that: (x<m) for all x 2 U. C

Example 5.3.10
However, the relation < on Z is not well-founded|indeed, Z is an inhabited subset of
Z with no <-least element. C

Exercise 5.3.11
Let <! be the relation on N de ned for m;n 2 N by

m<ln n=m+1
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Prove that <1 is a well-founded relation onN. C

Proposition 5.3.12

Let X be a set and letR be a relation on X . R is well-founded if and only if there is no
in nite  R-descending chains; that is, there does not exist a sequence,()non Of elements
of X such that xp+1 R X for all n 2 N.

Proof. We prove the contrapositives of the two directions; that is, R is ill-founded if and
only if R has an in nite descending R-chain.

() ) Suppose thatR is ill-founded, and let U X be an inhabited subset with
no R-minimal element. De ne a sequence Xn)n2n Of elements ofX |in fact, of
U|recursively as follows:

Let xg 2 U be arbitrarily chosen.

R-minimal element, it contains an element which is related tox, by R; de ne
Xn+1 to be such an element.

Then (Xn)n2n is @an in nite R-descending chain

(( ) Suppose there is an in nite R-descending chain Xn)n2on. Dene U = fXxq |
n 2 Ng to be the set of elements in this sequence. Thetd has no R-minimal
element. Indeed, givenm 2 U, we must havem = x, for somen 2 N; but then
Xn+1 2 U and xp+1 R m. HenceR is ill-founded.

Proposition 5.3.13
Let Z>© be the set of positive integers and de ne a relationR on Z>° by

mRn n = pm for some primep > 0
for all m;n> 0. Then R is a well-founded relation onZ>°.
Proof. Suppose that n)n2n is an in nite R-descending chain inZ>°. Sincexp+1 R X

for all n 2 N, we havex, = px,+1 for some positive primep for all n 2 N. Since all
positive primes are greater than or equal to 2, this implies thatx, > 2xp+1 forall n 2 N.

We prove by strong induction onn 2 N that xg > 2"x,4+1 for all n 2 N.

(BC) We proved above that xg > 2x;. Hencexg > x 1 = 2%, as required.

(IS) Fix n 2 N and supposexg > 2"Xn+1. We want to show xg > 2" x40 . Well
Xn+1 > 2Xn+2, as proved above, and hence

IH
X0 > 2"%Xn+1 > 2" Xns2 = 2" X040
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as required.

By induction, we've shown that xo > 2"xp+1 for all n 2 N. But xp+1 > 0 forall n 2 N,
soxg > 2" for all n 2 N. This implies that xg is greater than every integer, which is a
contradiction.

So such a sequencexf)n2n Cannot exist, and by Proposition 5.3.12, the relationR is
well-founded. O

Exercise 5.3.14
Let X be a set and letR be a well-founded relation onX . Given x;y 2 X, prove that
not both x Ry andy R x are true. C

Theorem 5.3.15 (Principle of well-founded induction)
Let X be a set, letR be a well-founded relation onX, and let p(x) be a logical formula
concerning elements ofX . Suppose that for eachx 2 X, the following is true:

If p(y) is true for all R-predecessorsy of x, then p(x) is true.

That is, suppose for eachx 2 X that

[By 2 X; (yRx) p(yD]) p(x)

Then p(x) is true for all x 2 X.

Proof. Suppose that, for eachx 2 X, if p(y) is true for all R-predecessory of x, then
p(x) is true. Let
U=fx2Xj: pX)g

Towards a contradiction, suppose thatp(x) is false for somex 2 X . Then U is inhabited.
SinceR is well-founded, U has anR-minimal element m 2 U. Now

() p(m) is false, sincem 2 U.

(i) p(x) is true for all x 2 X with x R m. To see this, note that if p(x) is false and
X Rm, then x 2 U, so that m R x by R-minimality of m in U. Since alsox R m,
this contradicts Exercise 5.3.14.

Since p(x) is true for all x 2 X with x R m, by assumption we also have thatp(m) is
true. But this contradicts our assumption that m 2 U.

So it must in fact be the case thatU = ?, so that p(x) is true for all x 2 X. O

Exercise 5.3.16
Prove that the principle of <-induction on N is precisely strong induction. Speci cally,
prove that the following two statements are equivalent:
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(i) p(0) is true and, for all n 2 N, if p(k) is true for all k 6 n, then p(n + 1) is true;
(i) Forall n2 N, if p(k) is true for all k <n, then p(n) is true.

Strong induction says that we can deduce thatp(n) is true for all n 2 N from the
knowledge that (i) is true for all n 2 N; and <-induction tells us that p(n) is true for all
n 2 N from the knowledge that (ii) is true for all n 2 N. You should prove that (i) and
(ii) are equivalent. C

Example 5.3.17

Let <1 be the relation on N de ned in Exercise 5.3.11. We prove that the principle of
<Llinduction on N is precisely strong induction. Speci cally, prove that the following
two statements are equivalent:

() p(0) is true and, for all n 2 N, if p(n) is true then p(n + 1) is true;
(i) Forall n2 N, if p(k) is true for all k 2 N with k+1 = n, then p(n) is true.

Weak induction says that we can deduce thatp(n) is true for all n 2 N from the
knowledge that (i) is true for all n 2 N; and < '-induction tells us that p(n) is true for
all n 2 N from the knowledge that (ii) is true for all n 2 N. We prove that (i) and (i)
are equivalent.

(i) ) (ii). Suppose that p(0) and, for all n 2 N, if p(n) is true then p(n + 1) is
true. We will prove that

[Bm2N; (n=m+1) p(m))]) p(n)

is true for all n 2 N.
So x n2 N, and assume8m 2 N; (n=m+1) p(m)). We prove p(n) is true.
If n =0 then we're done, sincep(0) is true by assumption.

If n> O0thenn = m+1 for some m 2 N. By our assumption, we have
8m 2 N;(n=m+1) p(m)), and so in particular, p(m) is true. By the
weak induction step, we havep(m) ) p(m +1) is true. But then p(m +1) is
true. Sincen = m + 1, we have that p(n) is true.

In any case, we've proved thatp(n) is true, as required.
@ii) ) (). For n 2 N, denote the following statement by H (n)
Bm2N;(n=m+1) p(m))]) p(n)

AssumeH (n) is true for all n 2 N. We prove that p(0) is true and, for all n 2 N,
if p(n) is true then p(n + 1) is true.

p(0) is true. Indeed, for any m 2 N we have that 0 = m + 1 is false, so the
statement 0 =m+1) p(m)istrue. Hence8m 2 N; (0= m+1 ) p(m))
is true. SinceH (0) is true, it follows that p(0) is true.
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Fix n 2 N and supposep(n) is true. By H(n +1), we have that if p(n+1) is
true for all m 2 N with m+1 = n+1, then p(n+1)is true. But the only

m 2 N suchthat m+1 = n+1is n itself, and p(n) is true by assumption; so
by H(n + 1), we have p(n + 1), as required.

Hence the two induction principles are equivalent. C
Example 5.3.18

Structural induction from well-founded induction

We will now derive the principle of structural induction in terms of the principle of
well-founded induction. To do this, we need to associate to each inductively de ned set
X a corresponding well-founded relationRy , such that well-founded induction on Ry
corresponds with structural induction on X.

De nition 5.3.19
Let X be an inductively de ned set. De ne a relation Rx on X as follows: for all
X;y 2 X, XRx y if and only if

i 2 [n].

Example 5.3.20
Let N be the set of natural numbers, taken to be inductively de ned in the usual way.
Since the only constructor is the successor operation, we must have fon;n 2 N that

mRyn n=m+1

This is precisely the relation <! from Exercise 5.3.11. We already established that
structural induction on N is precisely weak induction (Example 5.3.6), and that well-
founded induction on <1 is also precisely weak induction (Example 5.3.17). C

Example 5.3.21
Let P be a set of propositional variables and letL (P) be the set of propositional formulae
built from variables in P and the logical operators”, _,) and: .

Then R = Ry (p) is the relation de ned for s;t 2 L(P) by letting s Rt if and only if
t2fsMu; u”™s;s_U, U_S;S) U uU) S;:sg
for someu 2 L(P). C
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The plan for the rest of this section is to demonstrate that structural induction follows
from well-founded induction. To do this, we prove that the relation Ry associated with
an inductively de ned set X is well-founded, and then we prove that structural induction
on X is equivalent to well-founded induction on Ry .

To simplify our proofs, we introduce the notion of rank. The rank of an elementx of an
inductively de ned set X is a natural number which says how many constructors need
to be applied in order to obtain x.

De nition 5.3.22
Let X be an inductively de ned set. The function rank : X ! N is de ned recursively
as follows:

If bis a basic element ofX , then rank(b) = 0.

Note that rank : X ! N is a well-de ned function, since by the conditions listed in
De nition 5.3.1, every element of X is either basic or has a unique representation in the

Example 5.3.23
The rank function on the inductively de ned set of natural numbers is fairly boring.
Indeed, it tells us that

rank(0) = 0; and
rank(n +1) =rank( n)+ 1 for all n2 N.

It can easily be seen that rankfi)) = n for all n 2 N. This makes sense, sinca can be
obtained from 0 by iterating the successor operatiom times. C

Lemma 5.3.24
Let X be an inductively de ned set. The relation Ry de ned in De nition 5.3.19 is
well-founded.

Proof. O

Proof of Theorem 5.3.5. To do: Write proof O

To do: Examples and exercises
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Section 6.1
Inequalities and bounds

We rst encountered the real numbers in Section 1.1, when the real numbers were intro-
duced using a vague (but intuitive) notion of an in nite number line (De nition 1.1.24):

This section will scrutinise the set of real numbers in its capacity as acomplete ordered
eld. Decomposing what this means:

A eld is a set with a notion of “zero' and “one', in which it makes sense to
talk about addition, subtraction, multiplication, and division by everything except
zero. Examples areQ, R, and Z=pZ when p is a prime number (but not when p
is composite). However,Z is not a eld, since we can't freely divide by nonzero
elements|for example, 1 2 Z and 22 Z, but no integer n satis es 2n = 1.

An ordered eld is a eld which is equipped with a well-behaved notion of order.
Both Q and R are ordered elds, but Z=pZ is not. We'll see why soon.

A complete ordered eldis an ordered eld in which every set with an upper bound
has aleast upper bound. As we will see,Q is not a complete ordered eld, but R
is.

We will rst establish a small set of rules (axioms) that a set (with appropriate structure)
should follow in order to be considered a complete ordered eld. The rest of the section
will be concerned with proving some theorems that will be extremely useful in real
analysis. Most of these theorems arenequalities, that is statements that exploit the
order structure of the reals. Later in the section, we will considersupremaand in ma ,
which exploit the completeness of the reals.

? Axiomatising the real numbers

First on our agenda is establishing a set of rules that characterise the reals.

First and foremost, we should be able to perform arithmetic with real numbers|real
numbers can be added, subtracted, multiplied and divided (except by zero). This is to
say that the real numbers are a eld |[Axioms 6.1.1 make this precise.

Axioms 6.1.1 (Field axioms)
Let X be a set equipped with elements 0 ("zero') and 1 (‘unit’), and binary operations
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Section 6.1. Inequalities and bounds 259

+ (Caddition”) and  ("multiplication’). The structure ( X; 0;1;+; )is a eld if it satis es
the following axioms:

Zero and unit

(F1) 0 6 1.

Axioms for addition

(F2) (Associativity) x+(y+ 2z)=(x+y)+ zforall x;y;z 2 X.
(F3) (ldentity) x+0= x forall x2 X.

(F4) (Inverse) For all x 2 X, there existsy 2 X such that x + y =0.
(F5) (Commutativity) x+y=y+ x forall x;y 2 X.

Axioms for multiplication

(F6) (Associativity) x (y z)=(x y) zforall x;y;z2 X.

(F7) (Identity) x 1= x forall x2 X.

(F8) (Inverse) For all x 2 X with x 6 0, there existsy 2 X such that x y = 1.
(F9) (Commutativity) x y=y x forall x;y 2 X.

Distributivity
(F10) x (y+2)=(x y)+(x 2z)forall x;y;z2 X.

Example 6.1.2

The rationals Q and the realsR both form elds with their usual notions of zero, unit,
addition and multiplication. However, the integers Z do not, since for example 2 has no
multiplicative inverse. C

Example 6.1.3
Let p > 0 be prime. The setZ=pZ (see De nition 5.1.38) is a eld, with zero element
[0], and unit element [1},, and with addition and multiplication de ned by

[@lp +[bp=[a+ b, and [a], [0y =[ab

for all a;b2 Z. Well-de nedness of these operations is immediate from Theorem 3.3.6
and the modular arithmetic theorem (Theorem 3.3.9).

The only axiom which is not easy to verify is the multiplicative inverse axiom (F8).
Indeed, if [a]p 2 Z=pZ then [a], 6 [0]p if and only if p-a. Butif p-athena? p, soa
has a multiplicative inverse u modulo p. This implies that [a], [u], = [au]p = [1]p. So
(F8) holds. C

Exercise 6.1.4
Let n> 0 be composite. Prove thatZ=nZ is not a eld, where zero, unit, addition and
multiplication are de ned as in Example 6.1.3. C
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Axioms 6.1.1 tell us that every element of a eld has an additive inverse, and every
nonzero element of a eld has a multiplicative inverse. It would be convenient if inverses
were unique whenever they exist. Proposition 6.1.5 proves that this is the case.

Proposition 6.1.5 (Uniqueness of inverses)
Let (X;0;1;+; )bea eldand let x 2 X. Then

(a) Supposey;z 2 X are such thatx+ y=0and x+ z=0. Then y = z.

(b) Supposex 60 and y;z2 X are suchthatx y=1and x z=1. Theny= z.

Proof of (a). By calculation, we have

y=y+0 by (F3)
= y+(x+ 2 by de nition of z
=(y+Xx)+ z by associativity (F2)
=(x+y)+ z by commutativity (F5)
=0+ z by de nition of y
=z+0 by commutativity (F5)
=z by (F3)

SO indeedy = z.

The proof of (b) is essentially the same and is left as an exercise. O

Since inverses are unique, it makes sense to have notation to refer to them.

Notation 6.1.6

Let (X; 0;1;+; )be a eldand let x 2 X. Write  x for the (unique) additive inverse of
x and, if x 6 0 write x ! for the (unique) multiplicative inverse of x.

Example 6.1.7
In the elds Q and R, the additive inverse x of an elementx is simply its negative,
and the multiplicative inverse x ! of somex 6 0 is simply its reciprocal % C
Example 6.1.8
Let p > O be prime and let @], 2 Z=pZ. Then [a], = [ a]p and, if p - a, then
[@al, 1= [u]p, whereu is any integer satisfyingau 1 mod p. C

Exercise 6.1.9
Let (X; 0;1;+; ) be a eld. Provethat ( x)= x forall x2 X, and that (x ) 1= x
for all nonzerox 2 X. C

Example 6.1.10
Let (X; 0;1;+; ) be a eld. We prove thatif x 2 X thenx 0=0. Well, 0=0+0 by
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(F3). Hencex 0= x (0+0). By distributivity (F10), we have x (0+0) =( x 0)+(x 0).
Hence
x 0=(x 0)+(x 0)

Lety= (x 0). Then

0=x 0+y by (F4)
=((x 0O)+(x O)+y as above
=(x 0)+((x 0)+vy) by associativity (F2)
=(x 0)+0 by (F4)
=x 0 by (F3)
so indeed we havex 0 =0. C

Exercise 6.1.11
Let (X; 0;1;+; )be a eld. Provethat ( 1) x= xforall x2 X,andthat( x) =
(x 1) for all nonzerox 2 X. C

What makes the real numbers useful is not simply our ability to add, subtract, multiply
and divide them; we can also compare their size|indeed, this is what gives rise to the
informal notion of a number line. Axioms 6.1.12 make precise exactly what it means for
the elements of a eld to be assembled into a "number line".

Axioms 6.1.12 (Ordered eld axioms)
Let X be a set, Q1 2 X be elements, + be binary operations, and6 be a relation
on X. The structure (X; 0;1;+; ;6) is an ordered eld if it satis es the eld axioms
(F1){(F10) (see Axioms 6.1.1) and, additionally, it satis es the following axioms:
Linear order axioms

(PO1) (Reexivity) x6 x forall x 2 X.

(PO2) (Antisymmetry) For all x;y 2 X,if x6 yandy 6 x, thenx =y.

(PO3) (Transitivity) For all x;y;z2 X,if x6 yandy 6 z,thenx 6 z.

(PO4) (Linearity) For all x;y 2 X, either x 6 y ory 6 x.

Interaction of order with arithmetic
(OF1) Forall x;y;z2 X,if x6 y,thenx+z6 y+ z.
(OF2) Forall x;y 2 X,if06 xand 06 y, then 06 xy.

Example 6.1.13
The eld Q of rational numbers and and the eld R of real numbers, with their usual
notions of ordering, can easily be seen to form ordered elds. C

Example 6.1.14
We prove that, in any ordered eld, we have 06 1. Note rst that eitherO 6 10r16 0
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by linearity (PO4). If 0 6 1 then we're done, so suppose & 0. Then 06 1; indeed:

0=1+( 1) by (F4)
6 0+( 1) by (OF1), since 16 0
=( 1)+0 by commutativity (F5)
= 1 by (F3)

By (OF2), it follows that 0 6 ( 1)( 1). But ( 1)( 1) = 1 by Exercise 6.1.11, and
hence 06 1. Since 16 0 and 06 1, we have 0 = 1 by antisymmetry (PO2). But this
contradicts axiom (F1). Hence 06 1. In fact, 0 < 1 since 06 1. C

We have seen thatQ and R are ordered elds (Examples 6.1.7 and 6.1.13), and thaZ=pZ
is a eld for p > 0 prime (Example 6.1.3). The following proposition is an interesting
result proving that there is no notion of “ordering' under which the eld Z=pZ can be
made into an ordered eld!

Proposition 6.1.15
Let p > O be prime. There is no relation6 on Z=pZ which satis es the ordered eld
axioms.

Proof. We just showed that [0] 6 [1]. It follows that, for all a2 Z, we have p] 6 [a]+[1];
indeed:

[a] = [a] +[O] by (F3)
6 [a] +[1] by (OF1), since [0] 6 [1]
=[a+1] by de nition of + on Z=pZ

It is a straightforward induction to prove that [ a] 6 [a+ n] for all n 2 N. But then we
have

[1]6 [1+(p DI=[p]=[0]

so [0]6 [1] and [1]6 [O]. This implies [0] = [1] by antisymmetry (PO2), contradicting
axiom (F1). O

Exercise 6.1.16
Let (X; 0;1;+; ) be a eld. Prove that if X is nite, then there is no relation 6 on X
such that (X; 0;1;+; ;6) is an ordered eld. C

Theorem 6.1.17 below summarises some properties of ordered elds which will be useful
in our proofs. Note, however, that this is certainly not an exhaustive list of elementary
properties of ordered elds that we will use in our subsequent proofs|to explicitly state
and prove all of these would not make for a scintillating read.

262



Section 6.1. Inequalities and bounds 263

Theorem 6.1.17
Let (X; 0;1;+; ;6) be an ordered eld. Then
(@ Forall x;y2 X,x6 yifandonlyif06y x;

(b) Forall x2 X, x6 06 xorx6 06 x;

(c) Forall x;x%y;y°2 X, if x 6 x%andy 6 y° then x + y 6 x%+ y°
(d) Forall x;y;z2 X,if06 xandy 6 z, then xy 6 xz;

(e) For all nonzerox 2 X, if06 x,then 06 x 1.

f) For all nonzero x;y 2 X, if x6 y,theny 16 x 1.
( y y y

Proof of (a), (b) and (e).

(@ () ) Supposex 6 y. Then by additivity (OF1), x+( x) 6 y+( Xx), thatis
06y Xx.(( )Suppose 06 y x. By additivity (OF1), 0+ x6 (y Xx)+ Xx; that
is, X 6.

(b) We know by linearity (PO4) that either 0 6 x or x 6 0. If 0 6 X, then by (OF1)
we have 0+( X) 6 x+( Xx),thatis x 6 0. Likewise, ifx 6 0then 06 x.

(e) Suppose 06 x. By linearity (PO4), either 0 6 x Yorx 16 0. If x 16 0, then
by (d) we havex ' x 6 0 x, thatis 1 6 0. This contradicts Example 6.1.14, so
we must have 06 x 1.

The proofs of the remaining properties are left as an exercise. O

We wanted to characterise the reals completely, but so far we have failed to do solindeed,
Exercise 6.1.13 showed that bothQ and R are ordered elds, so the ordered eld axioms
do not su ce to distinguish Q from R. The nal piece in the puzzle is completeness This
single additional axiom distinguishesQ from R, and in fact completely characterisesR
(see Theorem 6.1.19).

Axioms 6.1.18 (Complete ordered eld axioms)

Let X beaset,012 X be elements, + be binary operations, and6 be a relation onX ..
The structure (X; 0;1;+; ;6)is acomplete ordered eld ifitis an ordered eld|that
is, it satis es axioms (F1){(F10), (PO1){(PO4) and (OF1){(OF2) (see Axioms 6.1.1 and
6.1.12)|and, in addition, it satis es the following completeness axiom

(C1) Let A X. If A has an upper bound, then it has a least upper bound. Speci cally,
if there existsu 2 X such that a6 u for all a2 A, then there existss 2 X such
that

a6 sforalla2 A; and
If s°2 X is such thata 6 sPfor all a2 A, then s6 s®
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We call such a values 2 X a supremum for A.

Theorem 6.1.19
The real numbers R;0;1;+; ;6) form a complete ordered eld. Moreover, any two
complete ordered elds are essentially the samé. O

2The notion of “sameness' here isisomorphism (speci cally, isomorphism of ordered elds), a concept
which is beyond the scope of these notes.

The proof of Theorem 6.1.19 is intricate and far beyond the scope of these notes, so is
omitted. What it tells us is that it doesn't matter exactly how we de ne the reals, since
any complete ordered eld will do. We can therefore proceed with con dence that, no
matter what notion of “real numbers' we settle on, everything we prove will be true of
that notion. This is for the best, since we haven't actually de ned the set R of real
numbers at all!

The two most common approaches to constructing a set of real numbers are:

Dedekind reals. In this approach, real numbers are identi ed with particular
subsets ofQlinformally speaking, r 2 R is identied with the set of rational
numbers less thanr.

Cauchy reals. In this approach, real numbers are identi ed with equivalence
classes of sequences of rational numbers|informally speakingr 2 R is identi ed
with the set of sequences of rational numbers which converge to (in the sense of
De nition 6.2.7).

Discussion of Dedekind and Cauchy reals is relegated to the appendices of these notes|
see Section B.2.

We will focus on the reals in their capacity as a complete ordered eld towards the end
of this section, when we study suprema and in ma. However, the completeness axiom
(C1) will not be needed in any of our proofs until that point.

Magnitude and scalar product

In this part of the section, we home in on sets of the formR", for n 2 N. Elements of R"

dimensional space

0-dimensional space is a single point. The seR® has one element, namely the
empty sequence (), so this makes sense.
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1-dimensional space is a line. This matches our intuition thatR = R* forms a line.

2-dimensional space is glane. The elements ofR? are pairs (x;y), where x and
y are both real numbers. We can interpret the pair (x;y) as coordinates for a
point which is situated x units to the right of (0 ; 0) and y units above (G; 0) (where
negative values ofx or y reverse this direction)|see Figure 6.1.

(32 (22 (L2 (©2 @2 @2 @2
(3D (21 (Ly @1 @) (@) @1
(30 (20 (Lo ©0 @0 @0 @0

(33 1) (21 (LD O G @1 &1
Figure 6.1: Some points inR?

With this intuition in mind, we set up the following notation.

Notation 6.1.20

Let n 2 N. Elements of R" will be denoted x; y;2;::: (IATEX code: nvec) and called
(n-dimensional ) vectors . Given a vector x 2 R", we write x; for the it" component
of %, so that

by 0.

Moreover, if x;¥2 R" and a2 R we write

Example 6.1.21
For all ¥ 2 R", we have

¥+ 0=% and 1Ix= %
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De nition 6.1.22
Let x 2 R". The magnitude of x is the real number kxk (IATEX code: nlVert nvec X

nrVert ) de ned by v

p)@ s Vo 2
Xp= XptXxot X

i=1

kxk =

Given vectors %; ¥ 2 R", the distance from x to ¥ is de ned to be ky xk. Thus the
magnitude of a vector can be thought of as the distance from that vector to the origin.

Example 6.1.23
In R?, De nition 6.1.22 says that

p -
k(x;y)k= x2+y?2

This matches the intuition obtained from the Pythagorean theorem on the sides of right-
hand triangles. For example, consider the triangle with vertices (00), (4;0) and (4; 3):

(4,3)

(0;0) (4;0)

The hypotenuse of the triangle has magnitude
pP—— _
k(4;3)k = 42+32= p25=5

C

Exercise 6.1.24
Let x;¥2 R". Prove that kx yk= ky xk. That is, the distance from % to ¥y is equal

to the distance from ¥y to x. C
Exercise 6.1.25
Prove that if x 2 R then the magnitude k(x)k is equal to the absolute valuejx;. C
Exercise 6.1.26
Let x 2 R". Prove that kxk =0 if and only if x= 0. C

266



Section 6.1. Inequalities and bounds 267

The triangle inequality and the Cauchy{Schwarz inequality

The rst, and simplest, inequality that we investigate is the (one-dimensional version of
the) triangle inequality (Theorem 6.1.28). It is so named because of a generalisation to
higher dimensions (Theorem 6.1.38), which can be interpreted geometrically as saying
that the sum of two side lengths of a triangle is greater than or equal to the third side
length.

The triangle inequality is used very frequently in mathematical proofs|you will en-
counter it repeatedly in Sections 6.2 and 6.3|yet its proof is surprisingly simple.

Before we can prove the triangle inequality, we need the following fact about square
roots of real numbers.

Lemma 6.1.27

Letx;y2 R. If06 x6 v, thenpi

6Py.

Broof. Suppase 6 x 6 y. Note that, by de nition of the square root symbol, we have
Xx>0and"y> 0.

P

Supposep x> "y. By two applications of Theorem 6.1.17(d), we have

y=Py Py<Px Py<Px Px

X

so that y < x. But this contradicts the assumption that x 6 vy. Hencep X 6 P y, as
required. O

Theorem 6.1.28 (Triangle inequality in one dimension)
Let x;y 2 R. Then jx + yj 6 jXj + jyj. Moreover, jx + yj = jxj + jyj if and only if x and
y have the same sign.

Proof. Note rstthat xy 6 jxyj; indeed,xy and jxyj are equal ifxy is non-negative, and
otherwise we havexy < 0 < jxyj. Also x? = jxj? and y? = jyj2. Hence
(x+y)? = x>+ 2xy + y? 6 jxj> +2jxyj + jyj* = (jxj + jyj)?
Taking (honnegative) square roots yields
X+ yj 6 jixj+ jyii
by Lemma 6.1.27. Butjxj + jyj > 0, sojjXj + jyjj = jXj + jyj. This completes the rst
part of the proof.

Equality holds in the above if and only if Xy = jxyj, which occurs if and only if xy > 0.
But this is true if and only if x andy are both non-negative or both non-positive|that
is, they have the same sign. O
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Example 6.1.29
Let x;y 2 R. We prove that
S D N
I+jx+yj  1+jxj 1+]jyj

First note that, if 0 6 s6 t, then

S t
6
1+s 1+t
To see this, note that
s6t) 1+s6 1+t rearranging
1 1 .
6 since 1+s;1+t>0
) 1+t 1+s
1 1 .
) 1 1+s 61 T+ rearranging
) S t rearrangin
T+s 1+t ging

Now letting s = jx + yj and t = jxj + jyj, we haves 6 t by the triangle inequality, and
hence
S PSS L N '/ IR U B |
1+ix+yl  1+ixj+jyi  1+ixj+jyi  1+jxj 1+]jyj

as required. C

Exercise 6.1.30
Let n 2 N and let x; 2 R for eachi 2 [n]. Prove that

X X
Xi 6 JXij
i=1 i=1
with equality if and only if the numbers x; are either all positive or all negative. C

Exercise 6.1.31
Let x;y 2 R. Prove that

iXj Jyii6jx
C
We will generalise the triangle inequality to arbitrary dimensions in Theorem 6.1.38.

Our proof will go via the Cauchy{Schwarz inequality (Theorem 6.1.35). To motivate

the Cauchy{Schwarz inequality, we introduce another geometric notion called thescalar
product of two vectors.
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De nition 6.1.32
Let x;%¥ 2 R". The scalar product (or dot product ) of x with ¥ is the real number
% ¥ (ILATEX code: ncdot) de ned by

xn
X y= Xi¥Yi = X1y1 + X2y2 + + XnYn
i=1
Example 6.1.33
Let x2 R". Then x x = kxk2. Indeed

x %= x2= kxk?
i=1
C
Exercise 6.1.34
Let x;¥;2; w2 R" and let a; b;c;d2 R. Prove that
(ax+ by) (cz+ dw)= ac(x 2+ ad(x w)+ bdy 2)+ bdy w)
C

Intuitively, the scalar product of two vectors % and y measures the extent to whichx
and ¥ fail to be orthogonal In fact, if is the acute angle formed between the lines;
and ",, where "1 passes througho and % and ", passes throughO and ¥, then a formula
for the scalar product of x and ¥ is given by

% ¥ = kxkkyk cos

kxk cos

Evidently, % and ¥ are orthogonal if and only if cos =0, in which casex ¥ =0 as well.
We cannot prove this yet, though, as we have not yet de ned trigonometric functions or
explored their properties, but hopefully this provides some useful intuition.
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The Cauchy{Schwarz inequality provides a useful comparison of the size of a scalar
product of two vectors with the magnitudes of the vectors.

Theorem 6.1.35 (Cauchy-Schwarz inequality)
Let n2 N and let x;;y; 2 R for eachi 2 [n]. Then

j% ¥j 6 kxkkyk
with equality if and only if ax = byfor somea;b2 R which are not both zero.
Proof. If ¥ = 0, then this is trivial: both sides of the equation are equal to zero! So
assume thaty 6 0. In particular, by Exercise 6.1.26, we havekyk > 0.
Xy

Dene k = PRVl Then
06 kx kyk? since squares are nonnegative
=(x ky) (x ky) by Example 6.1.33
=(x %) 2k(x ¥)+ Ky ¥) by Exercise 6.1.34
2
k2 XY by de nition of k

kyk?

Multiplying through by kyk?, which is non-negative and therefore doesn't change the
sign of the inequality, yields

06 kxk?kyk? (% ¥)2
which is equivalent to what was to be proved.

Evidently, equality holds if and only if kx kyk =0, which by Exercise 6.1.26 occurs if
and only if x ky =0. Now:

If x ky=0,then we have

x ky=0

Xy, _ "
, X —kykzy 0 by de nition of k
ko oyikPx= (% y)y rearranging

If ¥ 6 O then let a = kyk? and b= x #¥; otherwise, leta =0 and b= 1. In both
cases, we havex = byand a; b are not both zero.

If ax = byfor somea;b2 R not both zero, then either:

a=0and b6 0, in which case ¥ = 0 and we have equality in the Cauchy{
Schwarz inequality; or
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a6 0, in which case y = 2x. Write c= 2. Then

x ¥ = jx (cx)

= je(x )] by Exercise 6.1.34
= jojkxk? by Example 6.1.33
= kxkkcxk rearranging

= kxkkyk

In either case, we have equality in the Cauchy{Schwarz inequality.
So equality holds if and only if ax = byfor somea;b2 R not both zero. O

Example 6.1.36
Let a;b;c2 R. We'll prove that

ab+ bc+ ca6 a?+ P + ¢?
and examine when equality holds.
Letting % = (a;b;9 and ¥ = ( b;c; g yields
% ¥ = ab+ bc+ ca

and

p p
kxk= a2+ PP+ c2= PP+ c?+ a2= kyk
Hencekxkkyk = a? + b? + c2. By the Cauchy{Schwarz inequality, it follows that

x y= ab+ bc+ cab a’+ P+ ¢ = kxkkyk

as required. Equality holds if and only if k(a;b;9 = “(b;c;d for somek;” 2 R not
both zero. We may assumek 6 O|otherwise, swap the vectors % and ¥y in what follows.

Then, letting t = © we have

k(a;b;9 = "(b;c; 9

, (a;b;9 = (tb;tc;ta) by de nition of t

., (a;b; 9 = (t%c;t?a;t%b) substituting a = tb etc.

. (a;b;9 = (t3a;t°b; 0 substituting a = tb etc. again
. x= 3%

This occurs if and only if either (a;b;9 = (0;0;0), or t = 1, in which case
(a;b;9 = (th;tc;ta) = (b;c;a
So equality holds if and only ifa= b= c. C

271



272 Chapter 6. Real analysis

Exercise 6.1.37
Letr 2 N and let aj;ap;:::;a 2 R be such thata? + a3+ + a2 = 6. Prove that

(a1 +2a,+ +nap)?6 n(n+1)2n+1)

and determine when equality holds. C

We now use the Cauchy{Schwarz inequality to generalise the one-dimensional version of
the triangle inequality (Theorem 6.1.28) to arbitrary ( nite) dimensions.

Theorem 6.1.38 (Triangle inequality)
Let x;%¥2 R". Then
kx+ yk 6 kxk + kyk

with equality if and only if ax = byfor some real numbersa; b> 0.

Proof. We proceed by calculation:

kx+ yk2 = (x+ y) (x+¥) by Example 6.1.33
=(%x +2(x ¥)+(¥ ¥ by Exercise 6.1.34
6 (x x)+2j% ¥+(y¥ ¥ sinceab jajforalla2 R
6 kxk?+2kxkkyk + kyk?> by Exercise 6.1.33 and Cauchy{Schwarz
= (kxk + kyk)? rearranging

Taking (nonnegative) square roots of both sides yields
kx+ yk 6 kxk + kyk
by Lemma 6.1.27, as required.

Equality holds if and only if the two ~ 6 ' symbols in the above derivation are in fact "='
symbols.

The rst inequality is equality if and only if % ¥ = jx ¥j, which holds if and only
if x y> 0.

The second inequality is equality if and only if equality holds in the Cauchy{
Schwarz inequality. In turn, this occurs if and only if ax = by for somea;b2 R.
We may, moreover, assume thata > 0]if not, replace a and b by their negatives.

If a=0 then we can takeb=0. If a> 0, then by Example 6.1.33 and Exercise 6.1.34,

we have

b b

% —% = —kxk?
a a
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which is non-negative if and only if b> 0, since we are assuming thaa > 0.

Thus, equality holds in the triangle inequality if and only if ax = byfor somea;b> 0. [

This general version of the triangle inequality has a geometric interpretation in terms
oflyou guessed it|triangles. Any three points 4a;b;€2 R" form a (potentially at)
triangle:

The side lengthsu; v; w are given by the following equations:
u=kb sk v=ke Bk w=ka K

The triangle inequality says tells us that u 6 v+ w. Indeed:

u=KkKb =k by de nition of u
=k(db ©+(t 9k rearranging
6 Kb €&+ ke &k by the triangle inequality
= ke bk+ ka €k by Exercise 6.1.24
=v+w by de nition of v and w

That is, the triangle inequality says that the sum of two side lengths of a triangle is
greater than or equal to the third side length. Moreover, it tells usu = v + w precisely
whenk(a €= (€ 1) for somek; > 0. If k =0 then

€ = b = 0a+(1 O0Ob

if k> 0, thenk+ ~> 0, so we have

k
k+‘ﬂ+ k+‘b = k+‘a+ 1 e

€ =
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Examining this a bit more closely yields that u = v+ w if and only if
€e=ta+(1l t)b

for some 06 t 6 1, which is to say precisely thate lies on the line segment betweera
and . In other words, equality holds in the triangle inequality only if the three vertices

of the triangle are collinear, which is to say that the triangle whose vertices are the
points 8, Dand € is at.

Inequalities of means

Our goal now is to explore di erent kinds of average|speci cally, meangof nite sets

of non-negative real numbers. We will compare the relative sizes of these means with
respect to one-another, with emphasis on three particular kinds of mean: tharithmetic
mean (De nition 6.1.39), the geometric mean(De nition 6.1.41) and the harmonic mean
(De nition 6.1.49). These means in fact assemble into a continuum of means, called
generalised meangDe nition 6.1.57), all of which can be compared with one another.

De nition 6.1.39

Let n > 1. The (arithmetic ) mean of real numbersxy;:::;Xn is
1 X X__x1+x2+ + Xn
n ! n

i=1

Example 6.1.40
The arithmetic mean of the numbers C

De nition 6.1.41

\
u

Yl
L
i=1

The following theorem is commonly known as theAM{GM inequality

Theorem 6.1.42 (Inequality of arithmetic and geometric means)

|—&—)

arithmetic mean

pi
n X Xq 6
| ZHz3

geometric mean
with equality if and only if x; = = Xn.
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Proof whenn = 2. We need to show that, if x;y 2 R with x;y > 0, then

P__. Xty
xy672

with equality if and only if x = vy.
First note that the square roots of x and y exist since they are non-negative. Now

p

06 (p X y)? since squares are nonnegative
=(p§)2 P Py +(Py)? expanding
=X 2p Xy +y rearranging
Rearranging the inequality 06 x oP Xy + y yields the desired result.

if P Xy = X‘“Ty then we can rearrange the equation as follows:
pW:x;y) 2pW=x+y multiplying by 2

) 4xy = x2+2xy + y? squaring both sides
) X2 2xy+y?=0 rearranging
) (x y)?=0 factorising
) y=0 sincea?=0) a=0for a2 R
) X=y rearranging

So we have proved both parts of the theorem. O

Example 6.1.43
We use the AM{GM inequality to prove that the area of a rectangle with xed perimeter
is maximised when the rectangle is a square.

Indeed, x a perimeter p > 0, and let x;y > 0 be side lengths of a rectangle with
perimeter p|that is, X and y satisfy the equation 2 + 2y = p. The area a of the
rectangle satis esa = xy. By the AM{GM inequality, we have

- Xty _p°
a=xy6 > 16

Equality holds if and only if x = vy, in other words, if and only if the rectangle is a
square. C

Exercise 6.1.44
Let a;b > 0 be real numbers. Prove that

a?+ I?
2

> ab. C
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Example 6.1.45
Let x > 0. We nd the minimum possible value of x + % By the AM{GM inequality,
we have r

x+ 252 x 2-2"5-6

X X
with equality if and only if x = g which occurs if and only if x = 3. Hence the minimum
value of x + 2 whenx > 0is 6. C

Exercise 6.1.46

X
Let x> 0 and letn 2 N. Find the minimum possible value of xX. C
k= n

Exercises 6.1.47 and 6.1.48 complete the proof of the AM{GM inequality (Theorem
6.1.42). Before proceeding with the exercises, let's x some notation: for each 2 N,
let pamiem (n) be the assertion that the AM{GM inequality holds for collections of n
numbers; that is, pamiem (n) is the assertion:

For all x1;x2;::::Xn > 0, we have
4
1 X Y
— Xj 6 E Xi
i=1 i=1
with equality if and only if X1 = X2 = = Xn.
Note that we already proved pamiem (2).
Exercise 6.1.47
Let r 2 N and let x1;X2;:::; X2 2 R. Write
Y
1 X H Y
a= - X and g= Xi
i=1 i=1
for the arithmetic and geometric means, respectively, of the numbersy;:::; X;; write
U
1 %r ?r
al= = xi and ¢°= 7 Xi
i=r+1 i=r+l
for the arithmetic and geometric means, respectively, of the numbers; 1 ;:::;X2; and
write v
1 %r y Yr
=— X and G= % ¥
2r .
i=1 i=1
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for the arithmetic and geometric means, respectively, of all the numbersy;:::; Xy
Prove that 0
a+ a P —
A= 3 and G= gd
Deduce that, for eachr 2 N, if pamem (r) is true then pamem (2r) is true. Deduce
further than pamiem (2™) is true for all m 2 N. C
Exercise 6.1.48
Letr > 2andletxy;:::;Xr 12 N. Dene
1 X*!
Xr = X|
r 1 -1
Prove that
1 X
- Xi = Xy

Y y1
X; 6 Xi = Xi Xy
i=1 i=1
with equality if and only if x;3 = X = = Xr. Deduce that pamiem (r) implies
Pamiem (r 1). Use Exercise 6.1.47 to deduce further thatpamim (n) is true for all
n> 1. C

We now introduce another kind of mean, called theharmonic mean

De nition 6.1.49

Let n 2 N. The harmonic mean of nonzero real numbersxy; Xo;:::;Xn IS
I
1
11X n
= X =
n ! e
i=1 X1 X2 Xn

The harmonic mean of two nonzero real numberx and y has a simpler expression:

x L+y 1 b oy
2 Xty

The harmonic mean arises naturally when considering
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Example 6.1.50

The cities of York and Leeds are locatedd > 0 miles apart. Two cars drive from York
to Leeds, then immediately turn around and drive back. The two cars depart from York
at the same time and arrive back in York at the same time.

The rst car drives from York to Leeds at a constant speed ofu miles per hour,
and drives back to York at a constant speed ofv miles per hour.

The second car drives from York to Leeds and back again at the same constant
speed ofw miles per hour.

According to the following formula from physics:

speed time = distance

d,d

the time spent driving by the rstcaris ;+ |

ic 2d
caris ;.

, and the time spent driving by the second

Since the cars spend the same amount of time driving, it follows that

2d d d 2uv
= —_ 4+ = ) W =

w u Vv u+v

That is, the second car's speed is the harmonic mean of the two speeds driven by the
rst car. C

As might be expected, we now prove a theorem relating the harmonic means with the
other means we have established so far|this theorem is known as theGM{HM in-

equality .

Theorem 6.1.51 (Inequality of geometric and harmonic means)

Let n 2 N and x1;X2;:::;Xn > 0. Then
n 6 Rxoa xq
B A T P
= 2 {z 1 geometric mean

harmonic mean

with equality if and only if x; = = Xn.

Proof whenn = 2. We need to prove that if x;y > 0, then

2 p__
7;4.;6 Xy
Xy

This is almost immediate from the AM{GM inequality (Theorem 6.1.42). Indeed, since
all numbers in sight are positive, we can take reciprocals to see that this inequality is
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equivalent to the assertion that

1 x t+y !
P’ 2
1 P—a— S : . .
But P = X 'y S0 this is immediate from the AM{GM inequality. O
Exercise 6.1.52
Prove the GM{HM inequality for general values of n 2 N. C

Another example of a mean that has applications in probability theory and statistics is
that of the quadratic mean

De nition 6.1.53
Let n 2 N. The quadratic mean (or root-mean-square ) of real numbers

1
X0 2 2 2 2
1 2 _ XptXz+t tXj
n

The following theorem is, predictably, known as the QM{AM inequality (or RMS{
AM inequality ); it is a nice application of the Cauchy{Schwarz inequality.

Theorem 6.1.54 (Inequality of quadratic and arithmetic means)

r
2 2 2

|—&—1 | A

arithmetic mean quadratic mean

with equality if and only if x; = = Xn.

Proof. De ne
X=(X1;X2;::0;%Xn) and y=(1;1;:::;1)
Then
X1+ Xo+ +Xnp= % ¥ by de nition of scalar product
6 kxkkyk by Cauchy{Schwarz
q

P— . .
= x?+x3+ +x2 " n evaluating the magnitudes
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Dividing through by n yields
r
X1t Xo+  +Xn o X2+ X3+  + X3
n n

as required. Equality holds if and only if equality holds in the Cauchy{Schwarz inequal-
ity, which occurs if and only if

for some a;b 2 R not both zero. If a = 0 then b = 0, so we must havea 6 0.
Hence equality holds if and only ifx; = g for all i 2 [n]]in particular, if and only if
X1 = Xo = = Xp. O

To summarise, what we have proved so far is

harmonic  6:1:51)  geometric (6:142)  arithmetic (6154  quadratic
mean mean mean mean

with equality in each case if and only if the real numbers whose means we are taking are
all equal.

The following exercise allows us to bookend our chain of inequalities with the minimum
and maximum of the collections of numbers.

Exercise 6.1.55

Let n> 0 and let x1;X»;:::; X be positive real numbers. Prove that
L U
. X 1 X 2
minfxg;xz;::5;xng6 = x ! and maxfXi;X2,1:::Xng > x2
i=1 i=1
with equality in each case if and only ifx; = x» = = Xp. C

? Generalised means

We conclude this section by mentioning a generalisation of the results we have proved
about means. We are not yet ready to prove the results that we mention; they are only
here for the sake of interest.

De nition 6.1.56
The extended real number line  is the (ordered) set [1 ;1 ], de ned by

[1 ;2]=R[f1 ;1g

whereR is the set of real numbers with its usual ordering, and1 ;1 are new elements
ordered in suchaway that 1 <x< 1 forall x2 R.
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Note that the extended real line doesnot form a eld|the arithmetic operations are
notdenedon 1 or1l, and we will at no pointtreat 1 and 1 as real nhumbers;
they are merely elements which extend the reals to add a least element and a greatest
element.

De nition 6.1.57
Let p2 [1 ;1] let n 2 N, and let x1;X2;:::;Xn be positive real numbers. The

generalised mean with exponent p (or simply p-mean) Xi;Xp;:::;Xp is the real
number M (X1;X2;:::;Xn) de ned by
I
A
Mp(X1;X2; 115 Xn) = = X

if p2fl ;0;1g, where the notation cllmj refers to the limit , to be de ned in Section
8.5.

We can see immediately that the harmonic, arithmetic and quadratic means of a nite
set of positive real numbers are thgz-means for a suitable value op: the harmonic mean
is the ( 1)-mean, the arithmetic mean is the 1-mean, and the quadratic mean is the
2-mean. Furthermore, Proposition 6.1.58 exhibits theminimum as the (1 )-mean, the
geometric meanas the 0-mean, and themaximum as the1 -mean.

Proposition 6.1.58

Let n> 0 and let x1;x2;:::;Xn > 0. Then
M1 (X1;X2;::5;Xp) =min fXq1;X2;:::; Xn0;
Mo(X1;X2;: 1 Xn) = " X1X2  Xp; and
M1 (X1;X2;::0;Xn) =min fXq;X2;: 115 Xn0. O

All of the inequalities of means we have seen so far will be subsumed by Theorem
6.1.59, which compares thep-mean and g-mean of a set of numbers for all values of

p;g2[1 ;11
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Theorem 6.1.59

with equality if and only if X1 = X2 = = Xp- O

Theorem 6.1.59 implies each of the following:
HM{min inequality (Exercise 6.1.55): takep= 1 andq= 1,
GM{HM inequality (Theorem 6.1.51): takep= 1 andq=0;
AM{GM inequality (Theorem 6.1.42): takep=0 and q=1;
QM{AM inequality (Theorem 6.1.54): takep=1 and q=2;

max{QM inequality (Exercise 6.1.55): takep=2and q=1 .
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Section 6.2
Sequences and convergence

Warning!

This section is not yet nished|do not rely on its correctness or completeness.

As we saw at the beginning of Section 6.1, the property of the real numbers that really
sets them apart from the rational numbers is completeness(see Axioms 6.1.18), which
says that every set of real numbers with an upper bound has a supremum.

This seemingly innocuous statement turns out to form the basis of all of real analysis. It
allows us to reason about mathematical objects involving real numbers by studying their
local behaviour. The word “local' here is supposed to contrast with “global'|it refers to
studying properties by zooming in on arbitrarily small regions, rather than concerning
ourselves with behaviour on a large scale.

Sequences of real numbers

De nition 6.2.1
A sequence of real numbers is a function x : N! R. Given a sequencex, we write
Xn instead of x(n) and write (Xn)n>0o, OF even just (Xp), instead of x : N! R. The
values x, are called theterms of the sequence, and the variablen is called the index
of the term x,,.

Example 6.2.2
Some very basic but very boring examples of sequences acenstant sequences For
example, the constant sequence with value 0 is

(0;0;0;0;0,0;::2)

More generally, for xed a 2 R, the constant sequence with valuea is de ned by x, = a
forall n 2 N. C

Example 6.2.3
Sequences can be de ned just like functions. For example, there is a sequence de ned
by x, =2" for all n 2 N. Writing out the rst few terms, this sequence is

(1;2;4;8,16;:::)
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Sometimes it will be convenient to start the indexing of our sequence from numbers
other than 0, particularly when an expression involving a variablen isn't de ned when
n = 0. We'll denote such sequences byXn)n>1 Or (Xn)n> 2, and so on.

Example 6.2.4
Let (z,)n> 2 be the sequence de ned byz, = W forall n> 2:
510521
3’210

The indexing of this sequence begins at 2, rather than 0, since whem=0 or n = 1, the

expression% is unde ned. We could reindex the sequence: by lettingz = z+2

for all n > 0, we obtain a new sequencezf)nso de ned by z0 = % whose

indexing starts from 0. Fortunately for us, such matters won't cause any problemsi|it's
just important to make sure that whenever we de ne a sequence, we make sure the terms

make sense for all of the indices. C

Of particular interest to us will be sequences whose terms get closer and closer to a xed
real number.

Example 6.2.5
Consider the sequenceyn)n>1 de ned by y, = % forall n> 1:
pL11l
'2'3'4'5

It is fairly clear that the terms y, become closer and closer to 0 as grows; the following
diagram is a plot of y, againstn for a few values ofn. C

Example 6.2.6

De ne a sequence {y)n>0 by rn = nZT"l for all n 2 N. Some of the values of this sequence

are illustrated in the following table:

n rn | decimal expansion
0 0 (0

1 1 |1

2 4 ] 1:333:::

3 % 1.5

10 20 | 1:818:::
, 2(:)0 .: ..
100 | 290 | 1:980:::

1000 | 2090 | 1-998: ::
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As n increases, the values of, become closer and closer to 2. C

The precise sense in which the terms of the sequences in Examples 6.2.5 and 6.2.6 "get
closer' to 0 and 2, respectively, is callecconvergence which we will de ne momentarily
in De nition 6.2.7.

First, let's try to work out what the de nition should befor a sequenceX,) to converge
to a real number a.

A nasve answer might be to say that the sequence is “eventually equal t&'|that is,
after some point in the sequence, all terms are equal ta. Unfortunately, this isn't quite
good enough: if it were, then the values, = nZTr‘l from Example 6.2.6 would be equal
to 2 for su ciently large n. However, if for somen 2 N we havenZT”l = 2, then it follows

that 2n = 2(n + 1); rearranging this gives 1 = 0, which is a contradiction.

However, this answer isn't too far from giving us what we need. Instead of saying that
the terms x,, are eventually equalto a, we might want to say that they becomein nitely
closeto a, whatever that means.

We can't really make sense of an ‘in nitely small positive distance' (e.g. Exercise 1.2.13),
so we might instead make sense of “in nitely close' by saying that the terms,, eventually
become as close ta as we could possibly want them to be. Spelling this out, this means
that for any positive distance " (IATEX code: nvarepsilon ) (read: “epsilon) no matter
how small, the terms x,, are eventually within distance " of a. In summary:

De nition 6.2.7
Let (x,) be a sequence and lea 2 R. We say that (x,) converges to a, and write
(xn) ! a (IATEX code: nto), if the following condition holds:

8> 0;9N 2 N;8n > N; jx, a<"

The value a is called alimit of (x,). Moreover, we say that a sequencex,) converges
if it has a limit, and diverges otherwise.

Before we move onto some examples, let's quickly digest the de nition of the expression
(xn) ! a. The following table presents a suggestion of how you might read the expression
8"> 0;9N 2 N; 8n> N; jx, aj<""in English.

[ The lower case Greek letter epsilon (") is traditionally used in analysis to denote a positive quantity
whose value can be made arbitrarily small. We will encounter this letter frequently in this section and
the next when discussing convergence.
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Symbols English
8"> 0... For any positive distance" (no matter how small). ..
...9N 2 N ... ...thereis a stage in the sequence...
...8n> N... ... after which all terms in the sequence...
..jXn @ <". ...are within distance " of a.

Thus, a sequence X,) converges toa if “for any positive distance" (no matter how
small), there is a stage in the sequence after which all terms in the sequence are within
of a'. After reading this a few times, you should hopefully be content that this de nition
captures what is meant by saying that the terms in the sequence are eventually as close
to a as we could possibly want them to be.

We are now ready to see some examples of convergent (and divergent) sequences. When
reading the following proofs, keep in mind the logical structure|that is, the alternating
quantiers 8":::9N :::8n:::|in the de nition of ( x,)! a.

Example 6.2.8
The sequence ¥,) dened by y, = % for all n > 1 converges to 0. To see this, by
De nition 6.2.7, we need to prove

8"> 0;9N 2 N; 8n > N; % 0o <"

So x "> 0. Our goalisto nd N 2 N such that + <" forall n> N.

Let N be any natural number which is greater than . Then for all n > N, we have

— =1 sinceE>Oforalln>1
n n
6 1 sincen > N
N
< 1" sinceN > }
1=
Hencejy,j <" for all n > N. Thus we have proved that (y,) ! O. C
Remark 6.2.9

The value of N you need to nd in the proof of convergence will usually depend on the
parameter ". (For instance, in Example 6.2.8, we de nedN to be some natural number
greater than +.) This is to be expected|remember that " is the distance away from the
limit that the terms are allowed to vary after the N term. If you make this distance
smaller, you'll probably have to go further into the sequence before your terms are all
close enough toa. In particular, the value of N will usually grow as the value of" gets
smaller. This was the case in Example 6.2.8: note that increases as decreases. C
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Example 6.2.10
Let (rn) be the sequence from Example 6.2.6 de ned by, = 22 for all n 2 N. We'll

n+1

prove that (rp) ! 2. So x "> 0. We need to nd N 2 N such that

2n

2 <" foralln> N
n+1

To nd such a value of n, we'll rst do some algebra. Note rst that for all n 2 N we
have

2n 5 = 2n 2(n+1) _ 2 2
n+1 - n+1 " n+1 n+1
Rearranging the inequality -2~ <" gives ™3* > %, and hencen> 2 1.

To be clear, what we've shown so far is that anecessarycondition for jr, 2j <" to
hold is that n > 2 1. This informs us what the desired value ofN might look like|we
will then verify that the desired inequality holds.

SodeneN = 2 1. Foralln> N, we have
2n 2
n+1 2 = n+1 by the above work
2 .

6 sincen > N

N+1
2 . 2

S 27 111 sinceN > = 1
F 1 +1
2 -

= oo rearranging

= rearranging

Thus, as claimed, we havejr, 2j <" for all n > N. It follows that (r,) ! 2, as

required. C
Exercise 6.2.11
Let (xn) be the constant sequence with valuea 2 R. Prove that (x,) ! a. C
Exercise 6.2.12
Prove that the sequence £,) de ned by z, = ﬂ:% converges to 1. C

The following proposition is a technical tool, which proves that convergence of sequences
is una ected by changing nitely many terms at the beginning of a sequence.

Proposition 6.2.13
Let (xn) be a sequence and suppose thaixf) ! a. Let (y,) be another sequence and
suppose that there is somek 2 N such that x, = y, for all n > k. Prove that (y,)! a.

Proof. Fix "> 0. We need to nd N 2 N such that jy, aj<" forall n> N.
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Since kn) ! a, there is someM 2 N such that jx, a <" foralln> M. Let N be
the greater of M and k. Then for all n > N, we havey, = x,, sincen > k, and hence
iyn @ =ijxn a<",sincen> M.

Hence {/n) ! a, as required. O
Before we go too much further, let's see some examples of sequences whililierge

Recall (De nition 6.2.7) that a sequence (x,) converges if &,) ! a for somea 2 R.
Spelling this out symbolically, to say “(xn) converges' is to say the following:

9a2 R;8"> 0;9N 2 N; 8n> N; jx, aj<"

We can negate this using the tools of Section 2.1: to say that a sequencg,() diverges
is to say the following:

8a2R;9"> 0;8N 2N;9n> N; jx, aj>"

In more intuitive terms: for all possible candidates for a limit a 2 R, there is a positive
distance " such that, no matter how far down the sequence you go (saxy ), you can
nd a term X, beyond that point which is at distance > " away from a.

Example 6.2.14
Let (x,) be the sequence de ned byx, =( 1)" for all n 2 N:

1, L1, 1,1, 1;::0)

We'll prove that ( x,,) diverges. Fix a2 R. Intuitively, if a is non-negative, then it must
be at distance> 1 away from 1, and if a is negative, then it must be at distance> 1
away from 1. We'll now make this precise.

Solet"=1,and x N 2 N. We needto nd n> N suchthatj( 1)" aj> 1. We'll
split into cases based on whethea is non-negative or negative.

Supposea> 0. Then 1 a6 1< 0, so that we have

j 1 ag=a (1l)=a+1>1
Soletn=2N +1. Then n> N and n is odd, so that

xn o o@=j( )" a=j1 &a>1
Supposea< 0. Thenl a> 1> 0, so that we have

i1 a=1 a>1

Soletn=2N. Thenn > N and n is even, so that

xno@=j D" a=jl a>1
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In both cases, we've founch > N such thatjx, aj > 1. Itfollows that ( x,) diverges. C

Example 6.2.14 is an example of @eriodic sequence|that is, it's a sequence that repeats
itself. It is di cult for such sequences to converge since, intuitively speaking, they jump
up and down a lot. (In fact, the only way that a period sequencecan converge is if it is
a constant sequence!)

Exercise 6.2.15
Let (yn) be the sequence de ned by, = n forall n 2 N:

0;1,2,3;::1)
Prove that (yn) diverges. C

Finding limits of sequences can be tricky. Theorem 6.2.17 makes it slightly easier by
saying that if a sequence is built up using arithmetic operations|addition, subtraction,
multiplication and division|from sequences whose limits you know, then you can simply
apply those arithmetic operations to the limits.

In order to prove part of Theorem 6.2.17, however, the following lemma will be useful.

Lemma 6.2.16
Let (xn) be a sequence of real numbers. Ifx,) converges, then k,) is bounded|that
is, there is some real numbek such that jx,j 6 k for all n 2 N.

Proof. Let a2 R be such that (xp) ! a. Letting " =1 in the de nition of convergence,
it follows that there exists someN 2 N such that jx, aj< 1forall n> N. It follows
that 1<x, a<l1lforalln> N,andhence (1 a)<x,< l+aforal n>N.

Now de ne

For all n < N , we have

k< j Xnj6 Xpn 6 jxpj<k
so that jxpj <k. For all n > N, we have
k< jl @6 (1 a<xp<l+abjl+a<k

so that jxnj <k.

Hencejxnj <k for all n 2 N, as required. O
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Theorem 6.2.17
Let (xn) and (yn) be sequences of real numbers, let; b2 R, and suppose that ,) ! a
and (yn) ! b Then

(@ (Xn+yn)! a+b

0 (Xn yn)! a b
() (Xnyn)! ab and
(d) (’)‘,—:) I 2 solong asy, 60 forall n2 Nandb6 0.

Proof of (a) and (c). (a). Fix "> 0. We need to prove that there is someN 2 N such
that j(xn + yn) (a+ b)j<" foralln> N.

Since &qn) ! a, there is someN; 2 N such that jx, & < 5 forall n> Ny;
Since (/n) ! b, there is someN, 2 N such that jx, b < 5 forall n > Np.

Let N be the greatest ofN; and N,. Then for all n > N, we haven > N; and n > Nj;
it follows from the triangle inequality (Theorem 6.1.28), that

IXn+yn) (@+Bj=jxn @+(¥n D6 jXn a+jyn B< 5+
as required.

(c). This one is a little harder. Fix "> 0. Since &n) converges, it follows from Lemma
6.2.16 that there is some real numbek with jx,j <k for all n 2 N.

Since kn) ! a, there is someN; 2 N such that jx, aj < ﬁ for all n > Ny;
Since /n) ! b, there is someN, 2 N such that jx, b < ﬂ for all n > N».

Let N be the greatest ofN; and N,. Then for all n > N, we have

Xnyn @b = jXn(yn D+ b(xn a)j rearranging
6 jXn(yn Dj+ jb(xn, a)j by the triangle inequality
= jXnliyn B+ jbjxn &) rearranging
<Kjyn b+ jbjxn 4 sincejxnj <k for all n
<k2k+jbj2jbj sincen > N7 andn > N
=" rearranging
Hence knyn) ! ab, as required. O
Exercise 6.2.18
Prove parts (b) and (d) of Theorem 6.2.17. C
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Theorem 6.2.17appearsobvious, but as you can see in the proof, it is more complicated
than perhaps expected. It was worth the hard work, though, because we can now
compute more complicated limits formed in terms of arithmetic operations by taking

the limits of the individual components. The following example uses Theorem 6.2.17 to

prove that nZT”l I 2 in a much simpler way than we saw in Example 6.2.10.

Example 6.2.19
We provide another proof that the sequence () of Example 6.2.6, de ned by r,, =
for all n 2 N, converges to 2.

2n
n+1

For all n > 1, dividing by the top and bottom gives

2
1+

M =

S|

The constant sequences (2) and (1) converge to 2 and 1, respectively; and by Example
6.2.8, we know that (}) ! 0. It follows that

rn)! =2

™)' 150
as required. C
Exercise 6.2.20

To do: Write exercise C

To do: Motivate

Theorem 6.2.21 (Uniqueness of limits)
Let (xn) be a sequence and leg;b2 R. If (x5) ! aand (x,)! b thena= h.

Proof. We'll prove that ja K =0, which will imply that a= b. To do this, we'll prove
that ja b is not positive: we already know it's non-negative, so this will imply that
it is equal to zero. To prove that ja bj is not positive, we'll prove that it is less than
every positive number.

So x "> 0. Then also% > 0. The de nition of convergence (De nition 6.2.7) tells us
that:

There existsN1 2 N such that jx, aj < i forall n> N;; and
There existsN, 2 N such that jx, b < 5 for all n > No.

Let n be the greatest ofN; and N». Then n > N; and n > N>, and hence

JXn aj<§ and  jXn Q<§
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By the triangle inequality (Theorem 6.1.28), it follows that

ja b=jla xp)+(xn b)j by cancelling the x,, terms
6ja Xnj*tjxn b by the triangle inequality
=jXpn @+ jxn b by Exercise 6.1.24
< -4+ =" i > >
5t 5 sincen > N; andn > N>

Sinceja b <" forall "> 0, it follows that ja b is a non-negative real number that
is less than every positive real number, so that it is equal to zero.

Sinceja B =0,we havea b=0,andsoa=h O

Theorem 6.2.21 tells us that if a sequence converges, then its limit is uniquely determined.
This allows us to talk about the limit of a convergent sequence, and in particular justi es
the following notation.

Notation 6.2.22
Let (xn) be a convergent sequence. Writ(-"ﬁlllimxn for its (unique) limit.

To do: Warn about the symbol 1 .

Example 6.2.23
Examples 6.2.8 and 6.2.10 tell us that

2n

2
n+1

lim
1

=0 and Im
n! n!l

n

To do: Introduce squeeze theorem

Theorem 6.2.24 (Squeeze theorem)
Let (Xn), (Yn) and (zn) be sequences of real numbers such that:
M (xp)! aand(z,)! a; and

(i) xXn 6 yn 6 z, forall n2 N.
Then (yn) ! a
Proof. Fix "> 0. We need to nd N 2 N such thatjy, aj<" foralln> N.
Since kn)! aand (zp)! a, there exist N1; N> 2 N such that
iXn @ <" forall n> Ng;

jzn @ <" forall n> Ny.
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Letting N be the greatest ofN1 and N> then tells us that both jx, aj andjz, aj are
less than" whenevern > N.

We will prove that jy, aj<" forall n> N. To see this letn > N. Either y, > a or
yn 6 a.

If yn > a, then we havea 6 y, 6 z,. It follows that

jyn @=yn a6z, a=jzz a<

If yn 6 a, then we havex, 6 y, 6 a. It follows that

jyo @=a yn6a Xxy,=jxp a<"

Since in both cases we have provefy, aj <", we may conclude that (/,)! a. O

Example 6.2.25

To do: C
Example 6.2.26
To do: C
Exercise 6.2.27
To do: C
Exercise 6.2.28
To do: C

Existence of limits

It is often useful to know that a sequence converges, but not necessary to go to the
arduous lengths of computing its limit. However, as it currently stands, we don't really
have any tools for proving that a sequence converges other than nding a limit for it!
This section explores the properties oR that allow us to know when a sequence does or
does not converge.

First, recall from Section 6.1 that R is a complete ordered eld (see Axioms 6.1.18). In
fact, it's the only one|this was the content of Theorem 6.1.19. To repeat, this means is
that every subsetA R that has a (real) upper bound has a least (real) upper bound,
called asupremum This property is called completeness

Exercise 6.2.29

Let A R. Write down the de nitions of what it means for a real number u to be
an upper bound of A, and what it means for a real numbers to be a supremum of
A. C
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We can use the completeness axiom to prove results about existence of limits of sequences.

Perhaps the most fundamental result is themonotone convergence theoren{Theorem
6.2.34), since it underlies the proofs of all the other results that we will prove. What it
says is that if the terms in a sequence always increase, or always decrease, and the set
of terms in the sequence is bounded, then the sequence converges to a limit.

The sequence () from Example 6.2.6, de ned by ry, = n2+”1 for all n 2 N, is an example
of such a sequence. We proved that it converged by computing its limit in Example
6.2.10 and again in Example 6.2.19. We will soon (Example 6.2.36) use the monotone
convergence theorem to giveyet another proof that it converges, but this time without

going to the trouble of rst nding its limit.

Before we can state the monotone convergence theorem, we must rst de ne what we
mean by amonotonic sequence

De nition 6.2.30
A sequence of real numbersxy) is. ..
...increasing if m 6 n implies xm 6 x, for all m;n 2 N;

...decreasing if m 6 n implies xyn > xp for all m;n 2 N.
If a sequence is either increasing or decreasing, we say itfsonotonic .

Example 6.2.31
The sequence X,,) de ned by x, = n? for all n 2 N is increasing, since for allm;n 2 N,
if m 6 n, then m? 6 n2. To see this, note thatif m 6 n,thenn m > 0andn+ m > O,

so that

2 2 —

n~ m=(n m)(n+m)>0 0=0

and hencen? > m?, as required. C

Example 6.2.32

The sequence () from Example 6.2.6, de ned by rp, = nZT"l for all n 2 N, is increasing.

To see this, supposen 6 n. Then n = m + k for somek > 0. Now

06 k by assumption
, m?+km+m6 m?+ km+ m+ k addingm?+ km + m to both sides
, m(m+k+1) 6 (m+1)(m+ k) factorising
, m(n+1) 6 (m+1)n sincen = m+ Kk
, m”: -6 - 2 - dividing both sides by (m + 1)(n + 1)
, 'm©6 rnp by de nition of ( ry)

Note that the step where we divided through by (m + 1)(n + 1) is justi ed since this
guantity is positive.
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It is perhaps useful to add that to come up with this proof, it is more likely that you
would start with the assumption r, 6 r, and derive that k > O|noting that all steps

are reversible then allows us to write it in the “correct' order. C
Exercise 6.2.33
To do: C

Theorem 6.2.34 (Monotone convergence theorem)
Let (xn) be a sequence of real numbers.
(@) If (xn) is increasing and has an upper bound, then it converges;

(b) If ( x,) is decreasing and has a lower bound, then it converges.

20 cially, what it means to say a sequence(Xn) has an upper (or lower) bound is to say that the set
fxn :n 2 Ng has an upper (or lower) bound.

Proof of (a). We prove (a) here|part (b) is Exercise 6.2.35.
So suppose X,) is increasing and has an upper bound. Then:
(i) Xm 6 X forall m 6 n; and
(i) There is some real numberu such that u > x, for all n 2 N.

Condition (ii) tells us that the set fx, j n 2 Ng R has an upper bound. By the
completeness axiom, it has a supremuna. We prove that (x,) ! a.

Solet"> 0. We needto nd N 2 N such that jx, a <" foralln> N.

Sincea is a supremum off x, j n 2 Ng, there is someN 2 N such that xy >a

Since (x,) is increasing, by (i) we havexy 6 x, for all n > N. Moreover, sincea is an
upper bound for the sequence, we actually havey 6 x, 6 aforall n> N.

Putting this together, for all n > N, we have

Xn @=a Xp sincex, a6 0
6 a Xy sincexy 6 X, foralln> N
<" sincexy >a "
It follows that ( x,) ! a, as required. O

Exercise 6.2.35
Prove part (b) of the monotone convergence theorem (Theorem 6.2.34). That is, prove

that if a sequence &) is decreasing and has a lower bound, then it converges. C
Example 6.2.36
To do: C
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Example 6.2.37
To do:

Exercise 6.2.38
To do:

Exercise 6.2.39
To do:

Chapter 6. Real analysis

To do: subsequences, Cauchy sequences, Bolzano{Weierstrass theorem
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Section 6.3
Series and sums

Warning!

This section is not yet nished|do not rely on its correctness or completeness.

To do: Lots of stu

Proposition 6.3.1
X 1

Let x 2 Rwith 1<x< 1. Then x" = T <
n2N

Proof. Given N 2 N, the N partial sum Sy of the series is given by by

X
Sy= x"=1+ x+x?+ +xN
n=0
Note that
XSN = "= x+x2+  +xN*tl=9g5y,, 1
n=0
and hence

(1 X)SN =Sy XSn =Sy (Sn«1 1)=1 (Sy«1 Sn)=1 xN*
and hence dividing by 1  x, which is permissible sincex 6 1, yields

1 XN +1

Sy =
N 1 x
To do: Finish proof O

Proposition 6.3.2
X 1

Let x 2 Rwith 1<x< 1. Then nx" 1:72
n2N (1 X)
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Section 7.1
Discrete probability spaces

Probability theory is a eld of mathematics which attempts to model randomness and
uncertainty in the ‘real world'. The mathematical machinery it develops allows us to
understand how this randomness behaves and to extract information which is useful for
making predictions.

Discrete probability theory, in particular, concerns situations in which the possible out-
comes form acountable set. This simpli es matters considerably: if there are only
countably many outcomes, then the probability that any event occurs is determined
entirely by the probabilities that the individual outcomes comprised by the event occur.

For example, the numberN of words spoken by a child over the course of a year takes
values in N, so is discrete. To eachn 2 N, we may assign a probability that N = n,
which can take positive values in a meaningful way, and from these probabilities we can
compute the probabilities of more general events occurring (e.g. the probability that
the child says under a million words). However, the heightH grown by the child over
the same period takes values in [ ), which is uncountable; for eachh 2 [0;1 ), the
probability that H = h is zero, so these probabilities give us no information. We must
study the behaviour of H through some other means.

In this chapter, we will concern ourselves only with the discrete setting.

It is important to understand from the outset that, although we use language like
outcome event probability and random, and although we use real-world examples,
everything we do concerns mathematical objects: sets, elements of sets, and functions.
If we say, for example, \the probability that a roll of a fair six-sided die shows 3 or 4

is 3," we are actually interpreting the situation mathematicallythe  outcomes of the
die rolls are interpreted as the elements of the set [6]; thevent that the die shows 3 or

4 is interpreted as the subsetf 3;4g [6]; and the probability that this event occurs is
the value of a particular function P: P([6]) ! [0;1] on input f3;4g. The mathematical
interpretation is called a model of the real-world situation.
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Section 7.1. Discrete probability spaces 301

De nition 7.1.1
A discrete probability space is a pair ( ;P) (IATEX code: (nOmega, nmathblf Pg) ),
consisting of a countable set and a function P: P() ! [0; 1], such that

@) P()=1,; and

(i) ( Countable additivity ) If fA;ji 2 1gis any family of pairwise disjoint subsets
of , indexed by a countable set |, then
|
[ =~ X
P Ai = P(Ai)
i21 i21

The set is called the sample space ; the elements! 2 are called outcomes ;? the
subsetsA are called events ; and the function P is called the probability measure
Given an eventA, the value P(A) is called the probability of  A.

aThe symbols ;! (IATEX code: nOmeganpomega are the upper- and lower-case forms, respectively, of
the Greek letter omega

There is a general notion of a probability space, which does not require the sample
space to be countable. This de nition is signi cantly more technical, so we restrict
our attention in this section to discrete probability spaces. Thus, whenever we say
“probability space’ in this chapter, the probability space can be assumed to be discrete.
However, when our proofs do not speci cally use countability of , they typically are true

of arbitrary probability spaces. As such, we will specify discreteness in the statement of
results only when countability of the sample space is required.

Example 7.1.2
We model the roll of a fair six-sided die.

The possibleoutcomes of the roll are 1, 2, 3, 4, 5 and 6, so we can take = [6] to be
the sample space.

The events correspond with subsets of [6]. For example:
f 4g is the event that the die roll shows 4. This event occurs with probability %
f 1;3; 59 is the event that the die roll is odd. This event occurs with probability %

f 1, 4; 69 is the event that the die roll is not prime. This event occurs with probab-
ility %

f 3;4;5; 69 is the event that the die roll shows a number greater than 2. This event
occurs with probability 2.

f 1,2;3;4,5; 69 is the event that anything happens. This event occurs with prob-
ability 1.
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302 Chapter 7. Discrete probability theory

? is the event that nothing happens. This event occurs with probability 0.

More generally, since each outcome occurs with equal probabilit;%, we can de ne

P(A) = J% for all events A

We will verify that P de nes a probability measure on [6] in Example 7.1.6. C
Example 7.1.3
Let ( ;P) be a probability space. We prove that P(?) = 0.
Note that and ? are disjoint, so by countable additivity, we have
1=P()= P( [ ?2)=PO)+ P(?)=1+ P(?)
Subtracting 1 throughout yields P(?) = 0, as required. C

Exercise 7.1.4
Let ( ;P) be a probability space. Prove that

P( nA)=1 P(A)

for all events A. C

Countable additivity of probability measuresjthat is, condition (ii) in De nition 7.1.1]
implies that probabilities of events are determined by probabilities of individual out-
comes. This is made precise in Proposition 7.1.5.

Proposition 7.1.5
Let be a countable set and let P: P() ! [0;1] be a function such that P() = 1.
The following are equivalent:

() P is a probability measure on ;

i) P(flg)= P(A)for all A
12A

Proof. Since P() = 1, it suces to prove that condition (i) of Proposition 7.1.5 is
equivalent to countable additivity of P.

()) (ii). Suppose P is a probability measure on . Let A

Note that since A and is countably in nite, it follows that ff ! gj! 2 Agis

a countable family of pairwise disjoint sets. By countable additivity, we have
!

[ X
P(A)= P flg = P(f! g)
1 2A 1 2A

as required. Hence condition (ii) of the proposition is satis ed.
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P
(ii)) (i). Suppose that P(f! g) = P(A) for all A . We prove that P is a
12A
probability measure on .

So letfAjji2 Igge a family of pairwise disjoint events, indexed by a countable
setl. Dene A=, Aj. Since the setsA; partition A, summing over elements
of A is the same as summing over each of the se#s individually, and then adding
those results together; speci cally, for eachA-tuple (pi )i 2a, We have

X X X
pr = P
1 2A i21 1 2A,
Hence
X
P(A) = P(f! g) by condition (ii) of the proposition
XA x
= P(f! g) by the above observation
ﬂ(z' 1 2A;
= P(A}) by condition (ii) of the propaosition

i21
So P satis es the countable additivity condition. Thus P is a probability measure
on .

Hence the two conditions are equivalent. O

Example 7.1.6
We prove that the function P from Exercise 7.1.2 truly does de ne a probability measure.
Indeed, let =[6]and let P:P() ! [0;1] be de ned by

P(A) = J% for all events A

Then P() = g =1, so condition (i) in De nition 7.1.1 is satis ed. Moreover, for each
A [6] we have

P1g = o= =P
12A 12A
so, by Proposition 7.1.5,P de nes a probability measure on [6]. C

Proposition 7.1.5 makes de ning probability measures much easier, since it implies that
probability measures are determined entirely by their values on individual outcomes.
This means that, in order to de ne a probability measure, we only need to specify its
values on individual outcomes and check that the sum of these probabilities is equal to
1. This is signi cantly easier than de ning P(A) on all events A and checking the
two conditions of De nition 7.1.1.

This is made precise in Proposition 7.1.7 below.
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304 Chapter 7. Discrete probability theory

Proposition 7.1.7 p
Let be a countable set and, for each! 2 ,let p 2 [0;1]. If pr =1, then there

12
is a unique probability measureP on such that P(f! g) = p for each! 2 .

Proof. We prove existence and uniqueness d? separately.

Existence. Dene P:P() ! [0;1] be de ned by

X
P(A) = p
12A
for all events A . Then condition (ii) of Proposition 7.1.5 is automatically

satis ed, and indeed P(f! g) = p for each! 2 . Moreover
X X
P() = P(fl g) = p=1
12 12

and so condition (i) of De nition 7.1.1 is satis ed. Hence P de nes a probability
measure on .

Uniqueness. Suppose thatP?: P() ! [0;1] is another probability measure
such that P{f! g) = p forall ! 2 . For each event A , condition (ii) of
Proposition 7.1.5 implies that

X X
PYA) = PYf! g) = p = P(A)
1 2A 12A

henceP%= P.

So P is uniquely determined by the valuesp; . O

The assignments ofp; 2 [0; 1] to each! 2 in fact de nes something that we will later
de ned to be a probability mass function (De nition 7.2.6).

With Proposition 7.1.7 proved, we will henceforth specify probability measuresP on
sample spaces by specifying only the values ofP(f! g) for ! 2 .

Example 7.1.8

Let p 2 [0;1]. A coin, which shows heads with probability p, is repeatedly ipped until
heads shows.

The outcomes of such a sequence of coin ips all take the form

(1ails ; taiI?'z ; taiI?; heads)

n “tails'
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Section 7.1. Discrete probability spaces 305
for somen 2 N. Identifying such a sequence with the numbern of ips before heads
shows, we can take = N to be the sample space.
For eachn 2 N, we can de ne

P(fng)=(1 p)"p

This will de ne a probability measure on N, provided these probabilities all sum to 1;
and indeed by Proposition 6.3.1, we have

[EEN

X
P(fng)= (1 p"p=p 1

n2N n2N

1 _p Lo
1 1 p p

By Proposition 7.1.7, it follows that ( ;P) is a probability space. C

Exercise 7.1.9
A fair six-sided die is rolled twice. De ne a probability space ( ;P) that models this
situation. C

Exercise 7.1.10
Let ( ;P) be a probability space and let A;B be events with A B. Prove that
P(A) 6 P(B). C

Set operations on events

In the real world, we might want to talk about the probability that two events both
happen, or the probability that an event doesn't happen, or the probability that at least
one of some collection of events happens. This is interpreted mathematically in terms
of set operations.

Example 7.1.11

Let ( ;P) be the probability space modelling two rolls of a fair six-sided die|that is,
the sample space =[6] [6] with probability measure P de ned by P(f(a;b)g) = 3—16
for each @;b) 2 .

Let A be the event that the sum of the die rolls is even, that is

8 9

<(L1); (L:3) (15) (22 (2:4), (2,6)=

A= _(31); (33); (3:5); (42); (44), 4.6),

" (5:1); (5:3); (5:5); (6;2); (6;4); (6;6)’

and let B be the event that the sum of the die rolls is greater than or equal to 9, that is
B = f(3;6);(4;5); (4;6); (5;4); (5;5); (5; 6); (6; 3); (6; 4); (6;5); (6; 6)g

Then
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306 Chapter 7. Discrete probability theory

Consider the event that the sum of the die rolls is evenor greater than or equal
to 9. An outcome ! gives rise to this event precisely when eithet 2 A or! 2 B;
so the event in question isA [ B;

Consider the event that the sum of the die rolls is everand greater than or equal
to 9. An outcome! gives rise to this event precisely when both 2 A and! 2 B;
so the event in question isA\ B;

Consider the event that the sum of the die rolls isnot even. An outcome! gives
rise to this event precisely when! 62A; so the event in question is is ([6] [6]) nA.

Thus we can interpret “or' as union, "and' as intersection, and "not' as relative comple-
ment in the sample space. C

The intuition provided by Example 7.1.11 is formalised in Exercise 7.1.13. Before we do
this, we adopt a convention that simpli es notation when discussing events in probability
spaces.

Notation 7.1.12
Let ( ;P) be a probability space. When a subsetA is interpreted as an event, we
will write A® for nA (instead of U nA where U is the universe of discourse).

That is, when we talk about the complement of an event we really mean their relative
complement inside the sample space.

Exercise 7.1.13
Let ( ;P) be a probability space, and letp(! ); q(! ) be logical formulae with free variable
I ranging over . Let

A=fl'2 jp')g and B=1fl" 2 jq()g
Prove that
frz jpt)*aql)g= A\ B;
fr2 jp(t)_oqt)g=A[B;

fr2 j:p(l)g= AC

For reference, in Example 7.1.11, we had =[6] [6] and we de nedp(a;b) to be 'a+ b
is even' andqg(a; b) to be 'a+ b> 7. C

With this in mind, it will be useful to know how set operations on events interact with
probabilities. A useful tool in this investigation is that of an indicator function .
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De nition 7.1.14
Let be a set and let A . The indicator function of A in is the function
ia: !'f 0;1g de ned by
1 if! 2A
ia(l)=
A= 0 i e

Proposition 7.1.15
Let be asetandlet A;B . Thenforall ! 2 we have

(@) itas(t)=1a")is(');
(i) iags(*)=1ia(")+ig(') ias(') and

(i) iac(t)=1 ia(l).

Proof. Proofof () Let ! 2 . If | 2 A\ Bthen! 2 Aand! 2B, sothatiag(!)=
ia(!)=ig(')=1. Hence

ia(M)ig(!)=1=ias(")
If I 62A\ B then either! 62A or! 62B. Henceia\ g (! ) =0, and either io(! )=0 or

ig(')=0. Thus
ia(Mig(*)=0=ias(!)

In both cases, we havda\ g (! ) = ia(!)ig(!), as required. O

Exercise 7.1.16
Prove parts (ii) and (iii) of Proposition 7.1.15. C

Exercise 7.1.17

Let ( ;P) be a discrete probability space, and for eacH 2 let p = P(f! g). Prove
that, for each event A, we have

X
P(A) = pria(t)
12

Theorem 7.1.18
Let ( ;P) be a probability space and letA; B . Then

P(A[ B)= P(A)+ P(B) P(A\ B)
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Proof. For each! 2 ,let p = P(f! g). Then

X
P(A[ B)= priags(!) by Exercise 7.1.17
X
= p(ia)+is(’) ias(!)) by Proposition 7.1.15(ii)
X X X
= pia(l)+ pig(l)+ piavs(!) rearranging
12 12 12
= P(A)+ P(B) P(A\ B) by Exercise 7.1.17
as required. m

Although there are nice expressions for unions and complements of events, it is not always
the case that intersection of events corresponds with multiplication of probabilities.

Example 7.1.19
Let =[3] and de ne a probability measure P on by letting

P(f1g) = %; P(f2g) = % and P(f 3g) = %
Then we have
P(f1;2g\f 2;3g) = P(f29) = }6 3= 3 §= P(f1;29) P(f2;3g)
2 16 4 4

C

This demonstrates that it is not always the case thatP(A\ B) = P(A)P(B) for events
A;B in a given probability space. Pairs of eventsA; B for which this equation is true
are said to beindependent

De nition 7.1.20

Let ( ;P) be a probability space and letA; B be events. We sayA and B are independ-
ent if P(A\ B) = P(A)P(B); otherwise, we say they aredependent . More generally,
eventsAz; Ay;:::; A, are mutually independent if

P(A1\ A2\ \ An) = P(A1)P(A2)  P(An)

Example 7.1.21
A fair six-sided die is rolled twice. Let A be the event that the rst roll shows 4, and let
B be the event that the second roll is even. Then

A =1(4;1);(4,2);(4;3);(4,4);(4,5); (4,6)9

soP(A)= £ = 1; and

B = f(a;2);(a;4);(a;6) j a2 [6]g
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Section 7.1. Discrete probability spaces 309
soP(B) = 18 = 1. Moreover A\ B = f(4;2);(4;4); (4;6)g, so it follows that

P(A\ B)= = == 1

% 12 6 2 TAPRE)

NI =

so the eventsA and B are independent.

Let C be the event that the sum of the two dice rolls is equal to 5. Then
C =1(1;4);(2;3);(3;2); (4, 1)g
SOP(C) = 5 = 5. Moreover A\ C = f(4;1)g, so it follows that

1 1 1

RN

= P(A)P(C)

so the eventsA and C are dependent. C

Exercise 7.1.22
Let ( ;P) be a probability space. Under what conditions is an eventA independent
from itself? C

Conditional probability

Suppose we model a real-world situation, such as the roll of a die or the ip of a coin,
using a probability ( ; P). When we receive new information, the situation might change,
and we might want to model this new situation by updating our probabilities to re ect
the fact that we know that B has occurred. This is done by de ning a new probability
measureP on . What follows is an example of this.

Example 7.1.23
Two cards are drawn at random, in order, without replacement, from a 52-card deck.
We can model this situation by letting the sample space be the set of ordered pairs of
distinct cards, and letting P assign an equal probability (ofjij) to each outcome. Note
that j j=52 51, and so

1
52 51

P(f! g) =
for each outcome! .
We will compute two probabilities:

The probability that the second card drawn is a heart.

The probability that the second card drawn is a heart given that the rst card
drawn is a diamond.
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310 Chapter 7. Discrete probability theory
Let A be the event that the second card drawn is a heart, and let B be the
event that the rst card drawn is a diamond.
To compute P(A), note rstthat A = A°[ A% where

AClis the event that both cards are hearts, so thatjA§ =13 12; and

A%js the event that only the second card is a heart, so thaA% =39 13.
SinceA°\ A%= 2 it follows from countable additivity that

13 12+39 13 _ 13 (12+39) _ 1

P(A)= P(AY+ P = = 52 51 4

Now suppose we know that rst card drawn is a diamond|that is, event B has occurred|
and we wish to update our probability that A occurs. We do this by de ning a new
probability measure

P:P() ! [0;1]
such that:

(&) The outcomes that do not give rise to the eventB are assigned probability zero;
that is, P(f! gy =0 forall ! 62B; and

(b) The outcomes that give rise to the eventB are assigned probabilities proportional
to their old probability; that is, there is some k 2 R such that P(! ) = kP(!) for
all! 2 B.

In order for P to be a probability measure on , we need condition (i) of De nition 7.1.1
to occur.

X
P() = P(f! g) by condition (ii) of Proposition 7.1.5

= P(f! g) sinceP(f! g) =0 for ! 62B
\pB

= kP(f! g) sinceP(f! g)= kP(f! gfor! 2B
1 2B

= kP(B) by condition (ii) of Proposition 7.1.5

Since we needP() = 1, we must therefore take k = P(lB). (In particular, we need

P(B) > 0 for this notion to be well-de ned.)

Recall that, before we knew that the rst card was a diamond, the probability that the
second card is a heart Was}. We now calculate how this probability changes with the
updated information that the rst card was a diamond.
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The event that the second card is a heart in the new probability space is preciselp\ B,
since it is the subset ofB consisting of all the outcomes! giving rise to the eventA. As
such, the new probability that the second card is a heart is given by
_ P(A\ B)
P(A) = “PB)
Now:

A\ B is the event that the rst card is a diamond and the second is a heart.
To specify such an event, we need only specify the ranks of the two cards, so
jA\ Bj=13 13 and henceP(A\ B)= B3

B is the event that the rst card is a diamond. A similar procedure as with A
yields P(B) = 3.

Hence P(A\ B) 13 13 4 13
B(A) = = = —
(A) P(B) 52 51 51
Thus the knowledge that the rst card drawn is a diamond very slightly increases the
probability that the second card is a heart from £ = 3 to 3. C

Example 7.1.23 suggests the following schema: upon discovering that an eveBtoccurs,
the probability that event A occurs should change fronP(A) to PPA(\B?). This motivates
the following de nition of conditional probability.

De nition 7.1.24
Let ( ;P) be a probability space and letA; B be events such thatP(B) > 0. The condi-
tional probability of A given B is the number P(A j B) (LATEX code: nmathblf Pg(A

nmid B)) de ned by
P(A\ B)

PAIB)= —5gy

Example 7.1.25
A fair six-sided die is rolled twice. We compute the probability that the rst roll showed
a 2 given that the sum of the die rolls is less than 5.

We can model this situation by taking the sample space to be [6] [6], with each outcome
having an equal probability of 3—16

Let A be the event that the rst die roll shows a 2, that is
A =1(2;1);(2;2);(2;3);(2,4);(2;5); (2;6)g
and let B be the event that the sum of the die rolls is less than 5, that is

B = f(1;1);(1;2);(1;3);(2;1);(2;2); (3; 1)g
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We need to computeP(A j B). Well,
A\ B = 1(2;1);(2;2)g

soP(A\ B)= £&;and P(B) = . Hence

2
PAjB)= $=2=3
36

C

Exercise 7.1.26
A fair six-sided die is rolled three times. What is the probability that the sum of the die
rolls is less than or equal to 12, given that each die roll shows a power of 2? C

Exercise 7.1.27
Let ( ;P) be a probability space and letA; B be events with P(B) > 0. Prove that

P(AjB)= P(A\ BjB)

C

Exercise 7.1.28
Let ( ;P) be a probability space and letA; B be events such thatP(B) > 0. Prove that
P(AjB)= P(A)if and only if A and B are independent. C

We will soon see some useful real-world applications of probability theory usinddayes's
theorem (Theorem 7.1.33). Before we do so, some technical results will be useful in our
proofs.

Proposition 7.1.29
Let ( ;P) be a probability space and letA; B be events with 0< P(B) < 1. Then

P(A)= P(AjB)P(B)+ P(AjB)P(B°)

Proof. Note rst that we can write
A=A\ = A\ (B[ BY=(A\B)[ (A\ B9
and moreover the eventsA\ B and A\ B¢ are mutually exclusive. Hence
P(A)= P(A\ B)+ P(A\ B
by countable additivity. The de nition of conditional probability (De nition 7.1.24) then

gives
P(A)= P(AjB)P(B)+ P(AjB )P(B®

as required. O
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Example 7.1.30

An animal rescue centre houses a hundred animals, sixty of which are dogs and forty
of which are cats. Ten of the dogs and ten of the cats hate humans. We compute the
probability that a randomly selected animal hates humans.

Let A be the event that a randomly selected animal hates humans, and leB be the
event that the animal is a dog. Note that B¢ is precisely the event that the animal is a
cat. The information we are given says that:

P(B) = 100, since 60 of the 100 animals are dogs;

P(B€) = 100, since 40 of the 100 animals are cats;

P(AjB)= é—g, since 10 of the 60 dogs hate humans;

P(A jB®) = 18 since 10 of the 40 cats hate humans.

By Proposition 7.1.29, it follows that the probability that a randomly selected animal
hates humans is
60 10 40 10 20 1

P(A)= P(A[B)P(B)+ P(A]BYP(B) = o0 =0+ 100 70 100 &

C

The following exercise generalises Proposition 7.1.29 to arbitrary partitions of a sample
space into events with positive probabilities.

Example 7.1.31

The animal rescue centre from Example 7.1.30 acquires twenty additional rabbits, of
whom sixteen hate humans. We compute the probability that a randomly selected
animal hates humans, given the new arrivals.

A randomly selected animal must be either a dog, a cat or a rabbit, and each of these
occurs with positive probability. Thus, letting D be the event that the selected animal
is a dog, C be the event that the animal is a cat, andR be the event that the animal is
a rabbit, we see that the setsD; C; R form a partition of the sample space.

Letting A be the event that the selected animal hates humans. Then

10 60 10 40 16 20 _ 3
P(A)= P(A]D)P(D)+ P(A ] C)P(C)+ P(A JR)P(R) = = 55+ 75 150" 20 120~ 10

Proposition 7.1.32 below is a technical result which proves that conditional probability
truly does yield a new probability measure on a given sample space.
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Proposition 7.1.32
Let ( ;P) be a discrete probability space and letB be an event such thatP(B) > 0.
The function P: P() ! [0;1] de ned by

P(A)= P(AjB) forall A

de nes a probability measure on .

Proof. First note that

B()= P( jB)= P(P(:B)B) - ggg; -

1

so condition (i) of De nition 7.1.1 is satis ed.

Moreover, for eachA we have

P(A) = P(AjB) by de nition of P
_ P(A\ B) iy
= “h@) by De nition 7.1.24
1 X
= BB P(f! g) byProposition 7.1.5
>(( ), 2A\ B
= P(f!'gjB) by De nition 7.1.24
\PALB
= P(f'gjB) sinceP(f!gjB)=0for ! 2 AnB
W2 A
= P(f! g) by de nition of P
12A

so condition (ii) of Proposition 7.1.5 is satis ed. HenceP de nes a probability measure
on . O

Proposition 7.1.32 implies that we can use all the results we've proved about probability
measures to conditional probability given a xed event B. For example, Theorem 7.1.18
implies that

P(A[ A%jB)= P(AjB)+ P(A%jB) P(A\ A% B)
for all events A; A% B in a probability space ( ;P) such that P(B) > 0.

The next theorem we prove has a very short proof, but is extremely important in applied
probability theory.
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Theorem 7.1.33 (Bayes's theorem)
Let ( ;P) be a probability space and letA; B be events with positive probabilities. Then

P(B jA)= "AIBIPE) IjD(BA))P(B)

Proof. De nition 7.1.24 gives
P(AjB)P(B)= P(A\ B)= P(B\ A)= P(B jA)P(A)

Dividing through by P(A) yields the desired equation. O

As stated, Bayes's theorem is not necessarily particularly enlightening, but its usefulness
increases sharply when combined with Proposition 7.1.29 to express the denominator of
the fraction in another way.

Corollary 7.1.34
Let ( ;P) be a probability space and letA;B be events such thatP(A) > 0 and 0<
P(B) < 1. Then
P(AjB)P(B)
P(AjB)P(B)+ P(AjBC°)P(B®)

P(B jA)=

Proof. Bayes's theorem tells us that

P(A]B)P(B)

PBIA) =~

By Proposition 7.1.29 we have
P(A)= P(AjB)P(B)+ P(AjB)P(B®)

Substituting for P(A) therefore yields

P(AjB)P(B)

PBIA)= BATBIR(B)+ P(A] BYPEBY

as required. O

The following example is particularly counterintuitive.

Example 7.1.35

A town has 10000 people, 30 of whom are infected with Disease X. Medical scientists
develop a test for Disease X, which is accurate 99% of the time. A person takes the test,
which comes back positive. We compute the probability that the person truly is infected
with Disease X.
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Let A be the event that the person tests positive for Disease X, and leB be the event
that the person is infected with Disease X. We need to computd®(B | A).

By Corollary 7.1.34, we have

P(AjB)P(B)
P(AjB)P(B) + P(A j B)P(B®)

P(B jA)=

It remains to compute the individual probabilities on the right-hand side of this equation.
Well,

P(A j B) is the probability that the person tests positive for Disease X, given that
they are infected. This is equal to %, since the test is accurate with probability
99%.

P(A j B®) is the probability that the person tests positive for Disease X, given
that they are not infected. This is equal to ﬁ, since the test isinaccurate with
probability 1%.

P(B) = 1555 since 30 of the 10000 inhabitants are infected with Disease X.

P(BS) = 152, since 9970 of the 10000 inhabitants areot infected with Disease
X.

Piecing this together gives

10010000 297
P(BjA)= 5530 1 9970 0:23
100 10000 " 100 10000 1294

Remarkably, the probability that the person is infected with Disease X given that the
test is positive is only 23%, even though the test is accurate 99% of the time! C

The following result generalises Corollary 7.1.34 to arbitrary partitions of the sample
space into sets with positive probabilities.

Corollary 7.1.36
Let ( ;P) be a probability space, let A be an event with P(A) > 0, and letfB; ji 2 Ig
be a family of mutually exclusive events indexed by a countable set such that

P(Bi)> Oforalli 21 and [ P(B;) =
i21
Then P(A j Bi)P(Bj)
i — J Bj i
PEA = P AT BYPE)
i2l

for eachi 2 I.
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Proof. Bayes's theorem tells us that

P(B jA) = "AIBIPE) IjD(BA))P(B)

By countable additivity, we have
I
[ X X
P(A)= P A\ B; = P(A\ Bj) = P(A j Bi)P(B;)
i21 i21 i21
Substituting for P(A) therefore yields
oP(A ] Bi)P(Bi)

PEUA= P aTePE)
i21

as required. O

Example 7.1.37

A car company, Cars N'At, makes three models of cars, which it imaginatively named
Model A, Model B and Model C. It made 3000 Model As, 6500 Model Bs, and 500 Model
Cs. In a given day, a Model A breaks down with probability ﬁ), a Model B breaks
down with probability ﬁ), and the notoriously unreliable Model C breaks down with
probability %. An angry driver calls Cars N'At to complain that their car has broken
down. We compute the probability that the driver was driving a Model C car.

Let A be the event that the car is a Model A, let B be the event that the car is a Model
B, and let C be the event that the car is a Model C. Then

3000 6500 500
P(A) = 10000 P(B)= 10000 (€)= 10000
Let D be the event that the car broke down. Then
) 1 , 1 . _ i
P(DjA)= 100 P(D jB)= 200 P(DjC)= 20

We need to computeP(C j D). Since the eventsA; B; C partition the sample space and
have positive probabilities, we can use Corollary 7.1.36, which tells us that

P(D j C)P(C)
P(D jA)P(A)+ P(D jB)P(B)+ P(D j C)P(C)
Substituting the probabilities that we computed above, it follows that

P(CjD)=

2 o000 2
P(CID)= 130, 1 es00, T 500 - 7 029

100 10000 = 200 10000 = 20 10000
C

Exercise 7.1.38
In Example 7.1.37, nd the probabilities that the car was a Model A and that the car
was a Model B. C
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Section 7.2
Discrete random variables

Events in a probability space are sometimes unenlightening when looked at in isolation.
For example, suppose we roll a fair six-sided die twice. The outcomes are elements of
the set [6] [6], each occurring with equal probability % The event that the die rolls
sum to 7 is precisely the subset

f(1;6);(2;5);(3;4);(4,3);(5:2);(6;1)g [6] [6]

and so we can say that the probability that the two rolls sum to 7 is
1
P(f(1:6):(2:5):(3;4): (4:3):(5:2): (6:1)9) = ¢

However, it is not at all clear from the expressionf (1; 6); (2;5); (3; 4); (4; 3); (5; 2); (6; 1)g
that, when we wrote it down, what we had in mind was the event that the sum of the
die rolls is 7. Moreover, the expression of the event in this way does not make it clear
how to generalise to other possible sums of die rolls.

Note that the sum of the die rolls de nes a function S: [6] [6]! [12], de ned by
S(a;b)= a+ bforall (a;b) 2 [6] [6]
The function S allows us to express our event in a more enlightening way: indeed,
f(1;6);(2;5);(3:4); (4:3);(5:2);(6;1)g= f(a;b) 2 [6] [6]ja+ b=7g=S '[f7q]

(Recall the de nition of preimage in De nition 2.3.35.) Thus the probability that the
sum of the two die rolls is 7 is equal toP(S *[f 7g]).

If we think of S not as a function [6] [6]! [12], but as a [12]-valuedrandom variable,
which varies according to a random outcome in [6] [6], then we can informally say

PfS=7g= é which formally means P(S ![f 7g]) = é

This a ords us much more generality. Indeed, we could ask what the probability is that
the die rolls sum to a value greater than or equal to 7. In this case, note that the die rolls
(a;b) sum to a number greater than or equal to 7 if and only ifa+ b2 f 7;8;9; 10; 11; 12g,
which occurs if and only if (a;b) 2 S [f7;8;9;10;11;12g]. Thus, we might informally
say

PFS> 7g9= 112 which formally means P(S [f7;8;9;10;11;12g]) = 112
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We might also ask what the probability is that the sum of the die rolls is prime. In this
case, we might informally say

PfS is primeg = 132 which formally means P(S [f2;3;5;7;11g]) = 132

and so on. In each of these cases, we're de ning events|which are subsets of the sample
space|in terms of conditions on the values of a random variable (which is, formally, a
function).

We make the above intuition formal in De nition 7.2.1.

De nition 7.2.1
Let ( ;P) be a probability space and letE be a set. AnE-valued random variable
on ( ;P)isafunction X : ! E such that the image

X[]= fX(")it 2 g

is countable. The setE is called the state space of X. A random variable with
countable state space is called aiscrete random variable

Before we proceed with examples, some notation for events regarding values of random
variables will be particularly useful.

Notation 7.2.2
Let ( ;P) be a probability space, let E be a set and letX be an E-valued random
variable on ( ;P). For eache 2 E, write

fX =eg=fl 2 jX()=eg= X ![feq

to denote the event that X takes the valuee. More generally, for each logical formula
p(x) with free variable x ranging over E, we write

fp(X)g=f! 2 jp(X(!)g=X *[fe2 E|p(e)d]
for the event that the value of X satis es p(x).

We will usually write PfX = eginstead of P(f X = eg) for the probability that a random
variable X takes a valuee, and so on.

Example 7.2.3
We can model a sequence of three coin ips using the probability space (,P), where
= fH;Tg® and P(f! g) = L forall ! 2 .

Let N be the real-valued random variable representing number of heads that show. This
is formalised as a function
N: ! R where N(ig;ip;iz) =the number of heads amongstiy;iz;is

for example,N(H; T;H) = 2. Now
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The probability that exactly two heads show is

PfN =2g= P(N 1[f2q)) by Notation 7.2.2
= P(f(H;H;T);(H;T;H);(T;H;H)g) evaluating event N 2[f2g]
_3_3
- 288

The probability that at least two heads show is

PfIN > 2g=P(f!l 2 jN(!)> 20) by Notation 7.2.2
(HiHT); (H;T;H);

=P (T:H:H): (H:H:H) evaluating event
_4_1
T8 2

C

Exercise 7.2.4

With probability space ( ;P) and random variable N de ned as in Example 7.2.3,
compute PfN is oddg and PFN =4g. C

Exercise 7.2.5

Let ( ;P) be a probability space, letE be a set, letX be anE-valued random variable
andletU E. Prove that the event fX 2 Ugis equal to the preimageX 1[U]. Deduce
that X

PEX 2Ug=  fx (e
e2U
C

Each random variable comes with an associategrobability mass function, which allows

us to “forget' the underlying probability space for the purposes of studying only the
random variable.

De nition 7.2.6

Let ( ;P) be a probability space, letX : ! E be anE-valued random variable. The
probability mass function of X is the function fx : S! [0; 1] de ned by

fx(e)= PFX = egforall e2 S

Example 7.2.7

The probability mass function of the random variable N from Exercise 7.2.3 is the
function fyy : R! [0; 1] de ned by

fn(e)= PIN = eg=

ol -
Do W
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for all e 2 10;1;2;3g, and fy(e) = 0 otherwise. Indeed, there are 2 = 8 possible
outcomes, each equally likely, and 2 of those outcomes show exactlye heads fore 2
f0; 1;2; 3g. C

In the previous exercise, we could have just specied the value ofy on f0; 1;2; 3q,
with the understanding that N does not take values outside of this set and hence that
PfIN = eg = 0 for all e 62 D;1;2;3g. This issue arises frequently when dealing with
real-valued discrete random variables, and it will be useful to ignore most (or all) of
those real numbers which are not values of the random variable.

As such, for E R, we will from now on blur the distinction between the following
concepts:

(i) E-valued random variables;

(i) real-valued random variables X such that Pf X = xg=0 for all x 62E.

Example 7.2.8

The probability mass function of the random variable N from Example 7.2.3 can be
taken to be the function fx :f0;1;2;3g! [0;1] de ned by

3
K forall k2f0;1;2;3g

(el o

fx (k) =

C

Lemma 7.2.9
Let ( ;P) be a probability space, let E be a set and letX be an E-valued random
variable. The setsfX = eg for e 2 E are mutually exclusive, and their union is .

Proof. If e:?2 E, then for all! 2 we have

1 2fX = eg\f X = %, ! 2X feg]\ X 1[fe¥y] by Notation 7.2.2
, X(1)=eandX ()= € by de nition of preimage
) e= ¢

soife6 e’then fX = eg\f X = €= 2. So the events are mutually exclusive.

Moreover, if! 2 ,then ! 2fX = X (!)g. Hence

as required. O
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Theorem 7.2.10
Let ( ;P) be a probability space, let E be a countable set, and letX be an E-valued
random variable. Then X
fx(e)=1
e2E

Proof. Sincefyx (e) = PfX = egforall e2 E, we need to check that

X
PfX = eg=1
e2E

By Lemma 7.2.9, we have

X [
PIX=eg=P  fX=eg =P()=1
e2E e2E

as required. O

The following corollary follows immediately.

Corollary 7.2.11
Let ( ;P) be a probability space, let E be a countable set, and letX be an E-valued
random variable. The function X P:P(E)! [0;1] de ned by

X
(X P)(A) = fx(e)= PfX 2 Ag
e2A

for all A E denes a probability measure onE. The space E;X P) is called the
pushforward probability measure of X. O

Corollary 7.2.11 implies that any statement about probability measures can be applied
to the pushforward measure. For example,

PfX 2 A[ Bg=PfX 2 Ag+ PEX 2Bg PfX 2 A\ Bg
for all subsetsA;B E.
As with events, there is a notion of independence for random variables.
De nition 7.2.12
Let ( ;P) be a discrete probability space and letX;Y : | E be discrete random

variables on ( ;P). We say X and Y are independent if, for all e;d 2 E, the
events fX = eg and fY = €Y are independent. More generally, random variables

fXi = g are mutually independent.
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